1/* src/prism2/driver/hfa384x_usb.c
2*
3* Functions that talk to the USB variantof the Intersil hfa384x MAC
4*
5* Copyright (C) 1999 AbsoluteValue Systems, Inc.  All Rights Reserved.
6* --------------------------------------------------------------------
7*
8* linux-wlan
9*
10*   The contents of this file are subject to the Mozilla Public
11*   License Version 1.1 (the "License"); you may not use this file
12*   except in compliance with the License. You may obtain a copy of
13*   the License at http://www.mozilla.org/MPL/
14*
15*   Software distributed under the License is distributed on an "AS
16*   IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
17*   implied. See the License for the specific language governing
18*   rights and limitations under the License.
19*
20*   Alternatively, the contents of this file may be used under the
21*   terms of the GNU Public License version 2 (the "GPL"), in which
22*   case the provisions of the GPL are applicable instead of the
23*   above.  If you wish to allow the use of your version of this file
24*   only under the terms of the GPL and not to allow others to use
25*   your version of this file under the MPL, indicate your decision
26*   by deleting the provisions above and replace them with the notice
27*   and other provisions required by the GPL.  If you do not delete
28*   the provisions above, a recipient may use your version of this
29*   file under either the MPL or the GPL.
30*
31* --------------------------------------------------------------------
32*
33* Inquiries regarding the linux-wlan Open Source project can be
34* made directly to:
35*
36* AbsoluteValue Systems Inc.
37* info@linux-wlan.com
38* http://www.linux-wlan.com
39*
40* --------------------------------------------------------------------
41*
42* Portions of the development of this software were funded by
43* Intersil Corporation as part of PRISM(R) chipset product development.
44*
45* --------------------------------------------------------------------
46*
47* This file implements functions that correspond to the prism2/hfa384x
48* 802.11 MAC hardware and firmware host interface.
49*
50* The functions can be considered to represent several levels of
51* abstraction.  The lowest level functions are simply C-callable wrappers
52* around the register accesses.  The next higher level represents C-callable
53* prism2 API functions that match the Intersil documentation as closely
54* as is reasonable.  The next higher layer implements common sequences
55* of invocations of the API layer (e.g. write to bap, followed by cmd).
56*
57* Common sequences:
58* hfa384x_drvr_xxx	Highest level abstractions provided by the
59*			hfa384x code.  They are driver defined wrappers
60*			for common sequences.  These functions generally
61*			use the services of the lower levels.
62*
63* hfa384x_drvr_xxxconfig  An example of the drvr level abstraction. These
64*			functions are wrappers for the RID get/set
65*			sequence. They call copy_[to|from]_bap() and
66*			cmd_access(). These functions operate on the
67*			RIDs and buffers without validation. The caller
68*			is responsible for that.
69*
70* API wrapper functions:
71* hfa384x_cmd_xxx	functions that provide access to the f/w commands.
72*			The function arguments correspond to each command
73*			argument, even command arguments that get packed
74*			into single registers.  These functions _just_
75*			issue the command by setting the cmd/parm regs
76*			& reading the status/resp regs.  Additional
77*			activities required to fully use a command
78*			(read/write from/to bap, get/set int status etc.)
79*			are implemented separately.  Think of these as
80*			C-callable prism2 commands.
81*
82* Lowest Layer Functions:
83* hfa384x_docmd_xxx	These functions implement the sequence required
84*			to issue any prism2 command.  Primarily used by the
85*			hfa384x_cmd_xxx functions.
86*
87* hfa384x_bap_xxx	BAP read/write access functions.
88*			Note: we usually use BAP0 for non-interrupt context
89*			 and BAP1 for interrupt context.
90*
91* hfa384x_dl_xxx	download related functions.
92*
93* Driver State Issues:
94* Note that there are two pairs of functions that manage the
95* 'initialized' and 'running' states of the hw/MAC combo.  The four
96* functions are create(), destroy(), start(), and stop().  create()
97* sets up the data structures required to support the hfa384x_*
98* functions and destroy() cleans them up.  The start() function gets
99* the actual hardware running and enables the interrupts.  The stop()
100* function shuts the hardware down.  The sequence should be:
101* create()
102* start()
103*  .
104*  .  Do interesting things w/ the hardware
105*  .
106* stop()
107* destroy()
108*
109* Note that destroy() can be called without calling stop() first.
110* --------------------------------------------------------------------
111*/
112
113#include <linux/module.h>
114#include <linux/kernel.h>
115#include <linux/sched.h>
116#include <linux/types.h>
117#include <linux/slab.h>
118#include <linux/wireless.h>
119#include <linux/netdevice.h>
120#include <linux/timer.h>
121#include <linux/io.h>
122#include <linux/delay.h>
123#include <asm/byteorder.h>
124#include <linux/bitops.h>
125#include <linux/list.h>
126#include <linux/usb.h>
127#include <linux/byteorder/generic.h>
128
129#define SUBMIT_URB(u, f)  usb_submit_urb(u, f)
130
131#include "p80211types.h"
132#include "p80211hdr.h"
133#include "p80211mgmt.h"
134#include "p80211conv.h"
135#include "p80211msg.h"
136#include "p80211netdev.h"
137#include "p80211req.h"
138#include "p80211metadef.h"
139#include "p80211metastruct.h"
140#include "hfa384x.h"
141#include "prism2mgmt.h"
142
143enum cmd_mode {
144	DOWAIT = 0,
145	DOASYNC
146};
147
148#define THROTTLE_JIFFIES	(HZ/8)
149#define URB_ASYNC_UNLINK 0
150#define USB_QUEUE_BULK 0
151
152#define ROUNDUP64(a) (((a)+63)&~63)
153
154#ifdef DEBUG_USB
155static void dbprint_urb(struct urb *urb);
156#endif
157
158static void
159hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
160
161static void hfa384x_usb_defer(struct work_struct *data);
162
163static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
164
165static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
166
167/*---------------------------------------------------*/
168/* Callbacks */
169static void hfa384x_usbout_callback(struct urb *urb);
170static void hfa384x_ctlxout_callback(struct urb *urb);
171static void hfa384x_usbin_callback(struct urb *urb);
172
173static void
174hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
175
176static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
177
178static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
179
180static void
181hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout);
182
183static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
184			       int urb_status);
185
186/*---------------------------------------------------*/
187/* Functions to support the prism2 usb command queue */
188
189static void hfa384x_usbctlxq_run(hfa384x_t *hw);
190
191static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
192
193static void hfa384x_usbctlx_resptimerfn(unsigned long data);
194
195static void hfa384x_usb_throttlefn(unsigned long data);
196
197static void hfa384x_usbctlx_completion_task(unsigned long data);
198
199static void hfa384x_usbctlx_reaper_task(unsigned long data);
200
201static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
202
203static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
204
205struct usbctlx_completor {
206	int (*complete)(struct usbctlx_completor *);
207};
208
209static int
210hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
211			      hfa384x_usbctlx_t *ctlx,
212			      struct usbctlx_completor *completor);
213
214static int
215unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
216
217static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
218
219static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
220
221static int
222usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
223		   hfa384x_cmdresult_t *result);
224
225static void
226usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
227		       hfa384x_rridresult_t *result);
228
229/*---------------------------------------------------*/
230/* Low level req/resp CTLX formatters and submitters */
231static int
232hfa384x_docmd(hfa384x_t *hw,
233	      enum cmd_mode mode,
234	      hfa384x_metacmd_t *cmd,
235	      ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
236
237static int
238hfa384x_dorrid(hfa384x_t *hw,
239	       enum cmd_mode mode,
240	       u16 rid,
241	       void *riddata,
242	       unsigned int riddatalen,
243	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
244
245static int
246hfa384x_dowrid(hfa384x_t *hw,
247	       enum cmd_mode mode,
248	       u16 rid,
249	       void *riddata,
250	       unsigned int riddatalen,
251	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
252
253static int
254hfa384x_dormem(hfa384x_t *hw,
255	       enum cmd_mode mode,
256	       u16 page,
257	       u16 offset,
258	       void *data,
259	       unsigned int len,
260	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
261
262static int
263hfa384x_dowmem(hfa384x_t *hw,
264	       enum cmd_mode mode,
265	       u16 page,
266	       u16 offset,
267	       void *data,
268	       unsigned int len,
269	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
270
271static int hfa384x_isgood_pdrcode(u16 pdrcode);
272
273static inline const char *ctlxstr(CTLX_STATE s)
274{
275	static const char * const ctlx_str[] = {
276		"Initial state",
277		"Complete",
278		"Request failed",
279		"Request pending",
280		"Request packet submitted",
281		"Request packet completed",
282		"Response packet completed"
283	};
284
285	return ctlx_str[s];
286};
287
288static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t *hw)
289{
290	return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
291}
292
293#ifdef DEBUG_USB
294void dbprint_urb(struct urb *urb)
295{
296	pr_debug("urb->pipe=0x%08x\n", urb->pipe);
297	pr_debug("urb->status=0x%08x\n", urb->status);
298	pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
299	pr_debug("urb->transfer_buffer=0x%08x\n",
300		 (unsigned int)urb->transfer_buffer);
301	pr_debug("urb->transfer_buffer_length=0x%08x\n",
302		 urb->transfer_buffer_length);
303	pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
304	pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
305	pr_debug("urb->setup_packet(ctl)=0x%08x\n",
306		 (unsigned int)urb->setup_packet);
307	pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
308	pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
309	pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
310	pr_debug("urb->timeout=0x%08x\n", urb->timeout);
311	pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
312	pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
313}
314#endif
315
316/*----------------------------------------------------------------
317* submit_rx_urb
318*
319* Listen for input data on the BULK-IN pipe. If the pipe has
320* stalled then schedule it to be reset.
321*
322* Arguments:
323*	hw		device struct
324*	memflags	memory allocation flags
325*
326* Returns:
327*	error code from submission
328*
329* Call context:
330*	Any
331----------------------------------------------------------------*/
332static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
333{
334	struct sk_buff *skb;
335	int result;
336
337	skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
338	if (skb == NULL) {
339		result = -ENOMEM;
340		goto done;
341	}
342
343	/* Post the IN urb */
344	usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
345			  hw->endp_in,
346			  skb->data, sizeof(hfa384x_usbin_t),
347			  hfa384x_usbin_callback, hw->wlandev);
348
349	hw->rx_urb_skb = skb;
350
351	result = -ENOLINK;
352	if (!hw->wlandev->hwremoved &&
353	    !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
354		result = SUBMIT_URB(&hw->rx_urb, memflags);
355
356		/* Check whether we need to reset the RX pipe */
357		if (result == -EPIPE) {
358			netdev_warn(hw->wlandev->netdev,
359				    "%s rx pipe stalled: requesting reset\n",
360				    hw->wlandev->netdev->name);
361			if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
362				schedule_work(&hw->usb_work);
363		}
364	}
365
366	/* Don't leak memory if anything should go wrong */
367	if (result != 0) {
368		dev_kfree_skb(skb);
369		hw->rx_urb_skb = NULL;
370	}
371
372done:
373	return result;
374}
375
376/*----------------------------------------------------------------
377* submit_tx_urb
378*
379* Prepares and submits the URB of transmitted data. If the
380* submission fails then it will schedule the output pipe to
381* be reset.
382*
383* Arguments:
384*	hw		device struct
385*	tx_urb		URB of data for transmission
386*	memflags	memory allocation flags
387*
388* Returns:
389*	error code from submission
390*
391* Call context:
392*	Any
393----------------------------------------------------------------*/
394static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
395{
396	struct net_device *netdev = hw->wlandev->netdev;
397	int result;
398
399	result = -ENOLINK;
400	if (netif_running(netdev)) {
401		if (!hw->wlandev->hwremoved &&
402		    !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
403			result = SUBMIT_URB(tx_urb, memflags);
404
405			/* Test whether we need to reset the TX pipe */
406			if (result == -EPIPE) {
407				netdev_warn(hw->wlandev->netdev,
408					    "%s tx pipe stalled: requesting reset\n",
409					    netdev->name);
410				set_bit(WORK_TX_HALT, &hw->usb_flags);
411				schedule_work(&hw->usb_work);
412			} else if (result == 0) {
413				netif_stop_queue(netdev);
414			}
415		}
416	}
417
418	return result;
419}
420
421/*----------------------------------------------------------------
422* hfa394x_usb_defer
423*
424* There are some things that the USB stack cannot do while
425* in interrupt context, so we arrange this function to run
426* in process context.
427*
428* Arguments:
429*	hw	device structure
430*
431* Returns:
432*	nothing
433*
434* Call context:
435*	process (by design)
436----------------------------------------------------------------*/
437static void hfa384x_usb_defer(struct work_struct *data)
438{
439	hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
440	struct net_device *netdev = hw->wlandev->netdev;
441
442	/* Don't bother trying to reset anything if the plug
443	 * has been pulled ...
444	 */
445	if (hw->wlandev->hwremoved)
446		return;
447
448	/* Reception has stopped: try to reset the input pipe */
449	if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
450		int ret;
451
452		usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
453
454		ret = usb_clear_halt(hw->usb, hw->endp_in);
455		if (ret != 0) {
456			netdev_err(hw->wlandev->netdev,
457				   "Failed to clear rx pipe for %s: err=%d\n",
458				   netdev->name, ret);
459		} else {
460			netdev_info(hw->wlandev->netdev, "%s rx pipe reset complete.\n",
461				    netdev->name);
462			clear_bit(WORK_RX_HALT, &hw->usb_flags);
463			set_bit(WORK_RX_RESUME, &hw->usb_flags);
464		}
465	}
466
467	/* Resume receiving data back from the device. */
468	if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
469		int ret;
470
471		ret = submit_rx_urb(hw, GFP_KERNEL);
472		if (ret != 0) {
473			netdev_err(hw->wlandev->netdev,
474				   "Failed to resume %s rx pipe.\n",
475				   netdev->name);
476		} else {
477			clear_bit(WORK_RX_RESUME, &hw->usb_flags);
478		}
479	}
480
481	/* Transmission has stopped: try to reset the output pipe */
482	if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
483		int ret;
484
485		usb_kill_urb(&hw->tx_urb);
486		ret = usb_clear_halt(hw->usb, hw->endp_out);
487		if (ret != 0) {
488			netdev_err(hw->wlandev->netdev,
489				   "Failed to clear tx pipe for %s: err=%d\n",
490				   netdev->name, ret);
491		} else {
492			netdev_info(hw->wlandev->netdev, "%s tx pipe reset complete.\n",
493				    netdev->name);
494			clear_bit(WORK_TX_HALT, &hw->usb_flags);
495			set_bit(WORK_TX_RESUME, &hw->usb_flags);
496
497			/* Stopping the BULK-OUT pipe also blocked
498			 * us from sending any more CTLX URBs, so
499			 * we need to re-run our queue ...
500			 */
501			hfa384x_usbctlxq_run(hw);
502		}
503	}
504
505	/* Resume transmitting. */
506	if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
507		netif_wake_queue(hw->wlandev->netdev);
508}
509
510/*----------------------------------------------------------------
511* hfa384x_create
512*
513* Sets up the hfa384x_t data structure for use.  Note this
514* does _not_ initialize the actual hardware, just the data structures
515* we use to keep track of its state.
