1/*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 *     Redistribution and use in source and binary forms, with or
13 *     without modification, are permitted provided that the following
14 *     conditions are met:
15 *
16 *      - Redistributions of source code must retain the above
17 *        copyright notice, this list of conditions and the following
18 *        disclaimer.
19 *
20 *      - Redistributions in binary form must reproduce the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer in the documentation and/or other materials
23 *        provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/kernel.h>
36#include <linux/string.h>
37#include <linux/compiler.h>
38#include <linux/slab.h>
39#include <asm/page.h>
40#include <linux/cache.h>
41
42#include "csio_hw.h"
43#include "csio_wr.h"
44#include "csio_mb.h"
45#include "csio_defs.h"
46
47int csio_intr_coalesce_cnt;		/* value:SGE_INGRESS_RX_THRESHOLD[0] */
48static int csio_sge_thresh_reg;		/* SGE_INGRESS_RX_THRESHOLD[0] */
49
50int csio_intr_coalesce_time = 10;	/* value:SGE_TIMER_VALUE_1 */
51static int csio_sge_timer_reg = 1;
52
53#define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val)				\
54	csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)
55
56static void
57csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg)
58{
59	sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A +
60							reg * sizeof(uint32_t));
61}
62
63/* Free list buffer size */
64static inline uint32_t
65csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf)
66{
67	return sge->sge_fl_buf_size[buf->paddr & 0xF];
68}
69
70/* Size of the egress queue status page */
71static inline uint32_t
72csio_wr_qstat_pgsz(struct csio_hw *hw)
73{
74	return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ?  128 : 64;
75}
76
77/* Ring freelist doorbell */
78static inline void
79csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq)
80{
81	/*
82	 * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
83	 * number of bytes in the freelist queue. This translates to atleast
84	 * 8 freelist buffer pointers (since each pointer is 8 bytes).
85	 */
86	if (flq->inc_idx >= 8) {
87		csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) |
88				  PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F,
89				  MYPF_REG(SGE_PF_KDOORBELL_A));
90		flq->inc_idx &= 7;
91	}
92}
93
94/* Write a 0 cidx increment value to enable SGE interrupts for this queue */
95static void
96csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid)
97{
98	csio_wr_reg32(hw, CIDXINC_V(0)		|
99			  INGRESSQID_V(iqid)	|
100			  TIMERREG_V(X_TIMERREG_RESTART_COUNTER),
101			  MYPF_REG(SGE_PF_GTS_A));
102}
103
104/*
105 * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
106 * @hw: HW module.
107 * @flq: Freelist queue.
108 *
109 * Fill up freelist buffer entries with buffers of size specified
110 * in the size register.
111 *
112 */
113static int
114csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq)
115{
116	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
117	struct csio_sge *sge = &wrm->sge;
118	__be64 *d = (__be64 *)(flq->vstart);
119	struct csio_dma_buf *buf = &flq->un.fl.bufs[0];
120	uint64_t paddr;
121	int sreg = flq->un.fl.sreg;
122	int n = flq->credits;
123
124	while (n--) {
125		buf->len = sge->sge_fl_buf_size[sreg];
126		buf->vaddr = pci_alloc_consistent(hw->pdev, buf->len,
127						  &buf->paddr);
128		if (!buf->vaddr) {
129			csio_err(hw, "Could only fill %d buffers!\n", n + 1);
130			return -ENOMEM;
131		}
132
133		paddr = buf->paddr | (sreg & 0xF);
134
135		*d++ = cpu_to_be64(paddr);
136		buf++;
137	}
138
139	return 0;
140}
141
142/*
143 * csio_wr_update_fl -
144 * @hw: HW module.
145 * @flq: Freelist queue.
146 *
147 *
148 */
149static inline void
150csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n)
151{
152
153	flq->inc_idx += n;
154	flq->pidx += n;
155	if (unlikely(flq->pidx >= flq->credits))
156		flq->pidx -= (uint16_t)flq->credits;
157
158	CSIO_INC_STATS(flq, n_flq_refill);
159}
160
161/*
162 * csio_wr_alloc_q - Allocate a WR queue and initialize it.
163 * @hw: HW module
164 * @qsize: Size of the queue in bytes
165 * @wrsize: Since of WR in this queue, if fixed.
166 * @type: Type of queue (Ingress/Egress/Freelist)
167 * @owner: Module that owns this queue.
168 * @nflb: Number of freelist buffers for FL.
169 * @sreg: What is the FL buffer size register?
170 * @iq_int_handler: Ingress queue handler in INTx mode.
171 *
172 * This function allocates and sets up a queue for the caller
173 * of size qsize, aligned at the required boundary. This is subject to
174 * be free entries being available in the queue array. If one is found,
175 * it is initialized with the allocated queue, marked as being used (owner),
176 * and a handle returned to the caller in form of the queue's index
177 * into the q_arr array.
178 * If user has indicated a freelist (by specifying nflb > 0), create
179 * another queue (with its own index into q_arr) for the freelist. Allocate
180 * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
181 * idx in the ingress queue's flq.idx. This is how a Freelist is associated
182 * with its owning ingress queue.
183 */
184int
185csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize,
186		uint16_t type, void *owner, uint32_t nflb, int sreg,
187		iq_handler_t iq_intx_handler)
188{
189	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
190	struct csio_q	*q, *flq;
191	int		free_idx = wrm->free_qidx;
192	int		ret_idx = free_idx;
193	uint32_t	qsz;
194	int flq_idx;
195
196	if (free_idx >= wrm->num_q) {
197		csio_err(hw, "No more free queues.\n");
198		return -1;
199	}
200
201	switch (type) {
202	case CSIO_EGRESS:
203		qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw);
204		break;
205	case CSIO_INGRESS:
206		switch (wrsize) {
207		case 16:
208		case 32:
209		case 64:
210		case 128:
211			break;
212		default:
213			csio_err(hw, "Invalid Ingress queue WR size:%d\n",
214				    wrsize);
215			return -1;
216		}
217
218		/*
219		 * Number of elements must be a multiple of 16
220		 * So this includes status page size
221		 */
222		qsz = ALIGN(qsize/wrsize, 16) * wrsize;
223
224		break;
225	case CSIO_FREELIST:
226		qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw);
227		break;
228	default:
229		csio_err(hw, "Invalid queue type: 0x%x\n", type);
230		return -1;
231	}
232
233	q = wrm->q_arr[free_idx];
234
235	q->vstart = pci_zalloc_consistent(hw->pdev, qsz, &q->pstart);
236	if (!q->vstart) {
237		csio_err(hw,
238			 "Failed to allocate DMA memory for "
239			 "queue at id: %d size: %d\n", free_idx, qsize);
240		return -1;
241	}
242
243	q->type		= type;
244	q->owner	= owner;
245	q->pidx		= q->cidx = q->inc_idx = 0;
246	q->size		= qsz;
247	q->wr_sz	= wrsize;	/* If using fixed size WRs */
248
249	wrm->free_qidx++;
250
251	if (type == CSIO_INGRESS) {
252		/* Since queue area is set to zero */
253		q->un.iq.genbit	= 1;
254
255		/*
256		 * Ingress queue status page size is always the size of
257		 * the ingress queue entry.
