1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2008 Cavium Networks
7 *
8 * Some parts of the code were originally released under BSD license:
9 *
10 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
11 * reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions are
15 * met:
16 *
17 *   * Redistributions of source code must retain the above copyright
18 *     notice, this list of conditions and the following disclaimer.
19 *
20 *   * Redistributions in binary form must reproduce the above
21 *     copyright notice, this list of conditions and the following
22 *     disclaimer in the documentation and/or other materials provided
23 *     with the distribution.
24 *
25 *   * Neither the name of Cavium Networks nor the names of
26 *     its contributors may be used to endorse or promote products
27 *     derived from this software without specific prior written
28 *     permission.
29 *
30 * This Software, including technical data, may be subject to U.S. export
31 * control laws, including the U.S. Export Administration Act and its associated
32 * regulations, and may be subject to export or import regulations in other
33 * countries.
34 *
35 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
36 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
37 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
38 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
39 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
40 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
41 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
42 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
43 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
44 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
45 */
46#include <linux/kernel.h>
47#include <linux/module.h>
48#include <linux/init.h>
49#include <linux/pci.h>
50#include <linux/prefetch.h>
51#include <linux/interrupt.h>
52#include <linux/platform_device.h>
53#include <linux/usb.h>
54
55#include <linux/time.h>
56#include <linux/delay.h>
57
58#include <asm/octeon/cvmx.h>
59#include <asm/octeon/cvmx-iob-defs.h>
60
61#include <linux/usb/hcd.h>
62
63#include <linux/err.h>
64
65#include <asm/octeon/octeon.h>
66#include <asm/octeon/cvmx-helper.h>
67#include <asm/octeon/cvmx-sysinfo.h>
68#include <asm/octeon/cvmx-helper-board.h>
69
70#include "octeon-hcd.h"
71
72/**
73 * enum cvmx_usb_speed - the possible USB device speeds
74 *
75 * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
76 * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
77 * @CVMX_USB_SPEED_LOW:  Device is operation at 1.5Mbps
78 */
79enum cvmx_usb_speed {
80	CVMX_USB_SPEED_HIGH = 0,
81	CVMX_USB_SPEED_FULL = 1,
82	CVMX_USB_SPEED_LOW = 2,
83};
84
85/**
86 * enum cvmx_usb_transfer - the possible USB transfer types
87 *
88 * @CVMX_USB_TRANSFER_CONTROL:	   USB transfer type control for hub and status
89 *				   transfers
90 * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
91 *				   priority periodic transfers
92 * @CVMX_USB_TRANSFER_BULK:	   USB transfer type bulk for large low priority
93 *				   transfers
94 * @CVMX_USB_TRANSFER_INTERRUPT:   USB transfer type interrupt for high priority
95 *				   periodic transfers
96 */
97enum cvmx_usb_transfer {
98	CVMX_USB_TRANSFER_CONTROL = 0,
99	CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
100	CVMX_USB_TRANSFER_BULK = 2,
101	CVMX_USB_TRANSFER_INTERRUPT = 3,
102};
103
104/**
105 * enum cvmx_usb_direction - the transfer directions
106 *
107 * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
108 * @CVMX_USB_DIRECTION_IN:  Data is transferring from the device/host to Octeon
109 */
110enum cvmx_usb_direction {
111	CVMX_USB_DIRECTION_OUT,
112	CVMX_USB_DIRECTION_IN,
113};
114
115/**
116 * enum cvmx_usb_complete - possible callback function status codes
117 *
118 * @CVMX_USB_COMPLETE_SUCCESS:	  The transaction / operation finished without
119 *				  any errors
120 * @CVMX_USB_COMPLETE_SHORT:	  FIXME: This is currently not implemented
121 * @CVMX_USB_COMPLETE_CANCEL:	  The transaction was canceled while in flight
122 *				  by a user call to cvmx_usb_cancel
123 * @CVMX_USB_COMPLETE_ERROR:	  The transaction aborted with an unexpected
124 *				  error status
125 * @CVMX_USB_COMPLETE_STALL:	  The transaction received a USB STALL response
126 *				  from the device
127 * @CVMX_USB_COMPLETE_XACTERR:	  The transaction failed with an error from the
128 *				  device even after a number of retries
129 * @CVMX_USB_COMPLETE_DATATGLERR: The transaction failed with a data toggle
130 *				  error even after a number of retries
131 * @CVMX_USB_COMPLETE_BABBLEERR:  The transaction failed with a babble error
132 * @CVMX_USB_COMPLETE_FRAMEERR:	  The transaction failed with a frame error
133 *				  even after a number of retries
134 */
135enum cvmx_usb_complete {
136	CVMX_USB_COMPLETE_SUCCESS,
137	CVMX_USB_COMPLETE_SHORT,
138	CVMX_USB_COMPLETE_CANCEL,
139	CVMX_USB_COMPLETE_ERROR,
140	CVMX_USB_COMPLETE_STALL,
141	CVMX_USB_COMPLETE_XACTERR,
142	CVMX_USB_COMPLETE_DATATGLERR,
143	CVMX_USB_COMPLETE_BABBLEERR,
144	CVMX_USB_COMPLETE_FRAMEERR,
145};
146
147/**
148 * struct cvmx_usb_port_status - the USB port status information
149 *
150 * @port_enabled:	1 = Usb port is enabled, 0 = disabled
151 * @port_over_current:	1 = Over current detected, 0 = Over current not
152 *			detected. Octeon doesn't support over current detection.
153 * @port_powered:	1 = Port power is being supplied to the device, 0 =
154 *			power is off. Octeon doesn't support turning port power
155 *			off.
156 * @port_speed:		Current port speed.
157 * @connected:		1 = A device is connected to the port, 0 = No device is
158 *			connected.
159 * @connect_change:	1 = Device connected state changed since the last set
160 *			status call.
161 */
162struct cvmx_usb_port_status {
163	uint32_t reserved		: 25;
164	uint32_t port_enabled		: 1;
165	uint32_t port_over_current	: 1;
166	uint32_t port_powered		: 1;
167	enum cvmx_usb_speed port_speed	: 2;
168	uint32_t connected		: 1;
169	uint32_t connect_change		: 1;
170};
171
172/**
173 * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
174 *
175 * @offset:	This is the offset in bytes into the main buffer where this data
176 *		is stored.
177 * @length:	This is the length in bytes of the data.
178 * @status:	This is the status of this individual packet transfer.
179 */
180struct cvmx_usb_iso_packet {
181	int offset;
182	int length;
183	enum cvmx_usb_complete status;
184};
185
186/**
187 * enum cvmx_usb_initialize_flags - flags used by the initialization function
188 *
189 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI:    The USB port uses a 12MHz crystal
190 *					      as clock source at USB_XO and
191 *					      USB_XI.
192 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND:   The USB port uses 12/24/48MHz 2.5V
193 *					      board clock source at USB_XO.
194 *					      USB_XI should be tied to GND.
195 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
196 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:    Speed of reference clock or
197 *					      crystal
198 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:    Speed of reference clock
199 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:    Speed of reference clock
200 * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA:	      Disable DMA and used polled IO for
201 *					      data transfer use for the USB
202 */
203enum cvmx_usb_initialize_flags {
204	CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI		= 1 << 0,
205	CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND		= 1 << 1,
206	CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK	= 3 << 3,
207	CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ		= 1 << 3,
208	CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ		= 2 << 3,
209	CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ		= 3 << 3,
210	/* Bits 3-4 used to encode the clock frequency */
211	CVMX_USB_INITIALIZE_FLAGS_NO_DMA		= 1 << 5,
212};
213
214/**
215 * enum cvmx_usb_pipe_flags - internal flags for a pipe.
216 *
217 * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
218 *				   actively using hardware.
219 * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
220 *				   pipe is in the ping state.
221 */
222enum cvmx_usb_pipe_flags {
223	CVMX_USB_PIPE_FLAGS_SCHEDULED	= 1 << 17,
224	CVMX_USB_PIPE_FLAGS_NEED_PING	= 1 << 18,
225};
226
227/* Maximum number of times to retry failed transactions */
228#define MAX_RETRIES		3
229
230/* Maximum number of hardware channels supported by the USB block */
231#define MAX_CHANNELS		8
232
233/*
234 * The low level hardware can transfer a maximum of this number of bytes in each
235 * transfer. The field is 19 bits wide
236 */
237#define MAX_TRANSFER_BYTES	((1<<19)-1)
238
239/*
240 * The low level hardware can transfer a maximum of this number of packets in
241 * each transfer. The field is 10 bits wide
242 */
243#define MAX_TRANSFER_PACKETS	((1<<10)-1)
244
245/**
246 * Logical transactions may take numerous low level
247 * transactions, especially when splits are concerned. This
248 * enum represents all of the possible stages a transaction can
249 * be in. Note that split completes are always even. This is so
250 * the NAK handler can backup to the previous low level
251 * transaction with a simple clearing of bit 0.
252 */
253enum cvmx_usb_stage {
254	CVMX_USB_STAGE_NON_CONTROL,
255	CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
256	CVMX_USB_STAGE_SETUP,
257	CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
258	CVMX_USB_STAGE_DATA,
259	CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
260	CVMX_USB_STAGE_STATUS,
261	CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
262};
263
264/**
265 * struct cvmx_usb_transaction - describes each pending USB transaction
266 *				 regardless of type. These are linked together
267 *				 to form a list of pending requests for a pipe.
268 *
269 * @node:		List node for transactions in the pipe.
270 * @type:		Type of transaction, duplicated of the pipe.
271 * @flags:		State flags for this transaction.
272 * @buffer:		User's physical buffer address to read/write.
273 * @buffer_length:	Size of the user's buffer in bytes.
274 * @control_header:	For control transactions, physical address of the 8
275 *			byte standard header.
276 * @iso_start_frame:	For ISO transactions, the starting frame number.
277 * @iso_number_packets:	For ISO transactions, the number of packets in the
278 *			request.
279 * @iso_packets:	For ISO transactions, the sub packets in the request.
280 * @actual_bytes:	Actual bytes transfer for this transaction.
281 * @stage:		For control transactions, the current stage.
282 * @urb:		URB.
283 */
284struct cvmx_usb_transaction {
285	struct list_head node;
286	enum cvmx_usb_transfer type;
287	uint64_t buffer;
288	int buffer_length;
289	uint64_t control_header;
290	int iso_start_frame;
291	int iso_number_packets;
292	struct cvmx_usb_iso_packet *iso_packets;
293	int xfersize;
294	int pktcnt;
295	int retries;
296	int actual_bytes;
297	enum cvmx_usb_stage stage;
298	struct urb *urb;
299};
300
301/**
302 * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
303 *			  and some USB device. It contains a list of pending
304 *			  request to the device.
305 *
306 * @node:		List node for pipe list
307 * @next:		Pipe after this one in the list
308 * @transactions:	List of pending transactions
309 * @interval:		For periodic pipes, the interval between packets in
310 *			frames
311 * @next_tx_frame:	The next frame this pipe is allowed to transmit on
312 * @flags:		State flags for this pipe
313 * @device_speed:	Speed of device connected to this pipe
314 * @transfer_type:	Type of transaction supported by this pipe
315 * @transfer_dir:	IN or OUT. Ignored for Control
316 * @multi_count:	Max packet in a row for the device
317 * @max_packet:		The device's maximum packet size in bytes
318 * @device_addr:	USB device address at other end of pipe
319 * @endpoint_num:	USB endpoint number at other end of pipe
320 * @hub_device_addr:	Hub address this device is connected to
321 * @hub_port:		Hub port this device is connected to
322 * @pid_toggle:		This toggles between 0/1 on every packet send to track
323 *			the data pid needed
324 * @channel:		Hardware DMA channel for this pipe
325 * @split_sc_frame:	The low order bits of the frame number the split
326 *			complete should be sent on
327 */
328struct cvmx_usb_pipe {
329	struct list_head node;
330	struct list_head transactions;
331	uint64_t interval;
332	uint64_t next_tx_frame;
333	enum cvmx_usb_pipe_flags flags;
334	enum cvmx_usb_speed device_speed;
335	enum cvmx_usb_transfer transfer_type;
336	enum cvmx_usb_direction transfer_dir;
337	int multi_count;
338	uint16_t max_packet;
339	uint8_t device_addr;
340	uint8_t endpoint_num;
341	uint8_t hub_device_addr;
342	uint8_t hub_port;
343	uint8_t pid_toggle;
344	uint8_t channel;
345	int8_t split_sc_frame;
346};
347
348struct cvmx_usb_tx_fifo {
349	struct {
350		int channel;
351		int size;
352		uint64_t address;
353	} entry[MAX_CHANNELS+1];
354	int head;
355	int tail;
356};
357
358/**
359 * struct cvmx_usb_state - the state of the USB block
360 *
361 * init_flags:		   Flags passed to initialize.
362 * index:		   Which USB block this is for.
363 * idle_hardware_channels: Bit set for every idle hardware channel.
364 * usbcx_hprt:		   Stored port status so we don't need to read a CSR to
365 *			   determine splits.
366 * pipe_for_channel:	   Map channels to pipes.
367 * pipe:		   Storage for pipes.
368 * indent:		   Used by debug output to indent functions.
369 * port_status:		   Last port status used for change notification.
370 * idle_pipes:		   List of open pipes that have no transactions.
371 * active_pipes:	   Active pipes indexed by transfer type.
372 * frame_number:	   Increments every SOF interrupt for time keeping.
373 * active_split:	   Points to the current active split, or NULL.
374 */
375struct cvmx_usb_state {
376	int init_flags;
377	int index;
378	int idle_hardware_channels;
379	union cvmx_usbcx_hprt usbcx_hprt;
380	struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
381	int indent;
382	struct cvmx_usb_port_status port_status;
383	struct list_head idle_pipes;
384	struct list_head active_pipes[4];
385	uint64_t frame_number;
386	struct cvmx_usb_transaction *active_split;
387	struct cvmx_usb_tx_fifo periodic;
388	struct cvmx_usb_tx_fifo nonperiodic;
389};
390
391struct octeon_hcd {
392	spinlock_t lock;
393	struct cvmx_usb_state usb;
394};
395
396/* This macro spins on a register waiting for it to reach a condition. */
397#define CVMX_WAIT_FOR_FIELD32(address, _union, cond, timeout_usec)	    \
398	({int result;							    \
399	do {								    \
400		uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
401			octeon_get_clock_rate() / 1000000;		    \
402		union _union c;						    \
403									    \
404		while (1) {						    \
405			c.u32 = cvmx_usb_read_csr32(usb, address);	    \
406									    \
407			if (cond) {					    \
408				result = 0;				    \
409				break;					    \
410			} else if (cvmx_get_cycle() > done) {		    \
411				result = -1;				    \
412				break;					    \
413			} else						    \
414				cvmx_wait(100);				    \
415		}							    \
416	} while (0);							    \
417	result; })
418
419/*
420 * This macro logically sets a single field in a CSR. It does the sequence
421 * read, modify, and write
422 */
423#define USB_SET_FIELD32(address, _union, field, value)		\
424	do {							\
425		union _union c;					\
426								\
427		c.u32 = cvmx_usb_read_csr32(usb, address);	\
428		c.s.field = value;				\
429		cvmx_usb_write_csr32(usb, address, c.u32);	\
430	} while (0)
431
432/* Returns the IO address to push/pop stuff data from the FIFOs */
433#define USB_FIFO_ADDRESS(channel, usb_index) \
434	(CVMX_USBCX_GOTGCTL(usb_index) + ((channel)+1)*0x1000)
435
436/**
437 * struct octeon_temp_buffer - a bounce buffer for USB transfers
438 * @orig_buffer: the original buffer passed by the USB stack
439 * @data:	 the newly allocated temporary buffer (excluding meta-data)
440 *
441 * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
442 * the buffer is too short, we need to allocate a temporary one, and this struct
443 * represents it.
444 */
445struct octeon_temp_buffer {
446	void *orig_buffer;
447	u8 data[0];
448};
449
450static inline struct octeon_hcd *cvmx_usb_to_octeon(struct cvmx_usb_state *p)
451{
452	return container_of(p, struct octeon_hcd, usb);
453}
454
455static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
456{
457	return container_of((void *)p, struct usb_hcd, hcd_priv);
458}
459
460/**
461 * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
462 *                            (if needed)
463 * @urb:	URB.
464 * @mem_flags:	Memory allocation flags.
465 *
466 * This function allocates a temporary bounce buffer whenever it's needed
467 * due to HW limitations.
