1/*
2 *
3 * This file is provided under a dual BSD/GPLv2 license.  When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 *  - Redistributions of source code must retain the above copyright
28 *    notice, this list of conditions and the following disclaimer.
29 *  - Redistributions in binary form must reproduce the above copyright
30 *    notice, this list of conditions and the following disclaimer in
31 *    the documentation and/or other materials provided with the
32 *    distribution.
33 *  - Neither the name of Intel Corporation nor the names of its
34 *    contributors may be used to endorse or promote products derived
35 *    from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51#include <linux/pci.h>
52#include <linux/netdevice.h>
53#include <linux/vmalloc.h>
54#include <linux/delay.h>
55#include <linux/idr.h>
56#include <linux/module.h>
57#include <linux/printk.h>
58#include <linux/hrtimer.h>
59
60#include "hfi.h"
61#include "device.h"
62#include "common.h"
63#include "mad.h"
64#include "sdma.h"
65#include "debugfs.h"
66#include "verbs.h"
67
68#undef pr_fmt
69#define pr_fmt(fmt) DRIVER_NAME ": " fmt
70
71/*
72 * min buffers we want to have per context, after driver
73 */
74#define HFI1_MIN_USER_CTXT_BUFCNT 7
75
76#define HFI1_MIN_HDRQ_EGRBUF_CNT 2
77#define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
78#define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
79
80/*
81 * Number of user receive contexts we are configured to use (to allow for more
82 * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
83 */
84uint num_rcv_contexts;
85module_param_named(num_rcv_contexts, num_rcv_contexts, uint, S_IRUGO);
86MODULE_PARM_DESC(
87	num_rcv_contexts, "Set max number of user receive contexts to use");
88
89u8 krcvqs[RXE_NUM_DATA_VL];
90int krcvqsset;
91module_param_array(krcvqs, byte, &krcvqsset, S_IRUGO);
92MODULE_PARM_DESC(krcvqs, "Array of the number of kernel receive queues by VL");
93
94/* computed based on above array */
95unsigned n_krcvqs;
96
97static unsigned hfi1_rcvarr_split = 25;
98module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
99MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
100
101static uint eager_buffer_size = (2 << 20); /* 2MB */
102module_param(eager_buffer_size, uint, S_IRUGO);
103MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
104
105static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
106module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
107MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
108
109static uint hfi1_hdrq_entsize = 32;
110module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
111MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
112
113unsigned int user_credit_return_threshold = 33;	/* default is 33% */
114module_param(user_credit_return_threshold, uint, S_IRUGO);
115MODULE_PARM_DESC(user_credit_return_theshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
116
117static inline u64 encode_rcv_header_entry_size(u16);
118
119static struct idr hfi1_unit_table;
120u32 hfi1_cpulist_count;
121unsigned long *hfi1_cpulist;
122
123/*
124 * Common code for creating the receive context array.
125 */
126int hfi1_create_ctxts(struct hfi1_devdata *dd)
127{
128	unsigned i;
129	int ret;
130	int local_node_id = pcibus_to_node(dd->pcidev->bus);
131
132	if (local_node_id < 0)
133		local_node_id = numa_node_id();
134	dd->assigned_node_id = local_node_id;
135
136	dd->rcd = kcalloc(dd->num_rcv_contexts, sizeof(*dd->rcd), GFP_KERNEL);
137	if (!dd->rcd)
138		goto nomem;
139
140	/* create one or more kernel contexts */
141	for (i = 0; i < dd->first_user_ctxt; ++i) {
142		struct hfi1_pportdata *ppd;
143		struct hfi1_ctxtdata *rcd;
144
145		ppd = dd->pport + (i % dd->num_pports);
146		rcd = hfi1_create_ctxtdata(ppd, i);
147		if (!rcd) {
148			dd_dev_err(dd,
149				"Unable to allocate kernel receive context, failing\n");
150			goto nomem;
151		}
152		/*
153		 * Set up the kernel context flags here and now because they
154		 * use default values for all receive side memories.  User
155		 * contexts will be handled as they are created.
156		 */
157		rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
158			HFI1_CAP_KGET(NODROP_RHQ_FULL) |
159			HFI1_CAP_KGET(NODROP_EGR_FULL) |
160			HFI1_CAP_KGET(DMA_RTAIL);
161		rcd->seq_cnt = 1;
162
163		rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
164		if (!rcd->sc) {
165			dd_dev_err(dd,
166				"Unable to allocate kernel send context, failing\n");
167			dd->rcd[rcd->ctxt] = NULL;
168			hfi1_free_ctxtdata(dd, rcd);
169			goto nomem;
170		}
171
172		ret = hfi1_init_ctxt(rcd->sc);
173		if (ret < 0) {
174			dd_dev_err(dd,
175				   "Failed to setup kernel receive context, failing\n");
176			sc_free(rcd->sc);
177			dd->rcd[rcd->ctxt] = NULL;
178			hfi1_free_ctxtdata(dd, rcd);
179			ret = -EFAULT;
180			goto bail;
181		}
182	}
183
184	return 0;
185nomem:
186	ret = -ENOMEM;
187bail:
188	kfree(dd->rcd);
189	dd->rcd = NULL;
190	return ret;
191}
192
193/*
194 * Common code for user and kernel context setup.
195 */
196struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt)
197{
198	struct hfi1_devdata *dd = ppd->dd;
199	struct hfi1_ctxtdata *rcd;
200	unsigned kctxt_ngroups = 0;
201	u32 base;
202
203	if (dd->rcv_entries.nctxt_extra >
204	    dd->num_rcv_contexts - dd->first_user_ctxt)
205		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
206				 (dd->num_rcv_contexts - dd->first_user_ctxt));
207	rcd = kzalloc(sizeof(*rcd), GFP_KERNEL);
208	if (rcd) {
209		u32 rcvtids, max_entries;
210
211		dd_dev_info(dd, "%s: setting up context %u\n", __func__, ctxt);
212
213		INIT_LIST_HEAD(&rcd->qp_wait_list);
214		rcd->ppd = ppd;
215		rcd->dd = dd;
216		rcd->cnt = 1;
217		rcd->ctxt = ctxt;
218		dd->rcd[ctxt] = rcd;
219		rcd->numa_id = numa_node_id();
220		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
221
222		spin_lock_init(&rcd->exp_lock);
223
224		/*
225		 * Calculate the context's RcvArray entry starting point.
226		 * We do this here because we have to take into account all
227		 * the RcvArray entries that previous context would have
228		 * taken and we have to account for any extra groups
229		 * assigned to the kernel or user contexts.