258		 */
259		q->credits	= (qsz - q->wr_sz) / q->wr_sz;
260		q->vwrap	= (void *)((uintptr_t)(q->vstart) + qsz
261							- q->wr_sz);
262
263		/* Allocate memory for FL if requested */
264		if (nflb > 0) {
265			flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64),
266						  sizeof(__be64), CSIO_FREELIST,
267						  owner, 0, sreg, NULL);
268			if (flq_idx == -1) {
269				csio_err(hw,
270					 "Failed to allocate FL queue"
271					 " for IQ idx:%d\n", free_idx);
272				return -1;
273			}
274
275			/* Associate the new FL with the Ingress quue */
276			q->un.iq.flq_idx = flq_idx;
277
278			flq = wrm->q_arr[q->un.iq.flq_idx];
279			flq->un.fl.bufs = kzalloc(flq->credits *
280						  sizeof(struct csio_dma_buf),
281						  GFP_KERNEL);
282			if (!flq->un.fl.bufs) {
283				csio_err(hw,
284					 "Failed to allocate FL queue bufs"
285					 " for IQ idx:%d\n", free_idx);
286				return -1;
287			}
288
289			flq->un.fl.packen = 0;
290			flq->un.fl.offset = 0;
291			flq->un.fl.sreg = sreg;
292
293			/* Fill up the free list buffers */
294			if (csio_wr_fill_fl(hw, flq))
295				return -1;
296
297			/*
298			 * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
299			 * remains unpopulated,otherwise HW thinks
300			 * FLQ is empty.
301			 */
302			flq->pidx = flq->inc_idx = flq->credits - 8;
303		} else {
304			q->un.iq.flq_idx = -1;
305		}
306
307		/* Associate the IQ INTx handler. */
308		q->un.iq.iq_intx_handler = iq_intx_handler;
309
310		csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID;
311
312	} else if (type == CSIO_EGRESS) {
313		q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ;
314		q->vwrap   = (void *)((uintptr_t)(q->vstart) + qsz
315						- csio_wr_qstat_pgsz(hw));
316		csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID;
317	} else { /* Freelist */
318		q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64);
319		q->vwrap   = (void *)((uintptr_t)(q->vstart) + qsz
320						- csio_wr_qstat_pgsz(hw));
321		csio_q_flid(hw, ret_idx) = CSIO_MAX_QID;
322	}
323
324	return ret_idx;
325}
326
327/*
328 * csio_wr_iq_create_rsp - Response handler for IQ creation.
329 * @hw: The HW module.
330 * @mbp: Mailbox.
331 * @iq_idx: Ingress queue that got created.
332 *
333 * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
334 */
335static int
336csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
337{
338	struct csio_iq_params iqp;
339	enum fw_retval retval;
340	uint32_t iq_id;
341	int flq_idx;
342
343	memset(&iqp, 0, sizeof(struct csio_iq_params));
344
345	csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp);
346
347	if (retval != FW_SUCCESS) {
348		csio_err(hw, "IQ cmd returned 0x%x!\n", retval);
349		mempool_free(mbp, hw->mb_mempool);
350		return -EINVAL;
351	}
352
353	csio_q_iqid(hw, iq_idx)		= iqp.iqid;
354	csio_q_physiqid(hw, iq_idx)	= iqp.physiqid;
355	csio_q_pidx(hw, iq_idx)		= csio_q_cidx(hw, iq_idx) = 0;
356	csio_q_inc_idx(hw, iq_idx)	= 0;
357
358	/* Actual iq-id. */
359	iq_id = iqp.iqid - hw->wrm.fw_iq_start;
360
361	/* Set the iq-id to iq map table. */
362	if (iq_id >= CSIO_MAX_IQ) {
363		csio_err(hw,
364			 "Exceeding MAX_IQ(%d) supported!"
365			 " iqid:%d rel_iqid:%d FW iq_start:%d\n",
366			 CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start);
367		mempool_free(mbp, hw->mb_mempool);
368		return -EINVAL;
369	}
370	csio_q_set_intr_map(hw, iq_idx, iq_id);
371
372	/*
373	 * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
374	 * ingress context of this queue. This will block interrupts to
375	 * this queue until the next GTS write. Therefore, we do a
376	 * 0-cidx increment GTS write for this queue just to clear the
377	 * interrupt_sent bit. This will re-enable interrupts to this
378	 * queue.
379	 */
380	csio_wr_sge_intr_enable(hw, iqp.physiqid);
381
382	flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
383	if (flq_idx != -1) {
384		struct csio_q *flq = hw->wrm.q_arr[flq_idx];
385
386		csio_q_flid(hw, flq_idx) = iqp.fl0id;
387		csio_q_cidx(hw, flq_idx) = 0;
388		csio_q_pidx(hw, flq_idx)    = csio_q_credits(hw, flq_idx) - 8;
389		csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
390
391		/* Now update SGE about the buffers allocated during init */
392		csio_wr_ring_fldb(hw, flq);
393	}
394
395	mempool_free(mbp, hw->mb_mempool);
396
397	return 0;
398}
399
400/*
401 * csio_wr_iq_create - Configure an Ingress queue with FW.
402 * @hw: The HW module.
403 * @priv: Private data object.
404 * @iq_idx: Ingress queue index in the WR module.
405 * @vec: MSIX vector.
406 * @portid: PCIE Channel to be associated with this queue.
407 * @async: Is this a FW asynchronous message handling queue?
408 * @cbfn: Completion callback.
409 *
410 * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
411 * with alloc/write bits set.