468 */
469static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
470{
471	struct octeon_temp_buffer *temp;
472
473	if (urb->num_sgs || urb->sg ||
474	    (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) ||
475	    !(urb->transfer_buffer_length % sizeof(u32)))
476		return 0;
477
478	temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) +
479		       sizeof(*temp), mem_flags);
480	if (!temp)
481		return -ENOMEM;
482
483	temp->orig_buffer = urb->transfer_buffer;
484	if (usb_urb_dir_out(urb))
485		memcpy(temp->data, urb->transfer_buffer,
486		       urb->transfer_buffer_length);
487	urb->transfer_buffer = temp->data;
488	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
489
490	return 0;
491}
492
493/**
494 * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
495 * @urb: URB.
496 *
497 * Frees a buffer allocated by octeon_alloc_temp_buffer().
498 */
499static void octeon_free_temp_buffer(struct urb *urb)
500{
501	struct octeon_temp_buffer *temp;
502	size_t length;
503
504	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
505		return;
506
507	temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer,
508			    data);
509	if (usb_urb_dir_in(urb)) {
510		if (usb_pipeisoc(urb->pipe))
511			length = urb->transfer_buffer_length;
512		else
513			length = urb->actual_length;
514
515		memcpy(temp->orig_buffer, urb->transfer_buffer, length);
516	}
517	urb->transfer_buffer = temp->orig_buffer;
518	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
519	kfree(temp);
520}
521
522/**
523 * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
524 * @hcd:	USB HCD structure.
525 * @urb:	URB.
526 * @mem_flags:	Memory allocation flags.
527 */
528static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
529				  gfp_t mem_flags)
530{
531	int ret;
532
533	ret = octeon_alloc_temp_buffer(urb, mem_flags);
534	if (ret)
535		return ret;
536
537	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
538	if (ret)
539		octeon_free_temp_buffer(urb);
540
541	return ret;
542}
543
544/**
545 * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
546 * @hcd:	USB HCD structure.
547 * @urb:	URB.
548 */
549static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
550{
551	usb_hcd_unmap_urb_for_dma(hcd, urb);
552	octeon_free_temp_buffer(urb);
553}
554
555/**
556 * Read a USB 32bit CSR. It performs the necessary address swizzle
557 * for 32bit CSRs and logs the value in a readable format if
558 * debugging is on.
559 *
560 * @usb:     USB block this access is for
561 * @address: 64bit address to read
562 *
563 * Returns: Result of the read
564 */
565static inline uint32_t cvmx_usb_read_csr32(struct cvmx_usb_state *usb,
566					   uint64_t address)
567{
568	uint32_t result = cvmx_read64_uint32(address ^ 4);
569	return result;
570}
571
572
573/**
574 * Write a USB 32bit CSR. It performs the necessary address
575 * swizzle for 32bit CSRs and logs the value in a readable format
576 * if debugging is on.
577 *
578 * @usb:     USB block this access is for
579 * @address: 64bit address to write
580 * @value:   Value to write
581 */
582static inline void cvmx_usb_write_csr32(struct cvmx_usb_state *usb,
583					uint64_t address, uint32_t value)
584{
585	cvmx_write64_uint32(address ^ 4, value);
586	cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
587}
588
589/**
590 * Return non zero if this pipe connects to a non HIGH speed
591 * device through a high speed hub.
592 *
593 * @usb:    USB block this access is for
594 * @pipe:   Pipe to check
595 *
596 * Returns: Non zero if we need to do split transactions
597 */
598static inline int cvmx_usb_pipe_needs_split(struct cvmx_usb_state *usb,
599					    struct cvmx_usb_pipe *pipe)
600{
601	return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
602	       usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
603}
604
605
606/**
607 * Trivial utility function to return the correct PID for a pipe
608 *
609 * @pipe:   pipe to check
610 *
611 * Returns: PID for pipe
612 */
613static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
614{
615	if (pipe->pid_toggle)
616		return 2; /* Data1 */
617	return 0; /* Data0 */
618}
619
620static void cvmx_fifo_setup(struct cvmx_usb_state *usb)
621{
622	union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
623	union cvmx_usbcx_gnptxfsiz npsiz;
624	union cvmx_usbcx_hptxfsiz psiz;
625
626	usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb,
627						CVMX_USBCX_GHWCFG3(usb->index));
628
629	/*
630	 * Program the USBC_GRXFSIZ register to select the size of the receive
631	 * FIFO (25%).
632	 */
633	USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz,
634			rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
635
636	/*
637	 * Program the USBC_GNPTXFSIZ register to select the size and the start
638	 * address of the non-periodic transmit FIFO for nonperiodic
639	 * transactions (50%).
640	 */
641	npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
642	npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
643	npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
644	cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32);
645
646	/*
647	 * Program the USBC_HPTXFSIZ register to select the size and start
648	 * address of the periodic transmit FIFO for periodic transactions
649	 * (25%).
650	 */
651	psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
652	psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
653	psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
654	cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32);
655
656	/* Flush all FIFOs */
657	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
658			cvmx_usbcx_grstctl, txfnum, 0x10);
659	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
660			cvmx_usbcx_grstctl, txfflsh, 1);
661	CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
662			      cvmx_usbcx_grstctl, c.s.txfflsh == 0, 100);
663	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
664			cvmx_usbcx_grstctl, rxfflsh, 1);
665	CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
666			      cvmx_usbcx_grstctl, c.s.rxfflsh == 0, 100);
667}
668
669/**
670 * Shutdown a USB port after a call to cvmx_usb_initialize().
671 * The port should be disabled with all pipes closed when this
672 * function is called.
673 *
674 * @usb: USB device state populated by cvmx_usb_initialize().
675 *
676 * Returns: 0 or a negative error code.
677 */
678static int cvmx_usb_shutdown(struct cvmx_usb_state *usb)
679{
680	union cvmx_usbnx_clk_ctl usbn_clk_ctl;
681
682	/* Make sure all pipes are closed */
683	if (!list_empty(&usb->idle_pipes) ||
684	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
685	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
686	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
687	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
688		return -EBUSY;
689
690	/* Disable the clocks and put them in power on reset */
691	usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
692	usbn_clk_ctl.s.enable = 1;
693	usbn_clk_ctl.s.por = 1;
694	usbn_clk_ctl.s.hclk_rst = 1;
695	usbn_clk_ctl.s.prst = 0;
696	usbn_clk_ctl.s.hrst = 0;
697	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
698	return 0;
699}
700
701/**
702 * Initialize a USB port for use. This must be called before any
703 * other access to the Octeon USB port is made. The port starts
704 * off in the disabled state.
705 *
706 * @dev:	 Pointer to struct device for logging purposes.
707 * @usb:	 Pointer to struct cvmx_usb_state.
708 *
709 * Returns: 0 or a negative error code.
710 */
711static int cvmx_usb_initialize(struct device *dev,
712			       struct cvmx_usb_state *usb)
713{
714	int channel;
715	int divisor;
716	int retries = 0;
717	union cvmx_usbcx_hcfg usbcx_hcfg;
718	union cvmx_usbnx_clk_ctl usbn_clk_ctl;
719	union cvmx_usbcx_gintsts usbc_gintsts;
720	union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
721	union cvmx_usbcx_gintmsk usbcx_gintmsk;
722	union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
723	union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
724
725retry:
726	/*
727	 * Power On Reset and PHY Initialization
728	 *
729	 * 1. Wait for DCOK to assert (nothing to do)
730	 *
731	 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
732	 *     USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
733	 */
734	usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
735	usbn_clk_ctl.s.por = 1;
736	usbn_clk_ctl.s.hrst = 0;
737	usbn_clk_ctl.s.prst = 0;
738	usbn_clk_ctl.s.hclk_rst = 0;
739	usbn_clk_ctl.s.enable = 0;
740	/*
741	 * 2b. Select the USB reference clock/crystal parameters by writing
742	 *     appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
743	 */
744	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
745		/*
746		 * The USB port uses 12/24/48MHz 2.5V board clock
747		 * source at USB_XO. USB_XI should be tied to GND.
748		 * Most Octeon evaluation boards require this setting
749		 */
750		if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
751		    OCTEON_IS_MODEL(OCTEON_CN56XX) ||
752		    OCTEON_IS_MODEL(OCTEON_CN50XX))
753			/* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
754			usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
755		else
756			/* From CN52XX manual */
757			usbn_clk_ctl.s.p_rtype = 1;
758
759		switch (usb->init_flags &
760			CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
761		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
762			usbn_clk_ctl.s.p_c_sel = 0;
763			break;
764		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
765			usbn_clk_ctl.s.p_c_sel = 1;
766			break;
767		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
768			usbn_clk_ctl.s.p_c_sel = 2;
769			break;
770		}
771	} else {
772		/*
773		 * The USB port uses a 12MHz crystal as clock source
774		 * at USB_XO and USB_XI
775		 */
776		if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
777			/* From CN31XX,CN30XX manual */
778			usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
779		else
780			/* From CN56XX,CN52XX,CN50XX manuals. */
781			usbn_clk_ctl.s.p_rtype = 0;
782
783		usbn_clk_ctl.s.p_c_sel = 0;
784	}
785	/*
786	 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
787	 *     setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
788	 *     such that USB is as close as possible to 125Mhz
789	 */
790	divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
791	/* Lower than 4 doesn't seem to work properly */
792	if (divisor < 4)
793		divisor = 4;
794	usbn_clk_ctl.s.divide = divisor;
795	usbn_clk_ctl.s.divide2 = 0;
796	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
797
798	/* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
799	usbn_clk_ctl.s.hclk_rst = 1;
800	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
801	/* 2e.  Wait 64 core-clock cycles for HCLK to stabilize */
802	cvmx_wait(64);
803	/*
804	 * 3. Program the power-on reset field in the USBN clock-control
805	 *    register:
806	 *    USBN_CLK_CTL[POR] = 0
807	 */
808	usbn_clk_ctl.s.por = 0;
809	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
810	/* 4. Wait 1 ms for PHY clock to start */
811	mdelay(1);
812	/*
813	 * 5. Program the Reset input from automatic test equipment field in the
814	 *    USBP control and status register:
815	 *    USBN_USBP_CTL_STATUS[ATE_RESET] = 1
816	 */
817	usbn_usbp_ctl_status.u64 =
818		cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index));
819	usbn_usbp_ctl_status.s.ate_reset = 1;
820	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
821			    usbn_usbp_ctl_status.u64);
822	/* 6. Wait 10 cycles */
823	cvmx_wait(10);
824	/*
825	 * 7. Clear ATE_RESET field in the USBN clock-control register:
826	 *    USBN_USBP_CTL_STATUS[ATE_RESET] = 0
827	 */
828	usbn_usbp_ctl_status.s.ate_reset = 0;
829	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
830			    usbn_usbp_ctl_status.u64);
831	/*
832	 * 8. Program the PHY reset field in the USBN clock-control register:
833	 *    USBN_CLK_CTL[PRST] = 1
834	 */
835	usbn_clk_ctl.s.prst = 1;
836	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
837	/*
838	 * 9. Program the USBP control and status register to select host or
839	 *    device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
840	 *    device
841	 */
842	usbn_usbp_ctl_status.s.hst_mode = 0;
843	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
844			    usbn_usbp_ctl_status.u64);
845	/* 10. Wait 1 us */
846	udelay(1);
847	/*
848	 * 11. Program the hreset_n field in the USBN clock-control register:
849	 *     USBN_CLK_CTL[HRST] = 1
850	 */
851	usbn_clk_ctl.s.hrst = 1;
852	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
853	/* 12. Proceed to USB core initialization */
854	usbn_clk_ctl.s.enable = 1;
855	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
856	udelay(1);
857
858	/*
859	 * USB Core Initialization
860	 *
861	 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
862	 *    determine USB core configuration parameters.
863	 *
864	 *    Nothing needed
865	 *
866	 * 2. Program the following fields in the global AHB configuration
867	 *    register (USBC_GAHBCFG)
868	 *    DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
869	 *    Burst length, USBC_GAHBCFG[HBSTLEN] = 0
870	 *    Nonperiodic TxFIFO empty level (slave mode only),
871	 *    USBC_GAHBCFG[NPTXFEMPLVL]
872	 *    Periodic TxFIFO empty level (slave mode only),
873	 *    USBC_GAHBCFG[PTXFEMPLVL]
874	 *    Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
875	 */
876	usbcx_gahbcfg.u32 = 0;
877	usbcx_gahbcfg.s.dmaen = !(usb->init_flags &
878				  CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
879	usbcx_gahbcfg.s.hbstlen = 0;
880	usbcx_gahbcfg.s.nptxfemplvl = 1;
881	usbcx_gahbcfg.s.ptxfemplvl = 1;
882	usbcx_gahbcfg.s.glblintrmsk = 1;
883	cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
884			     usbcx_gahbcfg.u32);
885
886	/*
887	 * 3. Program the following fields in USBC_GUSBCFG register.
888	 *    HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
889	 *    ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
890	 *    USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
891	 *    PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
892	 */
893	usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb,
894						CVMX_USBCX_GUSBCFG(usb->index));
895	usbcx_gusbcfg.s.toutcal = 0;
896	usbcx_gusbcfg.s.ddrsel = 0;
897	usbcx_gusbcfg.s.usbtrdtim = 0x5;
898	usbcx_gusbcfg.s.phylpwrclksel = 0;
899	cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
900			     usbcx_gusbcfg.u32);
901
902	/*
903	 * 4. The software must unmask the following bits in the USBC_GINTMSK
904	 *    register.
905	 *    OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
906	 *    Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
907	 */
908	usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb,
909						CVMX_USBCX_GINTMSK(usb->index));
910	usbcx_gintmsk.s.otgintmsk = 1;
911	usbcx_gintmsk.s.modemismsk = 1;
912	usbcx_gintmsk.s.hchintmsk = 1;
913	usbcx_gintmsk.s.sofmsk = 0;
914	/* We need RX FIFO interrupts if we don't have DMA */
915	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
916		usbcx_gintmsk.s.rxflvlmsk = 1;
917	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
918			     usbcx_gintmsk.u32);
919
920	/*
921	 * Disable all channel interrupts. We'll enable them per channel later.
922	 */
923	for (channel = 0; channel < 8; channel++)
924		cvmx_usb_write_csr32(usb,
925				     CVMX_USBCX_HCINTMSKX(channel, usb->index),
926				     0);
927
928	/*
929	 * Host Port Initialization
930	 *
931	 * 1. Program the host-port interrupt-mask field to unmask,
932	 *    USBC_GINTMSK[PRTINT] = 1
933	 */
934	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
935			cvmx_usbcx_gintmsk, prtintmsk, 1);
936	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
937			cvmx_usbcx_gintmsk, disconnintmsk, 1);
938
939	/*
940	 * 2. Program the USBC_HCFG register to select full-speed host
941	 *    or high-speed host.
942	 */
943	usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
944	usbcx_hcfg.s.fslssupp = 0;
945	usbcx_hcfg.s.fslspclksel = 0;
946	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
947
948	cvmx_fifo_setup(usb);
949
950	/*
951	 * If the controller is getting port events right after the reset, it
952	 * means the initialization failed. Try resetting the controller again
953	 * in such case. This is seen to happen after cold boot on DSR-1000N.
954	 */
955	usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
956					       CVMX_USBCX_GINTSTS(usb->index));
957	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
958			     usbc_gintsts.u32);
959	dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32);
960	if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint)
961		return 0;
962	if (retries++ >= 5)
963		return -EAGAIN;
964	dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n",
965		 (int)usbc_gintsts.u32);
966	msleep(50);
967	cvmx_usb_shutdown(usb);
968	msleep(50);
969	goto retry;
970}
971
972/**
973 * Reset a USB port. After this call succeeds, the USB port is
974 * online and servicing requests.
975 *
976 * @usb: USB device state populated by cvmx_usb_initialize().
977 */
978static void cvmx_usb_reset_port(struct cvmx_usb_state *usb)
979{
980	usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
981						  CVMX_USBCX_HPRT(usb->index));
982
983	/* Program the port reset bit to start the reset process */
984	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
985			prtrst, 1);
986
987	/*
988	 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
989	 * process to complete.
990	 */
991	mdelay(50);
992
993	/* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
994	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
995			prtrst, 0);
996
997	/*
998	 * Read the port speed field to get the enumerated speed,
999	 * USBC_HPRT[PRTSPD].
1000	 */
1001	usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
1002						  CVMX_USBCX_HPRT(usb->index));
1003}
1004
1005
1006/**
1007 * Disable a USB port. After this call the USB port will not
1008 * generate data transfers and will not generate events.
1009 * Transactions in process will fail and call their
1010 * associated callbacks.
1011 *
1012 * @usb: USB device state populated by cvmx_usb_initialize().
1013 *
1014 * Returns: 0 or a negative error code.