230		 */
231		if (ctxt < dd->first_user_ctxt) {
232			if (ctxt < kctxt_ngroups) {
233				base = ctxt * (dd->rcv_entries.ngroups + 1);
234				rcd->rcv_array_groups++;
235			} else
236				base = kctxt_ngroups +
237					(ctxt * dd->rcv_entries.ngroups);
238		} else {
239			u16 ct = ctxt - dd->first_user_ctxt;
240
241			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
242				kctxt_ngroups);
243			if (ct < dd->rcv_entries.nctxt_extra) {
244				base += ct * (dd->rcv_entries.ngroups + 1);
245				rcd->rcv_array_groups++;
246			} else
247				base += dd->rcv_entries.nctxt_extra +
248					(ct * dd->rcv_entries.ngroups);
249		}
250		rcd->eager_base = base * dd->rcv_entries.group_size;
251
252		/* Validate and initialize Rcv Hdr Q variables */
253		if (rcvhdrcnt % HDRQ_INCREMENT) {
254			dd_dev_err(dd,
255				   "ctxt%u: header queue count %d must be divisible by %d\n",
256				   rcd->ctxt, rcvhdrcnt, HDRQ_INCREMENT);
257			goto bail;
258		}
259		rcd->rcvhdrq_cnt = rcvhdrcnt;
260		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
261		/*
262		 * Simple Eager buffer allocation: we have already pre-allocated
263		 * the number of RcvArray entry groups. Each ctxtdata structure
264		 * holds the number of groups for that context.
265		 *
266		 * To follow CSR requirements and maintain cacheline alignment,
267		 * make sure all sizes and bases are multiples of group_size.
268		 *
269		 * The expected entry count is what is left after assigning
270		 * eager.
271		 */
272		max_entries = rcd->rcv_array_groups *
273			dd->rcv_entries.group_size;
274		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
275		rcd->egrbufs.count = round_down(rcvtids,
276						dd->rcv_entries.group_size);
277		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
278			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
279				   rcd->ctxt);
280			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
281		}
282		dd_dev_info(dd, "ctxt%u: max Eager buffer RcvArray entries: %u\n",
283			    rcd->ctxt, rcd->egrbufs.count);
284
285		/*
286		 * Allocate array that will hold the eager buffer accounting
287		 * data.
288		 * This will allocate the maximum possible buffer count based
289		 * on the value of the RcvArray split parameter.
290		 * The resulting value will be rounded down to the closest
291		 * multiple of dd->rcv_entries.group_size.
292		 */
293		rcd->egrbufs.buffers = kcalloc(rcd->egrbufs.count,
294					       sizeof(*rcd->egrbufs.buffers),
295					       GFP_KERNEL);
296		if (!rcd->egrbufs.buffers)
297			goto bail;
298		rcd->egrbufs.rcvtids = kcalloc(rcd->egrbufs.count,
299					       sizeof(*rcd->egrbufs.rcvtids),
300					       GFP_KERNEL);
301		if (!rcd->egrbufs.rcvtids)
302			goto bail;
303		rcd->egrbufs.size = eager_buffer_size;
304		/*
305		 * The size of the buffers programmed into the RcvArray
306		 * entries needs to be big enough to handle the highest
307		 * MTU supported.
308		 */
309		if (rcd->egrbufs.size < hfi1_max_mtu) {
310			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
311			dd_dev_info(dd,
312				    "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
313				    rcd->ctxt, rcd->egrbufs.size);
314		}
315		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
316
317		if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */
318			rcd->opstats = kzalloc(sizeof(*rcd->opstats),
319				GFP_KERNEL);
320			if (!rcd->opstats)
321				goto bail;
322		}
323	}
324	return rcd;
325bail:
326	kfree(rcd->opstats);
327	kfree(rcd->egrbufs.rcvtids);
328	kfree(rcd->egrbufs.buffers);
329	kfree(rcd);
330	return NULL;
331}
332
333/*
334 * Convert a receive header entry size that to the encoding used in the CSR.
335 *
336 * Return a zero if the given size is invalid.
337 */
338static inline u64 encode_rcv_header_entry_size(u16 size)
339{
340	/* there are only 3 valid receive header entry sizes */
341	if (size == 2)
342		return 1;
343	if (size == 16)
344		return 2;
345	else if (size == 32)
346		return 4;
347	return 0; /* invalid */
348}
349
350/*
351 * Select the largest ccti value over all SLs to determine the intra-
352 * packet gap for the link.
353 *
354 * called with cca_timer_lock held (to protect access to cca_timer
355 * array), and rcu_read_lock() (to protect access to cc_state).
356 */
357void set_link_ipg(struct hfi1_pportdata *ppd)
358{
359	struct hfi1_devdata *dd = ppd->dd;
360	struct cc_state *cc_state;
361	int i;
362	u16 cce, ccti_limit, max_ccti = 0;
363	u16 shift, mult;
364	u64 src;
365	u32 current_egress_rate; /* Mbits /sec */
366	u32 max_pkt_time;
367	/*
368	 * max_pkt_time is the maximum packet egress time in units
369	 * of the fabric clock period 1/(805 MHz).
370	 */
371
372	cc_state = get_cc_state(ppd);
373
374	if (cc_state == NULL)
375		/*
376		 * This should _never_ happen - rcu_read_lock() is held,
377		 * and set_link_ipg() should not be called if cc_state
378		 * is NULL.
379		 */
380		return;
381
382	for (i = 0; i < OPA_MAX_SLS; i++) {
383		u16 ccti = ppd->cca_timer[i].ccti;
384
385		if (ccti > max_ccti)
386			max_ccti = ccti;
387	}
388
389	ccti_limit = cc_state->cct.ccti_limit;
390	if (max_ccti > ccti_limit)
391		max_ccti = ccti_limit;
392
393	cce = cc_state->cct.entries[max_ccti].entry;
394	shift = (cce & 0xc000) >> 14;
395	mult = (cce & 0x3fff);
396
397	current_egress_rate = active_egress_rate(ppd);
398
399	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
400
401	src = (max_pkt_time >> shift) * mult;
402
403	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
404	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
405
406	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
407}
408
409static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
410{
411	struct cca_timer *cca_timer;
412	struct hfi1_pportdata *ppd;
413	int sl;
414	u16 ccti, ccti_timer, ccti_min;
415	struct cc_state *cc_state;
416	unsigned long flags;
417
418	cca_timer = container_of(t, struct cca_timer, hrtimer);
419	ppd = cca_timer->ppd;
420	sl = cca_timer->sl;
421
422	rcu_read_lock();
423
424	cc_state = get_cc_state(ppd);
425
426	if (cc_state == NULL) {
427		rcu_read_unlock();
428		return HRTIMER_NORESTART;
429	}
430
431	/*
432	 * 1) decrement ccti for SL
433	 * 2) calculate IPG for link (set_link_ipg())
434	 * 3) restart timer, unless ccti is at min value
435	 */
436
437	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
438	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
439
440	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
441
442	ccti = cca_timer->ccti;
443
444	if (ccti > ccti_min) {
445		cca_timer->ccti--;
446		set_link_ipg(ppd);
447	}
448
449	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
450
451	rcu_read_unlock();
452
453	if (ccti > ccti_min) {
454		unsigned long nsec = 1024 * ccti_timer;
455		/* ccti_timer is in units of 1.024 usec */
456		hrtimer_forward_now(t, ns_to_ktime(nsec));
457		return HRTIMER_RESTART;
458	}
459	return HRTIMER_NORESTART;
460}
461
462/*
463 * Common code for initializing the physical port structure.
