1/*
2 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
3 *
4 * Copyright (c) 1995-2000 Advanced System Products, Inc.
5 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
6 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
7 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
8 * All Rights Reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16/*
17 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
18 * changed its name to ConnectCom Solutions, Inc.
19 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
20 */
21
22#include <linux/module.h>
23#include <linux/string.h>
24#include <linux/kernel.h>
25#include <linux/types.h>
26#include <linux/ioport.h>
27#include <linux/interrupt.h>
28#include <linux/delay.h>
29#include <linux/slab.h>
30#include <linux/mm.h>
31#include <linux/proc_fs.h>
32#include <linux/init.h>
33#include <linux/blkdev.h>
34#include <linux/isa.h>
35#include <linux/eisa.h>
36#include <linux/pci.h>
37#include <linux/spinlock.h>
38#include <linux/dma-mapping.h>
39#include <linux/firmware.h>
40#include <linux/dmapool.h>
41
42#include <asm/io.h>
43#include <asm/dma.h>
44
45#include <scsi/scsi_cmnd.h>
46#include <scsi/scsi_device.h>
47#include <scsi/scsi_tcq.h>
48#include <scsi/scsi.h>
49#include <scsi/scsi_host.h>
50
51#define DRV_NAME "advansys"
52#define ASC_VERSION "3.5"	/* AdvanSys Driver Version */
53
54/* FIXME:
55 *
56 *  1. Use scsi_transport_spi
57 *  2. advansys_info is not safe against multiple simultaneous callers
58 *  3. Add module_param to override ISA/VLB ioport array
59 */
60
61/* Enable driver /proc statistics. */
62#define ADVANSYS_STATS
63
64/* Enable driver tracing. */
65#undef ADVANSYS_DEBUG
66
67typedef unsigned char uchar;
68
69#define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
70
71#define PCI_VENDOR_ID_ASP		0x10cd
72#define PCI_DEVICE_ID_ASP_1200A		0x1100
73#define PCI_DEVICE_ID_ASP_ABP940	0x1200
74#define PCI_DEVICE_ID_ASP_ABP940U	0x1300
75#define PCI_DEVICE_ID_ASP_ABP940UW	0x2300
76#define PCI_DEVICE_ID_38C0800_REV1	0x2500
77#define PCI_DEVICE_ID_38C1600_REV1	0x2700
78
79#define PortAddr                 unsigned int	/* port address size  */
80#define inp(port)                inb(port)
81#define outp(port, byte)         outb((byte), (port))
82
83#define inpw(port)               inw(port)
84#define outpw(port, word)        outw((word), (port))
85
86#define ASC_MAX_SG_QUEUE    7
87#define ASC_MAX_SG_LIST     255
88
89#define ASC_CS_TYPE  unsigned short
90
91#define ASC_IS_ISA          (0x0001)
92#define ASC_IS_ISAPNP       (0x0081)
93#define ASC_IS_EISA         (0x0002)
94#define ASC_IS_PCI          (0x0004)
95#define ASC_IS_PCI_ULTRA    (0x0104)
96#define ASC_IS_PCMCIA       (0x0008)
97#define ASC_IS_MCA          (0x0020)
98#define ASC_IS_VL           (0x0040)
99#define ASC_IS_WIDESCSI_16  (0x0100)
100#define ASC_IS_WIDESCSI_32  (0x0200)
101#define ASC_IS_BIG_ENDIAN   (0x8000)
102
103#define ASC_CHIP_MIN_VER_VL      (0x01)
104#define ASC_CHIP_MAX_VER_VL      (0x07)
105#define ASC_CHIP_MIN_VER_PCI     (0x09)
106#define ASC_CHIP_MAX_VER_PCI     (0x0F)
107#define ASC_CHIP_VER_PCI_BIT     (0x08)
108#define ASC_CHIP_MIN_VER_ISA     (0x11)
109#define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
110#define ASC_CHIP_MAX_VER_ISA     (0x27)
111#define ASC_CHIP_VER_ISA_BIT     (0x30)
112#define ASC_CHIP_VER_ISAPNP_BIT  (0x20)
113#define ASC_CHIP_VER_ASYN_BUG    (0x21)
114#define ASC_CHIP_VER_PCI             0x08
115#define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
116#define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
117#define ASC_CHIP_MIN_VER_EISA (0x41)
118#define ASC_CHIP_MAX_VER_EISA (0x47)
119#define ASC_CHIP_VER_EISA_BIT (0x40)
120#define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
121#define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
122#define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
123#define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL)
124
125#define ASC_SCSI_ID_BITS  3
126#define ASC_SCSI_TIX_TYPE     uchar
127#define ASC_ALL_DEVICE_BIT_SET  0xFF
128#define ASC_SCSI_BIT_ID_TYPE  uchar
129#define ASC_MAX_TID       7
130#define ASC_MAX_LUN       7
131#define ASC_SCSI_WIDTH_BIT_SET  0xFF
132#define ASC_MAX_SENSE_LEN   32
133#define ASC_MIN_SENSE_LEN   14
134#define ASC_SCSI_RESET_HOLD_TIME_US  60
135
136/*
137 * Narrow boards only support 12-byte commands, while wide boards
138 * extend to 16-byte commands.
139 */
140#define ASC_MAX_CDB_LEN     12
141#define ADV_MAX_CDB_LEN     16
142
143#define MS_SDTR_LEN    0x03
144#define MS_WDTR_LEN    0x02
145
146#define ASC_SG_LIST_PER_Q   7
147#define QS_FREE        0x00
148#define QS_READY       0x01
149#define QS_DISC1       0x02
150#define QS_DISC2       0x04
151#define QS_BUSY        0x08
152#define QS_ABORTED     0x40
153#define QS_DONE        0x80
154#define QC_NO_CALLBACK   0x01
155#define QC_SG_SWAP_QUEUE 0x02
156#define QC_SG_HEAD       0x04
157#define QC_DATA_IN       0x08
158#define QC_DATA_OUT      0x10
159#define QC_URGENT        0x20
160#define QC_MSG_OUT       0x40
161#define QC_REQ_SENSE     0x80
162#define QCSG_SG_XFER_LIST  0x02
163#define QCSG_SG_XFER_MORE  0x04
164#define QCSG_SG_XFER_END   0x08
165#define QD_IN_PROGRESS       0x00
166#define QD_NO_ERROR          0x01
167#define QD_ABORTED_BY_HOST   0x02
168#define QD_WITH_ERROR        0x04
169#define QD_INVALID_REQUEST   0x80
170#define QD_INVALID_HOST_NUM  0x81
171#define QD_INVALID_DEVICE    0x82
172#define QD_ERR_INTERNAL      0xFF
173#define QHSTA_NO_ERROR               0x00
174#define QHSTA_M_SEL_TIMEOUT          0x11
175#define QHSTA_M_DATA_OVER_RUN        0x12
176#define QHSTA_M_DATA_UNDER_RUN       0x12
177#define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
178#define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
179#define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
180#define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
181#define QHSTA_D_HOST_ABORT_FAILED       0x23
182#define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
183#define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
184#define QHSTA_D_ASPI_NO_BUF_POOL        0x26
185#define QHSTA_M_WTM_TIMEOUT         0x41
186#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
187#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
188#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
189#define QHSTA_M_TARGET_STATUS_BUSY  0x45
190#define QHSTA_M_BAD_TAG_CODE        0x46
191#define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
192#define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
193#define QHSTA_D_LRAM_CMP_ERROR        0x81
194#define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
195#define ASC_FLAG_SCSIQ_REQ        0x01
196#define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
197#define ASC_FLAG_BIOS_ASYNC_IO    0x04
198#define ASC_FLAG_SRB_LINEAR_ADDR  0x08
199#define ASC_FLAG_WIN16            0x10
200#define ASC_FLAG_WIN32            0x20
201#define ASC_FLAG_ISA_OVER_16MB    0x40
202#define ASC_FLAG_DOS_VM_CALLBACK  0x80
203#define ASC_TAG_FLAG_EXTRA_BYTES               0x10
204#define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
205#define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
206#define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
207#define ASC_SCSIQ_CPY_BEG              4
208#define ASC_SCSIQ_SGHD_CPY_BEG         2
209#define ASC_SCSIQ_B_FWD                0
210#define ASC_SCSIQ_B_BWD                1
211#define ASC_SCSIQ_B_STATUS             2
212#define ASC_SCSIQ_B_QNO                3
213#define ASC_SCSIQ_B_CNTL               4
214#define ASC_SCSIQ_B_SG_QUEUE_CNT       5
215#define ASC_SCSIQ_D_DATA_ADDR          8
216#define ASC_SCSIQ_D_DATA_CNT          12
217#define ASC_SCSIQ_B_SENSE_LEN         20
218#define ASC_SCSIQ_DONE_INFO_BEG       22
219#define ASC_SCSIQ_D_SRBPTR            22
220#define ASC_SCSIQ_B_TARGET_IX         26
221#define ASC_SCSIQ_B_CDB_LEN           28
222#define ASC_SCSIQ_B_TAG_CODE          29
223#define ASC_SCSIQ_W_VM_ID             30
224#define ASC_SCSIQ_DONE_STATUS         32
225#define ASC_SCSIQ_HOST_STATUS         33
226#define ASC_SCSIQ_SCSI_STATUS         34
227#define ASC_SCSIQ_CDB_BEG             36
228#define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
229#define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
230#define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
231#define ASC_SCSIQ_B_SG_WK_QP          49
232#define ASC_SCSIQ_B_SG_WK_IX          50
233#define ASC_SCSIQ_W_ALT_DC1           52
234#define ASC_SCSIQ_B_LIST_CNT          6
235#define ASC_SCSIQ_B_CUR_LIST_CNT      7
236#define ASC_SGQ_B_SG_CNTL             4
237#define ASC_SGQ_B_SG_HEAD_QP          5
238#define ASC_SGQ_B_SG_LIST_CNT         6
239#define ASC_SGQ_B_SG_CUR_LIST_CNT     7
240#define ASC_SGQ_LIST_BEG              8
241#define ASC_DEF_SCSI1_QNG    4
242#define ASC_MAX_SCSI1_QNG    4
243#define ASC_DEF_SCSI2_QNG    16
244#define ASC_MAX_SCSI2_QNG    32
245#define ASC_TAG_CODE_MASK    0x23
246#define ASC_STOP_REQ_RISC_STOP      0x01
247#define ASC_STOP_ACK_RISC_STOP      0x03
248#define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
249#define ASC_STOP_CLEAN_UP_DISC_Q    0x20
250#define ASC_STOP_HOST_REQ_RISC_HALT 0x40
251#define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
252#define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
253#define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
254#define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
255#define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
256#define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
257#define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
258
259typedef struct asc_scsiq_1 {
260	uchar status;
261	uchar q_no;
262	uchar cntl;
263	uchar sg_queue_cnt;
264	uchar target_id;
265	uchar target_lun;
266	__le32 data_addr;
267	__le32 data_cnt;
268	__le32 sense_addr;
269	uchar sense_len;
270	uchar extra_bytes;
271} ASC_SCSIQ_1;
272
273typedef struct asc_scsiq_2 {
274	u32 srb_tag;
275	uchar target_ix;
276	uchar flag;
277	uchar cdb_len;
278	uchar tag_code;
279	ushort vm_id;
280} ASC_SCSIQ_2;
281
282typedef struct asc_scsiq_3 {
283	uchar done_stat;
284	uchar host_stat;
285	uchar scsi_stat;
286	uchar scsi_msg;
287} ASC_SCSIQ_3;
288
289typedef struct asc_scsiq_4 {
290	uchar cdb[ASC_MAX_CDB_LEN];
291	uchar y_first_sg_list_qp;
292	uchar y_working_sg_qp;
293	uchar y_working_sg_ix;
294	uchar y_res;
295	ushort x_req_count;
296	ushort x_reconnect_rtn;
297	__le32 x_saved_data_addr;
298	__le32 x_saved_data_cnt;
299} ASC_SCSIQ_4;
300
301typedef struct asc_q_done_info {
302	ASC_SCSIQ_2 d2;
303	ASC_SCSIQ_3 d3;
304	uchar q_status;
305	uchar q_no;
306	uchar cntl;
307	uchar sense_len;
308	uchar extra_bytes;
309	uchar res;
310	u32 remain_bytes;
311} ASC_QDONE_INFO;
312
313typedef struct asc_sg_list {
314	__le32 addr;
315	__le32 bytes;
316} ASC_SG_LIST;
317
318typedef struct asc_sg_head {
319	ushort entry_cnt;
320	ushort queue_cnt;
321	ushort entry_to_copy;
322	ushort res;
323	ASC_SG_LIST sg_list[0];
324} ASC_SG_HEAD;
325
326typedef struct asc_scsi_q {
327	ASC_SCSIQ_1 q1;
328	ASC_SCSIQ_2 q2;
329	uchar *cdbptr;
330	ASC_SG_HEAD *sg_head;
331	ushort remain_sg_entry_cnt;
332	ushort next_sg_index;
333} ASC_SCSI_Q;
334
335typedef struct asc_scsi_bios_req_q {
336	ASC_SCSIQ_1 r1;
337	ASC_SCSIQ_2 r2;
338	uchar *cdbptr;
339	ASC_SG_HEAD *sg_head;
340	uchar *sense_ptr;
341	ASC_SCSIQ_3 r3;
342	uchar cdb[ASC_MAX_CDB_LEN];
343	uchar sense[ASC_MIN_SENSE_LEN];
344} ASC_SCSI_BIOS_REQ_Q;
345
346typedef struct asc_risc_q {
347	uchar fwd;
348	uchar bwd;
349	ASC_SCSIQ_1 i1;
350	ASC_SCSIQ_2 i2;
351	ASC_SCSIQ_3 i3;
352	ASC_SCSIQ_4 i4;
353} ASC_RISC_Q;
354
355typedef struct asc_sg_list_q {
356	uchar seq_no;
357	uchar q_no;
358	uchar cntl;
359	uchar sg_head_qp;
360	uchar sg_list_cnt;
361	uchar sg_cur_list_cnt;
362} ASC_SG_LIST_Q;
363
364typedef struct asc_risc_sg_list_q {
365	uchar fwd;
366	uchar bwd;
367	ASC_SG_LIST_Q sg;
368	ASC_SG_LIST sg_list[7];
369} ASC_RISC_SG_LIST_Q;
370
371#define ASCQ_ERR_Q_STATUS             0x0D
372#define ASCQ_ERR_CUR_QNG              0x17
373#define ASCQ_ERR_SG_Q_LINKS           0x18
374#define ASCQ_ERR_ISR_RE_ENTRY         0x1A
375#define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
376#define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
377
378/*
379 * Warning code values are set in ASC_DVC_VAR  'warn_code'.
380 */
381#define ASC_WARN_NO_ERROR             0x0000
382#define ASC_WARN_IO_PORT_ROTATE       0x0001
383#define ASC_WARN_EEPROM_CHKSUM        0x0002
384#define ASC_WARN_IRQ_MODIFIED         0x0004
385#define ASC_WARN_AUTO_CONFIG          0x0008
386#define ASC_WARN_CMD_QNG_CONFLICT     0x0010
387#define ASC_WARN_EEPROM_RECOVER       0x0020
388#define ASC_WARN_CFG_MSW_RECOVER      0x0040
389
390/*
391 * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
392 */
393#define ASC_IERR_NO_CARRIER		0x0001	/* No more carrier memory */
394#define ASC_IERR_MCODE_CHKSUM		0x0002	/* micro code check sum error */
395#define ASC_IERR_SET_PC_ADDR		0x0004
396#define ASC_IERR_START_STOP_CHIP	0x0008	/* start/stop chip failed */
397#define ASC_IERR_ILLEGAL_CONNECTION	0x0010	/* Illegal cable connection */
398#define ASC_IERR_SINGLE_END_DEVICE	0x0020	/* SE device on DIFF bus */
399#define ASC_IERR_REVERSED_CABLE		0x0040	/* Narrow flat cable reversed */
400#define ASC_IERR_SET_SCSI_ID		0x0080	/* set SCSI ID failed */
401#define ASC_IERR_HVD_DEVICE		0x0100	/* HVD device on LVD port */
402#define ASC_IERR_BAD_SIGNATURE		0x0200	/* signature not found */
403#define ASC_IERR_NO_BUS_TYPE		0x0400
404#define ASC_IERR_BIST_PRE_TEST		0x0800	/* BIST pre-test error */
405#define ASC_IERR_BIST_RAM_TEST		0x1000	/* BIST RAM test error */
406#define ASC_IERR_BAD_CHIPTYPE		0x2000	/* Invalid chip_type setting */
407
408#define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
409#define ASC_MIN_TAG_Q_PER_DVC   (0x04)
410#define ASC_MIN_FREE_Q        (0x02)
411#define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
412#define ASC_MAX_TOTAL_QNG 240
413#define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
414#define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
415#define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
416#define ASC_MAX_INRAM_TAG_QNG   16
417#define ASC_IOADR_GAP   0x10
418#define ASC_SYN_MAX_OFFSET         0x0F
419#define ASC_DEF_SDTR_OFFSET        0x0F
420#define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
421#define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
422
423/* The narrow chip only supports a limited selection of transfer rates.
424 * These are encoded in the range 0..7 or 0..15 depending whether the chip
425 * is Ultra-capable or not.  These tables let us convert from one to the other.
426 */
427static const unsigned char asc_syn_xfer_period[8] = {
428	25, 30, 35, 40, 50, 60, 70, 85
429};
430
431static const unsigned char asc_syn_ultra_xfer_period[16] = {
432	12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
433};
434
435typedef struct ext_msg {
436	uchar msg_type;
437	uchar msg_len;
438	uchar msg_req;
439	union {
440		struct {
441			uchar sdtr_xfer_period;
442			uchar sdtr_req_ack_offset;
443		} sdtr;
444		struct {
445			uchar wdtr_width;
446		} wdtr;
447		struct {
448			uchar mdp_b3;
449			uchar mdp_b2;
450			uchar mdp_b1;
451			uchar mdp_b0;
452		} mdp;
453	} u_ext_msg;
454	uchar res;
455} EXT_MSG;
456
457#define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
458#define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
459#define wdtr_width      u_ext_msg.wdtr.wdtr_width
460#define mdp_b3          u_ext_msg.mdp_b3
461#define mdp_b2          u_ext_msg.mdp_b2
462#define mdp_b1          u_ext_msg.mdp_b1
463#define mdp_b0          u_ext_msg.mdp_b0
464
465typedef struct asc_dvc_cfg {
466	ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
467	ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
468	ASC_SCSI_BIT_ID_TYPE disc_enable;
469	ASC_SCSI_BIT_ID_TYPE sdtr_enable;
470	uchar chip_scsi_id;
471	uchar isa_dma_speed;
472	uchar isa_dma_channel;
473	uchar chip_version;
474	ushort mcode_date;
475	ushort mcode_version;
476	uchar max_tag_qng[ASC_MAX_TID + 1];
477	uchar sdtr_period_offset[ASC_MAX_TID + 1];
478	uchar adapter_info[6];
479} ASC_DVC_CFG;
480
481#define ASC_DEF_DVC_CNTL       0xFFFF
482#define ASC_DEF_CHIP_SCSI_ID   7
483#define ASC_DEF_ISA_DMA_SPEED  4
484#define ASC_INIT_STATE_BEG_GET_CFG   0x0001
485#define ASC_INIT_STATE_END_GET_CFG   0x0002
486#define ASC_INIT_STATE_BEG_SET_CFG   0x0004
487#define ASC_INIT_STATE_END_SET_CFG   0x0008
488#define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
489#define ASC_INIT_STATE_END_LOAD_MC   0x0020
490#define ASC_INIT_STATE_BEG_INQUIRY   0x0040
491#define ASC_INIT_STATE_END_INQUIRY   0x0080
492#define ASC_INIT_RESET_SCSI_DONE     0x0100
493#define ASC_INIT_STATE_WITHOUT_EEP   0x8000
494#define ASC_BUG_FIX_IF_NOT_DWB       0x0001
495#define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
496#define ASC_MIN_TAGGED_CMD  7
497#define ASC_MAX_SCSI_RESET_WAIT      30
498#define ASC_OVERRUN_BSIZE		64
499
500struct asc_dvc_var;		/* Forward Declaration. */
501
502typedef struct asc_dvc_var {
503	PortAddr iop_base;
504	ushort err_code;
505	ushort dvc_cntl;
506	ushort bug_fix_cntl;
507	ushort bus_type;
508	ASC_SCSI_BIT_ID_TYPE init_sdtr;
509	ASC_SCSI_BIT_ID_TYPE sdtr_done;
510	ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
511	ASC_SCSI_BIT_ID_TYPE unit_not_ready;
512	ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
513	ASC_SCSI_BIT_ID_TYPE start_motor;
514	uchar *overrun_buf;
515	dma_addr_t overrun_dma;
516	uchar scsi_reset_wait;
517	uchar chip_no;
518	bool is_in_int;
519	uchar max_total_qng;
520	uchar cur_total_qng;
521	uchar in_critical_cnt;
522	uchar last_q_shortage;
523	ushort init_state;
524	uchar cur_dvc_qng[ASC_MAX_TID + 1];
525	uchar max_dvc_qng[ASC_MAX_TID + 1];
526	ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
527	ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
528	const uchar *sdtr_period_tbl;
529	ASC_DVC_CFG *cfg;
530	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
531	char redo_scam;
532	ushort res2;
533	uchar dos_int13_table[ASC_MAX_TID + 1];
534	unsigned int max_dma_count;
535	ASC_SCSI_BIT_ID_TYPE no_scam;
536	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
537	uchar min_sdtr_index;
538	uchar max_sdtr_index;
539	struct asc_board *drv_ptr;
540	unsigned int uc_break;
541} ASC_DVC_VAR;
542
543typedef struct asc_dvc_inq_info {
544	uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
545} ASC_DVC_INQ_INFO;
546
547typedef struct asc_cap_info {
548	u32 lba;
549	u32 blk_size;
550} ASC_CAP_INFO;
551
552typedef struct asc_cap_info_array {
553	ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
554} ASC_CAP_INFO_ARRAY;
555
556#define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
557#define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
558#define ASC_CNTL_INITIATOR         (ushort)0x0001
559#define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
560#define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
561#define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
562#define ASC_CNTL_NO_SCAM           (ushort)0x0010
563#define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
564#define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
565#define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
566#define ASC_CNTL_RESET_SCSI        (ushort)0x0200
567#define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
568#define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
569#define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
570#define ASC_CNTL_BURST_MODE        (ushort)0x2000
571#define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
572#define ASC_EEP_DVC_CFG_BEG_VL    2
573#define ASC_EEP_MAX_DVC_ADDR_VL   15
574#define ASC_EEP_DVC_CFG_BEG      32
575#define ASC_EEP_MAX_DVC_ADDR     45
576#define ASC_EEP_MAX_RETRY        20
577
578/*
579 * These macros keep the chip SCSI id and ISA DMA speed
580 * bitfields in board order. C bitfields aren't portable
581 * between big and little-endian platforms so they are
582 * not used.
583 */
584
585#define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
586#define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
587#define ASC_EEP_SET_CHIP_ID(cfg, sid) \
588   ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
589#define ASC_EEP_SET_DMA_SPD(cfg, spd) \
590   ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
591
592typedef struct asceep_config {
593	ushort cfg_lsw;
594	ushort cfg_msw;
595	uchar init_sdtr;
596	uchar disc_enable;
597	uchar use_cmd_qng;
598	uchar start_motor;
599	uchar max_total_qng;
600	uchar max_tag_qng;
601	uchar bios_scan;
602	uchar power_up_wait;
603	uchar no_scam;
604	uchar id_speed;		/* low order 4 bits is chip scsi id */
605	/* high order 4 bits is isa dma speed */
606	uchar dos_int13_table[ASC_MAX_TID + 1];
607	uchar adapter_info[6];
608	ushort cntl;
609	ushort chksum;
610} ASCEEP_CONFIG;
611
612#define ASC_EEP_CMD_READ          0x80
613#define ASC_EEP_CMD_WRITE         0x40
614#define ASC_EEP_CMD_WRITE_ABLE    0x30
615#define ASC_EEP_CMD_WRITE_DISABLE 0x00
616#define ASCV_MSGOUT_BEG         0x0000
617#define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
618#define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
619#define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
620#define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
621#define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
622#define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
623#define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
624#define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
625#define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
626#define ASCV_BREAK_ADDR           (ushort)0x0028
627#define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
628#define ASCV_BREAK_CONTROL        (ushort)0x002C
629#define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
630
631#define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
632#define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
633#define ASCV_MCODE_SIZE_W     (ushort)0x0034
634#define ASCV_STOP_CODE_B      (ushort)0x0036
635#define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
636#define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
637#define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
638#define ASCV_HALTCODE_W       (ushort)0x0040
639#define ASCV_CHKSUM_W         (ushort)0x0042
640#define ASCV_MC_DATE_W        (ushort)0x0044
641#define ASCV_MC_VER_W         (ushort)0x0046
642#define ASCV_NEXTRDY_B        (ushort)0x0048
643#define ASCV_DONENEXT_B       (ushort)0x0049
644#define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
645#define ASCV_SCSIBUSY_B       (ushort)0x004B
646#define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
647#define ASCV_CURCDB_B         (ushort)0x004D
648#define ASCV_RCLUN_B          (ushort)0x004E
649#define ASCV_BUSY_QHEAD_B     (ushort)0x004F
650#define ASCV_DISC1_QHEAD_B    (ushort)0x0050
651#define ASCV_DISC_ENABLE_B    (ushort)0x0052
652#define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
653#define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
654#define ASCV_MCODE_CNTL_B     (ushort)0x0056
655#define ASCV_NULL_TARGET_B    (ushort)0x0057
656#define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
657#define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
658#define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
659#define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
660#define ASCV_HOST_FLAG_B      (ushort)0x005D
661#define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
662#define ASCV_VER_SERIAL_B     (ushort)0x0065
663#define ASCV_HALTCODE_SAVED_W (ushort)0x0066
664#define ASCV_WTM_FLAG_B       (ushort)0x0068
665#define ASCV_RISC_FLAG_B      (ushort)0x006A
666#define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
667#define ASC_HOST_FLAG_IN_ISR        0x01
668#define ASC_HOST_FLAG_ACK_INT       0x02
669#define ASC_RISC_FLAG_GEN_INT      0x01
670#define ASC_RISC_FLAG_REQ_SG_LIST  0x02
671#define IOP_CTRL         (0x0F)
672#define IOP_STATUS       (0x0E)
673#define IOP_INT_ACK      IOP_STATUS
674#define IOP_REG_IFC      (0x0D)
675#define IOP_SYN_OFFSET    (0x0B)
676#define IOP_EXTRA_CONTROL (0x0D)
677#define IOP_REG_PC        (0x0C)
678#define IOP_RAM_ADDR      (0x0A)
679#define IOP_RAM_DATA      (0x08)
680#define IOP_EEP_DATA      (0x06)
681#define IOP_EEP_CMD       (0x07)
682#define IOP_VERSION       (0x03)
683#define IOP_CONFIG_HIGH   (0x04)
684#define IOP_CONFIG_LOW    (0x02)
685#define IOP_SIG_BYTE      (0x01)
686#define IOP_SIG_WORD      (0x00)
687#define IOP_REG_DC1      (0x0E)
688#define IOP_REG_DC0      (0x0C)
689#define IOP_REG_SB       (0x0B)
690#define IOP_REG_DA1      (0x0A)
691#define IOP_REG_DA0      (0x08)
692#define IOP_REG_SC       (0x09)
693#define IOP_DMA_SPEED    (0x07)
694#define IOP_REG_FLAG     (0x07)
695#define IOP_FIFO_H       (0x06)
696#define IOP_FIFO_L       (0x04)
697#define IOP_REG_ID       (0x05)
698#define IOP_REG_QP       (0x03)
699#define IOP_REG_IH       (0x02)
700#define IOP_REG_IX       (0x01)
701#define IOP_REG_AX       (0x00)
702#define IFC_REG_LOCK      (0x00)
703#define IFC_REG_UNLOCK    (0x09)
704#define IFC_WR_EN_FILTER  (0x10)
705#define IFC_RD_NO_EEPROM  (0x10)
706#define IFC_SLEW_RATE     (0x20)
707#define IFC_ACT_NEG       (0x40)
708#define IFC_INP_FILTER    (0x80)
709#define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
710#define SC_SEL   (uchar)(0x80)
711#define SC_BSY   (uchar)(0x40)
712#define SC_ACK   (uchar)(0x20)
713#define SC_REQ   (uchar)(0x10)
714#define SC_ATN   (uchar)(0x08)
715#define SC_IO    (uchar)(0x04)
716#define SC_CD    (uchar)(0x02)
717#define SC_MSG   (uchar)(0x01)
718#define SEC_SCSI_CTL         (uchar)(0x80)
719#define SEC_ACTIVE_NEGATE    (uchar)(0x40)
720#define SEC_SLEW_RATE        (uchar)(0x20)
721#define SEC_ENABLE_FILTER    (uchar)(0x10)
722#define ASC_HALT_EXTMSG_IN     (ushort)0x8000
723#define ASC_HALT_CHK_CONDITION (ushort)0x8100
724#define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
725#define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
726#define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
727#define ASC_HALT_SDTR_REJECTED (ushort)0x4000
728#define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
729#define ASC_MAX_QNO        0xF8
730#define ASC_DATA_SEC_BEG   (ushort)0x0080
731#define ASC_DATA_SEC_END   (ushort)0x0080
732#define ASC_CODE_SEC_BEG   (ushort)0x0080
733#define ASC_CODE_SEC_END   (ushort)0x0080
734#define ASC_QADR_BEG       (0x4000)
735#define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
736#define ASC_QADR_END       (ushort)0x7FFF
737#define ASC_QLAST_ADR      (ushort)0x7FC0
738#define ASC_QBLK_SIZE      0x40
739#define ASC_BIOS_DATA_QBEG 0xF8
740#define ASC_MIN_ACTIVE_QNO 0x01
741#define ASC_QLINK_END      0xFF
742#define ASC_EEPROM_WORDS   0x10
743#define ASC_MAX_MGS_LEN    0x10
744#define ASC_BIOS_ADDR_DEF  0xDC00
745#define ASC_BIOS_SIZE      0x3800
746#define ASC_BIOS_RAM_OFF   0x3800
747#define ASC_BIOS_RAM_SIZE  0x800
748#define ASC_BIOS_MIN_ADDR  0xC000
749#define ASC_BIOS_MAX_ADDR  0xEC00
750#define ASC_BIOS_BANK_SIZE 0x0400
751#define ASC_MCODE_START_ADDR  0x0080
752#define ASC_CFG0_HOST_INT_ON    0x0020
753#define ASC_CFG0_BIOS_ON        0x0040
754#define ASC_CFG0_VERA_BURST_ON  0x0080
755#define ASC_CFG0_SCSI_PARITY_ON 0x0800
756#define ASC_CFG1_SCSI_TARGET_ON 0x0080
757#define ASC_CFG1_LRAM_8BITS_ON  0x0800
758#define ASC_CFG_MSW_CLR_MASK    0x3080
759#define CSW_TEST1             (ASC_CS_TYPE)0x8000
760#define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
761#define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
762#define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
763#define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
764#define CSW_TEST2             (ASC_CS_TYPE)0x0400
765#define CSW_TEST3             (ASC_CS_TYPE)0x0200
766#define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
767#define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
768#define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
769#define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
770#define CSW_HALTED            (ASC_CS_TYPE)0x0010
771#define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
772#define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
773#define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
774#define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
775#define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
776#define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
777#define CIW_TEST1        (ASC_CS_TYPE)0x0200
778#define CIW_TEST2        (ASC_CS_TYPE)0x0400
779#define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
780#define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
781#define CC_CHIP_RESET   (uchar)0x80
782#define CC_SCSI_RESET   (uchar)0x40
783#define CC_HALT         (uchar)0x20
784#define CC_SINGLE_STEP  (uchar)0x10
785#define CC_DMA_ABLE     (uchar)0x08
786#define CC_TEST         (uchar)0x04
787#define CC_BANK_ONE     (uchar)0x02
788#define CC_DIAG         (uchar)0x01
789#define ASC_1000_ID0W      0x04C1
790#define ASC_1000_ID0W_FIX  0x00C1
791#define ASC_1000_ID1B      0x25
792#define ASC_EISA_REV_IOP_MASK  (0x0C83)
793#define ASC_EISA_CFG_IOP_MASK  (0x0C86)
794#define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
795#define INS_HALTINT        (ushort)0x6281
796#define INS_HALT           (ushort)0x6280
797#define INS_SINT           (ushort)0x6200
798#define INS_RFLAG_WTM      (ushort)0x7380
799#define ASC_MC_SAVE_CODE_WSIZE  0x500
800#define ASC_MC_SAVE_DATA_WSIZE  0x40
801
802typedef struct asc_mc_saved {
803	ushort data[ASC_MC_SAVE_DATA_WSIZE];
804	ushort code[ASC_MC_SAVE_CODE_WSIZE];
805} ASC_MC_SAVED;
806
807#define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
808#define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
809#define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
810#define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
811#define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
812#define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
813#define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
814#define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
815#define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
816#define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
817#define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
818#define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
819#define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
820#define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
821#define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
822#define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
823#define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
824#define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
825#define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
826#define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
827#define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
828#define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
829#define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
830#define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
831#define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
832#define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
833#define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
834#define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
835#define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
836#define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
837#define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
838#define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
839#define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
840#define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
841#define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
842#define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
843#define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
844#define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
845#define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
846#define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
847#define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
848#define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
849#define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
850#define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
851#define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
852#define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
853#define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
854#define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
855#define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
856#define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
857#define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
858#define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
859#define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
860#define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
861#define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
862#define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
863#define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
864#define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
865#define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
866#define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
867#define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
868#define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
869#define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
870#define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
871#define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
872#define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
873#define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
874
875#define AdvPortAddr  void __iomem *	/* Virtual memory address size */
876
877/*
878 * Define Adv Library required memory access macros.
879 */
880#define ADV_MEM_READB(addr) readb(addr)
881#define ADV_MEM_READW(addr) readw(addr)
882#define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
883#define ADV_MEM_WRITEW(addr, word) writew(word, addr)
884#define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
885
886/*
887 * Define total number of simultaneous maximum element scatter-gather
888 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
889 * maximum number of outstanding commands per wide host adapter. Each
890 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
891 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
892 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
893 * structures or 255 scatter-gather elements.
894 */
895#define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
896
897/*
898 * Define maximum number of scatter-gather elements per request.
899 */
900#define ADV_MAX_SG_LIST         255
901#define NO_OF_SG_PER_BLOCK              15
902
903#define ADV_EEP_DVC_CFG_BEGIN           (0x00)
904#define ADV_EEP_DVC_CFG_END             (0x15)
905#define ADV_EEP_DVC_CTL_BEGIN           (0x16)	/* location of OEM name */
906#define ADV_EEP_MAX_WORD_ADDR           (0x1E)
907
908#define ADV_EEP_DELAY_MS                100
909
910#define ADV_EEPROM_BIG_ENDIAN          0x8000	/* EEPROM Bit 15 */
911#define ADV_EEPROM_BIOS_ENABLE         0x4000	/* EEPROM Bit 14 */
912/*
913 * For the ASC3550 Bit 13 is Termination Polarity control bit.
914 * For later ICs Bit 13 controls whether the CIS (Card Information
915 * Service Section) is loaded from EEPROM.
916 */
917#define ADV_EEPROM_TERM_POL            0x2000	/* EEPROM Bit 13 */
918#define ADV_EEPROM_CIS_LD              0x2000	/* EEPROM Bit 13 */
919/*
920 * ASC38C1600 Bit 11
921 *
922 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
923 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
924 * Function 0 will specify INT B.
925 *
926 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
927 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
928 * Function 1 will specify INT A.
