1/*
2 * SH RSPI driver
3 *
4 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
6 *
7 * Based on spi-sh.c:
8 * Copyright (C) 2011 Renesas Solutions Corp.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/module.h>
21#include <linux/kernel.h>
22#include <linux/sched.h>
23#include <linux/errno.h>
24#include <linux/interrupt.h>
25#include <linux/platform_device.h>
26#include <linux/io.h>
27#include <linux/clk.h>
28#include <linux/dmaengine.h>
29#include <linux/dma-mapping.h>
30#include <linux/of_device.h>
31#include <linux/pm_runtime.h>
32#include <linux/sh_dma.h>
33#include <linux/spi/spi.h>
34#include <linux/spi/rspi.h>
35
36#define RSPI_SPCR		0x00	/* Control Register */
37#define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
38#define RSPI_SPPCR		0x02	/* Pin Control Register */
39#define RSPI_SPSR		0x03	/* Status Register */
40#define RSPI_SPDR		0x04	/* Data Register */
41#define RSPI_SPSCR		0x08	/* Sequence Control Register */
42#define RSPI_SPSSR		0x09	/* Sequence Status Register */
43#define RSPI_SPBR		0x0a	/* Bit Rate Register */
44#define RSPI_SPDCR		0x0b	/* Data Control Register */
45#define RSPI_SPCKD		0x0c	/* Clock Delay Register */
46#define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
47#define RSPI_SPND		0x0e	/* Next-Access Delay Register */
48#define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
49#define RSPI_SPCMD0		0x10	/* Command Register 0 */
50#define RSPI_SPCMD1		0x12	/* Command Register 1 */
51#define RSPI_SPCMD2		0x14	/* Command Register 2 */
52#define RSPI_SPCMD3		0x16	/* Command Register 3 */
53#define RSPI_SPCMD4		0x18	/* Command Register 4 */
54#define RSPI_SPCMD5		0x1a	/* Command Register 5 */
55#define RSPI_SPCMD6		0x1c	/* Command Register 6 */
56#define RSPI_SPCMD7		0x1e	/* Command Register 7 */
57#define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
58#define RSPI_NUM_SPCMD		8
59#define RSPI_RZ_NUM_SPCMD	4
60#define QSPI_NUM_SPCMD		4
61
62/* RSPI on RZ only */
63#define RSPI_SPBFCR		0x20	/* Buffer Control Register */
64#define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
65
66/* QSPI only */
67#define QSPI_SPBFCR		0x18	/* Buffer Control Register */
68#define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
69#define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
70#define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
71#define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
72#define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
73#define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
74
75/* SPCR - Control Register */
76#define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
77#define SPCR_SPE		0x40	/* Function Enable */
78#define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
79#define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
80#define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
81#define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
82/* RSPI on SH only */
83#define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
84#define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
85/* QSPI on R-Car Gen2 only */
86#define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
87#define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
88
89/* SSLP - Slave Select Polarity Register */
90#define SSLP_SSL1P		0x02	/* SSL1 Signal Polarity Setting */
91#define SSLP_SSL0P		0x01	/* SSL0 Signal Polarity Setting */
92
93/* SPPCR - Pin Control Register */
94#define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
95#define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
96#define SPPCR_SPOM		0x04
97#define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
98#define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */
99
100#define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
101#define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */
102
103/* SPSR - Status Register */
104#define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
105#define SPSR_TEND		0x40	/* Transmit End */
106#define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
107#define SPSR_PERF		0x08	/* Parity Error Flag */
108#define SPSR_MODF		0x04	/* Mode Fault Error Flag */
109#define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
110#define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
111
112/* SPSCR - Sequence Control Register */
113#define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */
114
115/* SPSSR - Sequence Status Register */
116#define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
117#define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */
118
119/* SPDCR - Data Control Register */
120#define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
121#define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