464 */
465void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
466			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
467{
468	int i, size;
469	uint default_pkey_idx;
470
471	ppd->dd = dd;
472	ppd->hw_pidx = hw_pidx;
473	ppd->port = port; /* IB port number, not index */
474
475	default_pkey_idx = 1;
476
477	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
478	if (loopback) {
479		hfi1_early_err(&pdev->dev,
480			       "Faking data partition 0x8001 in idx %u\n",
481			       !default_pkey_idx);
482		ppd->pkeys[!default_pkey_idx] = 0x8001;
483	}
484
485	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
486	INIT_WORK(&ppd->link_up_work, handle_link_up);
487	INIT_WORK(&ppd->link_down_work, handle_link_down);
488	INIT_WORK(&ppd->freeze_work, handle_freeze);
489	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
490	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
491	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
492	mutex_init(&ppd->hls_lock);
493	spin_lock_init(&ppd->sdma_alllock);
494	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
495
496	ppd->sm_trap_qp = 0x0;
497	ppd->sa_qp = 0x1;
498
499	ppd->hfi1_wq = NULL;
500
501	spin_lock_init(&ppd->cca_timer_lock);
502
503	for (i = 0; i < OPA_MAX_SLS; i++) {
504		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
505			     HRTIMER_MODE_REL);
506		ppd->cca_timer[i].ppd = ppd;
507		ppd->cca_timer[i].sl = i;
508		ppd->cca_timer[i].ccti = 0;
509		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
510	}
511
512	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
513
514	spin_lock_init(&ppd->cc_state_lock);
515	spin_lock_init(&ppd->cc_log_lock);
516	size = sizeof(struct cc_state);
517	RCU_INIT_POINTER(ppd->cc_state, kzalloc(size, GFP_KERNEL));
518	if (!rcu_dereference(ppd->cc_state))
519		goto bail;
520	return;
521
522bail:
523
524	hfi1_early_err(&pdev->dev,
525		       "Congestion Control Agent disabled for port %d\n", port);
526}
527
528/*
529 * Do initialization for device that is only needed on
530 * first detect, not on resets.
531 */
532static int loadtime_init(struct hfi1_devdata *dd)
533{
534	return 0;
535}
536
537/**
538 * init_after_reset - re-initialize after a reset
539 * @dd: the hfi1_ib device
540 *
541 * sanity check at least some of the values after reset, and
542 * ensure no receive or transmit (explicitly, in case reset
543 * failed
544 */
545static int init_after_reset(struct hfi1_devdata *dd)
546{
547	int i;
548
549	/*
550	 * Ensure chip does no sends or receives, tail updates, or
551	 * pioavail updates while we re-initialize.  This is mostly
552	 * for the driver data structures, not chip registers.
553	 */
554	for (i = 0; i < dd->num_rcv_contexts; i++)
555		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
556				  HFI1_RCVCTRL_INTRAVAIL_DIS |
557				  HFI1_RCVCTRL_TAILUPD_DIS, i);
558	pio_send_control(dd, PSC_GLOBAL_DISABLE);
559	for (i = 0; i < dd->num_send_contexts; i++)
560		sc_disable(dd->send_contexts[i].sc);
561
562	return 0;
563}
564
565static void enable_chip(struct hfi1_devdata *dd)
566{
567	u32 rcvmask;
568	u32 i;
569
570	/* enable PIO send */
571	pio_send_control(dd, PSC_GLOBAL_ENABLE);
572
573	/*
574	 * Enable kernel ctxts' receive and receive interrupt.
575	 * Other ctxts done as user opens and initializes them.
576	 */
577	rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
578	for (i = 0; i < dd->first_user_ctxt; ++i) {
579		rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
580			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
581		if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
582			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
583		if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
584			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
585		if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
586			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
587		hfi1_rcvctrl(dd, rcvmask, i);
588		sc_enable(dd->rcd[i]->sc);
589	}
590}
591
592/**
593 * create_workqueues - create per port workqueues
594 * @dd: the hfi1_ib device
595 */
596static int create_workqueues(struct hfi1_devdata *dd)
597{
598	int pidx;
599	struct hfi1_pportdata *ppd;
600
601	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
602		ppd = dd->pport + pidx;
603		if (!ppd->hfi1_wq) {
604			char wq_name[8]; /* 3 + 2 + 1 + 1 + 1 */
605
606			snprintf(wq_name, sizeof(wq_name), "hfi%d_%d",
607				 dd->unit, pidx);
608			ppd->hfi1_wq =
609				create_singlethread_workqueue(wq_name);
610			if (!ppd->hfi1_wq)
611				goto wq_error;
612		}
613	}
614	return 0;
615wq_error:
616	pr_err("create_singlethread_workqueue failed for port %d\n",
617		pidx + 1);
618	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
619		ppd = dd->pport + pidx;
620		if (ppd->hfi1_wq) {
621			destroy_workqueue(ppd->hfi1_wq);
622			ppd->hfi1_wq = NULL;
623		}
624	}
625	return -ENOMEM;
626}
627
628/**
629 * hfi1_init - do the actual initialization sequence on the chip
630 * @dd: the hfi1_ib device
631 * @reinit: re-initializing, so don't allocate new memory
632 *
633 * Do the actual initialization sequence on the chip.  This is done
634 * both from the init routine called from the PCI infrastructure, and
635 * when we reset the chip, or detect that it was reset internally,
636 * or it's administratively re-enabled.
637 *
638 * Memory allocation here and in called routines is only done in
639 * the first case (reinit == 0).  We have to be careful, because even
640 * without memory allocation, we need to re-write all the chip registers
641 * TIDs, etc. after the reset or enable has completed.
