1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/bcd.h>
26#include <linux/module.h>
27#include <linux/version.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/completion.h>
31#include <linux/utsname.h>
32#include <linux/mm.h>
33#include <asm/io.h>
34#include <linux/device.h>
35#include <linux/dma-mapping.h>
36#include <linux/mutex.h>
37#include <asm/irq.h>
38#include <asm/byteorder.h>
39#include <asm/unaligned.h>
40#include <linux/platform_device.h>
41#include <linux/workqueue.h>
42#include <linux/pm_runtime.h>
43#include <linux/types.h>
44
45#include <linux/phy/phy.h>
46#include <linux/usb.h>
47#include <linux/usb/hcd.h>
48#include <linux/usb/phy.h>
49
50#include "usb.h"
51
52
53/*-------------------------------------------------------------------------*/
54
55/*
56 * USB Host Controller Driver framework
57 *
58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59 * HCD-specific behaviors/bugs.
60 *
61 * This does error checks, tracks devices and urbs, and delegates to a
62 * "hc_driver" only for code (and data) that really needs to know about
63 * hardware differences.  That includes root hub registers, i/o queues,
64 * and so on ... but as little else as possible.
65 *
66 * Shared code includes most of the "root hub" code (these are emulated,
67 * though each HC's hardware works differently) and PCI glue, plus request
68 * tracking overhead.  The HCD code should only block on spinlocks or on
69 * hardware handshaking; blocking on software events (such as other kernel
70 * threads releasing resources, or completing actions) is all generic.
71 *
72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74 * only by the hub driver ... and that neither should be seen or used by
75 * usb client device drivers.
76 *
77 * Contributors of ideas or unattributed patches include: David Brownell,
78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79 *
80 * HISTORY:
81 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
82 *		associated cleanup.  "usb_hcd" still != "usb_bus".
83 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
84 */
85
86/*-------------------------------------------------------------------------*/
87
88/* Keep track of which host controller drivers are loaded */
89unsigned long usb_hcds_loaded;
90EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91
92/* host controllers we manage */
93LIST_HEAD (usb_bus_list);
94EXPORT_SYMBOL_GPL (usb_bus_list);
95
96/* used when allocating bus numbers */
97#define USB_MAXBUS		64
98static DECLARE_BITMAP(busmap, USB_MAXBUS);
99
100/* used when updating list of hcds */
101DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
102EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104/* used for controlling access to virtual root hubs */
105static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107/* used when updating an endpoint's URB list */
108static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110/* used to protect against unlinking URBs after the device is gone */
111static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113/* wait queue for synchronous unlinks */
114DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116static inline int is_root_hub(struct usb_device *udev)
117{
118	return (udev->parent == NULL);
119}
120
121/*-------------------------------------------------------------------------*/
122
123/*
124 * Sharable chunks of root hub code.
125 */
126
127/*-------------------------------------------------------------------------*/
128#define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129#define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131/* usb 3.0 root hub device descriptor */
132static const u8 usb3_rh_dev_descriptor[18] = {
133	0x12,       /*  __u8  bLength; */
134	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
136
137	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
138	0x00,	    /*  __u8  bDeviceSubClass; */
139	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
140	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141
142	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146	0x03,       /*  __u8  iManufacturer; */
147	0x02,       /*  __u8  iProduct; */
148	0x01,       /*  __u8  iSerialNumber; */
149	0x01        /*  __u8  bNumConfigurations; */
150};
151
152/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
153static const u8 usb25_rh_dev_descriptor[18] = {
154	0x12,       /*  __u8  bLength; */
155	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
157
158	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
159	0x00,	    /*  __u8  bDeviceSubClass; */
160	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
161	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
162
163	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
165	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166
167	0x03,       /*  __u8  iManufacturer; */
168	0x02,       /*  __u8  iProduct; */
169	0x01,       /*  __u8  iSerialNumber; */
170	0x01        /*  __u8  bNumConfigurations; */
171};
172
173/* usb 2.0 root hub device descriptor */
174static const u8 usb2_rh_dev_descriptor[18] = {
175	0x12,       /*  __u8  bLength; */
176	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
178
179	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
180	0x00,	    /*  __u8  bDeviceSubClass; */
181	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
182	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
183
184	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
185	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
186	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
187
188	0x03,       /*  __u8  iManufacturer; */
189	0x02,       /*  __u8  iProduct; */
190	0x01,       /*  __u8  iSerialNumber; */
191	0x01        /*  __u8  bNumConfigurations; */
192};
193
194/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
195
196/* usb 1.1 root hub device descriptor */
197static const u8 usb11_rh_dev_descriptor[18] = {
198	0x12,       /*  __u8  bLength; */
199	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
200	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
201
202	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
203	0x00,	    /*  __u8  bDeviceSubClass; */
204	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
205	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
206
207	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
208	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
209	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
210
211	0x03,       /*  __u8  iManufacturer; */
212	0x02,       /*  __u8  iProduct; */
213	0x01,       /*  __u8  iSerialNumber; */
214	0x01        /*  __u8  bNumConfigurations; */
215};
216
217
218/*-------------------------------------------------------------------------*/
219
220/* Configuration descriptors for our root hubs */
221
222static const u8 fs_rh_config_descriptor[] = {
223
224	/* one configuration */
225	0x09,       /*  __u8  bLength; */
226	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
227	0x19, 0x00, /*  __le16 wTotalLength; */
228	0x01,       /*  __u8  bNumInterfaces; (1) */
229	0x01,       /*  __u8  bConfigurationValue; */
230	0x00,       /*  __u8  iConfiguration; */
231	0xc0,       /*  __u8  bmAttributes;
232				 Bit 7: must be set,
233				     6: Self-powered,
234				     5: Remote wakeup,
235				     4..0: resvd */
236	0x00,       /*  __u8  MaxPower; */
237
238	/* USB 1.1:
239	 * USB 2.0, single TT organization (mandatory):
240	 *	one interface, protocol 0
241	 *
242	 * USB 2.0, multiple TT organization (optional):
243	 *	two interfaces, protocols 1 (like single TT)
244	 *	and 2 (multiple TT mode) ... config is
245	 *	sometimes settable
246	 *	NOT IMPLEMENTED
247	 */
248
249	/* one interface */
250	0x09,       /*  __u8  if_bLength; */
251	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
252	0x00,       /*  __u8  if_bInterfaceNumber; */
253	0x00,       /*  __u8  if_bAlternateSetting; */
254	0x01,       /*  __u8  if_bNumEndpoints; */
255	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
256	0x00,       /*  __u8  if_bInterfaceSubClass; */
257	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
258	0x00,       /*  __u8  if_iInterface; */
259
260	/* one endpoint (status change endpoint) */
261	0x07,       /*  __u8  ep_bLength; */
262	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
263	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
264	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
265	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
266	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
267};
268
269static const u8 hs_rh_config_descriptor[] = {
270
271	/* one configuration */
272	0x09,       /*  __u8  bLength; */
273	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
274	0x19, 0x00, /*  __le16 wTotalLength; */
275	0x01,       /*  __u8  bNumInterfaces; (1) */
276	0x01,       /*  __u8  bConfigurationValue; */
277	0x00,       /*  __u8  iConfiguration; */
278	0xc0,       /*  __u8  bmAttributes;
279				 Bit 7: must be set,
280				     6: Self-powered,
281				     5: Remote wakeup,
282				     4..0: resvd */
283	0x00,       /*  __u8  MaxPower; */
284
285	/* USB 1.1:
286	 * USB 2.0, single TT organization (mandatory):
287	 *	one interface, protocol 0
288	 *
289	 * USB 2.0, multiple TT organization (optional):
290	 *	two interfaces, protocols 1 (like single TT)
291	 *	and 2 (multiple TT mode) ... config is
292	 *	sometimes settable
293	 *	NOT IMPLEMENTED
294	 */
295
296	/* one interface */
297	0x09,       /*  __u8  if_bLength; */
298	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
299	0x00,       /*  __u8  if_bInterfaceNumber; */
300	0x00,       /*  __u8  if_bAlternateSetting; */
301	0x01,       /*  __u8  if_bNumEndpoints; */
302	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
303	0x00,       /*  __u8  if_bInterfaceSubClass; */
304	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
305	0x00,       /*  __u8  if_iInterface; */
306
307	/* one endpoint (status change endpoint) */
308	0x07,       /*  __u8  ep_bLength; */
309	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
310	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
311	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
312		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
313		     * see hub.c:hub_configure() for details. */
314	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
315	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
316};
317
318static const u8 ss_rh_config_descriptor[] = {
319	/* one configuration */
320	0x09,       /*  __u8  bLength; */
321	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
322	0x1f, 0x00, /*  __le16 wTotalLength; */
323	0x01,       /*  __u8  bNumInterfaces; (1) */
324	0x01,       /*  __u8  bConfigurationValue; */
325	0x00,       /*  __u8  iConfiguration; */
326	0xc0,       /*  __u8  bmAttributes;
327				 Bit 7: must be set,
328				     6: Self-powered,
329				     5: Remote wakeup,
330				     4..0: resvd */
331	0x00,       /*  __u8  MaxPower; */
332
333	/* one interface */
334	0x09,       /*  __u8  if_bLength; */
335	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
336	0x00,       /*  __u8  if_bInterfaceNumber; */
337	0x00,       /*  __u8  if_bAlternateSetting; */
338	0x01,       /*  __u8  if_bNumEndpoints; */
339	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
340	0x00,       /*  __u8  if_bInterfaceSubClass; */
341	0x00,       /*  __u8  if_bInterfaceProtocol; */
342	0x00,       /*  __u8  if_iInterface; */
343
344	/* one endpoint (status change endpoint) */
345	0x07,       /*  __u8  ep_bLength; */
346	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
347	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
348	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
349		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
350		     * see hub.c:hub_configure() for details. */
351	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
352	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
353
354	/* one SuperSpeed endpoint companion descriptor */
355	0x06,        /* __u8 ss_bLength */
356	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
357		     /* Companion */
358	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
359	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
360	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
361};
362
363/* authorized_default behaviour:
364 * -1 is authorized for all devices except wireless (old behaviour)
365 * 0 is unauthorized for all devices
366 * 1 is authorized for all devices
367 */
368static int authorized_default = -1;
369module_param(authorized_default, int, S_IRUGO|S_IWUSR);
370MODULE_PARM_DESC(authorized_default,
371		"Default USB device authorization: 0 is not authorized, 1 is "
372		"authorized, -1 is authorized except for wireless USB (default, "
373		"old behaviour");
374/*-------------------------------------------------------------------------*/
375
376/**
377 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
378 * @s: Null-terminated ASCII (actually ISO-8859-1) string
379 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
380 * @len: Length (in bytes; may be odd) of descriptor buffer.
381 *
382 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
383 * whichever is less.
384 *
385 * Note:
386 * USB String descriptors can contain at most 126 characters; input
387 * strings longer than that are truncated.
388 */
389static unsigned
390ascii2desc(char const *s, u8 *buf, unsigned len)
391{
392	unsigned n, t = 2 + 2*strlen(s);
393
394	if (t > 254)
395		t = 254;	/* Longest possible UTF string descriptor */
396	if (len > t)
397		len = t;
398
399	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
400
401	n = len;
402	while (n--) {
403		*buf++ = t;
404		if (!n--)
405			break;
406		*buf++ = t >> 8;
407		t = (unsigned char)*s++;
408	}
409	return len;
410}
411
412/**
413 * rh_string() - provides string descriptors for root hub
414 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
415 * @hcd: the host controller for this root hub
416 * @data: buffer for output packet
417 * @len: length of the provided buffer
418 *
419 * Produces either a manufacturer, product or serial number string for the
420 * virtual root hub device.