412 */
413int
414csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx,
415		  uint32_t vec, uint8_t portid, bool async,
416		  void (*cbfn) (struct csio_hw *, struct csio_mb *))
417{
418	struct csio_mb  *mbp;
419	struct csio_iq_params iqp;
420	int flq_idx;
421
422	memset(&iqp, 0, sizeof(struct csio_iq_params));
423	csio_q_portid(hw, iq_idx) = portid;
424
425	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
426	if (!mbp) {
427		csio_err(hw, "IQ command out of memory!\n");
428		return -ENOMEM;
429	}
430
431	switch (hw->intr_mode) {
432	case CSIO_IM_INTX:
433	case CSIO_IM_MSI:
434		/* For interrupt forwarding queue only */
435		if (hw->intr_iq_idx == iq_idx)
436			iqp.iqandst	= X_INTERRUPTDESTINATION_PCIE;
437		else
438			iqp.iqandst	= X_INTERRUPTDESTINATION_IQ;
439		iqp.iqandstindex	=
440			csio_q_physiqid(hw, hw->intr_iq_idx);
441		break;
442	case CSIO_IM_MSIX:
443		iqp.iqandst		= X_INTERRUPTDESTINATION_PCIE;
444		iqp.iqandstindex	= (uint16_t)vec;
445		break;
446	case CSIO_IM_NONE:
447		mempool_free(mbp, hw->mb_mempool);
448		return -EINVAL;
449	}
450
451	/* Pass in the ingress queue cmd parameters */
452	iqp.pfn			= hw->pfn;
453	iqp.vfn			= 0;
454	iqp.iq_start		= 1;
455	iqp.viid		= 0;
456	iqp.type		= FW_IQ_TYPE_FL_INT_CAP;
457	iqp.iqasynch		= async;
458	if (csio_intr_coalesce_cnt)
459		iqp.iqanus	= X_UPDATESCHEDULING_COUNTER_OPTTIMER;
460	else
461		iqp.iqanus	= X_UPDATESCHEDULING_TIMER;
462	iqp.iqanud		= X_UPDATEDELIVERY_INTERRUPT;
463	iqp.iqpciech		= portid;
464	iqp.iqintcntthresh	= (uint8_t)csio_sge_thresh_reg;
465
466	switch (csio_q_wr_sz(hw, iq_idx)) {
467	case 16:
468		iqp.iqesize = 0; break;
469	case 32:
470		iqp.iqesize = 1; break;
471	case 64:
472		iqp.iqesize = 2; break;
473	case 128:
474		iqp.iqesize = 3; break;
475	}
476
477	iqp.iqsize		= csio_q_size(hw, iq_idx) /
478						csio_q_wr_sz(hw, iq_idx);
479	iqp.iqaddr		= csio_q_pstart(hw, iq_idx);
480
481	flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
482	if (flq_idx != -1) {
483		struct csio_q *flq = hw->wrm.q_arr[flq_idx];
484
485		iqp.fl0paden	= 1;
486		iqp.fl0packen	= flq->un.fl.packen ? 1 : 0;
487		iqp.fl0fbmin	= X_FETCHBURSTMIN_64B;
488		iqp.fl0fbmax	= X_FETCHBURSTMAX_512B;
489		iqp.fl0size	= csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ;
490		iqp.fl0addr	= csio_q_pstart(hw, flq_idx);
491	}
492
493	csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
494
495	if (csio_mb_issue(hw, mbp)) {
496		csio_err(hw, "Issue of IQ cmd failed!\n");
497		mempool_free(mbp, hw->mb_mempool);
498		return -EINVAL;
499	}
500
501	if (cbfn != NULL)
502		return 0;
503
504	return csio_wr_iq_create_rsp(hw, mbp, iq_idx);
505}
506
507/*
508 * csio_wr_eq_create_rsp - Response handler for EQ creation.
509 * @hw: The HW module.
510 * @mbp: Mailbox.
511 * @eq_idx: Egress queue that got created.
512 *
513 * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
514 */
515static int
516csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
517{
518	struct csio_eq_params eqp;
519	enum fw_retval retval;
520
521	memset(&eqp, 0, sizeof(struct csio_eq_params));
522
523	csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp);
524
525	if (retval != FW_SUCCESS) {
526		csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval);
527		mempool_free(mbp, hw->mb_mempool);
528		return -EINVAL;
529	}
530
531	csio_q_eqid(hw, eq_idx)	= (uint16_t)eqp.eqid;
532	csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid;
533	csio_q_pidx(hw, eq_idx)	= csio_q_cidx(hw, eq_idx) = 0;
534	csio_q_inc_idx(hw, eq_idx) = 0;
535
536	mempool_free(mbp, hw->mb_mempool);
537
538	return 0;
539}
540
541/*
542 * csio_wr_eq_create - Configure an Egress queue with FW.
543 * @hw: HW module.
544 * @priv: Private data.
545 * @eq_idx: Egress queue index in the WR module.
546 * @iq_idx: Associated ingress queue index.
547 * @cbfn: Completion callback.
548 *
549 * This API configures a offload egress queue with FW by issuing a
550 * FW_EQ_OFLD_CMD  (with alloc + write ) mailbox.
551 */
552int
553csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx,
554		  int iq_idx, uint8_t portid,
555		  void (*cbfn) (struct csio_hw *, struct csio_mb *))
556{
557	struct csio_mb  *mbp;
558	struct csio_eq_params eqp;
559
560	memset(&eqp, 0, sizeof(struct csio_eq_params));
561
562	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
563	if (!mbp) {
564		csio_err(hw, "EQ command out of memory!\n");
565		return -ENOMEM;
566	}
567
568	eqp.pfn			= hw->pfn;
569	eqp.vfn			= 0;
570	eqp.eqstart		= 1;
571	eqp.hostfcmode		= X_HOSTFCMODE_STATUS_PAGE;
572	eqp.iqid		= csio_q_iqid(hw, iq_idx);
573	eqp.fbmin		= X_FETCHBURSTMIN_64B;
574	eqp.fbmax		= X_FETCHBURSTMAX_512B;
575	eqp.cidxfthresh		= 0;
576	eqp.pciechn		= portid;
577	eqp.eqsize		= csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ;
578	eqp.eqaddr		= csio_q_pstart(hw, eq_idx);
579
580	csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO,
581				    &eqp, cbfn);
582
583	if (csio_mb_issue(hw, mbp)) {
584		csio_err(hw, "Issue of EQ OFLD cmd failed!\n");
585		mempool_free(mbp, hw->mb_mempool);
586		return -EINVAL;
587	}
588
589	if (cbfn != NULL)
590		return 0;
591
592	return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx);
593}
594
595/*
596 * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
597 * @hw: The HW module.
598 * @mbp: Mailbox.
599 * @iq_idx: Ingress queue that was freed.
600 *
601 * Handle FW_IQ_CMD (free) mailbox completion.