1015 */
1016static int cvmx_usb_disable(struct cvmx_usb_state *usb)
1017{
1018	/* Disable the port */
1019	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
1020			prtena, 1);
1021	return 0;
1022}
1023
1024
1025/**
1026 * Get the current state of the USB port. Use this call to
1027 * determine if the usb port has anything connected, is enabled,
1028 * or has some sort of error condition. The return value of this
1029 * call has "changed" bits to signal of the value of some fields
1030 * have changed between calls.
1031 *
1032 * @usb: USB device state populated by cvmx_usb_initialize().
1033 *
1034 * Returns: Port status information
1035 */
1036static struct cvmx_usb_port_status cvmx_usb_get_status(
1037		struct cvmx_usb_state *usb)
1038{
1039	union cvmx_usbcx_hprt usbc_hprt;
1040	struct cvmx_usb_port_status result;
1041
1042	memset(&result, 0, sizeof(result));
1043
1044	usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1045	result.port_enabled = usbc_hprt.s.prtena;
1046	result.port_over_current = usbc_hprt.s.prtovrcurract;
1047	result.port_powered = usbc_hprt.s.prtpwr;
1048	result.port_speed = usbc_hprt.s.prtspd;
1049	result.connected = usbc_hprt.s.prtconnsts;
1050	result.connect_change =
1051		(result.connected != usb->port_status.connected);
1052
1053	return result;
1054}
1055
1056/**
1057 * Open a virtual pipe between the host and a USB device. A pipe
1058 * must be opened before data can be transferred between a device
1059 * and Octeon.
1060 *
1061 * @usb:	     USB device state populated by cvmx_usb_initialize().
1062 * @device_addr:
1063 *		     USB device address to open the pipe to
1064 *		     (0-127).
1065 * @endpoint_num:
1066 *		     USB endpoint number to open the pipe to
1067 *		     (0-15).
1068 * @device_speed:
1069 *		     The speed of the device the pipe is going
1070 *		     to. This must match the device's speed,
1071 *		     which may be different than the port speed.
1072 * @max_packet:	     The maximum packet length the device can
1073 *		     transmit/receive (low speed=0-8, full
1074 *		     speed=0-1023, high speed=0-1024). This value
1075 *		     comes from the standard endpoint descriptor
1076 *		     field wMaxPacketSize bits <10:0>.
1077 * @transfer_type:
1078 *		     The type of transfer this pipe is for.
1079 * @transfer_dir:
1080 *		     The direction the pipe is in. This is not
1081 *		     used for control pipes.
1082 * @interval:	     For ISOCHRONOUS and INTERRUPT transfers,
1083 *		     this is how often the transfer is scheduled
1084 *		     for. All other transfers should specify
1085 *		     zero. The units are in frames (8000/sec at
1086 *		     high speed, 1000/sec for full speed).
1087 * @multi_count:
1088 *		     For high speed devices, this is the maximum
1089 *		     allowed number of packet per microframe.
1090 *		     Specify zero for non high speed devices. This
1091 *		     value comes from the standard endpoint descriptor
1092 *		     field wMaxPacketSize bits <12:11>.
1093 * @hub_device_addr:
1094 *		     Hub device address this device is connected
1095 *		     to. Devices connected directly to Octeon
1096 *		     use zero. This is only used when the device
1097 *		     is full/low speed behind a high speed hub.
1098 *		     The address will be of the high speed hub,
1099 *		     not and full speed hubs after it.
1100 * @hub_port:	     Which port on the hub the device is
1101 *		     connected. Use zero for devices connected
1102 *		     directly to Octeon. Like hub_device_addr,
1103 *		     this is only used for full/low speed
1104 *		     devices behind a high speed hub.
1105 *
1106 * Returns: A non-NULL value is a pipe. NULL means an error.
1107 */
1108static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct cvmx_usb_state *usb,
1109						int device_addr,
1110						int endpoint_num,
1111						enum cvmx_usb_speed
1112							device_speed,
1113						int max_packet,
1114						enum cvmx_usb_transfer
1115							transfer_type,
1116						enum cvmx_usb_direction
1117							transfer_dir,
1118						int interval, int multi_count,
1119						int hub_device_addr,
1120						int hub_port)
1121{
1122	struct cvmx_usb_pipe *pipe;
1123
1124	pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
1125	if (!pipe)
1126		return NULL;
1127	if ((device_speed == CVMX_USB_SPEED_HIGH) &&
1128		(transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1129		(transfer_type == CVMX_USB_TRANSFER_BULK))
1130		pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
1131	pipe->device_addr = device_addr;
1132	pipe->endpoint_num = endpoint_num;
1133	pipe->device_speed = device_speed;
1134	pipe->max_packet = max_packet;
1135	pipe->transfer_type = transfer_type;
1136	pipe->transfer_dir = transfer_dir;
1137	INIT_LIST_HEAD(&pipe->transactions);
1138
1139	/*
1140	 * All pipes use interval to rate limit NAK processing. Force an
1141	 * interval if one wasn't supplied
1142	 */
1143	if (!interval)
1144		interval = 1;
1145	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1146		pipe->interval = interval*8;
1147		/* Force start splits to be schedule on uFrame 0 */
1148		pipe->next_tx_frame = ((usb->frame_number+7)&~7) +
1149					pipe->interval;
1150	} else {
1151		pipe->interval = interval;
1152		pipe->next_tx_frame = usb->frame_number + pipe->interval;
1153	}
1154	pipe->multi_count = multi_count;
1155	pipe->hub_device_addr = hub_device_addr;
1156	pipe->hub_port = hub_port;
1157	pipe->pid_toggle = 0;
1158	pipe->split_sc_frame = -1;
1159	list_add_tail(&pipe->node, &usb->idle_pipes);
1160
1161	/*
1162	 * We don't need to tell the hardware about this pipe yet since
1163	 * it doesn't have any submitted requests
1164	 */
1165
1166	return pipe;
1167}
1168
1169
1170/**
1171 * Poll the RX FIFOs and remove data as needed. This function is only used
1172 * in non DMA mode. It is very important that this function be called quickly
1173 * enough to prevent FIFO overflow.
1174 *
1175 * @usb:	USB device state populated by cvmx_usb_initialize().
1176 */
1177static void cvmx_usb_poll_rx_fifo(struct cvmx_usb_state *usb)
1178{
1179	union cvmx_usbcx_grxstsph rx_status;
1180	int channel;
1181	int bytes;
1182	uint64_t address;
1183	uint32_t *ptr;
1184
1185	rx_status.u32 = cvmx_usb_read_csr32(usb,
1186					    CVMX_USBCX_GRXSTSPH(usb->index));
1187	/* Only read data if IN data is there */
1188	if (rx_status.s.pktsts != 2)
1189		return;
1190	/* Check if no data is available */
1191	if (!rx_status.s.bcnt)
1192		return;
1193
1194	channel = rx_status.s.chnum;
1195	bytes = rx_status.s.bcnt;
1196	if (!bytes)
1197		return;
1198
1199	/* Get where the DMA engine would have written this data */
1200	address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) +
1201				     channel * 8);
1202
1203	ptr = cvmx_phys_to_ptr(address);
1204	cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8,
1205			    address + bytes);
1206
1207	/* Loop writing the FIFO data for this packet into memory */
1208	while (bytes > 0) {
1209		*ptr++ = cvmx_usb_read_csr32(usb,
1210					USB_FIFO_ADDRESS(channel, usb->index));
1211		bytes -= 4;
1212	}
1213	CVMX_SYNCW;
1214}
1215
1216
1217/**
1218 * Fill the TX hardware fifo with data out of the software
1219 * fifos
1220 *
1221 * @usb:	    USB device state populated by cvmx_usb_initialize().
1222 * @fifo:	    Software fifo to use
1223 * @available:	    Amount of space in the hardware fifo
1224 *
1225 * Returns: Non zero if the hardware fifo was too small and needs
1226 *	    to be serviced again.
1227 */
1228static int cvmx_usb_fill_tx_hw(struct cvmx_usb_state *usb,
1229			       struct cvmx_usb_tx_fifo *fifo, int available)
1230{
1231	/*
1232	 * We're done either when there isn't anymore space or the software FIFO
1233	 * is empty
1234	 */
1235	while (available && (fifo->head != fifo->tail)) {
1236		int i = fifo->tail;
1237		const uint32_t *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
1238		uint64_t csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel,
1239							usb->index) ^ 4;
1240		int words = available;
1241
1242		/* Limit the amount of data to what the SW fifo has */
1243		if (fifo->entry[i].size <= available) {
1244			words = fifo->entry[i].size;
1245			fifo->tail++;
1246			if (fifo->tail > MAX_CHANNELS)
1247				fifo->tail = 0;
1248		}
1249
1250		/* Update the next locations and counts */
1251		available -= words;
1252		fifo->entry[i].address += words * 4;
1253		fifo->entry[i].size -= words;
1254
1255		/*
1256		 * Write the HW fifo data. The read every three writes is due
1257		 * to an errata on CN3XXX chips
1258		 */
1259		while (words > 3) {
1260			cvmx_write64_uint32(csr_address, *ptr++);
1261			cvmx_write64_uint32(csr_address, *ptr++);
1262			cvmx_write64_uint32(csr_address, *ptr++);
1263			cvmx_read64_uint64(
1264					CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1265			words -= 3;
1266		}
1267		cvmx_write64_uint32(csr_address, *ptr++);
1268		if (--words) {
1269			cvmx_write64_uint32(csr_address, *ptr++);
1270			if (--words)
1271				cvmx_write64_uint32(csr_address, *ptr++);
1272		}
1273		cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1274	}
1275	return fifo->head != fifo->tail;
1276}
1277
1278
1279/**
1280 * Check the hardware FIFOs and fill them as needed
1281 *
1282 * @usb:	USB device state populated by cvmx_usb_initialize().
1283 */
1284static void cvmx_usb_poll_tx_fifo(struct cvmx_usb_state *usb)
1285{
1286	if (usb->periodic.head != usb->periodic.tail) {
1287		union cvmx_usbcx_hptxsts tx_status;
1288
1289		tx_status.u32 = cvmx_usb_read_csr32(usb,
1290					CVMX_USBCX_HPTXSTS(usb->index));
1291		if (cvmx_usb_fill_tx_hw(usb, &usb->periodic,
1292					tx_status.s.ptxfspcavail))
1293			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1294					cvmx_usbcx_gintmsk, ptxfempmsk, 1);
1295		else
1296			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1297					cvmx_usbcx_gintmsk, ptxfempmsk, 0);
1298	}
1299
1300	if (usb->nonperiodic.head != usb->nonperiodic.tail) {
1301		union cvmx_usbcx_gnptxsts tx_status;
1302
1303		tx_status.u32 = cvmx_usb_read_csr32(usb,
1304					CVMX_USBCX_GNPTXSTS(usb->index));
1305		if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic,
1306					tx_status.s.nptxfspcavail))
1307			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1308					cvmx_usbcx_gintmsk, nptxfempmsk, 1);
1309		else
1310			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1311					cvmx_usbcx_gintmsk, nptxfempmsk, 0);
1312	}
1313}
1314
1315
1316/**
1317 * Fill the TX FIFO with an outgoing packet
1318 *
1319 * @usb:	  USB device state populated by cvmx_usb_initialize().
1320 * @channel:	  Channel number to get packet from
1321 */
1322static void cvmx_usb_fill_tx_fifo(struct cvmx_usb_state *usb, int channel)
1323{
1324	union cvmx_usbcx_hccharx hcchar;
1325	union cvmx_usbcx_hcspltx usbc_hcsplt;
1326	union cvmx_usbcx_hctsizx usbc_hctsiz;
1327	struct cvmx_usb_tx_fifo *fifo;
1328
1329	/* We only need to fill data on outbound channels */
1330	hcchar.u32 = cvmx_usb_read_csr32(usb,
1331			CVMX_USBCX_HCCHARX(channel, usb->index));
1332	if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
1333		return;
1334
1335	/* OUT Splits only have data on the start and not the complete */
1336	usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb,
1337				CVMX_USBCX_HCSPLTX(channel, usb->index));
1338	if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
1339		return;
1340
1341	/*
1342	 * Find out how many bytes we need to fill and convert it into 32bit
1343	 * words.
1344	 */
1345	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1346				CVMX_USBCX_HCTSIZX(channel, usb->index));
1347	if (!usbc_hctsiz.s.xfersize)
1348		return;
1349
1350	if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
1351		(hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
1352		fifo = &usb->periodic;
1353	else
1354		fifo = &usb->nonperiodic;
1355
1356	fifo->entry[fifo->head].channel = channel;
1357	fifo->entry[fifo->head].address =
1358		cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1359				   channel * 8);
1360	fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize+3)>>2;
1361	fifo->head++;
1362	if (fifo->head > MAX_CHANNELS)
1363		fifo->head = 0;
1364
1365	cvmx_usb_poll_tx_fifo(usb);
1366}
1367
1368/**
1369 * Perform channel specific setup for Control transactions. All
1370 * the generic stuff will already have been done in cvmx_usb_start_channel().
1371 *
1372 * @usb:	  USB device state populated by cvmx_usb_initialize().
1373 * @channel:	  Channel to setup
1374 * @pipe:	  Pipe for control transaction
1375 */
1376static void cvmx_usb_start_channel_control(struct cvmx_usb_state *usb,
1377					   int channel,
1378					   struct cvmx_usb_pipe *pipe)
1379{
1380	struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
1381	struct usb_hcd *hcd = octeon_to_hcd(priv);
1382	struct device *dev = hcd->self.controller;
1383	struct cvmx_usb_transaction *transaction =
1384		list_first_entry(&pipe->transactions, typeof(*transaction),
1385				 node);
1386	struct usb_ctrlrequest *header =
1387		cvmx_phys_to_ptr(transaction->control_header);
1388	int bytes_to_transfer = transaction->buffer_length -
1389		transaction->actual_bytes;
1390	int packets_to_transfer;
1391	union cvmx_usbcx_hctsizx usbc_hctsiz;
1392
1393	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1394				CVMX_USBCX_HCTSIZX(channel, usb->index));
1395
1396	switch (transaction->stage) {
1397	case CVMX_USB_STAGE_NON_CONTROL:
1398	case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
1399		dev_err(dev, "%s: ERROR - Non control stage\n", __func__);
1400		break;
1401	case CVMX_USB_STAGE_SETUP:
1402		usbc_hctsiz.s.pid = 3; /* Setup */
1403		bytes_to_transfer = sizeof(*header);
1404		/* All Control operations start with a setup going OUT */
1405		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1406				cvmx_usbcx_hccharx, epdir,
1407				CVMX_USB_DIRECTION_OUT);
1408		/*
1409		 * Setup send the control header instead of the buffer data. The
1410		 * buffer data will be used in the next stage
1411		 */
1412		cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1413					channel * 8,
1414				    transaction->control_header);
1415		break;
1416	case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
1417		usbc_hctsiz.s.pid = 3; /* Setup */
1418		bytes_to_transfer = 0;
1419		/* All Control operations start with a setup going OUT */
1420		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1421				cvmx_usbcx_hccharx, epdir,
1422				CVMX_USB_DIRECTION_OUT);
1423
1424		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1425				cvmx_usbcx_hcspltx, compsplt, 1);
1426		break;
1427	case CVMX_USB_STAGE_DATA:
1428		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1429		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1430			if (header->bRequestType & USB_DIR_IN)
1431				bytes_to_transfer = 0;
1432			else if (bytes_to_transfer > pipe->max_packet)
1433				bytes_to_transfer = pipe->max_packet;
1434		}
1435		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1436				cvmx_usbcx_hccharx, epdir,
1437				((header->bRequestType & USB_DIR_IN) ?
1438					CVMX_USB_DIRECTION_IN :
1439					CVMX_USB_DIRECTION_OUT));
1440		break;
1441	case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
1442		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1443		if (!(header->bRequestType & USB_DIR_IN))
1444			bytes_to_transfer = 0;
1445		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1446				cvmx_usbcx_hccharx, epdir,
1447				((header->bRequestType & USB_DIR_IN) ?
1448					CVMX_USB_DIRECTION_IN :
1449					CVMX_USB_DIRECTION_OUT));
1450		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1451				cvmx_usbcx_hcspltx, compsplt, 1);
1452		break;
1453	case CVMX_USB_STAGE_STATUS:
1454		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1455		bytes_to_transfer = 0;
1456		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1457				cvmx_usbcx_hccharx, epdir,
1458				((header->bRequestType & USB_DIR_IN) ?
1459					CVMX_USB_DIRECTION_OUT :
1460					CVMX_USB_DIRECTION_IN));
1461		break;
1462	case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
1463		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1464		bytes_to_transfer = 0;
1465		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1466				cvmx_usbcx_hccharx, epdir,
1467				((header->bRequestType & USB_DIR_IN) ?