642 */
643int hfi1_init(struct hfi1_devdata *dd, int reinit)
644{
645	int ret = 0, pidx, lastfail = 0;
646	unsigned i, len;
647	struct hfi1_ctxtdata *rcd;
648	struct hfi1_pportdata *ppd;
649
650	/* Set up recv low level handlers */
651	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
652						kdeth_process_expected;
653	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
654						kdeth_process_eager;
655	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
656	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
657						process_receive_error;
658	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
659						process_receive_bypass;
660	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
661						process_receive_invalid;
662	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
663						process_receive_invalid;
664	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
665						process_receive_invalid;
666	dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
667
668	/* Set up send low level handlers */
669	dd->process_pio_send = hfi1_verbs_send_pio;
670	dd->process_dma_send = hfi1_verbs_send_dma;
671	dd->pio_inline_send = pio_copy;
672
673	if (is_a0(dd)) {
674		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
675		dd->do_drop = 1;
676	} else {
677		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
678		dd->do_drop = 0;
679	}
680
681	/* make sure the link is not "up" */
682	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
683		ppd = dd->pport + pidx;
684		ppd->linkup = 0;
685	}
686
687	if (reinit)
688		ret = init_after_reset(dd);
689	else
690		ret = loadtime_init(dd);
691	if (ret)
692		goto done;
693
694	/* dd->rcd can be NULL if early initialization failed */
695	for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
696		/*
697		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
698		 * re-init, the simplest way to handle this is to free
699		 * existing, and re-allocate.
700		 * Need to re-create rest of ctxt 0 ctxtdata as well.
701		 */
702		rcd = dd->rcd[i];
703		if (!rcd)
704			continue;
705
706		rcd->do_interrupt = &handle_receive_interrupt;
707
708		lastfail = hfi1_create_rcvhdrq(dd, rcd);
709		if (!lastfail)
710			lastfail = hfi1_setup_eagerbufs(rcd);
711		if (lastfail)
712			dd_dev_err(dd,
713				"failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
714	}
715	if (lastfail)
716		ret = lastfail;
717
718	/* Allocate enough memory for user event notification. */
719	len = ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
720		    sizeof(*dd->events), PAGE_SIZE);
721	dd->events = vmalloc_user(len);
722	if (!dd->events)
723		dd_dev_err(dd, "Failed to allocate user events page\n");
724	/*
725	 * Allocate a page for device and port status.
726	 * Page will be shared amongst all user processes.
727	 */
728	dd->status = vmalloc_user(PAGE_SIZE);
729	if (!dd->status)
730		dd_dev_err(dd, "Failed to allocate dev status page\n");
731	else
732		dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
733					     sizeof(dd->status->freezemsg));
734	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
735		ppd = dd->pport + pidx;
736		if (dd->status)
737			/* Currently, we only have one port */
738			ppd->statusp = &dd->status->port;
739
740		set_mtu(ppd);
741	}
742
743	/* enable chip even if we have an error, so we can debug cause */
744	enable_chip(dd);
745
746	ret = hfi1_cq_init(dd);
747done:
748	/*
749	 * Set status even if port serdes is not initialized
750	 * so that diags will work.
751	 */
752	if (dd->status)
753		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
754			HFI1_STATUS_INITTED;
755	if (!ret) {
756		/* enable all interrupts from the chip */
757		set_intr_state(dd, 1);
758
759		/* chip is OK for user apps; mark it as initialized */
760		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
761			ppd = dd->pport + pidx;
762
763			/* initialize the qsfp if it exists
764			 * Requires interrupts to be enabled so we are notified
765			 * when the QSFP completes reset, and has
766			 * to be done before bringing up the SERDES
767			 */
768			init_qsfp(ppd);
769
770			/* start the serdes - must be after interrupts are
771			   enabled so we are notified when the link goes up */
772			lastfail = bringup_serdes(ppd);
773			if (lastfail)
774				dd_dev_info(dd,
775					"Failed to bring up port %u\n",
776					ppd->port);
777
778			/*
779			 * Set status even if port serdes is not initialized
780			 * so that diags will work.
781			 */
782			if (ppd->statusp)
783				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
784							HFI1_STATUS_INITTED;
785			if (!ppd->link_speed_enabled)
786				continue;
787		}
788	}
789
790	/* if ret is non-zero, we probably should do some cleanup here... */
791	return ret;
792}
793
794static inline struct hfi1_devdata *__hfi1_lookup(int unit)
795{
796	return idr_find(&hfi1_unit_table, unit);
797}
798
799struct hfi1_devdata *hfi1_lookup(int unit)
800{
801	struct hfi1_devdata *dd;
802	unsigned long flags;
803
804	spin_lock_irqsave(&hfi1_devs_lock, flags);
805	dd = __hfi1_lookup(unit);
806	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
807
808	return dd;
809}
810
811/*
812 * Stop the timers during unit shutdown, or after an error late
813 * in initialization.
814 */
815static void stop_timers(struct hfi1_devdata *dd)
816{
817	struct hfi1_pportdata *ppd;
818	int pidx;
819
820	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
821		ppd = dd->pport + pidx;
822		if (ppd->led_override_timer.data) {
823			del_timer_sync(&ppd->led_override_timer);
824			atomic_set(&ppd->led_override_timer_active, 0);
825		}
826	}
827}
828
829/**
830 * shutdown_device - shut down a device
831 * @dd: the hfi1_ib device
832 *
833 * This is called to make the device quiet when we are about to
834 * unload the driver, and also when the device is administratively
835 * disabled.   It does not free any data structures.
836 * Everything it does has to be setup again by hfi1_init(dd, 1)
837 */
838static void shutdown_device(struct hfi1_devdata *dd)
839{
840	struct hfi1_pportdata *ppd;
841	unsigned pidx;
842	int i;
843
844	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
845		ppd = dd->pport + pidx;
846
847		ppd->linkup = 0;
848		if (ppd->statusp)
849			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
850					   HFI1_STATUS_IB_READY);
851	}
852	dd->flags &= ~HFI1_INITTED;
853
854	/* mask interrupts, but not errors */
855	set_intr_state(dd, 0);
856
857	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
858		ppd = dd->pport + pidx;
859		for (i = 0; i < dd->num_rcv_contexts; i++)
860			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
861					  HFI1_RCVCTRL_CTXT_DIS |
862					  HFI1_RCVCTRL_INTRAVAIL_DIS |
863					  HFI1_RCVCTRL_PKEY_DIS |
864					  HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
865		/*
866		 * Gracefully stop all sends allowing any in progress to
867		 * trickle out first.
868		 */
869		for (i = 0; i < dd->num_send_contexts; i++)
870			sc_flush(dd->send_contexts[i].sc);
871	}
872
873	/*
874	 * Enough for anything that's going to trickle out to have actually
875	 * done so.
876	 */
877	udelay(20);
878
879	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
880		ppd = dd->pport + pidx;
881
882		/* disable all contexts */
883		for (i = 0; i < dd->num_send_contexts; i++)
884			sc_disable(dd->send_contexts[i].sc);
885		/* disable the send device */
886		pio_send_control(dd, PSC_GLOBAL_DISABLE);
887
888		/*
889		 * Clear SerdesEnable.
890		 * We can't count on interrupts since we are stopping.