929 */
930#define ADV_EEPROM_INTAB               0x0800	/* EEPROM Bit 11 */
931
932typedef struct adveep_3550_config {
933	/* Word Offset, Description */
934
935	ushort cfg_lsw;		/* 00 power up initialization */
936	/*  bit 13 set - Term Polarity Control */
937	/*  bit 14 set - BIOS Enable */
938	/*  bit 15 set - Big Endian Mode */
939	ushort cfg_msw;		/* 01 unused      */
940	ushort disc_enable;	/* 02 disconnect enable */
941	ushort wdtr_able;	/* 03 Wide DTR able */
942	ushort sdtr_able;	/* 04 Synchronous DTR able */
943	ushort start_motor;	/* 05 send start up motor */
944	ushort tagqng_able;	/* 06 tag queuing able */
945	ushort bios_scan;	/* 07 BIOS device control */
946	ushort scam_tolerant;	/* 08 no scam */
947
948	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
949	uchar bios_boot_delay;	/*    power up wait */
950
951	uchar scsi_reset_delay;	/* 10 reset delay */
952	uchar bios_id_lun;	/*    first boot device scsi id & lun */
953	/*    high nibble is lun */
954	/*    low nibble is scsi id */
955
956	uchar termination;	/* 11 0 - automatic */
957	/*    1 - low off / high off */
958	/*    2 - low off / high on */
959	/*    3 - low on  / high on */
960	/*    There is no low on  / high off */
961
962	uchar reserved1;	/*    reserved byte (not used) */
963
964	ushort bios_ctrl;	/* 12 BIOS control bits */
965	/*  bit 0  BIOS don't act as initiator. */
966	/*  bit 1  BIOS > 1 GB support */
967	/*  bit 2  BIOS > 2 Disk Support */
968	/*  bit 3  BIOS don't support removables */
969	/*  bit 4  BIOS support bootable CD */
970	/*  bit 5  BIOS scan enabled */
971	/*  bit 6  BIOS support multiple LUNs */
972	/*  bit 7  BIOS display of message */
973	/*  bit 8  SCAM disabled */
974	/*  bit 9  Reset SCSI bus during init. */
975	/*  bit 10 */
976	/*  bit 11 No verbose initialization. */
977	/*  bit 12 SCSI parity enabled */
978	/*  bit 13 */
979	/*  bit 14 */
980	/*  bit 15 */
981	ushort ultra_able;	/* 13 ULTRA speed able */
982	ushort reserved2;	/* 14 reserved */
983	uchar max_host_qng;	/* 15 maximum host queuing */
984	uchar max_dvc_qng;	/*    maximum per device queuing */
985	ushort dvc_cntl;	/* 16 control bit for driver */
986	ushort bug_fix;		/* 17 control bit for bug fix */
987	ushort serial_number_word1;	/* 18 Board serial number word 1 */
988	ushort serial_number_word2;	/* 19 Board serial number word 2 */
989	ushort serial_number_word3;	/* 20 Board serial number word 3 */
990	ushort check_sum;	/* 21 EEP check sum */
991	uchar oem_name[16];	/* 22 OEM name */
992	ushort dvc_err_code;	/* 30 last device driver error code */
993	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
994	ushort adv_err_addr;	/* 32 last uc error address */
995	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
996	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
997	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
998	ushort num_of_err;	/* 36 number of error */
999} ADVEEP_3550_CONFIG;
1000
1001typedef struct adveep_38C0800_config {
1002	/* Word Offset, Description */
1003
1004	ushort cfg_lsw;		/* 00 power up initialization */
1005	/*  bit 13 set - Load CIS */
1006	/*  bit 14 set - BIOS Enable */
1007	/*  bit 15 set - Big Endian Mode */
1008	ushort cfg_msw;		/* 01 unused      */
1009	ushort disc_enable;	/* 02 disconnect enable */
1010	ushort wdtr_able;	/* 03 Wide DTR able */
1011	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1012	ushort start_motor;	/* 05 send start up motor */
1013	ushort tagqng_able;	/* 06 tag queuing able */
1014	ushort bios_scan;	/* 07 BIOS device control */
1015	ushort scam_tolerant;	/* 08 no scam */
1016
1017	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1018	uchar bios_boot_delay;	/*    power up wait */
1019
1020	uchar scsi_reset_delay;	/* 10 reset delay */
1021	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1022	/*    high nibble is lun */
1023	/*    low nibble is scsi id */
1024
1025	uchar termination_se;	/* 11 0 - automatic */
1026	/*    1 - low off / high off */
1027	/*    2 - low off / high on */
1028	/*    3 - low on  / high on */
1029	/*    There is no low on  / high off */
1030
1031	uchar termination_lvd;	/* 11 0 - automatic */
1032	/*    1 - low off / high off */
1033	/*    2 - low off / high on */
1034	/*    3 - low on  / high on */
1035	/*    There is no low on  / high off */
1036
1037	ushort bios_ctrl;	/* 12 BIOS control bits */
1038	/*  bit 0  BIOS don't act as initiator. */
1039	/*  bit 1  BIOS > 1 GB support */
1040	/*  bit 2  BIOS > 2 Disk Support */
1041	/*  bit 3  BIOS don't support removables */
1042	/*  bit 4  BIOS support bootable CD */
1043	/*  bit 5  BIOS scan enabled */
1044	/*  bit 6  BIOS support multiple LUNs */
1045	/*  bit 7  BIOS display of message */
1046	/*  bit 8  SCAM disabled */
1047	/*  bit 9  Reset SCSI bus during init. */
1048	/*  bit 10 */
1049	/*  bit 11 No verbose initialization. */
1050	/*  bit 12 SCSI parity enabled */
1051	/*  bit 13 */
1052	/*  bit 14 */
1053	/*  bit 15 */
1054	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1055	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1056	uchar max_host_qng;	/* 15 maximum host queueing */
1057	uchar max_dvc_qng;	/*    maximum per device queuing */
1058	ushort dvc_cntl;	/* 16 control bit for driver */
1059	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1060	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1061	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1062	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1063	ushort check_sum;	/* 21 EEP check sum */
1064	uchar oem_name[16];	/* 22 OEM name */
1065	ushort dvc_err_code;	/* 30 last device driver error code */
1066	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1067	ushort adv_err_addr;	/* 32 last uc error address */
1068	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1069	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1070	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1071	ushort reserved36;	/* 36 reserved */
1072	ushort reserved37;	/* 37 reserved */
1073	ushort reserved38;	/* 38 reserved */
1074	ushort reserved39;	/* 39 reserved */
1075	ushort reserved40;	/* 40 reserved */
1076	ushort reserved41;	/* 41 reserved */
1077	ushort reserved42;	/* 42 reserved */
1078	ushort reserved43;	/* 43 reserved */
1079	ushort reserved44;	/* 44 reserved */
1080	ushort reserved45;	/* 45 reserved */
1081	ushort reserved46;	/* 46 reserved */
1082	ushort reserved47;	/* 47 reserved */
1083	ushort reserved48;	/* 48 reserved */
1084	ushort reserved49;	/* 49 reserved */
1085	ushort reserved50;	/* 50 reserved */
1086	ushort reserved51;	/* 51 reserved */
1087	ushort reserved52;	/* 52 reserved */
1088	ushort reserved53;	/* 53 reserved */
1089	ushort reserved54;	/* 54 reserved */
1090	ushort reserved55;	/* 55 reserved */
1091	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1092	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1093	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1094	ushort subsysid;	/* 59 SubSystem ID */
1095	ushort reserved60;	/* 60 reserved */
1096	ushort reserved61;	/* 61 reserved */
1097	ushort reserved62;	/* 62 reserved */
1098	ushort reserved63;	/* 63 reserved */
1099} ADVEEP_38C0800_CONFIG;
1100
1101typedef struct adveep_38C1600_config {
1102	/* Word Offset, Description */
1103
1104	ushort cfg_lsw;		/* 00 power up initialization */
1105	/*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1106	/*       clear - Func. 0 INTA, Func. 1 INTB */
1107	/*  bit 13 set - Load CIS */
1108	/*  bit 14 set - BIOS Enable */
1109	/*  bit 15 set - Big Endian Mode */
1110	ushort cfg_msw;		/* 01 unused */
1111	ushort disc_enable;	/* 02 disconnect enable */
1112	ushort wdtr_able;	/* 03 Wide DTR able */
1113	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1114	ushort start_motor;	/* 05 send start up motor */
1115	ushort tagqng_able;	/* 06 tag queuing able */
1116	ushort bios_scan;	/* 07 BIOS device control */
1117	ushort scam_tolerant;	/* 08 no scam */
1118
1119	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1120	uchar bios_boot_delay;	/*    power up wait */
1121
1122	uchar scsi_reset_delay;	/* 10 reset delay */
1123	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1124	/*    high nibble is lun */
1125	/*    low nibble is scsi id */
1126
1127	uchar termination_se;	/* 11 0 - automatic */
1128	/*    1 - low off / high off */
1129	/*    2 - low off / high on */
1130	/*    3 - low on  / high on */
1131	/*    There is no low on  / high off */
1132
1133	uchar termination_lvd;	/* 11 0 - automatic */
1134	/*    1 - low off / high off */
1135	/*    2 - low off / high on */
1136	/*    3 - low on  / high on */
1137	/*    There is no low on  / high off */
1138
1139	ushort bios_ctrl;	/* 12 BIOS control bits */
1140	/*  bit 0  BIOS don't act as initiator. */
1141	/*  bit 1  BIOS > 1 GB support */
1142	/*  bit 2  BIOS > 2 Disk Support */
1143	/*  bit 3  BIOS don't support removables */
1144	/*  bit 4  BIOS support bootable CD */
1145	/*  bit 5  BIOS scan enabled */
1146	/*  bit 6  BIOS support multiple LUNs */
1147	/*  bit 7  BIOS display of message */
1148	/*  bit 8  SCAM disabled */
1149	/*  bit 9  Reset SCSI bus during init. */
1150	/*  bit 10 Basic Integrity Checking disabled */
1151	/*  bit 11 No verbose initialization. */
1152	/*  bit 12 SCSI parity enabled */
1153	/*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1154	/*  bit 14 */
1155	/*  bit 15 */
1156	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1157	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1158	uchar max_host_qng;	/* 15 maximum host queueing */
1159	uchar max_dvc_qng;	/*    maximum per device queuing */
1160	ushort dvc_cntl;	/* 16 control bit for driver */
1161	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1162	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1163	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1164	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1165	ushort check_sum;	/* 21 EEP check sum */
1166	uchar oem_name[16];	/* 22 OEM name */
1167	ushort dvc_err_code;	/* 30 last device driver error code */
1168	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1169	ushort adv_err_addr;	/* 32 last uc error address */
1170	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1171	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1172	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1173	ushort reserved36;	/* 36 reserved */
1174	ushort reserved37;	/* 37 reserved */
1175	ushort reserved38;	/* 38 reserved */
1176	ushort reserved39;	/* 39 reserved */
1177	ushort reserved40;	/* 40 reserved */
1178	ushort reserved41;	/* 41 reserved */
1179	ushort reserved42;	/* 42 reserved */
1180	ushort reserved43;	/* 43 reserved */
1181	ushort reserved44;	/* 44 reserved */
1182	ushort reserved45;	/* 45 reserved */
1183	ushort reserved46;	/* 46 reserved */
1184	ushort reserved47;	/* 47 reserved */
1185	ushort reserved48;	/* 48 reserved */
1186	ushort reserved49;	/* 49 reserved */
1187	ushort reserved50;	/* 50 reserved */
1188	ushort reserved51;	/* 51 reserved */
1189	ushort reserved52;	/* 52 reserved */
1190	ushort reserved53;	/* 53 reserved */
1191	ushort reserved54;	/* 54 reserved */
1192	ushort reserved55;	/* 55 reserved */
1193	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1194	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1195	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1196	ushort subsysid;	/* 59 SubSystem ID */
1197	ushort reserved60;	/* 60 reserved */
1198	ushort reserved61;	/* 61 reserved */
1199	ushort reserved62;	/* 62 reserved */
1200	ushort reserved63;	/* 63 reserved */
1201} ADVEEP_38C1600_CONFIG;
1202
1203/*
1204 * EEPROM Commands
1205 */
1206#define ASC_EEP_CMD_DONE             0x0200
1207
1208/* bios_ctrl */
1209#define BIOS_CTRL_BIOS               0x0001
1210#define BIOS_CTRL_EXTENDED_XLAT      0x0002
1211#define BIOS_CTRL_GT_2_DISK          0x0004
1212#define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1213#define BIOS_CTRL_BOOTABLE_CD        0x0010
1214#define BIOS_CTRL_MULTIPLE_LUN       0x0040
1215#define BIOS_CTRL_DISPLAY_MSG        0x0080
1216#define BIOS_CTRL_NO_SCAM            0x0100
1217#define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1218#define BIOS_CTRL_INIT_VERBOSE       0x0800
1219#define BIOS_CTRL_SCSI_PARITY        0x1000
1220#define BIOS_CTRL_AIPP_DIS           0x2000
1221
1222#define ADV_3550_MEMSIZE   0x2000	/* 8 KB Internal Memory */
1223
1224#define ADV_38C0800_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1225
1226/*
1227 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1228 * a special 16K Adv Library and Microcode version. After the issue is
1229 * resolved, should restore 32K support.
1230 *
1231 * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1232 */
1233#define ADV_38C1600_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1234
1235/*
1236 * Byte I/O register address from base of 'iop_base'.
1237 */
1238#define IOPB_INTR_STATUS_REG    0x00
1239#define IOPB_CHIP_ID_1          0x01
1240#define IOPB_INTR_ENABLES       0x02
1241#define IOPB_CHIP_TYPE_REV      0x03
1242#define IOPB_RES_ADDR_4         0x04
1243#define IOPB_RES_ADDR_5         0x05
1244#define IOPB_RAM_DATA           0x06
1245#define IOPB_RES_ADDR_7         0x07
1246#define IOPB_FLAG_REG           0x08
1247#define IOPB_RES_ADDR_9         0x09
1248#define IOPB_RISC_CSR           0x0A
1249#define IOPB_RES_ADDR_B         0x0B
1250#define IOPB_RES_ADDR_C         0x0C
1251#define IOPB_RES_ADDR_D         0x0D
1252#define IOPB_SOFT_OVER_WR       0x0E
1253#define IOPB_RES_ADDR_F         0x0F
1254#define IOPB_MEM_CFG            0x10
1255#define IOPB_RES_ADDR_11        0x11
1256#define IOPB_GPIO_DATA          0x12
1257#define IOPB_RES_ADDR_13        0x13
1258#define IOPB_FLASH_PAGE         0x14
1259#define IOPB_RES_ADDR_15        0x15
1260#define IOPB_GPIO_CNTL          0x16
1261#define IOPB_RES_ADDR_17        0x17
1262#define IOPB_FLASH_DATA         0x18
1263#define IOPB_RES_ADDR_19        0x19
1264#define IOPB_RES_ADDR_1A        0x1A
1265#define IOPB_RES_ADDR_1B        0x1B
1266#define IOPB_RES_ADDR_1C        0x1C
1267#define IOPB_RES_ADDR_1D        0x1D
1268#define IOPB_RES_ADDR_1E        0x1E
1269#define IOPB_RES_ADDR_1F        0x1F
1270#define IOPB_DMA_CFG0           0x20
1271#define IOPB_DMA_CFG1           0x21
1272#define IOPB_TICKLE             0x22
1273#define IOPB_DMA_REG_WR         0x23
1274#define IOPB_SDMA_STATUS        0x24
1275#define IOPB_SCSI_BYTE_CNT      0x25
1276#define IOPB_HOST_BYTE_CNT      0x26
1277#define IOPB_BYTE_LEFT_TO_XFER  0x27
1278#define IOPB_BYTE_TO_XFER_0     0x28
1279#define IOPB_BYTE_TO_XFER_1     0x29
1280#define IOPB_BYTE_TO_XFER_2     0x2A
1281#define IOPB_BYTE_TO_XFER_3     0x2B
1282#define IOPB_ACC_GRP            0x2C
1283#define IOPB_RES_ADDR_2D        0x2D
1284#define IOPB_DEV_ID             0x2E
1285#define IOPB_RES_ADDR_2F        0x2F
1286#define IOPB_SCSI_DATA          0x30
1287#define IOPB_RES_ADDR_31        0x31
1288#define IOPB_RES_ADDR_32        0x32
1289#define IOPB_SCSI_DATA_HSHK     0x33
1290#define IOPB_SCSI_CTRL          0x34
1291#define IOPB_RES_ADDR_35        0x35
1292#define IOPB_RES_ADDR_36        0x36
1293#define IOPB_RES_ADDR_37        0x37
1294#define IOPB_RAM_BIST           0x38
1295#define IOPB_PLL_TEST           0x39
1296#define IOPB_PCI_INT_CFG        0x3A
1297#define IOPB_RES_ADDR_3B        0x3B
1298#define IOPB_RFIFO_CNT          0x3C
1299#define IOPB_RES_ADDR_3D        0x3D
1300#define IOPB_RES_ADDR_3E        0x3E
1301#define IOPB_RES_ADDR_3F        0x3F
1302
1303/*
1304 * Word I/O register address from base of 'iop_base'.
1305 */
1306#define IOPW_CHIP_ID_0          0x00	/* CID0  */
1307#define IOPW_CTRL_REG           0x02	/* CC    */
1308#define IOPW_RAM_ADDR           0x04	/* LA    */
1309#define IOPW_RAM_DATA           0x06	/* LD    */
1310#define IOPW_RES_ADDR_08        0x08
1311#define IOPW_RISC_CSR           0x0A	/* CSR   */
1312#define IOPW_SCSI_CFG0          0x0C	/* CFG0  */
1313#define IOPW_SCSI_CFG1          0x0E	/* CFG1  */
1314#define IOPW_RES_ADDR_10        0x10
1315#define IOPW_SEL_MASK           0x12	/* SM    */
1316#define IOPW_RES_ADDR_14        0x14
1317#define IOPW_FLASH_ADDR         0x16	/* FA    */
1318#define IOPW_RES_ADDR_18        0x18
1319#define IOPW_EE_CMD             0x1A	/* EC    */
1320#define IOPW_EE_DATA            0x1C	/* ED    */
1321#define IOPW_SFIFO_CNT          0x1E	/* SFC   */
1322#define IOPW_RES_ADDR_20        0x20
1323#define IOPW_Q_BASE             0x22	/* QB    */
1324#define IOPW_QP                 0x24	/* QP    */
1325#define IOPW_IX                 0x26	/* IX    */
1326#define IOPW_SP                 0x28	/* SP    */
1327#define IOPW_PC                 0x2A	/* PC    */
1328#define IOPW_RES_ADDR_2C        0x2C
1329#define IOPW_RES_ADDR_2E        0x2E
1330#define IOPW_SCSI_DATA          0x30	/* SD    */
1331#define IOPW_SCSI_DATA_HSHK     0x32	/* SDH   */
1332#define IOPW_SCSI_CTRL          0x34	/* SC    */
1333#define IOPW_HSHK_CFG           0x36	/* HCFG  */
1334#define IOPW_SXFR_STATUS        0x36	/* SXS   */
1335#define IOPW_SXFR_CNTL          0x38	/* SXL   */
1336#define IOPW_SXFR_CNTH          0x3A	/* SXH   */
1337#define IOPW_RES_ADDR_3C        0x3C
1338#define IOPW_RFIFO_DATA         0x3E	/* RFD   */
1339
1340/*
1341 * Doubleword I/O register address from base of 'iop_base'.
1342 */
1343#define IOPDW_RES_ADDR_0         0x00
1344#define IOPDW_RAM_DATA           0x04
1345#define IOPDW_RES_ADDR_8         0x08
1346#define IOPDW_RES_ADDR_C         0x0C
1347#define IOPDW_RES_ADDR_10        0x10
1348#define IOPDW_COMMA              0x14
1349#define IOPDW_COMMB              0x18
1350#define IOPDW_RES_ADDR_1C        0x1C
1351#define IOPDW_SDMA_ADDR0         0x20
1352#define IOPDW_SDMA_ADDR1         0x24
1353#define IOPDW_SDMA_COUNT         0x28
1354#define IOPDW_SDMA_ERROR         0x2C
1355#define IOPDW_RDMA_ADDR0         0x30
1356#define IOPDW_RDMA_ADDR1         0x34
1357#define IOPDW_RDMA_COUNT         0x38
1358#define IOPDW_RDMA_ERROR         0x3C
1359
1360#define ADV_CHIP_ID_BYTE         0x25
1361#define ADV_CHIP_ID_WORD         0x04C1
1362
1363#define ADV_INTR_ENABLE_HOST_INTR                   0x01
1364#define ADV_INTR_ENABLE_SEL_INTR                    0x02
1365#define ADV_INTR_ENABLE_DPR_INTR                    0x04
1366#define ADV_INTR_ENABLE_RTA_INTR                    0x08
1367#define ADV_INTR_ENABLE_RMA_INTR                    0x10
1368#define ADV_INTR_ENABLE_RST_INTR                    0x20
1369#define ADV_INTR_ENABLE_DPE_INTR                    0x40
1370#define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1371
1372#define ADV_INTR_STATUS_INTRA            0x01
1373#define ADV_INTR_STATUS_INTRB            0x02
1374#define ADV_INTR_STATUS_INTRC            0x04
1375
1376#define ADV_RISC_CSR_STOP           (0x0000)
1377#define ADV_RISC_TEST_COND          (0x2000)
1378#define ADV_RISC_CSR_RUN            (0x4000)
1379#define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1380
1381#define ADV_CTRL_REG_HOST_INTR      0x0100
1382#define ADV_CTRL_REG_SEL_INTR       0x0200
1383#define ADV_CTRL_REG_DPR_INTR       0x0400
1384#define ADV_CTRL_REG_RTA_INTR       0x0800
1385#define ADV_CTRL_REG_RMA_INTR       0x1000
1386#define ADV_CTRL_REG_RES_BIT14      0x2000
1387#define ADV_CTRL_REG_DPE_INTR       0x4000
1388#define ADV_CTRL_REG_POWER_DONE     0x8000
1389#define ADV_CTRL_REG_ANY_INTR       0xFF00
1390
1391#define ADV_CTRL_REG_CMD_RESET             0x00C6
1392#define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1393#define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1394#define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1395#define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1396
1397#define ADV_TICKLE_NOP                      0x00
1398#define ADV_TICKLE_A                        0x01
1399#define ADV_TICKLE_B                        0x02
1400#define ADV_TICKLE_C                        0x03
1401
1402#define AdvIsIntPending(port) \
1403    (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1404
1405/*
1406 * SCSI_CFG0 Register bit definitions
1407 */
1408#define TIMER_MODEAB    0xC000	/* Watchdog, Second, and Select. Timer Ctrl. */
1409#define PARITY_EN       0x2000	/* Enable SCSI Parity Error detection */
1410#define EVEN_PARITY     0x1000	/* Select Even Parity */
1411#define WD_LONG         0x0800	/* Watchdog Interval, 1: 57 min, 0: 13 sec */
1412#define QUEUE_128       0x0400	/* Queue Size, 1: 128 byte, 0: 64 byte */
1413#define PRIM_MODE       0x0100	/* Primitive SCSI mode */
1414#define SCAM_EN         0x0080	/* Enable SCAM selection */
1415#define SEL_TMO_LONG    0x0040	/* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1416#define CFRM_ID         0x0020	/* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1417#define OUR_ID_EN       0x0010	/* Enable OUR_ID bits */
1418#define OUR_ID          0x000F	/* SCSI ID */
1419
1420/*
1421 * SCSI_CFG1 Register bit definitions
1422 */
1423#define BIG_ENDIAN      0x8000	/* Enable Big Endian Mode MIO:15, EEP:15 */
1424#define TERM_POL        0x2000	/* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1425#define SLEW_RATE       0x1000	/* SCSI output buffer slew rate */
1426#define FILTER_SEL      0x0C00	/* Filter Period Selection */
1427#define  FLTR_DISABLE    0x0000	/* Input Filtering Disabled */
1428#define  FLTR_11_TO_20NS 0x0800	/* Input Filtering 11ns to 20ns */
1429#define  FLTR_21_TO_39NS 0x0C00	/* Input Filtering 21ns to 39ns */
1430#define ACTIVE_DBL      0x0200	/* Disable Active Negation */
1431#define DIFF_MODE       0x0100	/* SCSI differential Mode (Read-Only) */
1432#define DIFF_SENSE      0x0080	/* 1: No SE cables, 0: SE cable (Read-Only) */
1433#define TERM_CTL_SEL    0x0040	/* Enable TERM_CTL_H and TERM_CTL_L */
1434#define TERM_CTL        0x0030	/* External SCSI Termination Bits */
1435#define  TERM_CTL_H      0x0020	/* Enable External SCSI Upper Termination */
1436#define  TERM_CTL_L      0x0010	/* Enable External SCSI Lower Termination */
1437#define CABLE_DETECT    0x000F	/* External SCSI Cable Connection Status */
1438
1439/*
1440 * Addendum for ASC-38C0800 Chip
1441 *
1442 * The ASC-38C1600 Chip uses the same definitions except that the
1443 * bus mode override bits [12:10] have been moved to byte register
1444 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1445 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1446 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1447 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1448 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1449 */
1450#define DIS_TERM_DRV    0x4000	/* 1: Read c_det[3:0], 0: cannot read */
1451#define HVD_LVD_SE      0x1C00	/* Device Detect Bits */
1452#define  HVD             0x1000	/* HVD Device Detect */
1453#define  LVD             0x0800	/* LVD Device Detect */
1454#define  SE              0x0400	/* SE Device Detect */
1455#define TERM_LVD        0x00C0	/* LVD Termination Bits */
1456#define  TERM_LVD_HI     0x0080	/* Enable LVD Upper Termination */
1457#define  TERM_LVD_LO     0x0040	/* Enable LVD Lower Termination */
1458#define TERM_SE         0x0030	/* SE Termination Bits */
1459#define  TERM_SE_HI      0x0020	/* Enable SE Upper Termination */
1460#define  TERM_SE_LO      0x0010	/* Enable SE Lower Termination */
1461#define C_DET_LVD       0x000C	/* LVD Cable Detect Bits */
1462#define  C_DET3          0x0008	/* Cable Detect for LVD External Wide */
1463#define  C_DET2          0x0004	/* Cable Detect for LVD Internal Wide */
1464#define C_DET_SE        0x0003	/* SE Cable Detect Bits */
1465#define  C_DET1          0x0002	/* Cable Detect for SE Internal Wide */
1466#define  C_DET0          0x0001	/* Cable Detect for SE Internal Narrow */
1467
1468#define CABLE_ILLEGAL_A 0x7
1469    /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1470
1471#define CABLE_ILLEGAL_B 0xB
1472    /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1473
1474/*
1475 * MEM_CFG Register bit definitions
1476 */
1477#define BIOS_EN         0x40	/* BIOS Enable MIO:14,EEP:14 */
1478#define FAST_EE_CLK     0x20	/* Diagnostic Bit */
1479#define RAM_SZ          0x1C	/* Specify size of RAM to RISC */
1480#define  RAM_SZ_2KB      0x00	/* 2 KB */
1481#define  RAM_SZ_4KB      0x04	/* 4 KB */
1482#define  RAM_SZ_8KB      0x08	/* 8 KB */
1483#define  RAM_SZ_16KB     0x0C	/* 16 KB */
1484#define  RAM_SZ_32KB     0x10	/* 32 KB */
1485#define  RAM_SZ_64KB     0x14	/* 64 KB */
1486
1487/*
1488 * DMA_CFG0 Register bit definitions
1489 *
1490 * This register is only accessible to the host.
1491 */
1492#define BC_THRESH_ENB   0x80	/* PCI DMA Start Conditions */
1493#define FIFO_THRESH     0x70	/* PCI DMA FIFO Threshold */
1494#define  FIFO_THRESH_16B  0x00	/* 16 bytes */
1495#define  FIFO_THRESH_32B  0x20	/* 32 bytes */
1496#define  FIFO_THRESH_48B  0x30	/* 48 bytes */
1497#define  FIFO_THRESH_64B  0x40	/* 64 bytes */
1498#define  FIFO_THRESH_80B  0x50	/* 80 bytes (default) */
1499#define  FIFO_THRESH_96B  0x60	/* 96 bytes */
1500#define  FIFO_THRESH_112B 0x70	/* 112 bytes */
1501#define START_CTL       0x0C	/* DMA start conditions */
1502#define  START_CTL_TH    0x00	/* Wait threshold level (default) */
1503#define  START_CTL_ID    0x04	/* Wait SDMA/SBUS idle */
1504#define  START_CTL_THID  0x08	/* Wait threshold and SDMA/SBUS idle */
1505#define  START_CTL_EMFU  0x0C	/* Wait SDMA FIFO empty/full */
1506#define READ_CMD        0x03	/* Memory Read Method */
1507#define  READ_CMD_MR     0x00	/* Memory Read */
1508#define  READ_CMD_MRL    0x02	/* Memory Read Long */
1509#define  READ_CMD_MRM    0x03	/* Memory Read Multiple (default) */
1510
1511/*
1512 * ASC-38C0800 RAM BIST Register bit definitions
1513 */
1514#define RAM_TEST_MODE         0x80
1515#define PRE_TEST_MODE         0x40
1516#define NORMAL_MODE           0x00
1517#define RAM_TEST_DONE         0x10
1518#define RAM_TEST_STATUS       0x0F
1519#define  RAM_TEST_HOST_ERROR   0x08
1520#define  RAM_TEST_INTRAM_ERROR 0x04
1521#define  RAM_TEST_RISC_ERROR   0x02
1522#define  RAM_TEST_SCSI_ERROR   0x01
1523#define  RAM_TEST_SUCCESS      0x00
1524#define PRE_TEST_VALUE        0x05
1525#define NORMAL_VALUE          0x00
1526
1527/*
1528 * ASC38C1600 Definitions
1529 *
1530 * IOPB_PCI_INT_CFG Bit Field Definitions
1531 */
1532
1533#define INTAB_LD        0x80	/* Value loaded from EEPROM Bit 11. */
1534
1535/*
1536 * Bit 1 can be set to change the interrupt for the Function to operate in
1537 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1538 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1539 * mode, otherwise the operating mode is undefined.
1540 */
1541#define TOTEMPOLE       0x02
1542
1543/*
1544 * Bit 0 can be used to change the Int Pin for the Function. The value is
1545 * 0 by default for both Functions with Function 0 using INT A and Function
1546 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1547 * INT A is used.
1548 *
1549 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1550 * value specified in the PCI Configuration Space.
1551 */
1552#define INTAB           0x01
1553
1554/*
1555 * Adv Library Status Definitions
1556 */
1557#define ADV_TRUE        1
1558#define ADV_FALSE       0
1559#define ADV_SUCCESS     1
1560#define ADV_BUSY        0
1561#define ADV_ERROR       (-1)
1562
1563/*
1564 * ADV_DVC_VAR 'warn_code' values
1565 */
1566#define ASC_WARN_BUSRESET_ERROR         0x0001	/* SCSI Bus Reset error */
1567#define ASC_WARN_EEPROM_CHKSUM          0x0002	/* EEP check sum error */
1568#define ASC_WARN_EEPROM_TERMINATION     0x0004	/* EEP termination bad field */
1569#define ASC_WARN_ERROR                  0xFFFF	/* ADV_ERROR return */
1570
1571#define ADV_MAX_TID                     15	/* max. target identifier */
1572#define ADV_MAX_LUN                     7	/* max. logical unit number */
1573
1574/*
1575 * Fixed locations of microcode operating variables.
1576 */
1577#define ASC_MC_CODE_BEGIN_ADDR          0x0028	/* microcode start address */
1578#define ASC_MC_CODE_END_ADDR            0x002A	/* microcode end address */
1579#define ASC_MC_CODE_CHK_SUM             0x002C	/* microcode code checksum */
1580#define ASC_MC_VERSION_DATE             0x0038	/* microcode version */
1581#define ASC_MC_VERSION_NUM              0x003A	/* microcode number */
1582#define ASC_MC_BIOSMEM                  0x0040	/* BIOS RISC Memory Start */
1583#define ASC_MC_BIOSLEN                  0x0050	/* BIOS RISC Memory Length */
1584#define ASC_MC_BIOS_SIGNATURE           0x0058	/* BIOS Signature 0x55AA */
1585#define ASC_MC_BIOS_VERSION             0x005A	/* BIOS Version (2 bytes) */
1586#define ASC_MC_SDTR_SPEED1              0x0090	/* SDTR Speed for TID 0-3 */
1587#define ASC_MC_SDTR_SPEED2              0x0092	/* SDTR Speed for TID 4-7 */
1588#define ASC_MC_SDTR_SPEED3              0x0094	/* SDTR Speed for TID 8-11 */
1589#define ASC_MC_SDTR_SPEED4              0x0096	/* SDTR Speed for TID 12-15 */
1590#define ASC_MC_CHIP_TYPE                0x009A
1591#define ASC_MC_INTRB_CODE               0x009B
1592#define ASC_MC_WDTR_ABLE                0x009C
1593#define ASC_MC_SDTR_ABLE                0x009E
1594#define ASC_MC_TAGQNG_ABLE              0x00A0
1595#define ASC_MC_DISC_ENABLE              0x00A2
1596#define ASC_MC_IDLE_CMD_STATUS          0x00A4
1597#define ASC_MC_IDLE_CMD                 0x00A6
1598#define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1599#define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1600#define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1601#define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1602#define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1603#define ASC_MC_SDTR_DONE                0x00B6
1604#define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1605#define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1606#define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1607#define ASC_MC_CONTROL_FLAG             0x0122	/* Microcode control flag. */
1608#define ASC_MC_WDTR_DONE                0x0124
1609#define ASC_MC_CAM_MODE_MASK            0x015E	/* CAM mode TID bitmask. */
1610#define ASC_MC_ICQ                      0x0160
1611#define ASC_MC_IRQ                      0x0164
1612#define ASC_MC_PPR_ABLE                 0x017A
1613
1614/*
1615 * BIOS LRAM variable absolute offsets.
1616 */
1617#define BIOS_CODESEG    0x54
1618#define BIOS_CODELEN    0x56
1619#define BIOS_SIGNATURE  0x58
1620#define BIOS_VERSION    0x5A
1621
1622/*
1623 * Microcode Control Flags
1624 *
1625 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1626 * and handled by the microcode.
1627 */
1628#define CONTROL_FLAG_IGNORE_PERR        0x0001	/* Ignore DMA Parity Errors */
1629#define CONTROL_FLAG_ENABLE_AIPP        0x0002	/* Enabled AIPP checking. */
1630
1631/*
1632 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1633 */
1634#define HSHK_CFG_WIDE_XFR       0x8000
1635#define HSHK_CFG_RATE           0x0F00
1636#define HSHK_CFG_OFFSET         0x001F
1637
1638#define ASC_DEF_MAX_HOST_QNG    0xFD	/* Max. number of host commands (253) */
1639#define ASC_DEF_MIN_HOST_QNG    0x10	/* Min. number of host commands (16) */
1640#define ASC_DEF_MAX_DVC_QNG     0x3F	/* Max. number commands per device (63) */
1641#define ASC_DEF_MIN_DVC_QNG     0x04	/* Min. number commands per device (4) */
1642
1643#define ASC_QC_DATA_CHECK  0x01	/* Require ASC_QC_DATA_OUT set or clear. */
1644#define ASC_QC_DATA_OUT    0x02	/* Data out DMA transfer. */
1645#define ASC_QC_START_MOTOR 0x04	/* Send auto-start motor before request. */
1646#define ASC_QC_NO_OVERRUN  0x08	/* Don't report overrun. */
1647#define ASC_QC_FREEZE_TIDQ 0x10	/* Freeze TID queue after request. XXX TBD */
1648
1649#define ASC_QSC_NO_DISC     0x01	/* Don't allow disconnect for request. */
1650#define ASC_QSC_NO_TAGMSG   0x02	/* Don't allow tag queuing for request. */
1651#define ASC_QSC_NO_SYNC     0x04	/* Don't use Synch. transfer on request. */
1652#define ASC_QSC_NO_WIDE     0x08	/* Don't use Wide transfer on request. */
1653#define ASC_QSC_REDO_DTR    0x10	/* Renegotiate WDTR/SDTR before request. */
1654/*
1655 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1656 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1657 */
1658#define ASC_QSC_HEAD_TAG    0x40	/* Use Head Tag Message (0x21). */
1659#define ASC_QSC_ORDERED_TAG 0x80	/* Use Ordered Tag Message (0x22). */
1660
1661/*
1662 * All fields here are accessed by the board microcode and need to be
1663 * little-endian.
1664 */
1665typedef struct adv_carr_t {
1666	__le32 carr_va;	/* Carrier Virtual Address */
1667	__le32 carr_pa;	/* Carrier Physical Address */
1668	__le32 areq_vpa;	/* ADV_SCSI_REQ_Q Virtual or Physical Address */
1669	/*
1670	 * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1671	 *
1672	 * next_vpa [3:1]             Reserved Bits
1673	 * next_vpa [0]               Done Flag set in Response Queue.
1674	 */
1675	__le32 next_vpa;
1676} ADV_CARR_T;
1677
1678/*
1679 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1680 */
1681#define ADV_NEXT_VPA_MASK       0xFFFFFFF0
1682
1683#define ADV_RQ_DONE             0x00000001
1684#define ADV_RQ_GOOD             0x00000002
1685#define ADV_CQ_STOPPER          0x00000000
1686
1687#define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1688
1689/*
1690 * Each carrier is 64 bytes, and we need three additional
1691 * carrier for icq, irq, and the termination carrier.
1692 */
1693#define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1694
1695#define ADV_CARRIER_BUFSIZE \
1696	(ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1697
1698#define ADV_CHIP_ASC3550          0x01	/* Ultra-Wide IC */
1699#define ADV_CHIP_ASC38C0800       0x02	/* Ultra2-Wide/LVD IC */
1700#define ADV_CHIP_ASC38C1600       0x03	/* Ultra3-Wide/LVD2 IC */
1701
1702/*
1703 * Adapter temporary configuration structure
1704 *
1705 * This structure can be discarded after initialization. Don't add
1706 * fields here needed after initialization.
1707 *
1708 * Field naming convention:
1709 *
1710 *  *_enable indicates the field enables or disables a feature. The
1711 *  value of the field is never reset.
1712 */
1713typedef struct adv_dvc_cfg {
1714	ushort disc_enable;	/* enable disconnection */
1715	uchar chip_version;	/* chip version */
1716	uchar termination;	/* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1717	ushort control_flag;	/* Microcode Control Flag */
1718	ushort mcode_date;	/* Microcode date */
1719	ushort mcode_version;	/* Microcode version */
1720	ushort serial1;		/* EEPROM serial number word 1 */
1721	ushort serial2;		/* EEPROM serial number word 2 */
1722	ushort serial3;		/* EEPROM serial number word 3 */
1723} ADV_DVC_CFG;
1724
1725struct adv_dvc_var;
1726struct adv_scsi_req_q;
1727
1728typedef struct adv_sg_block {
1729	uchar reserved1;
1730	uchar reserved2;
1731	uchar reserved3;
1732	uchar sg_cnt;		/* Valid entries in block. */
1733	__le32 sg_ptr;	/* Pointer to next sg block. */
1734	struct {
1735		__le32 sg_addr;	/* SG element address. */
1736		__le32 sg_count;	/* SG element count. */
1737	} sg_list[NO_OF_SG_PER_BLOCK];
1738} ADV_SG_BLOCK;
1739
1740/*
1741 * ADV_SCSI_REQ_Q - microcode request structure
1742 *
1743 * All fields in this structure up to byte 60 are used by the microcode.
1744 * The microcode makes assumptions about the size and ordering of fields
1745 * in this structure. Do not change the structure definition here without
1746 * coordinating the change with the microcode.
1747 *
1748 * All fields accessed by microcode must be maintained in little_endian
1749 * order.
1750 */
1751typedef struct adv_scsi_req_q {
1752	uchar cntl;		/* Ucode flags and state (ASC_MC_QC_*). */
1753	uchar target_cmd;
1754	uchar target_id;	/* Device target identifier. */
1755	uchar target_lun;	/* Device target logical unit number. */
1756	__le32 data_addr;	/* Data buffer physical address. */
1757	__le32 data_cnt;	/* Data count. Ucode sets to residual. */
1758	__le32 sense_addr;
1759	__le32 carr_pa;
1760	uchar mflag;
1761	uchar sense_len;
1762	uchar cdb_len;		/* SCSI CDB length. Must <= 16 bytes. */
1763	uchar scsi_cntl;
1764	uchar done_status;	/* Completion status. */
1765	uchar scsi_status;	/* SCSI status byte. */
1766	uchar host_status;	/* Ucode host status. */
1767	uchar sg_working_ix;
1768	uchar cdb[12];		/* SCSI CDB bytes 0-11. */
1769	__le32 sg_real_addr;	/* SG list physical address. */
1770	__le32 scsiq_rptr;
1771	uchar cdb16[4];		/* SCSI CDB bytes 12-15. */
1772	__le32 scsiq_ptr;
1773	__le32 carr_va;
1774	/*
1775	 * End of microcode structure - 60 bytes. The rest of the structure
1776	 * is used by the Adv Library and ignored by the microcode.
1777	 */
1778	u32 srb_tag;
1779	ADV_SG_BLOCK *sg_list_ptr;	/* SG list virtual address. */
1780} ADV_SCSI_REQ_Q;
1781
1782/*
1783 * The following two structures are used to process Wide Board requests.
1784 *
1785 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1786 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1787 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1788 * to the Mid-Level SCSI request structure.
1789 *
1790 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1791 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1792 * up to 255 scatter-gather elements may be used per request or
1793 * ADV_SCSI_REQ_Q.
1794 *
1795 * Both structures must be 32 byte aligned.
1796 */
1797typedef struct adv_sgblk {
1798	ADV_SG_BLOCK sg_block;	/* Sgblock structure. */
1799	dma_addr_t sg_addr;	/* Physical address */
1800	struct adv_sgblk *next_sgblkp;	/* Next scatter-gather structure. */
1801} adv_sgblk_t;
1802
1803typedef struct adv_req {
1804	ADV_SCSI_REQ_Q scsi_req_q;	/* Adv Library request structure. */
1805	uchar align[24];	/* Request structure padding. */
1806	struct scsi_cmnd *cmndp;	/* Mid-Level SCSI command pointer. */
1807	dma_addr_t req_addr;
1808	adv_sgblk_t *sgblkp;	/* Adv Library scatter-gather pointer. */
1809} adv_req_t __aligned(32);
1810
1811/*
1812 * Adapter operation variable structure.
1813 *
1814 * One structure is required per host adapter.
1815 *
1816 * Field naming convention:
1817 *
1818 *  *_able indicates both whether a feature should be enabled or disabled
1819 *  and whether a device isi capable of the feature. At initialization
1820 *  this field may be set, but later if a device is found to be incapable
1821 *  of the feature, the field is cleared.