421 *
422 * Return: The number of bytes filled in: the length of the descriptor or
423 * of the provided buffer, whichever is less.
424 */
425static unsigned
426rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
427{
428	char buf[100];
429	char const *s;
430	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
431
432	/* language ids */
433	switch (id) {
434	case 0:
435		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
436		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
437		if (len > 4)
438			len = 4;
439		memcpy(data, langids, len);
440		return len;
441	case 1:
442		/* Serial number */
443		s = hcd->self.bus_name;
444		break;
445	case 2:
446		/* Product name */
447		s = hcd->product_desc;
448		break;
449	case 3:
450		/* Manufacturer */
451		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
452			init_utsname()->release, hcd->driver->description);
453		s = buf;
454		break;
455	default:
456		/* Can't happen; caller guarantees it */
457		return 0;
458	}
459
460	return ascii2desc(s, data, len);
461}
462
463
464/* Root hub control transfers execute synchronously */
465static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
466{
467	struct usb_ctrlrequest *cmd;
468	u16		typeReq, wValue, wIndex, wLength;
469	u8		*ubuf = urb->transfer_buffer;
470	unsigned	len = 0;
471	int		status;
472	u8		patch_wakeup = 0;
473	u8		patch_protocol = 0;
474	u16		tbuf_size;
475	u8		*tbuf = NULL;
476	const u8	*bufp;
477
478	might_sleep();
479
480	spin_lock_irq(&hcd_root_hub_lock);
481	status = usb_hcd_link_urb_to_ep(hcd, urb);
482	spin_unlock_irq(&hcd_root_hub_lock);
483	if (status)
484		return status;
485	urb->hcpriv = hcd;	/* Indicate it's queued */
486
487	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
488	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
489	wValue   = le16_to_cpu (cmd->wValue);
490	wIndex   = le16_to_cpu (cmd->wIndex);
491	wLength  = le16_to_cpu (cmd->wLength);
492
493	if (wLength > urb->transfer_buffer_length)
494		goto error;
495
496	/*
497	 * tbuf should be at least as big as the
498	 * USB hub descriptor.
499	 */
500	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
501	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
502	if (!tbuf)
503		return -ENOMEM;
504
505	bufp = tbuf;
506
507
508	urb->actual_length = 0;
509	switch (typeReq) {
510
511	/* DEVICE REQUESTS */
512
513	/* The root hub's remote wakeup enable bit is implemented using
514	 * driver model wakeup flags.  If this system supports wakeup
515	 * through USB, userspace may change the default "allow wakeup"
516	 * policy through sysfs or these calls.
517	 *
518	 * Most root hubs support wakeup from downstream devices, for
519	 * runtime power management (disabling USB clocks and reducing
520	 * VBUS power usage).  However, not all of them do so; silicon,
521	 * board, and BIOS bugs here are not uncommon, so these can't
522	 * be treated quite like external hubs.
523	 *
524	 * Likewise, not all root hubs will pass wakeup events upstream,
525	 * to wake up the whole system.  So don't assume root hub and
526	 * controller capabilities are identical.
527	 */
528
529	case DeviceRequest | USB_REQ_GET_STATUS:
530		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
531					<< USB_DEVICE_REMOTE_WAKEUP)
532				| (1 << USB_DEVICE_SELF_POWERED);
533		tbuf[1] = 0;
534		len = 2;
535		break;
536	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
537		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
538			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
539		else
540			goto error;
541		break;
542	case DeviceOutRequest | USB_REQ_SET_FEATURE:
543		if (device_can_wakeup(&hcd->self.root_hub->dev)
544				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
545			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
546		else
547			goto error;
548		break;
549	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
550		tbuf[0] = 1;
551		len = 1;
552			/* FALLTHROUGH */
553	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
554		break;
555	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
556		switch (wValue & 0xff00) {
557		case USB_DT_DEVICE << 8:
558			switch (hcd->speed) {
559			case HCD_USB31:
560			case HCD_USB3:
561				bufp = usb3_rh_dev_descriptor;
562				break;
563			case HCD_USB25:
564				bufp = usb25_rh_dev_descriptor;
565				break;
566			case HCD_USB2:
567				bufp = usb2_rh_dev_descriptor;
568				break;
569			case HCD_USB11:
570				bufp = usb11_rh_dev_descriptor;
571				break;
572			default:
573				goto error;
574			}
575			len = 18;
576			if (hcd->has_tt)
577				patch_protocol = 1;
578			break;
579		case USB_DT_CONFIG << 8:
580			switch (hcd->speed) {
581			case HCD_USB31:
582			case HCD_USB3:
583				bufp = ss_rh_config_descriptor;
584				len = sizeof ss_rh_config_descriptor;
585				break;
586			case HCD_USB25:
587			case HCD_USB2:
588				bufp = hs_rh_config_descriptor;
589				len = sizeof hs_rh_config_descriptor;
590				break;
591			case HCD_USB11:
592				bufp = fs_rh_config_descriptor;
593				len = sizeof fs_rh_config_descriptor;
594				break;
595			default:
596				goto error;
597			}
598			if (device_can_wakeup(&hcd->self.root_hub->dev))
599				patch_wakeup = 1;
600			break;
601		case USB_DT_STRING << 8:
602			if ((wValue & 0xff) < 4)
603				urb->actual_length = rh_string(wValue & 0xff,
604						hcd, ubuf, wLength);
605			else /* unsupported IDs --> "protocol stall" */
606				goto error;
607			break;
608		case USB_DT_BOS << 8:
609			goto nongeneric;
610		default:
611			goto error;
612		}
613		break;
614	case DeviceRequest | USB_REQ_GET_INTERFACE:
615		tbuf[0] = 0;
616		len = 1;
617			/* FALLTHROUGH */
618	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
619		break;
620	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
621		/* wValue == urb->dev->devaddr */
622		dev_dbg (hcd->self.controller, "root hub device address %d\n",
623			wValue);
624		break;
625
626	/* INTERFACE REQUESTS (no defined feature/status flags) */
627
628	/* ENDPOINT REQUESTS */
629
630	case EndpointRequest | USB_REQ_GET_STATUS:
631		/* ENDPOINT_HALT flag */
632		tbuf[0] = 0;
633		tbuf[1] = 0;
634		len = 2;
635			/* FALLTHROUGH */
636	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
637	case EndpointOutRequest | USB_REQ_SET_FEATURE:
638		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
639		break;
640
641	/* CLASS REQUESTS (and errors) */
642
643	default:
644nongeneric:
645		/* non-generic request */
646		switch (typeReq) {
647		case GetHubStatus:
648		case GetPortStatus:
649			len = 4;
650			break;
651		case GetHubDescriptor:
652			len = sizeof (struct usb_hub_descriptor);
653			break;
654		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
655			/* len is returned by hub_control */
656			break;
657		}
658		status = hcd->driver->hub_control (hcd,
659			typeReq, wValue, wIndex,
660			tbuf, wLength);
661
662		if (typeReq == GetHubDescriptor)
663			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
664				(struct usb_hub_descriptor *)tbuf);
665		break;
666error:
667		/* "protocol stall" on error */
668		status = -EPIPE;
669	}
670
671	if (status < 0) {
672		len = 0;
673		if (status != -EPIPE) {
674			dev_dbg (hcd->self.controller,
675				"CTRL: TypeReq=0x%x val=0x%x "
676				"idx=0x%x len=%d ==> %d\n",
677				typeReq, wValue, wIndex,
678				wLength, status);
679		}
680	} else if (status > 0) {
681		/* hub_control may return the length of data copied. */
682		len = status;
683		status = 0;
684	}
685	if (len) {
686		if (urb->transfer_buffer_length < len)
687			len = urb->transfer_buffer_length;
688		urb->actual_length = len;
689		/* always USB_DIR_IN, toward host */
690		memcpy (ubuf, bufp, len);
691
692		/* report whether RH hardware supports remote wakeup */
693		if (patch_wakeup &&
694				len > offsetof (struct usb_config_descriptor,
695						bmAttributes))
696			((struct usb_config_descriptor *)ubuf)->bmAttributes
697				|= USB_CONFIG_ATT_WAKEUP;
698
699		/* report whether RH hardware has an integrated TT */
700		if (patch_protocol &&
701				len > offsetof(struct usb_device_descriptor,
702						bDeviceProtocol))
703			((struct usb_device_descriptor *) ubuf)->
704				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
705	}
706
707	kfree(tbuf);
708
709	/* any errors get returned through the urb completion */
710	spin_lock_irq(&hcd_root_hub_lock);
711	usb_hcd_unlink_urb_from_ep(hcd, urb);
712	usb_hcd_giveback_urb(hcd, urb, status);
713	spin_unlock_irq(&hcd_root_hub_lock);
714	return 0;
715}
716
717/*-------------------------------------------------------------------------*/
718
719/*
720 * Root Hub interrupt transfers are polled using a timer if the
721 * driver requests it; otherwise the driver is responsible for
722 * calling usb_hcd_poll_rh_status() when an event occurs.
723 *
724 * Completions are called in_interrupt(), but they may or may not
725 * be in_irq().
726 */
727void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
728{
729	struct urb	*urb;
730	int		length;
731	unsigned long	flags;
732	char		buffer[6];	/* Any root hubs with > 31 ports? */
733
734	if (unlikely(!hcd->rh_pollable))
735		return;
736	if (!hcd->uses_new_polling && !hcd->status_urb)
737		return;
738
739	length = hcd->driver->hub_status_data(hcd, buffer);
740	if (length > 0) {
741
742		/* try to complete the status urb */
743		spin_lock_irqsave(&hcd_root_hub_lock, flags);
744		urb = hcd->status_urb;
745		if (urb) {
746			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
747			hcd->status_urb = NULL;
748			urb->actual_length = length;
749			memcpy(urb->transfer_buffer, buffer, length);
750
751			usb_hcd_unlink_urb_from_ep(hcd, urb);
752			usb_hcd_giveback_urb(hcd, urb, 0);
753		} else {
754			length = 0;
755			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
756		}
757		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
758	}
759
760	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
761	 * exceed that limit if HZ is 100. The math is more clunky than
762	 * maybe expected, this is to make sure that all timers for USB devices
763	 * fire at the same time to give the CPU a break in between */
764	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
765			(length == 0 && hcd->status_urb != NULL))
766		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
767}
768EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
769
770/* timer callback */
771static void rh_timer_func (unsigned long _hcd)
772{
773	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
774}
775
776/*-------------------------------------------------------------------------*/
777
778static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
779{
780	int		retval;
781	unsigned long	flags;
782	unsigned	len = 1 + (urb->dev->maxchild / 8);
783
784	spin_lock_irqsave (&hcd_root_hub_lock, flags);
785	if (hcd->status_urb || urb->transfer_buffer_length < len) {
786		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
787		retval = -EINVAL;
788		goto done;
789	}
790
791	retval = usb_hcd_link_urb_to_ep(hcd, urb);
792	if (retval)
793		goto done;
794
795	hcd->status_urb = urb;
796	urb->hcpriv = hcd;	/* indicate it's queued */
797	if (!hcd->uses_new_polling)
798		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799
800	/* If a status change has already occurred, report it ASAP */
801	else if (HCD_POLL_PENDING(hcd))
802		mod_timer(&hcd->rh_timer, jiffies);
803	retval = 0;
804 done:
805	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
806	return retval;
807}
808
809static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
810{
811	if (usb_endpoint_xfer_int(&urb->ep->desc))
812		return rh_queue_status (hcd, urb);
813	if (usb_endpoint_xfer_control(&urb->ep->desc))
814		return rh_call_control (hcd, urb);
815	return -EINVAL;
816}
817
818/*-------------------------------------------------------------------------*/
819
820/* Unlinks of root-hub control URBs are legal, but they don't do anything
821 * since these URBs always execute synchronously.