891		 */
892		hfi1_quiet_serdes(ppd);
893
894		if (ppd->hfi1_wq) {
895			destroy_workqueue(ppd->hfi1_wq);
896			ppd->hfi1_wq = NULL;
897		}
898	}
899	sdma_exit(dd);
900}
901
902/**
903 * hfi1_free_ctxtdata - free a context's allocated data
904 * @dd: the hfi1_ib device
905 * @rcd: the ctxtdata structure
906 *
907 * free up any allocated data for a context
908 * This should not touch anything that would affect a simultaneous
909 * re-allocation of context data, because it is called after hfi1_mutex
910 * is released (and can be called from reinit as well).
911 * It should never change any chip state, or global driver state.
912 */
913void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
914{
915	unsigned e;
916
917	if (!rcd)
918		return;
919
920	if (rcd->rcvhdrq) {
921		dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
922				  rcd->rcvhdrq, rcd->rcvhdrq_phys);
923		rcd->rcvhdrq = NULL;
924		if (rcd->rcvhdrtail_kvaddr) {
925			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
926					  (void *)rcd->rcvhdrtail_kvaddr,
927					  rcd->rcvhdrqtailaddr_phys);
928			rcd->rcvhdrtail_kvaddr = NULL;
929		}
930	}
931
932	/* all the RcvArray entries should have been cleared by now */
933	kfree(rcd->egrbufs.rcvtids);
934
935	for (e = 0; e < rcd->egrbufs.alloced; e++) {
936		if (rcd->egrbufs.buffers[e].phys)
937			dma_free_coherent(&dd->pcidev->dev,
938					  rcd->egrbufs.buffers[e].len,
939					  rcd->egrbufs.buffers[e].addr,
940					  rcd->egrbufs.buffers[e].phys);
941	}
942	kfree(rcd->egrbufs.buffers);
943
944	sc_free(rcd->sc);
945	vfree(rcd->physshadow);
946	vfree(rcd->tid_pg_list);
947	vfree(rcd->user_event_mask);
948	vfree(rcd->subctxt_uregbase);
949	vfree(rcd->subctxt_rcvegrbuf);
950	vfree(rcd->subctxt_rcvhdr_base);
951	kfree(rcd->tidusemap);
952	kfree(rcd->opstats);
953	kfree(rcd);
954}
955
956void hfi1_free_devdata(struct hfi1_devdata *dd)
957{
958	unsigned long flags;
959
960	spin_lock_irqsave(&hfi1_devs_lock, flags);
961	idr_remove(&hfi1_unit_table, dd->unit);
962	list_del(&dd->list);
963	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
964	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
965	rcu_barrier(); /* wait for rcu callbacks to complete */
966	free_percpu(dd->int_counter);
967	free_percpu(dd->rcv_limit);
968	ib_dealloc_device(&dd->verbs_dev.ibdev);
969}
970
971/*
972 * Allocate our primary per-unit data structure.  Must be done via verbs
973 * allocator, because the verbs cleanup process both does cleanup and
974 * free of the data structure.
975 * "extra" is for chip-specific data.
976 *
977 * Use the idr mechanism to get a unit number for this unit.
978 */
979struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
980{
981	unsigned long flags;
982	struct hfi1_devdata *dd;
983	int ret;
984
985	dd = (struct hfi1_devdata *)ib_alloc_device(sizeof(*dd) + extra);
986	if (!dd)
987		return ERR_PTR(-ENOMEM);
988	/* extra is * number of ports */
989	dd->num_pports = extra / sizeof(struct hfi1_pportdata);
990	dd->pport = (struct hfi1_pportdata *)(dd + 1);
991
992	INIT_LIST_HEAD(&dd->list);
993	dd->node = dev_to_node(&pdev->dev);
994	if (dd->node < 0)
995		dd->node = 0;
996	idr_preload(GFP_KERNEL);
997	spin_lock_irqsave(&hfi1_devs_lock, flags);
998
999	ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1000	if (ret >= 0) {
1001		dd->unit = ret;
1002		list_add(&dd->list, &hfi1_dev_list);
1003	}
1004
1005	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1006	idr_preload_end();
1007
1008	if (ret < 0) {
1009		hfi1_early_err(&pdev->dev,
1010			       "Could not allocate unit ID: error %d\n", -ret);
1011		goto bail;
1012	}
1013	/*
1014	 * Initialize all locks for the device. This needs to be as early as
1015	 * possible so locks are usable.
1016	 */
1017	spin_lock_init(&dd->sc_lock);
1018	spin_lock_init(&dd->sendctrl_lock);
1019	spin_lock_init(&dd->rcvctrl_lock);
1020	spin_lock_init(&dd->uctxt_lock);
1021	spin_lock_init(&dd->hfi1_diag_trans_lock);
1022	spin_lock_init(&dd->sc_init_lock);
1023	spin_lock_init(&dd->dc8051_lock);
1024	spin_lock_init(&dd->dc8051_memlock);
1025	mutex_init(&dd->qsfp_i2c_mutex);
1026	seqlock_init(&dd->sc2vl_lock);
1027	spin_lock_init(&dd->sde_map_lock);
1028	init_waitqueue_head(&dd->event_queue);
1029
1030	dd->int_counter = alloc_percpu(u64);
1031	if (!dd->int_counter) {
1032		ret = -ENOMEM;
1033		hfi1_early_err(&pdev->dev,
1034			       "Could not allocate per-cpu int_counter\n");
1035		goto bail;
1036	}
1037
1038	dd->rcv_limit = alloc_percpu(u64);
1039	if (!dd->rcv_limit) {
1040		ret = -ENOMEM;
1041		hfi1_early_err(&pdev->dev,
1042			       "Could not allocate per-cpu rcv_limit\n");
1043		goto bail;
1044	}
1045
1046	if (!hfi1_cpulist_count) {
1047		u32 count = num_online_cpus();
1048
1049		hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1050				       GFP_KERNEL);
1051		if (hfi1_cpulist)
1052			hfi1_cpulist_count = count;
1053		else
1054			hfi1_early_err(
1055			&pdev->dev,
1056			"Could not alloc cpulist info, cpu affinity might be wrong\n");
1057	}
1058	hfi1_dbg_ibdev_init(&dd->verbs_dev);
1059	return dd;
1060
1061bail:
1062	if (!list_empty(&dd->list))
1063		list_del_init(&dd->list);
1064	ib_dealloc_device(&dd->verbs_dev.ibdev);
1065	return ERR_PTR(ret);
1066}
1067
1068/*
1069 * Called from freeze mode handlers, and from PCI error
1070 * reporting code.  Should be paranoid about state of
1071 * system and data structures.
1072 */
1073void hfi1_disable_after_error(struct hfi1_devdata *dd)
1074{
1075	if (dd->flags & HFI1_INITTED) {
1076		u32 pidx;
1077
1078		dd->flags &= ~HFI1_INITTED;
1079		if (dd->pport)
1080			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1081				struct hfi1_pportdata *ppd;
1082
1083				ppd = dd->pport + pidx;
1084				if (dd->flags & HFI1_PRESENT)
1085					set_link_state(ppd, HLS_DN_DISABLE);
1086
1087				if (ppd->statusp)
1088					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1089			}
1090	}
1091
1092	/*
1093	 * Mark as having had an error for driver, and also
1094	 * for /sys and status word mapped to user programs.