1822 */
1823typedef struct adv_dvc_var {
1824	AdvPortAddr iop_base;	/* I/O port address */
1825	ushort err_code;	/* fatal error code */
1826	ushort bios_ctrl;	/* BIOS control word, EEPROM word 12 */
1827	ushort wdtr_able;	/* try WDTR for a device */
1828	ushort sdtr_able;	/* try SDTR for a device */
1829	ushort ultra_able;	/* try SDTR Ultra speed for a device */
1830	ushort sdtr_speed1;	/* EEPROM SDTR Speed for TID 0-3   */
1831	ushort sdtr_speed2;	/* EEPROM SDTR Speed for TID 4-7   */
1832	ushort sdtr_speed3;	/* EEPROM SDTR Speed for TID 8-11  */
1833	ushort sdtr_speed4;	/* EEPROM SDTR Speed for TID 12-15 */
1834	ushort tagqng_able;	/* try tagged queuing with a device */
1835	ushort ppr_able;	/* PPR message capable per TID bitmask. */
1836	uchar max_dvc_qng;	/* maximum number of tagged commands per device */
1837	ushort start_motor;	/* start motor command allowed */
1838	uchar scsi_reset_wait;	/* delay in seconds after scsi bus reset */
1839	uchar chip_no;		/* should be assigned by caller */
1840	uchar max_host_qng;	/* maximum number of Q'ed command allowed */
1841	ushort no_scam;		/* scam_tolerant of EEPROM */
1842	struct asc_board *drv_ptr;	/* driver pointer to private structure */
1843	uchar chip_scsi_id;	/* chip SCSI target ID */
1844	uchar chip_type;
1845	uchar bist_err_code;
1846	ADV_CARR_T *carrier;
1847	ADV_CARR_T *carr_freelist;	/* Carrier free list. */
1848	dma_addr_t carrier_addr;
1849	ADV_CARR_T *icq_sp;	/* Initiator command queue stopper pointer. */
1850	ADV_CARR_T *irq_sp;	/* Initiator response queue stopper pointer. */
1851	ushort carr_pending_cnt;	/* Count of pending carriers. */
1852	/*
1853	 * Note: The following fields will not be used after initialization. The
1854	 * driver may discard the buffer after initialization is done.
1855	 */
1856	ADV_DVC_CFG *cfg;	/* temporary configuration structure  */
1857} ADV_DVC_VAR;
1858
1859/*
1860 * Microcode idle loop commands
1861 */
1862#define IDLE_CMD_COMPLETED           0
1863#define IDLE_CMD_STOP_CHIP           0x0001
1864#define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1865#define IDLE_CMD_SEND_INT            0x0004
1866#define IDLE_CMD_ABORT               0x0008
1867#define IDLE_CMD_DEVICE_RESET        0x0010
1868#define IDLE_CMD_SCSI_RESET_START    0x0020	/* Assert SCSI Bus Reset */
1869#define IDLE_CMD_SCSI_RESET_END      0x0040	/* Deassert SCSI Bus Reset */
1870#define IDLE_CMD_SCSIREQ             0x0080
1871
1872#define IDLE_CMD_STATUS_SUCCESS      0x0001
1873#define IDLE_CMD_STATUS_FAILURE      0x0002
1874
1875/*
1876 * AdvSendIdleCmd() flag definitions.
1877 */
1878#define ADV_NOWAIT     0x01
1879
1880/*
1881 * Wait loop time out values.
1882 */
1883#define SCSI_WAIT_100_MSEC           100UL	/* 100 milliseconds */
1884#define SCSI_US_PER_MSEC             1000	/* microseconds per millisecond */
1885#define SCSI_MAX_RETRY               10	/* retry count */
1886
1887#define ADV_ASYNC_RDMA_FAILURE          0x01	/* Fatal RDMA failure. */
1888#define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02	/* Detected SCSI Bus Reset. */
1889#define ADV_ASYNC_CARRIER_READY_FAILURE 0x03	/* Carrier Ready failure. */
1890#define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04	/* RDMAed-in data invalid. */
1891
1892#define ADV_HOST_SCSI_BUS_RESET      0x80	/* Host Initiated SCSI Bus Reset. */
1893
1894/* Read byte from a register. */
1895#define AdvReadByteRegister(iop_base, reg_off) \
1896     (ADV_MEM_READB((iop_base) + (reg_off)))
1897
1898/* Write byte to a register. */
1899#define AdvWriteByteRegister(iop_base, reg_off, byte) \
1900     (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1901
1902/* Read word (2 bytes) from a register. */
1903#define AdvReadWordRegister(iop_base, reg_off) \
1904     (ADV_MEM_READW((iop_base) + (reg_off)))
1905
1906/* Write word (2 bytes) to a register. */
1907#define AdvWriteWordRegister(iop_base, reg_off, word) \
1908     (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1909
1910/* Write dword (4 bytes) to a register. */
1911#define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1912     (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1913
1914/* Read byte from LRAM. */
1915#define AdvReadByteLram(iop_base, addr, byte) \
1916do { \
1917    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1918    (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1919} while (0)
1920
1921/* Write byte to LRAM. */
1922#define AdvWriteByteLram(iop_base, addr, byte) \
1923    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1924     ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1925
1926/* Read word (2 bytes) from LRAM. */
1927#define AdvReadWordLram(iop_base, addr, word) \
1928do { \
1929    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1930    (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1931} while (0)
1932
1933/* Write word (2 bytes) to LRAM. */
1934#define AdvWriteWordLram(iop_base, addr, word) \
1935    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1936     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1937
1938/* Write little-endian double word (4 bytes) to LRAM */
1939/* Because of unspecified C language ordering don't use auto-increment. */
1940#define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1941    ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1942      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1943                     cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1944     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1945      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1946                     cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1947
1948/* Read word (2 bytes) from LRAM assuming that the address is already set. */
1949#define AdvReadWordAutoIncLram(iop_base) \
1950     (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1951
1952/* Write word (2 bytes) to LRAM assuming that the address is already set. */
1953#define AdvWriteWordAutoIncLram(iop_base, word) \
1954     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1955
1956/*
1957 * Define macro to check for Condor signature.
1958 *
1959 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1960 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1961 */
1962#define AdvFindSignature(iop_base) \
1963    (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1964    ADV_CHIP_ID_BYTE) && \
1965     (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1966    ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
1967
1968/*
1969 * Define macro to Return the version number of the chip at 'iop_base'.
1970 *
1971 * The second parameter 'bus_type' is currently unused.
1972 */
1973#define AdvGetChipVersion(iop_base, bus_type) \
1974    AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1975
1976/*
1977 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1978 * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1979 *
1980 * If the request has not yet been sent to the device it will simply be
1981 * aborted from RISC memory. If the request is disconnected it will be
1982 * aborted on reselection by sending an Abort Message to the target ID.
1983 *
1984 * Return value:
1985 *      ADV_TRUE(1) - Queue was successfully aborted.
1986 *      ADV_FALSE(0) - Queue was not found on the active queue list.
1987 */
1988#define AdvAbortQueue(asc_dvc, srb_tag) \
1989     AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1990		    (ADV_DCNT) (srb_tag))
1991
1992/*
1993 * Send a Bus Device Reset Message to the specified target ID.
1994 *
1995 * All outstanding commands will be purged if sending the
1996 * Bus Device Reset Message is successful.
1997 *
1998 * Return Value:
1999 *      ADV_TRUE(1) - All requests on the target are purged.
2000 *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2001 *                     are not purged.
2002 */
2003#define AdvResetDevice(asc_dvc, target_id) \
2004     AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET,	\
2005		    (ADV_DCNT) (target_id))
2006
2007/*
2008 * SCSI Wide Type definition.
2009 */
2010#define ADV_SCSI_BIT_ID_TYPE   ushort
2011
2012/*
2013 * AdvInitScsiTarget() 'cntl_flag' options.
2014 */
2015#define ADV_SCAN_LUN           0x01
2016#define ADV_CAPINFO_NOLUN      0x02
2017
2018/*
2019 * Convert target id to target id bit mask.
2020 */
2021#define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2022
2023/*
2024 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2025 */
2026
2027#define QD_NO_STATUS         0x00	/* Request not completed yet. */
2028#define QD_NO_ERROR          0x01
2029#define QD_ABORTED_BY_HOST   0x02
2030#define QD_WITH_ERROR        0x04
2031
2032#define QHSTA_NO_ERROR              0x00
2033#define QHSTA_M_SEL_TIMEOUT         0x11
2034#define QHSTA_M_DATA_OVER_RUN       0x12
2035#define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2036#define QHSTA_M_QUEUE_ABORTED       0x15
2037#define QHSTA_M_SXFR_SDMA_ERR       0x16	/* SXFR_STATUS SCSI DMA Error */
2038#define QHSTA_M_SXFR_SXFR_PERR      0x17	/* SXFR_STATUS SCSI Bus Parity Error */
2039#define QHSTA_M_RDMA_PERR           0x18	/* RISC PCI DMA parity error */
2040#define QHSTA_M_SXFR_OFF_UFLW       0x19	/* SXFR_STATUS Offset Underflow */
2041#define QHSTA_M_SXFR_OFF_OFLW       0x20	/* SXFR_STATUS Offset Overflow */
2042#define QHSTA_M_SXFR_WD_TMO         0x21	/* SXFR_STATUS Watchdog Timeout */
2043#define QHSTA_M_SXFR_DESELECTED     0x22	/* SXFR_STATUS Deselected */
2044/* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2045#define QHSTA_M_SXFR_XFR_OFLW       0x12	/* SXFR_STATUS Transfer Overflow */
2046#define QHSTA_M_SXFR_XFR_PH_ERR     0x24	/* SXFR_STATUS Transfer Phase Error */
2047#define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25	/* SXFR_STATUS Unknown Error */
2048#define QHSTA_M_SCSI_BUS_RESET      0x30	/* Request aborted from SBR */
2049#define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31	/* Request aborted from unsol. SBR */
2050#define QHSTA_M_BUS_DEVICE_RESET    0x32	/* Request aborted from BDR */
2051#define QHSTA_M_DIRECTION_ERR       0x35	/* Data Phase mismatch */
2052#define QHSTA_M_DIRECTION_ERR_HUNG  0x36	/* Data Phase mismatch and bus hang */
2053#define QHSTA_M_WTM_TIMEOUT         0x41
2054#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2055#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2056#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2057#define QHSTA_M_INVALID_DEVICE      0x45	/* Bad target ID */
2058#define QHSTA_M_FROZEN_TIDQ         0x46	/* TID Queue frozen. */
2059#define QHSTA_M_SGBACKUP_ERROR      0x47	/* Scatter-Gather backup error */
2060
2061/* Return the address that is aligned at the next doubleword >= to 'addr'. */
2062#define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2063
2064/*
2065 * Total contiguous memory needed for driver SG blocks.
2066 *
2067 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2068 * number of scatter-gather elements the driver supports in a
2069 * single request.
2070 */
2071
2072#define ADV_SG_LIST_MAX_BYTE_SIZE \
2073         (sizeof(ADV_SG_BLOCK) * \
2074          ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2075
2076/* struct asc_board flags */
2077#define ASC_IS_WIDE_BOARD       0x04	/* AdvanSys Wide Board */
2078
2079#define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2080
2081#define NO_ISA_DMA              0xff	/* No ISA DMA Channel Used */
2082
2083#define ASC_INFO_SIZE           128	/* advansys_info() line size */
2084
2085/* Asc Library return codes */
2086#define ASC_TRUE        1
2087#define ASC_FALSE       0
2088#define ASC_NOERROR     1
2089#define ASC_BUSY        0
2090#define ASC_ERROR       (-1)
2091
2092/* struct scsi_cmnd function return codes */
2093#define STATUS_BYTE(byte)   (byte)
2094#define MSG_BYTE(byte)      ((byte) << 8)
2095#define HOST_BYTE(byte)     ((byte) << 16)
2096#define DRIVER_BYTE(byte)   ((byte) << 24)
2097
2098#define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2099#ifndef ADVANSYS_STATS
2100#define ASC_STATS_ADD(shost, counter, count)
2101#else /* ADVANSYS_STATS */
2102#define ASC_STATS_ADD(shost, counter, count) \
2103	(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2104#endif /* ADVANSYS_STATS */
2105
2106/* If the result wraps when calculating tenths, return 0. */
2107#define ASC_TENTHS(num, den) \
2108    (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2109    0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2110
2111/*
2112 * Display a message to the console.
2113 */
2114#define ASC_PRINT(s) \
2115    { \
2116        printk("advansys: "); \
2117        printk(s); \
2118    }
2119
2120#define ASC_PRINT1(s, a1) \
2121    { \
2122        printk("advansys: "); \
2123        printk((s), (a1)); \
2124    }
2125
2126#define ASC_PRINT2(s, a1, a2) \
2127    { \
2128        printk("advansys: "); \
2129        printk((s), (a1), (a2)); \
2130    }
2131
2132#define ASC_PRINT3(s, a1, a2, a3) \
2133    { \
2134        printk("advansys: "); \
2135        printk((s), (a1), (a2), (a3)); \
2136    }
2137
2138#define ASC_PRINT4(s, a1, a2, a3, a4) \
2139    { \
2140        printk("advansys: "); \
2141        printk((s), (a1), (a2), (a3), (a4)); \
2142    }
2143
2144#ifndef ADVANSYS_DEBUG
2145
2146#define ASC_DBG(lvl, s...)
2147#define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2148#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2149#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2150#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2151#define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2152#define ASC_DBG_PRT_HEX(lvl, name, start, length)
2153#define ASC_DBG_PRT_CDB(lvl, cdb, len)
2154#define ASC_DBG_PRT_SENSE(lvl, sense, len)
2155#define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2156
2157#else /* ADVANSYS_DEBUG */
2158
2159/*
2160 * Debugging Message Levels:
2161 * 0: Errors Only
2162 * 1: High-Level Tracing
2163 * 2-N: Verbose Tracing
2164 */
2165
2166#define ASC_DBG(lvl, format, arg...) {					\
2167	if (asc_dbglvl >= (lvl))					\
2168		printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,		\
2169			__func__ , ## arg);				\
2170}
2171
2172#define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2173    { \
2174        if (asc_dbglvl >= (lvl)) { \
2175            asc_prt_scsi_host(s); \
2176        } \
2177    }
2178
2179#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2180    { \
2181        if (asc_dbglvl >= (lvl)) { \
2182            asc_prt_asc_scsi_q(scsiqp); \
2183        } \
2184    }
2185
2186#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2187    { \
2188        if (asc_dbglvl >= (lvl)) { \
2189            asc_prt_asc_qdone_info(qdone); \
2190        } \
2191    }
2192
2193#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2194    { \
2195        if (asc_dbglvl >= (lvl)) { \
2196            asc_prt_adv_scsi_req_q(scsiqp); \
2197        } \
2198    }
2199
2200#define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2201    { \
2202        if (asc_dbglvl >= (lvl)) { \
2203            asc_prt_hex((name), (start), (length)); \
2204        } \
2205    }
2206
2207#define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2208        ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2209
2210#define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2211        ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2212
2213#define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2214        ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2215#endif /* ADVANSYS_DEBUG */
2216
2217#ifdef ADVANSYS_STATS
2218
2219/* Per board statistics structure */
2220struct asc_stats {
2221	/* Driver Entrypoint Statistics */
2222	unsigned int queuecommand;	/* # calls to advansys_queuecommand() */
2223	unsigned int reset;		/* # calls to advansys_eh_bus_reset() */
2224	unsigned int biosparam;	/* # calls to advansys_biosparam() */
2225	unsigned int interrupt;	/* # advansys_interrupt() calls */
2226	unsigned int callback;	/* # calls to asc/adv_isr_callback() */
2227	unsigned int done;		/* # calls to request's scsi_done function */
2228	unsigned int build_error;	/* # asc/adv_build_req() ASC_ERROR returns. */
2229	unsigned int adv_build_noreq;	/* # adv_build_req() adv_req_t alloc. fail. */
2230	unsigned int adv_build_nosg;	/* # adv_build_req() adv_sgblk_t alloc. fail. */
2231	/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2232	unsigned int exe_noerror;	/* # ASC_NOERROR returns. */
2233	unsigned int exe_busy;	/* # ASC_BUSY returns. */
2234	unsigned int exe_error;	/* # ASC_ERROR returns. */
2235	unsigned int exe_unknown;	/* # unknown returns. */
2236	/* Data Transfer Statistics */
2237	unsigned int xfer_cnt;	/* # I/O requests received */
2238	unsigned int xfer_elem;	/* # scatter-gather elements */
2239	unsigned int xfer_sect;	/* # 512-byte blocks */
2240};
2241#endif /* ADVANSYS_STATS */
2242
2243/*
2244 * Structure allocated for each board.
2245 *
2246 * This structure is allocated by scsi_host_alloc() at the end
2247 * of the 'Scsi_Host' structure starting at the 'hostdata'
2248 * field. It is guaranteed to be allocated from DMA-able memory.
2249 */
2250struct asc_board {
2251	struct device *dev;
2252	struct Scsi_Host *shost;
2253	uint flags;		/* Board flags */
2254	unsigned int irq;
2255	union {
2256		ASC_DVC_VAR asc_dvc_var;	/* Narrow board */
2257		ADV_DVC_VAR adv_dvc_var;	/* Wide board */
2258	} dvc_var;
2259	union {
2260		ASC_DVC_CFG asc_dvc_cfg;	/* Narrow board */
2261		ADV_DVC_CFG adv_dvc_cfg;	/* Wide board */
2262	} dvc_cfg;
2263	ushort asc_n_io_port;	/* Number I/O ports. */
2264	ADV_SCSI_BIT_ID_TYPE init_tidmask;	/* Target init./valid mask */
2265	ushort reqcnt[ADV_MAX_TID + 1];	/* Starvation request count */
2266	ADV_SCSI_BIT_ID_TYPE queue_full;	/* Queue full mask */
2267	ushort queue_full_cnt[ADV_MAX_TID + 1];	/* Queue full count */
2268	union {
2269		ASCEEP_CONFIG asc_eep;	/* Narrow EEPROM config. */
2270		ADVEEP_3550_CONFIG adv_3550_eep;	/* 3550 EEPROM config. */
2271		ADVEEP_38C0800_CONFIG adv_38C0800_eep;	/* 38C0800 EEPROM config. */
2272		ADVEEP_38C1600_CONFIG adv_38C1600_eep;	/* 38C1600 EEPROM config. */
2273	} eep_config;
2274	/* /proc/scsi/advansys/[0...] */
2275#ifdef ADVANSYS_STATS
2276	struct asc_stats asc_stats;	/* Board statistics */
2277#endif				/* ADVANSYS_STATS */
2278	/*
2279	 * The following fields are used only for Narrow Boards.
2280	 */
2281	uchar sdtr_data[ASC_MAX_TID + 1];	/* SDTR information */
2282	/*
2283	 * The following fields are used only for Wide Boards.
2284	 */
2285	void __iomem *ioremap_addr;	/* I/O Memory remap address. */
2286	ushort ioport;		/* I/O Port address. */
2287	adv_req_t *adv_reqp;	/* Request structures. */
2288	dma_addr_t adv_reqp_addr;
2289	size_t adv_reqp_size;
2290	struct dma_pool *adv_sgblk_pool;	/* Scatter-gather structures. */
2291	ushort bios_signature;	/* BIOS Signature. */
2292	ushort bios_version;	/* BIOS Version. */
2293	ushort bios_codeseg;	/* BIOS Code Segment. */
2294	ushort bios_codelen;	/* BIOS Code Segment Length. */
2295};
2296
2297#define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2298							dvc_var.asc_dvc_var)
2299#define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2300							dvc_var.adv_dvc_var)
2301#define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2302
2303#ifdef ADVANSYS_DEBUG
2304static int asc_dbglvl = 3;
2305
2306/*
2307 * asc_prt_asc_dvc_var()
2308 */
2309static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2310{
2311	printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2312
2313	printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2314	       "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2315
2316	printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2317		(unsigned)h->init_sdtr);
2318
2319	printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2320	       "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2321	       (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2322	       (unsigned)h->chip_no);
2323
2324	printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2325	       "%u,\n", (unsigned)h->queue_full_or_busy,
2326	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2327
2328	printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2329	       "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2330	       (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2331	       (unsigned)h->in_critical_cnt);
2332
2333	printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2334	       "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2335	       (unsigned)h->init_state, (unsigned)h->no_scam,
2336	       (unsigned)h->pci_fix_asyn_xfer);
2337
2338	printk(" cfg 0x%lx\n", (ulong)h->cfg);
2339}
2340
2341/*
2342 * asc_prt_asc_dvc_cfg()
2343 */
2344static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2345{
2346	printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2347
2348	printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2349	       h->can_tagged_qng, h->cmd_qng_enabled);
2350	printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2351	       h->disc_enable, h->sdtr_enable);
2352
2353	printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2354		"chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2355		h->isa_dma_channel, h->chip_version);
2356
2357	printk(" mcode_date 0x%x, mcode_version %d\n",
2358		h->mcode_date, h->mcode_version);
2359}
2360
2361/*
2362 * asc_prt_adv_dvc_var()
2363 *
2364 * Display an ADV_DVC_VAR structure.
2365 */
2366static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2367{
2368	printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2369
2370	printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2371	       (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2372
2373	printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2374	       (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2375
2376	printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2377	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2378
2379	printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2380	       (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2381	       h->carr_freelist);
2382
2383	printk("  icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
2384
2385	printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2386	       (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2387
2388	printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2389	       (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2390}
2391
2392/*
2393 * asc_prt_adv_dvc_cfg()
2394 *
2395 * Display an ADV_DVC_CFG structure.
2396 */
2397static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2398{
2399	printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2400
2401	printk("  disc_enable 0x%x, termination 0x%x\n",
2402	       h->disc_enable, h->termination);
2403
2404	printk("  chip_version 0x%x, mcode_date 0x%x\n",
2405	       h->chip_version, h->mcode_date);
2406
2407	printk("  mcode_version 0x%x, control_flag 0x%x\n",
2408	       h->mcode_version, h->control_flag);
2409}
2410
2411/*
2412 * asc_prt_scsi_host()
2413 */
2414static void asc_prt_scsi_host(struct Scsi_Host *s)
2415{
2416	struct asc_board *boardp = shost_priv(s);
2417
2418	printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2419	printk(" host_busy %u, host_no %d,\n",
2420	       atomic_read(&s->host_busy), s->host_no);
2421
2422	printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2423	       (ulong)s->base, (ulong)s->io_port, boardp->irq);
2424
2425	printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2426	       s->dma_channel, s->this_id, s->can_queue);
2427
2428	printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2429	       s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2430
2431	if (ASC_NARROW_BOARD(boardp)) {
2432		asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2433		asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2434	} else {
2435		asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2436		asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2437	}
2438}
2439
2440/*
2441 * asc_prt_hex()
2442 *
2443 * Print hexadecimal output in 4 byte groupings 32 bytes
2444 * or 8 double-words per line.
2445 */
2446static void asc_prt_hex(char *f, uchar *s, int l)
2447{
2448	int i;
2449	int j;
2450	int k;
2451	int m;
2452
2453	printk("%s: (%d bytes)\n", f, l);
2454
2455	for (i = 0; i < l; i += 32) {
2456
2457		/* Display a maximum of 8 double-words per line. */
2458		if ((k = (l - i) / 4) >= 8) {
2459			k = 8;
2460			m = 0;
2461		} else {
2462			m = (l - i) % 4;
2463		}
2464
2465		for (j = 0; j < k; j++) {
2466			printk(" %2.2X%2.2X%2.2X%2.2X",
2467			       (unsigned)s[i + (j * 4)],
2468			       (unsigned)s[i + (j * 4) + 1],
2469			       (unsigned)s[i + (j * 4) + 2],
2470			       (unsigned)s[i + (j * 4) + 3]);
2471		}
2472
2473		switch (m) {
2474		case 0:
2475		default:
2476			break;
2477		case 1:
2478			printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2479			break;
2480		case 2:
2481			printk(" %2.2X%2.2X",
2482			       (unsigned)s[i + (j * 4)],
2483			       (unsigned)s[i + (j * 4) + 1]);
2484			break;
2485		case 3:
2486			printk(" %2.2X%2.2X%2.2X",
2487			       (unsigned)s[i + (j * 4) + 1],
2488			       (unsigned)s[i + (j * 4) + 2],
2489			       (unsigned)s[i + (j * 4) + 3]);
2490			break;
2491		}
2492
2493		printk("\n");
2494	}
2495}
2496
2497/*
2498 * asc_prt_asc_scsi_q()
2499 */
2500static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2501{
2502	ASC_SG_HEAD *sgp;
2503	int i;
2504
2505	printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2506
2507	printk
2508	    (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2509	     q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
2510	     q->q2.tag_code);
2511
2512	printk
2513	    (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2514	     (ulong)le32_to_cpu(q->q1.data_addr),
2515	     (ulong)le32_to_cpu(q->q1.data_cnt),
2516	     (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2517
2518	printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2519	       (ulong)q->cdbptr, q->q2.cdb_len,
2520	       (ulong)q->sg_head, q->q1.sg_queue_cnt);
2521
2522	if (q->sg_head) {
2523		sgp = q->sg_head;
2524		printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2525		printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2526		       sgp->queue_cnt);
2527		for (i = 0; i < sgp->entry_cnt; i++) {
2528			printk(" [%u]: addr 0x%lx, bytes %lu\n",
2529			       i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2530			       (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2531		}
2532
2533	}
2534}
2535
2536/*
2537 * asc_prt_asc_qdone_info()
2538 */
2539static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2540{
2541	printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2542	printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2543	       q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
2544	       q->d2.tag_code);
2545	printk
2546	    (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2547	     q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2548}
2549
2550/*
2551 * asc_prt_adv_sgblock()
2552 *
2553 * Display an ADV_SG_BLOCK structure.
2554 */
2555static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2556{
2557	int i;
2558
2559	printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2560	       (ulong)b, sgblockno);
2561	printk("  sg_cnt %u, sg_ptr 0x%x\n",
2562	       b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
2563	BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2564	if (b->sg_ptr != 0)
2565		BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2566	for (i = 0; i < b->sg_cnt; i++) {
2567		printk("  [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2568		       i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
2569		       (u32)le32_to_cpu(b->sg_list[i].sg_count));
2570	}
2571}
2572
2573/*
2574 * asc_prt_adv_scsi_req_q()
2575 *
2576 * Display an ADV_SCSI_REQ_Q structure.
2577 */
2578static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2579{
2580	int sg_blk_cnt;
2581	struct adv_sg_block *sg_ptr;
2582	adv_sgblk_t *sgblkp;
2583
2584	printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2585
2586	printk("  target_id %u, target_lun %u, srb_tag 0x%x\n",
2587	       q->target_id, q->target_lun, q->srb_tag);
2588
2589	printk("  cntl 0x%x, data_addr 0x%lx\n",
2590	       q->cntl, (ulong)le32_to_cpu(q->data_addr));
2591
2592	printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2593	       (ulong)le32_to_cpu(q->data_cnt),
2594	       (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2595
2596	printk
2597	    ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2598	     q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2599
2600	printk("  sg_working_ix 0x%x, target_cmd %u\n",
2601	       q->sg_working_ix, q->target_cmd);
2602
2603	printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2604	       (ulong)le32_to_cpu(q->scsiq_rptr),
2605	       (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2606
2607	/* Display the request's ADV_SG_BLOCK structures. */
2608	if (q->sg_list_ptr != NULL) {
2609		sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
2610		sg_blk_cnt = 0;
2611		while (sgblkp) {
2612			sg_ptr = &sgblkp->sg_block;
2613			asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2614			if (sg_ptr->sg_ptr == 0) {
2615				break;
2616			}
2617			sgblkp = sgblkp->next_sgblkp;
2618			sg_blk_cnt++;
2619		}
2620	}
2621}
2622#endif /* ADVANSYS_DEBUG */
2623
2624/*
2625 * advansys_info()
2626 *
2627 * Return suitable for printing on the console with the argument
2628 * adapter's configuration information.
2629 *
2630 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2631 * otherwise the static 'info' array will be overrun.
2632 */
2633static const char *advansys_info(struct Scsi_Host *shost)
2634{
2635	static char info[ASC_INFO_SIZE];
2636	struct asc_board *boardp = shost_priv(shost);
2637	ASC_DVC_VAR *asc_dvc_varp;
2638	ADV_DVC_VAR *adv_dvc_varp;
2639	char *busname;
2640	char *widename = NULL;
2641
2642	if (ASC_NARROW_BOARD(boardp)) {
2643		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2644		ASC_DBG(1, "begin\n");
2645		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2646			if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2647			    ASC_IS_ISAPNP) {
2648				busname = "ISA PnP";
2649			} else {
2650				busname = "ISA";
2651			}
2652			sprintf(info,
2653				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2654				ASC_VERSION, busname,
2655				(ulong)shost->io_port,
2656				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2657				boardp->irq, shost->dma_channel);
2658		} else {
2659			if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2660				busname = "VL";
2661			} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2662				busname = "EISA";
2663			} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2664				if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2665				    == ASC_IS_PCI_ULTRA) {
2666					busname = "PCI Ultra";
2667				} else {
2668					busname = "PCI";
2669				}
2670			} else {
2671				busname = "?";
2672				shost_printk(KERN_ERR, shost, "unknown bus "
2673					"type %d\n", asc_dvc_varp->bus_type);
2674			}
2675			sprintf(info,
2676				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2677				ASC_VERSION, busname, (ulong)shost->io_port,
2678				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2679				boardp->irq);
2680		}
2681	} else {
2682		/*
2683		 * Wide Adapter Information
2684		 *
2685		 * Memory-mapped I/O is used instead of I/O space to access
2686		 * the adapter, but display the I/O Port range. The Memory
2687		 * I/O address is displayed through the driver /proc file.
2688		 */
2689		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2690		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2691			widename = "Ultra-Wide";
2692		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2693			widename = "Ultra2-Wide";
2694		} else {
2695			widename = "Ultra3-Wide";
2696		}
2697		sprintf(info,
2698			"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2699			ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2700			(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2701	}
2702	BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2703	ASC_DBG(1, "end\n");
2704	return info;
2705}
2706
2707#ifdef CONFIG_PROC_FS
2708
2709/*
2710 * asc_prt_board_devices()
2711 *
2712 * Print driver information for devices attached to the board.
2713 */
2714static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2715{
2716	struct asc_board *boardp = shost_priv(shost);
2717	int chip_scsi_id;
2718	int i;
2719
2720	seq_printf(m,
2721		   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2722		   shost->host_no);
2723
2724	if (ASC_NARROW_BOARD(boardp)) {
2725		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2726	} else {
2727		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2728	}
2729
2730	seq_puts(m, "Target IDs Detected:");
2731	for (i = 0; i <= ADV_MAX_TID; i++) {
2732		if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2733			seq_printf(m, " %X,", i);
2734	}
2735	seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2736}
2737
2738/*
2739 * Display Wide Board BIOS Information.
2740 */
2741static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2742{
2743	struct asc_board *boardp = shost_priv(shost);
2744	ushort major, minor, letter;
2745
2746	seq_puts(m, "\nROM BIOS Version: ");
2747
2748	/*
2749	 * If the BIOS saved a valid signature, then fill in
2750	 * the BIOS code segment base address.
2751	 */
2752	if (boardp->bios_signature != 0x55AA) {
2753		seq_puts(m, "Disabled or Pre-3.1\n"
2754			"BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2755			"can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2756	} else {
2757		major = (boardp->bios_version >> 12) & 0xF;
2758		minor = (boardp->bios_version >> 8) & 0xF;
2759		letter = (boardp->bios_version & 0xFF);
2760
2761		seq_printf(m, "%d.%d%c\n",
2762				   major, minor,
2763				   letter >= 26 ? '?' : letter + 'A');
2764		/*
2765		 * Current available ROM BIOS release is 3.1I for UW
2766		 * and 3.2I for U2W. This code doesn't differentiate
2767		 * UW and U2W boards.
2768		 */
2769		if (major < 3 || (major <= 3 && minor < 1) ||
2770		    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2771			seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2772				"ftp://ftp.connectcom.net/pub\n");
2773		}
2774	}
2775}
2776
2777/*
2778 * Add serial number to information bar if signature AAh
2779 * is found in at bit 15-9 (7 bits) of word 1.
2780 *
2781 * Serial Number consists fo 12 alpha-numeric digits.
2782 *
2783 *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2784 *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2785 *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2786 *       5 - Product revision (A-J)    Word0:  "         "
2787 *
2788 *           Signature                 Word1: 15-9 (7 bits)
2789 *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2790 *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2791 *
2792 *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2793 *
2794 * Note 1: Only production cards will have a serial number.
2795 *
2796 * Note 2: Signature is most significant 7 bits (0xFE).
2797 *
2798 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2799 */
2800static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2801{
2802	ushort w, num;
2803
2804	if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2805		return ASC_FALSE;
2806	} else {
2807		/*
2808		 * First word - 6 digits.
2809		 */
2810		w = serialnum[0];
2811
2812		/* Product type - 1st digit. */
2813		if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2814			/* Product type is P=Prototype */
2815			*cp += 0x8;
2816		}
2817		cp++;
2818
2819		/* Manufacturing location - 2nd digit. */
2820		*cp++ = 'A' + ((w & 0x1C00) >> 10);
2821
2822		/* Product ID - 3rd, 4th digits. */
2823		num = w & 0x3FF;
2824		*cp++ = '0' + (num / 100);
2825		num %= 100;
2826		*cp++ = '0' + (num / 10);
2827
2828		/* Product revision - 5th digit. */
2829		*cp++ = 'A' + (num % 10);
2830
2831		/*
2832		 * Second word
2833		 */
2834		w = serialnum[1];
2835
2836		/*
2837		 * Year - 6th digit.
2838		 *
2839		 * If bit 15 of third word is set, then the
2840		 * last digit of the year is greater than 7.
2841		 */
2842		if (serialnum[2] & 0x8000) {
2843			*cp++ = '8' + ((w & 0x1C0) >> 6);
2844		} else {
2845			*cp++ = '0' + ((w & 0x1C0) >> 6);
2846		}
2847
2848		/* Week of year - 7th, 8th digits. */
2849		num = w & 0x003F;
2850		*cp++ = '0' + num / 10;
2851		num %= 10;
2852		*cp++ = '0' + num;
2853
2854		/*
2855		 * Third word
2856		 */
2857		w = serialnum[2] & 0x7FFF;
2858
2859		/* Serial number - 9th digit. */
2860		*cp++ = 'A' + (w / 1000);
2861
2862		/* 10th, 11th, 12th digits. */
2863		num = w % 1000;
2864		*cp++ = '0' + num / 100;
2865		num %= 100;
2866		*cp++ = '0' + num / 10;
2867		num %= 10;
2868		*cp++ = '0' + num;
2869
2870		*cp = '\0';	/* Null Terminate the string. */
2871		return ASC_TRUE;
2872	}
2873}
2874
2875/*
2876 * asc_prt_asc_board_eeprom()
2877 *
2878 * Print board EEPROM configuration.
2879 */
2880static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2881{
2882	struct asc_board *boardp = shost_priv(shost);
2883	ASC_DVC_VAR *asc_dvc_varp;
2884	ASCEEP_CONFIG *ep;
2885	int i;
2886#ifdef CONFIG_ISA
2887	int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
2888#endif /* CONFIG_ISA */
2889	uchar serialstr[13];
2890
2891	asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2892	ep = &boardp->eep_config.asc_eep;
2893
2894	seq_printf(m,
2895		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2896		   shost->host_no);
2897
2898	if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
2899	    == ASC_TRUE)
2900		seq_printf(m, " Serial Number: %s\n", serialstr);
2901	else if (ep->adapter_info[5] == 0xBB)
2902		seq_puts(m,
2903			 " Default Settings Used for EEPROM-less Adapter.\n");
2904	else
2905		seq_puts(m, " Serial Number Signature Not Present.\n");
2906
2907	seq_printf(m,
2908		   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2909		   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
2910		   ep->max_tag_qng);
2911
2912	seq_printf(m,
2913		   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
2914
2915	seq_puts(m, " Target ID:           ");
2916	for (i = 0; i <= ASC_MAX_TID; i++)
2917		seq_printf(m, " %d", i);
2918
2919	seq_puts(m, "\n Disconnects:         ");
2920	for (i = 0; i <= ASC_MAX_TID; i++)
2921		seq_printf(m, " %c",
2922			   (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2923
2924	seq_puts(m, "\n Command Queuing:     ");
2925	for (i = 0; i <= ASC_MAX_TID; i++)
2926		seq_printf(m, " %c",
2927			   (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2928
2929	seq_puts(m, "\n Start Motor:         ");
2930	for (i = 0; i <= ASC_MAX_TID; i++)
2931		seq_printf(m, " %c",
2932			   (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2933
2934	seq_puts(m, "\n Synchronous Transfer:");
2935	for (i = 0; i <= ASC_MAX_TID; i++)
2936		seq_printf(m, " %c",
2937			   (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2938	seq_putc(m, '\n');
2939
2940#ifdef CONFIG_ISA
2941	if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2942		seq_printf(m,
2943			   " Host ISA DMA speed:   %d MB/S\n",
2944			   isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
2945	}
2946#endif /* CONFIG_ISA */
2947}
2948
2949/*
2950 * asc_prt_adv_board_eeprom()
2951 *
2952 * Print board EEPROM configuration.