516*
517* Arguments:
518*	hw		device structure
519*	irq		device irq number
520*	iobase		i/o base address for register access
521*	membase		memory base address for register access
522*
523* Returns:
524*	nothing
525*
526* Side effects:
527*
528* Call context:
529*	process
530----------------------------------------------------------------*/
531void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
532{
533	memset(hw, 0, sizeof(hfa384x_t));
534	hw->usb = usb;
535
536	/* set up the endpoints */
537	hw->endp_in = usb_rcvbulkpipe(usb, 1);
538	hw->endp_out = usb_sndbulkpipe(usb, 2);
539
540	/* Set up the waitq */
541	init_waitqueue_head(&hw->cmdq);
542
543	/* Initialize the command queue */
544	spin_lock_init(&hw->ctlxq.lock);
545	INIT_LIST_HEAD(&hw->ctlxq.pending);
546	INIT_LIST_HEAD(&hw->ctlxq.active);
547	INIT_LIST_HEAD(&hw->ctlxq.completing);
548	INIT_LIST_HEAD(&hw->ctlxq.reapable);
549
550	/* Initialize the authentication queue */
551	skb_queue_head_init(&hw->authq);
552
553	tasklet_init(&hw->reaper_bh,
554		     hfa384x_usbctlx_reaper_task, (unsigned long)hw);
555	tasklet_init(&hw->completion_bh,
556		     hfa384x_usbctlx_completion_task, (unsigned long)hw);
557	INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
558	INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
559
560	setup_timer(&hw->throttle, hfa384x_usb_throttlefn, (unsigned long)hw);
561
562	setup_timer(&hw->resptimer, hfa384x_usbctlx_resptimerfn,
563		    (unsigned long)hw);
564
565	setup_timer(&hw->reqtimer, hfa384x_usbctlx_reqtimerfn,
566		    (unsigned long)hw);
567
568	usb_init_urb(&hw->rx_urb);
569	usb_init_urb(&hw->tx_urb);
570	usb_init_urb(&hw->ctlx_urb);
571
572	hw->link_status = HFA384x_LINK_NOTCONNECTED;
573	hw->state = HFA384x_STATE_INIT;
574
575	INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
576	setup_timer(&hw->commsqual_timer, prism2sta_commsqual_timer,
577		    (unsigned long)hw);
578}
579
580/*----------------------------------------------------------------
581* hfa384x_destroy
582*
583* Partner to hfa384x_create().  This function cleans up the hw
584* structure so that it can be freed by the caller using a simple
585* kfree.  Currently, this function is just a placeholder.  If, at some
586* point in the future, an hw in the 'shutdown' state requires a 'deep'
587* kfree, this is where it should be done.  Note that if this function
588* is called on a _running_ hw structure, the drvr_stop() function is
589* called.
590*
591* Arguments:
592*	hw		device structure
593*
594* Returns:
595*	nothing, this function is not allowed to fail.
596*
597* Side effects:
598*
599* Call context:
600*	process
601----------------------------------------------------------------*/
602void hfa384x_destroy(hfa384x_t *hw)
603{
604	struct sk_buff *skb;
605
606	if (hw->state == HFA384x_STATE_RUNNING)
607		hfa384x_drvr_stop(hw);
608	hw->state = HFA384x_STATE_PREINIT;
609
610	kfree(hw->scanresults);
611	hw->scanresults = NULL;
612
613	/* Now to clean out the auth queue */
614	while ((skb = skb_dequeue(&hw->authq)))
615		dev_kfree_skb(skb);
616}
617
618static hfa384x_usbctlx_t *usbctlx_alloc(void)
619{
620	hfa384x_usbctlx_t *ctlx;
621
622	ctlx = kzalloc(sizeof(*ctlx),
623		       in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
624	if (ctlx != NULL)
625		init_completion(&ctlx->done);
626
627	return ctlx;
628}
629
630static int
631usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
632		   hfa384x_cmdresult_t *result)
633{
634	result->status = le16_to_cpu(cmdresp->status);
635	result->resp0 = le16_to_cpu(cmdresp->resp0);
636	result->resp1 = le16_to_cpu(cmdresp->resp1);
637	result->resp2 = le16_to_cpu(cmdresp->resp2);
638
639	pr_debug("cmdresult:status=0x%04x resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
640		 result->status, result->resp0, result->resp1, result->resp2);
641
642	return result->status & HFA384x_STATUS_RESULT;
643}
644
645static void
646usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
647		       hfa384x_rridresult_t *result)
648{
649	result->rid = le16_to_cpu(rridresp->rid);
650	result->riddata = rridresp->data;
651	result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
652}
653
654/*----------------------------------------------------------------
655* Completor object:
656* This completor must be passed to hfa384x_usbctlx_complete_sync()
657* when processing a CTLX that returns a hfa384x_cmdresult_t structure.
658----------------------------------------------------------------*/
659struct usbctlx_cmd_completor {
660	struct usbctlx_completor head;
661
662	const hfa384x_usb_cmdresp_t *cmdresp;
663	hfa384x_cmdresult_t *result;
664};
665
666static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
667{
668	struct usbctlx_cmd_completor *complete;
669
670	complete = (struct usbctlx_cmd_completor *)head;
671	return usbctlx_get_status(complete->cmdresp, complete->result);
672}
673
674static inline struct usbctlx_completor *init_cmd_completor(
675						struct usbctlx_cmd_completor
676							*completor,
677						const hfa384x_usb_cmdresp_t
678							*cmdresp,
679						hfa384x_cmdresult_t *result)
680{
681	completor->head.complete = usbctlx_cmd_completor_fn;
682	completor->cmdresp = cmdresp;
683	completor->result = result;
684	return &(completor->head);
685}
686
687/*----------------------------------------------------------------
688* Completor object:
689* This completor must be passed to hfa384x_usbctlx_complete_sync()
690* when processing a CTLX that reads a RID.
691----------------------------------------------------------------*/
692struct usbctlx_rrid_completor {
693	struct usbctlx_completor head;
694
695	const hfa384x_usb_rridresp_t *rridresp;
696	void *riddata;
697	unsigned int riddatalen;
698};
699
700static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
701{
702	struct usbctlx_rrid_completor *complete;
703	hfa384x_rridresult_t rridresult;
704
705	complete = (struct usbctlx_rrid_completor *)head;
706	usbctlx_get_rridresult(complete->rridresp, &rridresult);
707
708	/* Validate the length, note body len calculation in bytes */
709	if (rridresult.riddata_len != complete->riddatalen) {
710		pr_warn("RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
711			rridresult.rid,
712			complete->riddatalen, rridresult.riddata_len);
713		return -ENODATA;
714	}
715
716	memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
717	return 0;
718}
719
720static inline struct usbctlx_completor *init_rrid_completor(
721						struct usbctlx_rrid_completor
722							*completor,
723						const hfa384x_usb_rridresp_t
724							*rridresp,
725						void *riddata,
726						unsigned int riddatalen)
727{
728	completor->head.complete = usbctlx_rrid_completor_fn;
729	completor->rridresp = rridresp;
730	completor->riddata = riddata;
731	completor->riddatalen = riddatalen;
732	return &(completor->head);
733}
734
735/*----------------------------------------------------------------
736* Completor object:
737* Interprets the results of a synchronous RID-write
738----------------------------------------------------------------*/
739#define init_wrid_completor  init_cmd_completor
740
741/*----------------------------------------------------------------
742* Completor object:
743* Interprets the results of a synchronous memory-write
744----------------------------------------------------------------*/
745#define init_wmem_completor  init_cmd_completor
746
747/*----------------------------------------------------------------
748* Completor object:
749* Interprets the results of a synchronous memory-read
750----------------------------------------------------------------*/
751struct usbctlx_rmem_completor {
752	struct usbctlx_completor head;
753
754	const hfa384x_usb_rmemresp_t *rmemresp;
755	void *data;
756	unsigned int len;
757};
758
759static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
760{
761	struct usbctlx_rmem_completor *complete =
762		(struct usbctlx_rmem_completor *)head;
763
764	pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
765	memcpy(complete->data, complete->rmemresp->data, complete->len);
766	return 0;
767}
768
769static inline struct usbctlx_completor *init_rmem_completor(
770						struct usbctlx_rmem_completor
771							*completor,
772						hfa384x_usb_rmemresp_t
773							*rmemresp,
774						void *data,
775						unsigned int len)
776{
777	completor->head.complete = usbctlx_rmem_completor_fn;
778	completor->rmemresp = rmemresp;
779	completor->data = data;
780	completor->len = len;
781	return &(completor->head);
782}
783
784/*----------------------------------------------------------------
785* hfa384x_cb_status
786*
787* Ctlx_complete handler for async CMD type control exchanges.
788* mark the hw struct as such.
789*
790* Note: If the handling is changed here, it should probably be
791*       changed in docmd as well.
792*
793* Arguments:
794*	hw		hw struct
795*	ctlx		completed CTLX
796*
797* Returns:
798*	nothing
799*
800* Side effects:
801*
802* Call context:
803*	interrupt
804----------------------------------------------------------------*/
805static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
806{
807	if (ctlx->usercb != NULL) {
808		hfa384x_cmdresult_t cmdresult;
809
810		if (ctlx->state != CTLX_COMPLETE) {
811			memset(&cmdresult, 0, sizeof(cmdresult));
812			cmdresult.status =
813			    HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
814		} else {
815			usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
816		}
817
818		ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
819	}
820}
821
822/*----------------------------------------------------------------
823* hfa384x_cb_rrid
824*
825* CTLX completion handler for async RRID type control exchanges.
826*
827* Note: If the handling is changed here, it should probably be
828*       changed in dorrid as well.
829*
830* Arguments:
831*	hw		hw struct
832*	ctlx		completed CTLX
833*
834* Returns:
835*	nothing
836*
837* Side effects:
838*
839* Call context:
840*	interrupt
841----------------------------------------------------------------*/
842static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
843{
844	if (ctlx->usercb != NULL) {
845		hfa384x_rridresult_t rridresult;
846
847		if (ctlx->state != CTLX_COMPLETE) {
848			memset(&rridresult, 0, sizeof(rridresult));
849			rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid);
850		} else {
851			usbctlx_get_rridresult(&ctlx->inbuf.rridresp,
852					       &rridresult);
853		}
854
855		ctlx->usercb(hw, &rridresult, ctlx->usercb_data);
856	}
857}
858
859static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
860{
861	return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
862}
863
864static inline int
865hfa384x_docmd_async(hfa384x_t *hw,
866		    hfa384x_metacmd_t *cmd,
867		    ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
868{
869	return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
870}
871
872static inline int
873hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
874		    unsigned int riddatalen)
875{
876	return hfa384x_dorrid(hw, DOWAIT,
877			      rid, riddata, riddatalen, NULL, NULL, NULL);
878}
879
880static inline int
881hfa384x_dorrid_async(hfa384x_t *hw,
882		     u16 rid, void *riddata, unsigned int riddatalen,
883		     ctlx_cmdcb_t cmdcb,
884		     ctlx_usercb_t usercb, void *usercb_data)
885{
886	return hfa384x_dorrid(hw, DOASYNC,
887			      rid, riddata, riddatalen,
888			      cmdcb, usercb, usercb_data);
889}
890
891static inline int
892hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
893		    unsigned int riddatalen)
894{
895	return hfa384x_dowrid(hw, DOWAIT,
896			      rid, riddata, riddatalen, NULL, NULL, NULL);
897}
898
899static inline int
900hfa384x_dowrid_async(hfa384x_t *hw,
901		     u16 rid, void *riddata, unsigned int riddatalen,
902		     ctlx_cmdcb_t cmdcb,
903		     ctlx_usercb_t usercb, void *usercb_data)
904{
905	return hfa384x_dowrid(hw, DOASYNC,
906			      rid, riddata, riddatalen,
907			      cmdcb, usercb, usercb_data);
908}
909
910static inline int
911hfa384x_dormem_wait(hfa384x_t *hw,
912		    u16 page, u16 offset, void *data, unsigned int len)
913{
914	return hfa384x_dormem(hw, DOWAIT,
915			      page, offset, data, len, NULL, NULL, NULL);
916}
917
918static inline int
919hfa384x_dormem_async(hfa384x_t *hw,
920		     u16 page, u16 offset, void *data, unsigned int len,
921		     ctlx_cmdcb_t cmdcb,
922		     ctlx_usercb_t usercb, void *usercb_data)
923{
924	return hfa384x_dormem(hw, DOASYNC,
925			      page, offset, data, len,
926			      cmdcb, usercb, usercb_data);
927}
928
929static inline int
930hfa384x_dowmem_wait(hfa384x_t *hw,
931		    u16 page, u16 offset, void *data, unsigned int len)
932{
933	return hfa384x_dowmem(hw, DOWAIT,
934			      page, offset, data, len, NULL, NULL, NULL);
935}
936
937static inline int
938hfa384x_dowmem_async(hfa384x_t *hw,
939		     u16 page,
940		     u16 offset,
941		     void *data,
942		     unsigned int len,
943		     ctlx_cmdcb_t cmdcb,
944		     ctlx_usercb_t usercb, void *usercb_data)
945{
946	return hfa384x_dowmem(hw, DOASYNC,
947			      page, offset, data, len,
948			      cmdcb, usercb, usercb_data);
949}
950
951/*----------------------------------------------------------------
952* hfa384x_cmd_initialize
953*
954* Issues the initialize command and sets the hw->state based
955* on the result.
956*
957* Arguments:
958*	hw		device structure
959*
960* Returns:
961*	0		success
962*	>0		f/w reported error - f/w status code
963*	<0		driver reported error
964*
965* Side effects:
966*
967* Call context:
968*	process
969----------------------------------------------------------------*/
970int hfa384x_cmd_initialize(hfa384x_t *hw)
971{
972	int result = 0;
973	int i;
974	hfa384x_metacmd_t cmd;
975
976	cmd.cmd = HFA384x_CMDCODE_INIT;
977	cmd.parm0 = 0;
978	cmd.parm1 = 0;
979	cmd.parm2 = 0;
980
981	result = hfa384x_docmd_wait(hw, &cmd);
982
983	pr_debug("cmdresp.init: status=0x%04x, resp0=0x%04x, resp1=0x%04x, resp2=0x%04x\n",
984		 cmd.result.status,
985		 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
986	if (result == 0) {
987		for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
988			hw->port_enabled[i] = 0;
989	}
990
991	hw->link_status = HFA384x_LINK_NOTCONNECTED;
992
993	return result;
994}
995
996/*----------------------------------------------------------------
997* hfa384x_cmd_disable
998*
999* Issues the disable command to stop communications on one of
1000* the MACs 'ports'.
1001*
1002* Arguments:
1003*	hw		device structure
1004*	macport		MAC port number (host order)
1005*
1006* Returns:
1007*	0		success
1008*	>0		f/w reported failure - f/w status code
1009*	<0		driver reported error (timeout|bad arg)
1010*
1011* Side effects:
1012*
1013* Call context:
1014*	process
1015----------------------------------------------------------------*/
1016int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
1017{
1018	int result = 0;
1019	hfa384x_metacmd_t cmd;
1020
1021	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
1022	    HFA384x_CMD_MACPORT_SET(macport);
1023	cmd.parm0 = 0;
1024	cmd.parm1 = 0;
1025	cmd.parm2 = 0;
1026
1027	result = hfa384x_docmd_wait(hw, &cmd);
1028
1029	return result;
1030}
1031
1032/*----------------------------------------------------------------
1033* hfa384x_cmd_enable
1034*
1035* Issues the enable command to enable communications on one of
1036* the MACs 'ports'.
1037*
1038* Arguments:
1039*	hw		device structure
1040*	macport		MAC port number
1041*
1042* Returns:
1043*	0		success
1044*	>0		f/w reported failure - f/w status code
1045*	<0		driver reported error (timeout|bad arg)
1046*
1047* Side effects:
1048*
1049* Call context:
1050*	process
1051----------------------------------------------------------------*/
1052int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
1053{
1054	int result = 0;
1055	hfa384x_metacmd_t cmd;
1056
1057	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
1058	    HFA384x_CMD_MACPORT_SET(macport);
1059	cmd.parm0 = 0;
1060	cmd.parm1 = 0;
1061	cmd.parm2 = 0;
1062
1063	result = hfa384x_docmd_wait(hw, &cmd);
1064
1065	return result;
1066}
1067
1068/*----------------------------------------------------------------
1069* hfa384x_cmd_monitor
1070*
1071* Enables the 'monitor mode' of the MAC.  Here's the description of
1072* monitor mode that I've received thus far:
1073*
1074*  "The "monitor mode" of operation is that the MAC passes all
1075*  frames for which the PLCP checks are correct. All received
1076*  MPDUs are passed to the host with MAC Port = 7, with a
1077*  receive status of good, FCS error, or undecryptable. Passing
1078*  certain MPDUs is a violation of the 802.11 standard, but useful
1079*  for a debugging tool."  Normal communication is not possible
1080*  while monitor mode is enabled.