1095	 * This marks unit as not usable, until reset.
1096	 */
1097	if (dd->status)
1098		dd->status->dev |= HFI1_STATUS_HWERROR;
1099}
1100
1101static void remove_one(struct pci_dev *);
1102static int init_one(struct pci_dev *, const struct pci_device_id *);
1103
1104#define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1105#define PFX DRIVER_NAME ": "
1106
1107static const struct pci_device_id hfi1_pci_tbl[] = {
1108	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1109	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1110	{ 0, }
1111};
1112
1113MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1114
1115static struct pci_driver hfi1_pci_driver = {
1116	.name = DRIVER_NAME,
1117	.probe = init_one,
1118	.remove = remove_one,
1119	.id_table = hfi1_pci_tbl,
1120	.err_handler = &hfi1_pci_err_handler,
1121};
1122
1123static void __init compute_krcvqs(void)
1124{
1125	int i;
1126
1127	for (i = 0; i < krcvqsset; i++)
1128		n_krcvqs += krcvqs[i];
1129}
1130
1131/*
1132 * Do all the generic driver unit- and chip-independent memory
1133 * allocation and initialization.
1134 */
1135static int __init hfi1_mod_init(void)
1136{
1137	int ret;
1138
1139	ret = dev_init();
1140	if (ret)
1141		goto bail;
1142
1143	/* validate max MTU before any devices start */
1144	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1145		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1146		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1147		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1148	}
1149	/* valid CUs run from 1-128 in powers of 2 */
1150	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1151		hfi1_cu = 1;
1152	/* valid credit return threshold is 0-100, variable is unsigned */
1153	if (user_credit_return_threshold > 100)
1154		user_credit_return_threshold = 100;
1155
1156	compute_krcvqs();
1157	/* sanitize receive interrupt count, time must wait until after
1158	   the hardware type is known */
1159	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1160		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1161	/* reject invalid combinations */
1162	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1163		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1164		rcv_intr_count = 1;
1165	}
1166	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1167		/*
1168		 * Avoid indefinite packet delivery by requiring a timeout
1169		 * if count is > 1.
1170		 */
1171		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1172		rcv_intr_timeout = 1;
1173	}
1174	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1175		/*
1176		 * The dynamic algorithm expects a non-zero timeout
1177		 * and a count > 1.
1178		 */
1179		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1180		rcv_intr_dynamic = 0;
1181	}
1182
1183	/* sanitize link CRC options */
1184	link_crc_mask &= SUPPORTED_CRCS;
1185
1186	/*
1187	 * These must be called before the driver is registered with
1188	 * the PCI subsystem.
1189	 */
1190	idr_init(&hfi1_unit_table);
1191
1192	hfi1_dbg_init();
1193	ret = pci_register_driver(&hfi1_pci_driver);
1194	if (ret < 0) {
1195		pr_err("Unable to register driver: error %d\n", -ret);
1196		goto bail_dev;
1197	}
1198	goto bail; /* all OK */
1199
1200bail_dev:
1201	hfi1_dbg_exit();
1202	idr_destroy(&hfi1_unit_table);
1203	dev_cleanup();
1204bail:
1205	return ret;
1206}
1207
1208module_init(hfi1_mod_init);
1209
1210/*
1211 * Do the non-unit driver cleanup, memory free, etc. at unload.
1212 */
1213static void __exit hfi1_mod_cleanup(void)
1214{
1215	pci_unregister_driver(&hfi1_pci_driver);
1216	hfi1_dbg_exit();
1217	hfi1_cpulist_count = 0;
1218	kfree(hfi1_cpulist);
1219
1220	idr_destroy(&hfi1_unit_table);
1221	dispose_firmware();	/* asymmetric with obtain_firmware() */
1222	dev_cleanup();
1223}
1224
1225module_exit(hfi1_mod_cleanup);
1226
1227/* this can only be called after a successful initialization */
1228static void cleanup_device_data(struct hfi1_devdata *dd)
1229{
1230	int ctxt;
1231	int pidx;
1232	struct hfi1_ctxtdata **tmp;
1233	unsigned long flags;
1234
1235	/* users can't do anything more with chip */
1236	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1237		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1238		struct cc_state *cc_state;
1239		int i;
1240
1241		if (ppd->statusp)
1242			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1243
1244		for (i = 0; i < OPA_MAX_SLS; i++)
1245			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1246
1247		spin_lock(&ppd->cc_state_lock);
1248		cc_state = get_cc_state(ppd);
1249		rcu_assign_pointer(ppd->cc_state, NULL);
1250		spin_unlock(&ppd->cc_state_lock);
1251
1252		if (cc_state)
1253			call_rcu(&cc_state->rcu, cc_state_reclaim);
1254	}
1255
1256	free_credit_return(dd);
1257
1258	/*
1259	 * Free any resources still in use (usually just kernel contexts)
1260	 * at unload; we do for ctxtcnt, because that's what we allocate.
1261	 * We acquire lock to be really paranoid that rcd isn't being
1262	 * accessed from some interrupt-related code (that should not happen,
1263	 * but best to be sure).
1264	 */
1265	spin_lock_irqsave(&dd->uctxt_lock, flags);
1266	tmp = dd->rcd;
1267	dd->rcd = NULL;
1268	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1269	for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1270		struct hfi1_ctxtdata *rcd = tmp[ctxt];
1271
1272		tmp[ctxt] = NULL; /* debugging paranoia */
1273		if (rcd) {
1274			hfi1_clear_tids(rcd);
1275			hfi1_free_ctxtdata(dd, rcd);
1276		}
1277	}
1278	kfree(tmp);
1279	/* must follow rcv context free - need to remove rcv's hooks */
1280	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1281		sc_free(dd->send_contexts[ctxt].sc);
1282	dd->num_send_contexts = 0;
1283	kfree(dd->send_contexts);
1284	dd->send_contexts = NULL;
1285	kfree(dd->boardname);
1286	vfree(dd->events);
1287	vfree(dd->status);
1288	hfi1_cq_exit(dd);
1289}
1290
1291/*
1292 * Clean up on unit shutdown, or error during unit load after
1293 * successful initialization.