2953 */
2954static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2955{
2956	struct asc_board *boardp = shost_priv(shost);
2957	ADV_DVC_VAR *adv_dvc_varp;
2958	int i;
2959	char *termstr;
2960	uchar serialstr[13];
2961	ADVEEP_3550_CONFIG *ep_3550 = NULL;
2962	ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
2963	ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
2964	ushort word;
2965	ushort *wordp;
2966	ushort sdtr_speed = 0;
2967
2968	adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2969	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2970		ep_3550 = &boardp->eep_config.adv_3550_eep;
2971	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2972		ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
2973	} else {
2974		ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
2975	}
2976
2977	seq_printf(m,
2978		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2979		   shost->host_no);
2980
2981	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2982		wordp = &ep_3550->serial_number_word1;
2983	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2984		wordp = &ep_38C0800->serial_number_word1;
2985	} else {
2986		wordp = &ep_38C1600->serial_number_word1;
2987	}
2988
2989	if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
2990		seq_printf(m, " Serial Number: %s\n", serialstr);
2991	else
2992		seq_puts(m, " Serial Number Signature Not Present.\n");
2993
2994	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2995		seq_printf(m,
2996			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2997			   ep_3550->adapter_scsi_id,
2998			   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
2999	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3000		seq_printf(m,
3001			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3002			   ep_38C0800->adapter_scsi_id,
3003			   ep_38C0800->max_host_qng,
3004			   ep_38C0800->max_dvc_qng);
3005	else
3006		seq_printf(m,
3007			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3008			   ep_38C1600->adapter_scsi_id,
3009			   ep_38C1600->max_host_qng,
3010			   ep_38C1600->max_dvc_qng);
3011	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3012		word = ep_3550->termination;
3013	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3014		word = ep_38C0800->termination_lvd;
3015	} else {
3016		word = ep_38C1600->termination_lvd;
3017	}
3018	switch (word) {
3019	case 1:
3020		termstr = "Low Off/High Off";
3021		break;
3022	case 2:
3023		termstr = "Low Off/High On";
3024		break;
3025	case 3:
3026		termstr = "Low On/High On";
3027		break;
3028	default:
3029	case 0:
3030		termstr = "Automatic";
3031		break;
3032	}
3033
3034	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3035		seq_printf(m,
3036			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3037			   ep_3550->termination, termstr,
3038			   ep_3550->bios_ctrl);
3039	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3040		seq_printf(m,
3041			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3042			   ep_38C0800->termination_lvd, termstr,
3043			   ep_38C0800->bios_ctrl);
3044	else
3045		seq_printf(m,
3046			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3047			   ep_38C1600->termination_lvd, termstr,
3048			   ep_38C1600->bios_ctrl);
3049
3050	seq_puts(m, " Target ID:           ");
3051	for (i = 0; i <= ADV_MAX_TID; i++)
3052		seq_printf(m, " %X", i);
3053	seq_putc(m, '\n');
3054
3055	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3056		word = ep_3550->disc_enable;
3057	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3058		word = ep_38C0800->disc_enable;
3059	} else {
3060		word = ep_38C1600->disc_enable;
3061	}
3062	seq_puts(m, " Disconnects:         ");
3063	for (i = 0; i <= ADV_MAX_TID; i++)
3064		seq_printf(m, " %c",
3065			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3066	seq_putc(m, '\n');
3067
3068	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3069		word = ep_3550->tagqng_able;
3070	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3071		word = ep_38C0800->tagqng_able;
3072	} else {
3073		word = ep_38C1600->tagqng_able;
3074	}
3075	seq_puts(m, " Command Queuing:     ");
3076	for (i = 0; i <= ADV_MAX_TID; i++)
3077		seq_printf(m, " %c",
3078			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3079	seq_putc(m, '\n');
3080
3081	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3082		word = ep_3550->start_motor;
3083	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3084		word = ep_38C0800->start_motor;
3085	} else {
3086		word = ep_38C1600->start_motor;
3087	}
3088	seq_puts(m, " Start Motor:         ");
3089	for (i = 0; i <= ADV_MAX_TID; i++)
3090		seq_printf(m, " %c",
3091			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3092	seq_putc(m, '\n');
3093
3094	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3095		seq_puts(m, " Synchronous Transfer:");
3096		for (i = 0; i <= ADV_MAX_TID; i++)
3097			seq_printf(m, " %c",
3098				   (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3099				   'Y' : 'N');
3100		seq_putc(m, '\n');
3101	}
3102
3103	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3104		seq_puts(m, " Ultra Transfer:      ");
3105		for (i = 0; i <= ADV_MAX_TID; i++)
3106			seq_printf(m, " %c",
3107				   (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3108				   ? 'Y' : 'N');
3109		seq_putc(m, '\n');
3110	}
3111
3112	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3113		word = ep_3550->wdtr_able;
3114	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3115		word = ep_38C0800->wdtr_able;
3116	} else {
3117		word = ep_38C1600->wdtr_able;
3118	}
3119	seq_puts(m, " Wide Transfer:       ");
3120	for (i = 0; i <= ADV_MAX_TID; i++)
3121		seq_printf(m, " %c",
3122			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3123	seq_putc(m, '\n');
3124
3125	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3126	    adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3127		seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
3128		for (i = 0; i <= ADV_MAX_TID; i++) {
3129			char *speed_str;
3130
3131			if (i == 0) {
3132				sdtr_speed = adv_dvc_varp->sdtr_speed1;
3133			} else if (i == 4) {
3134				sdtr_speed = adv_dvc_varp->sdtr_speed2;
3135			} else if (i == 8) {
3136				sdtr_speed = adv_dvc_varp->sdtr_speed3;
3137			} else if (i == 12) {
3138				sdtr_speed = adv_dvc_varp->sdtr_speed4;
3139			}
3140			switch (sdtr_speed & ADV_MAX_TID) {
3141			case 0:
3142				speed_str = "Off";
3143				break;
3144			case 1:
3145				speed_str = "  5";
3146				break;
3147			case 2:
3148				speed_str = " 10";
3149				break;
3150			case 3:
3151				speed_str = " 20";
3152				break;
3153			case 4:
3154				speed_str = " 40";
3155				break;
3156			case 5:
3157				speed_str = " 80";
3158				break;
3159			default:
3160				speed_str = "Unk";
3161				break;
3162			}
3163			seq_printf(m, "%X:%s ", i, speed_str);
3164			if (i == 7)
3165				seq_puts(m, "\n  ");
3166			sdtr_speed >>= 4;
3167		}
3168		seq_putc(m, '\n');
3169	}
3170}
3171
3172/*
3173 * asc_prt_driver_conf()
3174 */
3175static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3176{
3177	struct asc_board *boardp = shost_priv(shost);
3178	int chip_scsi_id;
3179
3180	seq_printf(m,
3181		"\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3182		shost->host_no);
3183
3184	seq_printf(m,
3185		   " host_busy %u, max_id %u, max_lun %llu, max_channel %u\n",
3186		   atomic_read(&shost->host_busy), shost->max_id,
3187		   shost->max_lun, shost->max_channel);
3188
3189	seq_printf(m,
3190		   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3191		   shost->unique_id, shost->can_queue, shost->this_id,
3192		   shost->sg_tablesize, shost->cmd_per_lun);
3193
3194	seq_printf(m,
3195		   " unchecked_isa_dma %d, use_clustering %d\n",
3196		   shost->unchecked_isa_dma, shost->use_clustering);
3197
3198	seq_printf(m,
3199		   " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3200		   boardp->flags, shost->last_reset, jiffies,
3201		   boardp->asc_n_io_port);
3202
3203	seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3204
3205	if (ASC_NARROW_BOARD(boardp)) {
3206		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3207	} else {
3208		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3209	}
3210}
3211
3212/*
3213 * asc_prt_asc_board_info()
3214 *
3215 * Print dynamic board configuration information.
3216 */
3217static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3218{
3219	struct asc_board *boardp = shost_priv(shost);
3220	int chip_scsi_id;
3221	ASC_DVC_VAR *v;
3222	ASC_DVC_CFG *c;
3223	int i;
3224	int renegotiate = 0;
3225
3226	v = &boardp->dvc_var.asc_dvc_var;
3227	c = &boardp->dvc_cfg.asc_dvc_cfg;
3228	chip_scsi_id = c->chip_scsi_id;
3229
3230	seq_printf(m,
3231		   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3232		   shost->host_no);
3233
3234	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3235		   "mcode_version 0x%x, err_code %u\n",
3236		   c->chip_version, c->mcode_date, c->mcode_version,
3237		   v->err_code);
3238
3239	/* Current number of commands waiting for the host. */
3240	seq_printf(m,
3241		   " Total Command Pending: %d\n", v->cur_total_qng);
3242
3243	seq_puts(m, " Command Queuing:");
3244	for (i = 0; i <= ASC_MAX_TID; i++) {
3245		if ((chip_scsi_id == i) ||
3246		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3247			continue;
3248		}
3249		seq_printf(m, " %X:%c",
3250			   i,
3251			   (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3252	}
3253
3254	/* Current number of commands waiting for a device. */
3255	seq_puts(m, "\n Command Queue Pending:");
3256	for (i = 0; i <= ASC_MAX_TID; i++) {
3257		if ((chip_scsi_id == i) ||
3258		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3259			continue;
3260		}
3261		seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3262	}
3263
3264	/* Current limit on number of commands that can be sent to a device. */
3265	seq_puts(m, "\n Command Queue Limit:");
3266	for (i = 0; i <= ASC_MAX_TID; i++) {
3267		if ((chip_scsi_id == i) ||
3268		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3269			continue;
3270		}
3271		seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3272	}
3273
3274	/* Indicate whether the device has returned queue full status. */
3275	seq_puts(m, "\n Command Queue Full:");
3276	for (i = 0; i <= ASC_MAX_TID; i++) {
3277		if ((chip_scsi_id == i) ||
3278		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3279			continue;
3280		}
3281		if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3282			seq_printf(m, " %X:Y-%d",
3283				   i, boardp->queue_full_cnt[i]);
3284		else
3285			seq_printf(m, " %X:N", i);
3286	}
3287
3288	seq_puts(m, "\n Synchronous Transfer:");
3289	for (i = 0; i <= ASC_MAX_TID; i++) {
3290		if ((chip_scsi_id == i) ||
3291		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3292			continue;
3293		}
3294		seq_printf(m, " %X:%c",
3295			   i,
3296			   (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3297	}
3298	seq_putc(m, '\n');
3299
3300	for (i = 0; i <= ASC_MAX_TID; i++) {
3301		uchar syn_period_ix;
3302
3303		if ((chip_scsi_id == i) ||
3304		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3305		    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3306			continue;
3307		}
3308
3309		seq_printf(m, "  %X:", i);
3310
3311		if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3312			seq_puts(m, " Asynchronous");
3313		} else {
3314			syn_period_ix =
3315			    (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3316							   1);
3317
3318			seq_printf(m,
3319				   " Transfer Period Factor: %d (%d.%d Mhz),",
3320				   v->sdtr_period_tbl[syn_period_ix],
3321				   250 / v->sdtr_period_tbl[syn_period_ix],
3322				   ASC_TENTHS(250,
3323					      v->sdtr_period_tbl[syn_period_ix]));
3324
3325			seq_printf(m, " REQ/ACK Offset: %d",
3326				   boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3327		}
3328
3329		if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3330			seq_puts(m, "*\n");
3331			renegotiate = 1;
3332		} else {
3333			seq_putc(m, '\n');
3334		}
3335	}
3336
3337	if (renegotiate) {
3338		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3339	}
3340}
3341
3342/*
3343 * asc_prt_adv_board_info()
3344 *
3345 * Print dynamic board configuration information.
3346 */
3347static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3348{
3349	struct asc_board *boardp = shost_priv(shost);
3350	int i;
3351	ADV_DVC_VAR *v;
3352	ADV_DVC_CFG *c;
3353	AdvPortAddr iop_base;
3354	ushort chip_scsi_id;
3355	ushort lramword;
3356	uchar lrambyte;
3357	ushort tagqng_able;
3358	ushort sdtr_able, wdtr_able;
3359	ushort wdtr_done, sdtr_done;
3360	ushort period = 0;
3361	int renegotiate = 0;
3362
3363	v = &boardp->dvc_var.adv_dvc_var;
3364	c = &boardp->dvc_cfg.adv_dvc_cfg;
3365	iop_base = v->iop_base;
3366	chip_scsi_id = v->chip_scsi_id;
3367
3368	seq_printf(m,
3369		   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3370		   shost->host_no);
3371
3372	seq_printf(m,
3373		   " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3374		   (unsigned long)v->iop_base,
3375		   AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3376		   v->err_code);
3377
3378	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3379		   "mcode_version 0x%x\n", c->chip_version,
3380		   c->mcode_date, c->mcode_version);
3381
3382	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3383	seq_puts(m, " Queuing Enabled:");
3384	for (i = 0; i <= ADV_MAX_TID; i++) {
3385		if ((chip_scsi_id == i) ||
3386		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3387			continue;
3388		}
3389
3390		seq_printf(m, " %X:%c",
3391			   i,
3392			   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3393	}
3394
3395	seq_puts(m, "\n Queue Limit:");
3396	for (i = 0; i <= ADV_MAX_TID; i++) {
3397		if ((chip_scsi_id == i) ||
3398		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3399			continue;
3400		}
3401
3402		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3403				lrambyte);
3404
3405		seq_printf(m, " %X:%d", i, lrambyte);
3406	}
3407
3408	seq_puts(m, "\n Command Pending:");
3409	for (i = 0; i <= ADV_MAX_TID; i++) {
3410		if ((chip_scsi_id == i) ||
3411		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3412			continue;
3413		}
3414
3415		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3416				lrambyte);
3417
3418		seq_printf(m, " %X:%d", i, lrambyte);
3419	}
3420	seq_putc(m, '\n');
3421
3422	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3423	seq_puts(m, " Wide Enabled:");
3424	for (i = 0; i <= ADV_MAX_TID; i++) {
3425		if ((chip_scsi_id == i) ||
3426		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3427			continue;
3428		}
3429
3430		seq_printf(m, " %X:%c",
3431			   i,
3432			   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3433	}
3434	seq_putc(m, '\n');
3435
3436	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3437	seq_puts(m, " Transfer Bit Width:");
3438	for (i = 0; i <= ADV_MAX_TID; i++) {
3439		if ((chip_scsi_id == i) ||
3440		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3441			continue;
3442		}
3443
3444		AdvReadWordLram(iop_base,
3445				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3446				lramword);
3447
3448		seq_printf(m, " %X:%d",
3449			   i, (lramword & 0x8000) ? 16 : 8);
3450
3451		if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3452		    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3453			seq_putc(m, '*');
3454			renegotiate = 1;
3455		}
3456	}
3457	seq_putc(m, '\n');
3458
3459	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3460	seq_puts(m, " Synchronous Enabled:");
3461	for (i = 0; i <= ADV_MAX_TID; i++) {
3462		if ((chip_scsi_id == i) ||
3463		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3464			continue;
3465		}
3466
3467		seq_printf(m, " %X:%c",
3468			   i,
3469			   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3470	}
3471	seq_putc(m, '\n');
3472
3473	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3474	for (i = 0; i <= ADV_MAX_TID; i++) {
3475
3476		AdvReadWordLram(iop_base,
3477				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3478				lramword);
3479		lramword &= ~0x8000;
3480
3481		if ((chip_scsi_id == i) ||
3482		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3483		    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3484			continue;
3485		}
3486
3487		seq_printf(m, "  %X:", i);
3488
3489		if ((lramword & 0x1F) == 0) {	/* Check for REQ/ACK Offset 0. */
3490			seq_puts(m, " Asynchronous");
3491		} else {
3492			seq_puts(m, " Transfer Period Factor: ");
3493
3494			if ((lramword & 0x1F00) == 0x1100) {	/* 80 Mhz */
3495				seq_puts(m, "9 (80.0 Mhz),");
3496			} else if ((lramword & 0x1F00) == 0x1000) {	/* 40 Mhz */
3497				seq_puts(m, "10 (40.0 Mhz),");
3498			} else {	/* 20 Mhz or below. */
3499
3500				period = (((lramword >> 8) * 25) + 50) / 4;
3501
3502				if (period == 0) {	/* Should never happen. */
3503					seq_printf(m, "%d (? Mhz), ", period);
3504				} else {
3505					seq_printf(m,
3506						   "%d (%d.%d Mhz),",
3507						   period, 250 / period,
3508						   ASC_TENTHS(250, period));
3509				}
3510			}
3511
3512			seq_printf(m, " REQ/ACK Offset: %d",
3513				   lramword & 0x1F);
3514		}
3515
3516		if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3517			seq_puts(m, "*\n");
3518			renegotiate = 1;
3519		} else {
3520			seq_putc(m, '\n');
3521		}
3522	}
3523
3524	if (renegotiate) {
3525		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3526	}
3527}
3528
3529#ifdef ADVANSYS_STATS
3530/*
3531 * asc_prt_board_stats()
3532 */
3533static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3534{
3535	struct asc_board *boardp = shost_priv(shost);
3536	struct asc_stats *s = &boardp->asc_stats;
3537
3538	seq_printf(m,
3539		   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3540		   shost->host_no);
3541
3542	seq_printf(m,
3543		   " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3544		   s->queuecommand, s->reset, s->biosparam,
3545		   s->interrupt);
3546
3547	seq_printf(m,
3548		   " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3549		   s->callback, s->done, s->build_error,
3550		   s->adv_build_noreq, s->adv_build_nosg);
3551
3552	seq_printf(m,
3553		   " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3554		   s->exe_noerror, s->exe_busy, s->exe_error,
3555		   s->exe_unknown);
3556
3557	/*
3558	 * Display data transfer statistics.
3559	 */
3560	if (s->xfer_cnt > 0) {
3561		seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3562			   s->xfer_cnt, s->xfer_elem);
3563
3564		seq_printf(m, "xfer_bytes %u.%01u kb\n",
3565			   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3566
3567		/* Scatter gather transfer statistics */
3568		seq_printf(m, " avg_num_elem %u.%01u, ",
3569			   s->xfer_elem / s->xfer_cnt,
3570			   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3571
3572		seq_printf(m, "avg_elem_size %u.%01u kb, ",
3573			   (s->xfer_sect / 2) / s->xfer_elem,
3574			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3575
3576		seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3577			   (s->xfer_sect / 2) / s->xfer_cnt,
3578			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3579	}
3580}
3581#endif /* ADVANSYS_STATS */
3582
3583/*
3584 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3585 *
3586 * m: seq_file to print into
3587 * shost: Scsi_Host
3588 *
3589 * Return the number of bytes read from or written to a
3590 * /proc/scsi/advansys/[0...] file.
3591 */
3592static int
3593advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3594{
3595	struct asc_board *boardp = shost_priv(shost);
3596
3597	ASC_DBG(1, "begin\n");
3598
3599	/*
3600	 * User read of /proc/scsi/advansys/[0...] file.
3601	 */
3602
3603	/*
3604	 * Get board configuration information.
3605	 *
3606	 * advansys_info() returns the board string from its own static buffer.
3607	 */
3608	/* Copy board information. */
3609	seq_printf(m, "%s\n", (char *)advansys_info(shost));
3610	/*
3611	 * Display Wide Board BIOS Information.
3612	 */
3613	if (!ASC_NARROW_BOARD(boardp))
3614		asc_prt_adv_bios(m, shost);
3615
3616	/*
3617	 * Display driver information for each device attached to the board.
3618	 */
3619	asc_prt_board_devices(m, shost);
3620
3621	/*
3622	 * Display EEPROM configuration for the board.
3623	 */
3624	if (ASC_NARROW_BOARD(boardp))
3625		asc_prt_asc_board_eeprom(m, shost);
3626	else
3627		asc_prt_adv_board_eeprom(m, shost);
3628
3629	/*
3630	 * Display driver configuration and information for the board.
3631	 */
3632	asc_prt_driver_conf(m, shost);
3633
3634#ifdef ADVANSYS_STATS
3635	/*
3636	 * Display driver statistics for the board.
3637	 */
3638	asc_prt_board_stats(m, shost);
3639#endif /* ADVANSYS_STATS */
3640
3641	/*
3642	 * Display Asc Library dynamic configuration information
3643	 * for the board.
3644	 */
3645	if (ASC_NARROW_BOARD(boardp))
3646		asc_prt_asc_board_info(m, shost);
3647	else
3648		asc_prt_adv_board_info(m, shost);
3649	return 0;
3650}
3651#endif /* CONFIG_PROC_FS */
3652
3653static void asc_scsi_done(struct scsi_cmnd *scp)
3654{
3655	scsi_dma_unmap(scp);
3656	ASC_STATS(scp->device->host, done);
3657	scp->scsi_done(scp);
3658}
3659
3660static void AscSetBank(PortAddr iop_base, uchar bank)
3661{
3662	uchar val;
3663
3664	val = AscGetChipControl(iop_base) &
3665	    (~
3666	     (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3667	      CC_CHIP_RESET));
3668	if (bank == 1) {
3669		val |= CC_BANK_ONE;
3670	} else if (bank == 2) {
3671		val |= CC_DIAG | CC_BANK_ONE;
3672	} else {
3673		val &= ~CC_BANK_ONE;
3674	}
3675	AscSetChipControl(iop_base, val);
3676}
3677
3678static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3679{
3680	AscSetBank(iop_base, 1);
3681	AscWriteChipIH(iop_base, ins_code);
3682	AscSetBank(iop_base, 0);
3683}
3684
3685static int AscStartChip(PortAddr iop_base)
3686{
3687	AscSetChipControl(iop_base, 0);
3688	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3689		return (0);
3690	}
3691	return (1);
3692}
3693
3694static bool AscStopChip(PortAddr iop_base)
3695{
3696	uchar cc_val;
3697
3698	cc_val =
3699	    AscGetChipControl(iop_base) &
3700	    (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3701	AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3702	AscSetChipIH(iop_base, INS_HALT);
3703	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3704	if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3705		return false;
3706	}
3707	return true;
3708}
3709
3710static bool AscIsChipHalted(PortAddr iop_base)
3711{
3712	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3713		if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3714			return true;
3715		}
3716	}
3717	return false;
3718}
3719
3720static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3721{
3722	PortAddr iop_base;
3723	int i = 10;
3724
3725	iop_base = asc_dvc->iop_base;
3726	while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3727	       && (i-- > 0)) {
3728		mdelay(100);
3729	}
3730	AscStopChip(iop_base);
3731	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3732	udelay(60);
3733	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3734	AscSetChipIH(iop_base, INS_HALT);
3735	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3736	AscSetChipControl(iop_base, CC_HALT);
3737	mdelay(200);
3738	AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3739	AscSetChipStatus(iop_base, 0);
3740	return (AscIsChipHalted(iop_base));
3741}
3742
3743static int AscFindSignature(PortAddr iop_base)
3744{
3745	ushort sig_word;
3746
3747	ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3748		 iop_base, AscGetChipSignatureByte(iop_base));
3749	if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3750		ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3751			 iop_base, AscGetChipSignatureWord(iop_base));
3752		sig_word = AscGetChipSignatureWord(iop_base);
3753		if ((sig_word == (ushort)ASC_1000_ID0W) ||
3754		    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3755			return (1);
3756		}
3757	}
3758	return (0);
3759}
3760
3761static void AscEnableInterrupt(PortAddr iop_base)
3762{
3763	ushort cfg;
3764
3765	cfg = AscGetChipCfgLsw(iop_base);
3766	AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3767}
3768
3769static void AscDisableInterrupt(PortAddr iop_base)
3770{
3771	ushort cfg;
3772
3773	cfg = AscGetChipCfgLsw(iop_base);
3774	AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3775}
3776
3777static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3778{
3779	unsigned char byte_data;
3780	unsigned short word_data;
3781
3782	if (isodd_word(addr)) {
3783		AscSetChipLramAddr(iop_base, addr - 1);
3784		word_data = AscGetChipLramData(iop_base);
3785		byte_data = (word_data >> 8) & 0xFF;
3786	} else {
3787		AscSetChipLramAddr(iop_base, addr);
3788		word_data = AscGetChipLramData(iop_base);
3789		byte_data = word_data & 0xFF;
3790	}
3791	return byte_data;
3792}
3793
3794static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3795{
3796	ushort word_data;
3797
3798	AscSetChipLramAddr(iop_base, addr);
3799	word_data = AscGetChipLramData(iop_base);
3800	return (word_data);
3801}
3802
3803static void
3804AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3805{
3806	int i;
3807
3808	AscSetChipLramAddr(iop_base, s_addr);
3809	for (i = 0; i < words; i++) {
3810		AscSetChipLramData(iop_base, set_wval);
3811	}
3812}
3813
3814static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3815{
3816	AscSetChipLramAddr(iop_base, addr);
3817	AscSetChipLramData(iop_base, word_val);
3818}
3819
3820static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3821{
3822	ushort word_data;
3823
3824	if (isodd_word(addr)) {
3825		addr--;
3826		word_data = AscReadLramWord(iop_base, addr);
3827		word_data &= 0x00FF;
3828		word_data |= (((ushort)byte_val << 8) & 0xFF00);
3829	} else {
3830		word_data = AscReadLramWord(iop_base, addr);
3831		word_data &= 0xFF00;
3832		word_data |= ((ushort)byte_val & 0x00FF);
3833	}
3834	AscWriteLramWord(iop_base, addr, word_data);
3835}
3836
3837/*
3838 * Copy 2 bytes to LRAM.
3839 *
3840 * The source data is assumed to be in little-endian order in memory
3841 * and is maintained in little-endian order when written to LRAM.
3842 */
3843static void
3844AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
3845			const uchar *s_buffer, int words)
3846{
3847	int i;
3848
3849	AscSetChipLramAddr(iop_base, s_addr);
3850	for (i = 0; i < 2 * words; i += 2) {
3851		/*
3852		 * On a little-endian system the second argument below
3853		 * produces a little-endian ushort which is written to
3854		 * LRAM in little-endian order. On a big-endian system
3855		 * the second argument produces a big-endian ushort which
3856		 * is "transparently" byte-swapped by outpw() and written
3857		 * in little-endian order to LRAM.
3858		 */
3859		outpw(iop_base + IOP_RAM_DATA,
3860		      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
3861	}
3862}
3863
3864/*
3865 * Copy 4 bytes to LRAM.
3866 *
3867 * The source data is assumed to be in little-endian order in memory
3868 * and is maintained in little-endian order when written to LRAM.
3869 */
3870static void
3871AscMemDWordCopyPtrToLram(PortAddr iop_base,
3872			 ushort s_addr, uchar *s_buffer, int dwords)
3873{
3874	int i;
3875
3876	AscSetChipLramAddr(iop_base, s_addr);
3877	for (i = 0; i < 4 * dwords; i += 4) {
3878		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);	/* LSW */
3879		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);	/* MSW */
3880	}
3881}
3882
3883/*
3884 * Copy 2 bytes from LRAM.
3885 *
3886 * The source data is assumed to be in little-endian order in LRAM
3887 * and is maintained in little-endian order when written to memory.
3888 */
3889static void
3890AscMemWordCopyPtrFromLram(PortAddr iop_base,
3891			  ushort s_addr, uchar *d_buffer, int words)
3892{
3893	int i;
3894	ushort word;
3895
3896	AscSetChipLramAddr(iop_base, s_addr);
3897	for (i = 0; i < 2 * words; i += 2) {
3898		word = inpw(iop_base + IOP_RAM_DATA);
3899		d_buffer[i] = word & 0xff;
3900		d_buffer[i + 1] = (word >> 8) & 0xff;
3901	}
3902}
3903
3904static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
3905{
3906	u32 sum = 0;
3907	int i;
3908
3909	for (i = 0; i < words; i++, s_addr += 2) {
3910		sum += AscReadLramWord(iop_base, s_addr);
3911	}
3912	return (sum);
3913}
3914
3915static void AscInitLram(ASC_DVC_VAR *asc_dvc)
3916{
3917	uchar i;
3918	ushort s_addr;
3919	PortAddr iop_base;
3920
3921	iop_base = asc_dvc->iop_base;
3922	AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
3923			  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
3924				    64) >> 1));
3925	i = ASC_MIN_ACTIVE_QNO;
3926	s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
3927	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3928			 (uchar)(i + 1));
3929	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3930			 (uchar)(asc_dvc->max_total_qng));
3931	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3932			 (uchar)i);
3933	i++;
3934	s_addr += ASC_QBLK_SIZE;
3935	for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
3936		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3937				 (uchar)(i + 1));
3938		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3939				 (uchar)(i - 1));
3940		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3941				 (uchar)i);
3942	}
3943	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3944			 (uchar)ASC_QLINK_END);
3945	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3946			 (uchar)(asc_dvc->max_total_qng - 1));
3947	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3948			 (uchar)asc_dvc->max_total_qng);
3949	i++;
3950	s_addr += ASC_QBLK_SIZE;
3951	for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
3952	     i++, s_addr += ASC_QBLK_SIZE) {
3953		AscWriteLramByte(iop_base,
3954				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
3955		AscWriteLramByte(iop_base,
3956				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
3957		AscWriteLramByte(iop_base,
3958				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
3959	}
3960}
3961
3962static u32
3963AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
3964		 const uchar *mcode_buf, ushort mcode_size)
3965{
3966	u32 chksum;
3967	ushort mcode_word_size;
3968	ushort mcode_chksum;
3969
3970	/* Write the microcode buffer starting at LRAM address 0. */
3971	mcode_word_size = (ushort)(mcode_size >> 1);
3972	AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
3973	AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
3974
3975	chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
3976	ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
3977	mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
3978						 (ushort)ASC_CODE_SEC_BEG,
3979						 (ushort)((mcode_size -
3980							   s_addr - (ushort)
3981							   ASC_CODE_SEC_BEG) /
3982							  2));
3983	ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
3984	AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
3985	AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
3986	return chksum;
3987}
3988
3989static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
3990{
3991	PortAddr iop_base;
3992	int i;
3993	ushort lram_addr;
3994
3995	iop_base = asc_dvc->iop_base;
3996	AscPutRiscVarFreeQHead(iop_base, 1);
3997	AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3998	AscPutVarFreeQHead(iop_base, 1);
3999	AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4000	AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4001			 (uchar)((int)asc_dvc->max_total_qng + 1));
4002	AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4003			 (uchar)((int)asc_dvc->max_total_qng + 2));
4004	AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4005			 asc_dvc->max_total_qng);
4006	AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4007	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4008	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4009	AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4010	AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4011	AscPutQDoneInProgress(iop_base, 0);
4012	lram_addr = ASC_QADR_BEG;
4013	for (i = 0; i < 32; i++, lram_addr += 2) {
4014		AscWriteLramWord(iop_base, lram_addr, 0);
4015	}
4016}
4017
4018static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4019{
4020	int i;
4021	int warn_code;
4022	PortAddr iop_base;
4023	__le32 phy_addr;
4024	__le32 phy_size;
4025	struct asc_board *board = asc_dvc_to_board(asc_dvc);
4026
4027	iop_base = asc_dvc->iop_base;
4028	warn_code = 0;
4029	for (i = 0; i <= ASC_MAX_TID; i++) {
4030		AscPutMCodeInitSDTRAtID(iop_base, i,
4031					asc_dvc->cfg->sdtr_period_offset[i]);
4032	}
4033
4034	AscInitQLinkVar(asc_dvc);
4035	AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4036			 asc_dvc->cfg->disc_enable);
4037	AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4038			 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4039
4040	/* Ensure overrun buffer is aligned on an 8 byte boundary. */
4041	BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4042	asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4043					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4044	if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4045		warn_code = -ENOMEM;
4046		goto err_dma_map;
4047	}
4048	phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4049	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4050				 (uchar *)&phy_addr, 1);
4051	phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4052	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4053				 (uchar *)&phy_size, 1);
4054
4055	asc_dvc->cfg->mcode_date =
4056	    AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4057	asc_dvc->cfg->mcode_version =
4058	    AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4059
4060	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4061	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4062		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4063		warn_code = -EINVAL;
4064		goto err_mcode_start;
4065	}
4066	if (AscStartChip(iop_base) != 1) {
4067		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4068		warn_code = -EIO;
4069		goto err_mcode_start;
4070	}
4071
4072	return warn_code;
4073
4074err_mcode_start:
4075	dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4076			 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4077err_dma_map:
4078	asc_dvc->overrun_dma = 0;
4079	return warn_code;
4080}
4081
4082static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4083{
4084	const struct firmware *fw;
4085	const char fwname[] = "advansys/mcode.bin";
4086	int err;
4087	unsigned long chksum;
4088	int warn_code;
4089	PortAddr iop_base;
4090
4091	iop_base = asc_dvc->iop_base;
4092	warn_code = 0;
4093	if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4094	    !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4095		AscResetChipAndScsiBus(asc_dvc);
4096		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4097	}
4098	asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4099	if (asc_dvc->err_code != 0)
4100		return ASC_ERROR;
4101	if (!AscFindSignature(asc_dvc->iop_base)) {
4102		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4103		return warn_code;
4104	}
4105	AscDisableInterrupt(iop_base);
4106	AscInitLram(asc_dvc);
4107
4108	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4109	if (err) {
4110		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4111		       fwname, err);
4112		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4113		return err;
4114	}
4115	if (fw->size < 4) {
4116		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4117		       fw->size, fwname);
4118		release_firmware(fw);
4119		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4120		return -EINVAL;
4121	}
4122	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4123		 (fw->data[1] << 8) | fw->data[0];
4124	ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4125	if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4126			     fw->size - 4) != chksum) {
4127		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4128		release_firmware(fw);
4129		return warn_code;
4130	}
4131	release_firmware(fw);
4132	warn_code |= AscInitMicroCodeVar(asc_dvc);
4133	if (!asc_dvc->overrun_dma)
4134		return warn_code;
4135	asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4136	AscEnableInterrupt(iop_base);
4137	return warn_code;
4138}
4139
4140/*
4141 * Load the Microcode
4142 *
4143 * Write the microcode image to RISC memory starting at address 0.
4144 *
4145 * The microcode is stored compressed in the following format:
4146 *
4147 *  254 word (508 byte) table indexed by byte code followed
4148 *  by the following byte codes:
4149 *
4150 *    1-Byte Code:
4151 *      00: Emit word 0 in table.
4152 *      01: Emit word 1 in table.
4153 *      .
4154 *      FD: Emit word 253 in table.
4155 *
4156 *    Multi-Byte Code:
4157 *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4158 *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4159 *
4160 * Returns 0 or an error if the checksum doesn't match
4161 */
4162static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4163			    int size, int memsize, int chksum)
4164{
4165	int i, j, end, len = 0;
4166	u32 sum;
4167
4168	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4169
4170	for (i = 253 * 2; i < size; i++) {
4171		if (buf[i] == 0xff) {
4172			unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4173			for (j = 0; j < buf[i + 1]; j++) {
4174				AdvWriteWordAutoIncLram(iop_base, word);
4175				len += 2;
4176			}
4177			i += 3;
4178		} else if (buf[i] == 0xfe) {
4179			unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4180			AdvWriteWordAutoIncLram(iop_base, word);
4181			i += 2;
4182			len += 2;
4183		} else {
4184			unsigned int off = buf[i] * 2;
4185			unsigned short word = (buf[off + 1] << 8) | buf[off];
4186			AdvWriteWordAutoIncLram(iop_base, word);
4187			len += 2;
4188		}
4189	}
4190
4191	end = len;
4192
4193	while (len < memsize) {
4194		AdvWriteWordAutoIncLram(iop_base, 0);
4195		len += 2;
4196	}
4197
4198	/* Verify the microcode checksum. */
4199	sum = 0;
4200	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4201
4202	for (len = 0; len < end; len += 2) {
4203		sum += AdvReadWordAutoIncLram(iop_base);
4204	}
4205
4206	if (sum != chksum)
4207		return ASC_IERR_MCODE_CHKSUM;
4208
4209	return 0;
4210}
4211
4212static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
4213{
4214	off_t carr_offset = 0, next_offset;
4215	dma_addr_t carr_paddr;
4216	int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
4217
4218	for (i = 0; i < carr_num; i++) {
4219		carr_offset = i * sizeof(ADV_CARR_T);
4220		/* Get physical address of the carrier 'carrp'. */
4221		carr_paddr = adv_dvc->carrier_addr + carr_offset;
4222
4223		adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
4224		adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
4225		adv_dvc->carrier[i].areq_vpa = 0;
4226		next_offset = carr_offset + sizeof(ADV_CARR_T);
4227		if (i == carr_num)
4228			next_offset = ~0;
4229		adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
4230	}
4231	/*
4232	 * We cannot have a carrier with 'carr_va' of '0', as
4233	 * a reference to this carrier would be interpreted as
4234	 * list termination.
4235	 * So start at carrier 1 with the freelist.
4236	 */
4237	adv_dvc->carr_freelist = &adv_dvc->carrier[1];
4238}
4239
4240static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
4241{
4242	int index;
4243
4244	BUG_ON(offset > ADV_CARRIER_BUFSIZE);
4245
4246	index = offset / sizeof(ADV_CARR_T);
4247	return &adv_dvc->carrier[index];
4248}
4249
4250static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
4251{
4252	ADV_CARR_T *carrp = adv_dvc->carr_freelist;
4253	u32 next_vpa = le32_to_cpu(carrp->next_vpa);
4254
4255	if (next_vpa == 0 || next_vpa == ~0) {
4256		ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
4257		return NULL;
4258	}
4259
4260	adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
4261	/*
4262	 * insert stopper carrier to terminate list
4263	 */
4264	carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
4265
4266	return carrp;
4267}
4268
4269/*
4270 * 'offset' is the index in the request pointer array
4271 */
4272static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
4273{
4274	struct asc_board *boardp = adv_dvc->drv_ptr;
4275
4276	BUG_ON(offset > adv_dvc->max_host_qng);
4277	return &boardp->adv_reqp[offset];
4278}
4279
4280/*
4281 * Send an idle command to the chip and wait for completion.
4282 *
4283 * Command completion is polled for once per microsecond.
4284 *
4285 * The function can be called from anywhere including an interrupt handler.
4286 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4287 * functions to prevent reentrancy.
4288 *
4289 * Return Values:
4290 *   ADV_TRUE - command completed successfully
4291 *   ADV_FALSE - command failed
4292 *   ADV_ERROR - command timed out
4293 */
4294static int
4295AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4296	       ushort idle_cmd, u32 idle_cmd_parameter)
4297{
4298	int result, i, j;
4299	AdvPortAddr iop_base;
4300
4301	iop_base = asc_dvc->iop_base;
4302
4303	/*
4304	 * Clear the idle command status which is set by the microcode
4305	 * to a non-zero value to indicate when the command is completed.
4306	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4307	 */
4308	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4309
4310	/*
4311	 * Write the idle command value after the idle command parameter
4312	 * has been written to avoid a race condition. If the order is not
4313	 * followed, the microcode may process the idle command before the
4314	 * parameters have been written to LRAM.
4315	 */
4316	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4317				cpu_to_le32(idle_cmd_parameter));
4318	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4319
4320	/*
4321	 * Tickle the RISC to tell it to process the idle command.
4322	 */
4323	AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4324	if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4325		/*
4326		 * Clear the tickle value. In the ASC-3550 the RISC flag
4327		 * command 'clr_tickle_b' does not work unless the host
4328		 * value is cleared.
4329		 */
4330		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4331	}
4332
4333	/* Wait for up to 100 millisecond for the idle command to timeout. */
4334	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4335		/* Poll once each microsecond for command completion. */
4336		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4337			AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4338					result);
4339			if (result != 0)
4340				return result;
4341			udelay(1);
4342		}
4343	}
4344
4345	BUG();		/* The idle command should never timeout. */
4346	return ADV_ERROR;
4347}
4348
4349/*
4350 * Reset SCSI Bus and purge all outstanding requests.
4351 *
4352 * Return Value:
4353 *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4354 *      ADV_FALSE(0) -  Microcode command failed.
4355 *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4356 *                      may be hung which requires driver recovery.
4357 */
4358static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4359{
4360	int status;
4361
4362	/*
4363	 * Send the SCSI Bus Reset idle start idle command which asserts
4364	 * the SCSI Bus Reset signal.
4365	 */
4366	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4367	if (status != ADV_TRUE) {
4368		return status;
4369	}
4370
4371	/*
4372	 * Delay for the specified SCSI Bus Reset hold time.
4373	 *
4374	 * The hold time delay is done on the host because the RISC has no
4375	 * microsecond accurate timer.
4376	 */
4377	udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4378
4379	/*
4380	 * Send the SCSI Bus Reset end idle command which de-asserts
4381	 * the SCSI Bus Reset signal and purges any pending requests.
4382	 */
4383	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4384	if (status != ADV_TRUE) {
4385		return status;
4386	}
4387
4388	mdelay(asc_dvc->scsi_reset_wait * 1000);	/* XXX: msleep? */
4389
4390	return status;
4391}
4392
4393/*
4394 * Initialize the ASC-3550.
4395 *
4396 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4397 *
4398 * For a non-fatal error return a warning code. If there are no warnings
4399 * then 0 is returned.
4400 *
4401 * Needed after initialization for error recovery.
4402 */
4403static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4404{
4405	const struct firmware *fw;
4406	const char fwname[] = "advansys/3550.bin";
4407	AdvPortAddr iop_base;
4408	ushort warn_code;
4409	int begin_addr;
4410	int end_addr;
4411	ushort code_sum;
4412	int word;
4413	int i;
4414	int err;
4415	unsigned long chksum;
4416	ushort scsi_cfg1;
4417	uchar tid;
4418	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4419	ushort wdtr_able = 0, sdtr_able, tagqng_able;
4420	uchar max_cmd[ADV_MAX_TID + 1];
4421
4422	/* If there is already an error, don't continue. */
4423	if (asc_dvc->err_code != 0)
4424		return ADV_ERROR;
4425
4426	/*
4427	 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4428	 */
4429	if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4430		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4431		return ADV_ERROR;
4432	}
4433
4434	warn_code = 0;
4435	iop_base = asc_dvc->iop_base;
4436
4437	/*
4438	 * Save the RISC memory BIOS region before writing the microcode.
4439	 * The BIOS may already be loaded and using its RISC LRAM region
4440	 * so its region must be saved and restored.
4441	 *
4442	 * Note: This code makes the assumption, which is currently true,
4443	 * that a chip reset does not clear RISC LRAM.
4444	 */
4445	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4446		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4447				bios_mem[i]);
4448	}
4449
4450	/*
4451	 * Save current per TID negotiated values.
4452	 */
4453	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4454		ushort bios_version, major, minor;
4455
4456		bios_version =
4457		    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4458		major = (bios_version >> 12) & 0xF;
4459		minor = (bios_version >> 8) & 0xF;
4460		if (major < 3 || (major == 3 && minor == 1)) {
4461			/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4462			AdvReadWordLram(iop_base, 0x120, wdtr_able);
4463		} else {
4464			AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4465		}
4466	}
4467	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4468	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4469	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4470		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4471				max_cmd[tid]);
4472	}
4473
4474	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4475	if (err) {
4476		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4477		       fwname, err);
4478		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4479		return err;
4480	}
4481	if (fw->size < 4) {
4482		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4483		       fw->size, fwname);
4484		release_firmware(fw);
4485		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4486		return -EINVAL;
4487	}
4488	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4489		 (fw->data[1] << 8) | fw->data[0];
4490	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4491					     fw->size - 4, ADV_3550_MEMSIZE,
4492					     chksum);
4493	release_firmware(fw);
4494	if (asc_dvc->err_code)
4495		return ADV_ERROR;
4496
4497	/*
4498	 * Restore the RISC memory BIOS region.