602 */
603static int
604csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
605{
606	enum fw_retval retval = csio_mb_fw_retval(mbp);
607	int rv = 0;
608
609	if (retval != FW_SUCCESS)
610		rv = -EINVAL;
611
612	mempool_free(mbp, hw->mb_mempool);
613
614	return rv;
615}
616
617/*
618 * csio_wr_iq_destroy - Free an ingress queue.
619 * @hw: The HW module.
620 * @priv: Private data object.
621 * @iq_idx: Ingress queue index to destroy
622 * @cbfn: Completion callback.
623 *
624 * This API frees an ingress queue by issuing the FW_IQ_CMD
625 * with the free bit set.
626 */
627static int
628csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx,
629		   void (*cbfn)(struct csio_hw *, struct csio_mb *))
630{
631	int rv = 0;
632	struct csio_mb  *mbp;
633	struct csio_iq_params iqp;
634	int flq_idx;
635
636	memset(&iqp, 0, sizeof(struct csio_iq_params));
637
638	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
639	if (!mbp)
640		return -ENOMEM;
641
642	iqp.pfn		= hw->pfn;
643	iqp.vfn		= 0;
644	iqp.iqid	= csio_q_iqid(hw, iq_idx);
645	iqp.type	= FW_IQ_TYPE_FL_INT_CAP;
646
647	flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
648	if (flq_idx != -1)
649		iqp.fl0id = csio_q_flid(hw, flq_idx);
650	else
651		iqp.fl0id = 0xFFFF;
652
653	iqp.fl1id = 0xFFFF;
654
655	csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
656
657	rv = csio_mb_issue(hw, mbp);
658	if (rv != 0) {
659		mempool_free(mbp, hw->mb_mempool);
660		return rv;
661	}
662
663	if (cbfn != NULL)
664		return 0;
665
666	return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx);
667}
668
669/*
670 * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
671 * @hw: The HW module.
672 * @mbp: Mailbox.
673 * @eq_idx: Egress queue that was freed.
674 *
675 * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
676 */
677static int
678csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
679{
680	enum fw_retval retval = csio_mb_fw_retval(mbp);
681	int rv = 0;
682
683	if (retval != FW_SUCCESS)
684		rv = -EINVAL;
685
686	mempool_free(mbp, hw->mb_mempool);
687
688	return rv;
689}
690
691/*
692 * csio_wr_eq_destroy - Free an Egress queue.
693 * @hw: The HW module.
694 * @priv: Private data object.
695 * @eq_idx: Egress queue index to destroy
696 * @cbfn: Completion callback.
697 *
698 * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
699 * with the free bit set.
700 */
701static int
702csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx,
703		   void (*cbfn) (struct csio_hw *, struct csio_mb *))
704{
705	int rv = 0;
706	struct csio_mb  *mbp;
707	struct csio_eq_params eqp;
708
709	memset(&eqp, 0, sizeof(struct csio_eq_params));
710
711	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
712	if (!mbp)
713		return -ENOMEM;
714
715	eqp.pfn		= hw->pfn;
716	eqp.vfn		= 0;
717	eqp.eqid	= csio_q_eqid(hw, eq_idx);
718
719	csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn);
720
721	rv = csio_mb_issue(hw, mbp);
722	if (rv != 0) {
723		mempool_free(mbp, hw->mb_mempool);
724		return rv;
725	}
726
727	if (cbfn != NULL)
728		return 0;
729
730	return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx);
731}
732
733/*
734 * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
735 * @hw: HW module
736 * @qidx: Egress queue index
737 *
738 * Cleanup the Egress queue status page.
739 */
740static void
741csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx)
742{
743	struct csio_q	*q = csio_hw_to_wrm(hw)->q_arr[qidx];
744	struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
745
746	memset(stp, 0, sizeof(*stp));
747}
748
749/*
750 * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
751 * @hw: HW module
752 * @qidx: Ingress queue index
753 *
754 * Cleanup the footer entries in the given ingress queue,
755 * set to 1 the internal copy of genbit.
756 */
757static void
758csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx)
759{
760	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
761	struct csio_q	*q	= wrm->q_arr[qidx];
762	void *wr;
763	struct csio_iqwr_footer *ftr;
764	uint32_t i = 0;
765
766	/* set to 1 since we are just about zero out genbit */
767	q->un.iq.genbit = 1;
768
769	for (i = 0; i < q->credits; i++) {
770		/* Get the WR */
771		wr = (void *)((uintptr_t)q->vstart +
772					   (i * q->wr_sz));
773		/* Get the footer */
774		ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
775					  (q->wr_sz - sizeof(*ftr)));
776		/* Zero out footer */
777		memset(ftr, 0, sizeof(*ftr));
778	}
779}
780
781int
782csio_wr_destroy_queues(struct csio_hw *hw, bool cmd)
783{
784	int i, flq_idx;
785	struct csio_q *q;
786	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
787	int rv;
788
789	for (i = 0; i < wrm->free_qidx; i++) {
790		q = wrm->q_arr[i];
791
792		switch (q->type) {
793		case CSIO_EGRESS:
794			if (csio_q_eqid(hw, i) != CSIO_MAX_QID) {
795				csio_wr_cleanup_eq_stpg(hw, i);
796				if (!cmd) {
797					csio_q_eqid(hw, i) = CSIO_MAX_QID;
798					continue;
799				}
800
801				rv = csio_wr_eq_destroy(hw, NULL, i, NULL);
802				if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
803					cmd = false;
804
805				csio_q_eqid(hw, i) = CSIO_MAX_QID;
806			}
807		case CSIO_INGRESS:
808			if (csio_q_iqid(hw, i) != CSIO_MAX_QID) {
809				csio_wr_cleanup_iq_ftr(hw, i);
810				if (!cmd) {
811					csio_q_iqid(hw, i) = CSIO_MAX_QID;
812					flq_idx = csio_q_iq_flq_idx(hw, i);
813					if (flq_idx != -1)
814						csio_q_flid(hw, flq_idx) =
815								CSIO_MAX_QID;
816					continue;
817				}
818
819				rv = csio_wr_iq_destroy(hw, NULL, i, NULL);
820				if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
821					cmd = false;
822
823				csio_q_iqid(hw, i) = CSIO_MAX_QID;
824				flq_idx = csio_q_iq_flq_idx(hw, i);
825				if (flq_idx != -1)
826					csio_q_flid(hw, flq_idx) = CSIO_MAX_QID;
827			}
828		default:
829			break;
830		}
831	}
832
833	hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED;
834
835	return 0;
836}
837
838/*
839 * csio_wr_get - Get requested size of WR entry/entries from queue.
840 * @hw: HW module.
841 * @qidx: Index of queue.