1468					CVMX_USB_DIRECTION_OUT :
1469					CVMX_USB_DIRECTION_IN));
1470		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1471				cvmx_usbcx_hcspltx, compsplt, 1);
1472		break;
1473	}
1474
1475	/*
1476	 * Make sure the transfer never exceeds the byte limit of the hardware.
1477	 * Further bytes will be sent as continued transactions
1478	 */
1479	if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1480		/* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1481		bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
1482		bytes_to_transfer *= pipe->max_packet;
1483	}
1484
1485	/*
1486	 * Calculate the number of packets to transfer. If the length is zero
1487	 * we still need to transfer one packet
1488	 */
1489	packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer,
1490					   pipe->max_packet);
1491	if (packets_to_transfer == 0)
1492		packets_to_transfer = 1;
1493	else if ((packets_to_transfer > 1) &&
1494			(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1495		/*
1496		 * Limit to one packet when not using DMA. Channels must be
1497		 * restarted between every packet for IN transactions, so there
1498		 * is no reason to do multiple packets in a row
1499		 */
1500		packets_to_transfer = 1;
1501		bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1502	} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1503		/*
1504		 * Limit the number of packet and data transferred to what the
1505		 * hardware can handle
1506		 */
1507		packets_to_transfer = MAX_TRANSFER_PACKETS;
1508		bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1509	}
1510
1511	usbc_hctsiz.s.xfersize = bytes_to_transfer;
1512	usbc_hctsiz.s.pktcnt = packets_to_transfer;
1513
1514	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index),
1515			     usbc_hctsiz.u32);
1516}
1517
1518
1519/**
1520 * Start a channel to perform the pipe's head transaction
1521 *
1522 * @usb:	  USB device state populated by cvmx_usb_initialize().
1523 * @channel:	  Channel to setup
1524 * @pipe:	  Pipe to start
1525 */
1526static void cvmx_usb_start_channel(struct cvmx_usb_state *usb, int channel,
1527				   struct cvmx_usb_pipe *pipe)
1528{
1529	struct cvmx_usb_transaction *transaction =
1530		list_first_entry(&pipe->transactions, typeof(*transaction),
1531				 node);
1532
1533	/* Make sure all writes to the DMA region get flushed */
1534	CVMX_SYNCW;
1535
1536	/* Attach the channel to the pipe */
1537	usb->pipe_for_channel[channel] = pipe;
1538	pipe->channel = channel;
1539	pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED;
1540
1541	/* Mark this channel as in use */
1542	usb->idle_hardware_channels &= ~(1<<channel);
1543
1544	/* Enable the channel interrupt bits */
1545	{
1546		union cvmx_usbcx_hcintx usbc_hcint;
1547		union cvmx_usbcx_hcintmskx usbc_hcintmsk;
1548		union cvmx_usbcx_haintmsk usbc_haintmsk;
1549
1550		/* Clear all channel status bits */
1551		usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
1552					CVMX_USBCX_HCINTX(channel, usb->index));
1553
1554		cvmx_usb_write_csr32(usb,
1555				     CVMX_USBCX_HCINTX(channel, usb->index),
1556				     usbc_hcint.u32);
1557
1558		usbc_hcintmsk.u32 = 0;
1559		usbc_hcintmsk.s.chhltdmsk = 1;
1560		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1561			/*
1562			 * Channels need these extra interrupts when we aren't
1563			 * in DMA mode.
1564			 */
1565			usbc_hcintmsk.s.datatglerrmsk = 1;
1566			usbc_hcintmsk.s.frmovrunmsk = 1;
1567			usbc_hcintmsk.s.bblerrmsk = 1;
1568			usbc_hcintmsk.s.xacterrmsk = 1;
1569			if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1570				/*
1571				 * Splits don't generate xfercompl, so we need
1572				 * ACK and NYET.
1573				 */
1574				usbc_hcintmsk.s.nyetmsk = 1;
1575				usbc_hcintmsk.s.ackmsk = 1;
1576			}
1577			usbc_hcintmsk.s.nakmsk = 1;
1578			usbc_hcintmsk.s.stallmsk = 1;
1579			usbc_hcintmsk.s.xfercomplmsk = 1;
1580		}
1581		cvmx_usb_write_csr32(usb,
1582				CVMX_USBCX_HCINTMSKX(channel, usb->index),
1583				usbc_hcintmsk.u32);
1584
1585		/* Enable the channel interrupt to propagate */
1586		usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb,
1587					CVMX_USBCX_HAINTMSK(usb->index));
1588		usbc_haintmsk.s.haintmsk |= 1<<channel;
1589		cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index),
1590				     usbc_haintmsk.u32);
1591	}
1592
1593	/* Setup the location the DMA engine uses. */
1594	{
1595		uint64_t reg;
1596		uint64_t dma_address = transaction->buffer +
1597					transaction->actual_bytes;
1598
1599		if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1600			dma_address = transaction->buffer +
1601					transaction->iso_packets[0].offset +
1602					transaction->actual_bytes;
1603
1604		if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
1605			reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index);
1606		else
1607			reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index);
1608		cvmx_write64_uint64(reg + channel * 8, dma_address);
1609	}
1610
1611	/* Setup both the size of the transfer and the SPLIT characteristics */
1612	{
1613		union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
1614		union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
1615		int packets_to_transfer;
1616		int bytes_to_transfer = transaction->buffer_length -
1617			transaction->actual_bytes;
1618
1619		/*
1620		 * ISOCHRONOUS transactions store each individual transfer size
1621		 * in the packet structure, not the global buffer_length
1622		 */
1623		if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1624			bytes_to_transfer =
1625				transaction->iso_packets[0].length -
1626				transaction->actual_bytes;
1627
1628		/*
1629		 * We need to do split transactions when we are talking to non
1630		 * high speed devices that are behind a high speed hub
1631		 */
1632		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1633			/*
1634			 * On the start split phase (stage is even) record the
1635			 * frame number we will need to send the split complete.
1636			 * We only store the lower two bits since the time ahead
1637			 * can only be two frames
1638			 */
1639			if ((transaction->stage&1) == 0) {
1640				if (transaction->type == CVMX_USB_TRANSFER_BULK)
1641					pipe->split_sc_frame =
1642						(usb->frame_number + 1) & 0x7f;
1643				else
1644					pipe->split_sc_frame =
1645						(usb->frame_number + 2) & 0x7f;
1646			} else
1647				pipe->split_sc_frame = -1;
1648
1649			usbc_hcsplt.s.spltena = 1;
1650			usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
1651			usbc_hcsplt.s.prtaddr = pipe->hub_port;
1652			usbc_hcsplt.s.compsplt = (transaction->stage ==
1653				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
1654
1655			/*
1656			 * SPLIT transactions can only ever transmit one data
1657			 * packet so limit the transfer size to the max packet
1658			 * size
1659			 */
1660			if (bytes_to_transfer > pipe->max_packet)
1661				bytes_to_transfer = pipe->max_packet;
1662
1663			/*
1664			 * ISOCHRONOUS OUT splits are unique in that they limit
1665			 * data transfers to 188 byte chunks representing the
1666			 * begin/middle/end of the data or all
1667			 */
1668			if (!usbc_hcsplt.s.compsplt &&
1669				(pipe->transfer_dir ==
1670				 CVMX_USB_DIRECTION_OUT) &&
1671				(pipe->transfer_type ==
1672				 CVMX_USB_TRANSFER_ISOCHRONOUS)) {
1673				/*
1674				 * Clear the split complete frame number as
1675				 * there isn't going to be a split complete
1676				 */
1677				pipe->split_sc_frame = -1;
1678				/*
1679				 * See if we've started this transfer and sent
1680				 * data
1681				 */
1682				if (transaction->actual_bytes == 0) {
1683					/*
1684					 * Nothing sent yet, this is either a
1685					 * begin or the entire payload
1686					 */
1687					if (bytes_to_transfer <= 188)
1688						/* Entire payload in one go */
1689						usbc_hcsplt.s.xactpos = 3;
1690					else
1691						/* First part of payload */
1692						usbc_hcsplt.s.xactpos = 2;
1693				} else {
1694					/*
1695					 * Continuing the previous data, we must
1696					 * either be in the middle or at the end
1697					 */
1698					if (bytes_to_transfer <= 188)
1699						/* End of payload */
1700						usbc_hcsplt.s.xactpos = 1;
1701					else
1702						/* Middle of payload */
1703						usbc_hcsplt.s.xactpos = 0;
1704				}
1705				/*
1706				 * Again, the transfer size is limited to 188
1707				 * bytes
1708				 */
1709				if (bytes_to_transfer > 188)
1710					bytes_to_transfer = 188;
1711			}
1712		}
1713
1714		/*
1715		 * Make sure the transfer never exceeds the byte limit of the
1716		 * hardware. Further bytes will be sent as continued
1717		 * transactions
1718		 */
1719		if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1720			/*
1721			 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1722			 * size
1723			 */
1724			bytes_to_transfer = MAX_TRANSFER_BYTES /
1725				pipe->max_packet;
1726			bytes_to_transfer *= pipe->max_packet;
1727		}
1728
1729		/*
1730		 * Calculate the number of packets to transfer. If the length is
1731		 * zero we still need to transfer one packet
1732		 */
1733		packets_to_transfer =
1734			DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet);
1735		if (packets_to_transfer == 0)
1736			packets_to_transfer = 1;
1737		else if ((packets_to_transfer > 1) &&
1738				(usb->init_flags &
1739				 CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1740			/*
1741			 * Limit to one packet when not using DMA. Channels must
1742			 * be restarted between every packet for IN
1743			 * transactions, so there is no reason to do multiple
1744			 * packets in a row
1745			 */
1746			packets_to_transfer = 1;
1747			bytes_to_transfer = packets_to_transfer *
1748				pipe->max_packet;
1749		} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1750			/*
1751			 * Limit the number of packet and data transferred to
1752			 * what the hardware can handle
1753			 */
1754			packets_to_transfer = MAX_TRANSFER_PACKETS;
1755			bytes_to_transfer = packets_to_transfer *
1756				pipe->max_packet;
1757		}
1758
1759		usbc_hctsiz.s.xfersize = bytes_to_transfer;
1760		usbc_hctsiz.s.pktcnt = packets_to_transfer;
1761
1762		/* Update the DATA0/DATA1 toggle */
1763		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1764		/*
1765		 * High speed pipes may need a hardware ping before they start
1766		 */
1767		if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING)
1768			usbc_hctsiz.s.dopng = 1;
1769
1770		cvmx_usb_write_csr32(usb,
1771				     CVMX_USBCX_HCSPLTX(channel, usb->index),
1772				     usbc_hcsplt.u32);
1773		cvmx_usb_write_csr32(usb,
1774				     CVMX_USBCX_HCTSIZX(channel, usb->index),
1775				     usbc_hctsiz.u32);
1776	}
1777
1778	/* Setup the Host Channel Characteristics Register */
1779	{
1780		union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
1781
1782		/*
1783		 * Set the startframe odd/even properly. This is only used for
1784		 * periodic
1785		 */
1786		usbc_hcchar.s.oddfrm = usb->frame_number&1;
1787
1788		/*
1789		 * Set the number of back to back packets allowed by this
1790		 * endpoint. Split transactions interpret "ec" as the number of
1791		 * immediate retries of failure. These retries happen too
1792		 * quickly, so we disable these entirely for splits
1793		 */
1794		if (cvmx_usb_pipe_needs_split(usb, pipe))
1795			usbc_hcchar.s.ec = 1;
1796		else if (pipe->multi_count < 1)
1797			usbc_hcchar.s.ec = 1;
1798		else if (pipe->multi_count > 3)
1799			usbc_hcchar.s.ec = 3;
1800		else
1801			usbc_hcchar.s.ec = pipe->multi_count;
1802
1803		/* Set the rest of the endpoint specific settings */
1804		usbc_hcchar.s.devaddr = pipe->device_addr;
1805		usbc_hcchar.s.eptype = transaction->type;
1806		usbc_hcchar.s.lspddev =
1807			(pipe->device_speed == CVMX_USB_SPEED_LOW);
1808		usbc_hcchar.s.epdir = pipe->transfer_dir;
1809		usbc_hcchar.s.epnum = pipe->endpoint_num;
1810		usbc_hcchar.s.mps = pipe->max_packet;
1811		cvmx_usb_write_csr32(usb,
1812				     CVMX_USBCX_HCCHARX(channel, usb->index),
1813				     usbc_hcchar.u32);
1814	}
1815
1816	/* Do transaction type specific fixups as needed */
1817	switch (transaction->type) {
1818	case CVMX_USB_TRANSFER_CONTROL:
1819		cvmx_usb_start_channel_control(usb, channel, pipe);
1820		break;
1821	case CVMX_USB_TRANSFER_BULK:
1822	case CVMX_USB_TRANSFER_INTERRUPT:
1823		break;
1824	case CVMX_USB_TRANSFER_ISOCHRONOUS:
1825		if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
1826			/*
1827			 * ISO transactions require different PIDs depending on
1828			 * direction and how many packets are needed
1829			 */
1830			if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
1831				if (pipe->multi_count < 2) /* Need DATA0 */
1832					USB_SET_FIELD32(
1833						CVMX_USBCX_HCTSIZX(channel,
1834								   usb->index),
1835						cvmx_usbcx_hctsizx, pid, 0);
1836				else /* Need MDATA */
1837					USB_SET_FIELD32(
1838						CVMX_USBCX_HCTSIZX(channel,
1839								   usb->index),
1840						cvmx_usbcx_hctsizx, pid, 3);
1841			}
1842		}
1843		break;
1844	}
1845	{
1846		union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 =
1847			cvmx_usb_read_csr32(usb,
1848				CVMX_USBCX_HCTSIZX(channel, usb->index))};
1849		transaction->xfersize = usbc_hctsiz.s.xfersize;
1850		transaction->pktcnt = usbc_hctsiz.s.pktcnt;
1851	}
1852	/* Remember when we start a split transaction */
1853	if (cvmx_usb_pipe_needs_split(usb, pipe))
1854		usb->active_split = transaction;
1855	USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1856			cvmx_usbcx_hccharx, chena, 1);
1857	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
1858		cvmx_usb_fill_tx_fifo(usb, channel);
1859}
1860
1861
1862/**
1863 * Find a pipe that is ready to be scheduled to hardware.
1864 * @usb:	 USB device state populated by cvmx_usb_initialize().
1865 * @list:	 Pipe list to search
1866 * @current_frame:
1867 *		 Frame counter to use as a time reference.
1868 *
1869 * Returns: Pipe or NULL if none are ready
1870 */
1871static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(
1872		struct cvmx_usb_state *usb,
1873		struct list_head *list,
1874		uint64_t current_frame)
1875{
1876	struct cvmx_usb_pipe *pipe;
1877
1878	list_for_each_entry(pipe, list, node) {
1879		struct cvmx_usb_transaction *t =
1880			list_first_entry(&pipe->transactions, typeof(*t),
1881					 node);
1882		if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
1883			(pipe->next_tx_frame <= current_frame) &&
1884			((pipe->split_sc_frame == -1) ||
1885			 ((((int)current_frame - (int)pipe->split_sc_frame)
1886			   & 0x7f) < 0x40)) &&
1887			(!usb->active_split || (usb->active_split == t))) {
1888			prefetch(t);
1889			return pipe;
1890		}
1891	}
1892	return NULL;
1893}
1894
1895
1896/**
1897 * Called whenever a pipe might need to be scheduled to the
1898 * hardware.
1899 *
1900 * @usb:	 USB device state populated by cvmx_usb_initialize().
1901 * @is_sof:	 True if this schedule was called on a SOF interrupt.
1902 */
1903static void cvmx_usb_schedule(struct cvmx_usb_state *usb, int is_sof)
1904{
1905	int channel;
1906	struct cvmx_usb_pipe *pipe;
1907	int need_sof;
1908	enum cvmx_usb_transfer ttype;
1909
1910	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1911		/*
1912		 * Without DMA we need to be careful to not schedule something
1913		 * at the end of a frame and cause an overrun.
