1/*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * OpenIB.org BSD license below:
10 *
11 *     Redistribution and use in source and binary forms, with or
12 *     without modification, are permitted provided that the following
13 *     conditions are met:
14 *
15 *      - Redistributions of source code must retain the above
16 *        copyright notice, this list of conditions and the following
17 *        disclaimer.
18 *
19 *      - Redistributions in binary form must reproduce the above
20 *        copyright notice, this list of conditions and the following
21 *        disclaimer in the documentation and/or other materials
22 *        provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include "csio_hw.h"
35#include "csio_init.h"
36
37static int
38csio_t5_set_mem_win(struct csio_hw *hw, uint32_t win)
39{
40	u32 mem_win_base;
41	/*
42	 * Truncation intentional: we only read the bottom 32-bits of the
43	 * 64-bit BAR0/BAR1 ...  We use the hardware backdoor mechanism to
44	 * read BAR0 instead of using pci_resource_start() because we could be
45	 * operating from within a Virtual Machine which is trapping our
46	 * accesses to our Configuration Space and we need to set up the PCI-E
47	 * Memory Window decoders with the actual addresses which will be
48	 * coming across the PCI-E link.
49	 */
50
51	/* For T5, only relative offset inside the PCIe BAR is passed */
52	mem_win_base = MEMWIN_BASE;
53
54	/*
55	 * Set up memory window for accessing adapter memory ranges.  (Read
56	 * back MA register to ensure that changes propagate before we attempt
57	 * to use the new values.)
58	 */
59	csio_wr_reg32(hw, mem_win_base | BIR_V(0) |
60			  WINDOW_V(ilog2(MEMWIN_APERTURE) - 10),
61			  PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
62	csio_rd_reg32(hw,
63		      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
64
65	return 0;
66}
67
68/*
69 * Interrupt handler for the PCIE module.
70 */
71static void
72csio_t5_pcie_intr_handler(struct csio_hw *hw)
73{
74	static struct intr_info sysbus_intr_info[] = {
75		{ RNPP_F, "RXNP array parity error", -1, 1 },
76		{ RPCP_F, "RXPC array parity error", -1, 1 },
77		{ RCIP_F, "RXCIF array parity error", -1, 1 },
78		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
79		{ RFTP_F, "RXFT array parity error", -1, 1 },
80		{ 0, NULL, 0, 0 }
81	};
82	static struct intr_info pcie_port_intr_info[] = {
83		{ TPCP_F, "TXPC array parity error", -1, 1 },
84		{ TNPP_F, "TXNP array parity error", -1, 1 },
85		{ TFTP_F, "TXFT array parity error", -1, 1 },
86		{ TCAP_F, "TXCA array parity error", -1, 1 },
87		{ TCIP_F, "TXCIF array parity error", -1, 1 },
88		{ RCAP_F, "RXCA array parity error", -1, 1 },
89		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
90		{ RDPE_F, "Rx data parity error", -1, 1 },
91		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
92		{ 0, NULL, 0, 0 }
93	};
94
95	static struct intr_info pcie_intr_info[] = {
96		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
97		-1, 1 },
98		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
99		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
100		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
101		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
102		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
103		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
104		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
105		-1, 1 },
106		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
107		-1, 1 },
108		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
109		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
110		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
111		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
112		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
113		-1, 1 },
114		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
115		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
116		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
117		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
118		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
119		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
120		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
121		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
122		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
123		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
124		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
125		-1, 1 },
126		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
127		-1, 1 },
128		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
129		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
130		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
131		{ READRSPERR_F, "Outbound read error", -1, 0 },
132		{ 0, NULL, 0, 0 }
133	};
134
135	int fat;
136	fat = csio_handle_intr_status(hw,
137				      PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
138				      sysbus_intr_info) +
139	      csio_handle_intr_status(hw,
140				      PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
141				      pcie_port_intr_info) +
142	      csio_handle_intr_status(hw, PCIE_INT_CAUSE_A, pcie_intr_info);
143	if (fat)
144		csio_hw_fatal_err(hw);
145}
146
147/*
148 * csio_t5_flash_cfg_addr - return the address of the flash configuration file
149 * @hw: the HW module
150 *
151 * Return the address within the flash where the Firmware Configuration
152 * File is stored.
153 */
154static unsigned int
155csio_t5_flash_cfg_addr(struct csio_hw *hw)
156{
157	return FLASH_CFG_START;
158}
159
160/*
161 *      csio_t5_mc_read - read from MC through backdoor accesses
162 *      @hw: the hw module
163 *      @idx: index to the register
164 *      @addr: address of first byte requested
165 *      @data: 64 bytes of data containing the requested address
166 *      @ecc: where to store the corresponding 64-bit ECC word
167 *
168 *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
169 *      that covers the requested address @addr.  If @parity is not %NULL it
170 *      is assigned the 64-bit ECC word for the read data.