122#define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
123#define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
124#define SPDCR_SPLWORD		SPDCR_SPLW1
125#define SPDCR_SPLBYTE		SPDCR_SPLW0
126#define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
127#define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
128#define SPDCR_SLSEL1		0x08
129#define SPDCR_SLSEL0		0x04
130#define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
131#define SPDCR_SPFC1		0x02
132#define SPDCR_SPFC0		0x01
133#define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
134
135/* SPCKD - Clock Delay Register */
136#define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
137
138/* SSLND - Slave Select Negation Delay Register */
139#define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
140
141/* SPND - Next-Access Delay Register */
142#define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
143
144/* SPCR2 - Control Register 2 */
145#define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
146#define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
147#define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
148#define SPCR2_SPPE		0x01	/* Parity Enable */
149
150/* SPCMDn - Command Registers */
151#define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
152#define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
153#define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
154#define SPCMD_LSBF		0x1000	/* LSB First */
155#define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
156#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
157#define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
158#define SPCMD_SPB_16BIT		0x0100
159#define SPCMD_SPB_20BIT		0x0000
160#define SPCMD_SPB_24BIT		0x0100
161#define SPCMD_SPB_32BIT		0x0200
162#define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
163#define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
164#define SPCMD_SPIMOD1		0x0040
165#define SPCMD_SPIMOD0		0x0020
166#define SPCMD_SPIMOD_SINGLE	0
167#define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
168#define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
169#define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
170#define SPCMD_SSLA_MASK		0x0030	/* SSL Assert Signal Setting (RSPI) */
171#define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
172#define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
173#define SPCMD_CPHA		0x0001	/* Clock Phase Setting */
174
175/* SPBFCR - Buffer Control Register */
176#define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
177#define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
178#define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
179#define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
180/* QSPI on R-Car Gen2 */
181#define SPBFCR_TXTRG_1B		0x00	/* 31 bytes (1 byte available) */
182#define SPBFCR_TXTRG_32B	0x30	/* 0 byte (32 bytes available) */
183#define SPBFCR_RXTRG_1B		0x00	/* 1 byte (31 bytes available) */
184#define SPBFCR_RXTRG_32B	0x07	/* 32 bytes (0 byte available) */
185
186#define QSPI_BUFFER_SIZE        32u
187
188struct rspi_data {
189	void __iomem *addr;
190	u32 max_speed_hz;
191	struct spi_master *master;
192	wait_queue_head_t wait;
193	struct clk *clk;
194	u16 spcmd;
195	u8 spsr;
196	u8 sppcr;
197	int rx_irq, tx_irq;
198	const struct spi_ops *ops;
199
200	unsigned dma_callbacked:1;
201	unsigned byte_access:1;
202};
203
204static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
205{
206	iowrite8(data, rspi->addr + offset);
207}
208
209static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
210{
211	iowrite16(data, rspi->addr + offset);
212}
213
214static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
215{
216	iowrite32(data, rspi->addr + offset);
217}
218
219static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
220{
221	return ioread8(rspi->addr + offset);
222}
223
224static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
225{
226	return ioread16(rspi->addr + offset);
227}
228
229static void rspi_write_data(const struct rspi_data *rspi, u16 data)
230{
231	if (rspi->byte_access)
232		rspi_write8(rspi, data, RSPI_SPDR);
233	else /* 16 bit */
234		rspi_write16(rspi, data, RSPI_SPDR);
235}
236
237static u16 rspi_read_data(const struct rspi_data *rspi)
238{
239	if (rspi->byte_access)
240		return rspi_read8(rspi, RSPI_SPDR);
241	else /* 16 bit */
242		return rspi_read16(rspi, RSPI_SPDR);
243}
244
245/* optional functions */
246struct spi_ops {
247	int (*set_config_register)(struct rspi_data *rspi, int access_size);
248	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
249			    struct spi_transfer *xfer);
250	u16 mode_bits;
251	u16 flags;
252	u16 fifo_size;
253};
254
255/*
256 * functions for RSPI on legacy SH
257 */