1914		 */
1915		union cvmx_usbcx_hfnum hfnum = {
1916			.u32 = cvmx_usb_read_csr32(usb,
1917						CVMX_USBCX_HFNUM(usb->index))
1918		};
1919
1920		union cvmx_usbcx_hfir hfir = {
1921			.u32 = cvmx_usb_read_csr32(usb,
1922						CVMX_USBCX_HFIR(usb->index))
1923		};
1924
1925		if (hfnum.s.frrem < hfir.s.frint/4)
1926			goto done;
1927	}
1928
1929	while (usb->idle_hardware_channels) {
1930		/* Find an idle channel */
1931		channel = __fls(usb->idle_hardware_channels);
1932		if (unlikely(channel > 7))
1933			break;
1934
1935		/* Find a pipe needing service */
1936		pipe = NULL;
1937		if (is_sof) {
1938			/*
1939			 * Only process periodic pipes on SOF interrupts. This
1940			 * way we are sure that the periodic data is sent in the
1941			 * beginning of the frame
1942			 */
1943			pipe = cvmx_usb_find_ready_pipe(usb,
1944					usb->active_pipes +
1945					CVMX_USB_TRANSFER_ISOCHRONOUS,
1946					usb->frame_number);
1947			if (likely(!pipe))
1948				pipe = cvmx_usb_find_ready_pipe(usb,
1949						usb->active_pipes +
1950						CVMX_USB_TRANSFER_INTERRUPT,
1951						usb->frame_number);
1952		}
1953		if (likely(!pipe)) {
1954			pipe = cvmx_usb_find_ready_pipe(usb,
1955					usb->active_pipes +
1956					CVMX_USB_TRANSFER_CONTROL,
1957					usb->frame_number);
1958			if (likely(!pipe))
1959				pipe = cvmx_usb_find_ready_pipe(usb,
1960						usb->active_pipes +
1961						CVMX_USB_TRANSFER_BULK,
1962						usb->frame_number);
1963		}
1964		if (!pipe)
1965			break;
1966
1967		cvmx_usb_start_channel(usb, channel, pipe);
1968	}
1969
1970done:
1971	/*
1972	 * Only enable SOF interrupts when we have transactions pending in the
1973	 * future that might need to be scheduled
1974	 */
1975	need_sof = 0;
1976	for (ttype = CVMX_USB_TRANSFER_CONTROL;
1977			ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
1978		list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
1979			if (pipe->next_tx_frame > usb->frame_number) {
1980				need_sof = 1;
1981				break;
1982			}
1983		}
1984	}
1985	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1986			cvmx_usbcx_gintmsk, sofmsk, need_sof);
1987}
1988
1989static void octeon_usb_urb_complete_callback(struct cvmx_usb_state *usb,
1990					     enum cvmx_usb_complete status,
1991					     struct cvmx_usb_pipe *pipe,
1992					     struct cvmx_usb_transaction
1993						*transaction,
1994					     int bytes_transferred,
1995					     struct urb *urb)
1996{
1997	struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
1998	struct usb_hcd *hcd = octeon_to_hcd(priv);
1999	struct device *dev = hcd->self.controller;
2000
2001	if (likely(status == CVMX_USB_COMPLETE_SUCCESS))
2002		urb->actual_length = bytes_transferred;
2003	else
2004		urb->actual_length = 0;
2005
2006	urb->hcpriv = NULL;
2007
2008	/* For Isochronous transactions we need to update the URB packet status
2009	   list from data in our private copy */
2010	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2011		int i;
2012		/*
2013		 * The pointer to the private list is stored in the setup_packet
2014		 * field.
2015		 */
2016		struct cvmx_usb_iso_packet *iso_packet =
2017			(struct cvmx_usb_iso_packet *) urb->setup_packet;
2018		/* Recalculate the transfer size by adding up each packet */
2019		urb->actual_length = 0;
2020		for (i = 0; i < urb->number_of_packets; i++) {
2021			if (iso_packet[i].status ==
2022					CVMX_USB_COMPLETE_SUCCESS) {
2023				urb->iso_frame_desc[i].status = 0;
2024				urb->iso_frame_desc[i].actual_length =
2025					iso_packet[i].length;
2026				urb->actual_length +=
2027					urb->iso_frame_desc[i].actual_length;
2028			} else {
2029				dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
2030					i, urb->number_of_packets,
2031					iso_packet[i].status, pipe,
2032					transaction, iso_packet[i].length);
2033				urb->iso_frame_desc[i].status = -EREMOTEIO;
2034			}
2035		}
2036		/* Free the private list now that we don't need it anymore */
2037		kfree(iso_packet);
2038		urb->setup_packet = NULL;
2039	}
2040
2041	switch (status) {
2042	case CVMX_USB_COMPLETE_SUCCESS:
2043		urb->status = 0;
2044		break;
2045	case CVMX_USB_COMPLETE_CANCEL:
2046		if (urb->status == 0)
2047			urb->status = -ENOENT;
2048		break;
2049	case CVMX_USB_COMPLETE_STALL:
2050		dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
2051			pipe, transaction, bytes_transferred);
2052		urb->status = -EPIPE;
2053		break;
2054	case CVMX_USB_COMPLETE_BABBLEERR:
2055		dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
2056			pipe, transaction, bytes_transferred);
2057		urb->status = -EPIPE;
2058		break;
2059	case CVMX_USB_COMPLETE_SHORT:
2060		dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
2061			pipe, transaction, bytes_transferred);
2062		urb->status = -EREMOTEIO;
2063		break;
2064	case CVMX_USB_COMPLETE_ERROR:
2065	case CVMX_USB_COMPLETE_XACTERR:
2066	case CVMX_USB_COMPLETE_DATATGLERR:
2067	case CVMX_USB_COMPLETE_FRAMEERR:
2068		dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
2069			status, pipe, transaction, bytes_transferred);
2070		urb->status = -EPROTO;
2071		break;
2072	}
2073	usb_hcd_unlink_urb_from_ep(octeon_to_hcd(priv), urb);
2074	spin_unlock(&priv->lock);
2075	usb_hcd_giveback_urb(octeon_to_hcd(priv), urb, urb->status);
2076	spin_lock(&priv->lock);
2077}
2078
2079/**
2080 * Signal the completion of a transaction and free it. The
2081 * transaction will be removed from the pipe transaction list.
2082 *
2083 * @usb:	 USB device state populated by cvmx_usb_initialize().
2084 * @pipe:	 Pipe the transaction is on
2085 * @transaction:
2086 *		 Transaction that completed
2087 * @complete_code:
2088 *		 Completion code
2089 */
2090static void cvmx_usb_perform_complete(struct cvmx_usb_state *usb,
2091				      struct cvmx_usb_pipe *pipe,
2092				      struct cvmx_usb_transaction *transaction,
2093				      enum cvmx_usb_complete complete_code)
2094{
2095	/* If this was a split then clear our split in progress marker */
2096	if (usb->active_split == transaction)
2097		usb->active_split = NULL;
2098
2099	/*
2100	 * Isochronous transactions need extra processing as they might not be
2101	 * done after a single data transfer
2102	 */
2103	if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
2104		/* Update the number of bytes transferred in this ISO packet */
2105		transaction->iso_packets[0].length = transaction->actual_bytes;
2106		transaction->iso_packets[0].status = complete_code;
2107
2108		/*
2109		 * If there are more ISOs pending and we succeeded, schedule the
2110		 * next one
2111		 */
2112		if ((transaction->iso_number_packets > 1) &&
2113			(complete_code == CVMX_USB_COMPLETE_SUCCESS)) {
2114			/* No bytes transferred for this packet as of yet */
2115			transaction->actual_bytes = 0;
2116			/* One less ISO waiting to transfer */
2117			transaction->iso_number_packets--;
2118			/* Increment to the next location in our packet array */
2119			transaction->iso_packets++;
2120			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2121			return;
2122		}
2123	}
2124
2125	/* Remove the transaction from the pipe list */
2126	list_del(&transaction->node);
2127	if (list_empty(&pipe->transactions))
2128		list_move_tail(&pipe->node, &usb->idle_pipes);
2129	octeon_usb_urb_complete_callback(usb, complete_code, pipe,
2130					 transaction,
2131					 transaction->actual_bytes,
2132					 transaction->urb);
2133	kfree(transaction);
2134}
2135
2136
2137/**
2138 * Submit a usb transaction to a pipe. Called for all types
2139 * of transactions.
2140 *
2141 * @usb:
2142 * @pipe:	    Which pipe to submit to.
2143 * @type:	    Transaction type
2144 * @buffer:	    User buffer for the transaction
2145 * @buffer_length:
2146 *		    User buffer's length in bytes
2147 * @control_header:
2148 *		    For control transactions, the 8 byte standard header
2149 * @iso_start_frame:
2150 *		    For ISO transactions, the start frame
2151 * @iso_number_packets:
2152 *		    For ISO, the number of packet in the transaction.
2153 * @iso_packets:
2154 *		    A description of each ISO packet
2155 * @urb:	    URB for the callback
2156 *
2157 * Returns: Transaction or NULL on failure.
2158 */
2159static struct cvmx_usb_transaction *cvmx_usb_submit_transaction(
2160				struct cvmx_usb_state *usb,
2161				struct cvmx_usb_pipe *pipe,
2162				enum cvmx_usb_transfer type,
2163				uint64_t buffer,
2164				int buffer_length,
2165				uint64_t control_header,
2166				int iso_start_frame,
2167				int iso_number_packets,
2168				struct cvmx_usb_iso_packet *iso_packets,
2169				struct urb *urb)
2170{
2171	struct cvmx_usb_transaction *transaction;
2172
2173	if (unlikely(pipe->transfer_type != type))
2174		return NULL;
2175
2176	transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
2177	if (unlikely(!transaction))
2178		return NULL;
2179
2180	transaction->type = type;
2181	transaction->buffer = buffer;
2182	transaction->buffer_length = buffer_length;
2183	transaction->control_header = control_header;
2184	/* FIXME: This is not used, implement it. */
2185	transaction->iso_start_frame = iso_start_frame;
2186	transaction->iso_number_packets = iso_number_packets;
2187	transaction->iso_packets = iso_packets;
2188	transaction->urb = urb;
2189	if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
2190		transaction->stage = CVMX_USB_STAGE_SETUP;
2191	else
2192		transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2193
2194	if (!list_empty(&pipe->transactions)) {
2195		list_add_tail(&transaction->node, &pipe->transactions);
2196	} else {
2197		list_add_tail(&transaction->node, &pipe->transactions);
2198		list_move_tail(&pipe->node,
2199			       &usb->active_pipes[pipe->transfer_type]);
2200
2201		/*
2202		 * We may need to schedule the pipe if this was the head of the
2203		 * pipe.
2204		 */
2205		cvmx_usb_schedule(usb, 0);
2206	}
2207
2208	return transaction;
2209}
2210
2211
2212/**
2213 * Call to submit a USB Bulk transfer to a pipe.
2214 *
2215 * @usb:	    USB device state populated by cvmx_usb_initialize().
2216 * @pipe:	    Handle to the pipe for the transfer.
2217 * @urb:	    URB.
2218 *
2219 * Returns: A submitted transaction or NULL on failure.
2220 */
2221static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(
2222						struct cvmx_usb_state *usb,
2223						struct cvmx_usb_pipe *pipe,
2224						struct urb *urb)
2225{
2226	return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
2227					   urb->transfer_dma,
2228					   urb->transfer_buffer_length,
2229					   0, /* control_header */
2230					   0, /* iso_start_frame */
2231					   0, /* iso_number_packets */
2232					   NULL, /* iso_packets */
2233					   urb);
2234}
2235
2236
2237/**
2238 * Call to submit a USB Interrupt transfer to a pipe.
2239 *
2240 * @usb:	    USB device state populated by cvmx_usb_initialize().
2241 * @pipe:	    Handle to the pipe for the transfer.
2242 * @urb:	    URB returned when the callback is called.
2243 *
2244 * Returns: A submitted transaction or NULL on failure.
2245 */
2246static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(
2247						struct cvmx_usb_state *usb,
2248						struct cvmx_usb_pipe *pipe,
2249						struct urb *urb)
2250{
2251	return cvmx_usb_submit_transaction(usb, pipe,
2252					   CVMX_USB_TRANSFER_INTERRUPT,
2253					   urb->transfer_dma,
2254					   urb->transfer_buffer_length,
2255					   0, /* control_header */
2256					   0, /* iso_start_frame */
2257					   0, /* iso_number_packets */
2258					   NULL, /* iso_packets */
2259					   urb);
2260}
2261
2262
2263/**
2264 * Call to submit a USB Control transfer to a pipe.
2265 *
2266 * @usb:	    USB device state populated by cvmx_usb_initialize().
2267 * @pipe:	    Handle to the pipe for the transfer.
2268 * @urb:	    URB.
2269 *
2270 * Returns: A submitted transaction or NULL on failure.
2271 */
2272static struct cvmx_usb_transaction *cvmx_usb_submit_control(
2273						struct cvmx_usb_state *usb,
2274						struct cvmx_usb_pipe *pipe,
2275						struct urb *urb)
2276{
2277	int buffer_length = urb->transfer_buffer_length;
2278	uint64_t control_header = urb->setup_dma;
2279	struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header);
2280
2281	if ((header->bRequestType & USB_DIR_IN) == 0)
2282		buffer_length = le16_to_cpu(header->wLength);
2283
2284	return cvmx_usb_submit_transaction(usb, pipe,
2285					   CVMX_USB_TRANSFER_CONTROL,
2286					   urb->transfer_dma, buffer_length,
2287					   control_header,
2288					   0, /* iso_start_frame */
2289					   0, /* iso_number_packets */
2290					   NULL, /* iso_packets */
2291					   urb);
2292}
2293
2294
2295/**
2296 * Call to submit a USB Isochronous transfer to a pipe.
2297 *
2298 * @usb:	    USB device state populated by cvmx_usb_initialize().
2299 * @pipe:	    Handle to the pipe for the transfer.
2300 * @urb:	    URB returned when the callback is called.
2301 *
2302 * Returns: A submitted transaction or NULL on failure.
2303 */
2304static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(
2305						struct cvmx_usb_state *usb,
2306						struct cvmx_usb_pipe *pipe,
2307						struct urb *urb)
2308{
2309	struct cvmx_usb_iso_packet *packets;
2310
2311	packets = (struct cvmx_usb_iso_packet *) urb->setup_packet;
2312	return cvmx_usb_submit_transaction(usb, pipe,
2313					   CVMX_USB_TRANSFER_ISOCHRONOUS,
2314					   urb->transfer_dma,
2315					   urb->transfer_buffer_length,
2316					   0, /* control_header */
2317					   urb->start_frame,
2318					   urb->number_of_packets,
2319					   packets, urb);
2320}
2321
2322
2323/**
2324 * Cancel one outstanding request in a pipe. Canceling a request
2325 * can fail if the transaction has already completed before cancel
2326 * is called. Even after a successful cancel call, it may take
2327 * a frame or two for the cvmx_usb_poll() function to call the
2328 * associated callback.
2329 *
2330 * @usb:	 USB device state populated by cvmx_usb_initialize().
2331 * @pipe:	 Pipe to cancel requests in.
2332 * @transaction: Transaction to cancel, returned by the submit function.
2333 *
2334 * Returns: 0 or a negative error code.
2335 */
2336static int cvmx_usb_cancel(struct cvmx_usb_state *usb,
2337			   struct cvmx_usb_pipe *pipe,
2338			   struct cvmx_usb_transaction *transaction)
2339{
2340	/*
2341	 * If the transaction is the HEAD of the queue and scheduled. We need to
2342	 * treat it special
2343	 */
2344	if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
2345	    transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
2346		union cvmx_usbcx_hccharx usbc_hcchar;
2347
2348		usb->pipe_for_channel[pipe->channel] = NULL;
2349		pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2350
2351		CVMX_SYNCW;
2352
2353		usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2354				CVMX_USBCX_HCCHARX(pipe->channel, usb->index));
2355		/*
2356		 * If the channel isn't enabled then the transaction already
2357		 * completed.
2358		 */
2359		if (usbc_hcchar.s.chena) {
2360			usbc_hcchar.s.chdis = 1;
2361			cvmx_usb_write_csr32(usb,
2362					CVMX_USBCX_HCCHARX(pipe->channel,
2363						usb->index),
2364					usbc_hcchar.u32);
2365		}
2366	}
2367	cvmx_usb_perform_complete(usb, pipe, transaction,
2368				  CVMX_USB_COMPLETE_CANCEL);
2369	return 0;
2370}
2371
2372
2373/**
2374 * Cancel all outstanding requests in a pipe. Logically all this
2375 * does is call cvmx_usb_cancel() in a loop.
2376 *
2377 * @usb:	 USB device state populated by cvmx_usb_initialize().
2378 * @pipe:	 Pipe to cancel requests in.
2379 *
2380 * Returns: 0 or a negative error code.