171 */
172static int
173csio_t5_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
174		uint64_t *ecc)
175{
176	int i;
177	uint32_t mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
178	uint32_t mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
179
180	mc_bist_cmd_reg = MC_REG(MC_P_BIST_CMD_A, idx);
181	mc_bist_cmd_addr_reg = MC_REG(MC_P_BIST_CMD_ADDR_A, idx);
182	mc_bist_cmd_len_reg = MC_REG(MC_P_BIST_CMD_LEN_A, idx);
183	mc_bist_status_rdata_reg = MC_REG(MC_P_BIST_STATUS_RDATA_A, idx);
184	mc_bist_data_pattern_reg = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx);
185
186	if (csio_rd_reg32(hw, mc_bist_cmd_reg) & START_BIST_F)
187		return -EBUSY;
188	csio_wr_reg32(hw, addr & ~0x3fU, mc_bist_cmd_addr_reg);
189	csio_wr_reg32(hw, 64, mc_bist_cmd_len_reg);
190	csio_wr_reg32(hw, 0xc, mc_bist_data_pattern_reg);
191	csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F |  BIST_CMD_GAP_V(1),
192		      mc_bist_cmd_reg);
193	i = csio_hw_wait_op_done_val(hw, mc_bist_cmd_reg, START_BIST_F,
194				     0, 10, 1, NULL);
195	if (i)
196		return i;
197
198#define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA_A, i)
199
200	for (i = 15; i >= 0; i--)
201		*data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
202	if (ecc)
203		*ecc = csio_rd_reg64(hw, MC_DATA(16));
204#undef MC_DATA
205	return 0;
206}
207
208/*
209 *      csio_t5_edc_read - read from EDC through backdoor accesses
210 *      @hw: the hw module
211 *      @idx: which EDC to access
212 *      @addr: address of first byte requested
213 *      @data: 64 bytes of data containing the requested address
214 *      @ecc: where to store the corresponding 64-bit ECC word
215 *
216 *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
217 *      that covers the requested address @addr.  If @parity is not %NULL it
218 *      is assigned the 64-bit ECC word for the read data.
219 */
220static int
221csio_t5_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
222		uint64_t *ecc)
223{
224	int i;
225	uint32_t edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
226	uint32_t edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
227
228/*
229 * These macro are missing in t4_regs.h file.
230 */
231#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
232#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
233
234	edc_bist_cmd_reg = EDC_REG_T5(EDC_H_BIST_CMD_A, idx);
235	edc_bist_cmd_addr_reg = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx);
236	edc_bist_cmd_len_reg = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx);
237	edc_bist_cmd_data_pattern = EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx);
238	edc_bist_status_rdata_reg = EDC_REG_T5(EDC_H_BIST_STATUS_RDATA_A, idx);
239#undef EDC_REG_T5
240#undef EDC_STRIDE_T5
241
242	if (csio_rd_reg32(hw, edc_bist_cmd_reg) & START_BIST_F)
243		return -EBUSY;
244	csio_wr_reg32(hw, addr & ~0x3fU, edc_bist_cmd_addr_reg);
245	csio_wr_reg32(hw, 64, edc_bist_cmd_len_reg);
246	csio_wr_reg32(hw, 0xc, edc_bist_cmd_data_pattern);
247	csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F |  BIST_CMD_GAP_V(1),
248		      edc_bist_cmd_reg);
249	i = csio_hw_wait_op_done_val(hw, edc_bist_cmd_reg, START_BIST_F,
250				     0, 10, 1, NULL);
251	if (i)
252		return i;
253
254#define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA_A, i) + idx)
255
256	for (i = 15; i >= 0; i--)
257		*data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
258	if (ecc)
259		*ecc = csio_rd_reg64(hw, EDC_DATA(16));
260#undef EDC_DATA
261	return 0;
262}
263
264/*
265 * csio_t5_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
266 * @hw: the csio_hw
267 * @win: PCI-E memory Window to use
268 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1
269 * @addr: address within indicated memory type
270 * @len: amount of memory to transfer
271 * @buf: host memory buffer
272 * @dir: direction of transfer 1 => read, 0 => write
273 *
274 * Reads/writes an [almost] arbitrary memory region in the firmware: the
275 * firmware memory address, length and host buffer must be aligned on
276 * 32-bit boudaries.  The memory is transferred as a raw byte sequence
277 * from/to the firmware's memory.  If this memory contains data
278 * structures which contain multi-byte integers, it's the callers
279 * responsibility to perform appropriate byte order conversions.