4499	 */
4500	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4501		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4502				 bios_mem[i]);
4503	}
4504
4505	/*
4506	 * Calculate and write the microcode code checksum to the microcode
4507	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4508	 */
4509	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4510	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4511	code_sum = 0;
4512	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4513	for (word = begin_addr; word < end_addr; word += 2) {
4514		code_sum += AdvReadWordAutoIncLram(iop_base);
4515	}
4516	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4517
4518	/*
4519	 * Read and save microcode version and date.
4520	 */
4521	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4522			asc_dvc->cfg->mcode_date);
4523	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4524			asc_dvc->cfg->mcode_version);
4525
4526	/*
4527	 * Set the chip type to indicate the ASC3550.
4528	 */
4529	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4530
4531	/*
4532	 * If the PCI Configuration Command Register "Parity Error Response
4533	 * Control" Bit was clear (0), then set the microcode variable
4534	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4535	 * to ignore DMA parity errors.
4536	 */
4537	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4538		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4539		word |= CONTROL_FLAG_IGNORE_PERR;
4540		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4541	}
4542
4543	/*
4544	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4545	 * threshold of 128 bytes. This register is only accessible to the host.
4546	 */
4547	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4548			     START_CTL_EMFU | READ_CMD_MRM);
4549
4550	/*
4551	 * Microcode operating variables for WDTR, SDTR, and command tag
4552	 * queuing will be set in slave_configure() based on what a
4553	 * device reports it is capable of in Inquiry byte 7.
4554	 *
4555	 * If SCSI Bus Resets have been disabled, then directly set
4556	 * SDTR and WDTR from the EEPROM configuration. This will allow
4557	 * the BIOS and warm boot to work without a SCSI bus hang on
4558	 * the Inquiry caused by host and target mismatched DTR values.
4559	 * Without the SCSI Bus Reset, before an Inquiry a device can't
4560	 * be assumed to be in Asynchronous, Narrow mode.
4561	 */
4562	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4563		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4564				 asc_dvc->wdtr_able);
4565		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4566				 asc_dvc->sdtr_able);
4567	}
4568
4569	/*
4570	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4571	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4572	 * bitmask. These values determine the maximum SDTR speed negotiated
4573	 * with a device.
4574	 *
4575	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4576	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4577	 * without determining here whether the device supports SDTR.
4578	 *
4579	 * 4-bit speed  SDTR speed name
4580	 * ===========  ===============
4581	 * 0000b (0x0)  SDTR disabled
4582	 * 0001b (0x1)  5 Mhz
4583	 * 0010b (0x2)  10 Mhz
4584	 * 0011b (0x3)  20 Mhz (Ultra)
4585	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4586	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4587	 * 0110b (0x6)  Undefined
4588	 * .
4589	 * 1111b (0xF)  Undefined
4590	 */
4591	word = 0;
4592	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4593		if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4594			/* Set Ultra speed for TID 'tid'. */
4595			word |= (0x3 << (4 * (tid % 4)));
4596		} else {
4597			/* Set Fast speed for TID 'tid'. */
4598			word |= (0x2 << (4 * (tid % 4)));
4599		}
4600		if (tid == 3) {	/* Check if done with sdtr_speed1. */
4601			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4602			word = 0;
4603		} else if (tid == 7) {	/* Check if done with sdtr_speed2. */
4604			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4605			word = 0;
4606		} else if (tid == 11) {	/* Check if done with sdtr_speed3. */
4607			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4608			word = 0;
4609		} else if (tid == 15) {	/* Check if done with sdtr_speed4. */
4610			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4611			/* End of loop. */
4612		}
4613	}
4614
4615	/*
4616	 * Set microcode operating variable for the disconnect per TID bitmask.
4617	 */
4618	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4619			 asc_dvc->cfg->disc_enable);
4620
4621	/*
4622	 * Set SCSI_CFG0 Microcode Default Value.
4623	 *
4624	 * The microcode will set the SCSI_CFG0 register using this value
4625	 * after it is started below.
4626	 */
4627	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4628			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4629			 asc_dvc->chip_scsi_id);
4630
4631	/*
4632	 * Determine SCSI_CFG1 Microcode Default Value.
4633	 *
4634	 * The microcode will set the SCSI_CFG1 register using this value
4635	 * after it is started below.
4636	 */
4637
4638	/* Read current SCSI_CFG1 Register value. */
4639	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4640
4641	/*
4642	 * If all three connectors are in use, return an error.
4643	 */
4644	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4645	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4646		asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4647		return ADV_ERROR;
4648	}
4649
4650	/*
4651	 * If the internal narrow cable is reversed all of the SCSI_CTRL
4652	 * register signals will be set. Check for and return an error if
4653	 * this condition is found.
4654	 */
4655	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4656		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4657		return ADV_ERROR;
4658	}
4659
4660	/*
4661	 * If this is a differential board and a single-ended device
4662	 * is attached to one of the connectors, return an error.
4663	 */
4664	if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4665		asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4666		return ADV_ERROR;
4667	}
4668
4669	/*
4670	 * If automatic termination control is enabled, then set the
4671	 * termination value based on a table listed in a_condor.h.
4672	 *
4673	 * If manual termination was specified with an EEPROM setting
4674	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4675	 * is ready to be 'ored' into SCSI_CFG1.
4676	 */
4677	if (asc_dvc->cfg->termination == 0) {
4678		/*
4679		 * The software always controls termination by setting TERM_CTL_SEL.
4680		 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4681		 */
4682		asc_dvc->cfg->termination |= TERM_CTL_SEL;
4683
4684		switch (scsi_cfg1 & CABLE_DETECT) {
4685			/* TERM_CTL_H: on, TERM_CTL_L: on */
4686		case 0x3:
4687		case 0x7:
4688		case 0xB:
4689		case 0xD:
4690		case 0xE:
4691		case 0xF:
4692			asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4693			break;
4694
4695			/* TERM_CTL_H: on, TERM_CTL_L: off */
4696		case 0x1:
4697		case 0x5:
4698		case 0x9:
4699		case 0xA:
4700		case 0xC:
4701			asc_dvc->cfg->termination |= TERM_CTL_H;
4702			break;
4703
4704			/* TERM_CTL_H: off, TERM_CTL_L: off */
4705		case 0x2:
4706		case 0x6:
4707			break;
4708		}
4709	}
4710
4711	/*
4712	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4713	 */
4714	scsi_cfg1 &= ~TERM_CTL;
4715
4716	/*
4717	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4718	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4719	 * referenced, because the hardware internally inverts
4720	 * the Termination High and Low bits if TERM_POL is set.
4721	 */
4722	scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4723
4724	/*
4725	 * Set SCSI_CFG1 Microcode Default Value
4726	 *
4727	 * Set filter value and possibly modified termination control
4728	 * bits in the Microcode SCSI_CFG1 Register Value.
4729	 *
4730	 * The microcode will set the SCSI_CFG1 register using this value
4731	 * after it is started below.
4732	 */
4733	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4734			 FLTR_DISABLE | scsi_cfg1);
4735
4736	/*
4737	 * Set MEM_CFG Microcode Default Value
4738	 *
4739	 * The microcode will set the MEM_CFG register using this value
4740	 * after it is started below.
4741	 *
4742	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4743	 * are defined.
4744	 *
4745	 * ASC-3550 has 8KB internal memory.
4746	 */
4747	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4748			 BIOS_EN | RAM_SZ_8KB);
4749
4750	/*
4751	 * Set SEL_MASK Microcode Default Value
4752	 *
4753	 * The microcode will set the SEL_MASK register using this value
4754	 * after it is started below.
4755	 */
4756	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4757			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4758
4759	AdvBuildCarrierFreelist(asc_dvc);
4760
4761	/*
4762	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4763	 */
4764
4765	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
4766	if (!asc_dvc->icq_sp) {
4767		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4768		return ADV_ERROR;
4769	}
4770
4771	/*
4772	 * Set RISC ICQ physical address start value.
4773	 */
4774	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4775
4776	/*
4777	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4778	 */
4779	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
4780	if (!asc_dvc->irq_sp) {
4781		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4782		return ADV_ERROR;
4783	}
4784
4785	/*
4786	 * Set RISC IRQ physical address start value.
4787	 */
4788	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4789	asc_dvc->carr_pending_cnt = 0;
4790
4791	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4792			     (ADV_INTR_ENABLE_HOST_INTR |
4793			      ADV_INTR_ENABLE_GLOBAL_INTR));
4794
4795	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4796	AdvWriteWordRegister(iop_base, IOPW_PC, word);
4797
4798	/* finally, finally, gentlemen, start your engine */
4799	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4800
4801	/*
4802	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4803	 * Resets should be performed. The RISC has to be running
4804	 * to issue a SCSI Bus Reset.
4805	 */
4806	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4807		/*
4808		 * If the BIOS Signature is present in memory, restore the
4809		 * BIOS Handshake Configuration Table and do not perform
4810		 * a SCSI Bus Reset.
4811		 */
4812		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4813		    0x55AA) {
4814			/*
4815			 * Restore per TID negotiated values.
4816			 */
4817			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4818			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4819			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4820					 tagqng_able);
4821			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4822				AdvWriteByteLram(iop_base,
4823						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4824						 max_cmd[tid]);
4825			}
4826		} else {
4827			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4828				warn_code = ASC_WARN_BUSRESET_ERROR;
4829			}
4830		}
4831	}
4832
4833	return warn_code;
4834}
4835
4836/*
4837 * Initialize the ASC-38C0800.
4838 *
4839 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4840 *
4841 * For a non-fatal error return a warning code. If there are no warnings
4842 * then 0 is returned.
4843 *
4844 * Needed after initialization for error recovery.
4845 */
4846static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
4847{
4848	const struct firmware *fw;
4849	const char fwname[] = "advansys/38C0800.bin";
4850	AdvPortAddr iop_base;
4851	ushort warn_code;
4852	int begin_addr;
4853	int end_addr;
4854	ushort code_sum;
4855	int word;
4856	int i;
4857	int err;
4858	unsigned long chksum;
4859	ushort scsi_cfg1;
4860	uchar byte;
4861	uchar tid;
4862	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4863	ushort wdtr_able, sdtr_able, tagqng_able;
4864	uchar max_cmd[ADV_MAX_TID + 1];
4865
4866	/* If there is already an error, don't continue. */
4867	if (asc_dvc->err_code != 0)
4868		return ADV_ERROR;
4869
4870	/*
4871	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4872	 */
4873	if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
4874		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4875		return ADV_ERROR;
4876	}
4877
4878	warn_code = 0;
4879	iop_base = asc_dvc->iop_base;
4880
4881	/*
4882	 * Save the RISC memory BIOS region before writing the microcode.
4883	 * The BIOS may already be loaded and using its RISC LRAM region
4884	 * so its region must be saved and restored.
4885	 *
4886	 * Note: This code makes the assumption, which is currently true,
4887	 * that a chip reset does not clear RISC LRAM.
4888	 */
4889	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4890		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4891				bios_mem[i]);
4892	}
4893
4894	/*
4895	 * Save current per TID negotiated values.
4896	 */
4897	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4898	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4899	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4900	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4901		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4902				max_cmd[tid]);
4903	}
4904
4905	/*
4906	 * RAM BIST (RAM Built-In Self Test)
4907	 *
4908	 * Address : I/O base + offset 0x38h register (byte).
4909	 * Function: Bit 7-6(RW) : RAM mode
4910	 *                          Normal Mode   : 0x00
4911	 *                          Pre-test Mode : 0x40
4912	 *                          RAM Test Mode : 0x80
4913	 *           Bit 5       : unused
4914	 *           Bit 4(RO)   : Done bit
4915	 *           Bit 3-0(RO) : Status
4916	 *                          Host Error    : 0x08
4917	 *                          Int_RAM Error : 0x04
4918	 *                          RISC Error    : 0x02
4919	 *                          SCSI Error    : 0x01
4920	 *                          No Error      : 0x00
4921	 *
4922	 * Note: RAM BIST code should be put right here, before loading the
4923	 * microcode and after saving the RISC memory BIOS region.
4924	 */
4925
4926	/*
4927	 * LRAM Pre-test
4928	 *
4929	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4930	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4931	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4932	 * to NORMAL_MODE, return an error too.
4933	 */
4934	for (i = 0; i < 2; i++) {
4935		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
4936		mdelay(10);	/* Wait for 10ms before reading back. */
4937		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4938		if ((byte & RAM_TEST_DONE) == 0
4939		    || (byte & 0x0F) != PRE_TEST_VALUE) {
4940			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4941			return ADV_ERROR;
4942		}
4943
4944		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4945		mdelay(10);	/* Wait for 10ms before reading back. */
4946		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
4947		    != NORMAL_VALUE) {
4948			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4949			return ADV_ERROR;
4950		}
4951	}
4952
4953	/*
4954	 * LRAM Test - It takes about 1.5 ms to run through the test.
4955	 *
4956	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4957	 * If Done bit not set or Status not 0, save register byte, set the
4958	 * err_code, and return an error.
4959	 */
4960	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
4961	mdelay(10);	/* Wait for 10ms before checking status. */
4962
4963	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4964	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
4965		/* Get here if Done bit not set or Status not 0. */
4966		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
4967		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
4968		return ADV_ERROR;
4969	}
4970
4971	/* We need to reset back to normal mode after LRAM test passes. */
4972	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4973
4974	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4975	if (err) {
4976		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4977		       fwname, err);
4978		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4979		return err;
4980	}
4981	if (fw->size < 4) {
4982		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4983		       fw->size, fwname);
4984		release_firmware(fw);
4985		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4986		return -EINVAL;
4987	}
4988	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4989		 (fw->data[1] << 8) | fw->data[0];
4990	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4991					     fw->size - 4, ADV_38C0800_MEMSIZE,
4992					     chksum);
4993	release_firmware(fw);
4994	if (asc_dvc->err_code)
4995		return ADV_ERROR;
4996
4997	/*
4998	 * Restore the RISC memory BIOS region.
4999	 */
5000	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5001		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5002				 bios_mem[i]);
5003	}
5004
5005	/*
5006	 * Calculate and write the microcode code checksum to the microcode
5007	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5008	 */
5009	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5010	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5011	code_sum = 0;
5012	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5013	for (word = begin_addr; word < end_addr; word += 2) {
5014		code_sum += AdvReadWordAutoIncLram(iop_base);
5015	}
5016	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5017
5018	/*
5019	 * Read microcode version and date.
5020	 */
5021	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5022			asc_dvc->cfg->mcode_date);
5023	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5024			asc_dvc->cfg->mcode_version);
5025
5026	/*
5027	 * Set the chip type to indicate the ASC38C0800.
5028	 */
5029	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5030
5031	/*
5032	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5033	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5034	 * cable detection and then we are able to read C_DET[3:0].
5035	 *
5036	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5037	 * Microcode Default Value' section below.
5038	 */
5039	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5040	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5041			     scsi_cfg1 | DIS_TERM_DRV);
5042
5043	/*
5044	 * If the PCI Configuration Command Register "Parity Error Response
5045	 * Control" Bit was clear (0), then set the microcode variable
5046	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5047	 * to ignore DMA parity errors.
5048	 */
5049	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5050		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5051		word |= CONTROL_FLAG_IGNORE_PERR;
5052		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5053	}
5054
5055	/*
5056	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5057	 * bits for the default FIFO threshold.
5058	 *
5059	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5060	 *
5061	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5062	 */
5063	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5064			     BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5065			     READ_CMD_MRM);
5066
5067	/*
5068	 * Microcode operating variables for WDTR, SDTR, and command tag
5069	 * queuing will be set in slave_configure() based on what a
5070	 * device reports it is capable of in Inquiry byte 7.
5071	 *
5072	 * If SCSI Bus Resets have been disabled, then directly set
5073	 * SDTR and WDTR from the EEPROM configuration. This will allow
5074	 * the BIOS and warm boot to work without a SCSI bus hang on
5075	 * the Inquiry caused by host and target mismatched DTR values.
5076	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5077	 * be assumed to be in Asynchronous, Narrow mode.
5078	 */
5079	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5080		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5081				 asc_dvc->wdtr_able);
5082		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5083				 asc_dvc->sdtr_able);
5084	}
5085
5086	/*
5087	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5088	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5089	 * configuration values.
5090	 *
5091	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5092	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5093	 * without determining here whether the device supports SDTR.
5094	 */
5095	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5096			 asc_dvc->cfg->disc_enable);
5097	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5098	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5099	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5100	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5101
5102	/*
5103	 * Set SCSI_CFG0 Microcode Default Value.
5104	 *
5105	 * The microcode will set the SCSI_CFG0 register using this value
5106	 * after it is started below.
5107	 */
5108	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5109			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5110			 asc_dvc->chip_scsi_id);
5111
5112	/*
5113	 * Determine SCSI_CFG1 Microcode Default Value.
5114	 *
5115	 * The microcode will set the SCSI_CFG1 register using this value
5116	 * after it is started below.
5117	 */
5118
5119	/* Read current SCSI_CFG1 Register value. */
5120	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5121
5122	/*
5123	 * If the internal narrow cable is reversed all of the SCSI_CTRL
5124	 * register signals will be set. Check for and return an error if
5125	 * this condition is found.
5126	 */
5127	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5128		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5129		return ADV_ERROR;
5130	}
5131
5132	/*
5133	 * All kind of combinations of devices attached to one of four
5134	 * connectors are acceptable except HVD device attached. For example,
5135	 * LVD device can be attached to SE connector while SE device attached
5136	 * to LVD connector.  If LVD device attached to SE connector, it only
5137	 * runs up to Ultra speed.
5138	 *
5139	 * If an HVD device is attached to one of LVD connectors, return an
5140	 * error.  However, there is no way to detect HVD device attached to
5141	 * SE connectors.
5142	 */
5143	if (scsi_cfg1 & HVD) {
5144		asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5145		return ADV_ERROR;
5146	}
5147
5148	/*
5149	 * If either SE or LVD automatic termination control is enabled, then
5150	 * set the termination value based on a table listed in a_condor.h.
5151	 *
5152	 * If manual termination was specified with an EEPROM setting then
5153	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5154	 * to be 'ored' into SCSI_CFG1.
5155	 */
5156	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5157		/* SE automatic termination control is enabled. */
5158		switch (scsi_cfg1 & C_DET_SE) {
5159			/* TERM_SE_HI: on, TERM_SE_LO: on */
5160		case 0x1:
5161		case 0x2:
5162		case 0x3:
5163			asc_dvc->cfg->termination |= TERM_SE;
5164			break;
5165
5166			/* TERM_SE_HI: on, TERM_SE_LO: off */
5167		case 0x0:
5168			asc_dvc->cfg->termination |= TERM_SE_HI;
5169			break;
5170		}
5171	}
5172
5173	if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5174		/* LVD automatic termination control is enabled. */
5175		switch (scsi_cfg1 & C_DET_LVD) {
5176			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
5177		case 0x4:
5178		case 0x8:
5179		case 0xC:
5180			asc_dvc->cfg->termination |= TERM_LVD;
5181			break;
5182
5183			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
5184		case 0x0:
5185			break;
5186		}
5187	}
5188
5189	/*
5190	 * Clear any set TERM_SE and TERM_LVD bits.
5191	 */
5192	scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5193
5194	/*
5195	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5196	 */
5197	scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5198
5199	/*
5200	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5201	 * bits and set possibly modified termination control bits in the
5202	 * Microcode SCSI_CFG1 Register Value.
5203	 */
5204	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5205
5206	/*
5207	 * Set SCSI_CFG1 Microcode Default Value
5208	 *
5209	 * Set possibly modified termination control and reset DIS_TERM_DRV
5210	 * bits in the Microcode SCSI_CFG1 Register Value.
5211	 *
5212	 * The microcode will set the SCSI_CFG1 register using this value
5213	 * after it is started below.
5214	 */
5215	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5216
5217	/*
5218	 * Set MEM_CFG Microcode Default Value
5219	 *
5220	 * The microcode will set the MEM_CFG register using this value
5221	 * after it is started below.
5222	 *
5223	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5224	 * are defined.
5225	 *
5226	 * ASC-38C0800 has 16KB internal memory.
5227	 */
5228	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5229			 BIOS_EN | RAM_SZ_16KB);
5230
5231	/*
5232	 * Set SEL_MASK Microcode Default Value
5233	 *
5234	 * The microcode will set the SEL_MASK register using this value
5235	 * after it is started below.
5236	 */
5237	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5238			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5239
5240	AdvBuildCarrierFreelist(asc_dvc);
5241
5242	/*
5243	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5244	 */
5245
5246	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5247	if (!asc_dvc->icq_sp) {
5248		ASC_DBG(0, "Failed to get ICQ carrier\n");
5249		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5250		return ADV_ERROR;
5251	}
5252
5253	/*
5254	 * Set RISC ICQ physical address start value.
5255	 * carr_pa is LE, must be native before write
5256	 */
5257	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5258
5259	/*
5260	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5261	 */
5262	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5263	if (!asc_dvc->irq_sp) {
5264		ASC_DBG(0, "Failed to get IRQ carrier\n");
5265		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5266		return ADV_ERROR;
5267	}
5268
5269	/*
5270	 * Set RISC IRQ physical address start value.
5271	 *
5272	 * carr_pa is LE, must be native before write *
5273	 */
5274	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5275	asc_dvc->carr_pending_cnt = 0;
5276
5277	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5278			     (ADV_INTR_ENABLE_HOST_INTR |
5279			      ADV_INTR_ENABLE_GLOBAL_INTR));
5280
5281	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5282	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5283
5284	/* finally, finally, gentlemen, start your engine */
5285	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5286
5287	/*
5288	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5289	 * Resets should be performed. The RISC has to be running
5290	 * to issue a SCSI Bus Reset.
5291	 */
5292	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5293		/*
5294		 * If the BIOS Signature is present in memory, restore the
5295		 * BIOS Handshake Configuration Table and do not perform
5296		 * a SCSI Bus Reset.
5297		 */
5298		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5299		    0x55AA) {
5300			/*
5301			 * Restore per TID negotiated values.
5302			 */
5303			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5304			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5305			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5306					 tagqng_able);
5307			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5308				AdvWriteByteLram(iop_base,
5309						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5310						 max_cmd[tid]);
5311			}
5312		} else {
5313			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5314				warn_code = ASC_WARN_BUSRESET_ERROR;
5315			}
5316		}
5317	}
5318
5319	return warn_code;
5320}
5321
5322/*
5323 * Initialize the ASC-38C1600.
5324 *
5325 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5326 *
5327 * For a non-fatal error return a warning code. If there are no warnings
5328 * then 0 is returned.
5329 *
5330 * Needed after initialization for error recovery.
5331 */
5332static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5333{
5334	const struct firmware *fw;
5335	const char fwname[] = "advansys/38C1600.bin";
5336	AdvPortAddr iop_base;
5337	ushort warn_code;
5338	int begin_addr;
5339	int end_addr;
5340	ushort code_sum;
5341	long word;
5342	int i;
5343	int err;
5344	unsigned long chksum;
5345	ushort scsi_cfg1;
5346	uchar byte;
5347	uchar tid;
5348	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5349	ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5350	uchar max_cmd[ASC_MAX_TID + 1];
5351
5352	/* If there is already an error, don't continue. */
5353	if (asc_dvc->err_code != 0) {
5354		return ADV_ERROR;
5355	}
5356
5357	/*
5358	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5359	 */
5360	if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5361		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5362		return ADV_ERROR;
5363	}
5364
5365	warn_code = 0;
5366	iop_base = asc_dvc->iop_base;
5367
5368	/*
5369	 * Save the RISC memory BIOS region before writing the microcode.
5370	 * The BIOS may already be loaded and using its RISC LRAM region
5371	 * so its region must be saved and restored.
5372	 *
5373	 * Note: This code makes the assumption, which is currently true,
5374	 * that a chip reset does not clear RISC LRAM.
5375	 */
5376	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5377		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5378				bios_mem[i]);
5379	}
5380
5381	/*
5382	 * Save current per TID negotiated values.
5383	 */
5384	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5385	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5386	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5387	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5388	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5389		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5390				max_cmd[tid]);
5391	}
5392
5393	/*
5394	 * RAM BIST (Built-In Self Test)
5395	 *
5396	 * Address : I/O base + offset 0x38h register (byte).
5397	 * Function: Bit 7-6(RW) : RAM mode
5398	 *                          Normal Mode   : 0x00
5399	 *                          Pre-test Mode : 0x40
5400	 *                          RAM Test Mode : 0x80
5401	 *           Bit 5       : unused
5402	 *           Bit 4(RO)   : Done bit
5403	 *           Bit 3-0(RO) : Status
5404	 *                          Host Error    : 0x08
5405	 *                          Int_RAM Error : 0x04
5406	 *                          RISC Error    : 0x02
5407	 *                          SCSI Error    : 0x01
5408	 *                          No Error      : 0x00
5409	 *
5410	 * Note: RAM BIST code should be put right here, before loading the
5411	 * microcode and after saving the RISC memory BIOS region.
5412	 */
5413
5414	/*
5415	 * LRAM Pre-test
5416	 *
5417	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5418	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5419	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5420	 * to NORMAL_MODE, return an error too.
5421	 */
5422	for (i = 0; i < 2; i++) {
5423		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5424		mdelay(10);	/* Wait for 10ms before reading back. */
5425		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5426		if ((byte & RAM_TEST_DONE) == 0
5427		    || (byte & 0x0F) != PRE_TEST_VALUE) {
5428			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5429			return ADV_ERROR;
5430		}
5431
5432		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5433		mdelay(10);	/* Wait for 10ms before reading back. */
5434		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5435		    != NORMAL_VALUE) {
5436			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5437			return ADV_ERROR;
5438		}
5439	}
5440
5441	/*
5442	 * LRAM Test - It takes about 1.5 ms to run through the test.
5443	 *
5444	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5445	 * If Done bit not set or Status not 0, save register byte, set the
5446	 * err_code, and return an error.
5447	 */
5448	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5449	mdelay(10);	/* Wait for 10ms before checking status. */
5450
5451	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5452	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5453		/* Get here if Done bit not set or Status not 0. */
5454		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
5455		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5456		return ADV_ERROR;
5457	}
5458
5459	/* We need to reset back to normal mode after LRAM test passes. */
5460	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5461
5462	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5463	if (err) {
5464		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5465		       fwname, err);
5466		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5467		return err;
5468	}
5469	if (fw->size < 4) {
5470		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5471		       fw->size, fwname);
5472		release_firmware(fw);
5473		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5474		return -EINVAL;
5475	}
5476	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5477		 (fw->data[1] << 8) | fw->data[0];
5478	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5479					     fw->size - 4, ADV_38C1600_MEMSIZE,
5480					     chksum);
5481	release_firmware(fw);
5482	if (asc_dvc->err_code)
5483		return ADV_ERROR;
5484
5485	/*
5486	 * Restore the RISC memory BIOS region.
5487	 */
5488	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5489		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5490				 bios_mem[i]);
5491	}
5492
5493	/*
5494	 * Calculate and write the microcode code checksum to the microcode
5495	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5496	 */
5497	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5498	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5499	code_sum = 0;
5500	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5501	for (word = begin_addr; word < end_addr; word += 2) {
5502		code_sum += AdvReadWordAutoIncLram(iop_base);
5503	}
5504	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5505
5506	/*
5507	 * Read microcode version and date.
5508	 */
5509	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5510			asc_dvc->cfg->mcode_date);
5511	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5512			asc_dvc->cfg->mcode_version);
5513
5514	/*
5515	 * Set the chip type to indicate the ASC38C1600.
5516	 */
5517	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5518
5519	/*
5520	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5521	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5522	 * cable detection and then we are able to read C_DET[3:0].
5523	 *
5524	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5525	 * Microcode Default Value' section below.
5526	 */
5527	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5528	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5529			     scsi_cfg1 | DIS_TERM_DRV);
5530
5531	/*
5532	 * If the PCI Configuration Command Register "Parity Error Response
5533	 * Control" Bit was clear (0), then set the microcode variable
5534	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5535	 * to ignore DMA parity errors.
5536	 */
5537	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5538		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5539		word |= CONTROL_FLAG_IGNORE_PERR;
5540		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5541	}
5542
5543	/*
5544	 * If the BIOS control flag AIPP (Asynchronous Information
5545	 * Phase Protection) disable bit is not set, then set the firmware
5546	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5547	 * AIPP checking and encoding.
5548	 */
5549	if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5550		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5551		word |= CONTROL_FLAG_ENABLE_AIPP;
5552		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5553	}
5554
5555	/*
5556	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5557	 * and START_CTL_TH [3:2].
5558	 */
5559	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5560			     FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5561
5562	/*
5563	 * Microcode operating variables for WDTR, SDTR, and command tag
5564	 * queuing will be set in slave_configure() based on what a
5565	 * device reports it is capable of in Inquiry byte 7.
5566	 *
5567	 * If SCSI Bus Resets have been disabled, then directly set
5568	 * SDTR and WDTR from the EEPROM configuration. This will allow
5569	 * the BIOS and warm boot to work without a SCSI bus hang on
5570	 * the Inquiry caused by host and target mismatched DTR values.
5571	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5572	 * be assumed to be in Asynchronous, Narrow mode.
5573	 */
5574	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5575		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5576				 asc_dvc->wdtr_able);
5577		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5578				 asc_dvc->sdtr_able);
5579	}
5580
5581	/*
5582	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5583	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5584	 * configuration values.
5585	 *
5586	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5587	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5588	 * without determining here whether the device supports SDTR.
5589	 */
5590	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5591			 asc_dvc->cfg->disc_enable);
5592	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5593	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5594	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5595	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5596
5597	/*
5598	 * Set SCSI_CFG0 Microcode Default Value.
5599	 *
5600	 * The microcode will set the SCSI_CFG0 register using this value
5601	 * after it is started below.
5602	 */
5603	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5604			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5605			 asc_dvc->chip_scsi_id);
5606
5607	/*
5608	 * Calculate SCSI_CFG1 Microcode Default Value.
5609	 *
5610	 * The microcode will set the SCSI_CFG1 register using this value
5611	 * after it is started below.
5612	 *
5613	 * Each ASC-38C1600 function has only two cable detect bits.
5614	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5615	 */
5616	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5617
5618	/*
5619	 * If the cable is reversed all of the SCSI_CTRL register signals
5620	 * will be set. Check for and return an error if this condition is
5621	 * found.
5622	 */
5623	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5624		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5625		return ADV_ERROR;
5626	}
5627
5628	/*
5629	 * Each ASC-38C1600 function has two connectors. Only an HVD device
5630	 * can not be connected to either connector. An LVD device or SE device
5631	 * may be connected to either connecor. If an SE device is connected,
5632	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5633	 *
5634	 * If an HVD device is attached, return an error.
5635	 */
5636	if (scsi_cfg1 & HVD) {
5637		asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5638		return ADV_ERROR;
5639	}
5640
5641	/*
5642	 * Each function in the ASC-38C1600 uses only the SE cable detect and
5643	 * termination because there are two connectors for each function. Each
5644	 * function may use either LVD or SE mode. Corresponding the SE automatic
5645	 * termination control EEPROM bits are used for each function. Each
5646	 * function has its own EEPROM. If SE automatic control is enabled for
5647	 * the function, then set the termination value based on a table listed
5648	 * in a_condor.h.
5649	 *
5650	 * If manual termination is specified in the EEPROM for the function,
5651	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5652	 * ready to be 'ored' into SCSI_CFG1.
5653	 */
5654	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5655		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5656		/* SE automatic termination control is enabled. */
5657		switch (scsi_cfg1 & C_DET_SE) {
5658			/* TERM_SE_HI: on, TERM_SE_LO: on */
5659		case 0x1:
5660		case 0x2:
5661		case 0x3:
5662			asc_dvc->cfg->termination |= TERM_SE;
5663			break;
5664
5665		case 0x0:
5666			if (PCI_FUNC(pdev->devfn) == 0) {
5667				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5668			} else {
5669				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5670				asc_dvc->cfg->termination |= TERM_SE_HI;
5671			}
5672			break;
5673		}
5674	}
5675
5676	/*
5677	 * Clear any set TERM_SE bits.
5678	 */
5679	scsi_cfg1 &= ~TERM_SE;
5680
5681	/*
5682	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5683	 */
5684	scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5685
5686	/*
5687	 * Clear Big Endian and Terminator Polarity bits and set possibly
5688	 * modified termination control bits in the Microcode SCSI_CFG1
5689	 * Register Value.
5690	 *
5691	 * Big Endian bit is not used even on big endian machines.
5692	 */
5693	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5694
5695	/*
5696	 * Set SCSI_CFG1 Microcode Default Value
5697	 *
5698	 * Set possibly modified termination control bits in the Microcode
5699	 * SCSI_CFG1 Register Value.
5700	 *
5701	 * The microcode will set the SCSI_CFG1 register using this value
5702	 * after it is started below.
5703	 */
5704	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5705
5706	/*
5707	 * Set MEM_CFG Microcode Default Value
5708	 *
5709	 * The microcode will set the MEM_CFG register using this value
5710	 * after it is started below.
5711	 *
5712	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5713	 * are defined.
5714	 *
5715	 * ASC-38C1600 has 32KB internal memory.
5716	 *
5717	 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5718	 * out a special 16K Adv Library and Microcode version. After the issue
5719	 * resolved, we should turn back to the 32K support. Both a_condor.h and
5720	 * mcode.sas files also need to be updated.
5721	 *
5722	 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5723	 *  BIOS_EN | RAM_SZ_32KB);
5724	 */
5725	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5726			 BIOS_EN | RAM_SZ_16KB);
5727
5728	/*
5729	 * Set SEL_MASK Microcode Default Value
5730	 *
5731	 * The microcode will set the SEL_MASK register using this value
5732	 * after it is started below.
5733	 */
5734	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5735			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5736
5737	AdvBuildCarrierFreelist(asc_dvc);
5738
5739	/*
5740	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5741	 */
5742	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5743	if (!asc_dvc->icq_sp) {
5744		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5745		return ADV_ERROR;
5746	}
5747
5748	/*
5749	 * Set RISC ICQ physical address start value. Initialize the
5750	 * COMMA register to the same value otherwise the RISC will
5751	 * prematurely detect a command is available.
5752	 */
5753	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5754	AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5755			      le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5756
5757	/*
5758	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5759	 */
5760	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5761	if (!asc_dvc->irq_sp) {
5762		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5763		return ADV_ERROR;
5764	}
5765
5766	/*
5767	 * Set RISC IRQ physical address start value.
5768	 */
5769	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5770	asc_dvc->carr_pending_cnt = 0;
5771
5772	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5773			     (ADV_INTR_ENABLE_HOST_INTR |
5774			      ADV_INTR_ENABLE_GLOBAL_INTR));
5775	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5776	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5777
5778	/* finally, finally, gentlemen, start your engine */
5779	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5780
5781	/*
5782	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5783	 * Resets should be performed. The RISC has to be running
5784	 * to issue a SCSI Bus Reset.
5785	 */
5786	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5787		/*
5788		 * If the BIOS Signature is present in memory, restore the
5789		 * per TID microcode operating variables.
5790		 */
5791		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5792		    0x55AA) {
5793			/*
5794			 * Restore per TID negotiated values.
5795			 */
5796			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5797			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5798			AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5799			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5800					 tagqng_able);
5801			for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5802				AdvWriteByteLram(iop_base,
5803						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5804						 max_cmd[tid]);
5805			}
5806		} else {
5807			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5808				warn_code = ASC_WARN_BUSRESET_ERROR;
5809			}
5810		}
5811	}
5812
5813	return warn_code;
5814}
5815
5816/*
5817 * Reset chip and SCSI Bus.
5818 *
5819 * Return Value:
5820 *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
5821 *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
5822 */
5823static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
5824{
5825	int status;
5826	ushort wdtr_able, sdtr_able, tagqng_able;
5827	ushort ppr_able = 0;
5828	uchar tid, max_cmd[ADV_MAX_TID + 1];
5829	AdvPortAddr iop_base;
5830	ushort bios_sig;
5831
5832	iop_base = asc_dvc->iop_base;
5833
5834	/*
5835	 * Save current per TID negotiated values.
5836	 */
5837	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5838	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5839	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5840		AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5841	}
5842	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5843	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5844		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5845				max_cmd[tid]);
5846	}
5847
5848	/*
5849	 * Force the AdvInitAsc3550/38C0800Driver() function to
5850	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
5851	 * The initialization functions assumes a SCSI Bus Reset is not
5852	 * needed if the BIOS signature word is present.
5853	 */
5854	AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5855	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
5856
5857	/*
5858	 * Stop chip and reset it.
5859	 */
5860	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
5861	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
5862	mdelay(100);
5863	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
5864			     ADV_CTRL_REG_CMD_WR_IO_REG);
5865
5866	/*
5867	 * Reset Adv Library error code, if any, and try
5868	 * re-initializing the chip.
5869	 */
5870	asc_dvc->err_code = 0;
5871	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5872		status = AdvInitAsc38C1600Driver(asc_dvc);
5873	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
5874		status = AdvInitAsc38C0800Driver(asc_dvc);
5875	} else {
5876		status = AdvInitAsc3550Driver(asc_dvc);
5877	}
5878
5879	/* Translate initialization return value to status value. */
5880	if (status == 0) {
5881		status = ADV_TRUE;
5882	} else {
5883		status = ADV_FALSE;
5884	}
5885
5886	/*
5887	 * Restore the BIOS signature word.
5888	 */
5889	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5890
5891	/*
5892	 * Restore per TID negotiated values.
5893	 */
5894	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5895	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5896	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5897		AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5898	}
5899	AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5900	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5901		AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5902				 max_cmd[tid]);
5903	}
5904
5905	return status;
5906}
5907
5908/*
5909 * adv_async_callback() - Adv Library asynchronous event callback function.
5910 */
5911static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
5912{
5913	switch (code) {
5914	case ADV_ASYNC_SCSI_BUS_RESET_DET:
5915		/*
5916		 * The firmware detected a SCSI Bus reset.
5917		 */
5918		ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5919		break;
5920
5921	case ADV_ASYNC_RDMA_FAILURE:
5922		/*
5923		 * Handle RDMA failure by resetting the SCSI Bus and
5924		 * possibly the chip if it is unresponsive. Log the error
5925		 * with a unique code.
5926		 */
5927		ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5928		AdvResetChipAndSB(adv_dvc_varp);
5929		break;
5930
5931	case ADV_HOST_SCSI_BUS_RESET:
5932		/*
5933		 * Host generated SCSI bus reset occurred.
5934		 */
5935		ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5936		break;
5937
5938	default:
5939		ASC_DBG(0, "unknown code 0x%x\n", code);
5940		break;
5941	}
5942}
5943
5944/*
5945 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5946 *
5947 * Callback function for the Wide SCSI Adv Library.
5948 */
5949static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
5950{
5951	struct asc_board *boardp = adv_dvc_varp->drv_ptr;
5952	u32 srb_tag;
5953	adv_req_t *reqp;
5954	adv_sgblk_t *sgblkp;
5955	struct scsi_cmnd *scp;
5956	u32 resid_cnt;
5957	dma_addr_t sense_addr;
5958
5959	ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5960		adv_dvc_varp, scsiqp);
5961	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
5962
5963	/*
5964	 * Get the adv_req_t structure for the command that has been
5965	 * completed. The adv_req_t structure actually contains the
5966	 * completed ADV_SCSI_REQ_Q structure.
5967	 */
5968	srb_tag = le32_to_cpu(scsiqp->srb_tag);
5969	scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
5970
5971	ASC_DBG(1, "scp 0x%p\n", scp);
5972	if (scp == NULL) {
5973		ASC_PRINT
5974		    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5975		return;
5976	}
5977	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
5978
5979	reqp = (adv_req_t *)scp->host_scribble;
5980	ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
5981	if (reqp == NULL) {
5982		ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5983		return;
5984	}
5985	/*
5986	 * Remove backreferences to avoid duplicate
5987	 * command completions.