1081*
1082* Arguments:
1083*	hw		device structure
1084*	enable		a code (0x0b|0x0f) that enables/disables
1085*			monitor mode. (host order)
1086*
1087* Returns:
1088*	0		success
1089*	>0		f/w reported failure - f/w status code
1090*	<0		driver reported error (timeout|bad arg)
1091*
1092* Side effects:
1093*
1094* Call context:
1095*	process
1096----------------------------------------------------------------*/
1097int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
1098{
1099	int result = 0;
1100	hfa384x_metacmd_t cmd;
1101
1102	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
1103	    HFA384x_CMD_AINFO_SET(enable);
1104	cmd.parm0 = 0;
1105	cmd.parm1 = 0;
1106	cmd.parm2 = 0;
1107
1108	result = hfa384x_docmd_wait(hw, &cmd);
1109
1110	return result;
1111}
1112
1113/*----------------------------------------------------------------
1114* hfa384x_cmd_download
1115*
1116* Sets the controls for the MAC controller code/data download
1117* process.  The arguments set the mode and address associated
1118* with a download.  Note that the aux registers should be enabled
1119* prior to setting one of the download enable modes.
1120*
1121* Arguments:
1122*	hw		device structure
1123*	mode		0 - Disable programming and begin code exec
1124*			1 - Enable volatile mem programming
1125*			2 - Enable non-volatile mem programming
1126*			3 - Program non-volatile section from NV download
1127*			    buffer.
1128*			(host order)
1129*	lowaddr
1130*	highaddr	For mode 1, sets the high & low order bits of
1131*			the "destination address".  This address will be
1132*			the execution start address when download is
1133*			subsequently disabled.
1134*			For mode 2, sets the high & low order bits of
1135*			the destination in NV ram.
1136*			For modes 0 & 3, should be zero. (host order)
1137*			NOTE: these are CMD format.
1138*	codelen		Length of the data to write in mode 2,
1139*			zero otherwise. (host order)
1140*
1141* Returns:
1142*	0		success
1143*	>0		f/w reported failure - f/w status code
1144*	<0		driver reported error (timeout|bad arg)
1145*
1146* Side effects:
1147*
1148* Call context:
1149*	process
1150----------------------------------------------------------------*/
1151int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
1152			 u16 highaddr, u16 codelen)
1153{
1154	int result = 0;
1155	hfa384x_metacmd_t cmd;
1156
1157	pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1158		 mode, lowaddr, highaddr, codelen);
1159
1160	cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1161		   HFA384x_CMD_PROGMODE_SET(mode));
1162
1163	cmd.parm0 = lowaddr;
1164	cmd.parm1 = highaddr;
1165	cmd.parm2 = codelen;
1166
1167	result = hfa384x_docmd_wait(hw, &cmd);
1168
1169	return result;
1170}
1171
1172/*----------------------------------------------------------------
1173* hfa384x_corereset
1174*
1175* Perform a reset of the hfa38xx MAC core.  We assume that the hw
1176* structure is in its "created" state.  That is, it is initialized
1177* with proper values.  Note that if a reset is done after the
1178* device has been active for awhile, the caller might have to clean
1179* up some leftover cruft in the hw structure.
1180*
1181* Arguments:
1182*	hw		device structure
1183*	holdtime	how long (in ms) to hold the reset
1184*	settletime	how long (in ms) to wait after releasing
1185*			the reset
1186*
1187* Returns:
1188*	nothing
1189*
1190* Side effects:
1191*
1192* Call context:
1193*	process
1194----------------------------------------------------------------*/
1195int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
1196{
1197	int result;
1198
1199	result = usb_reset_device(hw->usb);
1200	if (result < 0) {
1201		netdev_err(hw->wlandev->netdev, "usb_reset_device() failed, result=%d.\n",
1202			   result);
1203	}
1204
1205	return result;
1206}
1207
1208/*----------------------------------------------------------------
1209* hfa384x_usbctlx_complete_sync
1210*
1211* Waits for a synchronous CTLX object to complete,
1212* and then handles the response.
1213*
1214* Arguments:
1215*	hw		device structure
1216*	ctlx		CTLX ptr
1217*	completor	functor object to decide what to
1218*			do with the CTLX's result.
1219*
1220* Returns:
1221*	0		Success
1222*	-ERESTARTSYS	Interrupted by a signal
1223*	-EIO		CTLX failed
1224*	-ENODEV		Adapter was unplugged
1225*	???		Result from completor
1226*
1227* Side effects:
1228*
1229* Call context:
1230*	process
1231----------------------------------------------------------------*/
1232static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
1233					 hfa384x_usbctlx_t *ctlx,
1234					 struct usbctlx_completor *completor)
1235{
1236	unsigned long flags;
1237	int result;
1238
1239	result = wait_for_completion_interruptible(&ctlx->done);
1240
1241	spin_lock_irqsave(&hw->ctlxq.lock, flags);
1242
1243	/*
1244	 * We can only handle the CTLX if the USB disconnect
1245	 * function has not run yet ...
1246	 */
1247cleanup:
1248	if (hw->wlandev->hwremoved) {
1249		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1250		result = -ENODEV;
1251	} else if (result != 0) {
1252		int runqueue = 0;
1253
1254		/*
1255		 * We were probably interrupted, so delete
1256		 * this CTLX asynchronously, kill the timers
1257		 * and the URB, and then start the next
1258		 * pending CTLX.
1259		 *
1260		 * NOTE: We can only delete the timers and
1261		 *       the URB if this CTLX is active.
1262		 */
1263		if (ctlx == get_active_ctlx(hw)) {
1264			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1265
1266			del_singleshot_timer_sync(&hw->reqtimer);
1267			del_singleshot_timer_sync(&hw->resptimer);
1268			hw->req_timer_done = 1;
1269			hw->resp_timer_done = 1;
1270			usb_kill_urb(&hw->ctlx_urb);
1271
1272			spin_lock_irqsave(&hw->ctlxq.lock, flags);
1273
1274			runqueue = 1;
1275
1276			/*
1277			 * This scenario is so unlikely that I'm
1278			 * happy with a grubby "goto" solution ...
1279			 */
1280			if (hw->wlandev->hwremoved)
1281				goto cleanup;
1282		}
1283
1284		/*
1285		 * The completion task will send this CTLX
1286		 * to the reaper the next time it runs. We
1287		 * are no longer in a hurry.
1288		 */
1289		ctlx->reapable = 1;
1290		ctlx->state = CTLX_REQ_FAILED;
1291		list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1292
1293		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1294
1295		if (runqueue)
1296			hfa384x_usbctlxq_run(hw);
1297	} else {
1298		if (ctlx->state == CTLX_COMPLETE) {
1299			result = completor->complete(completor);
1300		} else {
1301			netdev_warn(hw->wlandev->netdev, "CTLX[%d] error: state(%s)\n",
1302				    le16_to_cpu(ctlx->outbuf.type),
1303				    ctlxstr(ctlx->state));
1304			result = -EIO;
1305		}
1306
1307		list_del(&ctlx->list);
1308		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1309		kfree(ctlx);
1310	}
1311
1312	return result;
1313}
1314
1315/*----------------------------------------------------------------
1316* hfa384x_docmd
1317*
1318* Constructs a command CTLX and submits it.
1319*
1320* NOTE: Any changes to the 'post-submit' code in this function
1321*       need to be carried over to hfa384x_cbcmd() since the handling
1322*       is virtually identical.
1323*
1324* Arguments:
1325*	hw		device structure
1326*	mode		DOWAIT or DOASYNC
1327*       cmd             cmd structure.  Includes all arguments and result
1328*                       data points.  All in host order. in host order
1329*	cmdcb		command-specific callback
1330*	usercb		user callback for async calls, NULL for DOWAIT calls
1331*	usercb_data	user supplied data pointer for async calls, NULL
1332*			for DOASYNC calls
1333*
1334* Returns:
1335*	0		success
1336*	-EIO		CTLX failure
1337*	-ERESTARTSYS	Awakened on signal
1338*	>0		command indicated error, Status and Resp0-2 are
1339*			in hw structure.
1340*
1341* Side effects:
1342*
1343*
1344* Call context:
1345*	process
1346----------------------------------------------------------------*/
1347static int
1348hfa384x_docmd(hfa384x_t *hw,
1349	      enum cmd_mode mode,
1350	      hfa384x_metacmd_t *cmd,
1351	      ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1352{
1353	int result;
1354	hfa384x_usbctlx_t *ctlx;
1355
1356	ctlx = usbctlx_alloc();
1357	if (ctlx == NULL) {
1358		result = -ENOMEM;
1359		goto done;
1360	}
1361
1362	/* Initialize the command */
1363	ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1364	ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1365	ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1366	ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1367	ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1368
1369	ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1370
1371	pr_debug("cmdreq: cmd=0x%04x parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1372		 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1373
1374	ctlx->reapable = mode;
1375	ctlx->cmdcb = cmdcb;
1376	ctlx->usercb = usercb;
1377	ctlx->usercb_data = usercb_data;
1378
1379	result = hfa384x_usbctlx_submit(hw, ctlx);
1380	if (result != 0) {
1381		kfree(ctlx);
1382	} else if (mode == DOWAIT) {
1383		struct usbctlx_cmd_completor completor;
1384
1385		result =
1386		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1387						  init_cmd_completor(&completor,
1388								     &ctlx->
1389								     inbuf.
1390								     cmdresp,
1391								     &cmd->
1392								     result));
1393	}
1394
1395done:
1396	return result;
1397}
1398
1399/*----------------------------------------------------------------
1400* hfa384x_dorrid
1401*
1402* Constructs a read rid CTLX and issues it.
1403*
1404* NOTE: Any changes to the 'post-submit' code in this function
1405*       need to be carried over to hfa384x_cbrrid() since the handling
1406*       is virtually identical.
1407*
1408* Arguments:
1409*	hw		device structure
1410*	mode		DOWAIT or DOASYNC
1411*	rid		Read RID number (host order)
1412*	riddata		Caller supplied buffer that MAC formatted RID.data
1413*			record will be written to for DOWAIT calls. Should
1414*			be NULL for DOASYNC calls.
1415*	riddatalen	Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1416*	cmdcb		command callback for async calls, NULL for DOWAIT calls
1417*	usercb		user callback for async calls, NULL for DOWAIT calls
1418*	usercb_data	user supplied data pointer for async calls, NULL
1419*			for DOWAIT calls
1420*
1421* Returns:
1422*	0		success
1423*	-EIO		CTLX failure
1424*	-ERESTARTSYS	Awakened on signal
1425*	-ENODATA	riddatalen != macdatalen
1426*	>0		command indicated error, Status and Resp0-2 are
1427*			in hw structure.
1428*
1429* Side effects:
1430*
1431* Call context:
1432*	interrupt (DOASYNC)
1433*	process (DOWAIT or DOASYNC)
1434----------------------------------------------------------------*/
1435static int
1436hfa384x_dorrid(hfa384x_t *hw,
1437	       enum cmd_mode mode,
1438	       u16 rid,
1439	       void *riddata,
1440	       unsigned int riddatalen,
1441	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1442{
1443	int result;
1444	hfa384x_usbctlx_t *ctlx;
1445
1446	ctlx = usbctlx_alloc();
1447	if (ctlx == NULL) {
1448		result = -ENOMEM;
1449		goto done;
1450	}
1451
1452	/* Initialize the command */
1453	ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1454	ctlx->outbuf.rridreq.frmlen =
1455	    cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1456	ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1457
1458	ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1459
1460	ctlx->reapable = mode;
1461	ctlx->cmdcb = cmdcb;
1462	ctlx->usercb = usercb;
1463	ctlx->usercb_data = usercb_data;
1464
1465	/* Submit the CTLX */
1466	result = hfa384x_usbctlx_submit(hw, ctlx);
1467	if (result != 0) {
1468		kfree(ctlx);
1469	} else if (mode == DOWAIT) {
1470		struct usbctlx_rrid_completor completor;
1471
1472		result =
1473		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1474						  init_rrid_completor
1475						  (&completor,
1476						   &ctlx->inbuf.rridresp,
1477						   riddata, riddatalen));
1478	}
1479
1480done:
1481	return result;
1482}
1483
1484/*----------------------------------------------------------------
1485* hfa384x_dowrid
1486*
1487* Constructs a write rid CTLX and issues it.
1488*
1489* NOTE: Any changes to the 'post-submit' code in this function
1490*       need to be carried over to hfa384x_cbwrid() since the handling
1491*       is virtually identical.
1492*
1493* Arguments:
1494*	hw		device structure
1495*	enum cmd_mode	DOWAIT or DOASYNC
1496*	rid		RID code
1497*	riddata		Data portion of RID formatted for MAC
1498*	riddatalen	Length of the data portion in bytes
1499*       cmdcb           command callback for async calls, NULL for DOWAIT calls
1500*	usercb		user callback for async calls, NULL for DOWAIT calls
1501*	usercb_data	user supplied data pointer for async calls
1502*
1503* Returns:
1504*	0		success
1505*	-ETIMEDOUT	timed out waiting for register ready or
1506*			command completion
1507*	>0		command indicated error, Status and Resp0-2 are
1508*			in hw structure.
1509*
1510* Side effects:
1511*
1512* Call context:
1513*	interrupt (DOASYNC)
1514*	process (DOWAIT or DOASYNC)
1515----------------------------------------------------------------*/
1516static int
1517hfa384x_dowrid(hfa384x_t *hw,
1518	       enum cmd_mode mode,
1519	       u16 rid,
1520	       void *riddata,
1521	       unsigned int riddatalen,
1522	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1523{
1524	int result;
1525	hfa384x_usbctlx_t *ctlx;
1526
1527	ctlx = usbctlx_alloc();
1528	if (ctlx == NULL) {
1529		result = -ENOMEM;
1530		goto done;
1531	}
1532
1533	/* Initialize the command */
1534	ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1535	ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1536						   (ctlx->outbuf.wridreq.rid) +
1537						   riddatalen + 1) / 2);
1538	ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1539	memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1540
1541	ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1542	    sizeof(ctlx->outbuf.wridreq.frmlen) +
1543	    sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1544
1545	ctlx->reapable = mode;
1546	ctlx->cmdcb = cmdcb;
1547	ctlx->usercb = usercb;
1548	ctlx->usercb_data = usercb_data;
1549
1550	/* Submit the CTLX */
1551	result = hfa384x_usbctlx_submit(hw, ctlx);
1552	if (result != 0) {
1553		kfree(ctlx);
1554	} else if (mode == DOWAIT) {
1555		struct usbctlx_cmd_completor completor;
1556		hfa384x_cmdresult_t wridresult;
1557
1558		result = hfa384x_usbctlx_complete_sync(hw,
1559						       ctlx,
1560						       init_wrid_completor
1561						       (&completor,
1562							&ctlx->inbuf.wridresp,
1563							&wridresult));
1564	}
1565
1566done:
1567	return result;
1568}
1569
1570/*----------------------------------------------------------------
1571* hfa384x_dormem
1572*
1573* Constructs a readmem CTLX and issues it.
1574*
1575* NOTE: Any changes to the 'post-submit' code in this function
1576*       need to be carried over to hfa384x_cbrmem() since the handling
1577*       is virtually identical.