258static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
259{
260	int spbr;
261
262	/* Sets output mode, MOSI signal, and (optionally) loopback */
263	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
264
265	/* Sets transfer bit rate */
266	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
267			    2 * rspi->max_speed_hz) - 1;
268	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
269
270	/* Disable dummy transmission, set 16-bit word access, 1 frame */
271	rspi_write8(rspi, 0, RSPI_SPDCR);
272	rspi->byte_access = 0;
273
274	/* Sets RSPCK, SSL, next-access delay value */
275	rspi_write8(rspi, 0x00, RSPI_SPCKD);
276	rspi_write8(rspi, 0x00, RSPI_SSLND);
277	rspi_write8(rspi, 0x00, RSPI_SPND);
278
279	/* Sets parity, interrupt mask */
280	rspi_write8(rspi, 0x00, RSPI_SPCR2);
281
282	/* Sets SPCMD */
283	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
284	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
285
286	/* Sets RSPI mode */
287	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
288
289	return 0;
290}
291
292/*
293 * functions for RSPI on RZ
294 */
295static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
296{
297	int spbr;
298
299	/* Sets output mode, MOSI signal, and (optionally) loopback */
300	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
301
302	/* Sets transfer bit rate */
303	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
304			    2 * rspi->max_speed_hz) - 1;
305	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
306
307	/* Disable dummy transmission, set byte access */
308	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
309	rspi->byte_access = 1;
310
311	/* Sets RSPCK, SSL, next-access delay value */
312	rspi_write8(rspi, 0x00, RSPI_SPCKD);
313	rspi_write8(rspi, 0x00, RSPI_SSLND);
314	rspi_write8(rspi, 0x00, RSPI_SPND);
315
316	/* Sets SPCMD */
317	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
318	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
319
320	/* Sets RSPI mode */
321	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
322
323	return 0;
324}
325
326/*
327 * functions for QSPI
328 */
329static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
330{
331	int spbr;
332
333	/* Sets output mode, MOSI signal, and (optionally) loopback */
334	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
335
336	/* Sets transfer bit rate */
337	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
338	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
339
340	/* Disable dummy transmission, set byte access */
341	rspi_write8(rspi, 0, RSPI_SPDCR);
342	rspi->byte_access = 1;
343
344	/* Sets RSPCK, SSL, next-access delay value */
345	rspi_write8(rspi, 0x00, RSPI_SPCKD);
346	rspi_write8(rspi, 0x00, RSPI_SSLND);
347	rspi_write8(rspi, 0x00, RSPI_SPND);
348
349	/* Data Length Setting */
350	if (access_size == 8)
351		rspi->spcmd |= SPCMD_SPB_8BIT;
352	else if (access_size == 16)
353		rspi->spcmd |= SPCMD_SPB_16BIT;
354	else
355		rspi->spcmd |= SPCMD_SPB_32BIT;
356
357	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
358
359	/* Resets transfer data length */
360	rspi_write32(rspi, 0, QSPI_SPBMUL0);
361
362	/* Resets transmit and receive buffer */
363	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
364	/* Sets buffer to allow normal operation */
365	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
366
367	/* Sets SPCMD */
368	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
369
370	/* Enables SPI function in master mode */
371	rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
372
373	return 0;
374}
375
376static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
377{
378	u8 data;
379
380	data = rspi_read8(rspi, reg);
381	data &= ~mask;
382	data |= (val & mask);
383	rspi_write8(rspi, data, reg);
384}
385
386static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
387					  unsigned int len)
388{
389	unsigned int n;
390
391	n = min(len, QSPI_BUFFER_SIZE);
392
393	if (len >= QSPI_BUFFER_SIZE) {
394		/* sets triggering number to 32 bytes */
395		qspi_update(rspi, SPBFCR_TXTRG_MASK,
396			     SPBFCR_TXTRG_32B, QSPI_SPBFCR);
397	} else {
398		/* sets triggering number to 1 byte */
399		qspi_update(rspi, SPBFCR_TXTRG_MASK,
400			     SPBFCR_TXTRG_1B, QSPI_SPBFCR);
401	}
402
403	return n;
404}
405
406static void qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
407{
408	unsigned int n;
409
410	n = min(len, QSPI_BUFFER_SIZE);
411
412	if (len >= QSPI_BUFFER_SIZE) {
413		/* sets triggering number to 32 bytes */
414		qspi_update(rspi, SPBFCR_RXTRG_MASK,
415			     SPBFCR_RXTRG_32B, QSPI_SPBFCR);
416	} else {
417		/* sets triggering number to 1 byte */
418		qspi_update(rspi, SPBFCR_RXTRG_MASK,
419			     SPBFCR_RXTRG_1B, QSPI_SPBFCR);
420	}
421}
422
423#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