842 * @size: Cumulative size of Work request(s).
843 * @wrp: Work request pair.
844 *
845 * If requested credits are available, return the start address of the
846 * work request in the work request pair. Set pidx accordingly and
847 * return.
848 *
849 * NOTE about WR pair:
850 * ==================
851 * A WR can start towards the end of a queue, and then continue at the
852 * beginning, since the queue is considered to be circular. This will
853 * require a pair of address/size to be passed back to the caller -
854 * hence Work request pair format.
855 */
856int
857csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size,
858	    struct csio_wr_pair *wrp)
859{
860	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
861	struct csio_q *q = wrm->q_arr[qidx];
862	void *cwr = (void *)((uintptr_t)(q->vstart) +
863						(q->pidx * CSIO_QCREDIT_SZ));
864	struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
865	uint16_t cidx = q->cidx = ntohs(stp->cidx);
866	uint16_t pidx = q->pidx;
867	uint32_t req_sz	= ALIGN(size, CSIO_QCREDIT_SZ);
868	int req_credits	= req_sz / CSIO_QCREDIT_SZ;
869	int credits;
870
871	CSIO_DB_ASSERT(q->owner != NULL);
872	CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
873	CSIO_DB_ASSERT(cidx <= q->credits);
874
875	/* Calculate credits */
876	if (pidx > cidx) {
877		credits = q->credits - (pidx - cidx) - 1;
878	} else if (cidx > pidx) {
879		credits = cidx - pidx - 1;
880	} else {
881		/* cidx == pidx, empty queue */
882		credits = q->credits;
883		CSIO_INC_STATS(q, n_qempty);
884	}
885
886	/*
887	 * Check if we have enough credits.
888	 * credits = 1 implies queue is full.
889	 */
890	if (!credits || (req_credits > credits)) {
891		CSIO_INC_STATS(q, n_qfull);
892		return -EBUSY;
893	}
894
895	/*
896	 * If we are here, we have enough credits to satisfy the
897	 * request. Check if we are near the end of q, and if WR spills over.
898	 * If it does, use the first addr/size to cover the queue until
899	 * the end. Fit the remainder portion of the request at the top
900	 * of queue and return it in the second addr/len. Set pidx
901	 * accordingly.
902	 */
903	if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) {
904		wrp->addr1 = cwr;
905		wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr);
906		wrp->addr2 = q->vstart;
907		wrp->size2 = req_sz - wrp->size1;
908		q->pidx	= (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) /
909							CSIO_QCREDIT_SZ);
910		CSIO_INC_STATS(q, n_qwrap);
911		CSIO_INC_STATS(q, n_eq_wr_split);
912	} else {
913		wrp->addr1 = cwr;
914		wrp->size1 = req_sz;
915		wrp->addr2 = NULL;
916		wrp->size2 = 0;
917		q->pidx	+= (uint16_t)req_credits;
918
919		/* We are the end of queue, roll back pidx to top of queue */
920		if (unlikely(q->pidx == q->credits)) {
921			q->pidx = 0;
922			CSIO_INC_STATS(q, n_qwrap);
923		}
924	}
925
926	q->inc_idx = (uint16_t)req_credits;
927
928	CSIO_INC_STATS(q, n_tot_reqs);
929
930	return 0;
931}
932
933/*
934 * csio_wr_copy_to_wrp - Copies given data into WR.
935 * @data_buf - Data buffer
936 * @wrp - Work request pair.
937 * @wr_off - Work request offset.
938 * @data_len - Data length.
939 *
940 * Copies the given data in Work Request. Work request pair(wrp) specifies
941 * address information of Work request.
942 * Returns: none
943 */
944void
945csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp,
946		   uint32_t wr_off, uint32_t data_len)
947{
948	uint32_t nbytes;
949
950	/* Number of space available in buffer addr1 of WRP */
951	nbytes = ((wrp->size1 - wr_off) >= data_len) ?
952					data_len : (wrp->size1 - wr_off);
953
954	memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes);
955	data_len -= nbytes;
956
957	/* Write the remaining data from the begining of circular buffer */
958	if (data_len) {
959		CSIO_DB_ASSERT(data_len <= wrp->size2);
960		CSIO_DB_ASSERT(wrp->addr2 != NULL);
961		memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len);
962	}
963}
964
965/*
966 * csio_wr_issue - Notify chip of Work request.
967 * @hw: HW module.
968 * @qidx: Index of queue.
969 * @prio: 0: Low priority, 1: High priority
970 *
971 * Rings the SGE Doorbell by writing the current producer index of the passed
972 * in queue into the register.
973 *
974 */
975int
976csio_wr_issue(struct csio_hw *hw, int qidx, bool prio)
977{
978	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
979	struct csio_q *q = wrm->q_arr[qidx];
980
981	CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
982
983	wmb();
984	/* Ring SGE Doorbell writing q->pidx into it */
985	csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) |
986			  PIDX_T5_V(q->inc_idx) | DBTYPE_F,
987			  MYPF_REG(SGE_PF_KDOORBELL_A));
988	q->inc_idx = 0;
989
990	return 0;
991}
992
993static inline uint32_t
994csio_wr_avail_qcredits(struct csio_q *q)
995{
996	if (q->pidx > q->cidx)
997		return q->pidx - q->cidx;
998	else if (q->cidx > q->pidx)
999		return q->credits - (q->cidx - q->pidx);
1000	else
1001		return 0;	/* cidx == pidx, empty queue */
1002}
1003
1004/*
1005 * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
1006 * @hw: HW module.
1007 * @flq: The freelist queue.
1008 *
1009 * Invalidate the driver's version of a freelist buffer entry,
1010 * without freeing the associated the DMA memory. The entry
1011 * to be invalidated is picked up from the current Free list
1012 * queue cidx.
1013 *
1014 */
1015static inline void
1016csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq)
1017{
1018	flq->cidx++;
1019	if (flq->cidx == flq->credits) {
1020		flq->cidx = 0;
1021		CSIO_INC_STATS(flq, n_qwrap);
1022	}
1023}
1024
1025/*
1026 * csio_wr_process_fl - Process a freelist completion.
1027 * @hw: HW module.
1028 * @q: The ingress queue attached to the Freelist.
1029 * @wr: The freelist completion WR in the ingress queue.
1030 * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
1031 * @iq_handler: Caller's handler for this completion.