1578*
1579* Arguments:
1580*	hw		device structure
1581*	mode		DOWAIT or DOASYNC
1582*	page		MAC address space page (CMD format)
1583*	offset		MAC address space offset
1584*	data		Ptr to data buffer to receive read
1585*	len		Length of the data to read (max == 2048)
1586*	cmdcb		command callback for async calls, NULL for DOWAIT calls
1587*	usercb		user callback for async calls, NULL for DOWAIT calls
1588*	usercb_data	user supplied data pointer for async calls
1589*
1590* Returns:
1591*	0		success
1592*	-ETIMEDOUT	timed out waiting for register ready or
1593*			command completion
1594*	>0		command indicated error, Status and Resp0-2 are
1595*			in hw structure.
1596*
1597* Side effects:
1598*
1599* Call context:
1600*	interrupt (DOASYNC)
1601*	process (DOWAIT or DOASYNC)
1602----------------------------------------------------------------*/
1603static int
1604hfa384x_dormem(hfa384x_t *hw,
1605	       enum cmd_mode mode,
1606	       u16 page,
1607	       u16 offset,
1608	       void *data,
1609	       unsigned int len,
1610	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1611{
1612	int result;
1613	hfa384x_usbctlx_t *ctlx;
1614
1615	ctlx = usbctlx_alloc();
1616	if (ctlx == NULL) {
1617		result = -ENOMEM;
1618		goto done;
1619	}
1620
1621	/* Initialize the command */
1622	ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1623	ctlx->outbuf.rmemreq.frmlen =
1624	    cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1625			sizeof(ctlx->outbuf.rmemreq.page) + len);
1626	ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1627	ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1628
1629	ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1630
1631	pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1632		 ctlx->outbuf.rmemreq.type,
1633		 ctlx->outbuf.rmemreq.frmlen,
1634		 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1635
1636	pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1637
1638	ctlx->reapable = mode;
1639	ctlx->cmdcb = cmdcb;
1640	ctlx->usercb = usercb;
1641	ctlx->usercb_data = usercb_data;
1642
1643	result = hfa384x_usbctlx_submit(hw, ctlx);
1644	if (result != 0) {
1645		kfree(ctlx);
1646	} else if (mode == DOWAIT) {
1647		struct usbctlx_rmem_completor completor;
1648
1649		result =
1650		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1651						  init_rmem_completor
1652						  (&completor,
1653						   &ctlx->inbuf.rmemresp, data,
1654						   len));
1655	}
1656
1657done:
1658	return result;
1659}
1660
1661/*----------------------------------------------------------------
1662* hfa384x_dowmem
1663*
1664* Constructs a writemem CTLX and issues it.
1665*
1666* NOTE: Any changes to the 'post-submit' code in this function
1667*       need to be carried over to hfa384x_cbwmem() since the handling
1668*       is virtually identical.
1669*
1670* Arguments:
1671*	hw		device structure
1672*	mode		DOWAIT or DOASYNC
1673*	page		MAC address space page (CMD format)
1674*	offset		MAC address space offset
1675*	data		Ptr to data buffer containing write data
1676*	len		Length of the data to read (max == 2048)
1677*	cmdcb		command callback for async calls, NULL for DOWAIT calls
1678*	usercb		user callback for async calls, NULL for DOWAIT calls
1679*	usercb_data	user supplied data pointer for async calls.
1680*
1681* Returns:
1682*	0		success
1683*	-ETIMEDOUT	timed out waiting for register ready or
1684*			command completion
1685*	>0		command indicated error, Status and Resp0-2 are
1686*			in hw structure.
1687*
1688* Side effects:
1689*
1690* Call context:
1691*	interrupt (DOWAIT)
1692*	process (DOWAIT or DOASYNC)
1693----------------------------------------------------------------*/
1694static int
1695hfa384x_dowmem(hfa384x_t *hw,
1696	       enum cmd_mode mode,
1697	       u16 page,
1698	       u16 offset,
1699	       void *data,
1700	       unsigned int len,
1701	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1702{
1703	int result;
1704	hfa384x_usbctlx_t *ctlx;
1705
1706	pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1707
1708	ctlx = usbctlx_alloc();
1709	if (ctlx == NULL) {
1710		result = -ENOMEM;
1711		goto done;
1712	}
1713
1714	/* Initialize the command */
1715	ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1716	ctlx->outbuf.wmemreq.frmlen =
1717	    cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1718			sizeof(ctlx->outbuf.wmemreq.page) + len);
1719	ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1720	ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1721	memcpy(ctlx->outbuf.wmemreq.data, data, len);
1722
1723	ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1724	    sizeof(ctlx->outbuf.wmemreq.frmlen) +
1725	    sizeof(ctlx->outbuf.wmemreq.offset) +
1726	    sizeof(ctlx->outbuf.wmemreq.page) + len;
1727
1728	ctlx->reapable = mode;
1729	ctlx->cmdcb = cmdcb;
1730	ctlx->usercb = usercb;
1731	ctlx->usercb_data = usercb_data;
1732
1733	result = hfa384x_usbctlx_submit(hw, ctlx);
1734	if (result != 0) {
1735		kfree(ctlx);
1736	} else if (mode == DOWAIT) {
1737		struct usbctlx_cmd_completor completor;
1738		hfa384x_cmdresult_t wmemresult;
1739
1740		result = hfa384x_usbctlx_complete_sync(hw,
1741						       ctlx,
1742						       init_wmem_completor
1743						       (&completor,
1744							&ctlx->inbuf.wmemresp,
1745							&wmemresult));
1746	}
1747
1748done:
1749	return result;
1750}
1751
1752/*----------------------------------------------------------------
1753* hfa384x_drvr_commtallies
1754*
1755* Send a commtallies inquiry to the MAC.  Note that this is an async
1756* call that will result in an info frame arriving sometime later.
1757*
1758* Arguments:
1759*	hw		device structure
1760*
1761* Returns:
1762*	zero		success.
1763*
1764* Side effects:
1765*
1766* Call context:
1767*	process
1768----------------------------------------------------------------*/
1769int hfa384x_drvr_commtallies(hfa384x_t *hw)
1770{
1771	hfa384x_metacmd_t cmd;
1772
1773	cmd.cmd = HFA384x_CMDCODE_INQ;
1774	cmd.parm0 = HFA384x_IT_COMMTALLIES;
1775	cmd.parm1 = 0;
1776	cmd.parm2 = 0;
1777
1778	hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL);
1779
1780	return 0;
1781}
1782
1783/*----------------------------------------------------------------
1784* hfa384x_drvr_disable
1785*
1786* Issues the disable command to stop communications on one of
1787* the MACs 'ports'.  Only macport 0 is valid  for stations.
1788* APs may also disable macports 1-6.  Only ports that have been
1789* previously enabled may be disabled.
1790*
1791* Arguments:
1792*	hw		device structure
1793*	macport		MAC port number (host order)
1794*
1795* Returns:
1796*	0		success
1797*	>0		f/w reported failure - f/w status code
1798*	<0		driver reported error (timeout|bad arg)
1799*
1800* Side effects:
1801*
1802* Call context:
1803*	process
1804----------------------------------------------------------------*/
1805int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
1806{
1807	int result = 0;
1808
1809	if ((!hw->isap && macport != 0) ||
1810	    (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1811	    !(hw->port_enabled[macport])) {
1812		result = -EINVAL;
1813	} else {
1814		result = hfa384x_cmd_disable(hw, macport);
1815		if (result == 0)
1816			hw->port_enabled[macport] = 0;
1817	}
1818	return result;
1819}
1820
1821/*----------------------------------------------------------------
1822* hfa384x_drvr_enable
1823*
1824* Issues the enable command to enable communications on one of
1825* the MACs 'ports'.  Only macport 0 is valid  for stations.
1826* APs may also enable macports 1-6.  Only ports that are currently
1827* disabled may be enabled.
1828*
1829* Arguments:
1830*	hw		device structure
1831*	macport		MAC port number
1832*
1833* Returns:
1834*	0		success
1835*	>0		f/w reported failure - f/w status code
1836*	<0		driver reported error (timeout|bad arg)
1837*
1838* Side effects:
1839*
1840* Call context:
1841*	process
1842----------------------------------------------------------------*/
1843int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
1844{
1845	int result = 0;
1846
1847	if ((!hw->isap && macport != 0) ||
1848	    (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1849	    (hw->port_enabled[macport])) {
1850		result = -EINVAL;
1851	} else {
1852		result = hfa384x_cmd_enable(hw, macport);
1853		if (result == 0)
1854			hw->port_enabled[macport] = 1;
1855	}
1856	return result;
1857}
1858
1859/*----------------------------------------------------------------
1860* hfa384x_drvr_flashdl_enable
1861*
1862* Begins the flash download state.  Checks to see that we're not
1863* already in a download state and that a port isn't enabled.
1864* Sets the download state and retrieves the flash download
1865* buffer location, buffer size, and timeout length.
1866*
1867* Arguments:
1868*	hw		device structure
1869*
1870* Returns:
1871*	0		success
1872*	>0		f/w reported error - f/w status code
1873*	<0		driver reported error
1874*
1875* Side effects:
1876*
1877* Call context:
1878*	process
1879----------------------------------------------------------------*/
1880int hfa384x_drvr_flashdl_enable(hfa384x_t *hw)
1881{
1882	int result = 0;
1883	int i;
1884
1885	/* Check that a port isn't active */
1886	for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1887		if (hw->port_enabled[i]) {
1888			pr_debug("called when port enabled.\n");
1889			return -EINVAL;
1890		}
1891	}
1892
1893	/* Check that we're not already in a download state */
1894	if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1895		return -EINVAL;
1896
1897	/* Retrieve the buffer loc&size and timeout */
1898	result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1899					&(hw->bufinfo), sizeof(hw->bufinfo));
1900	if (result)
1901		return result;
1902
1903	hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
1904	hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
1905	hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
1906	result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1907					  &(hw->dltimeout));
1908	if (result)
1909		return result;
1910
1911	hw->dltimeout = le16_to_cpu(hw->dltimeout);
1912
1913	pr_debug("flashdl_enable\n");
1914
1915	hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1916
1917	return result;
1918}
1919
1920/*----------------------------------------------------------------
1921* hfa384x_drvr_flashdl_disable
1922*
1923* Ends the flash download state.  Note that this will cause the MAC
1924* firmware to restart.
1925*
1926* Arguments:
1927*	hw		device structure
1928*
1929* Returns:
1930*	0		success
1931*	>0		f/w reported error - f/w status code
1932*	<0		driver reported error
1933*
1934* Side effects:
1935*
1936* Call context:
1937*	process
1938----------------------------------------------------------------*/
1939int hfa384x_drvr_flashdl_disable(hfa384x_t *hw)
1940{
1941	/* Check that we're already in the download state */
1942	if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1943		return -EINVAL;
1944
1945	pr_debug("flashdl_enable\n");
1946
1947	/* There isn't much we can do at this point, so I don't */
1948	/*  bother  w/ the return value */
1949	hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1950	hw->dlstate = HFA384x_DLSTATE_DISABLED;
1951
1952	return 0;
1953}
1954
1955/*----------------------------------------------------------------
1956* hfa384x_drvr_flashdl_write
1957*
1958* Performs a FLASH download of a chunk of data. First checks to see
1959* that we're in the FLASH download state, then sets the download
1960* mode, uses the aux functions to 1) copy the data to the flash
1961* buffer, 2) sets the download 'write flash' mode, 3) readback and
1962* compare.  Lather rinse, repeat as many times an necessary to get
1963* all the given data into flash.
1964* When all data has been written using this function (possibly
1965* repeatedly), call drvr_flashdl_disable() to end the download state
1966* and restart the MAC.
1967*
1968* Arguments:
1969*	hw		device structure
1970*	daddr		Card address to write to. (host order)
1971*	buf		Ptr to data to write.
1972*	len		Length of data (host order).
1973*
1974* Returns:
1975*	0		success
1976*	>0		f/w reported error - f/w status code
1977*	<0		driver reported error
1978*
1979* Side effects:
1980*
1981* Call context:
1982*	process
1983----------------------------------------------------------------*/
1984int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
1985{
1986	int result = 0;
1987	u32 dlbufaddr;
1988	int nburns;
1989	u32 burnlen;
1990	u32 burndaddr;
1991	u16 burnlo;
1992	u16 burnhi;
1993	int nwrites;
1994	u8 *writebuf;
1995	u16 writepage;
1996	u16 writeoffset;
1997	u32 writelen;
1998	int i;
1999	int j;
2000
2001	pr_debug("daddr=0x%08x len=%d\n", daddr, len);
2002
2003	/* Check that we're in the flash download state */
2004	if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
2005		return -EINVAL;
2006
2007	netdev_info(hw->wlandev->netdev,
2008		    "Download %d bytes to flash @0x%06x\n", len, daddr);
2009
2010	/* Convert to flat address for arithmetic */
2011	/* NOTE: dlbuffer RID stores the address in AUX format */
2012	dlbufaddr =
2013	    HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
2014	pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
2015		 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
2016	/* Calculations to determine how many fills of the dlbuffer to do
2017	 * and how many USB wmemreq's to do for each fill.  At this point
2018	 * in time, the dlbuffer size and the wmemreq size are the same.
2019	 * Therefore, nwrites should always be 1.  The extra complexity
2020	 * here is a hedge against future changes.
2021	 */
2022
2023	/* Figure out how many times to do the flash programming */
2024	nburns = len / hw->bufinfo.len;
2025	nburns += (len % hw->bufinfo.len) ? 1 : 0;
2026
2027	/* For each flash program cycle, how many USB wmemreq's are needed? */
2028	nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
2029	nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
2030
2031	/* For each burn */
2032	for (i = 0; i < nburns; i++) {
2033		/* Get the dest address and len */
2034		burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
2035		    hw->bufinfo.len : (len - (hw->bufinfo.len * i));
2036		burndaddr = daddr + (hw->bufinfo.len * i);
2037		burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
2038		burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
2039
2040		netdev_info(hw->wlandev->netdev, "Writing %d bytes to flash @0x%06x\n",
2041			    burnlen, burndaddr);
2042
2043		/* Set the download mode */
2044		result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
2045					      burnlo, burnhi, burnlen);
2046		if (result) {
2047			netdev_err(hw->wlandev->netdev,
2048				   "download(NV,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
2049				   burnlo, burnhi, burnlen, result);
2050			goto exit_proc;
2051		}
2052
2053		/* copy the data to the flash download buffer */
2054		for (j = 0; j < nwrites; j++) {
2055			writebuf = buf +
2056			    (i * hw->bufinfo.len) +
2057			    (j * HFA384x_USB_RWMEM_MAXLEN);
2058
2059			writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
2060						(j * HFA384x_USB_RWMEM_MAXLEN));
2061			writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
2062						(j * HFA384x_USB_RWMEM_MAXLEN));
2063
2064			writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
2065			writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
2066			    HFA384x_USB_RWMEM_MAXLEN : writelen;
2067
2068			result = hfa384x_dowmem_wait(hw,
2069						     writepage,
2070						     writeoffset,
2071						     writebuf, writelen);
2072		}
2073
2074		/* set the download 'write flash' mode */
2075		result = hfa384x_cmd_download(hw,
2076					      HFA384x_PROGMODE_NVWRITE,
2077					      0, 0, 0);
2078		if (result) {
2079			netdev_err(hw->wlandev->netdev,
2080				   "download(NVWRITE,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
2081				   burnlo, burnhi, burnlen, result);
2082			goto exit_proc;
2083		}
2084
2085		/* TODO: We really should do a readback and compare. */
2086	}
2087
2088exit_proc:
2089
2090	/* Leave the firmware in the 'post-prog' mode.  flashdl_disable will */
2091	/*  actually disable programming mode.  Remember, that will cause the */
2092	/*  the firmware to effectively reset itself. */
2093
2094	return result;
2095}
2096
2097/*----------------------------------------------------------------
2098* hfa384x_drvr_getconfig
2099*
2100* Performs the sequence necessary to read a config/info item.