424
425static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
426{
427	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
428}
429
430static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
431{
432	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
433}
434
435static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
436				   u8 enable_bit)
437{
438	int ret;
439
440	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
441	if (rspi->spsr & wait_mask)
442		return 0;
443
444	rspi_enable_irq(rspi, enable_bit);
445	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
446	if (ret == 0 && !(rspi->spsr & wait_mask))
447		return -ETIMEDOUT;
448
449	return 0;
450}
451
452static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
453{
454	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
455}
456
457static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
458{
459	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
460}
461
462static int rspi_data_out(struct rspi_data *rspi, u8 data)
463{
464	int error = rspi_wait_for_tx_empty(rspi);
465	if (error < 0) {
466		dev_err(&rspi->master->dev, "transmit timeout\n");
467		return error;
468	}
469	rspi_write_data(rspi, data);
470	return 0;
471}
472
473static int rspi_data_in(struct rspi_data *rspi)
474{
475	int error;
476	u8 data;
477
478	error = rspi_wait_for_rx_full(rspi);
479	if (error < 0) {
480		dev_err(&rspi->master->dev, "receive timeout\n");
481		return error;
482	}
483	data = rspi_read_data(rspi);
484	return data;
485}
486
487static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
488			     unsigned int n)
489{
490	while (n-- > 0) {
491		if (tx) {
492			int ret = rspi_data_out(rspi, *tx++);
493			if (ret < 0)
494				return ret;
495		}
496		if (rx) {
497			int ret = rspi_data_in(rspi);
498			if (ret < 0)
499				return ret;
500			*rx++ = ret;
501		}
502	}
503
504	return 0;
505}
506
507static void rspi_dma_complete(void *arg)
508{
509	struct rspi_data *rspi = arg;
510
511	rspi->dma_callbacked = 1;
512	wake_up_interruptible(&rspi->wait);
513}
514
515static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
516			     struct sg_table *rx)
517{
518	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
519	u8 irq_mask = 0;
520	unsigned int other_irq = 0;
521	dma_cookie_t cookie;
522	int ret;
523
524	/* First prepare and submit the DMA request(s), as this may fail */
525	if (rx) {
526		desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
527					rx->sgl, rx->nents, DMA_FROM_DEVICE,
528					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
529		if (!desc_rx) {
530			ret = -EAGAIN;
531			goto no_dma_rx;
532		}
533
534		desc_rx->callback = rspi_dma_complete;
535		desc_rx->callback_param = rspi;
536		cookie = dmaengine_submit(desc_rx);
537		if (dma_submit_error(cookie)) {
538			ret = cookie;
539			goto no_dma_rx;
540		}
541
542		irq_mask |= SPCR_SPRIE;
543	}
544
545	if (tx) {
546		desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
547					tx->sgl, tx->nents, DMA_TO_DEVICE,
548					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
549		if (!desc_tx) {
550			ret = -EAGAIN;
551			goto no_dma_tx;
552		}
553
554		if (rx) {
555			/* No callback */
556			desc_tx->callback = NULL;
557		} else {
558			desc_tx->callback = rspi_dma_complete;
559			desc_tx->callback_param = rspi;
560		}
561		cookie = dmaengine_submit(desc_tx);
562		if (dma_submit_error(cookie)) {
563			ret = cookie;
564			goto no_dma_tx;
565		}
566
567		irq_mask |= SPCR_SPTIE;
568	}
569
570	/*
571	 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
572	 * called. So, this driver disables the IRQ while DMA transfer.
573	 */
574	if (tx)
575		disable_irq(other_irq = rspi->tx_irq);
576	if (rx && rspi->rx_irq != other_irq)
577		disable_irq(rspi->rx_irq);
578
579	rspi_enable_irq(rspi, irq_mask);
580	rspi->dma_callbacked = 0;
581
582	/* Now start DMA */
583	if (rx)
584		dma_async_issue_pending(rspi->master->dma_rx);
585	if (tx)
586		dma_async_issue_pending(rspi->master->dma_tx);
587
588	ret = wait_event_interruptible_timeout(rspi->wait,
589					       rspi->dma_callbacked, HZ);
590	if (ret > 0 && rspi->dma_callbacked)
591		ret = 0;
592	else if (!ret) {
593		dev_err(&rspi->master->dev, "DMA timeout\n");
594		ret = -ETIMEDOUT;
595		if (tx)
596			dmaengine_terminate_all(rspi->master->dma_tx);
597		if (rx)
598			dmaengine_terminate_all(rspi->master->dma_rx);
599	}
600
601	rspi_disable_irq(rspi, irq_mask);
602
603	if (tx)
604		enable_irq(rspi->tx_irq);
605	if (rx && rspi->rx_irq != other_irq)
606		enable_irq(rspi->rx_irq);
607
608	return ret;
609
610no_dma_tx:
611	if (rx)
612		dmaengine_terminate_all(rspi->master->dma_rx);
613no_dma_rx:
614	if (ret == -EAGAIN) {
615		pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
616			     dev_driver_string(&rspi->master->dev),