5988	 */
5989	scp->host_scribble = NULL;
5990	reqp->cmndp = NULL;
5991
5992	ASC_STATS(boardp->shost, callback);
5993	ASC_DBG(1, "shost 0x%p\n", boardp->shost);
5994
5995	sense_addr = le32_to_cpu(scsiqp->sense_addr);
5996	dma_unmap_single(boardp->dev, sense_addr,
5997			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
5998
5999	/*
6000	 * 'done_status' contains the command's ending status.
6001	 */
6002	switch (scsiqp->done_status) {
6003	case QD_NO_ERROR:
6004		ASC_DBG(2, "QD_NO_ERROR\n");
6005		scp->result = 0;
6006
6007		/*
6008		 * Check for an underrun condition.
6009		 *
6010		 * If there was no error and an underrun condition, then
6011		 * then return the number of underrun bytes.
6012		 */
6013		resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6014		if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6015		    resid_cnt <= scsi_bufflen(scp)) {
6016			ASC_DBG(1, "underrun condition %lu bytes\n",
6017				 (ulong)resid_cnt);
6018			scsi_set_resid(scp, resid_cnt);
6019		}
6020		break;
6021
6022	case QD_WITH_ERROR:
6023		ASC_DBG(2, "QD_WITH_ERROR\n");
6024		switch (scsiqp->host_status) {
6025		case QHSTA_NO_ERROR:
6026			if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6027				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6028				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6029						  SCSI_SENSE_BUFFERSIZE);
6030				/*
6031				 * Note: The 'status_byte()' macro used by
6032				 * target drivers defined in scsi.h shifts the
6033				 * status byte returned by host drivers right
6034				 * by 1 bit.  This is why target drivers also
6035				 * use right shifted status byte definitions.
6036				 * For instance target drivers use
6037				 * CHECK_CONDITION, defined to 0x1, instead of
6038				 * the SCSI defined check condition value of
6039				 * 0x2. Host drivers are supposed to return
6040				 * the status byte as it is defined by SCSI.
6041				 */
6042				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6043				    STATUS_BYTE(scsiqp->scsi_status);
6044			} else {
6045				scp->result = STATUS_BYTE(scsiqp->scsi_status);
6046			}
6047			break;
6048
6049		default:
6050			/* Some other QHSTA error occurred. */
6051			ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6052			scp->result = HOST_BYTE(DID_BAD_TARGET);
6053			break;
6054		}
6055		break;
6056
6057	case QD_ABORTED_BY_HOST:
6058		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6059		scp->result =
6060		    HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6061		break;
6062
6063	default:
6064		ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6065		scp->result =
6066		    HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6067		break;
6068	}
6069
6070	/*
6071	 * If the 'init_tidmask' bit isn't already set for the target and the
6072	 * current request finished normally, then set the bit for the target
6073	 * to indicate that a device is present.
6074	 */
6075	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6076	    scsiqp->done_status == QD_NO_ERROR &&
6077	    scsiqp->host_status == QHSTA_NO_ERROR) {
6078		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6079	}
6080
6081	asc_scsi_done(scp);
6082
6083	/*
6084	 * Free all 'adv_sgblk_t' structures allocated for the request.
6085	 */
6086	while ((sgblkp = reqp->sgblkp) != NULL) {
6087		/* Remove 'sgblkp' from the request list. */
6088		reqp->sgblkp = sgblkp->next_sgblkp;
6089
6090		dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
6091			      sgblkp->sg_addr);
6092	}
6093
6094	ASC_DBG(1, "done\n");
6095}
6096
6097/*
6098 * Adv Library Interrupt Service Routine
6099 *
6100 *  This function is called by a driver's interrupt service routine.
6101 *  The function disables and re-enables interrupts.
6102 *
6103 *  When a microcode idle command is completed, the ADV_DVC_VAR
6104 *  'idle_cmd_done' field is set to ADV_TRUE.
6105 *
6106 *  Note: AdvISR() can be called when interrupts are disabled or even
6107 *  when there is no hardware interrupt condition present. It will
6108 *  always check for completed idle commands and microcode requests.
6109 *  This is an important feature that shouldn't be changed because it
6110 *  allows commands to be completed from polling mode loops.
6111 *
6112 * Return:
6113 *   ADV_TRUE(1) - interrupt was pending
6114 *   ADV_FALSE(0) - no interrupt was pending
6115 */
6116static int AdvISR(ADV_DVC_VAR *asc_dvc)
6117{
6118	AdvPortAddr iop_base;
6119	uchar int_stat;
6120	ushort target_bit;
6121	ADV_CARR_T *free_carrp;
6122	__le32 irq_next_vpa;
6123	ADV_SCSI_REQ_Q *scsiq;
6124	adv_req_t *reqp;
6125
6126	iop_base = asc_dvc->iop_base;
6127
6128	/* Reading the register clears the interrupt. */
6129	int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6130
6131	if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6132			 ADV_INTR_STATUS_INTRC)) == 0) {
6133		return ADV_FALSE;
6134	}
6135
6136	/*
6137	 * Notify the driver of an asynchronous microcode condition by
6138	 * calling the adv_async_callback function. The function
6139	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6140	 */
6141	if (int_stat & ADV_INTR_STATUS_INTRB) {
6142		uchar intrb_code;
6143
6144		AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6145
6146		if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6147		    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6148			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6149			    asc_dvc->carr_pending_cnt != 0) {
6150				AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6151						     ADV_TICKLE_A);
6152				if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6153					AdvWriteByteRegister(iop_base,
6154							     IOPB_TICKLE,
6155							     ADV_TICKLE_NOP);
6156				}
6157			}
6158		}
6159
6160		adv_async_callback(asc_dvc, intrb_code);
6161	}
6162
6163	/*
6164	 * Check if the IRQ stopper carrier contains a completed request.
6165	 */
6166	while (((irq_next_vpa =
6167		 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
6168		/*
6169		 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6170		 * The RISC will have set 'areq_vpa' to a virtual address.
6171		 *
6172		 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6173		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6174		 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6175		 * in AdvExeScsiQueue().
6176		 */
6177		u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
6178		ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6179			asc_dvc->irq_sp, pa_offset);
6180		reqp = adv_get_reqp(asc_dvc, pa_offset);
6181		scsiq = &reqp->scsi_req_q;
6182
6183		/*
6184		 * Request finished with good status and the queue was not
6185		 * DMAed to host memory by the firmware. Set all status fields
6186		 * to indicate good status.
6187		 */
6188		if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
6189			scsiq->done_status = QD_NO_ERROR;
6190			scsiq->host_status = scsiq->scsi_status = 0;
6191			scsiq->data_cnt = 0L;
6192		}
6193
6194		/*
6195		 * Advance the stopper pointer to the next carrier
6196		 * ignoring the lower four bits. Free the previous
6197		 * stopper carrier.
6198		 */
6199		free_carrp = asc_dvc->irq_sp;
6200		asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
6201						  ADV_GET_CARRP(irq_next_vpa));
6202
6203		free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
6204		asc_dvc->carr_freelist = free_carrp;
6205		asc_dvc->carr_pending_cnt--;
6206
6207		target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6208
6209		/*
6210		 * Clear request microcode control flag.
6211		 */
6212		scsiq->cntl = 0;
6213
6214		/*
6215		 * Notify the driver of the completed request by passing
6216		 * the ADV_SCSI_REQ_Q pointer to its callback function.
6217		 */
6218		adv_isr_callback(asc_dvc, scsiq);
6219		/*
6220		 * Note: After the driver callback function is called, 'scsiq'
6221		 * can no longer be referenced.
6222		 *
6223		 * Fall through and continue processing other completed
6224		 * requests...
6225		 */
6226	}
6227	return ADV_TRUE;
6228}
6229
6230static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6231{
6232	if (asc_dvc->err_code == 0) {
6233		asc_dvc->err_code = err_code;
6234		AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6235				 err_code);
6236	}
6237	return err_code;
6238}
6239
6240static void AscAckInterrupt(PortAddr iop_base)
6241{
6242	uchar host_flag;
6243	uchar risc_flag;
6244	ushort loop;
6245
6246	loop = 0;
6247	do {
6248		risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6249		if (loop++ > 0x7FFF) {
6250			break;
6251		}
6252	} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6253	host_flag =
6254	    AscReadLramByte(iop_base,
6255			    ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6256	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6257			 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6258	AscSetChipStatus(iop_base, CIW_INT_ACK);
6259	loop = 0;
6260	while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6261		AscSetChipStatus(iop_base, CIW_INT_ACK);
6262		if (loop++ > 3) {
6263			break;
6264		}
6265	}
6266	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6267}
6268
6269static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6270{
6271	const uchar *period_table;
6272	int max_index;
6273	int min_index;
6274	int i;
6275
6276	period_table = asc_dvc->sdtr_period_tbl;
6277	max_index = (int)asc_dvc->max_sdtr_index;
6278	min_index = (int)asc_dvc->min_sdtr_index;
6279	if ((syn_time <= period_table[max_index])) {
6280		for (i = min_index; i < (max_index - 1); i++) {
6281			if (syn_time <= period_table[i]) {
6282				return (uchar)i;
6283			}
6284		}
6285		return (uchar)max_index;
6286	} else {
6287		return (uchar)(max_index + 1);
6288	}
6289}
6290
6291static uchar
6292AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6293{
6294	EXT_MSG sdtr_buf;
6295	uchar sdtr_period_index;
6296	PortAddr iop_base;
6297
6298	iop_base = asc_dvc->iop_base;
6299	sdtr_buf.msg_type = EXTENDED_MESSAGE;
6300	sdtr_buf.msg_len = MS_SDTR_LEN;
6301	sdtr_buf.msg_req = EXTENDED_SDTR;
6302	sdtr_buf.xfer_period = sdtr_period;
6303	sdtr_offset &= ASC_SYN_MAX_OFFSET;
6304	sdtr_buf.req_ack_offset = sdtr_offset;
6305	sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6306	if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6307		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6308					(uchar *)&sdtr_buf,
6309					sizeof(EXT_MSG) >> 1);
6310		return ((sdtr_period_index << 4) | sdtr_offset);
6311	} else {
6312		sdtr_buf.req_ack_offset = 0;
6313		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6314					(uchar *)&sdtr_buf,
6315					sizeof(EXT_MSG) >> 1);
6316		return 0;
6317	}
6318}
6319
6320static uchar
6321AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6322{
6323	uchar byte;
6324	uchar sdtr_period_ix;
6325
6326	sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6327	if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6328		return 0xFF;
6329	byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6330	return byte;
6331}
6332
6333static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6334{
6335	ASC_SCSI_BIT_ID_TYPE org_id;
6336	int i;
6337	bool sta = true;
6338
6339	AscSetBank(iop_base, 1);
6340	org_id = AscReadChipDvcID(iop_base);
6341	for (i = 0; i <= ASC_MAX_TID; i++) {
6342		if (org_id == (0x01 << i))
6343			break;
6344	}
6345	org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6346	AscWriteChipDvcID(iop_base, id);
6347	if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6348		AscSetBank(iop_base, 0);
6349		AscSetChipSyn(iop_base, sdtr_data);
6350		if (AscGetChipSyn(iop_base) != sdtr_data) {
6351			sta = false;
6352		}
6353	} else {
6354		sta = false;
6355	}
6356	AscSetBank(iop_base, 1);
6357	AscWriteChipDvcID(iop_base, org_id);
6358	AscSetBank(iop_base, 0);
6359	return (sta);
6360}
6361
6362static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6363{
6364	AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6365	AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6366}
6367
6368static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6369{
6370	EXT_MSG ext_msg;
6371	EXT_MSG out_msg;
6372	ushort halt_q_addr;
6373	bool sdtr_accept;
6374	ushort int_halt_code;
6375	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6376	ASC_SCSI_BIT_ID_TYPE target_id;
6377	PortAddr iop_base;
6378	uchar tag_code;
6379	uchar q_status;
6380	uchar halt_qp;
6381	uchar sdtr_data;
6382	uchar target_ix;
6383	uchar q_cntl, tid_no;
6384	uchar cur_dvc_qng;
6385	uchar asyn_sdtr;
6386	uchar scsi_status;
6387	struct asc_board *boardp;
6388
6389	BUG_ON(!asc_dvc->drv_ptr);
6390	boardp = asc_dvc->drv_ptr;
6391
6392	iop_base = asc_dvc->iop_base;
6393	int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6394
6395	halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6396	halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6397	target_ix = AscReadLramByte(iop_base,
6398				    (ushort)(halt_q_addr +
6399					     (ushort)ASC_SCSIQ_B_TARGET_IX));
6400	q_cntl = AscReadLramByte(iop_base,
6401			    (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6402	tid_no = ASC_TIX_TO_TID(target_ix);
6403	target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6404	if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6405		asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6406	} else {
6407		asyn_sdtr = 0;
6408	}
6409	if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6410		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6411			AscSetChipSDTR(iop_base, 0, tid_no);
6412			boardp->sdtr_data[tid_no] = 0;
6413		}
6414		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6415		return;
6416	} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6417		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6418			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6419			boardp->sdtr_data[tid_no] = asyn_sdtr;
6420		}
6421		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6422		return;
6423	} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6424		AscMemWordCopyPtrFromLram(iop_base,
6425					  ASCV_MSGIN_BEG,
6426					  (uchar *)&ext_msg,
6427					  sizeof(EXT_MSG) >> 1);
6428
6429		if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6430		    ext_msg.msg_req == EXTENDED_SDTR &&
6431		    ext_msg.msg_len == MS_SDTR_LEN) {
6432			sdtr_accept = true;
6433			if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6434
6435				sdtr_accept = false;
6436				ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6437			}
6438			if ((ext_msg.xfer_period <
6439			     asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6440			    || (ext_msg.xfer_period >
6441				asc_dvc->sdtr_period_tbl[asc_dvc->
6442							 max_sdtr_index])) {
6443				sdtr_accept = false;
6444				ext_msg.xfer_period =
6445				    asc_dvc->sdtr_period_tbl[asc_dvc->
6446							     min_sdtr_index];
6447			}
6448			if (sdtr_accept) {
6449				sdtr_data =
6450				    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6451						   ext_msg.req_ack_offset);
6452				if ((sdtr_data == 0xFF)) {
6453
6454					q_cntl |= QC_MSG_OUT;
6455					asc_dvc->init_sdtr &= ~target_id;
6456					asc_dvc->sdtr_done &= ~target_id;
6457					AscSetChipSDTR(iop_base, asyn_sdtr,
6458						       tid_no);
6459					boardp->sdtr_data[tid_no] = asyn_sdtr;
6460				}
6461			}
6462			if (ext_msg.req_ack_offset == 0) {
6463
6464				q_cntl &= ~QC_MSG_OUT;
6465				asc_dvc->init_sdtr &= ~target_id;
6466				asc_dvc->sdtr_done &= ~target_id;
6467				AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6468			} else {
6469				if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6470					q_cntl &= ~QC_MSG_OUT;
6471					asc_dvc->sdtr_done |= target_id;
6472					asc_dvc->init_sdtr |= target_id;
6473					asc_dvc->pci_fix_asyn_xfer &=
6474					    ~target_id;
6475					sdtr_data =
6476					    AscCalSDTRData(asc_dvc,
6477							   ext_msg.xfer_period,
6478							   ext_msg.
6479							   req_ack_offset);
6480					AscSetChipSDTR(iop_base, sdtr_data,
6481						       tid_no);
6482					boardp->sdtr_data[tid_no] = sdtr_data;
6483				} else {
6484					q_cntl |= QC_MSG_OUT;
6485					AscMsgOutSDTR(asc_dvc,
6486						      ext_msg.xfer_period,
6487						      ext_msg.req_ack_offset);
6488					asc_dvc->pci_fix_asyn_xfer &=
6489					    ~target_id;
6490					sdtr_data =
6491					    AscCalSDTRData(asc_dvc,
6492							   ext_msg.xfer_period,
6493							   ext_msg.
6494							   req_ack_offset);
6495					AscSetChipSDTR(iop_base, sdtr_data,
6496						       tid_no);
6497					boardp->sdtr_data[tid_no] = sdtr_data;
6498					asc_dvc->sdtr_done |= target_id;
6499					asc_dvc->init_sdtr |= target_id;
6500				}
6501			}
6502
6503			AscWriteLramByte(iop_base,
6504					 (ushort)(halt_q_addr +
6505						  (ushort)ASC_SCSIQ_B_CNTL),
6506					 q_cntl);
6507			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6508			return;
6509		} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6510			   ext_msg.msg_req == EXTENDED_WDTR &&
6511			   ext_msg.msg_len == MS_WDTR_LEN) {
6512
6513			ext_msg.wdtr_width = 0;
6514			AscMemWordCopyPtrToLram(iop_base,
6515						ASCV_MSGOUT_BEG,
6516						(uchar *)&ext_msg,
6517						sizeof(EXT_MSG) >> 1);
6518			q_cntl |= QC_MSG_OUT;
6519			AscWriteLramByte(iop_base,
6520					 (ushort)(halt_q_addr +
6521						  (ushort)ASC_SCSIQ_B_CNTL),
6522					 q_cntl);
6523			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6524			return;
6525		} else {
6526
6527			ext_msg.msg_type = MESSAGE_REJECT;
6528			AscMemWordCopyPtrToLram(iop_base,
6529						ASCV_MSGOUT_BEG,
6530						(uchar *)&ext_msg,
6531						sizeof(EXT_MSG) >> 1);
6532			q_cntl |= QC_MSG_OUT;
6533			AscWriteLramByte(iop_base,
6534					 (ushort)(halt_q_addr +
6535						  (ushort)ASC_SCSIQ_B_CNTL),
6536					 q_cntl);
6537			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6538			return;
6539		}
6540	} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6541
6542		q_cntl |= QC_REQ_SENSE;
6543
6544		if ((asc_dvc->init_sdtr & target_id) != 0) {
6545
6546			asc_dvc->sdtr_done &= ~target_id;
6547
6548			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6549			q_cntl |= QC_MSG_OUT;
6550			AscMsgOutSDTR(asc_dvc,
6551				      asc_dvc->
6552				      sdtr_period_tbl[(sdtr_data >> 4) &
6553						      (uchar)(asc_dvc->
6554							      max_sdtr_index -
6555							      1)],
6556				      (uchar)(sdtr_data & (uchar)
6557					      ASC_SYN_MAX_OFFSET));
6558		}
6559
6560		AscWriteLramByte(iop_base,
6561				 (ushort)(halt_q_addr +
6562					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6563
6564		tag_code = AscReadLramByte(iop_base,
6565					   (ushort)(halt_q_addr + (ushort)
6566						    ASC_SCSIQ_B_TAG_CODE));
6567		tag_code &= 0xDC;
6568		if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6569		    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6570		    ) {
6571
6572			tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6573				     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6574
6575		}
6576		AscWriteLramByte(iop_base,
6577				 (ushort)(halt_q_addr +
6578					  (ushort)ASC_SCSIQ_B_TAG_CODE),
6579				 tag_code);
6580
6581		q_status = AscReadLramByte(iop_base,
6582					   (ushort)(halt_q_addr + (ushort)
6583						    ASC_SCSIQ_B_STATUS));
6584		q_status |= (QS_READY | QS_BUSY);
6585		AscWriteLramByte(iop_base,
6586				 (ushort)(halt_q_addr +
6587					  (ushort)ASC_SCSIQ_B_STATUS),
6588				 q_status);
6589
6590		scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6591		scsi_busy &= ~target_id;
6592		AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6593
6594		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6595		return;
6596	} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6597
6598		AscMemWordCopyPtrFromLram(iop_base,
6599					  ASCV_MSGOUT_BEG,
6600					  (uchar *)&out_msg,
6601					  sizeof(EXT_MSG) >> 1);
6602
6603		if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6604		    (out_msg.msg_len == MS_SDTR_LEN) &&
6605		    (out_msg.msg_req == EXTENDED_SDTR)) {
6606
6607			asc_dvc->init_sdtr &= ~target_id;
6608			asc_dvc->sdtr_done &= ~target_id;
6609			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6610			boardp->sdtr_data[tid_no] = asyn_sdtr;
6611		}
6612		q_cntl &= ~QC_MSG_OUT;
6613		AscWriteLramByte(iop_base,
6614				 (ushort)(halt_q_addr +
6615					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6616		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6617		return;
6618	} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6619
6620		scsi_status = AscReadLramByte(iop_base,
6621					      (ushort)((ushort)halt_q_addr +
6622						       (ushort)
6623						       ASC_SCSIQ_SCSI_STATUS));
6624		cur_dvc_qng =
6625		    AscReadLramByte(iop_base,
6626				    (ushort)((ushort)ASC_QADR_BEG +
6627					     (ushort)target_ix));
6628		if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6629
6630			scsi_busy = AscReadLramByte(iop_base,
6631						    (ushort)ASCV_SCSIBUSY_B);
6632			scsi_busy |= target_id;
6633			AscWriteLramByte(iop_base,
6634					 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6635			asc_dvc->queue_full_or_busy |= target_id;
6636
6637			if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6638				if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6639					cur_dvc_qng -= 1;
6640					asc_dvc->max_dvc_qng[tid_no] =
6641					    cur_dvc_qng;
6642
6643					AscWriteLramByte(iop_base,
6644							 (ushort)((ushort)
6645								  ASCV_MAX_DVC_QNG_BEG
6646								  + (ushort)
6647								  tid_no),
6648							 cur_dvc_qng);
6649
6650					/*
6651					 * Set the device queue depth to the
6652					 * number of active requests when the
6653					 * QUEUE FULL condition was encountered.
6654					 */
6655					boardp->queue_full |= target_id;
6656					boardp->queue_full_cnt[tid_no] =
6657					    cur_dvc_qng;
6658				}
6659			}
6660		}
6661		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6662		return;
6663	}
6664	return;
6665}
6666
6667/*
6668 * void
6669 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6670 *
6671 * Calling/Exit State:
6672 *    none
6673 *
6674 * Description:
6675 *     Input an ASC_QDONE_INFO structure from the chip
6676 */
6677static void
6678DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6679{
6680	int i;
6681	ushort word;
6682
6683	AscSetChipLramAddr(iop_base, s_addr);
6684	for (i = 0; i < 2 * words; i += 2) {
6685		if (i == 10) {
6686			continue;
6687		}
6688		word = inpw(iop_base + IOP_RAM_DATA);
6689		inbuf[i] = word & 0xff;
6690		inbuf[i + 1] = (word >> 8) & 0xff;
6691	}
6692	ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
6693}
6694
6695static uchar
6696_AscCopyLramScsiDoneQ(PortAddr iop_base,
6697		      ushort q_addr,
6698		      ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
6699{
6700	ushort _val;
6701	uchar sg_queue_cnt;
6702
6703	DvcGetQinfo(iop_base,
6704		    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
6705		    (uchar *)scsiq,
6706		    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
6707
6708	_val = AscReadLramWord(iop_base,
6709			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
6710	scsiq->q_status = (uchar)_val;
6711	scsiq->q_no = (uchar)(_val >> 8);
6712	_val = AscReadLramWord(iop_base,
6713			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6714	scsiq->cntl = (uchar)_val;
6715	sg_queue_cnt = (uchar)(_val >> 8);
6716	_val = AscReadLramWord(iop_base,
6717			       (ushort)(q_addr +
6718					(ushort)ASC_SCSIQ_B_SENSE_LEN));
6719	scsiq->sense_len = (uchar)_val;
6720	scsiq->extra_bytes = (uchar)(_val >> 8);
6721
6722	/*
6723	 * Read high word of remain bytes from alternate location.
6724	 */
6725	scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
6726						     (ushort)(q_addr +
6727							      (ushort)
6728							      ASC_SCSIQ_W_ALT_DC1)))
6729			       << 16);
6730	/*
6731	 * Read low word of remain bytes from original location.
6732	 */
6733	scsiq->remain_bytes += AscReadLramWord(iop_base,
6734					       (ushort)(q_addr + (ushort)
6735							ASC_SCSIQ_DW_REMAIN_XFER_CNT));
6736
6737	scsiq->remain_bytes &= max_dma_count;
6738	return sg_queue_cnt;
6739}
6740
6741/*
6742 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6743 *
6744 * Interrupt callback function for the Narrow SCSI Asc Library.
6745 */
6746static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
6747{
6748	struct asc_board *boardp = asc_dvc_varp->drv_ptr;
6749	u32 srb_tag;
6750	struct scsi_cmnd *scp;
6751
6752	ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
6753	ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
6754
6755	/*
6756	 * Decrease the srb_tag by 1 to find the SCSI command
6757	 */
6758	srb_tag = qdonep->d2.srb_tag - 1;
6759	scp = scsi_host_find_tag(boardp->shost, srb_tag);
6760	if (!scp)
6761		return;
6762
6763	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6764
6765	ASC_STATS(boardp->shost, callback);
6766
6767	dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
6768			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
6769	/*
6770	 * 'qdonep' contains the command's ending status.
6771	 */
6772	switch (qdonep->d3.done_stat) {
6773	case QD_NO_ERROR:
6774		ASC_DBG(2, "QD_NO_ERROR\n");
6775		scp->result = 0;
6776
6777		/*
6778		 * Check for an underrun condition.
6779		 *
6780		 * If there was no error and an underrun condition, then
6781		 * return the number of underrun bytes.
6782		 */
6783		if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
6784		    qdonep->remain_bytes <= scsi_bufflen(scp)) {
6785			ASC_DBG(1, "underrun condition %u bytes\n",
6786				 (unsigned)qdonep->remain_bytes);
6787			scsi_set_resid(scp, qdonep->remain_bytes);
6788		}
6789		break;
6790
6791	case QD_WITH_ERROR:
6792		ASC_DBG(2, "QD_WITH_ERROR\n");
6793		switch (qdonep->d3.host_stat) {
6794		case QHSTA_NO_ERROR:
6795			if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
6796				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6797				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6798						  SCSI_SENSE_BUFFERSIZE);
6799				/*
6800				 * Note: The 'status_byte()' macro used by
6801				 * target drivers defined in scsi.h shifts the
6802				 * status byte returned by host drivers right
6803				 * by 1 bit.  This is why target drivers also
6804				 * use right shifted status byte definitions.
6805				 * For instance target drivers use
6806				 * CHECK_CONDITION, defined to 0x1, instead of
6807				 * the SCSI defined check condition value of
6808				 * 0x2. Host drivers are supposed to return
6809				 * the status byte as it is defined by SCSI.
6810				 */
6811				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6812				    STATUS_BYTE(qdonep->d3.scsi_stat);
6813			} else {
6814				scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
6815			}
6816			break;
6817
6818		default:
6819			/* QHSTA error occurred */
6820			ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
6821			scp->result = HOST_BYTE(DID_BAD_TARGET);
6822			break;
6823		}
6824		break;
6825
6826	case QD_ABORTED_BY_HOST:
6827		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6828		scp->result =
6829		    HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
6830						    scsi_msg) |
6831		    STATUS_BYTE(qdonep->d3.scsi_stat);
6832		break;
6833
6834	default:
6835		ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
6836		scp->result =
6837		    HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
6838						    scsi_msg) |
6839		    STATUS_BYTE(qdonep->d3.scsi_stat);
6840		break;
6841	}
6842
6843	/*
6844	 * If the 'init_tidmask' bit isn't already set for the target and the
6845	 * current request finished normally, then set the bit for the target
6846	 * to indicate that a device is present.
6847	 */
6848	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6849	    qdonep->d3.done_stat == QD_NO_ERROR &&
6850	    qdonep->d3.host_stat == QHSTA_NO_ERROR) {
6851		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6852	}
6853
6854	asc_scsi_done(scp);
6855}
6856
6857static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
6858{
6859	uchar next_qp;
6860	uchar n_q_used;
6861	uchar sg_list_qp;
6862	uchar sg_queue_cnt;
6863	uchar q_cnt;
6864	uchar done_q_tail;
6865	uchar tid_no;
6866	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6867	ASC_SCSI_BIT_ID_TYPE target_id;
6868	PortAddr iop_base;
6869	ushort q_addr;
6870	ushort sg_q_addr;
6871	uchar cur_target_qng;
6872	ASC_QDONE_INFO scsiq_buf;
6873	ASC_QDONE_INFO *scsiq;
6874	bool false_overrun;
6875
6876	iop_base = asc_dvc->iop_base;
6877	n_q_used = 1;
6878	scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
6879	done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
6880	q_addr = ASC_QNO_TO_QADDR(done_q_tail);
6881	next_qp = AscReadLramByte(iop_base,
6882				  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
6883	if (next_qp != ASC_QLINK_END) {
6884		AscPutVarDoneQTail(iop_base, next_qp);
6885		q_addr = ASC_QNO_TO_QADDR(next_qp);
6886		sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
6887						     asc_dvc->max_dma_count);
6888		AscWriteLramByte(iop_base,
6889				 (ushort)(q_addr +
6890					  (ushort)ASC_SCSIQ_B_STATUS),
6891				 (uchar)(scsiq->
6892					 q_status & (uchar)~(QS_READY |
6893							     QS_ABORTED)));
6894		tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
6895		target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
6896		if ((scsiq->cntl & QC_SG_HEAD) != 0) {
6897			sg_q_addr = q_addr;
6898			sg_list_qp = next_qp;
6899			for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
6900				sg_list_qp = AscReadLramByte(iop_base,
6901							     (ushort)(sg_q_addr
6902								      + (ushort)
6903								      ASC_SCSIQ_B_FWD));
6904				sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
6905				if (sg_list_qp == ASC_QLINK_END) {
6906					AscSetLibErrorCode(asc_dvc,
6907							   ASCQ_ERR_SG_Q_LINKS);
6908					scsiq->d3.done_stat = QD_WITH_ERROR;
6909					scsiq->d3.host_stat =
6910					    QHSTA_D_QDONE_SG_LIST_CORRUPTED;
6911					goto FATAL_ERR_QDONE;
6912				}
6913				AscWriteLramByte(iop_base,
6914						 (ushort)(sg_q_addr + (ushort)
6915							  ASC_SCSIQ_B_STATUS),
6916						 QS_FREE);
6917			}
6918			n_q_used = sg_queue_cnt + 1;
6919			AscPutVarDoneQTail(iop_base, sg_list_qp);
6920		}
6921		if (asc_dvc->queue_full_or_busy & target_id) {
6922			cur_target_qng = AscReadLramByte(iop_base,
6923							 (ushort)((ushort)
6924								  ASC_QADR_BEG
6925								  + (ushort)
6926								  scsiq->d2.
6927								  target_ix));
6928			if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
6929				scsi_busy = AscReadLramByte(iop_base, (ushort)
6930							    ASCV_SCSIBUSY_B);
6931				scsi_busy &= ~target_id;
6932				AscWriteLramByte(iop_base,
6933						 (ushort)ASCV_SCSIBUSY_B,
6934						 scsi_busy);
6935				asc_dvc->queue_full_or_busy &= ~target_id;
6936			}
6937		}
6938		if (asc_dvc->cur_total_qng >= n_q_used) {
6939			asc_dvc->cur_total_qng -= n_q_used;
6940			if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
6941				asc_dvc->cur_dvc_qng[tid_no]--;
6942			}
6943		} else {
6944			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
6945			scsiq->d3.done_stat = QD_WITH_ERROR;
6946			goto FATAL_ERR_QDONE;
6947		}
6948		if ((scsiq->d2.srb_tag == 0UL) ||
6949		    ((scsiq->q_status & QS_ABORTED) != 0)) {
6950			return (0x11);
6951		} else if (scsiq->q_status == QS_DONE) {
6952			/*
6953			 * This is also curious.
6954			 * false_overrun will _always_ be set to 'false'
6955			 */
6956			false_overrun = false;
6957			if (scsiq->extra_bytes != 0) {
6958				scsiq->remain_bytes += scsiq->extra_bytes;
6959			}
6960			if (scsiq->d3.done_stat == QD_WITH_ERROR) {
6961				if (scsiq->d3.host_stat ==
6962				    QHSTA_M_DATA_OVER_RUN) {
6963					if ((scsiq->
6964					     cntl & (QC_DATA_IN | QC_DATA_OUT))
6965					    == 0) {
6966						scsiq->d3.done_stat =
6967						    QD_NO_ERROR;
6968						scsiq->d3.host_stat =
6969						    QHSTA_NO_ERROR;
6970					} else if (false_overrun) {
6971						scsiq->d3.done_stat =
6972						    QD_NO_ERROR;
6973						scsiq->d3.host_stat =
6974						    QHSTA_NO_ERROR;
6975					}
6976				} else if (scsiq->d3.host_stat ==
6977					   QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
6978					AscStopChip(iop_base);
6979					AscSetChipControl(iop_base,
6980							  (uchar)(CC_SCSI_RESET
6981								  | CC_HALT));
6982					udelay(60);
6983					AscSetChipControl(iop_base, CC_HALT);
6984					AscSetChipStatus(iop_base,
6985							 CIW_CLR_SCSI_RESET_INT);
6986					AscSetChipStatus(iop_base, 0);
6987					AscSetChipControl(iop_base, 0);
6988				}
6989			}
6990			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6991				asc_isr_callback(asc_dvc, scsiq);
6992			} else {
6993				if ((AscReadLramByte(iop_base,
6994						     (ushort)(q_addr + (ushort)
6995							      ASC_SCSIQ_CDB_BEG))
6996				     == START_STOP)) {
6997					asc_dvc->unit_not_ready &= ~target_id;
6998					if (scsiq->d3.done_stat != QD_NO_ERROR) {
6999						asc_dvc->start_motor &=
7000						    ~target_id;
7001					}
7002				}
7003			}
7004			return (1);
7005		} else {
7006			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7007 FATAL_ERR_QDONE:
7008			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7009				asc_isr_callback(asc_dvc, scsiq);
7010			}
7011			return (0x80);
7012		}
7013	}
7014	return (0);
7015}
7016
7017static int AscISR(ASC_DVC_VAR *asc_dvc)
7018{
7019	ASC_CS_TYPE chipstat;
7020	PortAddr iop_base;
7021	ushort saved_ram_addr;
7022	uchar ctrl_reg;
7023	uchar saved_ctrl_reg;
7024	int int_pending;
7025	int status;
7026	uchar host_flag;
7027
7028	iop_base = asc_dvc->iop_base;
7029	int_pending = ASC_FALSE;
7030
7031	if (AscIsIntPending(iop_base) == 0)
7032		return int_pending;
7033
7034	if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7035		return ASC_ERROR;
7036	}
7037	if (asc_dvc->in_critical_cnt != 0) {
7038		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7039		return ASC_ERROR;
7040	}
7041	if (asc_dvc->is_in_int) {
7042		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7043		return ASC_ERROR;
7044	}
7045	asc_dvc->is_in_int = true;
7046	ctrl_reg = AscGetChipControl(iop_base);
7047	saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7048				       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7049	chipstat = AscGetChipStatus(iop_base);
7050	if (chipstat & CSW_SCSI_RESET_LATCH) {
7051		if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7052			int i = 10;
7053			int_pending = ASC_TRUE;
7054			asc_dvc->sdtr_done = 0;
7055			saved_ctrl_reg &= (uchar)(~CC_HALT);
7056			while ((AscGetChipStatus(iop_base) &
7057				CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7058				mdelay(100);
7059			}
7060			AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7061			AscSetChipControl(iop_base, CC_HALT);
7062			AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7063			AscSetChipStatus(iop_base, 0);
7064			chipstat = AscGetChipStatus(iop_base);
7065		}
7066	}
7067	saved_ram_addr = AscGetChipLramAddr(iop_base);
7068	host_flag = AscReadLramByte(iop_base,
7069				    ASCV_HOST_FLAG_B) &
7070	    (uchar)(~ASC_HOST_FLAG_IN_ISR);
7071	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7072			 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7073	if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7074		AscAckInterrupt(iop_base);
7075		int_pending = ASC_TRUE;
7076		if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7077			AscIsrChipHalted(asc_dvc);
7078			saved_ctrl_reg &= (uchar)(~CC_HALT);
7079		} else {
7080			if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7081				while (((status =
7082					 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7083				}
7084			} else {
7085				do {
7086					if ((status =
7087					     AscIsrQDone(asc_dvc)) == 1) {
7088						break;
7089					}
7090				} while (status == 0x11);
7091			}
7092			if ((status & 0x80) != 0)
7093				int_pending = ASC_ERROR;
7094		}
7095	}
7096	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7097	AscSetChipLramAddr(iop_base, saved_ram_addr);
7098	AscSetChipControl(iop_base, saved_ctrl_reg);
7099	asc_dvc->is_in_int = false;
7100	return int_pending;
7101}
7102
7103/*
7104 * advansys_reset()
7105 *
7106 * Reset the host associated with the command 'scp'.
7107 *
7108 * This function runs its own thread. Interrupts must be blocked but
7109 * sleeping is allowed and no locking other than for host structures is
7110 * required. Returns SUCCESS or FAILED.
7111 */
7112static int advansys_reset(struct scsi_cmnd *scp)
7113{
7114	struct Scsi_Host *shost = scp->device->host;
7115	struct asc_board *boardp = shost_priv(shost);
7116	unsigned long flags;
7117	int status;
7118	int ret = SUCCESS;
7119
7120	ASC_DBG(1, "0x%p\n", scp);
7121
7122	ASC_STATS(shost, reset);
7123
7124	scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
7125
7126	if (ASC_NARROW_BOARD(boardp)) {
7127		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7128
7129		/* Reset the chip and SCSI bus. */
7130		ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7131		status = AscInitAsc1000Driver(asc_dvc);
7132
7133		/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7134		if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7135			scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
7136				    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7137				    status);
7138			ret = FAILED;
7139		} else if (status) {
7140			scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
7141				    "0x%x\n", status);
7142		} else {
7143			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7144				    "successful\n");
7145		}
7146
7147		ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7148	} else {
7149		/*
7150		 * If the suggest reset bus flags are set, then reset the bus.
7151		 * Otherwise only reset the device.
7152		 */
7153		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7154
7155		/*
7156		 * Reset the chip and SCSI bus.
7157		 */
7158		ASC_DBG(1, "before AdvResetChipAndSB()\n");
7159		switch (AdvResetChipAndSB(adv_dvc)) {
7160		case ASC_TRUE:
7161			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7162				    "successful\n");
7163			break;
7164		case ASC_FALSE:
7165		default:
7166			scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
7167			ret = FAILED;
7168			break;
7169		}
7170		spin_lock_irqsave(shost->host_lock, flags);
7171		AdvISR(adv_dvc);
7172		spin_unlock_irqrestore(shost->host_lock, flags);
7173	}
7174
7175	ASC_DBG(1, "ret %d\n", ret);
7176
7177	return ret;
7178}
7179
7180/*
7181 * advansys_biosparam()
7182 *
7183 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7184 * support is enabled for a drive.
7185 *
7186 * ip (information pointer) is an int array with the following definition:
7187 * ip[0]: heads
7188 * ip[1]: sectors
7189 * ip[2]: cylinders
7190 */
7191static int
7192advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7193		   sector_t capacity, int ip[])
7194{
7195	struct asc_board *boardp = shost_priv(sdev->host);
7196
7197	ASC_DBG(1, "begin\n");
7198	ASC_STATS(sdev->host, biosparam);
7199	if (ASC_NARROW_BOARD(boardp)) {
7200		if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7201		     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7202			ip[0] = 255;
7203			ip[1] = 63;
7204		} else {
7205			ip[0] = 64;
7206			ip[1] = 32;
7207		}
7208	} else {
7209		if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7210		     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7211			ip[0] = 255;
7212			ip[1] = 63;
7213		} else {
7214			ip[0] = 64;
7215			ip[1] = 32;
7216		}
7217	}
7218	ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7219	ASC_DBG(1, "end\n");
7220	return 0;
7221}
7222
7223/*
7224 * First-level interrupt handler.