2101*
2102* Arguments:
2103*	hw		device structure
2104*	rid		config/info record id (host order)
2105*	buf		host side record buffer.  Upon return it will
2106*			contain the body portion of the record (minus the
2107*			RID and len).
2108*	len		buffer length (in bytes, should match record length)
2109*
2110* Returns:
2111*	0		success
2112*	>0		f/w reported error - f/w status code
2113*	<0		driver reported error
2114*	-ENODATA	length mismatch between argument and retrieved
2115*			record.
2116*
2117* Side effects:
2118*
2119* Call context:
2120*	process
2121----------------------------------------------------------------*/
2122int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2123{
2124	return hfa384x_dorrid_wait(hw, rid, buf, len);
2125}
2126
2127/*----------------------------------------------------------------
2128 * hfa384x_drvr_getconfig_async
2129 *
2130 * Performs the sequence necessary to perform an async read of
2131 * of a config/info item.
2132 *
2133 * Arguments:
2134 *       hw              device structure
2135 *       rid             config/info record id (host order)
2136 *       buf             host side record buffer.  Upon return it will
2137 *                       contain the body portion of the record (minus the
2138 *                       RID and len).
2139 *       len             buffer length (in bytes, should match record length)
2140 *       cbfn            caller supplied callback, called when the command
2141 *                       is done (successful or not).
2142 *       cbfndata        pointer to some caller supplied data that will be
2143 *                       passed in as an argument to the cbfn.
2144 *
2145 * Returns:
2146 *       nothing         the cbfn gets a status argument identifying if
2147 *                       any errors occur.
2148 * Side effects:
2149 *       Queues an hfa384x_usbcmd_t for subsequent execution.
2150 *
2151 * Call context:
2152 *       Any
2153 ----------------------------------------------------------------*/
2154int
2155hfa384x_drvr_getconfig_async(hfa384x_t *hw,
2156			     u16 rid, ctlx_usercb_t usercb, void *usercb_data)
2157{
2158	return hfa384x_dorrid_async(hw, rid, NULL, 0,
2159				    hfa384x_cb_rrid, usercb, usercb_data);
2160}
2161
2162/*----------------------------------------------------------------
2163 * hfa384x_drvr_setconfig_async
2164 *
2165 * Performs the sequence necessary to write a config/info item.
2166 *
2167 * Arguments:
2168 *       hw              device structure
2169 *       rid             config/info record id (in host order)
2170 *       buf             host side record buffer
2171 *       len             buffer length (in bytes)
2172 *       usercb          completion callback
2173 *       usercb_data     completion callback argument
2174 *
2175 * Returns:
2176 *       0               success
2177 *       >0              f/w reported error - f/w status code
2178 *       <0              driver reported error
2179 *
2180 * Side effects:
2181 *
2182 * Call context:
2183 *       process
2184 ----------------------------------------------------------------*/
2185int
2186hfa384x_drvr_setconfig_async(hfa384x_t *hw,
2187			     u16 rid,
2188			     void *buf,
2189			     u16 len, ctlx_usercb_t usercb, void *usercb_data)
2190{
2191	return hfa384x_dowrid_async(hw, rid, buf, len,
2192				    hfa384x_cb_status, usercb, usercb_data);
2193}
2194
2195/*----------------------------------------------------------------
2196* hfa384x_drvr_ramdl_disable
2197*
2198* Ends the ram download state.
2199*
2200* Arguments:
2201*	hw		device structure
2202*
2203* Returns:
2204*	0		success
2205*	>0		f/w reported error - f/w status code
2206*	<0		driver reported error
2207*
2208* Side effects:
2209*
2210* Call context:
2211*	process
2212----------------------------------------------------------------*/
2213int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
2214{
2215	/* Check that we're already in the download state */
2216	if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2217		return -EINVAL;
2218
2219	pr_debug("ramdl_disable()\n");
2220
2221	/* There isn't much we can do at this point, so I don't */
2222	/*  bother  w/ the return value */
2223	hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2224	hw->dlstate = HFA384x_DLSTATE_DISABLED;
2225
2226	return 0;
2227}
2228
2229/*----------------------------------------------------------------
2230* hfa384x_drvr_ramdl_enable
2231*
2232* Begins the ram download state.  Checks to see that we're not
2233* already in a download state and that a port isn't enabled.
2234* Sets the download state and calls cmd_download with the
2235* ENABLE_VOLATILE subcommand and the exeaddr argument.
2236*
2237* Arguments:
2238*	hw		device structure
2239*	exeaddr		the card execution address that will be
2240*                       jumped to when ramdl_disable() is called
2241*			(host order).
2242*
2243* Returns:
2244*	0		success
2245*	>0		f/w reported error - f/w status code
2246*	<0		driver reported error
2247*
2248* Side effects:
2249*
2250* Call context:
2251*	process
2252----------------------------------------------------------------*/
2253int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
2254{
2255	int result = 0;
2256	u16 lowaddr;
2257	u16 hiaddr;
2258	int i;
2259
2260	/* Check that a port isn't active */
2261	for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2262		if (hw->port_enabled[i]) {
2263			netdev_err(hw->wlandev->netdev,
2264				   "Can't download with a macport enabled.\n");
2265			return -EINVAL;
2266		}
2267	}
2268
2269	/* Check that we're not already in a download state */
2270	if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2271		netdev_err(hw->wlandev->netdev, "Download state not disabled.\n");
2272		return -EINVAL;
2273	}
2274
2275	pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2276
2277	/* Call the download(1,addr) function */
2278	lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2279	hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2280
2281	result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2282				      lowaddr, hiaddr, 0);
2283
2284	if (result == 0) {
2285		/* Set the download state */
2286		hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2287	} else {
2288		pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2289			 lowaddr, hiaddr, result);
2290	}
2291
2292	return result;
2293}
2294
2295/*----------------------------------------------------------------
2296* hfa384x_drvr_ramdl_write
2297*
2298* Performs a RAM download of a chunk of data. First checks to see
2299* that we're in the RAM download state, then uses the [read|write]mem USB
2300* commands to 1) copy the data, 2) readback and compare.  The download
2301* state is unaffected.  When all data has been written using
2302* this function, call drvr_ramdl_disable() to end the download state
2303* and restart the MAC.
2304*
2305* Arguments:
2306*	hw		device structure
2307*	daddr		Card address to write to. (host order)
2308*	buf		Ptr to data to write.
2309*	len		Length of data (host order).
2310*
2311* Returns:
2312*	0		success
2313*	>0		f/w reported error - f/w status code
2314*	<0		driver reported error
2315*
2316* Side effects:
2317*
2318* Call context:
2319*	process
2320----------------------------------------------------------------*/
2321int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2322{
2323	int result = 0;
2324	int nwrites;
2325	u8 *data = buf;
2326	int i;
2327	u32 curraddr;
2328	u16 currpage;
2329	u16 curroffset;
2330	u16 currlen;
2331
2332	/* Check that we're in the ram download state */
2333	if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2334		return -EINVAL;
2335
2336	netdev_info(hw->wlandev->netdev, "Writing %d bytes to ram @0x%06x\n",
2337		    len, daddr);
2338
2339	/* How many dowmem calls?  */
2340	nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2341	nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2342
2343	/* Do blocking wmem's */
2344	for (i = 0; i < nwrites; i++) {
2345		/* make address args */
2346		curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2347		currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2348		curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2349		currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2350		if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2351			currlen = HFA384x_USB_RWMEM_MAXLEN;
2352
2353		/* Do blocking ctlx */
2354		result = hfa384x_dowmem_wait(hw,
2355					     currpage,
2356					     curroffset,
2357					     data +
2358					     (i * HFA384x_USB_RWMEM_MAXLEN),
2359					     currlen);
2360
2361		if (result)
2362			break;
2363
2364		/* TODO: We really should have a readback. */
2365	}
2366
2367	return result;
2368}
2369
2370/*----------------------------------------------------------------
2371* hfa384x_drvr_readpda
2372*
2373* Performs the sequence to read the PDA space.  Note there is no
2374* drvr_writepda() function.  Writing a PDA is
2375* generally implemented by a calling component via calls to
2376* cmd_download and writing to the flash download buffer via the
2377* aux regs.
2378*
2379* Arguments:
2380*	hw		device structure
2381*	buf		buffer to store PDA in
2382*	len		buffer length
2383*
2384* Returns:
2385*	0		success
2386*	>0		f/w reported error - f/w status code
2387*	<0		driver reported error
2388*	-ETIMEDOUT	timeout waiting for the cmd regs to become
2389*			available, or waiting for the control reg
2390*			to indicate the Aux port is enabled.
2391*	-ENODATA	the buffer does NOT contain a valid PDA.
2392*			Either the card PDA is bad, or the auxdata
2393*			reads are giving us garbage.
2394
2395*
2396* Side effects:
2397*
2398* Call context:
2399*	process or non-card interrupt.
2400----------------------------------------------------------------*/
2401int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
2402{
2403	int result = 0;
2404	u16 *pda = buf;
2405	int pdaok = 0;
2406	int morepdrs = 1;
2407	int currpdr = 0;	/* word offset of the current pdr */
2408	size_t i;
2409	u16 pdrlen;		/* pdr length in bytes, host order */
2410	u16 pdrcode;		/* pdr code, host order */
2411	u16 currpage;
2412	u16 curroffset;
2413	struct pdaloc {
2414		u32 cardaddr;
2415		u16 auxctl;
2416	} pdaloc[] = {
2417		{
2418		HFA3842_PDA_BASE, 0}, {
2419		HFA3841_PDA_BASE, 0}, {
2420		HFA3841_PDA_BOGUS_BASE, 0}
2421	};
2422
2423	/* Read the pda from each known address.  */
2424	for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2425		/* Make address */
2426		currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2427		curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2428
2429		/* units of bytes */
2430		result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
2431						len);
2432
2433		if (result) {
2434			netdev_warn(hw->wlandev->netdev,
2435				    "Read from index %zd failed, continuing\n",
2436				    i);
2437			continue;
2438		}
2439
2440		/* Test for garbage */
2441		pdaok = 1;	/* initially assume good */
2442		morepdrs = 1;
2443		while (pdaok && morepdrs) {
2444			pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2445			pdrcode = le16_to_cpu(pda[currpdr + 1]);
2446			/* Test the record length */
2447			if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2448				netdev_err(hw->wlandev->netdev,
2449					   "pdrlen invalid=%d\n", pdrlen);
2450				pdaok = 0;
2451				break;
2452			}
2453			/* Test the code */
2454			if (!hfa384x_isgood_pdrcode(pdrcode)) {
2455				netdev_err(hw->wlandev->netdev, "pdrcode invalid=%d\n",
2456					   pdrcode);
2457				pdaok = 0;
2458				break;
2459			}
2460			/* Test for completion */
2461			if (pdrcode == HFA384x_PDR_END_OF_PDA)
2462				morepdrs = 0;
2463
2464			/* Move to the next pdr (if necessary) */
2465			if (morepdrs) {
2466				/* note the access to pda[], need words here */
2467				currpdr += le16_to_cpu(pda[currpdr]) + 1;
2468			}
2469		}
2470		if (pdaok) {
2471			netdev_info(hw->wlandev->netdev,
2472				    "PDA Read from 0x%08x in %s space.\n",
2473				    pdaloc[i].cardaddr,
2474				    pdaloc[i].auxctl == 0 ? "EXTDS" :
2475				    pdaloc[i].auxctl == 1 ? "NV" :
2476				    pdaloc[i].auxctl == 2 ? "PHY" :
2477				    pdaloc[i].auxctl == 3 ? "ICSRAM" :
2478				    "<bogus auxctl>");
2479			break;
2480		}
2481	}
2482	result = pdaok ? 0 : -ENODATA;
2483
2484	if (result)
2485		pr_debug("Failure: pda is not okay\n");
2486
2487	return result;
2488}
2489
2490/*----------------------------------------------------------------
2491* hfa384x_drvr_setconfig
2492*
2493* Performs the sequence necessary to write a config/info item.
2494*
2495* Arguments:
2496*	hw		device structure
2497*	rid		config/info record id (in host order)
2498*	buf		host side record buffer
2499*	len		buffer length (in bytes)
2500*
2501* Returns:
2502*	0		success
2503*	>0		f/w reported error - f/w status code
2504*	<0		driver reported error
2505*
2506* Side effects:
2507*
2508* Call context:
2509*	process
2510----------------------------------------------------------------*/
2511int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2512{
2513	return hfa384x_dowrid_wait(hw, rid, buf, len);
2514}
2515
2516/*----------------------------------------------------------------
2517* hfa384x_drvr_start
2518*
2519* Issues the MAC initialize command, sets up some data structures,
2520* and enables the interrupts.  After this function completes, the
2521* low-level stuff should be ready for any/all commands.
2522*
2523* Arguments:
2524*	hw		device structure
2525* Returns:
2526*	0		success
2527*	>0		f/w reported error - f/w status code
2528*	<0		driver reported error
2529*
2530* Side effects:
2531*
2532* Call context:
2533*	process
2534----------------------------------------------------------------*/
2535
2536int hfa384x_drvr_start(hfa384x_t *hw)
2537{
2538	int result, result1, result2;
2539	u16 status;
2540
2541	might_sleep();
2542
2543	/* Clear endpoint stalls - but only do this if the endpoint
2544	 * is showing a stall status. Some prism2 cards seem to behave
2545	 * badly if a clear_halt is called when the endpoint is already
2546	 * ok
2547	 */
2548	result =
2549	    usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
2550	if (result < 0) {
2551		netdev_err(hw->wlandev->netdev, "Cannot get bulk in endpoint status.\n");
2552		goto done;
2553	}
2554	if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2555		netdev_err(hw->wlandev->netdev, "Failed to reset bulk in endpoint.\n");
2556
2557	result =
2558	    usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
2559	if (result < 0) {
2560		netdev_err(hw->wlandev->netdev, "Cannot get bulk out endpoint status.\n");
2561		goto done;
2562	}
2563	if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2564		netdev_err(hw->wlandev->netdev, "Failed to reset bulk out endpoint.\n");
2565
2566	/* Synchronous unlink, in case we're trying to restart the driver */
2567	usb_kill_urb(&hw->rx_urb);
2568
2569	/* Post the IN urb */
2570	result = submit_rx_urb(hw, GFP_KERNEL);
2571	if (result != 0) {
2572		netdev_err(hw->wlandev->netdev,
2573			   "Fatal, failed to submit RX URB, result=%d\n",
2574			   result);
2575		goto done;
2576	}
2577
2578	/* Call initialize twice, with a 1 second sleep in between.
2579	 * This is a nasty work-around since many prism2 cards seem to
2580	 * need time to settle after an init from cold. The second
2581	 * call to initialize in theory is not necessary - but we call
2582	 * it anyway as a double insurance policy:
2583	 * 1) If the first init should fail, the second may well succeed
2584	 *    and the card can still be used
2585	 * 2) It helps ensures all is well with the card after the first
2586	 *    init and settle time.
2587	 */
2588	result1 = hfa384x_cmd_initialize(hw);
2589	msleep(1000);
2590	result = hfa384x_cmd_initialize(hw);
2591	result2 = result;
2592	if (result1 != 0) {
2593		if (result2 != 0) {
2594			netdev_err(hw->wlandev->netdev,
2595				   "cmd_initialize() failed on two attempts, results %d and %d\n",
2596				   result1, result2);
2597			usb_kill_urb(&hw->rx_urb);
2598			goto done;
2599		} else {
2600			pr_debug("First cmd_initialize() failed (result %d),\n",
2601				 result1);
2602			pr_debug("but second attempt succeeded. All should be ok\n");
2603		}
2604	} else if (result2 != 0) {
2605		netdev_warn(hw->wlandev->netdev, "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2606			    result2);
2607		netdev_warn(hw->wlandev->netdev,
2608			    "Most likely the card will be functional\n");
2609		goto done;
2610	}
2611
2612	hw->state = HFA384x_STATE_RUNNING;
2613
2614done:
2615	return result;
2616}
2617
2618/*----------------------------------------------------------------
2619* hfa384x_drvr_stop
2620*
2621* Shuts down the MAC to the point where it is safe to unload the
2622* driver.  Any subsystem that may be holding a data or function
2623* ptr into the driver must be cleared/deinitialized.