1294 */
1295static void postinit_cleanup(struct hfi1_devdata *dd)
1296{
1297	hfi1_start_cleanup(dd);
1298
1299	hfi1_pcie_ddcleanup(dd);
1300	hfi1_pcie_cleanup(dd->pcidev);
1301
1302	cleanup_device_data(dd);
1303
1304	hfi1_free_devdata(dd);
1305}
1306
1307static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1308{
1309	int ret = 0, j, pidx, initfail;
1310	struct hfi1_devdata *dd = NULL;
1311
1312	/* First, lock the non-writable module parameters */
1313	HFI1_CAP_LOCK();
1314
1315	/* Validate some global module parameters */
1316	if (rcvhdrcnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1317		hfi1_early_err(&pdev->dev, "Header queue  count too small\n");
1318		ret = -EINVAL;
1319		goto bail;
1320	}
1321	/* use the encoding function as a sanitization check */
1322	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1323		hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1324			       hfi1_hdrq_entsize);
1325		goto bail;
1326	}
1327
1328	/* The receive eager buffer size must be set before the receive
1329	 * contexts are created.
1330	 *
1331	 * Set the eager buffer size.  Validate that it falls in a range
1332	 * allowed by the hardware - all powers of 2 between the min and
1333	 * max.  The maximum valid MTU is within the eager buffer range
1334	 * so we do not need to cap the max_mtu by an eager buffer size
1335	 * setting.
1336	 */
1337	if (eager_buffer_size) {
1338		if (!is_power_of_2(eager_buffer_size))
1339			eager_buffer_size =
1340				roundup_pow_of_two(eager_buffer_size);
1341		eager_buffer_size =
1342			clamp_val(eager_buffer_size,
1343				  MIN_EAGER_BUFFER * 8,
1344				  MAX_EAGER_BUFFER_TOTAL);
1345		hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1346				eager_buffer_size);
1347	} else {
1348		hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1349		ret = -EINVAL;
1350		goto bail;
1351	}
1352
1353	/* restrict value of hfi1_rcvarr_split */
1354	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1355
1356	ret = hfi1_pcie_init(pdev, ent);
1357	if (ret)
1358		goto bail;
1359
1360	/*
1361	 * Do device-specific initialization, function table setup, dd
1362	 * allocation, etc.
1363	 */
1364	switch (ent->device) {
1365	case PCI_DEVICE_ID_INTEL0:
1366	case PCI_DEVICE_ID_INTEL1:
1367		dd = hfi1_init_dd(pdev, ent);
1368		break;
1369	default:
1370		hfi1_early_err(&pdev->dev,
1371			       "Failing on unknown Intel deviceid 0x%x\n",
1372			       ent->device);
1373		ret = -ENODEV;
1374	}
1375
1376	if (IS_ERR(dd))
1377		ret = PTR_ERR(dd);
1378	if (ret)
1379		goto clean_bail; /* error already printed */
1380
1381	ret = create_workqueues(dd);
1382	if (ret)
1383		goto clean_bail;
1384
1385	/* do the generic initialization */
1386	initfail = hfi1_init(dd, 0);
1387
1388	ret = hfi1_register_ib_device(dd);
1389
1390	/*
1391	 * Now ready for use.  this should be cleared whenever we
1392	 * detect a reset, or initiate one.  If earlier failure,
1393	 * we still create devices, so diags, etc. can be used
1394	 * to determine cause of problem.
1395	 */
1396	if (!initfail && !ret)
1397		dd->flags |= HFI1_INITTED;
1398
1399	j = hfi1_device_create(dd);
1400	if (j)
1401		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1402
1403	if (initfail || ret) {
1404		stop_timers(dd);
1405		flush_workqueue(ib_wq);
1406		for (pidx = 0; pidx < dd->num_pports; ++pidx)
1407			hfi1_quiet_serdes(dd->pport + pidx);
1408		if (!j)
1409			hfi1_device_remove(dd);
1410		if (!ret)
1411			hfi1_unregister_ib_device(dd);
1412		postinit_cleanup(dd);
1413		if (initfail)
1414			ret = initfail;
1415		goto bail;	/* everything already cleaned */
1416	}
1417
1418	sdma_start(dd);
1419
1420	return 0;
1421
1422clean_bail:
1423	hfi1_pcie_cleanup(pdev);
1424bail:
1425	return ret;
1426}
1427
1428static void remove_one(struct pci_dev *pdev)
1429{
1430	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1431
1432	/* unregister from IB core */
1433	hfi1_unregister_ib_device(dd);
1434
1435	/*
1436	 * Disable the IB link, disable interrupts on the device,
1437	 * clear dma engines, etc.
1438	 */
1439	shutdown_device(dd);
1440
1441	stop_timers(dd);
1442
1443	/* wait until all of our (qsfp) queue_work() calls complete */
1444	flush_workqueue(ib_wq);
1445
1446	hfi1_device_remove(dd);
1447
1448	postinit_cleanup(dd);
1449}
1450
1451/**
1452 * hfi1_create_rcvhdrq - create a receive header queue
1453 * @dd: the hfi1_ib device
1454 * @rcd: the context data
1455 *
1456 * This must be contiguous memory (from an i/o perspective), and must be
1457 * DMA'able (which means for some systems, it will go through an IOMMU,
1458 * or be forced into a low address range).
1459 */
1460int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1461{
1462	unsigned amt;
1463	u64 reg;
1464
1465	if (!rcd->rcvhdrq) {
1466		dma_addr_t phys_hdrqtail;
1467		gfp_t gfp_flags;
1468
1469		/*
1470		 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1471		 * (* sizeof(u32)).
1472		 */
1473		amt = ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1474			    sizeof(u32), PAGE_SIZE);
1475
1476		gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
1477			GFP_USER : GFP_KERNEL;
1478		rcd->rcvhdrq = dma_zalloc_coherent(
1479			&dd->pcidev->dev, amt, &rcd->rcvhdrq_phys,
1480			gfp_flags | __GFP_COMP);
1481
1482		if (!rcd->rcvhdrq) {
1483			dd_dev_err(dd,
1484				"attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1485				amt, rcd->ctxt);
1486			goto bail;
1487		}
1488
1489		/* Event mask is per device now and is in hfi1_devdata */
1490		/*if (rcd->ctxt >= dd->first_user_ctxt) {
1491			rcd->user_event_mask = vmalloc_user(PAGE_SIZE);
1492			if (!rcd->user_event_mask)
1493				goto bail_free_hdrq;
1494				}*/
1495
1496		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1497			rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1498				&dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1499				gfp_flags);
1500			if (!rcd->rcvhdrtail_kvaddr)
1501				goto bail_free;
1502			rcd->rcvhdrqtailaddr_phys = phys_hdrqtail;
1503		}
1504
1505		rcd->rcvhdrq_size = amt;
1506	}
1507	/*
1508	 * These values are per-context:
1509	 *	RcvHdrCnt
1510	 *	RcvHdrEntSize
1511	 *	RcvHdrSize
1512	 */
1513	reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1514			& RCV_HDR_CNT_CNT_MASK)
1515		<< RCV_HDR_CNT_CNT_SHIFT;
1516	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1517	reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1518			& RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1519		<< RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1520	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1521	reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1522		<< RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1523	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1524	return 0;
1525
1526bail_free:
1527	dd_dev_err(dd,
1528		"attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1529		rcd->ctxt);
1530	vfree(rcd->user_event_mask);
1531	rcd->user_event_mask = NULL;
1532	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1533			  rcd->rcvhdrq_phys);
1534	rcd->rcvhdrq = NULL;
1535bail:
1536	return -ENOMEM;
1537}
1538
1539/**
1540 * allocate eager buffers, both kernel and user contexts.