822 */
823static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
824{
825	unsigned long	flags;
826	int		rc;
827
828	spin_lock_irqsave(&hcd_root_hub_lock, flags);
829	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
830	if (rc)
831		goto done;
832
833	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
834		;	/* Do nothing */
835
836	} else {				/* Status URB */
837		if (!hcd->uses_new_polling)
838			del_timer (&hcd->rh_timer);
839		if (urb == hcd->status_urb) {
840			hcd->status_urb = NULL;
841			usb_hcd_unlink_urb_from_ep(hcd, urb);
842			usb_hcd_giveback_urb(hcd, urb, status);
843		}
844	}
845 done:
846	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
847	return rc;
848}
849
850
851
852/*
853 * Show & store the current value of authorized_default
854 */
855static ssize_t authorized_default_show(struct device *dev,
856				       struct device_attribute *attr, char *buf)
857{
858	struct usb_device *rh_usb_dev = to_usb_device(dev);
859	struct usb_bus *usb_bus = rh_usb_dev->bus;
860	struct usb_hcd *hcd;
861
862	hcd = bus_to_hcd(usb_bus);
863	return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
864}
865
866static ssize_t authorized_default_store(struct device *dev,
867					struct device_attribute *attr,
868					const char *buf, size_t size)
869{
870	ssize_t result;
871	unsigned val;
872	struct usb_device *rh_usb_dev = to_usb_device(dev);
873	struct usb_bus *usb_bus = rh_usb_dev->bus;
874	struct usb_hcd *hcd;
875
876	hcd = bus_to_hcd(usb_bus);
877	result = sscanf(buf, "%u\n", &val);
878	if (result == 1) {
879		if (val)
880			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
881		else
882			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
883
884		result = size;
885	} else {
886		result = -EINVAL;
887	}
888	return result;
889}
890static DEVICE_ATTR_RW(authorized_default);
891
892/*
893 * interface_authorized_default_show - show default authorization status
894 * for USB interfaces
895 *
896 * note: interface_authorized_default is the default value
897 *       for initializing the authorized attribute of interfaces
898 */
899static ssize_t interface_authorized_default_show(struct device *dev,
900		struct device_attribute *attr, char *buf)
901{
902	struct usb_device *usb_dev = to_usb_device(dev);
903	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
904
905	return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
906}
907
908/*
909 * interface_authorized_default_store - store default authorization status
910 * for USB interfaces
911 *
912 * note: interface_authorized_default is the default value
913 *       for initializing the authorized attribute of interfaces
914 */
915static ssize_t interface_authorized_default_store(struct device *dev,
916		struct device_attribute *attr, const char *buf, size_t count)
917{
918	struct usb_device *usb_dev = to_usb_device(dev);
919	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
920	int rc = count;
921	bool val;
922
923	if (strtobool(buf, &val) != 0)
924		return -EINVAL;
925
926	if (val)
927		set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
928	else
929		clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
930
931	return rc;
932}
933static DEVICE_ATTR_RW(interface_authorized_default);
934
935/* Group all the USB bus attributes */
936static struct attribute *usb_bus_attrs[] = {
937		&dev_attr_authorized_default.attr,
938		&dev_attr_interface_authorized_default.attr,
939		NULL,
940};
941
942static struct attribute_group usb_bus_attr_group = {
943	.name = NULL,	/* we want them in the same directory */
944	.attrs = usb_bus_attrs,
945};
946
947
948
949/*-------------------------------------------------------------------------*/
950
951/**
952 * usb_bus_init - shared initialization code
953 * @bus: the bus structure being initialized
954 *
955 * This code is used to initialize a usb_bus structure, memory for which is
956 * separately managed.
957 */
958static void usb_bus_init (struct usb_bus *bus)
959{
960	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
961
962	bus->devnum_next = 1;
963
964	bus->root_hub = NULL;
965	bus->busnum = -1;
966	bus->bandwidth_allocated = 0;
967	bus->bandwidth_int_reqs  = 0;
968	bus->bandwidth_isoc_reqs = 0;
969	mutex_init(&bus->usb_address0_mutex);
970
971	INIT_LIST_HEAD (&bus->bus_list);
972}
973
974/*-------------------------------------------------------------------------*/
975
976/**
977 * usb_register_bus - registers the USB host controller with the usb core
978 * @bus: pointer to the bus to register
979 * Context: !in_interrupt()
980 *
981 * Assigns a bus number, and links the controller into usbcore data
982 * structures so that it can be seen by scanning the bus list.
983 *
984 * Return: 0 if successful. A negative error code otherwise.
985 */
986static int usb_register_bus(struct usb_bus *bus)
987{
988	int result = -E2BIG;
989	int busnum;
990
991	mutex_lock(&usb_bus_list_lock);
992	busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
993	if (busnum >= USB_MAXBUS) {
994		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
995		goto error_find_busnum;
996	}
997	set_bit(busnum, busmap);
998	bus->busnum = busnum;
999
1000	/* Add it to the local list of buses */
1001	list_add (&bus->bus_list, &usb_bus_list);
1002	mutex_unlock(&usb_bus_list_lock);
1003
1004	usb_notify_add_bus(bus);
1005
1006	dev_info (bus->controller, "new USB bus registered, assigned bus "
1007		  "number %d\n", bus->busnum);
1008	return 0;
1009
1010error_find_busnum:
1011	mutex_unlock(&usb_bus_list_lock);
1012	return result;
1013}
1014
1015/**
1016 * usb_deregister_bus - deregisters the USB host controller
1017 * @bus: pointer to the bus to deregister
1018 * Context: !in_interrupt()
1019 *
1020 * Recycles the bus number, and unlinks the controller from usbcore data
1021 * structures so that it won't be seen by scanning the bus list.
1022 */
1023static void usb_deregister_bus (struct usb_bus *bus)
1024{
1025	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1026
1027	/*
1028	 * NOTE: make sure that all the devices are removed by the
1029	 * controller code, as well as having it call this when cleaning
1030	 * itself up
1031	 */
1032	mutex_lock(&usb_bus_list_lock);
1033	list_del (&bus->bus_list);
1034	mutex_unlock(&usb_bus_list_lock);
1035
1036	usb_notify_remove_bus(bus);
1037
1038	clear_bit(bus->busnum, busmap);
1039}
1040
1041/**
1042 * register_root_hub - called by usb_add_hcd() to register a root hub
1043 * @hcd: host controller for this root hub
1044 *
1045 * This function registers the root hub with the USB subsystem.  It sets up
1046 * the device properly in the device tree and then calls usb_new_device()
1047 * to register the usb device.  It also assigns the root hub's USB address
1048 * (always 1).
1049 *
1050 * Return: 0 if successful. A negative error code otherwise.
1051 */
1052static int register_root_hub(struct usb_hcd *hcd)
1053{
1054	struct device *parent_dev = hcd->self.controller;
1055	struct usb_device *usb_dev = hcd->self.root_hub;
1056	const int devnum = 1;
1057	int retval;
1058
1059	usb_dev->devnum = devnum;
1060	usb_dev->bus->devnum_next = devnum + 1;
1061	memset (&usb_dev->bus->devmap.devicemap, 0,
1062			sizeof usb_dev->bus->devmap.devicemap);
1063	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1064	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1065
1066	mutex_lock(&usb_bus_list_lock);
1067
1068	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1069	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1070	if (retval != sizeof usb_dev->descriptor) {
1071		mutex_unlock(&usb_bus_list_lock);
1072		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1073				dev_name(&usb_dev->dev), retval);
1074		return (retval < 0) ? retval : -EMSGSIZE;
1075	}
1076
1077	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1078		retval = usb_get_bos_descriptor(usb_dev);
1079		if (!retval) {
1080			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1081		} else if (usb_dev->speed == USB_SPEED_SUPER) {
1082			mutex_unlock(&usb_bus_list_lock);
1083			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1084					dev_name(&usb_dev->dev), retval);
1085			return retval;
1086		}
1087	}
1088
1089	retval = usb_new_device (usb_dev);
1090	if (retval) {
1091		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1092				dev_name(&usb_dev->dev), retval);
1093	} else {
1094		spin_lock_irq (&hcd_root_hub_lock);
1095		hcd->rh_registered = 1;
1096		spin_unlock_irq (&hcd_root_hub_lock);
1097
1098		/* Did the HC die before the root hub was registered? */
1099		if (HCD_DEAD(hcd))
1100			usb_hc_died (hcd);	/* This time clean up */
1101	}
1102	mutex_unlock(&usb_bus_list_lock);
1103
1104	return retval;
1105}
1106
1107/*
1108 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1109 * @bus: the bus which the root hub belongs to
1110 * @portnum: the port which is being resumed
1111 *
1112 * HCDs should call this function when they know that a resume signal is
1113 * being sent to a root-hub port.  The root hub will be prevented from
1114 * going into autosuspend until usb_hcd_end_port_resume() is called.
1115 *
1116 * The bus's private lock must be held by the caller.
1117 */
1118void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1119{
1120	unsigned bit = 1 << portnum;
1121
1122	if (!(bus->resuming_ports & bit)) {
1123		bus->resuming_ports |= bit;
1124		pm_runtime_get_noresume(&bus->root_hub->dev);
1125	}
1126}
1127EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1128
1129/*
1130 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1131 * @bus: the bus which the root hub belongs to
1132 * @portnum: the port which is being resumed
1133 *
1134 * HCDs should call this function when they know that a resume signal has
1135 * stopped being sent to a root-hub port.  The root hub will be allowed to
1136 * autosuspend again.
1137 *
1138 * The bus's private lock must be held by the caller.
1139 */
1140void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1141{
1142	unsigned bit = 1 << portnum;
1143
1144	if (bus->resuming_ports & bit) {
1145		bus->resuming_ports &= ~bit;
1146		pm_runtime_put_noidle(&bus->root_hub->dev);
1147	}
1148}
1149EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1150
1151/*-------------------------------------------------------------------------*/
1152
1153/**
1154 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1155 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1156 * @is_input: true iff the transaction sends data to the host
1157 * @isoc: true for isochronous transactions, false for interrupt ones
1158 * @bytecount: how many bytes in the transaction.
1159 *
1160 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1161 *
1162 * Note:
1163 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1164 * scheduled in software, this function is only used for such scheduling.
1165 */
1166long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1167{
1168	unsigned long	tmp;
1169
1170	switch (speed) {
1171	case USB_SPEED_LOW: 	/* INTR only */
1172		if (is_input) {
1173			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1174			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1175		} else {
1176			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1177			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1178		}
1179	case USB_SPEED_FULL:	/* ISOC or INTR */
1180		if (isoc) {
1181			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1182			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1183		} else {
1184			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1185			return 9107L + BW_HOST_DELAY + tmp;
1186		}
1187	case USB_SPEED_HIGH:	/* ISOC or INTR */
1188		/* FIXME adjust for input vs output */
1189		if (isoc)
1190			tmp = HS_NSECS_ISO (bytecount);
1191		else
1192			tmp = HS_NSECS (bytecount);
1193		return tmp;
1194	default:
1195		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1196		return -1;
1197	}
1198}
1199EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1200
1201
1202/*-------------------------------------------------------------------------*/
1203
1204/*
1205 * Generic HC operations.
1206 */
1207
1208/*-------------------------------------------------------------------------*/
1209
1210/**
1211 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1212 * @hcd: host controller to which @urb was submitted
1213 * @urb: URB being submitted
1214 *
1215 * Host controller drivers should call this routine in their enqueue()
1216 * method.  The HCD's private spinlock must be held and interrupts must
1217 * be disabled.  The actions carried out here are required for URB
1218 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1219 *
1220 * Return: 0 for no error, otherwise a negative error code (in which case
1221 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1222 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1223 * the private spinlock and returning.