2624*
2625* Arguments:
2626*	hw		device structure
2627* Returns:
2628*	0		success
2629*	>0		f/w reported error - f/w status code
2630*	<0		driver reported error
2631*
2632* Side effects:
2633*
2634* Call context:
2635*	process
2636----------------------------------------------------------------*/
2637int hfa384x_drvr_stop(hfa384x_t *hw)
2638{
2639	int i;
2640
2641	might_sleep();
2642
2643	/* There's no need for spinlocks here. The USB "disconnect"
2644	 * function sets this "removed" flag and then calls us.
2645	 */
2646	if (!hw->wlandev->hwremoved) {
2647		/* Call initialize to leave the MAC in its 'reset' state */
2648		hfa384x_cmd_initialize(hw);
2649
2650		/* Cancel the rxurb */
2651		usb_kill_urb(&hw->rx_urb);
2652	}
2653
2654	hw->link_status = HFA384x_LINK_NOTCONNECTED;
2655	hw->state = HFA384x_STATE_INIT;
2656
2657	del_timer_sync(&hw->commsqual_timer);
2658
2659	/* Clear all the port status */
2660	for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2661		hw->port_enabled[i] = 0;
2662
2663	return 0;
2664}
2665
2666/*----------------------------------------------------------------
2667* hfa384x_drvr_txframe
2668*
2669* Takes a frame from prism2sta and queues it for transmission.
2670*
2671* Arguments:
2672*	hw		device structure
2673*	skb		packet buffer struct.  Contains an 802.11
2674*			data frame.
2675*       p80211_hdr      points to the 802.11 header for the packet.
2676* Returns:
2677*	0		Success and more buffs available
2678*	1		Success but no more buffs
2679*	2		Allocation failure
2680*	4		Buffer full or queue busy
2681*
2682* Side effects:
2683*
2684* Call context:
2685*	interrupt
2686----------------------------------------------------------------*/
2687int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
2688			 union p80211_hdr *p80211_hdr,
2689			 struct p80211_metawep *p80211_wep)
2690{
2691	int usbpktlen = sizeof(hfa384x_tx_frame_t);
2692	int result;
2693	int ret;
2694	char *ptr;
2695
2696	if (hw->tx_urb.status == -EINPROGRESS) {
2697		netdev_warn(hw->wlandev->netdev, "TX URB already in use\n");
2698		result = 3;
2699		goto exit;
2700	}
2701
2702	/* Build Tx frame structure */
2703	/* Set up the control field */
2704	memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2705
2706	/* Setup the usb type field */
2707	hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2708
2709	/* Set up the sw_support field to identify this frame */
2710	hw->txbuff.txfrm.desc.sw_support = 0x0123;
2711
2712/* Tx complete and Tx exception disable per dleach.  Might be causing
2713 * buf depletion
2714 */
2715/* #define DOEXC  SLP -- doboth breaks horribly under load, doexc less so. */
2716#if defined(DOBOTH)
2717	hw->txbuff.txfrm.desc.tx_control =
2718	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2719	    HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2720#elif defined(DOEXC)
2721	hw->txbuff.txfrm.desc.tx_control =
2722	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2723	    HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2724#else
2725	hw->txbuff.txfrm.desc.tx_control =
2726	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2727	    HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2728#endif
2729	hw->txbuff.txfrm.desc.tx_control =
2730	    cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
2731
2732	/* copy the header over to the txdesc */
2733	memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
2734	       sizeof(union p80211_hdr));
2735
2736	/* if we're using host WEP, increase size by IV+ICV */
2737	if (p80211_wep->data) {
2738		hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2739		usbpktlen += 8;
2740	} else {
2741		hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2742	}
2743
2744	usbpktlen += skb->len;
2745
2746	/* copy over the WEP IV if we are using host WEP */
2747	ptr = hw->txbuff.txfrm.data;
2748	if (p80211_wep->data) {
2749		memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2750		ptr += sizeof(p80211_wep->iv);
2751		memcpy(ptr, p80211_wep->data, skb->len);
2752	} else {
2753		memcpy(ptr, skb->data, skb->len);
2754	}
2755	/* copy over the packet data */
2756	ptr += skb->len;
2757
2758	/* copy over the WEP ICV if we are using host WEP */
2759	if (p80211_wep->data)
2760		memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2761
2762	/* Send the USB packet */
2763	usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
2764			  hw->endp_out,
2765			  &(hw->txbuff), ROUNDUP64(usbpktlen),
2766			  hfa384x_usbout_callback, hw->wlandev);
2767	hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2768
2769	result = 1;
2770	ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2771	if (ret != 0) {
2772		netdev_err(hw->wlandev->netdev,
2773			   "submit_tx_urb() failed, error=%d\n", ret);
2774		result = 3;
2775	}
2776
2777exit:
2778	return result;
2779}
2780
2781void hfa384x_tx_timeout(wlandevice_t *wlandev)
2782{
2783	hfa384x_t *hw = wlandev->priv;
2784	unsigned long flags;
2785
2786	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2787
2788	if (!hw->wlandev->hwremoved) {
2789		int sched;
2790
2791		sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2792		sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2793		if (sched)
2794			schedule_work(&hw->usb_work);
2795	}
2796
2797	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2798}
2799
2800/*----------------------------------------------------------------
2801* hfa384x_usbctlx_reaper_task
2802*
2803* Tasklet to delete dead CTLX objects
2804*
2805* Arguments:
2806*	data	ptr to a hfa384x_t
2807*
2808* Returns:
2809*
2810* Call context:
2811*	Interrupt
2812----------------------------------------------------------------*/
2813static void hfa384x_usbctlx_reaper_task(unsigned long data)
2814{
2815	hfa384x_t *hw = (hfa384x_t *)data;
2816	struct list_head *entry;
2817	struct list_head *temp;
2818	unsigned long flags;
2819
2820	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2821
2822	/* This list is guaranteed to be empty if someone
2823	 * has unplugged the adapter.
2824	 */
2825	list_for_each_safe(entry, temp, &hw->ctlxq.reapable) {
2826		hfa384x_usbctlx_t *ctlx;
2827
2828		ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2829		list_del(&ctlx->list);
2830		kfree(ctlx);
2831	}
2832
2833	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2834}
2835
2836/*----------------------------------------------------------------
2837* hfa384x_usbctlx_completion_task
2838*
2839* Tasklet to call completion handlers for returned CTLXs
2840*
2841* Arguments:
2842*	data	ptr to hfa384x_t
2843*
2844* Returns:
2845*	Nothing
2846*
2847* Call context:
2848*	Interrupt
2849----------------------------------------------------------------*/
2850static void hfa384x_usbctlx_completion_task(unsigned long data)
2851{
2852	hfa384x_t *hw = (hfa384x_t *)data;
2853	struct list_head *entry;
2854	struct list_head *temp;
2855	unsigned long flags;
2856
2857	int reap = 0;
2858
2859	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2860
2861	/* This list is guaranteed to be empty if someone
2862	 * has unplugged the adapter ...
2863	 */
2864	list_for_each_safe(entry, temp, &hw->ctlxq.completing) {
2865		hfa384x_usbctlx_t *ctlx;
2866
2867		ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2868
2869		/* Call the completion function that this
2870		 * command was assigned, assuming it has one.
2871		 */
2872		if (ctlx->cmdcb != NULL) {
2873			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2874			ctlx->cmdcb(hw, ctlx);
2875			spin_lock_irqsave(&hw->ctlxq.lock, flags);
2876
2877			/* Make sure we don't try and complete
2878			 * this CTLX more than once!
2879			 */
2880			ctlx->cmdcb = NULL;
2881
2882			/* Did someone yank the adapter out
2883			 * while our list was (briefly) unlocked?
2884			 */
2885			if (hw->wlandev->hwremoved) {
2886				reap = 0;
2887				break;
2888			}
2889		}
2890
2891		/*
2892		 * "Reapable" CTLXs are ones which don't have any
2893		 * threads waiting for them to die. Hence they must
2894		 * be delivered to The Reaper!
2895		 */
2896		if (ctlx->reapable) {
2897			/* Move the CTLX off the "completing" list (hopefully)
2898			 * on to the "reapable" list where the reaper task
2899			 * can find it. And "reapable" means that this CTLX
2900			 * isn't sitting on a wait-queue somewhere.
2901			 */
2902			list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2903			reap = 1;
2904		}
2905
2906		complete(&ctlx->done);
2907	}
2908	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2909
2910	if (reap)
2911		tasklet_schedule(&hw->reaper_bh);
2912}
2913
2914/*----------------------------------------------------------------
2915* unlocked_usbctlx_cancel_async
2916*
2917* Mark the CTLX dead asynchronously, and ensure that the
2918* next command on the queue is run afterwards.
2919*
2920* Arguments:
2921*	hw	ptr to the hfa384x_t structure
2922*	ctlx	ptr to a CTLX structure
2923*
2924* Returns:
2925*	0	the CTLX's URB is inactive
2926* -EINPROGRESS	the URB is currently being unlinked
2927*
2928* Call context:
2929*	Either process or interrupt, but presumably interrupt
2930----------------------------------------------------------------*/
2931static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
2932					 hfa384x_usbctlx_t *ctlx)
2933{
2934	int ret;
2935
2936	/*
2937	 * Try to delete the URB containing our request packet.
2938	 * If we succeed, then its completion handler will be
2939	 * called with a status of -ECONNRESET.
2940	 */
2941	hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2942	ret = usb_unlink_urb(&hw->ctlx_urb);
2943
2944	if (ret != -EINPROGRESS) {
2945		/*
2946		 * The OUT URB had either already completed
2947		 * or was still in the pending queue, so the
2948		 * URB's completion function will not be called.
2949		 * We will have to complete the CTLX ourselves.
2950		 */
2951		ctlx->state = CTLX_REQ_FAILED;
2952		unlocked_usbctlx_complete(hw, ctlx);
2953		ret = 0;
2954	}
2955
2956	return ret;
2957}
2958
2959/*----------------------------------------------------------------
2960* unlocked_usbctlx_complete
2961*
2962* A CTLX has completed.  It may have been successful, it may not
2963* have been. At this point, the CTLX should be quiescent.  The URBs
2964* aren't active and the timers should have been stopped.
2965*
2966* The CTLX is migrated to the "completing" queue, and the completing
2967* tasklet is scheduled.
2968*
2969* Arguments:
2970*	hw		ptr to a hfa384x_t structure
2971*	ctlx		ptr to a ctlx structure
2972*
2973* Returns:
2974*	nothing
2975*
2976* Side effects:
2977*
2978* Call context:
2979*	Either, assume interrupt
2980----------------------------------------------------------------*/
2981static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
2982{
2983	/* Timers have been stopped, and ctlx should be in
2984	 * a terminal state. Retire it from the "active"
2985	 * queue.
2986	 */
2987	list_move_tail(&ctlx->list, &hw->ctlxq.completing);
2988	tasklet_schedule(&hw->completion_bh);
2989
2990	switch (ctlx->state) {
2991	case CTLX_COMPLETE:
2992	case CTLX_REQ_FAILED:
2993		/* This are the correct terminating states. */
2994		break;
2995
2996	default:
2997		netdev_err(hw->wlandev->netdev, "CTLX[%d] not in a terminating state(%s)\n",
2998			   le16_to_cpu(ctlx->outbuf.type),
2999			   ctlxstr(ctlx->state));
3000		break;
3001	}			/* switch */
3002}
3003
3004/*----------------------------------------------------------------
3005* hfa384x_usbctlxq_run
3006*
3007* Checks to see if the head item is running.  If not, starts it.
3008*
3009* Arguments:
3010*	hw	ptr to hfa384x_t
3011*
3012* Returns:
3013*	nothing
3014*
3015* Side effects:
3016*
3017* Call context:
3018*	any
3019----------------------------------------------------------------*/
3020static void hfa384x_usbctlxq_run(hfa384x_t *hw)
3021{
3022	unsigned long flags;
3023
3024	/* acquire lock */
3025	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3026
3027	/* Only one active CTLX at any one time, because there's no
3028	 * other (reliable) way to match the response URB to the
3029	 * correct CTLX.
3030	 *
3031	 * Don't touch any of these CTLXs if the hardware
3032	 * has been removed or the USB subsystem is stalled.
3033	 */
3034	if (!list_empty(&hw->ctlxq.active) ||
3035	    test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
3036		goto unlock;
3037
3038	while (!list_empty(&hw->ctlxq.pending)) {
3039		hfa384x_usbctlx_t *head;
3040		int result;
3041
3042		/* This is the first pending command */
3043		head = list_entry(hw->ctlxq.pending.next,
3044				  hfa384x_usbctlx_t, list);
3045
3046		/* We need to split this off to avoid a race condition */
3047		list_move_tail(&head->list, &hw->ctlxq.active);
3048
3049		/* Fill the out packet */
3050		usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
3051				  hw->endp_out,
3052				  &(head->outbuf), ROUNDUP64(head->outbufsize),
3053				  hfa384x_ctlxout_callback, hw);
3054		hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
3055
3056		/* Now submit the URB and update the CTLX's state */
3057		result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC);
3058		if (result == 0) {
3059			/* This CTLX is now running on the active queue */
3060			head->state = CTLX_REQ_SUBMITTED;
3061
3062			/* Start the OUT wait timer */
3063			hw->req_timer_done = 0;
3064			hw->reqtimer.expires = jiffies + HZ;
3065			add_timer(&hw->reqtimer);
3066
3067			/* Start the IN wait timer */
3068			hw->resp_timer_done = 0;
3069			hw->resptimer.expires = jiffies + 2 * HZ;
3070			add_timer(&hw->resptimer);
3071
3072			break;
3073		}
3074
3075		if (result == -EPIPE) {
3076			/* The OUT pipe needs resetting, so put
3077			 * this CTLX back in the "pending" queue
3078			 * and schedule a reset ...
3079			 */
3080			netdev_warn(hw->wlandev->netdev,
3081				    "%s tx pipe stalled: requesting reset\n",
3082				    hw->wlandev->netdev->name);
3083			list_move(&head->list, &hw->ctlxq.pending);
3084			set_bit(WORK_TX_HALT, &hw->usb_flags);
3085			schedule_work(&hw->usb_work);
3086			break;
3087		}
3088
3089		if (result == -ESHUTDOWN) {
3090			netdev_warn(hw->wlandev->netdev, "%s urb shutdown!\n",
3091				    hw->wlandev->netdev->name);
3092			break;
3093		}
3094
3095		netdev_err(hw->wlandev->netdev, "Failed to submit CTLX[%d]: error=%d\n",
3096			   le16_to_cpu(head->outbuf.type), result);
3097		unlocked_usbctlx_complete(hw, head);
3098	}			/* while */
3099
3100unlock:
3101	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3102}
3103
3104/*----------------------------------------------------------------
3105* hfa384x_usbin_callback
3106*
3107* Callback for URBs on the BULKIN endpoint.