1541 * @rcd: the context we are setting up.
1542 *
1543 * Allocate the eager TID buffers and program them into hip.
1544 * They are no longer completely contiguous, we do multiple allocation
1545 * calls.  Otherwise we get the OOM code involved, by asking for too
1546 * much per call, with disastrous results on some kernels.
1547 */
1548int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1549{
1550	struct hfi1_devdata *dd = rcd->dd;
1551	u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1552	gfp_t gfp_flags;
1553	u16 order;
1554	int ret = 0;
1555	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1556
1557	/*
1558	 * GFP_USER, but without GFP_FS, so buffer cache can be
1559	 * coalesced (we hope); otherwise, even at order 4,
1560	 * heavy filesystem activity makes these fail, and we can
1561	 * use compound pages.
1562	 */
1563	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1564
1565	/*
1566	 * The minimum size of the eager buffers is a groups of MTU-sized
1567	 * buffers.
1568	 * The global eager_buffer_size parameter is checked against the
1569	 * theoretical lower limit of the value. Here, we check against the
1570	 * MTU.
1571	 */
1572	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1573		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1574	/*
1575	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1576	 * size to the max MTU (page-aligned).
1577	 */
1578	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1579		rcd->egrbufs.rcvtid_size = round_mtu;
1580
1581	/*
1582	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1583	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1584	 */
1585	if (rcd->egrbufs.size <= (1 << 20))
1586		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1587			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1588
1589	while (alloced_bytes < rcd->egrbufs.size &&
1590	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1591		rcd->egrbufs.buffers[idx].addr =
1592			dma_zalloc_coherent(&dd->pcidev->dev,
1593					    rcd->egrbufs.rcvtid_size,
1594					    &rcd->egrbufs.buffers[idx].phys,
1595					    gfp_flags);
1596		if (rcd->egrbufs.buffers[idx].addr) {
1597			rcd->egrbufs.buffers[idx].len =
1598				rcd->egrbufs.rcvtid_size;
1599			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1600				rcd->egrbufs.buffers[idx].addr;
1601			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].phys =
1602				rcd->egrbufs.buffers[idx].phys;
1603			rcd->egrbufs.alloced++;
1604			alloced_bytes += rcd->egrbufs.rcvtid_size;
1605			idx++;
1606		} else {
1607			u32 new_size, i, j;
1608			u64 offset = 0;
1609
1610			/*
1611			 * Fail the eager buffer allocation if:
1612			 *   - we are already using the lowest acceptable size
1613			 *   - we are using one-pkt-per-egr-buffer (this implies
1614			 *     that we are accepting only one size)
1615			 */
1616			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1617			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1618				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1619					rcd->ctxt);
1620				goto bail_rcvegrbuf_phys;
1621			}
1622
1623			new_size = rcd->egrbufs.rcvtid_size / 2;
1624
1625			/*
1626			 * If the first attempt to allocate memory failed, don't
1627			 * fail everything but continue with the next lower
1628			 * size.
1629			 */
1630			if (idx == 0) {
1631				rcd->egrbufs.rcvtid_size = new_size;
1632				continue;
1633			}
1634
1635			/*
1636			 * Re-partition already allocated buffers to a smaller
1637			 * size.
1638			 */
1639			rcd->egrbufs.alloced = 0;
1640			for (i = 0, j = 0, offset = 0; j < idx; i++) {
1641				if (i >= rcd->egrbufs.count)
1642					break;
1643				rcd->egrbufs.rcvtids[i].phys =
1644					rcd->egrbufs.buffers[j].phys + offset;
1645				rcd->egrbufs.rcvtids[i].addr =
1646					rcd->egrbufs.buffers[j].addr + offset;
1647				rcd->egrbufs.alloced++;
1648				if ((rcd->egrbufs.buffers[j].phys + offset +
1649				     new_size) ==
1650				    (rcd->egrbufs.buffers[j].phys +
1651				     rcd->egrbufs.buffers[j].len)) {
1652					j++;
1653					offset = 0;
1654				} else
1655					offset += new_size;
1656			}
1657			rcd->egrbufs.rcvtid_size = new_size;
1658		}
1659	}
1660	rcd->egrbufs.numbufs = idx;
1661	rcd->egrbufs.size = alloced_bytes;
1662
1663	dd_dev_info(dd, "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1664		rcd->ctxt, rcd->egrbufs.alloced, rcd->egrbufs.rcvtid_size,
1665		rcd->egrbufs.size);
1666
1667	/*
1668	 * Set the contexts rcv array head update threshold to the closest
1669	 * power of 2 (so we can use a mask instead of modulo) below half
1670	 * the allocated entries.
1671	 */
1672	rcd->egrbufs.threshold =
1673		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1674	/*
1675	 * Compute the expected RcvArray entry base. This is done after
1676	 * allocating the eager buffers in order to maximize the
1677	 * expected RcvArray entries for the context.
1678	 */
1679	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1680	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1681	rcd->expected_count = max_entries - egrtop;
1682	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1683		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1684
1685	rcd->expected_base = rcd->eager_base + egrtop;
1686	dd_dev_info(dd, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1687		    rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1688		    rcd->eager_base, rcd->expected_base);
1689
1690	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1691		dd_dev_err(dd, "ctxt%u: current Eager buffer size is invalid %u\n",
1692			   rcd->ctxt, rcd->egrbufs.rcvtid_size);
1693		ret = -EINVAL;
1694		goto bail;
1695	}
1696
1697	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1698		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1699			      rcd->egrbufs.rcvtids[idx].phys, order);
1700		cond_resched();
1701	}
1702	goto bail;
1703
1704bail_rcvegrbuf_phys:
1705	for (idx = 0; idx < rcd->egrbufs.alloced &&
1706		     rcd->egrbufs.buffers[idx].addr;
1707	     idx++) {
1708		dma_free_coherent(&dd->pcidev->dev,
1709				  rcd->egrbufs.buffers[idx].len,
1710				  rcd->egrbufs.buffers[idx].addr,
1711				  rcd->egrbufs.buffers[idx].phys);
1712		rcd->egrbufs.buffers[idx].addr = NULL;
1713		rcd->egrbufs.buffers[idx].phys = 0;
1714		rcd->egrbufs.buffers[idx].len = 0;
1715	}
1716bail:
1717	return ret;
1718}
1719