1224 */
1225int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1226{
1227	int		rc = 0;
1228
1229	spin_lock(&hcd_urb_list_lock);
1230
1231	/* Check that the URB isn't being killed */
1232	if (unlikely(atomic_read(&urb->reject))) {
1233		rc = -EPERM;
1234		goto done;
1235	}
1236
1237	if (unlikely(!urb->ep->enabled)) {
1238		rc = -ENOENT;
1239		goto done;
1240	}
1241
1242	if (unlikely(!urb->dev->can_submit)) {
1243		rc = -EHOSTUNREACH;
1244		goto done;
1245	}
1246
1247	/*
1248	 * Check the host controller's state and add the URB to the
1249	 * endpoint's queue.
1250	 */
1251	if (HCD_RH_RUNNING(hcd)) {
1252		urb->unlinked = 0;
1253		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1254	} else {
1255		rc = -ESHUTDOWN;
1256		goto done;
1257	}
1258 done:
1259	spin_unlock(&hcd_urb_list_lock);
1260	return rc;
1261}
1262EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1263
1264/**
1265 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1266 * @hcd: host controller to which @urb was submitted
1267 * @urb: URB being checked for unlinkability
1268 * @status: error code to store in @urb if the unlink succeeds
1269 *
1270 * Host controller drivers should call this routine in their dequeue()
1271 * method.  The HCD's private spinlock must be held and interrupts must
1272 * be disabled.  The actions carried out here are required for making
1273 * sure than an unlink is valid.
1274 *
1275 * Return: 0 for no error, otherwise a negative error code (in which case
1276 * the dequeue() method must fail).  The possible error codes are:
1277 *
1278 *	-EIDRM: @urb was not submitted or has already completed.
1279 *		The completion function may not have been called yet.
1280 *
1281 *	-EBUSY: @urb has already been unlinked.
1282 */
1283int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1284		int status)
1285{
1286	struct list_head	*tmp;
1287
1288	/* insist the urb is still queued */
1289	list_for_each(tmp, &urb->ep->urb_list) {
1290		if (tmp == &urb->urb_list)
1291			break;
1292	}
1293	if (tmp != &urb->urb_list)
1294		return -EIDRM;
1295
1296	/* Any status except -EINPROGRESS means something already started to
1297	 * unlink this URB from the hardware.  So there's no more work to do.
1298	 */
1299	if (urb->unlinked)
1300		return -EBUSY;
1301	urb->unlinked = status;
1302	return 0;
1303}
1304EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1305
1306/**
1307 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1308 * @hcd: host controller to which @urb was submitted
1309 * @urb: URB being unlinked
1310 *
1311 * Host controller drivers should call this routine before calling
1312 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1313 * interrupts must be disabled.  The actions carried out here are required
1314 * for URB completion.
1315 */
1316void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1317{
1318	/* clear all state linking urb to this dev (and hcd) */
1319	spin_lock(&hcd_urb_list_lock);
1320	list_del_init(&urb->urb_list);
1321	spin_unlock(&hcd_urb_list_lock);
1322}
1323EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1324
1325/*
1326 * Some usb host controllers can only perform dma using a small SRAM area.
1327 * The usb core itself is however optimized for host controllers that can dma
1328 * using regular system memory - like pci devices doing bus mastering.
1329 *
1330 * To support host controllers with limited dma capabilities we provide dma
1331 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1332 * For this to work properly the host controller code must first use the
1333 * function dma_declare_coherent_memory() to point out which memory area
1334 * that should be used for dma allocations.
1335 *
1336 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1337 * dma using dma_alloc_coherent() which in turn allocates from the memory
1338 * area pointed out with dma_declare_coherent_memory().
1339 *
1340 * So, to summarize...
1341 *
1342 * - We need "local" memory, canonical example being
1343 *   a small SRAM on a discrete controller being the
1344 *   only memory that the controller can read ...
1345 *   (a) "normal" kernel memory is no good, and
1346 *   (b) there's not enough to share
1347 *
1348 * - The only *portable* hook for such stuff in the
1349 *   DMA framework is dma_declare_coherent_memory()
1350 *
1351 * - So we use that, even though the primary requirement
1352 *   is that the memory be "local" (hence addressable
1353 *   by that device), not "coherent".
1354 *
1355 */
1356
1357static int hcd_alloc_coherent(struct usb_bus *bus,
1358			      gfp_t mem_flags, dma_addr_t *dma_handle,
1359			      void **vaddr_handle, size_t size,
1360			      enum dma_data_direction dir)
1361{
1362	unsigned char *vaddr;
1363
1364	if (*vaddr_handle == NULL) {
1365		WARN_ON_ONCE(1);
1366		return -EFAULT;
1367	}
1368
1369	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1370				 mem_flags, dma_handle);
1371	if (!vaddr)
1372		return -ENOMEM;
1373
1374	/*
1375	 * Store the virtual address of the buffer at the end
1376	 * of the allocated dma buffer. The size of the buffer
1377	 * may be uneven so use unaligned functions instead
1378	 * of just rounding up. It makes sense to optimize for
1379	 * memory footprint over access speed since the amount
1380	 * of memory available for dma may be limited.
1381	 */
1382	put_unaligned((unsigned long)*vaddr_handle,
1383		      (unsigned long *)(vaddr + size));
1384
1385	if (dir == DMA_TO_DEVICE)
1386		memcpy(vaddr, *vaddr_handle, size);
1387
1388	*vaddr_handle = vaddr;
1389	return 0;
1390}
1391
1392static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1393			      void **vaddr_handle, size_t size,
1394			      enum dma_data_direction dir)
1395{
1396	unsigned char *vaddr = *vaddr_handle;
1397
1398	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1399
1400	if (dir == DMA_FROM_DEVICE)
1401		memcpy(vaddr, *vaddr_handle, size);
1402
1403	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1404
1405	*vaddr_handle = vaddr;
1406	*dma_handle = 0;
1407}
1408
1409void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1410{
1411	if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1412		dma_unmap_single(hcd->self.controller,
1413				urb->setup_dma,
1414				sizeof(struct usb_ctrlrequest),
1415				DMA_TO_DEVICE);
1416	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1417		hcd_free_coherent(urb->dev->bus,
1418				&urb->setup_dma,
1419				(void **) &urb->setup_packet,
1420				sizeof(struct usb_ctrlrequest),
1421				DMA_TO_DEVICE);
1422
1423	/* Make it safe to call this routine more than once */
1424	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1425}
1426EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1427
1428static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1429{
1430	if (hcd->driver->unmap_urb_for_dma)
1431		hcd->driver->unmap_urb_for_dma(hcd, urb);
1432	else
1433		usb_hcd_unmap_urb_for_dma(hcd, urb);
1434}
1435
1436void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1437{
1438	enum dma_data_direction dir;
1439
1440	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1441
1442	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1443	if (urb->transfer_flags & URB_DMA_MAP_SG)
1444		dma_unmap_sg(hcd->self.controller,
1445				urb->sg,
1446				urb->num_sgs,
1447				dir);
1448	else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1449		dma_unmap_page(hcd->self.controller,
1450				urb->transfer_dma,
1451				urb->transfer_buffer_length,
1452				dir);
1453	else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1454		dma_unmap_single(hcd->self.controller,
1455				urb->transfer_dma,
1456				urb->transfer_buffer_length,
1457				dir);
1458	else if (urb->transfer_flags & URB_MAP_LOCAL)
1459		hcd_free_coherent(urb->dev->bus,
1460				&urb->transfer_dma,
1461				&urb->transfer_buffer,
1462				urb->transfer_buffer_length,
1463				dir);
1464
1465	/* Make it safe to call this routine more than once */
1466	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1467			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1468}
1469EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1470
1471static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1472			   gfp_t mem_flags)
1473{
1474	if (hcd->driver->map_urb_for_dma)
1475		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1476	else
1477		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1478}
1479
1480int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1481			    gfp_t mem_flags)
1482{
1483	enum dma_data_direction dir;
1484	int ret = 0;
1485
1486	/* Map the URB's buffers for DMA access.
1487	 * Lower level HCD code should use *_dma exclusively,
1488	 * unless it uses pio or talks to another transport,
1489	 * or uses the provided scatter gather list for bulk.
1490	 */
1491
1492	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1493		if (hcd->self.uses_pio_for_control)
1494			return ret;
1495		if (hcd->self.uses_dma) {
1496			urb->setup_dma = dma_map_single(
1497					hcd->self.controller,
1498					urb->setup_packet,
1499					sizeof(struct usb_ctrlrequest),
1500					DMA_TO_DEVICE);
1501			if (dma_mapping_error(hcd->self.controller,
1502						urb->setup_dma))
1503				return -EAGAIN;
1504			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1505		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1506			ret = hcd_alloc_coherent(
1507					urb->dev->bus, mem_flags,
1508					&urb->setup_dma,
1509					(void **)&urb->setup_packet,
1510					sizeof(struct usb_ctrlrequest),
1511					DMA_TO_DEVICE);
1512			if (ret)
1513				return ret;
1514			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1515		}
1516	}
1517
1518	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1519	if (urb->transfer_buffer_length != 0
1520	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1521		if (hcd->self.uses_dma) {
1522			if (urb->num_sgs) {
1523				int n;
1524
1525				/* We don't support sg for isoc transfers ! */
1526				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1527					WARN_ON(1);
1528					return -EINVAL;
1529				}
1530
1531				n = dma_map_sg(
1532						hcd->self.controller,
1533						urb->sg,
1534						urb->num_sgs,
1535						dir);
1536				if (n <= 0)
1537					ret = -EAGAIN;
1538				else
1539					urb->transfer_flags |= URB_DMA_MAP_SG;
1540				urb->num_mapped_sgs = n;
1541				if (n != urb->num_sgs)
1542					urb->transfer_flags |=
1543							URB_DMA_SG_COMBINED;
1544			} else if (urb->sg) {
1545				struct scatterlist *sg = urb->sg;
1546				urb->transfer_dma = dma_map_page(
1547						hcd->self.controller,
1548						sg_page(sg),
1549						sg->offset,
1550						urb->transfer_buffer_length,
1551						dir);
1552				if (dma_mapping_error(hcd->self.controller,
1553						urb->transfer_dma))
1554					ret = -EAGAIN;
1555				else
1556					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1557			} else if (is_vmalloc_addr(urb->transfer_buffer)) {
1558				WARN_ONCE(1, "transfer buffer not dma capable\n");
1559				ret = -EAGAIN;
1560			} else {
1561				urb->transfer_dma = dma_map_single(
1562						hcd->self.controller,
1563						urb->transfer_buffer,
1564						urb->transfer_buffer_length,
1565						dir);
1566				if (dma_mapping_error(hcd->self.controller,
1567						urb->transfer_dma))
1568					ret = -EAGAIN;
1569				else
1570					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1571			}
1572		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1573			ret = hcd_alloc_coherent(
1574					urb->dev->bus, mem_flags,
1575					&urb->transfer_dma,
1576					&urb->transfer_buffer,
1577					urb->transfer_buffer_length,
1578					dir);
1579			if (ret == 0)
1580				urb->transfer_flags |= URB_MAP_LOCAL;
1581		}
1582		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1583				URB_SETUP_MAP_LOCAL)))
1584			usb_hcd_unmap_urb_for_dma(hcd, urb);
1585	}
1586	return ret;
1587}
1588EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1589
1590/*-------------------------------------------------------------------------*/
1591
1592/* may be called in any context with a valid urb->dev usecount
1593 * caller surrenders "ownership" of urb
1594 * expects usb_submit_urb() to have sanity checked and conditioned all
1595 * inputs in the urb
1596 */
1597int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1598{
1599	int			status;
1600	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1601
1602	/* increment urb's reference count as part of giving it to the HCD
1603	 * (which will control it).  HCD guarantees that it either returns
1604	 * an error or calls giveback(), but not both.