2381 */
2382static int cvmx_usb_cancel_all(struct cvmx_usb_state *usb,
2383			       struct cvmx_usb_pipe *pipe)
2384{
2385	struct cvmx_usb_transaction *transaction, *next;
2386
2387	/* Simply loop through and attempt to cancel each transaction */
2388	list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
2389		int result = cvmx_usb_cancel(usb, pipe, transaction);
2390
2391		if (unlikely(result != 0))
2392			return result;
2393	}
2394	return 0;
2395}
2396
2397
2398/**
2399 * Close a pipe created with cvmx_usb_open_pipe().
2400 *
2401 * @usb:	 USB device state populated by cvmx_usb_initialize().
2402 * @pipe:	 Pipe to close.
2403 *
2404 * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2405 *	    outstanding transfers.
2406 */
2407static int cvmx_usb_close_pipe(struct cvmx_usb_state *usb,
2408			       struct cvmx_usb_pipe *pipe)
2409{
2410	/* Fail if the pipe has pending transactions */
2411	if (!list_empty(&pipe->transactions))
2412		return -EBUSY;
2413
2414	list_del(&pipe->node);
2415	kfree(pipe);
2416
2417	return 0;
2418}
2419
2420/**
2421 * Get the current USB protocol level frame number. The frame
2422 * number is always in the range of 0-0x7ff.
2423 *
2424 * @usb: USB device state populated by cvmx_usb_initialize().
2425 *
2426 * Returns: USB frame number
2427 */
2428static int cvmx_usb_get_frame_number(struct cvmx_usb_state *usb)
2429{
2430	int frame_number;
2431	union cvmx_usbcx_hfnum usbc_hfnum;
2432
2433	usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2434	frame_number = usbc_hfnum.s.frnum;
2435
2436	return frame_number;
2437}
2438
2439
2440/**
2441 * Poll a channel for status
2442 *
2443 * @usb:     USB device
2444 * @channel: Channel to poll
2445 *
2446 * Returns: Zero on success
2447 */
2448static int cvmx_usb_poll_channel(struct cvmx_usb_state *usb, int channel)
2449{
2450	struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
2451	struct usb_hcd *hcd = octeon_to_hcd(priv);
2452	struct device *dev = hcd->self.controller;
2453	union cvmx_usbcx_hcintx usbc_hcint;
2454	union cvmx_usbcx_hctsizx usbc_hctsiz;
2455	union cvmx_usbcx_hccharx usbc_hcchar;
2456	struct cvmx_usb_pipe *pipe;
2457	struct cvmx_usb_transaction *transaction;
2458	int bytes_this_transfer;
2459	int bytes_in_last_packet;
2460	int packets_processed;
2461	int buffer_space_left;
2462
2463	/* Read the interrupt status bits for the channel */
2464	usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
2465				CVMX_USBCX_HCINTX(channel, usb->index));
2466
2467	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
2468		usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2469				CVMX_USBCX_HCCHARX(channel, usb->index));
2470
2471		if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
2472			/*
2473			 * There seems to be a bug in CN31XX which can cause
2474			 * interrupt IN transfers to get stuck until we do a
2475			 * write of HCCHARX without changing things
2476			 */
2477			cvmx_usb_write_csr32(usb,
2478					CVMX_USBCX_HCCHARX(channel,
2479							   usb->index),
2480					usbc_hcchar.u32);
2481			return 0;
2482		}
2483
2484		/*
2485		 * In non DMA mode the channels don't halt themselves. We need
2486		 * to manually disable channels that are left running
2487		 */
2488		if (!usbc_hcint.s.chhltd) {
2489			if (usbc_hcchar.s.chena) {
2490				union cvmx_usbcx_hcintmskx hcintmsk;
2491				/* Disable all interrupts except CHHLTD */
2492				hcintmsk.u32 = 0;
2493				hcintmsk.s.chhltdmsk = 1;
2494				cvmx_usb_write_csr32(usb,
2495						CVMX_USBCX_HCINTMSKX(channel,
2496							usb->index),
2497						hcintmsk.u32);
2498				usbc_hcchar.s.chdis = 1;
2499				cvmx_usb_write_csr32(usb,
2500						CVMX_USBCX_HCCHARX(channel,
2501							usb->index),
2502						usbc_hcchar.u32);
2503				return 0;
2504			} else if (usbc_hcint.s.xfercompl) {
2505				/*
2506				 * Successful IN/OUT with transfer complete.
2507				 * Channel halt isn't needed.
2508				 */
2509			} else {
2510				dev_err(dev, "USB%d: Channel %d interrupt without halt\n",
2511					usb->index, channel);
2512				return 0;
2513			}
2514		}
2515	} else {
2516		/*
2517		 * There is are no interrupts that we need to process when the
2518		 * channel is still running
2519		 */
2520		if (!usbc_hcint.s.chhltd)
2521			return 0;
2522	}
2523
2524	/* Disable the channel interrupts now that it is done */
2525	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
2526	usb->idle_hardware_channels |= (1<<channel);
2527
2528	/* Make sure this channel is tied to a valid pipe */
2529	pipe = usb->pipe_for_channel[channel];
2530	prefetch(pipe);
2531	if (!pipe)
2532		return 0;
2533	transaction = list_first_entry(&pipe->transactions,
2534				       typeof(*transaction),
2535				       node);
2536	prefetch(transaction);
2537
2538	/*
2539	 * Disconnect this pipe from the HW channel. Later the schedule
2540	 * function will figure out which pipe needs to go
2541	 */
2542	usb->pipe_for_channel[channel] = NULL;
2543	pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2544
2545	/*
2546	 * Read the channel config info so we can figure out how much data
2547	 * transferred
2548	 */
2549	usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2550			CVMX_USBCX_HCCHARX(channel, usb->index));
2551	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
2552			CVMX_USBCX_HCTSIZX(channel, usb->index));
2553
2554	/*
2555	 * Calculating the number of bytes successfully transferred is dependent
2556	 * on the transfer direction
2557	 */
2558	packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
2559	if (usbc_hcchar.s.epdir) {
2560		/*
2561		 * IN transactions are easy. For every byte received the
2562		 * hardware decrements xfersize. All we need to do is subtract
2563		 * the current value of xfersize from its starting value and we
2564		 * know how many bytes were written to the buffer
2565		 */
2566		bytes_this_transfer = transaction->xfersize -
2567			usbc_hctsiz.s.xfersize;
2568	} else {
2569		/*
2570		 * OUT transaction don't decrement xfersize. Instead pktcnt is
2571		 * decremented on every successful packet send. The hardware
2572		 * does this when it receives an ACK, or NYET. If it doesn't
2573		 * receive one of these responses pktcnt doesn't change
2574		 */
2575		bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
2576		/*
2577		 * The last packet may not be a full transfer if we didn't have
2578		 * enough data
2579		 */
2580		if (bytes_this_transfer > transaction->xfersize)
2581			bytes_this_transfer = transaction->xfersize;
2582	}
2583	/* Figure out how many bytes were in the last packet of the transfer */
2584	if (packets_processed)
2585		bytes_in_last_packet = bytes_this_transfer -
2586			(packets_processed - 1) * usbc_hcchar.s.mps;
2587	else
2588		bytes_in_last_packet = bytes_this_transfer;
2589
2590	/*
2591	 * As a special case, setup transactions output the setup header, not
2592	 * the user's data. For this reason we don't count setup data as bytes
2593	 * transferred
2594	 */
2595	if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
2596		(transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
2597		bytes_this_transfer = 0;
2598
2599	/*
2600	 * Add the bytes transferred to the running total. It is important that
2601	 * bytes_this_transfer doesn't count any data that needs to be
2602	 * retransmitted
2603	 */
2604	transaction->actual_bytes += bytes_this_transfer;
2605	if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
2606		buffer_space_left = transaction->iso_packets[0].length -
2607			transaction->actual_bytes;
2608	else
2609		buffer_space_left = transaction->buffer_length -
2610			transaction->actual_bytes;
2611
2612	/*
2613	 * We need to remember the PID toggle state for the next transaction.
2614	 * The hardware already updated it for the next transaction
2615	 */
2616	pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
2617
2618	/*
2619	 * For high speed bulk out, assume the next transaction will need to do
2620	 * a ping before proceeding. If this isn't true the ACK processing below
2621	 * will clear this flag
2622	 */
2623	if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2624		(pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
2625		(pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
2626		pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2627
2628	if (unlikely(WARN_ON_ONCE(bytes_this_transfer < 0))) {
2629		/*
2630		 * In some rare cases the DMA engine seems to get stuck and
2631		 * keeps substracting same byte count over and over again. In
2632		 * such case we just need to fail every transaction.
2633		 */
2634		cvmx_usb_perform_complete(usb, pipe, transaction,
2635					  CVMX_USB_COMPLETE_ERROR);
2636		return 0;
2637	}
2638
2639	if (usbc_hcint.s.stall) {
2640		/*
2641		 * STALL as a response means this transaction cannot be
2642		 * completed because the device can't process transactions. Tell
2643		 * the user. Any data that was transferred will be counted on
2644		 * the actual bytes transferred
2645		 */
2646		pipe->pid_toggle = 0;
2647		cvmx_usb_perform_complete(usb, pipe, transaction,
2648					  CVMX_USB_COMPLETE_STALL);
2649	} else if (usbc_hcint.s.xacterr) {
2650		/*
2651		 * XactErr as a response means the device signaled
2652		 * something wrong with the transfer. For example, PID
2653		 * toggle errors cause these.
2654		 */
2655		cvmx_usb_perform_complete(usb, pipe, transaction,
2656					  CVMX_USB_COMPLETE_XACTERR);
2657	} else if (usbc_hcint.s.bblerr) {
2658		/* Babble Error (BblErr) */
2659		cvmx_usb_perform_complete(usb, pipe, transaction,
2660					  CVMX_USB_COMPLETE_BABBLEERR);
2661	} else if (usbc_hcint.s.datatglerr) {
2662		/* Data toggle error */
2663		cvmx_usb_perform_complete(usb, pipe, transaction,
2664					  CVMX_USB_COMPLETE_DATATGLERR);
2665	} else if (usbc_hcint.s.nyet) {
2666		/*
2667		 * NYET as a response is only allowed in three cases: as a
2668		 * response to a ping, as a response to a split transaction, and
2669		 * as a response to a bulk out. The ping case is handled by
2670		 * hardware, so we only have splits and bulk out
2671		 */
2672		if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
2673			transaction->retries = 0;
2674			/*
2675			 * If there is more data to go then we need to try
2676			 * again. Otherwise this transaction is complete
2677			 */
2678			if ((buffer_space_left == 0) ||
2679				(bytes_in_last_packet < pipe->max_packet))
2680				cvmx_usb_perform_complete(usb, pipe,
2681						transaction,
2682						CVMX_USB_COMPLETE_SUCCESS);
2683		} else {
2684			/*
2685			 * Split transactions retry the split complete 4 times
2686			 * then rewind to the start split and do the entire
2687			 * transactions again
2688			 */
2689			transaction->retries++;
2690			if ((transaction->retries & 0x3) == 0) {
2691				/*
2692				 * Rewind to the beginning of the transaction by
2693				 * anding off the split complete bit
2694				 */
2695				transaction->stage &= ~1;
2696				pipe->split_sc_frame = -1;
2697			}
2698		}
2699	} else if (usbc_hcint.s.ack) {
2700		transaction->retries = 0;
2701		/*
2702		 * The ACK bit can only be checked after the other error bits.
2703		 * This is because a multi packet transfer may succeed in a
2704		 * number of packets and then get a different response on the
2705		 * last packet. In this case both ACK and the last response bit
2706		 * will be set. If none of the other response bits is set, then
2707		 * the last packet must have been an ACK
2708		 *
2709		 * Since we got an ACK, we know we don't need to do a ping on
2710		 * this pipe
2711		 */
2712		pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING;
2713
2714		switch (transaction->type) {
2715		case CVMX_USB_TRANSFER_CONTROL:
2716			switch (transaction->stage) {
2717			case CVMX_USB_STAGE_NON_CONTROL:
2718			case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
2719				/* This should be impossible */
2720				cvmx_usb_perform_complete(usb, pipe,
2721					transaction, CVMX_USB_COMPLETE_ERROR);
2722				break;
2723			case CVMX_USB_STAGE_SETUP:
2724				pipe->pid_toggle = 1;
2725				if (cvmx_usb_pipe_needs_split(usb, pipe))
2726					transaction->stage =
2727						CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
2728				else {
2729					struct usb_ctrlrequest *header =
2730						cvmx_phys_to_ptr(transaction->control_header);
2731					if (header->wLength)
2732						transaction->stage =
2733							CVMX_USB_STAGE_DATA;
2734					else
2735						transaction->stage =
2736							CVMX_USB_STAGE_STATUS;
2737				}
2738				break;
2739			case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
2740				{
2741					struct usb_ctrlrequest *header =
2742						cvmx_phys_to_ptr(transaction->control_header);
2743					if (header->wLength)
2744						transaction->stage =
2745							CVMX_USB_STAGE_DATA;
2746					else
2747						transaction->stage =
2748							CVMX_USB_STAGE_STATUS;
2749				}
2750				break;
2751			case CVMX_USB_STAGE_DATA:
2752				if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2753					transaction->stage =
2754						CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
2755					/*
2756					 * For setup OUT data that are splits,
2757					 * the hardware doesn't appear to count
2758					 * transferred data. Here we manually
2759					 * update the data transferred
2760					 */
2761					if (!usbc_hcchar.s.epdir) {
2762						if (buffer_space_left < pipe->max_packet)
2763							transaction->actual_bytes +=
2764								buffer_space_left;
2765						else
2766							transaction->actual_bytes +=
2767								pipe->max_packet;
2768					}
2769				} else if ((buffer_space_left == 0) ||
2770						(bytes_in_last_packet <
2771						 pipe->max_packet)) {
2772					pipe->pid_toggle = 1;
2773					transaction->stage =
2774						CVMX_USB_STAGE_STATUS;
2775				}
2776				break;
2777			case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
2778				if ((buffer_space_left == 0) ||
2779						(bytes_in_last_packet <
2780						 pipe->max_packet)) {
2781					pipe->pid_toggle = 1;
2782					transaction->stage =
2783						CVMX_USB_STAGE_STATUS;
2784				} else {
2785					transaction->stage =
2786						CVMX_USB_STAGE_DATA;
2787				}
2788				break;
2789			case CVMX_USB_STAGE_STATUS:
2790				if (cvmx_usb_pipe_needs_split(usb, pipe))
2791					transaction->stage =
2792						CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
2793				else
2794					cvmx_usb_perform_complete(usb, pipe,
2795						transaction,
2796						CVMX_USB_COMPLETE_SUCCESS);
2797				break;
2798			case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
2799				cvmx_usb_perform_complete(usb, pipe,
2800						transaction,
2801						CVMX_USB_COMPLETE_SUCCESS);
2802				break;
2803			}
2804			break;
2805		case CVMX_USB_TRANSFER_BULK:
2806		case CVMX_USB_TRANSFER_INTERRUPT:
2807			/*
2808			 * The only time a bulk transfer isn't complete when it
2809			 * finishes with an ACK is during a split transaction.