1032 * @priv: Private pointer of caller
1033 *
1034 */
1035static inline void
1036csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q,
1037		   void *wr, uint32_t len_to_qid,
1038		   void (*iq_handler)(struct csio_hw *, void *,
1039				      uint32_t, struct csio_fl_dma_buf *,
1040				      void *),
1041		   void *priv)
1042{
1043	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1044	struct csio_sge *sge = &wrm->sge;
1045	struct csio_fl_dma_buf flb;
1046	struct csio_dma_buf *buf, *fbuf;
1047	uint32_t bufsz, len, lastlen = 0;
1048	int n;
1049	struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx];
1050
1051	CSIO_DB_ASSERT(flq != NULL);
1052
1053	len = len_to_qid;
1054
1055	if (len & IQWRF_NEWBUF) {
1056		if (flq->un.fl.offset > 0) {
1057			csio_wr_inval_flq_buf(hw, flq);
1058			flq->un.fl.offset = 0;
1059		}
1060		len = IQWRF_LEN_GET(len);
1061	}
1062
1063	CSIO_DB_ASSERT(len != 0);
1064
1065	flb.totlen = len;
1066
1067	/* Consume all freelist buffers used for len bytes */
1068	for (n = 0, fbuf = flb.flbufs; ; n++, fbuf++) {
1069		buf = &flq->un.fl.bufs[flq->cidx];
1070		bufsz = csio_wr_fl_bufsz(sge, buf);
1071
1072		fbuf->paddr	= buf->paddr;
1073		fbuf->vaddr	= buf->vaddr;
1074
1075		flb.offset	= flq->un.fl.offset;
1076		lastlen		= min(bufsz, len);
1077		fbuf->len	= lastlen;
1078
1079		len -= lastlen;
1080		if (!len)
1081			break;
1082		csio_wr_inval_flq_buf(hw, flq);
1083	}
1084
1085	flb.defer_free = flq->un.fl.packen ? 0 : 1;
1086
1087	iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer),
1088		   &flb, priv);
1089
1090	if (flq->un.fl.packen)
1091		flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align);
1092	else
1093		csio_wr_inval_flq_buf(hw, flq);
1094
1095}
1096
1097/*
1098 * csio_is_new_iqwr - Is this a new Ingress queue entry ?
1099 * @q: Ingress quueue.
1100 * @ftr: Ingress queue WR SGE footer.
1101 *
1102 * The entry is new if our generation bit matches the corresponding
1103 * bit in the footer of the current WR.
1104 */
1105static inline bool
1106csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr)
1107{
1108	return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT));
1109}
1110
1111/*
1112 * csio_wr_process_iq - Process elements in Ingress queue.
1113 * @hw:  HW pointer
1114 * @qidx: Index of queue
1115 * @iq_handler: Handler for this queue
1116 * @priv: Caller's private pointer
1117 *
1118 * This routine walks through every entry of the ingress queue, calling
1119 * the provided iq_handler with the entry, until the generation bit
1120 * flips.
1121 */
1122int
1123csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q,
1124		   void (*iq_handler)(struct csio_hw *, void *,
1125				      uint32_t, struct csio_fl_dma_buf *,
1126				      void *),
1127		   void *priv)
1128{
1129	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1130	void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz));
1131	struct csio_iqwr_footer *ftr;
1132	uint32_t wr_type, fw_qid, qid;
1133	struct csio_q *q_completed;
1134	struct csio_q *flq = csio_iq_has_fl(q) ?
1135					wrm->q_arr[q->un.iq.flq_idx] : NULL;
1136	int rv = 0;
1137
1138	/* Get the footer */
1139	ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1140					  (q->wr_sz - sizeof(*ftr)));
1141
1142	/*
1143	 * When q wrapped around last time, driver should have inverted
1144	 * ic.genbit as well.
1145	 */
1146	while (csio_is_new_iqwr(q, ftr)) {
1147
1148		CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <=
1149						(uintptr_t)q->vwrap);
1150		rmb();
1151		wr_type = IQWRF_TYPE_GET(ftr->u.type_gen);
1152
1153		switch (wr_type) {
1154		case X_RSPD_TYPE_CPL:
1155			/* Subtract footer from WR len */
1156			iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv);
1157			break;
1158		case X_RSPD_TYPE_FLBUF:
1159			csio_wr_process_fl(hw, q, wr,
1160					   ntohl(ftr->pldbuflen_qid),
1161					   iq_handler, priv);
1162			break;
1163		case X_RSPD_TYPE_INTR:
1164			fw_qid = ntohl(ftr->pldbuflen_qid);
1165			qid = fw_qid - wrm->fw_iq_start;
1166			q_completed = hw->wrm.intr_map[qid];
1167
1168			if (unlikely(qid ==
1169					csio_q_physiqid(hw, hw->intr_iq_idx))) {
1170				/*
1171				 * We are already in the Forward Interrupt
1172				 * Interrupt Queue Service! Do-not service
1173				 * again!
1174				 *
1175				 */
1176			} else {
1177				CSIO_DB_ASSERT(q_completed);
1178				CSIO_DB_ASSERT(
1179					q_completed->un.iq.iq_intx_handler);
1180
1181				/* Call the queue handler. */
1182				q_completed->un.iq.iq_intx_handler(hw, NULL,
1183						0, NULL, (void *)q_completed);
1184			}
1185			break;
1186		default:
1187			csio_warn(hw, "Unknown resp type 0x%x received\n",
1188				 wr_type);
1189			CSIO_INC_STATS(q, n_rsp_unknown);
1190			break;
1191		}
1192
1193		/*
1194		 * Ingress *always* has fixed size WR entries. Therefore,
1195		 * there should always be complete WRs towards the end of
1196		 * queue.
1197		 */
1198		if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) {
1199
1200			/* Roll over to start of queue */
1201			q->cidx = 0;
1202			wr	= q->vstart;
1203
1204			/* Toggle genbit */
1205			q->un.iq.genbit ^= 0x1;
1206
1207			CSIO_INC_STATS(q, n_qwrap);
1208		} else {
1209			q->cidx++;
1210			wr	= (void *)((uintptr_t)(q->vstart) +
1211					   (q->cidx * q->wr_sz));
1212		}
1213
1214		ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1215						  (q->wr_sz - sizeof(*ftr)));
1216		q->inc_idx++;
1217
1218	} /* while (q->un.iq.genbit == hdr->genbit) */
1219
1220	/*
1221	 * We need to re-arm SGE interrupts in case we got a stray interrupt,
1222	 * especially in msix mode. With INTx, this may be a common occurence.