3108*
3109* Arguments:
3110*	urb		ptr to the completed urb
3111*
3112* Returns:
3113*	nothing
3114*
3115* Side effects:
3116*
3117* Call context:
3118*	interrupt
3119----------------------------------------------------------------*/
3120static void hfa384x_usbin_callback(struct urb *urb)
3121{
3122	wlandevice_t *wlandev = urb->context;
3123	hfa384x_t *hw;
3124	hfa384x_usbin_t *usbin = (hfa384x_usbin_t *)urb->transfer_buffer;
3125	struct sk_buff *skb = NULL;
3126	int result;
3127	int urb_status;
3128	u16 type;
3129
3130	enum USBIN_ACTION {
3131		HANDLE,
3132		RESUBMIT,
3133		ABORT
3134	} action;
3135
3136	if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3137		goto exit;
3138
3139	hw = wlandev->priv;
3140	if (!hw)
3141		goto exit;
3142
3143	skb = hw->rx_urb_skb;
3144	BUG_ON(!skb || (skb->data != urb->transfer_buffer));
3145
3146	hw->rx_urb_skb = NULL;
3147
3148	/* Check for error conditions within the URB */
3149	switch (urb->status) {
3150	case 0:
3151		action = HANDLE;
3152
3153		/* Check for short packet */
3154		if (urb->actual_length == 0) {
3155			wlandev->netdev->stats.rx_errors++;
3156			wlandev->netdev->stats.rx_length_errors++;
3157			action = RESUBMIT;
3158		}
3159		break;
3160
3161	case -EPIPE:
3162		netdev_warn(hw->wlandev->netdev, "%s rx pipe stalled: requesting reset\n",
3163			    wlandev->netdev->name);
3164		if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3165			schedule_work(&hw->usb_work);
3166		wlandev->netdev->stats.rx_errors++;
3167		action = ABORT;
3168		break;
3169
3170	case -EILSEQ:
3171	case -ETIMEDOUT:
3172	case -EPROTO:
3173		if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3174		    !timer_pending(&hw->throttle)) {
3175			mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3176		}
3177		wlandev->netdev->stats.rx_errors++;
3178		action = ABORT;
3179		break;
3180
3181	case -EOVERFLOW:
3182		wlandev->netdev->stats.rx_over_errors++;
3183		action = RESUBMIT;
3184		break;
3185
3186	case -ENODEV:
3187	case -ESHUTDOWN:
3188		pr_debug("status=%d, device removed.\n", urb->status);
3189		action = ABORT;
3190		break;
3191
3192	case -ENOENT:
3193	case -ECONNRESET:
3194		pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3195		action = ABORT;
3196		break;
3197
3198	default:
3199		pr_debug("urb status=%d, transfer flags=0x%x\n",
3200			 urb->status, urb->transfer_flags);
3201		wlandev->netdev->stats.rx_errors++;
3202		action = RESUBMIT;
3203		break;
3204	}
3205
3206	urb_status = urb->status;
3207
3208	if (action != ABORT) {
3209		/* Repost the RX URB */
3210		result = submit_rx_urb(hw, GFP_ATOMIC);
3211
3212		if (result != 0) {
3213			netdev_err(hw->wlandev->netdev,
3214				   "Fatal, failed to resubmit rx_urb. error=%d\n",
3215				   result);
3216		}
3217	}
3218
3219	/* Handle any USB-IN packet */
3220	/* Note: the check of the sw_support field, the type field doesn't
3221	 *       have bit 12 set like the docs suggest.
3222	 */
3223	type = le16_to_cpu(usbin->type);
3224	if (HFA384x_USB_ISRXFRM(type)) {
3225		if (action == HANDLE) {
3226			if (usbin->txfrm.desc.sw_support == 0x0123) {
3227				hfa384x_usbin_txcompl(wlandev, usbin);
3228			} else {
3229				skb_put(skb, sizeof(*usbin));
3230				hfa384x_usbin_rx(wlandev, skb);
3231				skb = NULL;
3232			}
3233		}
3234		goto exit;
3235	}
3236	if (HFA384x_USB_ISTXFRM(type)) {
3237		if (action == HANDLE)
3238			hfa384x_usbin_txcompl(wlandev, usbin);
3239		goto exit;
3240	}
3241	switch (type) {
3242	case HFA384x_USB_INFOFRM:
3243		if (action == ABORT)
3244			goto exit;
3245		if (action == HANDLE)
3246			hfa384x_usbin_info(wlandev, usbin);
3247		break;
3248
3249	case HFA384x_USB_CMDRESP:
3250	case HFA384x_USB_WRIDRESP:
3251	case HFA384x_USB_RRIDRESP:
3252	case HFA384x_USB_WMEMRESP:
3253	case HFA384x_USB_RMEMRESP:
3254		/* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3255		hfa384x_usbin_ctlx(hw, usbin, urb_status);
3256		break;
3257
3258	case HFA384x_USB_BUFAVAIL:
3259		pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3260			 usbin->bufavail.frmlen);
3261		break;
3262
3263	case HFA384x_USB_ERROR:
3264		pr_debug("Received USB_ERROR packet, errortype=%d\n",
3265			 usbin->usberror.errortype);
3266		break;
3267
3268	default:
3269		pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3270			 usbin->type, urb_status);
3271		break;
3272	}			/* switch */
3273
3274exit:
3275
3276	if (skb)
3277		dev_kfree_skb(skb);
3278}
3279
3280/*----------------------------------------------------------------
3281* hfa384x_usbin_ctlx
3282*
3283* We've received a URB containing a Prism2 "response" message.
3284* This message needs to be matched up with a CTLX on the active
3285* queue and our state updated accordingly.
3286*
3287* Arguments:
3288*	hw		ptr to hfa384x_t
3289*	usbin		ptr to USB IN packet
3290*	urb_status	status of this Bulk-In URB
3291*
3292* Returns:
3293*	nothing
3294*
3295* Side effects:
3296*
3297* Call context:
3298*	interrupt
3299----------------------------------------------------------------*/
3300static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
3301			       int urb_status)
3302{
3303	hfa384x_usbctlx_t *ctlx;
3304	int run_queue = 0;
3305	unsigned long flags;
3306
3307retry:
3308	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3309
3310	/* There can be only one CTLX on the active queue
3311	 * at any one time, and this is the CTLX that the
3312	 * timers are waiting for.
3313	 */
3314	if (list_empty(&hw->ctlxq.active))
3315		goto unlock;
3316
3317	/* Remove the "response timeout". It's possible that
3318	 * we are already too late, and that the timeout is
3319	 * already running. And that's just too bad for us,
3320	 * because we could lose our CTLX from the active
3321	 * queue here ...
3322	 */
3323	if (del_timer(&hw->resptimer) == 0) {
3324		if (hw->resp_timer_done == 0) {
3325			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3326			goto retry;
3327		}
3328	} else {
3329		hw->resp_timer_done = 1;
3330	}
3331
3332	ctlx = get_active_ctlx(hw);
3333
3334	if (urb_status != 0) {
3335		/*
3336		 * Bad CTLX, so get rid of it. But we only
3337		 * remove it from the active queue if we're no
3338		 * longer expecting the OUT URB to complete.
3339		 */
3340		if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3341			run_queue = 1;
3342	} else {
3343		const __le16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3344
3345		/*
3346		 * Check that our message is what we're expecting ...
3347		 */
3348		if (ctlx->outbuf.type != intype) {
3349			netdev_warn(hw->wlandev->netdev,
3350				    "Expected IN[%d], received IN[%d] - ignored.\n",
3351				    le16_to_cpu(ctlx->outbuf.type),
3352				    le16_to_cpu(intype));
3353			goto unlock;
3354		}
3355
3356		/* This URB has succeeded, so grab the data ... */
3357		memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3358
3359		switch (ctlx->state) {
3360		case CTLX_REQ_SUBMITTED:
3361			/*
3362			 * We have received our response URB before
3363			 * our request has been acknowledged. Odd,
3364			 * but our OUT URB is still alive...
3365			 */
3366			pr_debug("Causality violation: please reboot Universe\n");
3367			ctlx->state = CTLX_RESP_COMPLETE;
3368			break;
3369
3370		case CTLX_REQ_COMPLETE:
3371			/*
3372			 * This is the usual path: our request
3373			 * has already been acknowledged, and
3374			 * now we have received the reply too.
3375			 */
3376			ctlx->state = CTLX_COMPLETE;
3377			unlocked_usbctlx_complete(hw, ctlx);
3378			run_queue = 1;
3379			break;
3380
3381		default:
3382			/*
3383			 * Throw this CTLX away ...
3384			 */
3385			netdev_err(hw->wlandev->netdev,
3386				   "Matched IN URB, CTLX[%d] in invalid state(%s). Discarded.\n",
3387				   le16_to_cpu(ctlx->outbuf.type),
3388				   ctlxstr(ctlx->state));
3389			if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3390				run_queue = 1;
3391			break;
3392		}		/* switch */
3393	}
3394
3395unlock:
3396	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3397
3398	if (run_queue)
3399		hfa384x_usbctlxq_run(hw);
3400}
3401
3402/*----------------------------------------------------------------
3403* hfa384x_usbin_txcompl
3404*
3405* At this point we have the results of a previous transmit.
3406*
3407* Arguments:
3408*	wlandev		wlan device
3409*	usbin		ptr to the usb transfer buffer
3410*
3411* Returns:
3412*	nothing
3413*
3414* Side effects:
3415*
3416* Call context:
3417*	interrupt
3418----------------------------------------------------------------*/
3419static void hfa384x_usbin_txcompl(wlandevice_t *wlandev,
3420				  hfa384x_usbin_t *usbin)
3421{
3422	u16 status;
3423
3424	status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3425
3426	/* Was there an error? */
3427	if (HFA384x_TXSTATUS_ISERROR(status))
3428		prism2sta_ev_txexc(wlandev, status);
3429	else
3430		prism2sta_ev_tx(wlandev, status);
3431}
3432
3433/*----------------------------------------------------------------
3434* hfa384x_usbin_rx
3435*
3436* At this point we have a successful received a rx frame packet.
3437*
3438* Arguments:
3439*	wlandev		wlan device
3440*	usbin		ptr to the usb transfer buffer
3441*
3442* Returns:
3443*	nothing
3444*
3445* Side effects:
3446*
3447* Call context:
3448*	interrupt
3449----------------------------------------------------------------*/
3450static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb)
3451{
3452	hfa384x_usbin_t *usbin = (hfa384x_usbin_t *)skb->data;
3453	hfa384x_t *hw = wlandev->priv;
3454	int hdrlen;
3455	struct p80211_rxmeta *rxmeta;
3456	u16 data_len;
3457	u16 fc;
3458
3459	/* Byte order convert once up front. */
3460	usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status);
3461	usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time);
3462
3463	/* Now handle frame based on port# */
3464	switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3465	case 0:
3466		fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3467
3468		/* If exclude and we receive an unencrypted, drop it */
3469		if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3470		    !WLAN_GET_FC_ISWEP(fc)) {
3471			break;
3472		}
3473
3474		data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3475
3476		/* How much header data do we have? */
3477		hdrlen = p80211_headerlen(fc);
3478
3479		/* Pull off the descriptor */
3480		skb_pull(skb, sizeof(hfa384x_rx_frame_t));
3481
3482		/* Now shunt the header block up against the data block
3483		 * with an "overlapping" copy
3484		 */
3485		memmove(skb_push(skb, hdrlen),
3486			&usbin->rxfrm.desc.frame_control, hdrlen);
3487
3488		skb->dev = wlandev->netdev;
3489		skb->dev->last_rx = jiffies;
3490
3491		/* And set the frame length properly */
3492		skb_trim(skb, data_len + hdrlen);
3493
3494		/* The prism2 series does not return the CRC */
3495		memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3496
3497		skb_reset_mac_header(skb);
3498
3499		/* Attach the rxmeta, set some stuff */
3500		p80211skb_rxmeta_attach(wlandev, skb);
3501		rxmeta = P80211SKB_RXMETA(skb);
3502		rxmeta->mactime = usbin->rxfrm.desc.time;
3503		rxmeta->rxrate = usbin->rxfrm.desc.rate;
3504		rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3505		rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3506
3507		prism2sta_ev_rx(wlandev, skb);
3508
3509		break;
3510
3511	case 7:
3512		if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3513			/* Copy to wlansnif skb */
3514			hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3515			dev_kfree_skb(skb);
3516		} else {
3517			pr_debug("Received monitor frame: FCSerr set\n");
3518		}
3519		break;
3520
3521	default:
3522		netdev_warn(hw->wlandev->netdev, "Received frame on unsupported port=%d\n",
3523			    HFA384x_RXSTATUS_MACPORT_GET(
3524				    usbin->rxfrm.desc.status));
3525		break;
3526	}
3527}
3528
3529/*----------------------------------------------------------------
3530* hfa384x_int_rxmonitor
3531*
3532* Helper function for int_rx.  Handles monitor frames.
3533* Note that this function allocates space for the FCS and sets it
3534* to 0xffffffff.  The hfa384x doesn't give us the FCS value but the
3535* higher layers expect it.  0xffffffff is used as a flag to indicate
3536* the FCS is bogus.
3537*
3538* Arguments:
3539*	wlandev		wlan device structure
3540*	rxfrm		rx descriptor read from card in int_rx
3541*
3542* Returns:
3543*	nothing
3544*
3545* Side effects:
3546*	Allocates an skb and passes it up via the PF_PACKET interface.
3547* Call context:
3548*	interrupt
3549----------------------------------------------------------------*/
3550static void hfa384x_int_rxmonitor(wlandevice_t *wlandev,
3551				  hfa384x_usb_rxfrm_t *rxfrm)
3552{
3553	hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc);
3554	unsigned int hdrlen = 0;
3555	unsigned int datalen = 0;
3556	unsigned int skblen = 0;
3557	u8 *datap;
3558	u16 fc;
3559	struct sk_buff *skb;
3560	hfa384x_t *hw = wlandev->priv;
3561
3562	/* Remember the status, time, and data_len fields are in host order */
3563	/* Figure out how big the frame is */
3564	fc = le16_to_cpu(rxdesc->frame_control);
3565	hdrlen = p80211_headerlen(fc);
3566	datalen = le16_to_cpu(rxdesc->data_len);
3567
3568	/* Allocate an ind message+framesize skb */
3569	skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3570
3571	/* sanity check the length */
3572	if (skblen >
3573	    (sizeof(struct p80211_caphdr) +
3574	     WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3575		pr_debug("overlen frm: len=%zd\n",
3576			 skblen - sizeof(struct p80211_caphdr));
3577	}
3578
3579	skb = dev_alloc_skb(skblen);
3580	if (skb == NULL)
3581		return;
3582
3583	/* only prepend the prism header if in the right mode */
3584	if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3585	    (hw->sniffhdr != 0)) {
3586		struct p80211_caphdr *caphdr;
3587		/* The NEW header format! */
3588		datap = skb_put(skb, sizeof(struct p80211_caphdr));
3589		caphdr = (struct p80211_caphdr *)datap;
3590
3591		caphdr->version = htonl(P80211CAPTURE_VERSION);
3592		caphdr->length = htonl(sizeof(struct p80211_caphdr));
3593		caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000;
3594		caphdr->hosttime = __cpu_to_be64(jiffies);
3595		caphdr->phytype = htonl(4);	/* dss_dot11_b */
3596		caphdr->channel = htonl(hw->sniff_channel);
3597		caphdr->datarate = htonl(rxdesc->rate);
3598		caphdr->antenna = htonl(0);	/* unknown */
3599		caphdr->priority = htonl(0);	/* unknown */
3600		caphdr->ssi_type = htonl(3);	/* rssi_raw */
3601		caphdr->ssi_signal = htonl(rxdesc->signal);
3602		caphdr->ssi_noise = htonl(rxdesc->silence);
3603		caphdr->preamble = htonl(0);	/* unknown */
3604		caphdr->encoding = htonl(1);	/* cck */
3605	}
3606
3607	/* Copy the 802.11 header to the skb
3608	   (ctl frames may be less than a full header) */
3609	datap = skb_put(skb, hdrlen);
3610	memcpy(datap, &(rxdesc->frame_control), hdrlen);
3611
3612	/* If any, copy the data from the card to the skb */
3613	if (datalen > 0) {
3614		datap = skb_put(skb, datalen);
3615		memcpy(datap, rxfrm->data, datalen);
3616
3617		/* check for unencrypted stuff if WEP bit set. */
3618		if (*(datap - hdrlen + 1) & 0x40)	/* wep set */
3619			if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3620				/* clear wep; it's the 802.2 header! */
3621				*(datap - hdrlen + 1) &= 0xbf;
3622	}
3623
3624	if (hw->sniff_fcs) {
3625		/* Set the FCS */
3626		datap = skb_put(skb, WLAN_CRC_LEN);
3627		memset(datap, 0xff, WLAN_CRC_LEN);
3628	}
3629
3630	/* pass it back up */
3631	prism2sta_ev_rx(wlandev, skb);
3632}
3633
3634/*----------------------------------------------------------------
3635* hfa384x_usbin_info
3636*
3637* At this point we have a successful received a Prism2 info frame.