2810			 * For splits we need to continue the transfer if more
2811			 * data is needed
2812			 */
2813			if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2814				if (transaction->stage ==
2815						CVMX_USB_STAGE_NON_CONTROL)
2816					transaction->stage =
2817						CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2818				else {
2819					if (buffer_space_left &&
2820						(bytes_in_last_packet ==
2821						 pipe->max_packet))
2822						transaction->stage =
2823							CVMX_USB_STAGE_NON_CONTROL;
2824					else {
2825						if (transaction->type ==
2826							CVMX_USB_TRANSFER_INTERRUPT)
2827							pipe->next_tx_frame +=
2828								pipe->interval;
2829							cvmx_usb_perform_complete(
2830								usb,
2831								pipe,
2832								transaction,
2833								CVMX_USB_COMPLETE_SUCCESS);
2834					}
2835				}
2836			} else {
2837				if ((pipe->device_speed ==
2838					CVMX_USB_SPEED_HIGH) &&
2839				    (pipe->transfer_type ==
2840				     CVMX_USB_TRANSFER_BULK) &&
2841				    (pipe->transfer_dir ==
2842				     CVMX_USB_DIRECTION_OUT) &&
2843				    (usbc_hcint.s.nak))
2844					pipe->flags |=
2845						CVMX_USB_PIPE_FLAGS_NEED_PING;
2846				if (!buffer_space_left ||
2847					(bytes_in_last_packet <
2848					 pipe->max_packet)) {
2849					if (transaction->type ==
2850						CVMX_USB_TRANSFER_INTERRUPT)
2851						pipe->next_tx_frame +=
2852							pipe->interval;
2853					cvmx_usb_perform_complete(usb, pipe,
2854						transaction,
2855						CVMX_USB_COMPLETE_SUCCESS);
2856				}
2857			}
2858			break;
2859		case CVMX_USB_TRANSFER_ISOCHRONOUS:
2860			if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2861				/*
2862				 * ISOCHRONOUS OUT splits don't require a
2863				 * complete split stage. Instead they use a
2864				 * sequence of begin OUT splits to transfer the
2865				 * data 188 bytes at a time. Once the transfer
2866				 * is complete, the pipe sleeps until the next
2867				 * schedule interval
2868				 */
2869				if (pipe->transfer_dir ==
2870					CVMX_USB_DIRECTION_OUT) {
2871					/*
2872					 * If no space left or this wasn't a max
2873					 * size packet then this transfer is
2874					 * complete. Otherwise start it again to
2875					 * send the next 188 bytes
2876					 */
2877					if (!buffer_space_left ||
2878						(bytes_this_transfer < 188)) {
2879						pipe->next_tx_frame +=
2880							pipe->interval;
2881						cvmx_usb_perform_complete(usb,
2882							pipe, transaction,
2883							CVMX_USB_COMPLETE_SUCCESS);
2884					}
2885				} else {
2886					if (transaction->stage ==
2887						CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
2888						/*
2889						 * We are in the incoming data
2890						 * phase. Keep getting data
2891						 * until we run out of space or
2892						 * get a small packet
2893						 */
2894						if ((buffer_space_left == 0) ||
2895							(bytes_in_last_packet <
2896							 pipe->max_packet)) {
2897							pipe->next_tx_frame +=
2898								pipe->interval;
2899							cvmx_usb_perform_complete(
2900								usb,
2901								pipe,
2902								transaction,
2903								CVMX_USB_COMPLETE_SUCCESS);
2904						}
2905					} else
2906						transaction->stage =
2907							CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2908				}
2909			} else {
2910				pipe->next_tx_frame += pipe->interval;
2911				cvmx_usb_perform_complete(usb, pipe,
2912						transaction,
2913						CVMX_USB_COMPLETE_SUCCESS);
2914			}
2915			break;
2916		}
2917	} else if (usbc_hcint.s.nak) {
2918		/*
2919		 * If this was a split then clear our split in progress marker.
2920		 */
2921		if (usb->active_split == transaction)
2922			usb->active_split = NULL;
2923		/*
2924		 * NAK as a response means the device couldn't accept the
2925		 * transaction, but it should be retried in the future. Rewind
2926		 * to the beginning of the transaction by anding off the split
2927		 * complete bit. Retry in the next interval
2928		 */
2929		transaction->retries = 0;
2930		transaction->stage &= ~1;
2931		pipe->next_tx_frame += pipe->interval;
2932		if (pipe->next_tx_frame < usb->frame_number)
2933			pipe->next_tx_frame = usb->frame_number +
2934				pipe->interval -
2935				(usb->frame_number - pipe->next_tx_frame) %
2936				pipe->interval;
2937	} else {
2938		struct cvmx_usb_port_status port;
2939
2940		port = cvmx_usb_get_status(usb);
2941		if (port.port_enabled) {
2942			/* We'll retry the exact same transaction again */
2943			transaction->retries++;
2944		} else {
2945			/*
2946			 * We get channel halted interrupts with no result bits
2947			 * sets when the cable is unplugged
2948			 */
2949			cvmx_usb_perform_complete(usb, pipe, transaction,
2950					CVMX_USB_COMPLETE_ERROR);
2951		}
2952	}
2953	return 0;
2954}
2955
2956static void octeon_usb_port_callback(struct cvmx_usb_state *usb)
2957{
2958	struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
2959
2960	spin_unlock(&priv->lock);
2961	usb_hcd_poll_rh_status(octeon_to_hcd(priv));
2962	spin_lock(&priv->lock);
2963}
2964
2965/**
2966 * Poll the USB block for status and call all needed callback
2967 * handlers. This function is meant to be called in the interrupt
2968 * handler for the USB controller. It can also be called
2969 * periodically in a loop for non-interrupt based operation.
2970 *
2971 * @usb: USB device state populated by cvmx_usb_initialize().
2972 *
2973 * Returns: 0 or a negative error code.
2974 */
2975static int cvmx_usb_poll(struct cvmx_usb_state *usb)
2976{
2977	union cvmx_usbcx_hfnum usbc_hfnum;
2978	union cvmx_usbcx_gintsts usbc_gintsts;
2979
2980	prefetch_range(usb, sizeof(*usb));
2981
2982	/* Update the frame counter */
2983	usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2984	if ((usb->frame_number&0x3fff) > usbc_hfnum.s.frnum)
2985		usb->frame_number += 0x4000;
2986	usb->frame_number &= ~0x3fffull;
2987	usb->frame_number |= usbc_hfnum.s.frnum;
2988
2989	/* Read the pending interrupts */
2990	usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
2991					       CVMX_USBCX_GINTSTS(usb->index));
2992
2993	/* Clear the interrupts now that we know about them */
2994	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
2995			     usbc_gintsts.u32);
2996
2997	if (usbc_gintsts.s.rxflvl) {
2998		/*
2999		 * RxFIFO Non-Empty (RxFLvl)
3000		 * Indicates that there is at least one packet pending to be
3001		 * read from the RxFIFO.
3002		 *
3003		 * In DMA mode this is handled by hardware
3004		 */
3005		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
3006			cvmx_usb_poll_rx_fifo(usb);
3007	}
3008	if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
3009		/* Fill the Tx FIFOs when not in DMA mode */
3010		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
3011			cvmx_usb_poll_tx_fifo(usb);
3012	}
3013	if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
3014		union cvmx_usbcx_hprt usbc_hprt;
3015		/*
3016		 * Disconnect Detected Interrupt (DisconnInt)
3017		 * Asserted when a device disconnect is detected.
3018		 *
3019		 * Host Port Interrupt (PrtInt)
3020		 * The core sets this bit to indicate a change in port status of
3021		 * one of the O2P USB core ports in Host mode. The application
3022		 * must read the Host Port Control and Status (HPRT) register to
3023		 * determine the exact event that caused this interrupt. The
3024		 * application must clear the appropriate status bit in the Host
3025		 * Port Control and Status register to clear this bit.
3026		 *
3027		 * Call the user's port callback
3028		 */
3029		octeon_usb_port_callback(usb);
3030		/* Clear the port change bits */
3031		usbc_hprt.u32 = cvmx_usb_read_csr32(usb,
3032					CVMX_USBCX_HPRT(usb->index));
3033		usbc_hprt.s.prtena = 0;
3034		cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index),
3035				     usbc_hprt.u32);
3036	}
3037	if (usbc_gintsts.s.hchint) {
3038		/*
3039		 * Host Channels Interrupt (HChInt)
3040		 * The core sets this bit to indicate that an interrupt is
3041		 * pending on one of the channels of the core (in Host mode).
3042		 * The application must read the Host All Channels Interrupt
3043		 * (HAINT) register to determine the exact number of the channel
3044		 * on which the interrupt occurred, and then read the
3045		 * corresponding Host Channel-n Interrupt (HCINTn) register to
3046		 * determine the exact cause of the interrupt. The application
3047		 * must clear the appropriate status bit in the HCINTn register
3048		 * to clear this bit.
3049		 */
3050		union cvmx_usbcx_haint usbc_haint;
3051
3052		usbc_haint.u32 = cvmx_usb_read_csr32(usb,
3053					CVMX_USBCX_HAINT(usb->index));
3054		while (usbc_haint.u32) {
3055			int channel;
3056
3057			channel = __fls(usbc_haint.u32);
3058			cvmx_usb_poll_channel(usb, channel);
3059			usbc_haint.u32 ^= 1<<channel;
3060		}
3061	}
3062
3063	cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
3064
3065	return 0;
3066}
3067
3068/* convert between an HCD pointer and the corresponding struct octeon_hcd */
3069static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
3070{
3071	return (struct octeon_hcd *)(hcd->hcd_priv);
3072}
3073
3074static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
3075{
3076	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3077	unsigned long flags;
3078
3079	spin_lock_irqsave(&priv->lock, flags);
3080	cvmx_usb_poll(&priv->usb);
3081	spin_unlock_irqrestore(&priv->lock, flags);
3082	return IRQ_HANDLED;
3083}
3084
3085static int octeon_usb_start(struct usb_hcd *hcd)
3086{
3087	hcd->state = HC_STATE_RUNNING;
3088	return 0;
3089}
3090
3091static void octeon_usb_stop(struct usb_hcd *hcd)
3092{
3093	hcd->state = HC_STATE_HALT;
3094}
3095
3096static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
3097{
3098	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3099
3100	return cvmx_usb_get_frame_number(&priv->usb);
3101}
3102
3103static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
3104				  struct urb *urb,
3105				  gfp_t mem_flags)
3106{
3107	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3108	struct device *dev = hcd->self.controller;
3109	struct cvmx_usb_transaction *transaction = NULL;
3110	struct cvmx_usb_pipe *pipe;
3111	unsigned long flags;
3112	struct cvmx_usb_iso_packet *iso_packet;
3113	struct usb_host_endpoint *ep = urb->ep;
3114	int rc;
3115
3116	urb->status = 0;
3117	spin_lock_irqsave(&priv->lock, flags);
3118
3119	rc = usb_hcd_link_urb_to_ep(hcd, urb);
3120	if (rc) {
3121		spin_unlock_irqrestore(&priv->lock, flags);
3122		return rc;
3123	}
3124
3125	if (!ep->hcpriv) {
3126		enum cvmx_usb_transfer transfer_type;
3127		enum cvmx_usb_speed speed;
3128		int split_device = 0;
3129		int split_port = 0;
3130
3131		switch (usb_pipetype(urb->pipe)) {
3132		case PIPE_ISOCHRONOUS:
3133			transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
3134			break;
3135		case PIPE_INTERRUPT:
3136			transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
3137			break;
3138		case PIPE_CONTROL:
3139			transfer_type = CVMX_USB_TRANSFER_CONTROL;
3140			break;
3141		default:
3142			transfer_type = CVMX_USB_TRANSFER_BULK;
3143			break;
3144		}
3145		switch (urb->dev->speed) {
3146		case USB_SPEED_LOW:
3147			speed = CVMX_USB_SPEED_LOW;
3148			break;
3149		case USB_SPEED_FULL:
3150			speed = CVMX_USB_SPEED_FULL;
3151			break;
3152		default:
3153			speed = CVMX_USB_SPEED_HIGH;
3154			break;
3155		}
3156		/*
3157		 * For slow devices on high speed ports we need to find the hub
3158		 * that does the speed translation so we know where to send the
3159		 * split transactions.
3160		 */
3161		if (speed != CVMX_USB_SPEED_HIGH) {
3162			/*
3163			 * Start at this device and work our way up the usb
3164			 * tree.
3165			 */
3166			struct usb_device *dev = urb->dev;
3167
3168			while (dev->parent) {
3169				/*
3170				 * If our parent is high speed then he'll
3171				 * receive the splits.
3172				 */
3173				if (dev->parent->speed == USB_SPEED_HIGH) {
3174					split_device = dev->parent->devnum;
3175					split_port = dev->portnum;
3176					break;
3177				}
3178				/*
3179				 * Move up the tree one level. If we make it all
3180				 * the way up the tree, then the port must not
3181				 * be in high speed mode and we don't need a
3182				 * split.
3183				 */
3184				dev = dev->parent;
3185			}
3186		}
3187		pipe = cvmx_usb_open_pipe(&priv->usb, usb_pipedevice(urb->pipe),
3188					  usb_pipeendpoint(urb->pipe), speed,
3189					  le16_to_cpu(ep->desc.wMaxPacketSize)
3190					  & 0x7ff,
3191					  transfer_type,
3192					  usb_pipein(urb->pipe) ?
3193						CVMX_USB_DIRECTION_IN :
3194						CVMX_USB_DIRECTION_OUT,
3195					  urb->interval,
3196					  (le16_to_cpu(ep->desc.wMaxPacketSize)
3197					   >> 11) & 0x3,
3198					  split_device, split_port);
3199		if (!pipe) {
3200			usb_hcd_unlink_urb_from_ep(hcd, urb);
3201			spin_unlock_irqrestore(&priv->lock, flags);
3202			dev_dbg(dev, "Failed to create pipe\n");
3203			return -ENOMEM;
3204		}
3205		ep->hcpriv = pipe;
3206	} else {
3207		pipe = ep->hcpriv;
3208	}
3209
3210	switch (usb_pipetype(urb->pipe)) {
3211	case PIPE_ISOCHRONOUS:
3212		dev_dbg(dev, "Submit isochronous to %d.%d\n",
3213			usb_pipedevice(urb->pipe),
3214			usb_pipeendpoint(urb->pipe));
3215		/*
3216		 * Allocate a structure to use for our private list of
3217		 * isochronous packets.
3218		 */
3219		iso_packet = kmalloc_array(urb->number_of_packets,
3220					   sizeof(struct cvmx_usb_iso_packet),
3221					   GFP_ATOMIC);
3222		if (iso_packet) {
3223			int i;
3224			/* Fill the list with the data from the URB */
3225			for (i = 0; i < urb->number_of_packets; i++) {
3226				iso_packet[i].offset =
3227					urb->iso_frame_desc[i].offset;
3228				iso_packet[i].length =
3229					urb->iso_frame_desc[i].length;
3230				iso_packet[i].status =
3231					CVMX_USB_COMPLETE_ERROR;
3232			}
3233			/*
3234			 * Store a pointer to the list in the URB setup_packet
3235			 * field. We know this currently isn't being used and
3236			 * this saves us a bunch of logic.
3237			 */
3238			urb->setup_packet = (char *)iso_packet;
3239			transaction = cvmx_usb_submit_isochronous(&priv->usb,
3240								  pipe, urb);
3241			/*
3242			 * If submit failed we need to free our private packet
3243			 * list.