1605	 */
1606	usb_get_urb(urb);
1607	atomic_inc(&urb->use_count);
1608	atomic_inc(&urb->dev->urbnum);
1609	usbmon_urb_submit(&hcd->self, urb);
1610
1611	/* NOTE requirements on root-hub callers (usbfs and the hub
1612	 * driver, for now):  URBs' urb->transfer_buffer must be
1613	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1614	 * they could clobber root hub response data.  Also, control
1615	 * URBs must be submitted in process context with interrupts
1616	 * enabled.
1617	 */
1618
1619	if (is_root_hub(urb->dev)) {
1620		status = rh_urb_enqueue(hcd, urb);
1621	} else {
1622		status = map_urb_for_dma(hcd, urb, mem_flags);
1623		if (likely(status == 0)) {
1624			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1625			if (unlikely(status))
1626				unmap_urb_for_dma(hcd, urb);
1627		}
1628	}
1629
1630	if (unlikely(status)) {
1631		usbmon_urb_submit_error(&hcd->self, urb, status);
1632		urb->hcpriv = NULL;
1633		INIT_LIST_HEAD(&urb->urb_list);
1634		atomic_dec(&urb->use_count);
1635		atomic_dec(&urb->dev->urbnum);
1636		if (atomic_read(&urb->reject))
1637			wake_up(&usb_kill_urb_queue);
1638		usb_put_urb(urb);
1639	}
1640	return status;
1641}
1642
1643/*-------------------------------------------------------------------------*/
1644
1645/* this makes the hcd giveback() the urb more quickly, by kicking it
1646 * off hardware queues (which may take a while) and returning it as
1647 * soon as practical.  we've already set up the urb's return status,
1648 * but we can't know if the callback completed already.
1649 */
1650static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1651{
1652	int		value;
1653
1654	if (is_root_hub(urb->dev))
1655		value = usb_rh_urb_dequeue(hcd, urb, status);
1656	else {
1657
1658		/* The only reason an HCD might fail this call is if
1659		 * it has not yet fully queued the urb to begin with.
1660		 * Such failures should be harmless. */
1661		value = hcd->driver->urb_dequeue(hcd, urb, status);
1662	}
1663	return value;
1664}
1665
1666/*
1667 * called in any context
1668 *
1669 * caller guarantees urb won't be recycled till both unlink()
1670 * and the urb's completion function return
1671 */
1672int usb_hcd_unlink_urb (struct urb *urb, int status)
1673{
1674	struct usb_hcd		*hcd;
1675	struct usb_device	*udev = urb->dev;
1676	int			retval = -EIDRM;
1677	unsigned long		flags;
1678
1679	/* Prevent the device and bus from going away while
1680	 * the unlink is carried out.  If they are already gone
1681	 * then urb->use_count must be 0, since disconnected
1682	 * devices can't have any active URBs.
1683	 */
1684	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1685	if (atomic_read(&urb->use_count) > 0) {
1686		retval = 0;
1687		usb_get_dev(udev);
1688	}
1689	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1690	if (retval == 0) {
1691		hcd = bus_to_hcd(urb->dev->bus);
1692		retval = unlink1(hcd, urb, status);
1693		if (retval == 0)
1694			retval = -EINPROGRESS;
1695		else if (retval != -EIDRM && retval != -EBUSY)
1696			dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1697					urb, retval);
1698		usb_put_dev(udev);
1699	}
1700	return retval;
1701}
1702
1703/*-------------------------------------------------------------------------*/
1704
1705static void __usb_hcd_giveback_urb(struct urb *urb)
1706{
1707	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1708	struct usb_anchor *anchor = urb->anchor;
1709	int status = urb->unlinked;
1710	unsigned long flags;
1711
1712	urb->hcpriv = NULL;
1713	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1714	    urb->actual_length < urb->transfer_buffer_length &&
1715	    !status))
1716		status = -EREMOTEIO;
1717
1718	unmap_urb_for_dma(hcd, urb);
1719	usbmon_urb_complete(&hcd->self, urb, status);
1720	usb_anchor_suspend_wakeups(anchor);
1721	usb_unanchor_urb(urb);
1722	if (likely(status == 0))
1723		usb_led_activity(USB_LED_EVENT_HOST);
1724
1725	/* pass ownership to the completion handler */
1726	urb->status = status;
1727
1728	/*
1729	 * We disable local IRQs here avoid possible deadlock because
1730	 * drivers may call spin_lock() to hold lock which might be
1731	 * acquired in one hard interrupt handler.
1732	 *
1733	 * The local_irq_save()/local_irq_restore() around complete()
1734	 * will be removed if current USB drivers have been cleaned up
1735	 * and no one may trigger the above deadlock situation when
1736	 * running complete() in tasklet.
1737	 */
1738	local_irq_save(flags);
1739	urb->complete(urb);
1740	local_irq_restore(flags);
1741
1742	usb_anchor_resume_wakeups(anchor);
1743	atomic_dec(&urb->use_count);
1744	if (unlikely(atomic_read(&urb->reject)))
1745		wake_up(&usb_kill_urb_queue);
1746	usb_put_urb(urb);
1747}
1748
1749static void usb_giveback_urb_bh(unsigned long param)
1750{
1751	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1752	struct list_head local_list;
1753
1754	spin_lock_irq(&bh->lock);
1755	bh->running = true;
1756 restart:
1757	list_replace_init(&bh->head, &local_list);
1758	spin_unlock_irq(&bh->lock);
1759
1760	while (!list_empty(&local_list)) {
1761		struct urb *urb;
1762
1763		urb = list_entry(local_list.next, struct urb, urb_list);
1764		list_del_init(&urb->urb_list);
1765		bh->completing_ep = urb->ep;
1766		__usb_hcd_giveback_urb(urb);
1767		bh->completing_ep = NULL;
1768	}
1769
1770	/* check if there are new URBs to giveback */
1771	spin_lock_irq(&bh->lock);
1772	if (!list_empty(&bh->head))
1773		goto restart;
1774	bh->running = false;
1775	spin_unlock_irq(&bh->lock);
1776}
1777
1778/**
1779 * usb_hcd_giveback_urb - return URB from HCD to device driver
1780 * @hcd: host controller returning the URB
1781 * @urb: urb being returned to the USB device driver.
1782 * @status: completion status code for the URB.
1783 * Context: in_interrupt()
1784 *
1785 * This hands the URB from HCD to its USB device driver, using its
1786 * completion function.  The HCD has freed all per-urb resources
1787 * (and is done using urb->hcpriv).  It also released all HCD locks;
1788 * the device driver won't cause problems if it frees, modifies,
1789 * or resubmits this URB.
1790 *
1791 * If @urb was unlinked, the value of @status will be overridden by
1792 * @urb->unlinked.  Erroneous short transfers are detected in case
1793 * the HCD hasn't checked for them.
1794 */
1795void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1796{
1797	struct giveback_urb_bh *bh;
1798	bool running, high_prio_bh;
1799
1800	/* pass status to tasklet via unlinked */
1801	if (likely(!urb->unlinked))
1802		urb->unlinked = status;
1803
1804	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1805		__usb_hcd_giveback_urb(urb);
1806		return;
1807	}
1808
1809	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1810		bh = &hcd->high_prio_bh;
1811		high_prio_bh = true;
1812	} else {
1813		bh = &hcd->low_prio_bh;
1814		high_prio_bh = false;
1815	}
1816
1817	spin_lock(&bh->lock);
1818	list_add_tail(&urb->urb_list, &bh->head);
1819	running = bh->running;
1820	spin_unlock(&bh->lock);
1821
1822	if (running)
1823		;
1824	else if (high_prio_bh)
1825		tasklet_hi_schedule(&bh->bh);
1826	else
1827		tasklet_schedule(&bh->bh);
1828}
1829EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1830
1831/*-------------------------------------------------------------------------*/
1832
1833/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1834 * queue to drain completely.  The caller must first insure that no more
1835 * URBs can be submitted for this endpoint.
1836 */
1837void usb_hcd_flush_endpoint(struct usb_device *udev,
1838		struct usb_host_endpoint *ep)
1839{
1840	struct usb_hcd		*hcd;
1841	struct urb		*urb;
1842
1843	if (!ep)
1844		return;
1845	might_sleep();
1846	hcd = bus_to_hcd(udev->bus);
1847
1848	/* No more submits can occur */
1849	spin_lock_irq(&hcd_urb_list_lock);
1850rescan:
1851	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1852		int	is_in;
1853
1854		if (urb->unlinked)
1855			continue;
1856		usb_get_urb (urb);
1857		is_in = usb_urb_dir_in(urb);
1858		spin_unlock(&hcd_urb_list_lock);
1859
1860		/* kick hcd */
1861		unlink1(hcd, urb, -ESHUTDOWN);
1862		dev_dbg (hcd->self.controller,
1863			"shutdown urb %p ep%d%s%s\n",
1864			urb, usb_endpoint_num(&ep->desc),
1865			is_in ? "in" : "out",
1866			({	char *s;
1867
1868				 switch (usb_endpoint_type(&ep->desc)) {
1869				 case USB_ENDPOINT_XFER_CONTROL:
1870					s = ""; break;
1871				 case USB_ENDPOINT_XFER_BULK:
1872					s = "-bulk"; break;
1873				 case USB_ENDPOINT_XFER_INT:
1874					s = "-intr"; break;
1875				 default:
1876					s = "-iso"; break;
1877				};
1878				s;
1879			}));
1880		usb_put_urb (urb);
1881
1882		/* list contents may have changed */
1883		spin_lock(&hcd_urb_list_lock);
1884		goto rescan;
1885	}
1886	spin_unlock_irq(&hcd_urb_list_lock);
1887
1888	/* Wait until the endpoint queue is completely empty */
1889	while (!list_empty (&ep->urb_list)) {
1890		spin_lock_irq(&hcd_urb_list_lock);
1891
1892		/* The list may have changed while we acquired the spinlock */
1893		urb = NULL;
1894		if (!list_empty (&ep->urb_list)) {
1895			urb = list_entry (ep->urb_list.prev, struct urb,
1896					urb_list);
1897			usb_get_urb (urb);
1898		}
1899		spin_unlock_irq(&hcd_urb_list_lock);
1900
1901		if (urb) {
1902			usb_kill_urb (urb);
1903			usb_put_urb (urb);
1904		}
1905	}
1906}
1907
1908/**
1909 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1910 *				the bus bandwidth
1911 * @udev: target &usb_device
1912 * @new_config: new configuration to install
1913 * @cur_alt: the current alternate interface setting
1914 * @new_alt: alternate interface setting that is being installed
1915 *
1916 * To change configurations, pass in the new configuration in new_config,
1917 * and pass NULL for cur_alt and new_alt.
1918 *
1919 * To reset a device's configuration (put the device in the ADDRESSED state),
1920 * pass in NULL for new_config, cur_alt, and new_alt.
1921 *
1922 * To change alternate interface settings, pass in NULL for new_config,
1923 * pass in the current alternate interface setting in cur_alt,
1924 * and pass in the new alternate interface setting in new_alt.
1925 *
1926 * Return: An error if the requested bandwidth change exceeds the
1927 * bus bandwidth or host controller internal resources.