617			     dev_name(&rspi->master->dev));
618	}
619	return ret;
620}
621
622static void rspi_receive_init(const struct rspi_data *rspi)
623{
624	u8 spsr;
625
626	spsr = rspi_read8(rspi, RSPI_SPSR);
627	if (spsr & SPSR_SPRF)
628		rspi_read_data(rspi);	/* dummy read */
629	if (spsr & SPSR_OVRF)
630		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
631			    RSPI_SPSR);
632}
633
634static void rspi_rz_receive_init(const struct rspi_data *rspi)
635{
636	rspi_receive_init(rspi);
637	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
638	rspi_write8(rspi, 0, RSPI_SPBFCR);
639}
640
641static void qspi_receive_init(const struct rspi_data *rspi)
642{
643	u8 spsr;
644
645	spsr = rspi_read8(rspi, RSPI_SPSR);
646	if (spsr & SPSR_SPRF)
647		rspi_read_data(rspi);   /* dummy read */
648	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
649	rspi_write8(rspi, 0, QSPI_SPBFCR);
650}
651
652static bool __rspi_can_dma(const struct rspi_data *rspi,
653			   const struct spi_transfer *xfer)
654{
655	return xfer->len > rspi->ops->fifo_size;
656}
657
658static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
659			 struct spi_transfer *xfer)
660{
661	struct rspi_data *rspi = spi_master_get_devdata(master);
662
663	return __rspi_can_dma(rspi, xfer);
664}
665
666static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
667					 struct spi_transfer *xfer)
668{
669	if (!rspi->master->can_dma || !__rspi_can_dma(rspi, xfer))
670		return -EAGAIN;
671
672	/* rx_buf can be NULL on RSPI on SH in TX-only Mode */
673	return rspi_dma_transfer(rspi, &xfer->tx_sg,
674				xfer->rx_buf ? &xfer->rx_sg : NULL);
675}
676
677static int rspi_common_transfer(struct rspi_data *rspi,
678				struct spi_transfer *xfer)
679{
680	int ret;
681
682	ret = rspi_dma_check_then_transfer(rspi, xfer);
683	if (ret != -EAGAIN)
684		return ret;
685
686	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
687	if (ret < 0)
688		return ret;
689
690	/* Wait for the last transmission */
691	rspi_wait_for_tx_empty(rspi);
692
693	return 0;
694}
695
696static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
697			     struct spi_transfer *xfer)
698{
699	struct rspi_data *rspi = spi_master_get_devdata(master);
700	u8 spcr;
701
702	spcr = rspi_read8(rspi, RSPI_SPCR);
703	if (xfer->rx_buf) {
704		rspi_receive_init(rspi);
705		spcr &= ~SPCR_TXMD;
706	} else {
707		spcr |= SPCR_TXMD;
708	}
709	rspi_write8(rspi, spcr, RSPI_SPCR);
710
711	return rspi_common_transfer(rspi, xfer);
712}
713
714static int rspi_rz_transfer_one(struct spi_master *master,
715				struct spi_device *spi,
716				struct spi_transfer *xfer)
717{
718	struct rspi_data *rspi = spi_master_get_devdata(master);
719
720	rspi_rz_receive_init(rspi);
721
722	return rspi_common_transfer(rspi, xfer);
723}
724
725static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
726					u8 *rx, unsigned int len)
727{
728	unsigned int i, n;
729	int ret;
730
731	while (len > 0) {
732		n = qspi_set_send_trigger(rspi, len);
733		qspi_set_receive_trigger(rspi, len);
734		if (n == QSPI_BUFFER_SIZE) {
735			ret = rspi_wait_for_tx_empty(rspi);
736			if (ret < 0) {
737				dev_err(&rspi->master->dev, "transmit timeout\n");
738				return ret;
739			}
740			for (i = 0; i < n; i++)
741				rspi_write_data(rspi, *tx++);
742
743			ret = rspi_wait_for_rx_full(rspi);
744			if (ret < 0) {
745				dev_err(&rspi->master->dev, "receive timeout\n");
746				return ret;
747			}
748			for (i = 0; i < n; i++)
749				*rx++ = rspi_read_data(rspi);
750		} else {
751			ret = rspi_pio_transfer(rspi, tx, rx, n);
752			if (ret < 0)
753				return ret;
754		}
755		len -= n;
756	}
757
758	return 0;
759}
760
761static int qspi_transfer_out_in(struct rspi_data *rspi,
762				struct spi_transfer *xfer)
763{
764	int ret;
765
766	qspi_receive_init(rspi);
767
768	ret = rspi_dma_check_then_transfer(rspi, xfer);
769	if (ret != -EAGAIN)
770		return ret;
771
772	return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
773					    xfer->rx_buf, xfer->len);
774}
775
776static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
777{
778	int ret;
779
780	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
781		ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
782		if (ret != -EAGAIN)
783			return ret;
784	}
785
786	ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
787	if (ret < 0)
788		return ret;
789
790	/* Wait for the last transmission */
791	rspi_wait_for_tx_empty(rspi);
792
793	return 0;
794}
795
796static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
797{
798	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
799		int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
800		if (ret != -EAGAIN)
801			return ret;
802	}
803
804	return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
805}
806