280 */
281static int
282csio_t5_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr,
283		u32 len, uint32_t *buf, int dir)
284{
285	u32 pos, start, offset, memoffset;
286	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
287
288	/*
289	 * Argument sanity checks ...
290	 */
291	if ((addr & 0x3) || (len & 0x3))
292		return -EINVAL;
293
294	/* Offset into the region of memory which is being accessed
295	 * MEM_EDC0 = 0
296	 * MEM_EDC1 = 1
297	 * MEM_MC   = 2 -- T4
298	 * MEM_MC0  = 2 -- For T5
299	 * MEM_MC1  = 3 -- For T5
300	 */
301	edc_size  = EDRAM0_SIZE_G(csio_rd_reg32(hw, MA_EDRAM0_BAR_A));
302	if (mtype != MEM_MC1)
303		memoffset = (mtype * (edc_size * 1024 * 1024));
304	else {
305		mc_size = EXT_MEM_SIZE_G(csio_rd_reg32(hw,
306						       MA_EXT_MEMORY_BAR_A));
307		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
308	}
309
310	/* Determine the PCIE_MEM_ACCESS_OFFSET */
311	addr = addr + memoffset;
312
313	/*
314	 * Each PCI-E Memory Window is programmed with a window size -- or
315	 * "aperture" -- which controls the granularity of its mapping onto
316	 * adapter memory.  We need to grab that aperture in order to know
317	 * how to use the specified window.  The window is also programmed
318	 * with the base address of the Memory Window in BAR0's address
319	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
320	 * the address is relative to BAR0.
321	 */
322	mem_reg = csio_rd_reg32(hw,
323			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
324	mem_aperture = 1 << (WINDOW_V(mem_reg) + 10);
325	mem_base = PCIEOFST_G(mem_reg) << 10;
326
327	start = addr & ~(mem_aperture-1);
328	offset = addr - start;
329	win_pf = PFNUM_V(hw->pfn);
330
331	csio_dbg(hw, "csio_t5_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n",
332		 mem_reg, mem_aperture);
333	csio_dbg(hw, "csio_t5_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n",
334		 mem_base, memoffset);
335	csio_dbg(hw, "csio_t5_memory_rw: start:0x%x, offset:0x%x, win_pf:%d\n",
336		 start, offset, win_pf);
337	csio_dbg(hw, "csio_t5_memory_rw: mtype: %d, addr: 0x%x, len: %d\n",
338		 mtype, addr, len);
339
340	for (pos = start; len > 0; pos += mem_aperture, offset = 0) {
341		/*
342		 * Move PCI-E Memory Window to our current transfer
343		 * position.  Read it back to ensure that changes propagate
344		 * before we attempt to use the new value.
345		 */
346		csio_wr_reg32(hw, pos | win_pf,
347			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
348		csio_rd_reg32(hw,
349			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
350
351		while (offset < mem_aperture && len > 0) {
352			if (dir)
353				*buf++ = csio_rd_reg32(hw, mem_base + offset);
354			else
355				csio_wr_reg32(hw, *buf++, mem_base + offset);
356
357			offset += sizeof(__be32);
358			len -= sizeof(__be32);
359		}
360	}
361	return 0;
362}
363
364/*
365 * csio_t5_dfs_create_ext_mem - setup debugfs for MC0 or MC1 to read the values
366 * @hw: the csio_hw
367 *
368 * This function creates files in the debugfs with external memory region
369 * MC0 & MC1.
370 */
371static void
372csio_t5_dfs_create_ext_mem(struct csio_hw *hw)
373{
374	u32 size;
375	int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE_A);
376
377	if (i & EXT_MEM_ENABLE_F) {
378		size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A);
379		csio_add_debugfs_mem(hw, "mc0", MEM_MC0,
380				     EXT_MEM_SIZE_G(size));
381	}
382	if (i & EXT_MEM1_ENABLE_F) {
383		size = csio_rd_reg32(hw, MA_EXT_MEMORY1_BAR_A);
384		csio_add_debugfs_mem(hw, "mc1", MEM_MC1,
385				     EXT_MEM_SIZE_G(size));
386	}
387}
388
389/* T5 adapter specific function */
390struct csio_hw_chip_ops t5_ops = {
391	.chip_set_mem_win		= csio_t5_set_mem_win,
392	.chip_pcie_intr_handler		= csio_t5_pcie_intr_handler,
393	.chip_flash_cfg_addr		= csio_t5_flash_cfg_addr,
394	.chip_mc_read			= csio_t5_mc_read,
395	.chip_edc_read			= csio_t5_edc_read,
396	.chip_memory_rw			= csio_t5_memory_rw,
397	.chip_dfs_create_ext_mem	= csio_t5_dfs_create_ext_mem,
398};
399