3638*
3639* Arguments:
3640*	wlandev		wlan device
3641*	usbin		ptr to the usb transfer buffer
3642*
3643* Returns:
3644*	nothing
3645*
3646* Side effects:
3647*
3648* Call context:
3649*	interrupt
3650----------------------------------------------------------------*/
3651static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin)
3652{
3653	usbin->infofrm.info.framelen =
3654	    le16_to_cpu(usbin->infofrm.info.framelen);
3655	prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3656}
3657
3658/*----------------------------------------------------------------
3659* hfa384x_usbout_callback
3660*
3661* Callback for URBs on the BULKOUT endpoint.
3662*
3663* Arguments:
3664*	urb		ptr to the completed urb
3665*
3666* Returns:
3667*	nothing
3668*
3669* Side effects:
3670*
3671* Call context:
3672*	interrupt
3673----------------------------------------------------------------*/
3674static void hfa384x_usbout_callback(struct urb *urb)
3675{
3676	wlandevice_t *wlandev = urb->context;
3677	hfa384x_usbout_t *usbout = urb->transfer_buffer;
3678
3679#ifdef DEBUG_USB
3680	dbprint_urb(urb);
3681#endif
3682
3683	if (wlandev && wlandev->netdev) {
3684		switch (urb->status) {
3685		case 0:
3686			hfa384x_usbout_tx(wlandev, usbout);
3687			break;
3688
3689		case -EPIPE:
3690			{
3691				hfa384x_t *hw = wlandev->priv;
3692
3693				netdev_warn(hw->wlandev->netdev,
3694					    "%s tx pipe stalled: requesting reset\n",
3695					    wlandev->netdev->name);
3696				if (!test_and_set_bit
3697				    (WORK_TX_HALT, &hw->usb_flags))
3698					schedule_work(&hw->usb_work);
3699				wlandev->netdev->stats.tx_errors++;
3700				break;
3701			}
3702
3703		case -EPROTO:
3704		case -ETIMEDOUT:
3705		case -EILSEQ:
3706			{
3707				hfa384x_t *hw = wlandev->priv;
3708
3709				if (!test_and_set_bit
3710				    (THROTTLE_TX, &hw->usb_flags) &&
3711				    !timer_pending(&hw->throttle)) {
3712					mod_timer(&hw->throttle,
3713						  jiffies + THROTTLE_JIFFIES);
3714				}
3715				wlandev->netdev->stats.tx_errors++;
3716				netif_stop_queue(wlandev->netdev);
3717				break;
3718			}
3719
3720		case -ENOENT:
3721		case -ESHUTDOWN:
3722			/* Ignorable errors */
3723			break;
3724
3725		default:
3726			netdev_info(wlandev->netdev, "unknown urb->status=%d\n",
3727				    urb->status);
3728			wlandev->netdev->stats.tx_errors++;
3729			break;
3730		}		/* switch */
3731	}
3732}
3733
3734/*----------------------------------------------------------------
3735* hfa384x_ctlxout_callback
3736*
3737* Callback for control data on the BULKOUT endpoint.
3738*
3739* Arguments:
3740*	urb		ptr to the completed urb
3741*
3742* Returns:
3743* nothing
3744*
3745* Side effects:
3746*
3747* Call context:
3748* interrupt
3749----------------------------------------------------------------*/
3750static void hfa384x_ctlxout_callback(struct urb *urb)
3751{
3752	hfa384x_t *hw = urb->context;
3753	int delete_resptimer = 0;
3754	int timer_ok = 1;
3755	int run_queue = 0;
3756	hfa384x_usbctlx_t *ctlx;
3757	unsigned long flags;
3758
3759	pr_debug("urb->status=%d\n", urb->status);
3760#ifdef DEBUG_USB
3761	dbprint_urb(urb);
3762#endif
3763	if ((urb->status == -ESHUTDOWN) ||
3764	    (urb->status == -ENODEV) || (hw == NULL))
3765		return;
3766
3767retry:
3768	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3769
3770	/*
3771	 * Only one CTLX at a time on the "active" list, and
3772	 * none at all if we are unplugged. However, we can
3773	 * rely on the disconnect function to clean everything
3774	 * up if someone unplugged the adapter.
3775	 */
3776	if (list_empty(&hw->ctlxq.active)) {
3777		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3778		return;
3779	}
3780
3781	/*
3782	 * Having something on the "active" queue means
3783	 * that we have timers to worry about ...
3784	 */
3785	if (del_timer(&hw->reqtimer) == 0) {
3786		if (hw->req_timer_done == 0) {
3787			/*
3788			 * This timer was actually running while we
3789			 * were trying to delete it. Let it terminate
3790			 * gracefully instead.
3791			 */
3792			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3793			goto retry;
3794		}
3795	} else {
3796		hw->req_timer_done = 1;
3797	}
3798
3799	ctlx = get_active_ctlx(hw);
3800
3801	if (urb->status == 0) {
3802		/* Request portion of a CTLX is successful */
3803		switch (ctlx->state) {
3804		case CTLX_REQ_SUBMITTED:
3805			/* This OUT-ACK received before IN */
3806			ctlx->state = CTLX_REQ_COMPLETE;
3807			break;
3808
3809		case CTLX_RESP_COMPLETE:
3810			/* IN already received before this OUT-ACK,
3811			 * so this command must now be complete.
3812			 */
3813			ctlx->state = CTLX_COMPLETE;
3814			unlocked_usbctlx_complete(hw, ctlx);
3815			run_queue = 1;
3816			break;
3817
3818		default:
3819			/* This is NOT a valid CTLX "success" state! */
3820			netdev_err(hw->wlandev->netdev,
3821				   "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3822				   le16_to_cpu(ctlx->outbuf.type),
3823				   ctlxstr(ctlx->state), urb->status);
3824			break;
3825		}		/* switch */
3826	} else {
3827		/* If the pipe has stalled then we need to reset it */
3828		if ((urb->status == -EPIPE) &&
3829		    !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3830			netdev_warn(hw->wlandev->netdev,
3831				    "%s tx pipe stalled: requesting reset\n",
3832				    hw->wlandev->netdev->name);
3833			schedule_work(&hw->usb_work);
3834		}
3835
3836		/* If someone cancels the OUT URB then its status
3837		 * should be either -ECONNRESET or -ENOENT.
3838		 */
3839		ctlx->state = CTLX_REQ_FAILED;
3840		unlocked_usbctlx_complete(hw, ctlx);
3841		delete_resptimer = 1;
3842		run_queue = 1;
3843	}
3844
3845delresp:
3846	if (delete_resptimer) {
3847		timer_ok = del_timer(&hw->resptimer);
3848		if (timer_ok != 0)
3849			hw->resp_timer_done = 1;
3850	}
3851
3852	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3853
3854	if (!timer_ok && (hw->resp_timer_done == 0)) {
3855		spin_lock_irqsave(&hw->ctlxq.lock, flags);
3856		goto delresp;
3857	}
3858
3859	if (run_queue)
3860		hfa384x_usbctlxq_run(hw);
3861}
3862
3863/*----------------------------------------------------------------
3864* hfa384x_usbctlx_reqtimerfn
3865*
3866* Timer response function for CTLX request timeouts.  If this
3867* function is called, it means that the callback for the OUT
3868* URB containing a Prism2.x XXX_Request was never called.
3869*
3870* Arguments:
3871*	data		a ptr to the hfa384x_t
3872*
3873* Returns:
3874*	nothing
3875*
3876* Side effects:
3877*
3878* Call context:
3879*	interrupt
3880----------------------------------------------------------------*/
3881static void hfa384x_usbctlx_reqtimerfn(unsigned long data)
3882{
3883	hfa384x_t *hw = (hfa384x_t *)data;
3884	unsigned long flags;
3885
3886	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3887
3888	hw->req_timer_done = 1;
3889
3890	/* Removing the hardware automatically empties
3891	 * the active list ...
3892	 */
3893	if (!list_empty(&hw->ctlxq.active)) {
3894		/*
3895		 * We must ensure that our URB is removed from
3896		 * the system, if it hasn't already expired.
3897		 */
3898		hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3899		if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3900			hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3901
3902			ctlx->state = CTLX_REQ_FAILED;
3903
3904			/* This URB was active, but has now been
3905			 * cancelled. It will now have a status of
3906			 * -ECONNRESET in the callback function.
3907			 *
3908			 * We are cancelling this CTLX, so we're
3909			 * not going to need to wait for a response.
3910			 * The URB's callback function will check
3911			 * that this timer is truly dead.
3912			 */
3913			if (del_timer(&hw->resptimer) != 0)
3914				hw->resp_timer_done = 1;
3915		}
3916	}
3917
3918	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3919}
3920
3921/*----------------------------------------------------------------
3922* hfa384x_usbctlx_resptimerfn
3923*
3924* Timer response function for CTLX response timeouts.  If this
3925* function is called, it means that the callback for the IN
3926* URB containing a Prism2.x XXX_Response was never called.
3927*
3928* Arguments:
3929*	data		a ptr to the hfa384x_t
3930*
3931* Returns:
3932*	nothing
3933*
3934* Side effects:
3935*
3936* Call context:
3937*	interrupt
3938----------------------------------------------------------------*/
3939static void hfa384x_usbctlx_resptimerfn(unsigned long data)
3940{
3941	hfa384x_t *hw = (hfa384x_t *)data;
3942	unsigned long flags;
3943
3944	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3945
3946	hw->resp_timer_done = 1;
3947
3948	/* The active list will be empty if the
3949	 * adapter has been unplugged ...
3950	 */
3951	if (!list_empty(&hw->ctlxq.active)) {
3952		hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3953
3954		if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3955			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3956			hfa384x_usbctlxq_run(hw);
3957			return;
3958		}
3959	}
3960	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3961}
3962
3963/*----------------------------------------------------------------
3964* hfa384x_usb_throttlefn
3965*
3966*
3967* Arguments:
3968*	data	ptr to hw
3969*
3970* Returns:
3971*	Nothing
3972*
3973* Side effects:
3974*
3975* Call context:
3976*	Interrupt
3977----------------------------------------------------------------*/
3978static void hfa384x_usb_throttlefn(unsigned long data)
3979{
3980	hfa384x_t *hw = (hfa384x_t *)data;
3981	unsigned long flags;
3982
3983	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3984
3985	/*
3986	 * We need to check BOTH the RX and the TX throttle controls,
3987	 * so we use the bitwise OR instead of the logical OR.
3988	 */
3989	pr_debug("flags=0x%lx\n", hw->usb_flags);
3990	if (!hw->wlandev->hwremoved &&
3991	    ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
3992	      !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags))
3993	     |
3994	     (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
3995	      !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
3996	    )) {
3997		schedule_work(&hw->usb_work);
3998	}
3999
4000	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4001}
4002
4003/*----------------------------------------------------------------
4004* hfa384x_usbctlx_submit
4005*
4006* Called from the doxxx functions to submit a CTLX to the queue
4007*
4008* Arguments:
4009*	hw		ptr to the hw struct
4010*	ctlx		ctlx structure to enqueue
4011*
4012* Returns:
4013*	-ENODEV if the adapter is unplugged
4014*	0
4015*
4016* Side effects:
4017*
4018* Call context:
4019*	process or interrupt
4020----------------------------------------------------------------*/
4021static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
4022{
4023	unsigned long flags;
4024
4025	spin_lock_irqsave(&hw->ctlxq.lock, flags);
4026
4027	if (hw->wlandev->hwremoved) {
4028		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4029		return -ENODEV;
4030	}
4031
4032	ctlx->state = CTLX_PENDING;
4033	list_add_tail(&ctlx->list, &hw->ctlxq.pending);
4034	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4035	hfa384x_usbctlxq_run(hw);
4036
4037	return 0;
4038}
4039
4040/*----------------------------------------------------------------
4041* hfa384x_usbout_tx
4042*
4043* At this point we have finished a send of a frame.  Mark the URB
4044* as available and call ev_alloc to notify higher layers we're
4045* ready for more.
4046*
4047* Arguments:
4048*	wlandev		wlan device
4049*	usbout		ptr to the usb transfer buffer
4050*
4051* Returns:
4052*	nothing
4053*
4054* Side effects:
4055*
4056* Call context:
4057*	interrupt
4058----------------------------------------------------------------*/
4059static void hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout)
4060{
4061	prism2sta_ev_alloc(wlandev);
4062}
4063
4064/*----------------------------------------------------------------
4065* hfa384x_isgood_pdrcore
4066*
4067* Quick check of PDR codes.
4068*
4069* Arguments:
4070*	pdrcode		PDR code number (host order)
4071*
4072* Returns:
4073*	zero		not good.
4074*	one		is good.
4075*
4076* Side effects:
4077*
4078* Call context:
4079----------------------------------------------------------------*/
4080static int hfa384x_isgood_pdrcode(u16 pdrcode)
4081{
4082	switch (pdrcode) {
4083	case HFA384x_PDR_END_OF_PDA:
4084	case HFA384x_PDR_PCB_PARTNUM:
4085	case HFA384x_PDR_PDAVER:
4086	case HFA384x_PDR_NIC_SERIAL:
4087	case HFA384x_PDR_MKK_MEASUREMENTS:
4088	case HFA384x_PDR_NIC_RAMSIZE:
4089	case HFA384x_PDR_MFISUPRANGE:
4090	case HFA384x_PDR_CFISUPRANGE:
4091	case HFA384x_PDR_NICID:
4092	case HFA384x_PDR_MAC_ADDRESS:
4093	case HFA384x_PDR_REGDOMAIN:
4094	case HFA384x_PDR_ALLOWED_CHANNEL:
4095	case HFA384x_PDR_DEFAULT_CHANNEL:
4096	case HFA384x_PDR_TEMPTYPE:
4097	case HFA384x_PDR_IFR_SETTING:
4098	case HFA384x_PDR_RFR_SETTING:
4099	case HFA384x_PDR_HFA3861_BASELINE:
4100	case HFA384x_PDR_HFA3861_SHADOW:
4101	case HFA384x_PDR_HFA3861_IFRF:
4102	case HFA384x_PDR_HFA3861_CHCALSP:
4103	case HFA384x_PDR_HFA3861_CHCALI:
4104	case HFA384x_PDR_3842_NIC_CONFIG:
4105	case HFA384x_PDR_USB_ID:
4106	case HFA384x_PDR_PCI_ID:
4107	case HFA384x_PDR_PCI_IFCONF:
4108	case HFA384x_PDR_PCI_PMCONF:
4109	case HFA384x_PDR_RFENRGY:
4110	case HFA384x_PDR_HFA3861_MANF_TESTSP:
4111	case HFA384x_PDR_HFA3861_MANF_TESTI:
4112		/* code is OK */
4113		return 1;
4114	default:
4115		if (pdrcode < 0x1000) {
4116			/* code is OK, but we don't know exactly what it is */
4117			pr_debug("Encountered unknown PDR#=0x%04x, assuming it's ok.\n",
4118				 pdrcode);
4119			return 1;
4120		}
4121		break;
4122	}
4123	/* bad code */
4124	pr_debug("Encountered unknown PDR#=0x%04x, (>=0x1000), assuming it's bad.\n",
4125		 pdrcode);
4126	return 0;
4127}
4128