807static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
808			     struct spi_transfer *xfer)
809{
810	struct rspi_data *rspi = spi_master_get_devdata(master);
811
812	if (spi->mode & SPI_LOOP) {
813		return qspi_transfer_out_in(rspi, xfer);
814	} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
815		/* Quad or Dual SPI Write */
816		return qspi_transfer_out(rspi, xfer);
817	} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
818		/* Quad or Dual SPI Read */
819		return qspi_transfer_in(rspi, xfer);
820	} else {
821		/* Single SPI Transfer */
822		return qspi_transfer_out_in(rspi, xfer);
823	}
824}
825
826static int rspi_setup(struct spi_device *spi)
827{
828	struct rspi_data *rspi = spi_master_get_devdata(spi->master);
829
830	rspi->max_speed_hz = spi->max_speed_hz;
831
832	rspi->spcmd = SPCMD_SSLKP;
833	if (spi->mode & SPI_CPOL)
834		rspi->spcmd |= SPCMD_CPOL;
835	if (spi->mode & SPI_CPHA)
836		rspi->spcmd |= SPCMD_CPHA;
837
838	/* CMOS output mode and MOSI signal from previous transfer */
839	rspi->sppcr = 0;
840	if (spi->mode & SPI_LOOP)
841		rspi->sppcr |= SPPCR_SPLP;
842
843	set_config_register(rspi, 8);
844
845	return 0;
846}
847
848static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
849{
850	if (xfer->tx_buf)
851		switch (xfer->tx_nbits) {
852		case SPI_NBITS_QUAD:
853			return SPCMD_SPIMOD_QUAD;
854		case SPI_NBITS_DUAL:
855			return SPCMD_SPIMOD_DUAL;
856		default:
857			return 0;
858		}
859	if (xfer->rx_buf)
860		switch (xfer->rx_nbits) {
861		case SPI_NBITS_QUAD:
862			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
863		case SPI_NBITS_DUAL:
864			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
865		default:
866			return 0;
867		}
868
869	return 0;
870}
871
872static int qspi_setup_sequencer(struct rspi_data *rspi,
873				const struct spi_message *msg)
874{
875	const struct spi_transfer *xfer;
876	unsigned int i = 0, len = 0;
877	u16 current_mode = 0xffff, mode;
878
879	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
880		mode = qspi_transfer_mode(xfer);
881		if (mode == current_mode) {
882			len += xfer->len;
883			continue;
884		}
885
886		/* Transfer mode change */
887		if (i) {
888			/* Set transfer data length of previous transfer */
889			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
890		}
891
892		if (i >= QSPI_NUM_SPCMD) {
893			dev_err(&msg->spi->dev,
894				"Too many different transfer modes");
895			return -EINVAL;
896		}
897
898		/* Program transfer mode for this transfer */
899		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
900		current_mode = mode;
901		len = xfer->len;
902		i++;
903	}
904	if (i) {
905		/* Set final transfer data length and sequence length */
906		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
907		rspi_write8(rspi, i - 1, RSPI_SPSCR);
908	}
909
910	return 0;
911}
912
913static int rspi_prepare_message(struct spi_master *master,
914				struct spi_message *msg)
915{
916	struct rspi_data *rspi = spi_master_get_devdata(master);
917	int ret;
918
919	if (msg->spi->mode &
920	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
921		/* Setup sequencer for messages with multiple transfer modes */
922		ret = qspi_setup_sequencer(rspi, msg);
923		if (ret < 0)
924			return ret;
925	}
926
927	/* Enable SPI function in master mode */
928	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
929	return 0;
930}
931
932static int rspi_unprepare_message(struct spi_master *master,
933				  struct spi_message *msg)
934{
935	struct rspi_data *rspi = spi_master_get_devdata(master);
936
937	/* Disable SPI function */
938	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
939
940	/* Reset sequencer for Single SPI Transfers */
941	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
942	rspi_write8(rspi, 0, RSPI_SPSCR);
943	return 0;
944}
945
946static irqreturn_t rspi_irq_mux(int irq, void *_sr)
947{
948	struct rspi_data *rspi = _sr;
949	u8 spsr;
950	irqreturn_t ret = IRQ_NONE;
951	u8 disable_irq = 0;
952
953	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
954	if (spsr & SPSR_SPRF)
955		disable_irq |= SPCR_SPRIE;
956	if (spsr & SPSR_SPTEF)
957		disable_irq |= SPCR_SPTIE;
958
959	if (disable_irq) {
960		ret = IRQ_HANDLED;
961		rspi_disable_irq(rspi, disable_irq);
962		wake_up(&rspi->wait);
963	}
964
965	return ret;
966}
967
968static irqreturn_t rspi_irq_rx(int irq, void *_sr)
969{
970	struct rspi_data *rspi = _sr;
971	u8 spsr;
972
973	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
974	if (spsr & SPSR_SPRF) {
975		rspi_disable_irq(rspi, SPCR_SPRIE);
976		wake_up(&rspi->wait);
977		return IRQ_HANDLED;
978	}
979
980	return 0;
981}
982
983static irqreturn_t rspi_irq_tx(int irq, void *_sr)
984{
985	struct rspi_data *rspi = _sr;
986	u8 spsr;
987
988	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