3244			 */
3245			if (!transaction) {
3246				urb->setup_packet = NULL;
3247				kfree(iso_packet);
3248			}
3249		}
3250		break;
3251	case PIPE_INTERRUPT:
3252		dev_dbg(dev, "Submit interrupt to %d.%d\n",
3253			usb_pipedevice(urb->pipe),
3254			usb_pipeendpoint(urb->pipe));
3255		transaction = cvmx_usb_submit_interrupt(&priv->usb, pipe, urb);
3256		break;
3257	case PIPE_CONTROL:
3258		dev_dbg(dev, "Submit control to %d.%d\n",
3259			usb_pipedevice(urb->pipe),
3260			usb_pipeendpoint(urb->pipe));
3261		transaction = cvmx_usb_submit_control(&priv->usb, pipe, urb);
3262		break;
3263	case PIPE_BULK:
3264		dev_dbg(dev, "Submit bulk to %d.%d\n",
3265			usb_pipedevice(urb->pipe),
3266			usb_pipeendpoint(urb->pipe));
3267		transaction = cvmx_usb_submit_bulk(&priv->usb, pipe, urb);
3268		break;
3269	}
3270	if (!transaction) {
3271		usb_hcd_unlink_urb_from_ep(hcd, urb);
3272		spin_unlock_irqrestore(&priv->lock, flags);
3273		dev_dbg(dev, "Failed to submit\n");
3274		return -ENOMEM;
3275	}
3276	urb->hcpriv = transaction;
3277	spin_unlock_irqrestore(&priv->lock, flags);
3278	return 0;
3279}
3280
3281static int octeon_usb_urb_dequeue(struct usb_hcd *hcd,
3282				  struct urb *urb,
3283				  int status)
3284{
3285	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3286	unsigned long flags;
3287	int rc;
3288
3289	if (!urb->dev)
3290		return -EINVAL;
3291
3292	spin_lock_irqsave(&priv->lock, flags);
3293
3294	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
3295	if (rc)
3296		goto out;
3297
3298	urb->status = status;
3299	cvmx_usb_cancel(&priv->usb, urb->ep->hcpriv, urb->hcpriv);
3300
3301out:
3302	spin_unlock_irqrestore(&priv->lock, flags);
3303
3304	return rc;
3305}
3306
3307static void octeon_usb_endpoint_disable(struct usb_hcd *hcd,
3308					struct usb_host_endpoint *ep)
3309{
3310	struct device *dev = hcd->self.controller;
3311
3312	if (ep->hcpriv) {
3313		struct octeon_hcd *priv = hcd_to_octeon(hcd);
3314		struct cvmx_usb_pipe *pipe = ep->hcpriv;
3315		unsigned long flags;
3316
3317		spin_lock_irqsave(&priv->lock, flags);
3318		cvmx_usb_cancel_all(&priv->usb, pipe);
3319		if (cvmx_usb_close_pipe(&priv->usb, pipe))
3320			dev_dbg(dev, "Closing pipe %p failed\n", pipe);
3321		spin_unlock_irqrestore(&priv->lock, flags);
3322		ep->hcpriv = NULL;
3323	}
3324}
3325
3326static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
3327{
3328	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3329	struct cvmx_usb_port_status port_status;
3330	unsigned long flags;
3331
3332	spin_lock_irqsave(&priv->lock, flags);
3333	port_status = cvmx_usb_get_status(&priv->usb);
3334	spin_unlock_irqrestore(&priv->lock, flags);
3335	buf[0] = 0;
3336	buf[0] = port_status.connect_change << 1;
3337
3338	return buf[0] != 0;
3339}
3340
3341static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
3342				u16 wIndex, char *buf, u16 wLength)
3343{
3344	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3345	struct device *dev = hcd->self.controller;
3346	struct cvmx_usb_port_status usb_port_status;
3347	struct cvmx_usb_state *usb = &priv->usb;
3348	int port_status;
3349	struct usb_hub_descriptor *desc;
3350	unsigned long flags;
3351
3352	switch (typeReq) {
3353	case ClearHubFeature:
3354		dev_dbg(dev, "ClearHubFeature\n");
3355		switch (wValue) {
3356		case C_HUB_LOCAL_POWER:
3357		case C_HUB_OVER_CURRENT:
3358			/* Nothing required here */
3359			break;
3360		default:
3361			return -EINVAL;
3362		}
3363		break;
3364	case ClearPortFeature:
3365		dev_dbg(dev, "ClearPortFeature\n");
3366		if (wIndex != 1) {
3367			dev_dbg(dev, " INVALID\n");
3368			return -EINVAL;
3369		}
3370
3371		switch (wValue) {
3372		case USB_PORT_FEAT_ENABLE:
3373			dev_dbg(dev, " ENABLE\n");
3374			spin_lock_irqsave(&priv->lock, flags);
3375			cvmx_usb_disable(&priv->usb);
3376			spin_unlock_irqrestore(&priv->lock, flags);
3377			break;
3378		case USB_PORT_FEAT_SUSPEND:
3379			dev_dbg(dev, " SUSPEND\n");
3380			/* Not supported on Octeon */
3381			break;
3382		case USB_PORT_FEAT_POWER:
3383			dev_dbg(dev, " POWER\n");
3384			/* Not supported on Octeon */
3385			break;
3386		case USB_PORT_FEAT_INDICATOR:
3387			dev_dbg(dev, " INDICATOR\n");
3388			/* Port inidicator not supported */
3389			break;
3390		case USB_PORT_FEAT_C_CONNECTION:
3391			dev_dbg(dev, " C_CONNECTION\n");
3392			/* Clears drivers internal connect status change flag */
3393			spin_lock_irqsave(&priv->lock, flags);
3394			priv->usb.port_status =
3395				cvmx_usb_get_status(&priv->usb);
3396			spin_unlock_irqrestore(&priv->lock, flags);
3397			break;
3398		case USB_PORT_FEAT_C_RESET:
3399			dev_dbg(dev, " C_RESET\n");
3400			/*
3401			 * Clears the driver's internal Port Reset Change flag.
3402			 */
3403			spin_lock_irqsave(&priv->lock, flags);
3404			priv->usb.port_status =
3405				cvmx_usb_get_status(&priv->usb);
3406			spin_unlock_irqrestore(&priv->lock, flags);
3407			break;
3408		case USB_PORT_FEAT_C_ENABLE:
3409			dev_dbg(dev, " C_ENABLE\n");
3410			/*
3411			 * Clears the driver's internal Port Enable/Disable
3412			 * Change flag.
3413			 */
3414			spin_lock_irqsave(&priv->lock, flags);
3415			priv->usb.port_status =
3416				cvmx_usb_get_status(&priv->usb);
3417			spin_unlock_irqrestore(&priv->lock, flags);
3418			break;
3419		case USB_PORT_FEAT_C_SUSPEND:
3420			dev_dbg(dev, " C_SUSPEND\n");
3421			/*
3422			 * Clears the driver's internal Port Suspend Change
3423			 * flag, which is set when resume signaling on the host
3424			 * port is complete.
3425			 */
3426			break;
3427		case USB_PORT_FEAT_C_OVER_CURRENT:
3428			dev_dbg(dev, " C_OVER_CURRENT\n");
3429			/* Clears the driver's overcurrent Change flag */
3430			spin_lock_irqsave(&priv->lock, flags);
3431			priv->usb.port_status =
3432				cvmx_usb_get_status(&priv->usb);
3433			spin_unlock_irqrestore(&priv->lock, flags);
3434			break;
3435		default:
3436			dev_dbg(dev, " UNKNOWN\n");
3437			return -EINVAL;
3438		}
3439		break;
3440	case GetHubDescriptor:
3441		dev_dbg(dev, "GetHubDescriptor\n");
3442		desc = (struct usb_hub_descriptor *)buf;
3443		desc->bDescLength = 9;
3444		desc->bDescriptorType = 0x29;
3445		desc->bNbrPorts = 1;
3446		desc->wHubCharacteristics = cpu_to_le16(0x08);
3447		desc->bPwrOn2PwrGood = 1;
3448		desc->bHubContrCurrent = 0;
3449		desc->u.hs.DeviceRemovable[0] = 0;
3450		desc->u.hs.DeviceRemovable[1] = 0xff;
3451		break;
3452	case GetHubStatus:
3453		dev_dbg(dev, "GetHubStatus\n");
3454		*(__le32 *) buf = 0;
3455		break;
3456	case GetPortStatus:
3457		dev_dbg(dev, "GetPortStatus\n");
3458		if (wIndex != 1) {
3459			dev_dbg(dev, " INVALID\n");
3460			return -EINVAL;
3461		}
3462
3463		spin_lock_irqsave(&priv->lock, flags);
3464		usb_port_status = cvmx_usb_get_status(&priv->usb);
3465		spin_unlock_irqrestore(&priv->lock, flags);
3466		port_status = 0;
3467
3468		if (usb_port_status.connect_change) {
3469			port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
3470			dev_dbg(dev, " C_CONNECTION\n");
3471		}
3472
3473		if (usb_port_status.port_enabled) {
3474			port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
3475			dev_dbg(dev, " C_ENABLE\n");
3476		}
3477
3478		if (usb_port_status.connected) {
3479			port_status |= (1 << USB_PORT_FEAT_CONNECTION);
3480			dev_dbg(dev, " CONNECTION\n");
3481		}
3482
3483		if (usb_port_status.port_enabled) {
3484			port_status |= (1 << USB_PORT_FEAT_ENABLE);
3485			dev_dbg(dev, " ENABLE\n");
3486		}
3487
3488		if (usb_port_status.port_over_current) {
3489			port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
3490			dev_dbg(dev, " OVER_CURRENT\n");
3491		}
3492
3493		if (usb_port_status.port_powered) {
3494			port_status |= (1 << USB_PORT_FEAT_POWER);
3495			dev_dbg(dev, " POWER\n");
3496		}
3497
3498		if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
3499			port_status |= USB_PORT_STAT_HIGH_SPEED;
3500			dev_dbg(dev, " HIGHSPEED\n");
3501		} else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
3502			port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
3503			dev_dbg(dev, " LOWSPEED\n");
3504		}
3505
3506		*((__le32 *) buf) = cpu_to_le32(port_status);
3507		break;
3508	case SetHubFeature:
3509		dev_dbg(dev, "SetHubFeature\n");
3510		/* No HUB features supported */
3511		break;
3512	case SetPortFeature:
3513		dev_dbg(dev, "SetPortFeature\n");
3514		if (wIndex != 1) {
3515			dev_dbg(dev, " INVALID\n");
3516			return -EINVAL;
3517		}
3518
3519		switch (wValue) {
3520		case USB_PORT_FEAT_SUSPEND:
3521			dev_dbg(dev, " SUSPEND\n");
3522			return -EINVAL;
3523		case USB_PORT_FEAT_POWER:
3524			dev_dbg(dev, " POWER\n");
3525			/*
3526			 * Program the port power bit to drive VBUS on the USB.
3527			 */
3528			spin_lock_irqsave(&priv->lock, flags);
3529			USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index),
3530					cvmx_usbcx_hprt, prtpwr, 1);
3531			spin_unlock_irqrestore(&priv->lock, flags);
3532			return 0;
3533		case USB_PORT_FEAT_RESET:
3534			dev_dbg(dev, " RESET\n");
3535			spin_lock_irqsave(&priv->lock, flags);
3536			cvmx_usb_reset_port(&priv->usb);
3537			spin_unlock_irqrestore(&priv->lock, flags);
3538			return 0;
3539		case USB_PORT_FEAT_INDICATOR:
3540			dev_dbg(dev, " INDICATOR\n");
3541			/* Not supported */
3542			break;
3543		default:
3544			dev_dbg(dev, " UNKNOWN\n");
3545			return -EINVAL;
3546		}
3547		break;
3548	default:
3549		dev_dbg(dev, "Unknown root hub request\n");
3550		return -EINVAL;
3551	}
3552	return 0;
3553}
3554
3555static const struct hc_driver octeon_hc_driver = {
3556	.description		= "Octeon USB",
3557	.product_desc		= "Octeon Host Controller",
3558	.hcd_priv_size		= sizeof(struct octeon_hcd),
3559	.irq			= octeon_usb_irq,
3560	.flags			= HCD_MEMORY | HCD_USB2,
3561	.start			= octeon_usb_start,
3562	.stop			= octeon_usb_stop,
3563	.urb_enqueue		= octeon_usb_urb_enqueue,
3564	.urb_dequeue		= octeon_usb_urb_dequeue,
3565	.endpoint_disable	= octeon_usb_endpoint_disable,
3566	.get_frame_number	= octeon_usb_get_frame_number,
3567	.hub_status_data	= octeon_usb_hub_status_data,
3568	.hub_control		= octeon_usb_hub_control,
3569	.map_urb_for_dma	= octeon_map_urb_for_dma,
3570	.unmap_urb_for_dma	= octeon_unmap_urb_for_dma,
3571};
3572
3573static int octeon_usb_probe(struct platform_device *pdev)
3574{
3575	int status;
3576	int initialize_flags;
3577	int usb_num;
3578	struct resource *res_mem;
3579	struct device_node *usbn_node;
3580	int irq = platform_get_irq(pdev, 0);
3581	struct device *dev = &pdev->dev;
3582	struct octeon_hcd *priv;
3583	struct usb_hcd *hcd;
3584	u32 clock_rate = 48000000;
3585	bool is_crystal_clock = false;
3586	const char *clock_type;
3587	int i;
3588
3589	if (dev->of_node == NULL) {
3590		dev_err(dev, "Error: empty of_node\n");
3591		return -ENXIO;
3592	}
3593	usbn_node = dev->of_node->parent;
3594
3595	i = of_property_read_u32(usbn_node,
3596				 "refclk-frequency", &clock_rate);
3597	if (i) {
3598		dev_err(dev, "No USBN \"refclk-frequency\"\n");
3599		return -ENXIO;
3600	}
3601	switch (clock_rate) {
3602	case 12000000:
3603		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
3604		break;
3605	case 24000000:
3606		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
3607		break;
3608	case 48000000:
3609		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
3610		break;
3611	default:
3612		dev_err(dev, "Illebal USBN \"refclk-frequency\" %u\n",
3613				clock_rate);
3614		return -ENXIO;
3615
3616	}
3617
3618	i = of_property_read_string(usbn_node,
3619				    "refclk-type", &clock_type);
3620
3621	if (!i && strcmp("crystal", clock_type) == 0)
3622		is_crystal_clock = true;
3623
3624	if (is_crystal_clock)
3625		initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
3626	else
3627		initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
3628
3629	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3630	if (res_mem == NULL) {
3631		dev_err(dev, "found no memory resource\n");
3632		return -ENXIO;
3633	}
3634	usb_num = (res_mem->start >> 44) & 1;
3635
3636	if (irq < 0) {
3637		/* Defective device tree, but we know how to fix it. */
3638		irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
3639
3640		irq = irq_create_mapping(NULL, hwirq);
3641	}
3642
3643	/*
3644	 * Set the DMA mask to 64bits so we get buffers already translated for
3645	 * DMA.
3646	 */
3647	dev->coherent_dma_mask = ~0;
3648	dev->dma_mask = &dev->coherent_dma_mask;
3649
3650	/*
3651	 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3652	 * IOB priority registers.  Under heavy network load USB
3653	 * hardware can be starved by the IOB causing a crash.  Give
3654	 * it a priority boost if it has been waiting more than 400
3655	 * cycles to avoid this situation.
3656	 *
3657	 * Testing indicates that a cnt_val of 8192 is not sufficient,
3658	 * but no failures are seen with 4096.  We choose a value of
3659	 * 400 to give a safety factor of 10.
3660	 */
3661	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
3662		union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
3663
3664		pri_cnt.u64 = 0;
3665		pri_cnt.s.cnt_enb = 1;
3666		pri_cnt.s.cnt_val = 400;
3667		cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
3668	}
3669
3670	hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
3671	if (!hcd) {
3672		dev_dbg(dev, "Failed to allocate memory for HCD\n");
3673		return -1;
3674	}
3675	hcd->uses_new_polling = 1;
3676	priv = (struct octeon_hcd *)hcd->hcd_priv;
3677
3678	spin_lock_init(&priv->lock);
3679
3680	priv->usb.init_flags = initialize_flags;
3681
3682	/* Initialize the USB state structure */
3683	priv->usb.index = usb_num;
3684	INIT_LIST_HEAD(&priv->usb.idle_pipes);
3685	for (i = 0; i < ARRAY_SIZE(priv->usb.active_pipes); i++)
3686		INIT_LIST_HEAD(&priv->usb.active_pipes[i]);
3687
3688	/* Due to an errata, CN31XX doesn't support DMA */
3689	if (OCTEON_IS_MODEL(OCTEON_CN31XX)) {
3690		priv->usb.init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
3691		/* Only use one channel with non DMA */
3692		priv->usb.idle_hardware_channels = 0x1;
3693	} else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
3694		/* CN5XXX have an errata with channel 3 */
3695		priv->usb.idle_hardware_channels = 0xf7;
3696	} else {
3697		priv->usb.idle_hardware_channels = 0xff;
3698	}
3699
3700	status = cvmx_usb_initialize(dev, &priv->usb);
3701	if (status) {
3702		dev_dbg(dev, "USB initialization failed with %d\n", status);
3703		kfree(hcd);
3704		return -1;
3705	}
3706
3707	status = usb_add_hcd(hcd, irq, 0);
3708	if (status) {
3709		dev_dbg(dev, "USB add HCD failed with %d\n", status);
3710		kfree(hcd);
3711		return -1;
3712	}
3713	device_wakeup_enable(hcd->self.controller);
3714
3715	dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
3716
3717	return 0;
3718}
3719
3720static int octeon_usb_remove(struct platform_device *pdev)
3721{
3722	int status;
3723	struct device *dev = &pdev->dev;
3724	struct usb_hcd *hcd = dev_get_drvdata(dev);
3725	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3726	unsigned long flags;
3727
3728	usb_remove_hcd(hcd);
3729	spin_lock_irqsave(&priv->lock, flags);
3730	status = cvmx_usb_shutdown(&priv->usb);
3731	spin_unlock_irqrestore(&priv->lock, flags);
3732	if (status)
3733		dev_dbg(dev, "USB shutdown failed with %d\n", status);
3734
3735	kfree(hcd);
3736
3737	return 0;
3738}
3739
3740static const struct of_device_id octeon_usb_match[] = {
3741	{
3742		.compatible = "cavium,octeon-5750-usbc",
3743	},
3744	{},
3745};
3746MODULE_DEVICE_TABLE(of, octeon_usb_match);
3747
3748static struct platform_driver octeon_usb_driver = {
3749	.driver = {
3750		.name       = "OcteonUSB",
3751		.of_match_table = octeon_usb_match,
3752	},
3753	.probe      = octeon_usb_probe,
3754	.remove     = octeon_usb_remove,
3755};
3756
3757static int __init octeon_usb_driver_init(void)
3758{
3759	if (usb_disabled())
3760		return 0;
3761
3762	return platform_driver_register(&octeon_usb_driver);
3763}
3764module_init(octeon_usb_driver_init);
3765
3766static void __exit octeon_usb_driver_exit(void)
3767{
3768	if (usb_disabled())
3769		return;
3770
3771	platform_driver_unregister(&octeon_usb_driver);
3772}
3773module_exit(octeon_usb_driver_exit);
3774
3775MODULE_LICENSE("GPL");
3776MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3777MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");
3778