1928 */
1929int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1930		struct usb_host_config *new_config,
1931		struct usb_host_interface *cur_alt,
1932		struct usb_host_interface *new_alt)
1933{
1934	int num_intfs, i, j;
1935	struct usb_host_interface *alt = NULL;
1936	int ret = 0;
1937	struct usb_hcd *hcd;
1938	struct usb_host_endpoint *ep;
1939
1940	hcd = bus_to_hcd(udev->bus);
1941	if (!hcd->driver->check_bandwidth)
1942		return 0;
1943
1944	/* Configuration is being removed - set configuration 0 */
1945	if (!new_config && !cur_alt) {
1946		for (i = 1; i < 16; ++i) {
1947			ep = udev->ep_out[i];
1948			if (ep)
1949				hcd->driver->drop_endpoint(hcd, udev, ep);
1950			ep = udev->ep_in[i];
1951			if (ep)
1952				hcd->driver->drop_endpoint(hcd, udev, ep);
1953		}
1954		hcd->driver->check_bandwidth(hcd, udev);
1955		return 0;
1956	}
1957	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1958	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1959	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1960	 * ok to exclude it.
1961	 */
1962	if (new_config) {
1963		num_intfs = new_config->desc.bNumInterfaces;
1964		/* Remove endpoints (except endpoint 0, which is always on the
1965		 * schedule) from the old config from the schedule
1966		 */
1967		for (i = 1; i < 16; ++i) {
1968			ep = udev->ep_out[i];
1969			if (ep) {
1970				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1971				if (ret < 0)
1972					goto reset;
1973			}
1974			ep = udev->ep_in[i];
1975			if (ep) {
1976				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1977				if (ret < 0)
1978					goto reset;
1979			}
1980		}
1981		for (i = 0; i < num_intfs; ++i) {
1982			struct usb_host_interface *first_alt;
1983			int iface_num;
1984
1985			first_alt = &new_config->intf_cache[i]->altsetting[0];
1986			iface_num = first_alt->desc.bInterfaceNumber;
1987			/* Set up endpoints for alternate interface setting 0 */
1988			alt = usb_find_alt_setting(new_config, iface_num, 0);
1989			if (!alt)
1990				/* No alt setting 0? Pick the first setting. */
1991				alt = first_alt;
1992
1993			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1994				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1995				if (ret < 0)
1996					goto reset;
1997			}
1998		}
1999	}
2000	if (cur_alt && new_alt) {
2001		struct usb_interface *iface = usb_ifnum_to_if(udev,
2002				cur_alt->desc.bInterfaceNumber);
2003
2004		if (!iface)
2005			return -EINVAL;
2006		if (iface->resetting_device) {
2007			/*
2008			 * The USB core just reset the device, so the xHCI host
2009			 * and the device will think alt setting 0 is installed.
2010			 * However, the USB core will pass in the alternate
2011			 * setting installed before the reset as cur_alt.  Dig
2012			 * out the alternate setting 0 structure, or the first
2013			 * alternate setting if a broken device doesn't have alt
2014			 * setting 0.
2015			 */
2016			cur_alt = usb_altnum_to_altsetting(iface, 0);
2017			if (!cur_alt)
2018				cur_alt = &iface->altsetting[0];
2019		}
2020
2021		/* Drop all the endpoints in the current alt setting */
2022		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2023			ret = hcd->driver->drop_endpoint(hcd, udev,
2024					&cur_alt->endpoint[i]);
2025			if (ret < 0)
2026				goto reset;
2027		}
2028		/* Add all the endpoints in the new alt setting */
2029		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2030			ret = hcd->driver->add_endpoint(hcd, udev,
2031					&new_alt->endpoint[i]);
2032			if (ret < 0)
2033				goto reset;
2034		}
2035	}
2036	ret = hcd->driver->check_bandwidth(hcd, udev);
2037reset:
2038	if (ret < 0)
2039		hcd->driver->reset_bandwidth(hcd, udev);
2040	return ret;
2041}
2042
2043/* Disables the endpoint: synchronizes with the hcd to make sure all
2044 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2045 * have been called previously.  Use for set_configuration, set_interface,
2046 * driver removal, physical disconnect.
2047 *
2048 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2049 * type, maxpacket size, toggle, halt status, and scheduling.
2050 */
2051void usb_hcd_disable_endpoint(struct usb_device *udev,
2052		struct usb_host_endpoint *ep)
2053{
2054	struct usb_hcd		*hcd;
2055
2056	might_sleep();
2057	hcd = bus_to_hcd(udev->bus);
2058	if (hcd->driver->endpoint_disable)
2059		hcd->driver->endpoint_disable(hcd, ep);
2060}
2061
2062/**
2063 * usb_hcd_reset_endpoint - reset host endpoint state
2064 * @udev: USB device.
2065 * @ep:   the endpoint to reset.
2066 *
2067 * Resets any host endpoint state such as the toggle bit, sequence
2068 * number and current window.
2069 */
2070void usb_hcd_reset_endpoint(struct usb_device *udev,
2071			    struct usb_host_endpoint *ep)
2072{
2073	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2074
2075	if (hcd->driver->endpoint_reset)
2076		hcd->driver->endpoint_reset(hcd, ep);
2077	else {
2078		int epnum = usb_endpoint_num(&ep->desc);
2079		int is_out = usb_endpoint_dir_out(&ep->desc);
2080		int is_control = usb_endpoint_xfer_control(&ep->desc);
2081
2082		usb_settoggle(udev, epnum, is_out, 0);
2083		if (is_control)
2084			usb_settoggle(udev, epnum, !is_out, 0);
2085	}
2086}
2087
2088/**
2089 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2090 * @interface:		alternate setting that includes all endpoints.
2091 * @eps:		array of endpoints that need streams.
2092 * @num_eps:		number of endpoints in the array.
2093 * @num_streams:	number of streams to allocate.
2094 * @mem_flags:		flags hcd should use to allocate memory.
2095 *
2096 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2097 * Drivers may queue multiple transfers to different stream IDs, which may
2098 * complete in a different order than they were queued.
2099 *
2100 * Return: On success, the number of allocated streams. On failure, a negative
2101 * error code.
2102 */
2103int usb_alloc_streams(struct usb_interface *interface,
2104		struct usb_host_endpoint **eps, unsigned int num_eps,
2105		unsigned int num_streams, gfp_t mem_flags)
2106{
2107	struct usb_hcd *hcd;
2108	struct usb_device *dev;
2109	int i, ret;
2110
2111	dev = interface_to_usbdev(interface);
2112	hcd = bus_to_hcd(dev->bus);
2113	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2114		return -EINVAL;
2115	if (dev->speed != USB_SPEED_SUPER)
2116		return -EINVAL;
2117	if (dev->state < USB_STATE_CONFIGURED)
2118		return -ENODEV;
2119
2120	for (i = 0; i < num_eps; i++) {
2121		/* Streams only apply to bulk endpoints. */
2122		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2123			return -EINVAL;
2124		/* Re-alloc is not allowed */
2125		if (eps[i]->streams)
2126			return -EINVAL;
2127	}
2128
2129	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2130			num_streams, mem_flags);
2131	if (ret < 0)
2132		return ret;
2133
2134	for (i = 0; i < num_eps; i++)
2135		eps[i]->streams = ret;
2136
2137	return ret;
2138}
2139EXPORT_SYMBOL_GPL(usb_alloc_streams);
2140
2141/**
2142 * usb_free_streams - free bulk endpoint stream IDs.
2143 * @interface:	alternate setting that includes all endpoints.
2144 * @eps:	array of endpoints to remove streams from.
2145 * @num_eps:	number of endpoints in the array.
2146 * @mem_flags:	flags hcd should use to allocate memory.
2147 *
2148 * Reverts a group of bulk endpoints back to not using stream IDs.
2149 * Can fail if we are given bad arguments, or HCD is broken.
2150 *
2151 * Return: 0 on success. On failure, a negative error code.
2152 */
2153int usb_free_streams(struct usb_interface *interface,
2154		struct usb_host_endpoint **eps, unsigned int num_eps,
2155		gfp_t mem_flags)
2156{
2157	struct usb_hcd *hcd;
2158	struct usb_device *dev;
2159	int i, ret;
2160
2161	dev = interface_to_usbdev(interface);
2162	hcd = bus_to_hcd(dev->bus);
2163	if (dev->speed != USB_SPEED_SUPER)
2164		return -EINVAL;
2165
2166	/* Double-free is not allowed */
2167	for (i = 0; i < num_eps; i++)
2168		if (!eps[i] || !eps[i]->streams)
2169			return -EINVAL;
2170
2171	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2172	if (ret < 0)
2173		return ret;
2174
2175	for (i = 0; i < num_eps; i++)
2176		eps[i]->streams = 0;
2177
2178	return ret;
2179}
2180EXPORT_SYMBOL_GPL(usb_free_streams);
2181
2182/* Protect against drivers that try to unlink URBs after the device
2183 * is gone, by waiting until all unlinks for @udev are finished.
2184 * Since we don't currently track URBs by device, simply wait until
2185 * nothing is running in the locked region of usb_hcd_unlink_urb().
2186 */
2187void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2188{
2189	spin_lock_irq(&hcd_urb_unlink_lock);
2190	spin_unlock_irq(&hcd_urb_unlink_lock);
2191}
2192
2193/*-------------------------------------------------------------------------*/
2194
2195/* called in any context */
2196int usb_hcd_get_frame_number (struct usb_device *udev)
2197{
2198	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2199
2200	if (!HCD_RH_RUNNING(hcd))
2201		return -ESHUTDOWN;
2202	return hcd->driver->get_frame_number (hcd);
2203}
2204
2205/*-------------------------------------------------------------------------*/
2206
2207#ifdef	CONFIG_PM
2208
2209int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2210{
2211	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
2212	int		status;
2213	int		old_state = hcd->state;
2214
2215	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2216			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2217			rhdev->do_remote_wakeup);
2218	if (HCD_DEAD(hcd)) {
2219		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2220		return 0;
2221	}
2222
2223	if (!hcd->driver->bus_suspend) {
2224		status = -ENOENT;
2225	} else {
2226		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2227		hcd->state = HC_STATE_QUIESCING;
2228		status = hcd->driver->bus_suspend(hcd);
2229	}
2230	if (status == 0) {
2231		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2232		hcd->state = HC_STATE_SUSPENDED;
2233
2234		/* Did we race with a root-hub wakeup event? */
2235		if (rhdev->do_remote_wakeup) {
2236			char	buffer[6];
2237
2238			status = hcd->driver->hub_status_data(hcd, buffer);
2239			if (status != 0) {
2240				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2241				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2242				status = -EBUSY;
2243			}
2244		}
2245	} else {
2246		spin_lock_irq(&hcd_root_hub_lock);
2247		if (!HCD_DEAD(hcd)) {
2248			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2249			hcd->state = old_state;
2250		}
2251		spin_unlock_irq(&hcd_root_hub_lock);
2252		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2253				"suspend", status);
2254	}
2255	return status;
2256}
2257
2258int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2259{
2260	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
2261	int		status;
2262	int		old_state = hcd->state;
2263
2264	dev_dbg(&rhdev->dev, "usb %sresume\n",
2265			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2266	if (HCD_DEAD(hcd)) {
2267		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2268		return 0;
2269	}
2270	if (!hcd->driver->bus_resume)
2271		return -ENOENT;
2272	if (HCD_RH_RUNNING(hcd))
2273		return 0;
2274
2275	hcd->state = HC_STATE_RESUMING;
2276	status = hcd->driver->bus_resume(hcd);
2277	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2278	if (status == 0) {
2279		struct usb_device *udev;
2280		int port1;
2281
2282		spin_lock_irq(&hcd_root_hub_lock);
2283		if (!HCD_DEAD(hcd)) {
2284			usb_set_device_state(rhdev, rhdev->actconfig
2285					? USB_STATE_CONFIGURED
2286					: USB_STATE_ADDRESS);
2287			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2288			hcd->state = HC_STATE_RUNNING;
2289		}
2290		spin_unlock_irq(&hcd_root_hub_lock);
2291
2292		/*
2293		 * Check whether any of the enabled ports on the root hub are
2294		 * unsuspended.  If they are then a TRSMRCY delay is needed
2295		 * (this is what the USB-2 spec calls a "global resume").