1223	 */
1224	if (unlikely(!q->inc_idx)) {
1225		CSIO_INC_STATS(q, n_stray_comp);
1226		rv = -EINVAL;
1227		goto restart;
1228	}
1229
1230	/* Replenish free list buffers if pending falls below low water mark */
1231	if (flq) {
1232		uint32_t avail  = csio_wr_avail_qcredits(flq);
1233		if (avail <= 16) {
1234			/* Make sure in FLQ, atleast 1 credit (8 FL buffers)
1235			 * remains unpopulated otherwise HW thinks
1236			 * FLQ is empty.
1237			 */
1238			csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail);
1239			csio_wr_ring_fldb(hw, flq);
1240		}
1241	}
1242
1243restart:
1244	/* Now inform SGE about our incremental index value */
1245	csio_wr_reg32(hw, CIDXINC_V(q->inc_idx)		|
1246			  INGRESSQID_V(q->un.iq.physiqid)	|
1247			  TIMERREG_V(csio_sge_timer_reg),
1248			  MYPF_REG(SGE_PF_GTS_A));
1249	q->stats.n_tot_rsps += q->inc_idx;
1250
1251	q->inc_idx = 0;
1252
1253	return rv;
1254}
1255
1256int
1257csio_wr_process_iq_idx(struct csio_hw *hw, int qidx,
1258		   void (*iq_handler)(struct csio_hw *, void *,
1259				      uint32_t, struct csio_fl_dma_buf *,
1260				      void *),
1261		   void *priv)
1262{
1263	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
1264	struct csio_q	*iq	= wrm->q_arr[qidx];
1265
1266	return csio_wr_process_iq(hw, iq, iq_handler, priv);
1267}
1268
1269static int
1270csio_closest_timer(struct csio_sge *s, int time)
1271{
1272	int i, delta, match = 0, min_delta = INT_MAX;
1273
1274	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1275		delta = time - s->timer_val[i];
1276		if (delta < 0)
1277			delta = -delta;
1278		if (delta < min_delta) {
1279			min_delta = delta;
1280			match = i;
1281		}
1282	}
1283	return match;
1284}
1285
1286static int
1287csio_closest_thresh(struct csio_sge *s, int cnt)
1288{
1289	int i, delta, match = 0, min_delta = INT_MAX;
1290
1291	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1292		delta = cnt - s->counter_val[i];
1293		if (delta < 0)
1294			delta = -delta;
1295		if (delta < min_delta) {
1296			min_delta = delta;
1297			match = i;
1298		}
1299	}
1300	return match;
1301}
1302
1303static void
1304csio_wr_fixup_host_params(struct csio_hw *hw)
1305{
1306	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1307	struct csio_sge *sge = &wrm->sge;
1308	uint32_t clsz = L1_CACHE_BYTES;
1309	uint32_t s_hps = PAGE_SHIFT - 10;
1310	uint32_t ingpad = 0;
1311	uint32_t stat_len = clsz > 64 ? 128 : 64;
1312
1313	csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) |
1314		      HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) |
1315		      HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) |
1316		      HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps),
1317		      SGE_HOST_PAGE_SIZE_A);
1318
1319	sge->csio_fl_align = clsz < 32 ? 32 : clsz;
1320	ingpad = ilog2(sge->csio_fl_align) - 5;
1321
1322	csio_set_reg_field(hw, SGE_CONTROL_A,
1323			   INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
1324			   EGRSTATUSPAGESIZE_F,
1325			   INGPADBOUNDARY_V(ingpad) |
1326			   EGRSTATUSPAGESIZE_V(stat_len != 64));
1327
1328	/* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
1329	csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A);
1330
1331	/*
1332	 * If using hard params, the following will get set correctly
1333	 * in csio_wr_set_sge().
1334	 */
1335	if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) {
1336		csio_wr_reg32(hw,
1337			(csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) +
1338			sge->csio_fl_align - 1) & ~(sge->csio_fl_align - 1),
1339			SGE_FL_BUFFER_SIZE2_A);
1340		csio_wr_reg32(hw,
1341			(csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) +
1342			sge->csio_fl_align - 1) & ~(sge->csio_fl_align - 1),
1343			SGE_FL_BUFFER_SIZE3_A);
1344	}
1345
1346	csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A);
1347
1348	/* default value of rx_dma_offset of the NIC driver */
1349	csio_set_reg_field(hw, SGE_CONTROL_A,
1350			   PKTSHIFT_V(PKTSHIFT_M),
1351			   PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET));
1352
1353	csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A,
1354				    CSUM_HAS_PSEUDO_HDR_F, 0);
1355}
1356
1357static void
1358csio_init_intr_coalesce_parms(struct csio_hw *hw)
1359{
1360	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1361	struct csio_sge *sge = &wrm->sge;
1362
1363	csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt);
1364	if (csio_intr_coalesce_cnt) {
1365		csio_sge_thresh_reg = 0;
1366		csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER;
1367		return;
1368	}
1369
1370	csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time);
1371}
1372
1373/*
1374 * csio_wr_get_sge - Get SGE register values.
1375 * @hw: HW module.
1376 *
1377 * Used by non-master functions and by master-functions relying on config file.
1378 */
1379static void
1380csio_wr_get_sge(struct csio_hw *hw)
1381{
1382	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1383	struct csio_sge *sge = &wrm->sge;
1384	uint32_t ingpad;
1385	int i;
1386	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
1387	u32 ingress_rx_threshold;
1388
1389	sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1390
1391	ingpad = INGPADBOUNDARY_G(sge->sge_control);
1392
1393	switch (ingpad) {
1394	case X_INGPCIEBOUNDARY_32B:
1395		sge->csio_fl_align = 32; break;
1396	case X_INGPCIEBOUNDARY_64B:
1397		sge->csio_fl_align = 64; break;
1398	case X_INGPCIEBOUNDARY_128B:
1399		sge->csio_fl_align = 128; break;
1400	case X_INGPCIEBOUNDARY_256B:
1401		sge->csio_fl_align = 256; break;
1402	case X_INGPCIEBOUNDARY_512B:
1403		sge->csio_fl_align = 512; break;
1404	case X_INGPCIEBOUNDARY_1024B:
1405		sge->csio_fl_align = 1024; break;
1406	case X_INGPCIEBOUNDARY_2048B:
1407		sge->csio_fl_align = 2048; break;
1408	case X_INGPCIEBOUNDARY_4096B:
1409		sge->csio_fl_align = 4096; break;
1410	}
1411
1412	for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1413		csio_get_flbuf_size(hw, sge, i);
1414
1415	timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A);
1416	timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A);
1417	timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A);
1418
1419	sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw,
1420					TIMERVALUE0_G(timer_value_0_and_1));
1421	sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw,
1422					TIMERVALUE1_G(timer_value_0_and_1));
1423	sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw,
1424					TIMERVALUE2_G(timer_value_2_and_3));
1425	sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw,
1426					TIMERVALUE3_G(timer_value_2_and_3));
1427	sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw,
1428					TIMERVALUE4_G(timer_value_4_and_5));
1429	sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw,
1430					TIMERVALUE5_G(timer_value_4_and_5));
1431
1432	ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A);
1433	sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
1434	sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
1435	sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
1436	sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
1437
1438	csio_init_intr_coalesce_parms(hw);
1439}
1440
1441/*
1442 * csio_wr_set_sge - Initialize SGE registers
1443 * @hw: HW module.