7225 *
7226 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7227 */
7228static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7229{
7230	struct Scsi_Host *shost = dev_id;
7231	struct asc_board *boardp = shost_priv(shost);
7232	irqreturn_t result = IRQ_NONE;
7233	unsigned long flags;
7234
7235	ASC_DBG(2, "boardp 0x%p\n", boardp);
7236	spin_lock_irqsave(shost->host_lock, flags);
7237	if (ASC_NARROW_BOARD(boardp)) {
7238		if (AscIsIntPending(shost->io_port)) {
7239			result = IRQ_HANDLED;
7240			ASC_STATS(shost, interrupt);
7241			ASC_DBG(1, "before AscISR()\n");
7242			AscISR(&boardp->dvc_var.asc_dvc_var);
7243		}
7244	} else {
7245		ASC_DBG(1, "before AdvISR()\n");
7246		if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7247			result = IRQ_HANDLED;
7248			ASC_STATS(shost, interrupt);
7249		}
7250	}
7251	spin_unlock_irqrestore(shost->host_lock, flags);
7252
7253	ASC_DBG(1, "end\n");
7254	return result;
7255}
7256
7257static bool AscHostReqRiscHalt(PortAddr iop_base)
7258{
7259	int count = 0;
7260	bool sta = false;
7261	uchar saved_stop_code;
7262
7263	if (AscIsChipHalted(iop_base))
7264		return true;
7265	saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7266	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7267			 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7268	do {
7269		if (AscIsChipHalted(iop_base)) {
7270			sta = true;
7271			break;
7272		}
7273		mdelay(100);
7274	} while (count++ < 20);
7275	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7276	return sta;
7277}
7278
7279static bool
7280AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7281{
7282	bool sta = false;
7283
7284	if (AscHostReqRiscHalt(iop_base)) {
7285		sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7286		AscStartChip(iop_base);
7287	}
7288	return sta;
7289}
7290
7291static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7292{
7293	char type = sdev->type;
7294	ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7295
7296	if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7297		return;
7298	if (asc_dvc->init_sdtr & tid_bits)
7299		return;
7300
7301	if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7302		asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7303
7304	asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7305	if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7306	    (type == TYPE_ROM) || (type == TYPE_TAPE))
7307		asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7308
7309	if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7310		AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7311					ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7312}
7313
7314static void
7315advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7316{
7317	ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7318	ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7319
7320	if (sdev->lun == 0) {
7321		ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7322		if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7323			asc_dvc->init_sdtr |= tid_bit;
7324		} else {
7325			asc_dvc->init_sdtr &= ~tid_bit;
7326		}
7327
7328		if (orig_init_sdtr != asc_dvc->init_sdtr)
7329			AscAsyncFix(asc_dvc, sdev);
7330	}
7331
7332	if (sdev->tagged_supported) {
7333		if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7334			if (sdev->lun == 0) {
7335				asc_dvc->cfg->can_tagged_qng |= tid_bit;
7336				asc_dvc->use_tagged_qng |= tid_bit;
7337			}
7338			scsi_change_queue_depth(sdev,
7339						asc_dvc->max_dvc_qng[sdev->id]);
7340		}
7341	} else {
7342		if (sdev->lun == 0) {
7343			asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7344			asc_dvc->use_tagged_qng &= ~tid_bit;
7345		}
7346	}
7347
7348	if ((sdev->lun == 0) &&
7349	    (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7350		AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7351				 asc_dvc->cfg->disc_enable);
7352		AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7353				 asc_dvc->use_tagged_qng);
7354		AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7355				 asc_dvc->cfg->can_tagged_qng);
7356
7357		asc_dvc->max_dvc_qng[sdev->id] =
7358					asc_dvc->cfg->max_tag_qng[sdev->id];
7359		AscWriteLramByte(asc_dvc->iop_base,
7360				 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7361				 asc_dvc->max_dvc_qng[sdev->id]);
7362	}
7363}
7364
7365/*
7366 * Wide Transfers
7367 *
7368 * If the EEPROM enabled WDTR for the device and the device supports wide
7369 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7370 * write the new value to the microcode.
7371 */
7372static void
7373advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7374{
7375	unsigned short cfg_word;
7376	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7377	if ((cfg_word & tidmask) != 0)
7378		return;
7379
7380	cfg_word |= tidmask;
7381	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7382
7383	/*
7384	 * Clear the microcode SDTR and WDTR negotiation done indicators for
7385	 * the target to cause it to negotiate with the new setting set above.
7386	 * WDTR when accepted causes the target to enter asynchronous mode, so
7387	 * SDTR must be negotiated.
7388	 */
7389	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7390	cfg_word &= ~tidmask;
7391	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7392	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7393	cfg_word &= ~tidmask;
7394	AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7395}
7396
7397/*
7398 * Synchronous Transfers
7399 *
7400 * If the EEPROM enabled SDTR for the device and the device
7401 * supports synchronous transfers, then turn on the device's
7402 * 'sdtr_able' bit. Write the new value to the microcode.
7403 */
7404static void
7405advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7406{
7407	unsigned short cfg_word;
7408	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7409	if ((cfg_word & tidmask) != 0)
7410		return;
7411
7412	cfg_word |= tidmask;
7413	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7414
7415	/*
7416	 * Clear the microcode "SDTR negotiation" done indicator for the
7417	 * target to cause it to negotiate with the new setting set above.
7418	 */
7419	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7420	cfg_word &= ~tidmask;
7421	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7422}
7423
7424/*
7425 * PPR (Parallel Protocol Request) Capable
7426 *
7427 * If the device supports DT mode, then it must be PPR capable.
7428 * The PPR message will be used in place of the SDTR and WDTR
7429 * messages to negotiate synchronous speed and offset, transfer
7430 * width, and protocol options.
7431 */
7432static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7433				AdvPortAddr iop_base, unsigned short tidmask)
7434{
7435	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7436	adv_dvc->ppr_able |= tidmask;
7437	AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7438}
7439
7440static void
7441advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7442{
7443	AdvPortAddr iop_base = adv_dvc->iop_base;
7444	unsigned short tidmask = 1 << sdev->id;
7445
7446	if (sdev->lun == 0) {
7447		/*
7448		 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7449		 * is enabled in the EEPROM and the device supports the
7450		 * feature, then enable it in the microcode.
7451		 */
7452
7453		if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7454			advansys_wide_enable_wdtr(iop_base, tidmask);
7455		if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7456			advansys_wide_enable_sdtr(iop_base, tidmask);
7457		if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7458			advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7459
7460		/*
7461		 * Tag Queuing is disabled for the BIOS which runs in polled
7462		 * mode and would see no benefit from Tag Queuing. Also by
7463		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7464		 * bugs will at least work with the BIOS.
7465		 */
7466		if ((adv_dvc->tagqng_able & tidmask) &&
7467		    sdev->tagged_supported) {
7468			unsigned short cfg_word;
7469			AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7470			cfg_word |= tidmask;
7471			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7472					 cfg_word);
7473			AdvWriteByteLram(iop_base,
7474					 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7475					 adv_dvc->max_dvc_qng);
7476		}
7477	}
7478
7479	if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7480		scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7481}
7482
7483/*
7484 * Set the number of commands to queue per device for the
7485 * specified host adapter.
7486 */
7487static int advansys_slave_configure(struct scsi_device *sdev)
7488{
7489	struct asc_board *boardp = shost_priv(sdev->host);
7490
7491	if (ASC_NARROW_BOARD(boardp))
7492		advansys_narrow_slave_configure(sdev,
7493						&boardp->dvc_var.asc_dvc_var);
7494	else
7495		advansys_wide_slave_configure(sdev,
7496						&boardp->dvc_var.adv_dvc_var);
7497
7498	return 0;
7499}
7500
7501static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
7502{
7503	struct asc_board *board = shost_priv(scp->device->host);
7504
7505	scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7506					     SCSI_SENSE_BUFFERSIZE,
7507					     DMA_FROM_DEVICE);
7508	if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) {
7509		ASC_DBG(1, "failed to map sense buffer\n");
7510		return 0;
7511	}
7512	return cpu_to_le32(scp->SCp.dma_handle);
7513}
7514
7515static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7516			struct asc_scsi_q *asc_scsi_q)
7517{
7518	struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7519	int use_sg;
7520	u32 srb_tag;
7521
7522	memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7523
7524	/*
7525	 * Set the srb_tag to the command tag + 1, as
7526	 * srb_tag '0' is used internally by the chip.
7527	 */
7528	srb_tag = scp->request->tag + 1;
7529	asc_scsi_q->q2.srb_tag = srb_tag;
7530
7531	/*
7532	 * Build the ASC_SCSI_Q request.
7533	 */
7534	asc_scsi_q->cdbptr = &scp->cmnd[0];
7535	asc_scsi_q->q2.cdb_len = scp->cmd_len;
7536	asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7537	asc_scsi_q->q1.target_lun = scp->device->lun;
7538	asc_scsi_q->q2.target_ix =
7539	    ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7540	asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
7541	asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7542	if (!asc_scsi_q->q1.sense_addr)
7543		return ASC_BUSY;
7544
7545	/*
7546	 * If there are any outstanding requests for the current target,
7547	 * then every 255th request send an ORDERED request. This heuristic
7548	 * tries to retain the benefit of request sorting while preventing
7549	 * request starvation. 255 is the max number of tags or pending commands
7550	 * a device may have outstanding.
7551	 *
7552	 * The request count is incremented below for every successfully
7553	 * started request.
7554	 *
7555	 */
7556	if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7557	    (boardp->reqcnt[scp->device->id] % 255) == 0) {
7558		asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7559	} else {
7560		asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7561	}
7562
7563	/* Build ASC_SCSI_Q */
7564	use_sg = scsi_dma_map(scp);
7565	if (use_sg < 0) {
7566		ASC_DBG(1, "failed to map sglist\n");
7567		return ASC_BUSY;
7568	} else if (use_sg > 0) {
7569		int sgcnt;
7570		struct scatterlist *slp;
7571		struct asc_sg_head *asc_sg_head;
7572
7573		if (use_sg > scp->device->host->sg_tablesize) {
7574			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7575				"sg_tablesize %d\n", use_sg,
7576				scp->device->host->sg_tablesize);
7577			scsi_dma_unmap(scp);
7578			scp->result = HOST_BYTE(DID_ERROR);
7579			return ASC_ERROR;
7580		}
7581
7582		asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7583			use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7584		if (!asc_sg_head) {
7585			scsi_dma_unmap(scp);
7586			scp->result = HOST_BYTE(DID_SOFT_ERROR);
7587			return ASC_ERROR;
7588		}
7589
7590		asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7591		asc_scsi_q->sg_head = asc_sg_head;
7592		asc_scsi_q->q1.data_cnt = 0;
7593		asc_scsi_q->q1.data_addr = 0;
7594		/* This is a byte value, otherwise it would need to be swapped. */
7595		asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7596		ASC_STATS_ADD(scp->device->host, xfer_elem,
7597			      asc_sg_head->entry_cnt);
7598
7599		/*
7600		 * Convert scatter-gather list into ASC_SG_HEAD list.
7601		 */
7602		scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7603			asc_sg_head->sg_list[sgcnt].addr =
7604			    cpu_to_le32(sg_dma_address(slp));
7605			asc_sg_head->sg_list[sgcnt].bytes =
7606			    cpu_to_le32(sg_dma_len(slp));
7607			ASC_STATS_ADD(scp->device->host, xfer_sect,
7608				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7609		}
7610	}
7611
7612	ASC_STATS(scp->device->host, xfer_cnt);
7613
7614	ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7615	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7616
7617	return ASC_NOERROR;
7618}
7619
7620/*
7621 * Build scatter-gather list for Adv Library (Wide Board).
7622 *
7623 * Additional ADV_SG_BLOCK structures will need to be allocated
7624 * if the total number of scatter-gather elements exceeds
7625 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7626 * assumed to be physically contiguous.
7627 *
7628 * Return:
7629 *      ADV_SUCCESS(1) - SG List successfully created
7630 *      ADV_ERROR(-1) - SG List creation failed
7631 */
7632static int
7633adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
7634	       ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
7635{
7636	adv_sgblk_t *sgblkp, *prev_sgblkp;
7637	struct scatterlist *slp;
7638	int sg_elem_cnt;
7639	ADV_SG_BLOCK *sg_block, *prev_sg_block;
7640	dma_addr_t sgblk_paddr;
7641	int i;
7642
7643	slp = scsi_sglist(scp);
7644	sg_elem_cnt = use_sg;
7645	prev_sgblkp = NULL;
7646	prev_sg_block = NULL;
7647	reqp->sgblkp = NULL;
7648
7649	for (;;) {
7650		/*
7651		 * Allocate a 'adv_sgblk_t' structure from the board free
7652		 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7653		 * (15) scatter-gather elements.
7654		 */
7655		sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
7656					&sgblk_paddr);
7657		if (!sgblkp) {
7658			ASC_DBG(1, "no free adv_sgblk_t\n");
7659			ASC_STATS(scp->device->host, adv_build_nosg);
7660
7661			/*
7662			 * Allocation failed. Free 'adv_sgblk_t' structures
7663			 * already allocated for the request.
7664			 */
7665			while ((sgblkp = reqp->sgblkp) != NULL) {
7666				/* Remove 'sgblkp' from the request list. */
7667				reqp->sgblkp = sgblkp->next_sgblkp;
7668				sgblkp->next_sgblkp = NULL;
7669				dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
7670					      sgblkp->sg_addr);
7671			}
7672			return ASC_BUSY;
7673		}
7674		/* Complete 'adv_sgblk_t' board allocation. */
7675		sgblkp->sg_addr = sgblk_paddr;
7676		sgblkp->next_sgblkp = NULL;
7677		sg_block = &sgblkp->sg_block;
7678
7679		/*
7680		 * Check if this is the first 'adv_sgblk_t' for the
7681		 * request.
7682		 */
7683		if (reqp->sgblkp == NULL) {
7684			/* Request's first scatter-gather block. */
7685			reqp->sgblkp = sgblkp;
7686
7687			/*
7688			 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7689			 * address pointers.
7690			 */
7691			scsiqp->sg_list_ptr = sg_block;
7692			scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
7693		} else {
7694			/* Request's second or later scatter-gather block. */
7695			prev_sgblkp->next_sgblkp = sgblkp;
7696
7697			/*
7698			 * Point the previous ADV_SG_BLOCK structure to
7699			 * the newly allocated ADV_SG_BLOCK structure.
7700			 */
7701			prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
7702		}
7703
7704		for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
7705			sg_block->sg_list[i].sg_addr =
7706					cpu_to_le32(sg_dma_address(slp));
7707			sg_block->sg_list[i].sg_count =
7708					cpu_to_le32(sg_dma_len(slp));
7709			ASC_STATS_ADD(scp->device->host, xfer_sect,
7710				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7711
7712			if (--sg_elem_cnt == 0) {
7713				/*
7714				 * Last ADV_SG_BLOCK and scatter-gather entry.
7715				 */
7716				sg_block->sg_cnt = i + 1;
7717				sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
7718				return ADV_SUCCESS;
7719			}
7720			slp++;
7721		}
7722		sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
7723		prev_sg_block = sg_block;
7724		prev_sgblkp = sgblkp;
7725	}
7726}
7727
7728/*
7729 * Build a request structure for the Adv Library (Wide Board).
7730 *
7731 * If an adv_req_t can not be allocated to issue the request,
7732 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7733 *
7734 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7735 * microcode for DMA addresses or math operations are byte swapped
7736 * to little-endian order.
7737 */
7738static int
7739adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7740	      adv_req_t **adv_reqpp)
7741{
7742	u32 srb_tag = scp->request->tag;
7743	adv_req_t *reqp;
7744	ADV_SCSI_REQ_Q *scsiqp;
7745	int ret;
7746	int use_sg;
7747	dma_addr_t sense_addr;
7748
7749	/*
7750	 * Allocate an adv_req_t structure from the board to execute
7751	 * the command.
7752	 */
7753	reqp = &boardp->adv_reqp[srb_tag];
7754	if (reqp->cmndp && reqp->cmndp != scp ) {
7755		ASC_DBG(1, "no free adv_req_t\n");
7756		ASC_STATS(scp->device->host, adv_build_noreq);
7757		return ASC_BUSY;
7758	}
7759
7760	reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
7761
7762	scsiqp = &reqp->scsi_req_q;
7763
7764	/*
7765	 * Initialize the structure.
7766	 */
7767	scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
7768
7769	/*
7770	 * Set the srb_tag to the command tag.
7771	 */
7772	scsiqp->srb_tag = srb_tag;
7773
7774	/*
7775	 * Set 'host_scribble' to point to the adv_req_t structure.
7776	 */
7777	reqp->cmndp = scp;
7778	scp->host_scribble = (void *)reqp;
7779
7780	/*
7781	 * Build the ADV_SCSI_REQ_Q request.
7782	 */
7783
7784	/* Set CDB length and copy it to the request structure.  */
7785	scsiqp->cdb_len = scp->cmd_len;
7786	/* Copy first 12 CDB bytes to cdb[]. */
7787	memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
7788	/* Copy last 4 CDB bytes, if present, to cdb16[]. */
7789	if (scp->cmd_len > 12) {
7790		int cdb16_len = scp->cmd_len - 12;
7791
7792		memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
7793	}
7794
7795	scsiqp->target_id = scp->device->id;
7796	scsiqp->target_lun = scp->device->lun;
7797
7798	sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
7799				    SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7800	if (dma_mapping_error(boardp->dev, sense_addr)) {
7801		ASC_DBG(1, "failed to map sense buffer\n");
7802		ASC_STATS(scp->device->host, adv_build_noreq);
7803		return ASC_BUSY;
7804	}
7805	scsiqp->sense_addr = cpu_to_le32(sense_addr);
7806	scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
7807
7808	/* Build ADV_SCSI_REQ_Q */
7809
7810	use_sg = scsi_dma_map(scp);
7811	if (use_sg < 0) {
7812		ASC_DBG(1, "failed to map SG list\n");
7813		ASC_STATS(scp->device->host, adv_build_noreq);
7814		return ASC_BUSY;
7815	} else if (use_sg == 0) {
7816		/* Zero-length transfer */
7817		reqp->sgblkp = NULL;
7818		scsiqp->data_cnt = 0;
7819
7820		scsiqp->data_addr = 0;
7821		scsiqp->sg_list_ptr = NULL;
7822		scsiqp->sg_real_addr = 0;
7823	} else {
7824		if (use_sg > ADV_MAX_SG_LIST) {
7825			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7826				   "ADV_MAX_SG_LIST %d\n", use_sg,
7827				   scp->device->host->sg_tablesize);
7828			scsi_dma_unmap(scp);
7829			scp->result = HOST_BYTE(DID_ERROR);
7830			reqp->cmndp = NULL;
7831			scp->host_scribble = NULL;
7832
7833			return ASC_ERROR;
7834		}
7835
7836		scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
7837
7838		ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
7839		if (ret != ADV_SUCCESS) {
7840			scsi_dma_unmap(scp);
7841			scp->result = HOST_BYTE(DID_ERROR);
7842			reqp->cmndp = NULL;
7843			scp->host_scribble = NULL;
7844
7845			return ret;
7846		}
7847
7848		ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
7849	}
7850
7851	ASC_STATS(scp->device->host, xfer_cnt);
7852
7853	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
7854	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7855
7856	*adv_reqpp = reqp;
7857
7858	return ASC_NOERROR;
7859}
7860
7861static int AscSgListToQueue(int sg_list)
7862{
7863	int n_sg_list_qs;
7864
7865	n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
7866	if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
7867		n_sg_list_qs++;
7868	return n_sg_list_qs + 1;
7869}
7870
7871static uint
7872AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
7873{
7874	uint cur_used_qs;
7875	uint cur_free_qs;
7876	ASC_SCSI_BIT_ID_TYPE target_id;
7877	uchar tid_no;
7878
7879	target_id = ASC_TIX_TO_TARGET_ID(target_ix);
7880	tid_no = ASC_TIX_TO_TID(target_ix);
7881	if ((asc_dvc->unit_not_ready & target_id) ||
7882	    (asc_dvc->queue_full_or_busy & target_id)) {
7883		return 0;
7884	}
7885	if (n_qs == 1) {
7886		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7887		    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
7888	} else {
7889		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7890		    (uint) ASC_MIN_FREE_Q;
7891	}
7892	if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
7893		cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
7894		if (asc_dvc->cur_dvc_qng[tid_no] >=
7895		    asc_dvc->max_dvc_qng[tid_no]) {
7896			return 0;
7897		}
7898		return cur_free_qs;
7899	}
7900	if (n_qs > 1) {
7901		if ((n_qs > asc_dvc->last_q_shortage)
7902		    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
7903			asc_dvc->last_q_shortage = n_qs;
7904		}
7905	}
7906	return 0;
7907}
7908
7909static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
7910{
7911	ushort q_addr;
7912	uchar next_qp;
7913	uchar q_status;
7914
7915	q_addr = ASC_QNO_TO_QADDR(free_q_head);
7916	q_status = (uchar)AscReadLramByte(iop_base,
7917					  (ushort)(q_addr +
7918						   ASC_SCSIQ_B_STATUS));
7919	next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
7920	if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
7921		return next_qp;
7922	return ASC_QLINK_END;
7923}
7924
7925static uchar
7926AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
7927{
7928	uchar i;
7929
7930	for (i = 0; i < n_free_q; i++) {
7931		free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
7932		if (free_q_head == ASC_QLINK_END)
7933			break;
7934	}
7935	return free_q_head;
7936}
7937
7938/*
7939 * void
7940 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7941 *
7942 * Calling/Exit State:
7943 *    none
7944 *
7945 * Description:
7946 *     Output an ASC_SCSI_Q structure to the chip
7947 */
7948static void
7949DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7950{
7951	int i;
7952
7953	ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
7954	AscSetChipLramAddr(iop_base, s_addr);
7955	for (i = 0; i < 2 * words; i += 2) {
7956		if (i == 4 || i == 20) {
7957			continue;
7958		}
7959		outpw(iop_base + IOP_RAM_DATA,
7960		      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
7961	}
7962}
7963
7964static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7965{
7966	ushort q_addr;
7967	uchar tid_no;
7968	uchar sdtr_data;
7969	uchar syn_period_ix;
7970	uchar syn_offset;
7971	PortAddr iop_base;
7972
7973	iop_base = asc_dvc->iop_base;
7974	if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
7975	    ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
7976		tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
7977		sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7978		syn_period_ix =
7979		    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
7980		syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
7981		AscMsgOutSDTR(asc_dvc,
7982			      asc_dvc->sdtr_period_tbl[syn_period_ix],
7983			      syn_offset);
7984		scsiq->q1.cntl |= QC_MSG_OUT;
7985	}
7986	q_addr = ASC_QNO_TO_QADDR(q_no);
7987	if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
7988		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
7989	}
7990	scsiq->q1.status = QS_FREE;
7991	AscMemWordCopyPtrToLram(iop_base,
7992				q_addr + ASC_SCSIQ_CDB_BEG,
7993				(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
7994
7995	DvcPutScsiQ(iop_base,
7996		    q_addr + ASC_SCSIQ_CPY_BEG,
7997		    (uchar *)&scsiq->q1.cntl,
7998		    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
7999	AscWriteLramWord(iop_base,
8000			 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8001			 (ushort)(((ushort)scsiq->q1.
8002				   q_no << 8) | (ushort)QS_READY));
8003	return 1;
8004}
8005
8006static int
8007AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8008{
8009	int sta;
8010	int i;
8011	ASC_SG_HEAD *sg_head;
8012	ASC_SG_LIST_Q scsi_sg_q;
8013	__le32 saved_data_addr;
8014	__le32 saved_data_cnt;
8015	PortAddr iop_base;
8016	ushort sg_list_dwords;
8017	ushort sg_index;
8018	ushort sg_entry_cnt;
8019	ushort q_addr;
8020	uchar next_qp;
8021
8022	iop_base = asc_dvc->iop_base;
8023	sg_head = scsiq->sg_head;
8024	saved_data_addr = scsiq->q1.data_addr;
8025	saved_data_cnt = scsiq->q1.data_cnt;
8026	scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8027	scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8028	/*
8029	 * Set sg_entry_cnt to be the number of SG elements that
8030	 * will fit in the allocated SG queues. It is minus 1, because
8031	 * the first SG element is handled above.
8032	 */
8033	sg_entry_cnt = sg_head->entry_cnt - 1;
8034
8035	if (sg_entry_cnt != 0) {
8036		scsiq->q1.cntl |= QC_SG_HEAD;
8037		q_addr = ASC_QNO_TO_QADDR(q_no);
8038		sg_index = 1;
8039		scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8040		scsi_sg_q.sg_head_qp = q_no;
8041		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8042		for (i = 0; i < sg_head->queue_cnt; i++) {
8043			scsi_sg_q.seq_no = i + 1;
8044			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8045				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8046				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8047				if (i == 0) {
8048					scsi_sg_q.sg_list_cnt =
8049					    ASC_SG_LIST_PER_Q;
8050					scsi_sg_q.sg_cur_list_cnt =
8051					    ASC_SG_LIST_PER_Q;
8052				} else {
8053					scsi_sg_q.sg_list_cnt =
8054					    ASC_SG_LIST_PER_Q - 1;
8055					scsi_sg_q.sg_cur_list_cnt =
8056					    ASC_SG_LIST_PER_Q - 1;
8057				}
8058			} else {
8059				scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8060				sg_list_dwords = sg_entry_cnt << 1;
8061				if (i == 0) {
8062					scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8063					scsi_sg_q.sg_cur_list_cnt =
8064					    sg_entry_cnt;
8065				} else {
8066					scsi_sg_q.sg_list_cnt =
8067					    sg_entry_cnt - 1;
8068					scsi_sg_q.sg_cur_list_cnt =
8069					    sg_entry_cnt - 1;
8070				}
8071				sg_entry_cnt = 0;
8072			}
8073			next_qp = AscReadLramByte(iop_base,
8074						  (ushort)(q_addr +
8075							   ASC_SCSIQ_B_FWD));
8076			scsi_sg_q.q_no = next_qp;
8077			q_addr = ASC_QNO_TO_QADDR(next_qp);
8078			AscMemWordCopyPtrToLram(iop_base,
8079						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8080						(uchar *)&scsi_sg_q,
8081						sizeof(ASC_SG_LIST_Q) >> 1);
8082			AscMemDWordCopyPtrToLram(iop_base,
8083						 q_addr + ASC_SGQ_LIST_BEG,
8084						 (uchar *)&sg_head->
8085						 sg_list[sg_index],
8086						 sg_list_dwords);
8087			sg_index += ASC_SG_LIST_PER_Q;
8088			scsiq->next_sg_index = sg_index;
8089		}
8090	} else {
8091		scsiq->q1.cntl &= ~QC_SG_HEAD;
8092	}
8093	sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8094	scsiq->q1.data_addr = saved_data_addr;
8095	scsiq->q1.data_cnt = saved_data_cnt;
8096	return (sta);
8097}
8098
8099static int
8100AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8101{
8102	PortAddr iop_base;
8103	uchar free_q_head;
8104	uchar next_qp;
8105	uchar tid_no;
8106	uchar target_ix;
8107	int sta;
8108
8109	iop_base = asc_dvc->iop_base;
8110	target_ix = scsiq->q2.target_ix;
8111	tid_no = ASC_TIX_TO_TID(target_ix);
8112	sta = 0;
8113	free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8114	if (n_q_required > 1) {
8115		next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8116						    (uchar)n_q_required);
8117		if (next_qp != ASC_QLINK_END) {
8118			asc_dvc->last_q_shortage = 0;
8119			scsiq->sg_head->queue_cnt = n_q_required - 1;
8120			scsiq->q1.q_no = free_q_head;
8121			sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8122						     free_q_head);
8123		}
8124	} else if (n_q_required == 1) {
8125		next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8126		if (next_qp != ASC_QLINK_END) {
8127			scsiq->q1.q_no = free_q_head;
8128			sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8129		}
8130	}
8131	if (sta == 1) {
8132		AscPutVarFreeQHead(iop_base, next_qp);
8133		asc_dvc->cur_total_qng += n_q_required;
8134		asc_dvc->cur_dvc_qng[tid_no]++;
8135	}
8136	return sta;
8137}
8138
8139#define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8140static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8141	INQUIRY,
8142	REQUEST_SENSE,
8143	READ_CAPACITY,
8144	READ_TOC,
8145	MODE_SELECT,
8146	MODE_SENSE,
8147	MODE_SELECT_10,
8148	MODE_SENSE_10,
8149	0xFF,
8150	0xFF,
8151	0xFF,
8152	0xFF,
8153	0xFF,
8154	0xFF,
8155	0xFF,
8156	0xFF
8157};
8158
8159static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8160{
8161	PortAddr iop_base;
8162	int sta;
8163	int n_q_required;
8164	bool disable_syn_offset_one_fix;
8165	int i;
8166	u32 addr;
8167	ushort sg_entry_cnt = 0;
8168	ushort sg_entry_cnt_minus_one = 0;
8169	uchar target_ix;
8170	uchar tid_no;
8171	uchar sdtr_data;
8172	uchar extra_bytes;
8173	uchar scsi_cmd;
8174	uchar disable_cmd;
8175	ASC_SG_HEAD *sg_head;
8176	unsigned long data_cnt;
8177
8178	iop_base = asc_dvc->iop_base;
8179	sg_head = scsiq->sg_head;
8180	if (asc_dvc->err_code != 0)
8181		return ASC_ERROR;
8182	scsiq->q1.q_no = 0;
8183	if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8184		scsiq->q1.extra_bytes = 0;
8185	}
8186	sta = 0;
8187	target_ix = scsiq->q2.target_ix;
8188	tid_no = ASC_TIX_TO_TID(target_ix);
8189	n_q_required = 1;
8190	if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8191		if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8192			asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8193			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8194			AscMsgOutSDTR(asc_dvc,
8195				      asc_dvc->
8196				      sdtr_period_tbl[(sdtr_data >> 4) &
8197						      (uchar)(asc_dvc->
8198							      max_sdtr_index -
8199							      1)],
8200				      (uchar)(sdtr_data & (uchar)
8201					      ASC_SYN_MAX_OFFSET));
8202			scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8203		}
8204	}
8205	if (asc_dvc->in_critical_cnt != 0) {
8206		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8207		return ASC_ERROR;
8208	}
8209	asc_dvc->in_critical_cnt++;
8210	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8211		if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8212			asc_dvc->in_critical_cnt--;
8213			return ASC_ERROR;
8214		}
8215		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8216			asc_dvc->in_critical_cnt--;
8217			return ASC_ERROR;
8218		}
8219		if (sg_entry_cnt == 1) {
8220			scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8221			scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8222			scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8223		}
8224		sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8225	}
8226	scsi_cmd = scsiq->cdbptr[0];
8227	disable_syn_offset_one_fix = false;
8228	if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8229	    !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8230		if (scsiq->q1.cntl & QC_SG_HEAD) {
8231			data_cnt = 0;
8232			for (i = 0; i < sg_entry_cnt; i++) {
8233				data_cnt += le32_to_cpu(sg_head->sg_list[i].
8234							bytes);
8235			}
8236		} else {
8237			data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8238		}
8239		if (data_cnt != 0UL) {
8240			if (data_cnt < 512UL) {
8241				disable_syn_offset_one_fix = true;
8242			} else {
8243				for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8244				     i++) {
8245					disable_cmd =
8246					    _syn_offset_one_disable_cmd[i];
8247					if (disable_cmd == 0xFF) {
8248						break;
8249					}
8250					if (scsi_cmd == disable_cmd) {
8251						disable_syn_offset_one_fix =
8252						    true;
8253						break;
8254					}
8255				}
8256			}
8257		}
8258	}
8259	if (disable_syn_offset_one_fix) {
8260		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8261		scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8262				       ASC_TAG_FLAG_DISABLE_DISCONNECT);
8263	} else {
8264		scsiq->q2.tag_code &= 0x27;
8265	}
8266	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8267		if (asc_dvc->bug_fix_cntl) {
8268			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8269				if ((scsi_cmd == READ_6) ||
8270				    (scsi_cmd == READ_10)) {
8271					addr = le32_to_cpu(sg_head->
8272								   sg_list
8273								   [sg_entry_cnt_minus_one].
8274								   addr) +
8275						le32_to_cpu(sg_head->
8276								  sg_list
8277								  [sg_entry_cnt_minus_one].
8278								  bytes);
8279					extra_bytes =
8280					    (uchar)((ushort)addr & 0x0003);
8281					if ((extra_bytes != 0)
8282					    &&
8283					    ((scsiq->q2.
8284					      tag_code &
8285					      ASC_TAG_FLAG_EXTRA_BYTES)
8286					     == 0)) {
8287						scsiq->q2.tag_code |=
8288						    ASC_TAG_FLAG_EXTRA_BYTES;
8289						scsiq->q1.extra_bytes =
8290						    extra_bytes;
8291						data_cnt =
8292						    le32_to_cpu(sg_head->
8293								sg_list
8294								[sg_entry_cnt_minus_one].
8295								bytes);
8296						data_cnt -= extra_bytes;
8297						sg_head->
8298						    sg_list
8299						    [sg_entry_cnt_minus_one].
8300						    bytes =
8301						    cpu_to_le32(data_cnt);
8302					}
8303				}
8304			}
8305		}
8306		sg_head->entry_to_copy = sg_head->entry_cnt;
8307		n_q_required = AscSgListToQueue(sg_entry_cnt);
8308		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8309		     (uint) n_q_required)
8310		    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8311			if ((sta =
8312			     AscSendScsiQueue(asc_dvc, scsiq,
8313					      n_q_required)) == 1) {
8314				asc_dvc->in_critical_cnt--;
8315				return (sta);
8316			}
8317		}
8318	} else {
8319		if (asc_dvc->bug_fix_cntl) {
8320			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8321				if ((scsi_cmd == READ_6) ||
8322				    (scsi_cmd == READ_10)) {
8323					addr =
8324					    le32_to_cpu(scsiq->q1.data_addr) +
8325					    le32_to_cpu(scsiq->q1.data_cnt);
8326					extra_bytes =
8327					    (uchar)((ushort)addr & 0x0003);
8328					if ((extra_bytes != 0)
8329					    &&
8330					    ((scsiq->q2.
8331					      tag_code &
8332					      ASC_TAG_FLAG_EXTRA_BYTES)
8333					     == 0)) {
8334						data_cnt =
8335						    le32_to_cpu(scsiq->q1.
8336								data_cnt);
8337						if (((ushort)data_cnt & 0x01FF)
8338						    == 0) {
8339							scsiq->q2.tag_code |=
8340							    ASC_TAG_FLAG_EXTRA_BYTES;
8341							data_cnt -= extra_bytes;
8342							scsiq->q1.data_cnt =
8343							    cpu_to_le32
8344							    (data_cnt);
8345							scsiq->q1.extra_bytes =
8346							    extra_bytes;
8347						}
8348					}
8349				}
8350			}
8351		}
8352		n_q_required = 1;
8353		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8354		    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8355			if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8356						    n_q_required)) == 1) {
8357				asc_dvc->in_critical_cnt--;
8358				return (sta);
8359			}
8360		}
8361	}
8362	asc_dvc->in_critical_cnt--;
8363	return (sta);
8364}
8365
8366/*
8367 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8368 *
8369 *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8370 *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8371 *   RISC to notify it a new command is ready to be executed.
8372 *
8373 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8374 * set to SCSI_MAX_RETRY.
8375 *
8376 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8377 * for DMA addresses or math operations are byte swapped to little-endian
8378 * order.
8379 *
8380 * Return:
8381 *      ADV_SUCCESS(1) - The request was successfully queued.
8382 *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8383 *                       request completes.
8384 *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8385 *                       host IC error.
8386 */
8387static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
8388{
8389	AdvPortAddr iop_base;
8390	ADV_CARR_T *new_carrp;
8391	ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
8392
8393	/*
8394	 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8395	 */
8396	if (scsiq->target_id > ADV_MAX_TID) {
8397		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8398		scsiq->done_status = QD_WITH_ERROR;
8399		return ADV_ERROR;
8400	}
8401
8402	iop_base = asc_dvc->iop_base;
8403
8404	/*
8405	 * Allocate a carrier ensuring at least one carrier always
8406	 * remains on the freelist and initialize fields.
8407	 */
8408	new_carrp = adv_get_next_carrier(asc_dvc);
8409	if (!new_carrp) {
8410		ASC_DBG(1, "No free carriers\n");
8411		return ADV_BUSY;
8412	}
8413
8414	asc_dvc->carr_pending_cnt++;
8415
8416	/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8417	scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
8418	scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
8419
8420	scsiq->carr_va = asc_dvc->icq_sp->carr_va;
8421	scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8422
8423	/*
8424	 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8425	 * the microcode. The newly allocated stopper will become the new
8426	 * stopper.
8427	 */
8428	asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
8429
8430	/*
8431	 * Set the 'next_vpa' pointer for the old stopper to be the
8432	 * physical address of the new stopper. The RISC can only
8433	 * follow physical addresses.
8434	 */
8435	asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8436
8437	/*
8438	 * Set the host adapter stopper pointer to point to the new carrier.
8439	 */
8440	asc_dvc->icq_sp = new_carrp;
8441
8442	if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8443	    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8444		/*
8445		 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8446		 */
8447		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8448		if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8449			/*
8450			 * Clear the tickle value. In the ASC-3550 the RISC flag
8451			 * command 'clr_tickle_a' does not work unless the host
8452			 * value is cleared.
8453			 */
8454			AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8455					     ADV_TICKLE_NOP);
8456		}
8457	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8458		/*
8459		 * Notify the RISC a carrier is ready by writing the physical
8460		 * address of the new carrier stopper to the COMMA register.
8461		 */
8462		AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8463				      le32_to_cpu(new_carrp->carr_pa));
8464	}
8465
8466	return ADV_SUCCESS;
8467}
8468
8469/*
8470 * Execute a single 'Scsi_Cmnd'.
8471 */
8472static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8473{
8474	int ret, err_code;
8475	struct asc_board *boardp = shost_priv(scp->device->host);
8476
8477	ASC_DBG(1, "scp 0x%p\n", scp);
8478
8479	if (ASC_NARROW_BOARD(boardp)) {
8480		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8481		struct asc_scsi_q asc_scsi_q;
8482
8483		ret = asc_build_req(boardp, scp, &asc_scsi_q);
8484		if (ret != ASC_NOERROR) {
8485			ASC_STATS(scp->device->host, build_error);
8486			return ret;
8487		}
8488
8489		ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8490		kfree(asc_scsi_q.sg_head);
8491		err_code = asc_dvc->err_code;
8492	} else {
8493		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8494		adv_req_t *adv_reqp;
8495
8496		switch (adv_build_req(boardp, scp, &adv_reqp)) {
8497		case ASC_NOERROR:
8498			ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8499			break;
8500		case ASC_BUSY:
8501			ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8502			/*
8503			 * The asc_stats fields 'adv_build_noreq' and
8504			 * 'adv_build_nosg' count wide board busy conditions.
8505			 * They are updated in adv_build_req and
8506			 * adv_get_sglist, respectively.
8507			 */
8508			return ASC_BUSY;
8509		case ASC_ERROR:
8510		default:
8511			ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8512			ASC_STATS(scp->device->host, build_error);
8513			return ASC_ERROR;
8514		}
8515
8516		ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
8517		err_code = adv_dvc->err_code;
8518	}
8519
8520	switch (ret) {
8521	case ASC_NOERROR:
8522		ASC_STATS(scp->device->host, exe_noerror);
8523		/*
8524		 * Increment monotonically increasing per device
8525		 * successful request counter. Wrapping doesn't matter.