2296		 * Otherwise we can skip the delay.
2297		 */
2298		usb_hub_for_each_child(rhdev, port1, udev) {
2299			if (udev->state != USB_STATE_NOTATTACHED &&
2300					!udev->port_is_suspended) {
2301				usleep_range(10000, 11000);	/* TRSMRCY */
2302				break;
2303			}
2304		}
2305	} else {
2306		hcd->state = old_state;
2307		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2308				"resume", status);
2309		if (status != -ESHUTDOWN)
2310			usb_hc_died(hcd);
2311	}
2312	return status;
2313}
2314
2315/* Workqueue routine for root-hub remote wakeup */
2316static void hcd_resume_work(struct work_struct *work)
2317{
2318	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2319	struct usb_device *udev = hcd->self.root_hub;
2320
2321	usb_remote_wakeup(udev);
2322}
2323
2324/**
2325 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2326 * @hcd: host controller for this root hub
2327 *
2328 * The USB host controller calls this function when its root hub is
2329 * suspended (with the remote wakeup feature enabled) and a remote
2330 * wakeup request is received.  The routine submits a workqueue request
2331 * to resume the root hub (that is, manage its downstream ports again).
2332 */
2333void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2334{
2335	unsigned long flags;
2336
2337	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2338	if (hcd->rh_registered) {
2339		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2340		queue_work(pm_wq, &hcd->wakeup_work);
2341	}
2342	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2343}
2344EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2345
2346#endif	/* CONFIG_PM */
2347
2348/*-------------------------------------------------------------------------*/
2349
2350#ifdef	CONFIG_USB_OTG
2351
2352/**
2353 * usb_bus_start_enum - start immediate enumeration (for OTG)
2354 * @bus: the bus (must use hcd framework)
2355 * @port_num: 1-based number of port; usually bus->otg_port
2356 * Context: in_interrupt()
2357 *
2358 * Starts enumeration, with an immediate reset followed later by
2359 * hub_wq identifying and possibly configuring the device.
2360 * This is needed by OTG controller drivers, where it helps meet
2361 * HNP protocol timing requirements for starting a port reset.
2362 *
2363 * Return: 0 if successful.
2364 */
2365int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2366{
2367	struct usb_hcd		*hcd;
2368	int			status = -EOPNOTSUPP;
2369
2370	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2371	 * boards with root hubs hooked up to internal devices (instead of
2372	 * just the OTG port) may need more attention to resetting...
2373	 */
2374	hcd = container_of (bus, struct usb_hcd, self);
2375	if (port_num && hcd->driver->start_port_reset)
2376		status = hcd->driver->start_port_reset(hcd, port_num);
2377
2378	/* allocate hub_wq shortly after (first) root port reset finishes;
2379	 * it may issue others, until at least 50 msecs have passed.
2380	 */
2381	if (status == 0)
2382		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2383	return status;
2384}
2385EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2386
2387#endif
2388
2389/*-------------------------------------------------------------------------*/
2390
2391/**
2392 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2393 * @irq: the IRQ being raised
2394 * @__hcd: pointer to the HCD whose IRQ is being signaled
2395 *
2396 * If the controller isn't HALTed, calls the driver's irq handler.
2397 * Checks whether the controller is now dead.
2398 *
2399 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2400 */
2401irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2402{
2403	struct usb_hcd		*hcd = __hcd;
2404	irqreturn_t		rc;
2405
2406	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2407		rc = IRQ_NONE;
2408	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2409		rc = IRQ_NONE;
2410	else
2411		rc = IRQ_HANDLED;
2412
2413	return rc;
2414}
2415EXPORT_SYMBOL_GPL(usb_hcd_irq);
2416
2417/*-------------------------------------------------------------------------*/
2418
2419/**
2420 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2421 * @hcd: pointer to the HCD representing the controller
2422 *
2423 * This is called by bus glue to report a USB host controller that died
2424 * while operations may still have been pending.  It's called automatically
2425 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2426 *
2427 * Only call this function with the primary HCD.
2428 */
2429void usb_hc_died (struct usb_hcd *hcd)
2430{
2431	unsigned long flags;
2432
2433	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2434
2435	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2436	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2437	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2438	if (hcd->rh_registered) {
2439		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2440
2441		/* make hub_wq clean up old urbs and devices */
2442		usb_set_device_state (hcd->self.root_hub,
2443				USB_STATE_NOTATTACHED);
2444		usb_kick_hub_wq(hcd->self.root_hub);
2445	}
2446	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2447		hcd = hcd->shared_hcd;
2448		if (hcd->rh_registered) {
2449			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2450
2451			/* make hub_wq clean up old urbs and devices */
2452			usb_set_device_state(hcd->self.root_hub,
2453					USB_STATE_NOTATTACHED);
2454			usb_kick_hub_wq(hcd->self.root_hub);
2455		}
2456	}
2457	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2458	/* Make sure that the other roothub is also deallocated. */
2459}
2460EXPORT_SYMBOL_GPL (usb_hc_died);
2461
2462/*-------------------------------------------------------------------------*/
2463
2464static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2465{
2466
2467	spin_lock_init(&bh->lock);
2468	INIT_LIST_HEAD(&bh->head);
2469	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2470}
2471
2472/**
2473 * usb_create_shared_hcd - create and initialize an HCD structure
2474 * @driver: HC driver that will use this hcd
2475 * @dev: device for this HC, stored in hcd->self.controller
2476 * @bus_name: value to store in hcd->self.bus_name
2477 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2478 *              PCI device.  Only allocate certain resources for the primary HCD
2479 * Context: !in_interrupt()
2480 *
2481 * Allocate a struct usb_hcd, with extra space at the end for the
2482 * HC driver's private data.  Initialize the generic members of the
2483 * hcd structure.
2484 *
2485 * Return: On success, a pointer to the created and initialized HCD structure.
2486 * On failure (e.g. if memory is unavailable), %NULL.
2487 */
2488struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2489		struct device *dev, const char *bus_name,
2490		struct usb_hcd *primary_hcd)
2491{
2492	struct usb_hcd *hcd;
2493
2494	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2495	if (!hcd) {
2496		dev_dbg (dev, "hcd alloc failed\n");
2497		return NULL;
2498	}
2499	if (primary_hcd == NULL) {
2500		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2501				GFP_KERNEL);
2502		if (!hcd->bandwidth_mutex) {
2503			kfree(hcd);
2504			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2505			return NULL;
2506		}
2507		mutex_init(hcd->bandwidth_mutex);
2508		dev_set_drvdata(dev, hcd);
2509	} else {
2510		mutex_lock(&usb_port_peer_mutex);
2511		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2512		hcd->primary_hcd = primary_hcd;
2513		primary_hcd->primary_hcd = primary_hcd;
2514		hcd->shared_hcd = primary_hcd;
2515		primary_hcd->shared_hcd = hcd;
2516		mutex_unlock(&usb_port_peer_mutex);
2517	}
2518
2519	kref_init(&hcd->kref);
2520
2521	usb_bus_init(&hcd->self);
2522	hcd->self.controller = dev;
2523	hcd->self.bus_name = bus_name;
2524	hcd->self.uses_dma = (dev->dma_mask != NULL);
2525
2526	init_timer(&hcd->rh_timer);
2527	hcd->rh_timer.function = rh_timer_func;
2528	hcd->rh_timer.data = (unsigned long) hcd;
2529#ifdef CONFIG_PM
2530	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2531#endif
2532
2533	hcd->driver = driver;
2534	hcd->speed = driver->flags & HCD_MASK;
2535	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2536			"USB Host Controller";
2537	return hcd;
2538}
2539EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2540
2541/**
2542 * usb_create_hcd - create and initialize an HCD structure
2543 * @driver: HC driver that will use this hcd
2544 * @dev: device for this HC, stored in hcd->self.controller
2545 * @bus_name: value to store in hcd->self.bus_name
2546 * Context: !in_interrupt()
2547 *
2548 * Allocate a struct usb_hcd, with extra space at the end for the
2549 * HC driver's private data.  Initialize the generic members of the
2550 * hcd structure.
2551 *
2552 * Return: On success, a pointer to the created and initialized HCD
2553 * structure. On failure (e.g. if memory is unavailable), %NULL.
2554 */
2555struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2556		struct device *dev, const char *bus_name)
2557{
2558	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2559}
2560EXPORT_SYMBOL_GPL(usb_create_hcd);
2561
2562/*
2563 * Roothubs that share one PCI device must also share the bandwidth mutex.
2564 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2565 * deallocated.
2566 *
2567 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2568 * freed.  When hcd_release() is called for either hcd in a peer set
2569 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2570 * block new peering attempts
2571 */
2572static void hcd_release(struct kref *kref)
2573{
2574	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2575
2576	mutex_lock(&usb_port_peer_mutex);
2577	if (usb_hcd_is_primary_hcd(hcd))
2578		kfree(hcd->bandwidth_mutex);
2579	if (hcd->shared_hcd) {
2580		struct usb_hcd *peer = hcd->shared_hcd;
2581
2582		peer->shared_hcd = NULL;
2583		if (peer->primary_hcd == hcd)
2584			peer->primary_hcd = NULL;
2585	}
2586	mutex_unlock(&usb_port_peer_mutex);
2587	kfree(hcd);
2588}
2589
2590struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2591{
2592	if (hcd)
2593		kref_get (&hcd->kref);
2594	return hcd;
2595}
2596EXPORT_SYMBOL_GPL(usb_get_hcd);
2597
2598void usb_put_hcd (struct usb_hcd *hcd)
2599{
2600	if (hcd)
2601		kref_put (&hcd->kref, hcd_release);
2602}
2603EXPORT_SYMBOL_GPL(usb_put_hcd);
2604
2605int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2606{
2607	if (!hcd->primary_hcd)
2608		return 1;
2609	return hcd == hcd->primary_hcd;
2610}
2611EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2612
2613int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2614{
2615	if (!hcd->driver->find_raw_port_number)
2616		return port1;
2617
2618	return hcd->driver->find_raw_port_number(hcd, port1);
2619}
2620
2621static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2622		unsigned int irqnum, unsigned long irqflags)
2623{
2624	int retval;
2625
2626	if (hcd->driver->irq) {
2627
2628		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2629				hcd->driver->description, hcd->self.busnum);
2630		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2631				hcd->irq_descr, hcd);
2632		if (retval != 0) {
2633			dev_err(hcd->self.controller,
2634					"request interrupt %d failed\n",
2635					irqnum);
2636			return retval;
2637		}
2638		hcd->irq = irqnum;
2639		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2640				(hcd->driver->flags & HCD_MEMORY) ?
2641					"io mem" : "io base",
2642					(unsigned long long)hcd->rsrc_start);
2643	} else {
2644		hcd->irq = 0;
2645		if (hcd->rsrc_start)
2646			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2647					(hcd->driver->flags & HCD_MEMORY) ?
2648					"io mem" : "io base",
2649					(unsigned long long)hcd->rsrc_start);
2650	}
2651	return 0;
2652}
2653
2654/*
2655 * Before we free this root hub, flush in-flight peering attempts
2656 * and disable peer lookups
2657 */
2658static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2659{
2660	struct usb_device *rhdev;
2661
2662	mutex_lock(&usb_port_peer_mutex);
2663	rhdev = hcd->self.root_hub;
2664	hcd->self.root_hub = NULL;
2665	mutex_unlock(&usb_port_peer_mutex);
2666	usb_put_dev(rhdev);
2667}
2668
2669/**
2670 * usb_add_hcd - finish generic HCD structure initialization and register
2671 * @hcd: the usb_hcd structure to initialize
2672 * @irqnum: Interrupt line to allocate
2673 * @irqflags: Interrupt type flags
2674 *
2675 * Finish the remaining parts of generic HCD initialization: allocate the
2676 * buffers of consistent memory, register the bus, request the IRQ line,
2677 * and call the driver's reset() and start() routines.