1444 *
1445 * Used by Master function to initialize SGE registers in the absence
1446 * of a config file.
1447 */
1448static void
1449csio_wr_set_sge(struct csio_hw *hw)
1450{
1451	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1452	struct csio_sge *sge = &wrm->sge;
1453	int i;
1454
1455	/*
1456	 * Set up our basic SGE mode to deliver CPL messages to our Ingress
1457	 * Queue and Packet Date to the Free List.
1458	 */
1459	csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);
1460
1461	sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1462
1463	/* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
1464
1465	/*
1466	 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
1467	 * and generate an interrupt when this occurs so we can recover.
1468	 */
1469	csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A,
1470			   LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1471			   LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1472	csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A,
1473			   HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1474			   HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1475
1476	csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F,
1477			   ENABLE_DROP_F);
1478
1479	/* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
1480
1481	CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1);
1482	csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1)
1483		      & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A);
1484	csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1)
1485		      & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A);
1486	CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4);
1487	CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5);
1488	CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6);
1489	CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7);
1490	CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8);
1491
1492	for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1493		csio_get_flbuf_size(hw, sge, i);
1494
1495	/* Initialize interrupt coalescing attributes */
1496	sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0;
1497	sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1;
1498	sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2;
1499	sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3;
1500	sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4;
1501	sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5;
1502
1503	sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0;
1504	sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1;
1505	sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2;
1506	sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3;
1507
1508	csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) |
1509		      THRESHOLD_1_V(sge->counter_val[1]) |
1510		      THRESHOLD_2_V(sge->counter_val[2]) |
1511		      THRESHOLD_3_V(sge->counter_val[3]),
1512		      SGE_INGRESS_RX_THRESHOLD_A);
1513
1514	csio_wr_reg32(hw,
1515		   TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) |
1516		   TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])),
1517		   SGE_TIMER_VALUE_0_AND_1_A);
1518
1519	csio_wr_reg32(hw,
1520		   TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) |
1521		   TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])),
1522		   SGE_TIMER_VALUE_2_AND_3_A);
1523
1524	csio_wr_reg32(hw,
1525		   TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) |
1526		   TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])),
1527		   SGE_TIMER_VALUE_4_AND_5_A);
1528
1529	csio_init_intr_coalesce_parms(hw);
1530}
1531
1532void
1533csio_wr_sge_init(struct csio_hw *hw)
1534{
1535	/*
1536	 * If we are master and chip is not initialized:
1537	 *    - If we plan to use the config file, we need to fixup some
1538	 *      host specific registers, and read the rest of the SGE
1539	 *      configuration.
1540	 *    - If we dont plan to use the config file, we need to initialize
1541	 *      SGE entirely, including fixing the host specific registers.
1542	 * If we are master and chip is initialized, just read and work off of
1543	 *	the already initialized SGE values.
1544	 * If we arent the master, we are only allowed to read and work off of
1545	 *      the already initialized SGE values.
1546	 *
1547	 * Therefore, before calling this function, we assume that the master-
1548	 * ship of the card, state and whether to use config file or not, have
1549	 * already been decided.
1550	 */
1551	if (csio_is_hw_master(hw)) {
1552		if (hw->fw_state != CSIO_DEV_STATE_INIT)
1553			csio_wr_fixup_host_params(hw);
1554
1555		if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS)
1556			csio_wr_get_sge(hw);
1557		else
1558			csio_wr_set_sge(hw);
1559	} else
1560		csio_wr_get_sge(hw);
1561}
1562
1563/*
1564 * csio_wrm_init - Initialize Work request module.
1565 * @wrm: WR module
1566 * @hw: HW pointer
1567 *
1568 * Allocates memory for an array of queue pointers starting at q_arr.
1569 */
1570int
1571csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw)
1572{
1573	int i;
1574
1575	if (!wrm->num_q) {
1576		csio_err(hw, "Num queues is not set\n");
1577		return -EINVAL;
1578	}
1579
1580	wrm->q_arr = kzalloc(sizeof(struct csio_q *) * wrm->num_q, GFP_KERNEL);
1581	if (!wrm->q_arr)
1582		goto err;
1583
1584	for (i = 0; i < wrm->num_q; i++) {
1585		wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL);
1586		if (!wrm->q_arr[i]) {
1587			while (--i >= 0)
1588				kfree(wrm->q_arr[i]);
1589			goto err_free_arr;
1590		}
1591	}
1592	wrm->free_qidx	= 0;
1593
1594	return 0;
1595
1596err_free_arr:
1597	kfree(wrm->q_arr);
1598err:
1599	return -ENOMEM;
1600}
1601
1602/*
1603 * csio_wrm_exit - Initialize Work request module.
1604 * @wrm: WR module
1605 * @hw: HW module
1606 *
1607 * Uninitialize WR module. Free q_arr and pointers in it.
1608 * We have the additional job of freeing the DMA memory associated
1609 * with the queues.
1610 */
1611void
1612csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw)
1613{
1614	int i;
1615	uint32_t j;
1616	struct csio_q *q;
1617	struct csio_dma_buf *buf;
1618
1619	for (i = 0; i < wrm->num_q; i++) {
1620		q = wrm->q_arr[i];
1621
1622		if (wrm->free_qidx && (i < wrm->free_qidx)) {
1623			if (q->type == CSIO_FREELIST) {
1624				if (!q->un.fl.bufs)
1625					continue;
1626				for (j = 0; j < q->credits; j++) {
1627					buf = &q->un.fl.bufs[j];
1628					if (!buf->vaddr)
1629						continue;
1630					pci_free_consistent(hw->pdev, buf->len,
1631							    buf->vaddr,
1632							    buf->paddr);
1633				}
1634				kfree(q->un.fl.bufs);
1635			}
1636			pci_free_consistent(hw->pdev, q->size,
1637					    q->vstart, q->pstart);
1638		}
1639		kfree(q);
1640	}
1641
1642	hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED;
1643
1644	kfree(wrm->q_arr);
1645}
1646