989	if (spsr & SPSR_SPTEF) {
990		rspi_disable_irq(rspi, SPCR_SPTIE);
991		wake_up(&rspi->wait);
992		return IRQ_HANDLED;
993	}
994
995	return 0;
996}
997
998static struct dma_chan *rspi_request_dma_chan(struct device *dev,
999					      enum dma_transfer_direction dir,
1000					      unsigned int id,
1001					      dma_addr_t port_addr)
1002{
1003	dma_cap_mask_t mask;
1004	struct dma_chan *chan;
1005	struct dma_slave_config cfg;
1006	int ret;
1007
1008	dma_cap_zero(mask);
1009	dma_cap_set(DMA_SLAVE, mask);
1010
1011	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1012				(void *)(unsigned long)id, dev,
1013				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1014	if (!chan) {
1015		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1016		return NULL;
1017	}
1018
1019	memset(&cfg, 0, sizeof(cfg));
1020	cfg.direction = dir;
1021	if (dir == DMA_MEM_TO_DEV) {
1022		cfg.dst_addr = port_addr;
1023		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1024	} else {
1025		cfg.src_addr = port_addr;
1026		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1027	}
1028
1029	ret = dmaengine_slave_config(chan, &cfg);
1030	if (ret) {
1031		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1032		dma_release_channel(chan);
1033		return NULL;
1034	}
1035
1036	return chan;
1037}
1038
1039static int rspi_request_dma(struct device *dev, struct spi_master *master,
1040			    const struct resource *res)
1041{
1042	const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1043	unsigned int dma_tx_id, dma_rx_id;
1044
1045	if (dev->of_node) {
1046		/* In the OF case we will get the slave IDs from the DT */
1047		dma_tx_id = 0;
1048		dma_rx_id = 0;
1049	} else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1050		dma_tx_id = rspi_pd->dma_tx_id;
1051		dma_rx_id = rspi_pd->dma_rx_id;
1052	} else {
1053		/* The driver assumes no error. */
1054		return 0;
1055	}
1056
1057	master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1058					       res->start + RSPI_SPDR);
1059	if (!master->dma_tx)
1060		return -ENODEV;
1061
1062	master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1063					       res->start + RSPI_SPDR);
1064	if (!master->dma_rx) {
1065		dma_release_channel(master->dma_tx);
1066		master->dma_tx = NULL;
1067		return -ENODEV;
1068	}
1069
1070	master->can_dma = rspi_can_dma;
1071	dev_info(dev, "DMA available");
1072	return 0;
1073}
1074
1075static void rspi_release_dma(struct spi_master *master)
1076{
1077	if (master->dma_tx)
1078		dma_release_channel(master->dma_tx);
1079	if (master->dma_rx)
1080		dma_release_channel(master->dma_rx);
1081}
1082
1083static int rspi_remove(struct platform_device *pdev)
1084{
1085	struct rspi_data *rspi = platform_get_drvdata(pdev);
1086
1087	rspi_release_dma(rspi->master);
1088	pm_runtime_disable(&pdev->dev);
1089
1090	return 0;
1091}
1092
1093static const struct spi_ops rspi_ops = {
1094	.set_config_register =	rspi_set_config_register,
1095	.transfer_one =		rspi_transfer_one,
1096	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
1097	.flags =		SPI_MASTER_MUST_TX,
1098	.fifo_size =		8,
1099};
1100
1101static const struct spi_ops rspi_rz_ops = {
1102	.set_config_register =	rspi_rz_set_config_register,
1103	.transfer_one =		rspi_rz_transfer_one,
1104	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
1105	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1106	.fifo_size =		8,	/* 8 for TX, 32 for RX */
1107};
1108
1109static const struct spi_ops qspi_ops = {
1110	.set_config_register =	qspi_set_config_register,
1111	.transfer_one =		qspi_transfer_one,
1112	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP |
1113				SPI_TX_DUAL | SPI_TX_QUAD |
1114				SPI_RX_DUAL | SPI_RX_QUAD,
1115	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1116	.fifo_size =		32,
1117};
1118
1119#ifdef CONFIG_OF
1120static const struct of_device_id rspi_of_match[] = {
1121	/* RSPI on legacy SH */
1122	{ .compatible = "renesas,rspi", .data = &rspi_ops },
1123	/* RSPI on RZ/A1H */
1124	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1125	/* QSPI on R-Car Gen2 */
1126	{ .compatible = "renesas,qspi", .data = &qspi_ops },
1127	{ /* sentinel */ }
1128};
1129
1130MODULE_DEVICE_TABLE(of, rspi_of_match);
1131
1132static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1133{
1134	u32 num_cs;
1135	int error;
1136
1137	/* Parse DT properties */
1138	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1139	if (error) {
1140		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1141		return error;
1142	}
1143
1144	master->num_chipselect = num_cs;
1145	return 0;
1146}
1147#else
1148#define rspi_of_match	NULL
1149static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1150{
1151	return -EINVAL;
1152}
1153#endif /* CONFIG_OF */
1154
1155static int rspi_request_irq(struct device *dev, unsigned int irq,