2678 */
2679int usb_add_hcd(struct usb_hcd *hcd,
2680		unsigned int irqnum, unsigned long irqflags)
2681{
2682	int retval;
2683	struct usb_device *rhdev;
2684
2685	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2686		struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2687
2688		if (IS_ERR(phy)) {
2689			retval = PTR_ERR(phy);
2690			if (retval == -EPROBE_DEFER)
2691				return retval;
2692		} else {
2693			retval = usb_phy_init(phy);
2694			if (retval) {
2695				usb_put_phy(phy);
2696				return retval;
2697			}
2698			hcd->usb_phy = phy;
2699			hcd->remove_phy = 1;
2700		}
2701	}
2702
2703	if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2704		struct phy *phy = phy_get(hcd->self.controller, "usb");
2705
2706		if (IS_ERR(phy)) {
2707			retval = PTR_ERR(phy);
2708			if (retval == -EPROBE_DEFER)
2709				goto err_phy;
2710		} else {
2711			retval = phy_init(phy);
2712			if (retval) {
2713				phy_put(phy);
2714				goto err_phy;
2715			}
2716			retval = phy_power_on(phy);
2717			if (retval) {
2718				phy_exit(phy);
2719				phy_put(phy);
2720				goto err_phy;
2721			}
2722			hcd->phy = phy;
2723			hcd->remove_phy = 1;
2724		}
2725	}
2726
2727	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2728
2729	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2730	if (authorized_default < 0 || authorized_default > 1) {
2731		if (hcd->wireless)
2732			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2733		else
2734			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2735	} else {
2736		if (authorized_default)
2737			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2738		else
2739			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2740	}
2741	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2742
2743	/* per default all interfaces are authorized */
2744	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2745
2746	/* HC is in reset state, but accessible.  Now do the one-time init,
2747	 * bottom up so that hcds can customize the root hubs before hub_wq
2748	 * starts talking to them.  (Note, bus id is assigned early too.)
2749	 */
2750	retval = hcd_buffer_create(hcd);
2751	if (retval != 0) {
2752		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2753		goto err_create_buf;
2754	}
2755
2756	retval = usb_register_bus(&hcd->self);
2757	if (retval < 0)
2758		goto err_register_bus;
2759
2760	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2761	if (rhdev == NULL) {
2762		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2763		retval = -ENOMEM;
2764		goto err_allocate_root_hub;
2765	}
2766	mutex_lock(&usb_port_peer_mutex);
2767	hcd->self.root_hub = rhdev;
2768	mutex_unlock(&usb_port_peer_mutex);
2769
2770	switch (hcd->speed) {
2771	case HCD_USB11:
2772		rhdev->speed = USB_SPEED_FULL;
2773		break;
2774	case HCD_USB2:
2775		rhdev->speed = USB_SPEED_HIGH;
2776		break;
2777	case HCD_USB25:
2778		rhdev->speed = USB_SPEED_WIRELESS;
2779		break;
2780	case HCD_USB3:
2781	case HCD_USB31:
2782		rhdev->speed = USB_SPEED_SUPER;
2783		break;
2784	default:
2785		retval = -EINVAL;
2786		goto err_set_rh_speed;
2787	}
2788
2789	/* wakeup flag init defaults to "everything works" for root hubs,
2790	 * but drivers can override it in reset() if needed, along with
2791	 * recording the overall controller's system wakeup capability.
2792	 */
2793	device_set_wakeup_capable(&rhdev->dev, 1);
2794
2795	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2796	 * registered.  But since the controller can die at any time,
2797	 * let's initialize the flag before touching the hardware.
2798	 */
2799	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2800
2801	/* "reset" is misnamed; its role is now one-time init. the controller
2802	 * should already have been reset (and boot firmware kicked off etc).
2803	 */
2804	if (hcd->driver->reset) {
2805		retval = hcd->driver->reset(hcd);
2806		if (retval < 0) {
2807			dev_err(hcd->self.controller, "can't setup: %d\n",
2808					retval);
2809			goto err_hcd_driver_setup;
2810		}
2811	}
2812	hcd->rh_pollable = 1;
2813
2814	/* NOTE: root hub and controller capabilities may not be the same */
2815	if (device_can_wakeup(hcd->self.controller)
2816			&& device_can_wakeup(&hcd->self.root_hub->dev))
2817		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2818
2819	/* initialize tasklets */
2820	init_giveback_urb_bh(&hcd->high_prio_bh);
2821	init_giveback_urb_bh(&hcd->low_prio_bh);
2822
2823	/* enable irqs just before we start the controller,
2824	 * if the BIOS provides legacy PCI irqs.
2825	 */
2826	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2827		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2828		if (retval)
2829			goto err_request_irq;
2830	}
2831
2832	hcd->state = HC_STATE_RUNNING;
2833	retval = hcd->driver->start(hcd);
2834	if (retval < 0) {
2835		dev_err(hcd->self.controller, "startup error %d\n", retval);
2836		goto err_hcd_driver_start;
2837	}
2838
2839	/* starting here, usbcore will pay attention to this root hub */
2840	retval = register_root_hub(hcd);
2841	if (retval != 0)
2842		goto err_register_root_hub;
2843
2844	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2845	if (retval < 0) {
2846		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2847		       retval);
2848		goto error_create_attr_group;
2849	}
2850	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2851		usb_hcd_poll_rh_status(hcd);
2852
2853	return retval;
2854
2855error_create_attr_group:
2856	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2857	if (HC_IS_RUNNING(hcd->state))
2858		hcd->state = HC_STATE_QUIESCING;
2859	spin_lock_irq(&hcd_root_hub_lock);
2860	hcd->rh_registered = 0;
2861	spin_unlock_irq(&hcd_root_hub_lock);
2862
2863#ifdef CONFIG_PM
2864	cancel_work_sync(&hcd->wakeup_work);
2865#endif
2866	mutex_lock(&usb_bus_list_lock);
2867	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2868	mutex_unlock(&usb_bus_list_lock);
2869err_register_root_hub:
2870	hcd->rh_pollable = 0;
2871	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2872	del_timer_sync(&hcd->rh_timer);
2873	hcd->driver->stop(hcd);
2874	hcd->state = HC_STATE_HALT;
2875	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2876	del_timer_sync(&hcd->rh_timer);
2877err_hcd_driver_start:
2878	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2879		free_irq(irqnum, hcd);
2880err_request_irq:
2881err_hcd_driver_setup:
2882err_set_rh_speed:
2883	usb_put_invalidate_rhdev(hcd);
2884err_allocate_root_hub:
2885	usb_deregister_bus(&hcd->self);
2886err_register_bus:
2887	hcd_buffer_destroy(hcd);
2888err_create_buf:
2889	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2890		phy_power_off(hcd->phy);
2891		phy_exit(hcd->phy);
2892		phy_put(hcd->phy);
2893		hcd->phy = NULL;
2894	}
2895err_phy:
2896	if (hcd->remove_phy && hcd->usb_phy) {
2897		usb_phy_shutdown(hcd->usb_phy);
2898		usb_put_phy(hcd->usb_phy);
2899		hcd->usb_phy = NULL;
2900	}
2901	return retval;
2902}
2903EXPORT_SYMBOL_GPL(usb_add_hcd);
2904
2905/**
2906 * usb_remove_hcd - shutdown processing for generic HCDs
2907 * @hcd: the usb_hcd structure to remove
2908 * Context: !in_interrupt()
2909 *
2910 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2911 * invoking the HCD's stop() method.
2912 */
2913void usb_remove_hcd(struct usb_hcd *hcd)
2914{
2915	struct usb_device *rhdev = hcd->self.root_hub;
2916
2917	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2918
2919	usb_get_dev(rhdev);
2920	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2921
2922	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2923	if (HC_IS_RUNNING (hcd->state))
2924		hcd->state = HC_STATE_QUIESCING;
2925
2926	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2927	spin_lock_irq (&hcd_root_hub_lock);
2928	hcd->rh_registered = 0;
2929	spin_unlock_irq (&hcd_root_hub_lock);
2930
2931#ifdef CONFIG_PM
2932	cancel_work_sync(&hcd->wakeup_work);
2933#endif
2934
2935	mutex_lock(&usb_bus_list_lock);
2936	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2937	mutex_unlock(&usb_bus_list_lock);
2938
2939	/*
2940	 * tasklet_kill() isn't needed here because:
2941	 * - driver's disconnect() called from usb_disconnect() should
2942	 *   make sure its URBs are completed during the disconnect()
2943	 *   callback
2944	 *
2945	 * - it is too late to run complete() here since driver may have
2946	 *   been removed already now
2947	 */
2948
2949	/* Prevent any more root-hub status calls from the timer.
2950	 * The HCD might still restart the timer (if a port status change
2951	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2952	 * the hub_status_data() callback.
2953	 */
2954	hcd->rh_pollable = 0;
2955	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2956	del_timer_sync(&hcd->rh_timer);
2957
2958	hcd->driver->stop(hcd);
2959	hcd->state = HC_STATE_HALT;
2960
2961	/* In case the HCD restarted the timer, stop it again. */
2962	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2963	del_timer_sync(&hcd->rh_timer);
2964
2965	if (usb_hcd_is_primary_hcd(hcd)) {
2966		if (hcd->irq > 0)
2967			free_irq(hcd->irq, hcd);
2968	}
2969
2970	usb_deregister_bus(&hcd->self);
2971	hcd_buffer_destroy(hcd);
2972
2973	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2974		phy_power_off(hcd->phy);
2975		phy_exit(hcd->phy);
2976		phy_put(hcd->phy);
2977		hcd->phy = NULL;
2978	}
2979	if (hcd->remove_phy && hcd->usb_phy) {
2980		usb_phy_shutdown(hcd->usb_phy);
2981		usb_put_phy(hcd->usb_phy);
2982		hcd->usb_phy = NULL;
2983	}
2984
2985	usb_put_invalidate_rhdev(hcd);
2986}
2987EXPORT_SYMBOL_GPL(usb_remove_hcd);
2988
2989void
2990usb_hcd_platform_shutdown(struct platform_device *dev)
2991{
2992	struct usb_hcd *hcd = platform_get_drvdata(dev);
2993
2994	if (hcd->driver->shutdown)
2995		hcd->driver->shutdown(hcd);
2996}
2997EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2998
2999/*-------------------------------------------------------------------------*/
3000
3001#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
3002
3003struct usb_mon_operations *mon_ops;
3004
3005/*
3006 * The registration is unlocked.
3007 * We do it this way because we do not want to lock in hot paths.
3008 *
3009 * Notice that the code is minimally error-proof. Because usbmon needs
3010 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3011 */
3012
3013int usb_mon_register (struct usb_mon_operations *ops)
3014{
3015
3016	if (mon_ops)
3017		return -EBUSY;
3018
3019	mon_ops = ops;
3020	mb();
3021	return 0;
3022}
3023EXPORT_SYMBOL_GPL (usb_mon_register);
3024
3025void usb_mon_deregister (void)
3026{
3027
3028	if (mon_ops == NULL) {
3029		printk(KERN_ERR "USB: monitor was not registered\n");
3030		return;
3031	}
3032	mon_ops = NULL;
3033	mb();
3034}
3035EXPORT_SYMBOL_GPL (usb_mon_deregister);
3036
3037#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3038