1156			    irq_handler_t handler, const char *suffix,
1157			    void *dev_id)
1158{
1159	const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1160					  dev_name(dev), suffix);
1161	if (!name)
1162		return -ENOMEM;
1163
1164	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1165}
1166
1167static int rspi_probe(struct platform_device *pdev)
1168{
1169	struct resource *res;
1170	struct spi_master *master;
1171	struct rspi_data *rspi;
1172	int ret;
1173	const struct of_device_id *of_id;
1174	const struct rspi_plat_data *rspi_pd;
1175	const struct spi_ops *ops;
1176
1177	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1178	if (master == NULL) {
1179		dev_err(&pdev->dev, "spi_alloc_master error.\n");
1180		return -ENOMEM;
1181	}
1182
1183	of_id = of_match_device(rspi_of_match, &pdev->dev);
1184	if (of_id) {
1185		ops = of_id->data;
1186		ret = rspi_parse_dt(&pdev->dev, master);
1187		if (ret)
1188			goto error1;
1189	} else {
1190		ops = (struct spi_ops *)pdev->id_entry->driver_data;
1191		rspi_pd = dev_get_platdata(&pdev->dev);
1192		if (rspi_pd && rspi_pd->num_chipselect)
1193			master->num_chipselect = rspi_pd->num_chipselect;
1194		else
1195			master->num_chipselect = 2; /* default */
1196	}
1197
1198	/* ops parameter check */
1199	if (!ops->set_config_register) {
1200		dev_err(&pdev->dev, "there is no set_config_register\n");
1201		ret = -ENODEV;
1202		goto error1;
1203	}
1204
1205	rspi = spi_master_get_devdata(master);
1206	platform_set_drvdata(pdev, rspi);
1207	rspi->ops = ops;
1208	rspi->master = master;
1209
1210	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1211	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1212	if (IS_ERR(rspi->addr)) {
1213		ret = PTR_ERR(rspi->addr);
1214		goto error1;
1215	}
1216
1217	rspi->clk = devm_clk_get(&pdev->dev, NULL);
1218	if (IS_ERR(rspi->clk)) {
1219		dev_err(&pdev->dev, "cannot get clock\n");
1220		ret = PTR_ERR(rspi->clk);
1221		goto error1;
1222	}
1223
1224	pm_runtime_enable(&pdev->dev);
1225
1226	init_waitqueue_head(&rspi->wait);
1227
1228	master->bus_num = pdev->id;
1229	master->setup = rspi_setup;
1230	master->auto_runtime_pm = true;
1231	master->transfer_one = ops->transfer_one;
1232	master->prepare_message = rspi_prepare_message;
1233	master->unprepare_message = rspi_unprepare_message;
1234	master->mode_bits = ops->mode_bits;
1235	master->flags = ops->flags;
1236	master->dev.of_node = pdev->dev.of_node;
1237
1238	ret = platform_get_irq_byname(pdev, "rx");
1239	if (ret < 0) {
1240		ret = platform_get_irq_byname(pdev, "mux");
1241		if (ret < 0)
1242			ret = platform_get_irq(pdev, 0);
1243		if (ret >= 0)
1244			rspi->rx_irq = rspi->tx_irq = ret;
1245	} else {
1246		rspi->rx_irq = ret;
1247		ret = platform_get_irq_byname(pdev, "tx");
1248		if (ret >= 0)
1249			rspi->tx_irq = ret;
1250	}
1251	if (ret < 0) {
1252		dev_err(&pdev->dev, "platform_get_irq error\n");
1253		goto error2;
1254	}
1255
1256	if (rspi->rx_irq == rspi->tx_irq) {
1257		/* Single multiplexed interrupt */
1258		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1259				       "mux", rspi);
1260	} else {
1261		/* Multi-interrupt mode, only SPRI and SPTI are used */
1262		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1263				       "rx", rspi);
1264		if (!ret)
1265			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1266					       rspi_irq_tx, "tx", rspi);
1267	}
1268	if (ret < 0) {
1269		dev_err(&pdev->dev, "request_irq error\n");
1270		goto error2;
1271	}
1272
1273	ret = rspi_request_dma(&pdev->dev, master, res);
1274	if (ret < 0)
1275		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1276
1277	ret = devm_spi_register_master(&pdev->dev, master);
1278	if (ret < 0) {
1279		dev_err(&pdev->dev, "spi_register_master error.\n");
1280		goto error3;
1281	}
1282
1283	dev_info(&pdev->dev, "probed\n");
1284
1285	return 0;
1286
1287error3:
1288	rspi_release_dma(master);
1289error2:
1290	pm_runtime_disable(&pdev->dev);
1291error1:
1292	spi_master_put(master);
1293
1294	return ret;
1295}
1296
1297static const struct platform_device_id spi_driver_ids[] = {
1298	{ "rspi",	(kernel_ulong_t)&rspi_ops },
1299	{ "rspi-rz",	(kernel_ulong_t)&rspi_rz_ops },
1300	{ "qspi",	(kernel_ulong_t)&qspi_ops },
1301	{},
1302};
1303
1304MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1305
1306static struct platform_driver rspi_driver = {
1307	.probe =	rspi_probe,
1308	.remove =	rspi_remove,
1309	.id_table =	spi_driver_ids,
1310	.driver		= {
1311		.name = "renesas_spi",
1312		.of_match_table = of_match_ptr(rspi_of_match),
1313	},
1314};
1315module_platform_driver(rspi_driver);
1316
1317MODULE_DESCRIPTION("Renesas RSPI bus driver");
1318MODULE_LICENSE("GPL v2");
1319MODULE_AUTHOR("Yoshihiro Shimoda");
1320MODULE_ALIAS("platform:rspi");
1321