8526		 */
8527		boardp->reqcnt[scp->device->id]++;
8528		ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8529		break;
8530	case ASC_BUSY:
8531		ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8532		ASC_STATS(scp->device->host, exe_busy);
8533		break;
8534	case ASC_ERROR:
8535		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8536			"err_code 0x%x\n", err_code);
8537		ASC_STATS(scp->device->host, exe_error);
8538		scp->result = HOST_BYTE(DID_ERROR);
8539		break;
8540	default:
8541		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8542			"err_code 0x%x\n", err_code);
8543		ASC_STATS(scp->device->host, exe_unknown);
8544		scp->result = HOST_BYTE(DID_ERROR);
8545		break;
8546	}
8547
8548	ASC_DBG(1, "end\n");
8549	return ret;
8550}
8551
8552/*
8553 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8554 *
8555 * This function always returns 0. Command return status is saved
8556 * in the 'scp' result field.
8557 */
8558static int
8559advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
8560{
8561	struct Scsi_Host *shost = scp->device->host;
8562	int asc_res, result = 0;
8563
8564	ASC_STATS(shost, queuecommand);
8565	scp->scsi_done = done;
8566
8567	asc_res = asc_execute_scsi_cmnd(scp);
8568
8569	switch (asc_res) {
8570	case ASC_NOERROR:
8571		break;
8572	case ASC_BUSY:
8573		result = SCSI_MLQUEUE_HOST_BUSY;
8574		break;
8575	case ASC_ERROR:
8576	default:
8577		asc_scsi_done(scp);
8578		break;
8579	}
8580
8581	return result;
8582}
8583
8584static DEF_SCSI_QCMD(advansys_queuecommand)
8585
8586static ushort AscGetEisaChipCfg(PortAddr iop_base)
8587{
8588	PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8589	    (PortAddr) (ASC_EISA_CFG_IOP_MASK);
8590	return inpw(eisa_cfg_iop);
8591}
8592
8593/*
8594 * Return the BIOS address of the adapter at the specified
8595 * I/O port and with the specified bus type.
8596 */
8597static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
8598					    unsigned short bus_type)
8599{
8600	unsigned short cfg_lsw;
8601	unsigned short bios_addr;
8602
8603	/*
8604	 * The PCI BIOS is re-located by the motherboard BIOS. Because
8605	 * of this the driver can not determine where a PCI BIOS is
8606	 * loaded and executes.
8607	 */
8608	if (bus_type & ASC_IS_PCI)
8609		return 0;
8610
8611	if ((bus_type & ASC_IS_EISA) != 0) {
8612		cfg_lsw = AscGetEisaChipCfg(iop_base);
8613		cfg_lsw &= 0x000F;
8614		bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
8615		return bios_addr;
8616	}
8617
8618	cfg_lsw = AscGetChipCfgLsw(iop_base);
8619
8620	/*
8621	 *  ISA PnP uses the top bit as the 32K BIOS flag
8622	 */
8623	if (bus_type == ASC_IS_ISAPNP)
8624		cfg_lsw &= 0x7FFF;
8625	bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
8626	return bios_addr;
8627}
8628
8629static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
8630{
8631	ushort cfg_lsw;
8632
8633	if (AscGetChipScsiID(iop_base) == new_host_id) {
8634		return (new_host_id);
8635	}
8636	cfg_lsw = AscGetChipCfgLsw(iop_base);
8637	cfg_lsw &= 0xF8FF;
8638	cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
8639	AscSetChipCfgLsw(iop_base, cfg_lsw);
8640	return (AscGetChipScsiID(iop_base));
8641}
8642
8643static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
8644{
8645	unsigned char sc;
8646
8647	AscSetBank(iop_base, 1);
8648	sc = inp(iop_base + IOP_REG_SC);
8649	AscSetBank(iop_base, 0);
8650	return sc;
8651}
8652
8653static unsigned char AscGetChipVersion(PortAddr iop_base,
8654				       unsigned short bus_type)
8655{
8656	if (bus_type & ASC_IS_EISA) {
8657		PortAddr eisa_iop;
8658		unsigned char revision;
8659		eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8660		    (PortAddr) ASC_EISA_REV_IOP_MASK;
8661		revision = inp(eisa_iop);
8662		return ASC_CHIP_MIN_VER_EISA - 1 + revision;
8663	}
8664	return AscGetChipVerNo(iop_base);
8665}
8666
8667#ifdef CONFIG_ISA
8668static void AscEnableIsaDma(uchar dma_channel)
8669{
8670	if (dma_channel < 4) {
8671		outp(0x000B, (ushort)(0xC0 | dma_channel));
8672		outp(0x000A, dma_channel);
8673	} else if (dma_channel < 8) {
8674		outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
8675		outp(0x00D4, (ushort)(dma_channel - 4));
8676	}
8677}
8678#endif /* CONFIG_ISA */
8679
8680static int AscStopQueueExe(PortAddr iop_base)
8681{
8682	int count = 0;
8683
8684	if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
8685		AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8686				 ASC_STOP_REQ_RISC_STOP);
8687		do {
8688			if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
8689			    ASC_STOP_ACK_RISC_STOP) {
8690				return (1);
8691			}
8692			mdelay(100);
8693		} while (count++ < 20);
8694	}
8695	return (0);
8696}
8697
8698static unsigned int AscGetMaxDmaCount(ushort bus_type)
8699{
8700	if (bus_type & ASC_IS_ISA)
8701		return ASC_MAX_ISA_DMA_COUNT;
8702	else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
8703		return ASC_MAX_VL_DMA_COUNT;
8704	return ASC_MAX_PCI_DMA_COUNT;
8705}
8706
8707#ifdef CONFIG_ISA
8708static ushort AscGetIsaDmaChannel(PortAddr iop_base)
8709{
8710	ushort channel;
8711
8712	channel = AscGetChipCfgLsw(iop_base) & 0x0003;
8713	if (channel == 0x03)
8714		return (0);
8715	else if (channel == 0x00)
8716		return (7);
8717	return (channel + 4);
8718}
8719
8720static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
8721{
8722	ushort cfg_lsw;
8723	uchar value;
8724
8725	if ((dma_channel >= 5) && (dma_channel <= 7)) {
8726		if (dma_channel == 7)
8727			value = 0x00;
8728		else
8729			value = dma_channel - 4;
8730		cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
8731		cfg_lsw |= value;
8732		AscSetChipCfgLsw(iop_base, cfg_lsw);
8733		return (AscGetIsaDmaChannel(iop_base));
8734	}
8735	return 0;
8736}
8737
8738static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
8739{
8740	uchar speed_value;
8741
8742	AscSetBank(iop_base, 1);
8743	speed_value = AscReadChipDmaSpeed(iop_base);
8744	speed_value &= 0x07;
8745	AscSetBank(iop_base, 0);
8746	return speed_value;
8747}
8748
8749static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
8750{
8751	speed_value &= 0x07;
8752	AscSetBank(iop_base, 1);
8753	AscWriteChipDmaSpeed(iop_base, speed_value);
8754	AscSetBank(iop_base, 0);
8755	return AscGetIsaDmaSpeed(iop_base);
8756}
8757#endif /* CONFIG_ISA */
8758
8759static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
8760{
8761	int i;
8762	PortAddr iop_base;
8763	uchar chip_version;
8764
8765	iop_base = asc_dvc->iop_base;
8766	asc_dvc->err_code = 0;
8767	if ((asc_dvc->bus_type &
8768	     (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
8769		asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
8770	}
8771	AscSetChipControl(iop_base, CC_HALT);
8772	AscSetChipStatus(iop_base, 0);
8773	asc_dvc->bug_fix_cntl = 0;
8774	asc_dvc->pci_fix_asyn_xfer = 0;
8775	asc_dvc->pci_fix_asyn_xfer_always = 0;
8776	/* asc_dvc->init_state initialized in AscInitGetConfig(). */
8777	asc_dvc->sdtr_done = 0;
8778	asc_dvc->cur_total_qng = 0;
8779	asc_dvc->is_in_int = false;
8780	asc_dvc->in_critical_cnt = 0;
8781	asc_dvc->last_q_shortage = 0;
8782	asc_dvc->use_tagged_qng = 0;
8783	asc_dvc->no_scam = 0;
8784	asc_dvc->unit_not_ready = 0;
8785	asc_dvc->queue_full_or_busy = 0;
8786	asc_dvc->redo_scam = 0;
8787	asc_dvc->res2 = 0;
8788	asc_dvc->min_sdtr_index = 0;
8789	asc_dvc->cfg->can_tagged_qng = 0;
8790	asc_dvc->cfg->cmd_qng_enabled = 0;
8791	asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
8792	asc_dvc->init_sdtr = 0;
8793	asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
8794	asc_dvc->scsi_reset_wait = 3;
8795	asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
8796	asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
8797	asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
8798	asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
8799	asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
8800	chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
8801	asc_dvc->cfg->chip_version = chip_version;
8802	asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
8803	asc_dvc->max_sdtr_index = 7;
8804	if ((asc_dvc->bus_type & ASC_IS_PCI) &&
8805	    (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
8806		asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
8807		asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
8808		asc_dvc->max_sdtr_index = 15;
8809		if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
8810			AscSetExtraControl(iop_base,
8811					   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8812		} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
8813			AscSetExtraControl(iop_base,
8814					   (SEC_ACTIVE_NEGATE |
8815					    SEC_ENABLE_FILTER));
8816		}
8817	}
8818	if (asc_dvc->bus_type == ASC_IS_PCI) {
8819		AscSetExtraControl(iop_base,
8820				   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8821	}
8822
8823	asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
8824#ifdef CONFIG_ISA
8825	if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
8826		if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
8827			AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
8828			asc_dvc->bus_type = ASC_IS_ISAPNP;
8829		}
8830		asc_dvc->cfg->isa_dma_channel =
8831		    (uchar)AscGetIsaDmaChannel(iop_base);
8832	}
8833#endif /* CONFIG_ISA */
8834	for (i = 0; i <= ASC_MAX_TID; i++) {
8835		asc_dvc->cur_dvc_qng[i] = 0;
8836		asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
8837		asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
8838		asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
8839		asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
8840	}
8841}
8842
8843static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
8844{
8845	int retry;
8846
8847	for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
8848		unsigned char read_back;
8849		AscSetChipEEPCmd(iop_base, cmd_reg);
8850		mdelay(1);
8851		read_back = AscGetChipEEPCmd(iop_base);
8852		if (read_back == cmd_reg)
8853			return 1;
8854	}
8855	return 0;
8856}
8857
8858static void AscWaitEEPRead(void)
8859{
8860	mdelay(1);
8861}
8862
8863static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
8864{
8865	ushort read_wval;
8866	uchar cmd_reg;
8867
8868	AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8869	AscWaitEEPRead();
8870	cmd_reg = addr | ASC_EEP_CMD_READ;
8871	AscWriteEEPCmdReg(iop_base, cmd_reg);
8872	AscWaitEEPRead();
8873	read_wval = AscGetChipEEPData(iop_base);
8874	AscWaitEEPRead();
8875	return read_wval;
8876}
8877
8878static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8879			      ushort bus_type)
8880{
8881	ushort wval;
8882	ushort sum;
8883	ushort *wbuf;
8884	int cfg_beg;
8885	int cfg_end;
8886	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8887	int s_addr;
8888
8889	wbuf = (ushort *)cfg_buf;
8890	sum = 0;
8891	/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8892	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8893		*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8894		sum += *wbuf;
8895	}
8896	if (bus_type & ASC_IS_VL) {
8897		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8898		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8899	} else {
8900		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8901		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8902	}
8903	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8904		wval = AscReadEEPWord(iop_base, (uchar)s_addr);
8905		if (s_addr <= uchar_end_in_config) {
8906			/*
8907			 * Swap all char fields - must unswap bytes already swapped
8908			 * by AscReadEEPWord().
8909			 */
8910			*wbuf = le16_to_cpu(wval);
8911		} else {
8912			/* Don't swap word field at the end - cntl field. */
8913			*wbuf = wval;
8914		}
8915		sum += wval;	/* Checksum treats all EEPROM data as words. */
8916	}
8917	/*
8918	 * Read the checksum word which will be compared against 'sum'
8919	 * by the caller. Word field already swapped.
8920	 */
8921	*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8922	return sum;
8923}
8924
8925static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
8926{
8927	PortAddr iop_base;
8928	ushort q_addr;
8929	ushort saved_word;
8930	int sta;
8931
8932	iop_base = asc_dvc->iop_base;
8933	sta = 0;
8934	q_addr = ASC_QNO_TO_QADDR(241);
8935	saved_word = AscReadLramWord(iop_base, q_addr);
8936	AscSetChipLramAddr(iop_base, q_addr);
8937	AscSetChipLramData(iop_base, 0x55AA);
8938	mdelay(10);
8939	AscSetChipLramAddr(iop_base, q_addr);
8940	if (AscGetChipLramData(iop_base) == 0x55AA) {
8941		sta = 1;
8942		AscWriteLramWord(iop_base, q_addr, saved_word);
8943	}
8944	return (sta);
8945}
8946
8947static void AscWaitEEPWrite(void)
8948{
8949	mdelay(20);
8950}
8951
8952static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
8953{
8954	ushort read_back;
8955	int retry;
8956
8957	retry = 0;
8958	while (true) {
8959		AscSetChipEEPData(iop_base, data_reg);
8960		mdelay(1);
8961		read_back = AscGetChipEEPData(iop_base);
8962		if (read_back == data_reg) {
8963			return (1);
8964		}
8965		if (retry++ > ASC_EEP_MAX_RETRY) {
8966			return (0);
8967		}
8968	}
8969}
8970
8971static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
8972{
8973	ushort read_wval;
8974
8975	read_wval = AscReadEEPWord(iop_base, addr);
8976	if (read_wval != word_val) {
8977		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
8978		AscWaitEEPRead();
8979		AscWriteEEPDataReg(iop_base, word_val);
8980		AscWaitEEPRead();
8981		AscWriteEEPCmdReg(iop_base,
8982				  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
8983		AscWaitEEPWrite();
8984		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8985		AscWaitEEPRead();
8986		return (AscReadEEPWord(iop_base, addr));
8987	}
8988	return (read_wval);
8989}
8990
8991static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8992			       ushort bus_type)
8993{
8994	int n_error;
8995	ushort *wbuf;
8996	ushort word;
8997	ushort sum;
8998	int s_addr;
8999	int cfg_beg;
9000	int cfg_end;
9001	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9002
9003	wbuf = (ushort *)cfg_buf;
9004	n_error = 0;
9005	sum = 0;
9006	/* Write two config words; AscWriteEEPWord() will swap bytes. */
9007	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9008		sum += *wbuf;
9009		if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9010			n_error++;
9011		}
9012	}
9013	if (bus_type & ASC_IS_VL) {
9014		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9015		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9016	} else {
9017		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9018		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9019	}
9020	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9021		if (s_addr <= uchar_end_in_config) {
9022			/*
9023			 * This is a char field. Swap char fields before they are
9024			 * swapped again by AscWriteEEPWord().
9025			 */
9026			word = cpu_to_le16(*wbuf);
9027			if (word !=
9028			    AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9029				n_error++;
9030			}
9031		} else {
9032			/* Don't swap word field at the end - cntl field. */
9033			if (*wbuf !=
9034			    AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9035				n_error++;
9036			}
9037		}
9038		sum += *wbuf;	/* Checksum calculated from word values. */
9039	}
9040	/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9041	*wbuf = sum;
9042	if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9043		n_error++;
9044	}
9045
9046	/* Read EEPROM back again. */
9047	wbuf = (ushort *)cfg_buf;
9048	/*
9049	 * Read two config words; Byte-swapping done by AscReadEEPWord().
9050	 */
9051	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9052		if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9053			n_error++;
9054		}
9055	}
9056	if (bus_type & ASC_IS_VL) {
9057		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9058		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9059	} else {
9060		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9061		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9062	}
9063	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9064		if (s_addr <= uchar_end_in_config) {
9065			/*
9066			 * Swap all char fields. Must unswap bytes already swapped
9067			 * by AscReadEEPWord().
9068			 */
9069			word =
9070			    le16_to_cpu(AscReadEEPWord
9071					(iop_base, (uchar)s_addr));
9072		} else {
9073			/* Don't swap word field at the end - cntl field. */
9074			word = AscReadEEPWord(iop_base, (uchar)s_addr);
9075		}
9076		if (*wbuf != word) {
9077			n_error++;
9078		}
9079	}
9080	/* Read checksum; Byte swapping not needed. */
9081	if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9082		n_error++;
9083	}
9084	return n_error;
9085}
9086
9087static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9088			   ushort bus_type)
9089{
9090	int retry;
9091	int n_error;
9092
9093	retry = 0;
9094	while (true) {
9095		if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9096						   bus_type)) == 0) {
9097			break;
9098		}
9099		if (++retry > ASC_EEP_MAX_RETRY) {
9100			break;
9101		}
9102	}
9103	return n_error;
9104}
9105
9106static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9107{
9108	ASCEEP_CONFIG eep_config_buf;
9109	ASCEEP_CONFIG *eep_config;
9110	PortAddr iop_base;
9111	ushort chksum;
9112	ushort warn_code;
9113	ushort cfg_msw, cfg_lsw;
9114	int i;
9115	int write_eep = 0;
9116
9117	iop_base = asc_dvc->iop_base;
9118	warn_code = 0;
9119	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9120	AscStopQueueExe(iop_base);
9121	if ((AscStopChip(iop_base)) ||
9122	    (AscGetChipScsiCtrl(iop_base) != 0)) {
9123		asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9124		AscResetChipAndScsiBus(asc_dvc);
9125		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9126	}
9127	if (!AscIsChipHalted(iop_base)) {
9128		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9129		return (warn_code);
9130	}
9131	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9132	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9133		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9134		return (warn_code);
9135	}
9136	eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9137	cfg_msw = AscGetChipCfgMsw(iop_base);
9138	cfg_lsw = AscGetChipCfgLsw(iop_base);
9139	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9140		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9141		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9142		AscSetChipCfgMsw(iop_base, cfg_msw);
9143	}
9144	chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9145	ASC_DBG(1, "chksum 0x%x\n", chksum);
9146	if (chksum == 0) {
9147		chksum = 0xaa55;
9148	}
9149	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9150		warn_code |= ASC_WARN_AUTO_CONFIG;
9151		if (asc_dvc->cfg->chip_version == 3) {
9152			if (eep_config->cfg_lsw != cfg_lsw) {
9153				warn_code |= ASC_WARN_EEPROM_RECOVER;
9154				eep_config->cfg_lsw =
9155				    AscGetChipCfgLsw(iop_base);
9156			}
9157			if (eep_config->cfg_msw != cfg_msw) {
9158				warn_code |= ASC_WARN_EEPROM_RECOVER;
9159				eep_config->cfg_msw =
9160				    AscGetChipCfgMsw(iop_base);
9161			}
9162		}
9163	}
9164	eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9165	eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9166	ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9167	if (chksum != eep_config->chksum) {
9168		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9169		    ASC_CHIP_VER_PCI_ULTRA_3050) {
9170			ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9171			eep_config->init_sdtr = 0xFF;
9172			eep_config->disc_enable = 0xFF;
9173			eep_config->start_motor = 0xFF;
9174			eep_config->use_cmd_qng = 0;
9175			eep_config->max_total_qng = 0xF0;
9176			eep_config->max_tag_qng = 0x20;
9177			eep_config->cntl = 0xBFFF;
9178			ASC_EEP_SET_CHIP_ID(eep_config, 7);
9179			eep_config->no_scam = 0;
9180			eep_config->adapter_info[0] = 0;
9181			eep_config->adapter_info[1] = 0;
9182			eep_config->adapter_info[2] = 0;
9183			eep_config->adapter_info[3] = 0;
9184			eep_config->adapter_info[4] = 0;
9185			/* Indicate EEPROM-less board. */
9186			eep_config->adapter_info[5] = 0xBB;
9187		} else {
9188			ASC_PRINT
9189			    ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9190			write_eep = 1;
9191			warn_code |= ASC_WARN_EEPROM_CHKSUM;
9192		}
9193	}
9194	asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9195	asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9196	asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9197	asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9198	asc_dvc->start_motor = eep_config->start_motor;
9199	asc_dvc->dvc_cntl = eep_config->cntl;
9200	asc_dvc->no_scam = eep_config->no_scam;
9201	asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9202	asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9203	asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9204	asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9205	asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9206	asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9207	if (!AscTestExternalLram(asc_dvc)) {
9208		if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9209		     ASC_IS_PCI_ULTRA)) {
9210			eep_config->max_total_qng =
9211			    ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9212			eep_config->max_tag_qng =
9213			    ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9214		} else {
9215			eep_config->cfg_msw |= 0x0800;
9216			cfg_msw |= 0x0800;
9217			AscSetChipCfgMsw(iop_base, cfg_msw);
9218			eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9219			eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9220		}
9221	} else {
9222	}
9223	if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9224		eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9225	}
9226	if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9227		eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9228	}
9229	if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9230		eep_config->max_tag_qng = eep_config->max_total_qng;
9231	}
9232	if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9233		eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9234	}
9235	asc_dvc->max_total_qng = eep_config->max_total_qng;
9236	if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9237	    eep_config->use_cmd_qng) {
9238		eep_config->disc_enable = eep_config->use_cmd_qng;
9239		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9240	}
9241	ASC_EEP_SET_CHIP_ID(eep_config,
9242			    ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9243	asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9244	if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9245	    !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9246		asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9247	}
9248
9249	for (i = 0; i <= ASC_MAX_TID; i++) {
9250		asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9251		asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9252		asc_dvc->cfg->sdtr_period_offset[i] =
9253		    (uchar)(ASC_DEF_SDTR_OFFSET |
9254			    (asc_dvc->min_sdtr_index << 4));
9255	}
9256	eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9257	if (write_eep) {
9258		if ((i = AscSetEEPConfig(iop_base, eep_config,
9259				     asc_dvc->bus_type)) != 0) {
9260			ASC_PRINT1
9261			    ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9262			     i);
9263		} else {
9264			ASC_PRINT
9265			    ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9266		}
9267	}
9268	return (warn_code);
9269}
9270
9271static int AscInitGetConfig(struct Scsi_Host *shost)
9272{
9273	struct asc_board *board = shost_priv(shost);
9274	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9275	unsigned short warn_code = 0;
9276
9277	asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9278	if (asc_dvc->err_code != 0)
9279		return asc_dvc->err_code;
9280
9281	if (AscFindSignature(asc_dvc->iop_base)) {
9282		AscInitAscDvcVar(asc_dvc);
9283		warn_code = AscInitFromEEP(asc_dvc);
9284		asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9285		if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9286			asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9287	} else {
9288		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9289	}
9290
9291	switch (warn_code) {
9292	case 0:	/* No error */
9293		break;
9294	case ASC_WARN_IO_PORT_ROTATE:
9295		shost_printk(KERN_WARNING, shost, "I/O port address "
9296				"modified\n");
9297		break;
9298	case ASC_WARN_AUTO_CONFIG:
9299		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9300				"enabled\n");
9301		break;
9302	case ASC_WARN_EEPROM_CHKSUM:
9303		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9304		break;
9305	case ASC_WARN_IRQ_MODIFIED:
9306		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9307		break;
9308	case ASC_WARN_CMD_QNG_CONFLICT:
9309		shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9310				"disconnects\n");
9311		break;
9312	default:
9313		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9314				warn_code);
9315		break;
9316	}
9317
9318	if (asc_dvc->err_code != 0)
9319		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9320			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9321
9322	return asc_dvc->err_code;
9323}
9324
9325static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9326{
9327	struct asc_board *board = shost_priv(shost);
9328	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9329	PortAddr iop_base = asc_dvc->iop_base;
9330	unsigned short cfg_msw;
9331	unsigned short warn_code = 0;
9332
9333	asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9334	if (asc_dvc->err_code != 0)
9335		return asc_dvc->err_code;
9336	if (!AscFindSignature(asc_dvc->iop_base)) {
9337		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9338		return asc_dvc->err_code;
9339	}
9340
9341	cfg_msw = AscGetChipCfgMsw(iop_base);
9342	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9343		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9344		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9345		AscSetChipCfgMsw(iop_base, cfg_msw);
9346	}
9347	if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9348	    asc_dvc->cfg->cmd_qng_enabled) {
9349		asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9350		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9351	}
9352	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9353		warn_code |= ASC_WARN_AUTO_CONFIG;
9354	}
9355#ifdef CONFIG_PCI
9356	if (asc_dvc->bus_type & ASC_IS_PCI) {
9357		cfg_msw &= 0xFFC0;
9358		AscSetChipCfgMsw(iop_base, cfg_msw);
9359		if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9360		} else {
9361			if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9362			    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9363				asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9364				asc_dvc->bug_fix_cntl |=
9365				    ASC_BUG_FIX_ASYN_USE_SYN;
9366			}
9367		}
9368	} else
9369#endif /* CONFIG_PCI */
9370	if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9371		if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9372		    == ASC_CHIP_VER_ASYN_BUG) {
9373			asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9374		}
9375	}
9376	if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9377	    asc_dvc->cfg->chip_scsi_id) {
9378		asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9379	}
9380#ifdef CONFIG_ISA
9381	if (asc_dvc->bus_type & ASC_IS_ISA) {
9382		AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9383		AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9384	}
9385#endif /* CONFIG_ISA */
9386
9387	asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9388
9389	switch (warn_code) {
9390	case 0:	/* No error. */
9391		break;
9392	case ASC_WARN_IO_PORT_ROTATE:
9393		shost_printk(KERN_WARNING, shost, "I/O port address "
9394				"modified\n");
9395		break;
9396	case ASC_WARN_AUTO_CONFIG:
9397		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9398				"enabled\n");
9399		break;
9400	case ASC_WARN_EEPROM_CHKSUM:
9401		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9402		break;
9403	case ASC_WARN_IRQ_MODIFIED:
9404		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9405		break;
9406	case ASC_WARN_CMD_QNG_CONFLICT:
9407		shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9408				"disconnects\n");
9409		break;
9410	default:
9411		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9412				warn_code);
9413		break;
9414	}
9415
9416	if (asc_dvc->err_code != 0)
9417		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9418			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9419
9420	return asc_dvc->err_code;
9421}
9422
9423/*
9424 * EEPROM Configuration.
9425 *
9426 * All drivers should use this structure to set the default EEPROM
9427 * configuration. The BIOS now uses this structure when it is built.
9428 * Additional structure information can be found in a_condor.h where
9429 * the structure is defined.
9430 *
9431 * The *_Field_IsChar structs are needed to correct for endianness.
9432 * These values are read from the board 16 bits at a time directly
9433 * into the structs. Because some fields are char, the values will be
9434 * in the wrong order. The *_Field_IsChar tells when to flip the
9435 * bytes. Data read and written to PCI memory is automatically swapped
9436 * on big-endian platforms so char fields read as words are actually being
9437 * unswapped on big-endian platforms.
9438 */
9439#ifdef CONFIG_PCI
9440static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9441	ADV_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
9442	0x0000,			/* cfg_msw */
9443	0xFFFF,			/* disc_enable */
9444	0xFFFF,			/* wdtr_able */
9445	0xFFFF,			/* sdtr_able */
9446	0xFFFF,			/* start_motor */
9447	0xFFFF,			/* tagqng_able */
9448	0xFFFF,			/* bios_scan */
9449	0,			/* scam_tolerant */
9450	7,			/* adapter_scsi_id */
9451	0,			/* bios_boot_delay */
9452	3,			/* scsi_reset_delay */
9453	0,			/* bios_id_lun */
9454	0,			/* termination */
9455	0,			/* reserved1 */
9456	0xFFE7,			/* bios_ctrl */
9457	0xFFFF,			/* ultra_able */
9458	0,			/* reserved2 */
9459	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
9460	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
9461	0,			/* dvc_cntl */
9462	0,			/* bug_fix */
9463	0,			/* serial_number_word1 */
9464	0,			/* serial_number_word2 */
9465	0,			/* serial_number_word3 */
9466	0,			/* check_sum */
9467	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9468	,			/* oem_name[16] */
9469	0,			/* dvc_err_code */
9470	0,			/* adv_err_code */
9471	0,			/* adv_err_addr */
9472	0,			/* saved_dvc_err_code */
9473	0,			/* saved_adv_err_code */
9474	0,			/* saved_adv_err_addr */
9475	0			/* num_of_err */
9476};
9477
9478static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9479	0,			/* cfg_lsw */
9480	0,			/* cfg_msw */
9481	0,			/* -disc_enable */
9482	0,			/* wdtr_able */
9483	0,			/* sdtr_able */
9484	0,			/* start_motor */
9485	0,			/* tagqng_able */
9486	0,			/* bios_scan */
9487	0,			/* scam_tolerant */
9488	1,			/* adapter_scsi_id */
9489	1,			/* bios_boot_delay */
9490	1,			/* scsi_reset_delay */
9491	1,			/* bios_id_lun */
9492	1,			/* termination */
9493	1,			/* reserved1 */
9494	0,			/* bios_ctrl */
9495	0,			/* ultra_able */
9496	0,			/* reserved2 */
9497	1,			/* max_host_qng */
9498	1,			/* max_dvc_qng */
9499	0,			/* dvc_cntl */
9500	0,			/* bug_fix */
9501	0,			/* serial_number_word1 */
9502	0,			/* serial_number_word2 */
9503	0,			/* serial_number_word3 */
9504	0,			/* check_sum */
9505	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9506	,			/* oem_name[16] */
9507	0,			/* dvc_err_code */
9508	0,			/* adv_err_code */
9509	0,			/* adv_err_addr */
9510	0,			/* saved_dvc_err_code */
9511	0,			/* saved_adv_err_code */
9512	0,			/* saved_adv_err_addr */
9513	0			/* num_of_err */
9514};
9515
9516static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9517	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9518	0x0000,			/* 01 cfg_msw */
9519	0xFFFF,			/* 02 disc_enable */
9520	0xFFFF,			/* 03 wdtr_able */
9521	0x4444,			/* 04 sdtr_speed1 */
9522	0xFFFF,			/* 05 start_motor */
9523	0xFFFF,			/* 06 tagqng_able */
9524	0xFFFF,			/* 07 bios_scan */
9525	0,			/* 08 scam_tolerant */
9526	7,			/* 09 adapter_scsi_id */
9527	0,			/*    bios_boot_delay */
9528	3,			/* 10 scsi_reset_delay */
9529	0,			/*    bios_id_lun */
9530	0,			/* 11 termination_se */
9531	0,			/*    termination_lvd */
9532	0xFFE7,			/* 12 bios_ctrl */
9533	0x4444,			/* 13 sdtr_speed2 */
9534	0x4444,			/* 14 sdtr_speed3 */
9535	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9536	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9537	0,			/* 16 dvc_cntl */
9538	0x4444,			/* 17 sdtr_speed4 */
9539	0,			/* 18 serial_number_word1 */
9540	0,			/* 19 serial_number_word2 */
9541	0,			/* 20 serial_number_word3 */
9542	0,			/* 21 check_sum */
9543	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9544	,			/* 22-29 oem_name[16] */
9545	0,			/* 30 dvc_err_code */
9546	0,			/* 31 adv_err_code */
9547	0,			/* 32 adv_err_addr */
9548	0,			/* 33 saved_dvc_err_code */
9549	0,			/* 34 saved_adv_err_code */
9550	0,			/* 35 saved_adv_err_addr */
9551	0,			/* 36 reserved */
9552	0,			/* 37 reserved */
9553	0,			/* 38 reserved */
9554	0,			/* 39 reserved */
9555	0,			/* 40 reserved */
9556	0,			/* 41 reserved */
9557	0,			/* 42 reserved */
9558	0,			/* 43 reserved */
9559	0,			/* 44 reserved */
9560	0,			/* 45 reserved */
9561	0,			/* 46 reserved */
9562	0,			/* 47 reserved */
9563	0,			/* 48 reserved */
9564	0,			/* 49 reserved */
9565	0,			/* 50 reserved */
9566	0,			/* 51 reserved */
9567	0,			/* 52 reserved */
9568	0,			/* 53 reserved */
9569	0,			/* 54 reserved */
9570	0,			/* 55 reserved */
9571	0,			/* 56 cisptr_lsw */
9572	0,			/* 57 cisprt_msw */
9573	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9574	PCI_DEVICE_ID_38C0800_REV1,	/* 59 subsysid */
9575	0,			/* 60 reserved */
9576	0,			/* 61 reserved */
9577	0,			/* 62 reserved */
9578	0			/* 63 reserved */
9579};
9580
9581static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
9582	0,			/* 00 cfg_lsw */
9583	0,			/* 01 cfg_msw */
9584	0,			/* 02 disc_enable */
9585	0,			/* 03 wdtr_able */
9586	0,			/* 04 sdtr_speed1 */
9587	0,			/* 05 start_motor */
9588	0,			/* 06 tagqng_able */
9589	0,			/* 07 bios_scan */
9590	0,			/* 08 scam_tolerant */
9591	1,			/* 09 adapter_scsi_id */
9592	1,			/*    bios_boot_delay */
9593	1,			/* 10 scsi_reset_delay */
9594	1,			/*    bios_id_lun */
9595	1,			/* 11 termination_se */
9596	1,			/*    termination_lvd */
9597	0,			/* 12 bios_ctrl */
9598	0,			/* 13 sdtr_speed2 */
9599	0,			/* 14 sdtr_speed3 */
9600	1,			/* 15 max_host_qng */
9601	1,			/*    max_dvc_qng */
9602	0,			/* 16 dvc_cntl */
9603	0,			/* 17 sdtr_speed4 */
9604	0,			/* 18 serial_number_word1 */
9605	0,			/* 19 serial_number_word2 */
9606	0,			/* 20 serial_number_word3 */
9607	0,			/* 21 check_sum */
9608	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9609	,			/* 22-29 oem_name[16] */
9610	0,			/* 30 dvc_err_code */
9611	0,			/* 31 adv_err_code */
9612	0,			/* 32 adv_err_addr */
9613	0,			/* 33 saved_dvc_err_code */
9614	0,			/* 34 saved_adv_err_code */
9615	0,			/* 35 saved_adv_err_addr */
9616	0,			/* 36 reserved */
9617	0,			/* 37 reserved */
9618	0,			/* 38 reserved */
9619	0,			/* 39 reserved */
9620	0,			/* 40 reserved */
9621	0,			/* 41 reserved */
9622	0,			/* 42 reserved */
9623	0,			/* 43 reserved */
9624	0,			/* 44 reserved */
9625	0,			/* 45 reserved */
9626	0,			/* 46 reserved */
9627	0,			/* 47 reserved */
9628	0,			/* 48 reserved */
9629	0,			/* 49 reserved */
9630	0,			/* 50 reserved */
9631	0,			/* 51 reserved */
9632	0,			/* 52 reserved */
9633	0,			/* 53 reserved */
9634	0,			/* 54 reserved */
9635	0,			/* 55 reserved */
9636	0,			/* 56 cisptr_lsw */
9637	0,			/* 57 cisprt_msw */
9638	0,			/* 58 subsysvid */
9639	0,			/* 59 subsysid */
9640	0,			/* 60 reserved */
9641	0,			/* 61 reserved */
9642	0,			/* 62 reserved */
9643	0			/* 63 reserved */
9644};
9645
9646static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
9647	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9648	0x0000,			/* 01 cfg_msw */
9649	0xFFFF,			/* 02 disc_enable */
9650	0xFFFF,			/* 03 wdtr_able */
9651	0x5555,			/* 04 sdtr_speed1 */
9652	0xFFFF,			/* 05 start_motor */
9653	0xFFFF,			/* 06 tagqng_able */
9654	0xFFFF,			/* 07 bios_scan */
9655	0,			/* 08 scam_tolerant */
9656	7,			/* 09 adapter_scsi_id */
9657	0,			/*    bios_boot_delay */
9658	3,			/* 10 scsi_reset_delay */
9659	0,			/*    bios_id_lun */
9660	0,			/* 11 termination_se */
9661	0,			/*    termination_lvd */
9662	0xFFE7,			/* 12 bios_ctrl */
9663	0x5555,			/* 13 sdtr_speed2 */
9664	0x5555,			/* 14 sdtr_speed3 */
9665	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9666	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9667	0,			/* 16 dvc_cntl */
9668	0x5555,			/* 17 sdtr_speed4 */
9669	0,			/* 18 serial_number_word1 */
9670	0,			/* 19 serial_number_word2 */
9671	0,			/* 20 serial_number_word3 */
9672	0,			/* 21 check_sum */
9673	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9674	,			/* 22-29 oem_name[16] */
9675	0,			/* 30 dvc_err_code */
9676	0,			/* 31 adv_err_code */
9677	0,			/* 32 adv_err_addr */
9678	0,			/* 33 saved_dvc_err_code */
9679	0,			/* 34 saved_adv_err_code */
9680	0,			/* 35 saved_adv_err_addr */
9681	0,			/* 36 reserved */
9682	0,			/* 37 reserved */
9683	0,			/* 38 reserved */
9684	0,			/* 39 reserved */
9685	0,			/* 40 reserved */
9686	0,			/* 41 reserved */
9687	0,			/* 42 reserved */
9688	0,			/* 43 reserved */
9689	0,			/* 44 reserved */
9690	0,			/* 45 reserved */
9691	0,			/* 46 reserved */
9692	0,			/* 47 reserved */
9693	0,			/* 48 reserved */
9694	0,			/* 49 reserved */
9695	0,			/* 50 reserved */
9696	0,			/* 51 reserved */
9697	0,			/* 52 reserved */
9698	0,			/* 53 reserved */
9699	0,			/* 54 reserved */
9700	0,			/* 55 reserved */
9701	0,			/* 56 cisptr_lsw */
9702	0,			/* 57 cisprt_msw */
9703	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9704	PCI_DEVICE_ID_38C1600_REV1,	/* 59 subsysid */
9705	0,			/* 60 reserved */
9706	0,			/* 61 reserved */
9707	0,			/* 62 reserved */
9708	0			/* 63 reserved */
9709};
9710
9711static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
9712	0,			/* 00 cfg_lsw */
9713	0,			/* 01 cfg_msw */
9714	0,			/* 02 disc_enable */
9715	0,			/* 03 wdtr_able */
9716	0,			/* 04 sdtr_speed1 */
9717	0,			/* 05 start_motor */
9718	0,			/* 06 tagqng_able */
9719	0,			/* 07 bios_scan */
9720	0,			/* 08 scam_tolerant */
9721	1,			/* 09 adapter_scsi_id */
9722	1,			/*    bios_boot_delay */
9723	1,			/* 10 scsi_reset_delay */
9724	1,			/*    bios_id_lun */
9725	1,			/* 11 termination_se */
9726	1,			/*    termination_lvd */
9727	0,			/* 12 bios_ctrl */
9728	0,			/* 13 sdtr_speed2 */
9729	0,			/* 14 sdtr_speed3 */
9730	1,			/* 15 max_host_qng */
9731	1,			/*    max_dvc_qng */
9732	0,			/* 16 dvc_cntl */
9733	0,			/* 17 sdtr_speed4 */
9734	0,			/* 18 serial_number_word1 */
9735	0,			/* 19 serial_number_word2 */
9736	0,			/* 20 serial_number_word3 */
9737	0,			/* 21 check_sum */
9738	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9739	,			/* 22-29 oem_name[16] */
9740	0,			/* 30 dvc_err_code */
9741	0,			/* 31 adv_err_code */
9742	0,			/* 32 adv_err_addr */
9743	0,			/* 33 saved_dvc_err_code */
9744	0,			/* 34 saved_adv_err_code */
9745	0,			/* 35 saved_adv_err_addr */
9746	0,			/* 36 reserved */
9747	0,			/* 37 reserved */
9748	0,			/* 38 reserved */
9749	0,			/* 39 reserved */
9750	0,			/* 40 reserved */
9751	0,			/* 41 reserved */
9752	0,			/* 42 reserved */
9753	0,			/* 43 reserved */
9754	0,			/* 44 reserved */
9755	0,			/* 45 reserved */
9756	0,			/* 46 reserved */
9757	0,			/* 47 reserved */
9758	0,			/* 48 reserved */
9759	0,			/* 49 reserved */
9760	0,			/* 50 reserved */
9761	0,			/* 51 reserved */
9762	0,			/* 52 reserved */
9763	0,			/* 53 reserved */
9764	0,			/* 54 reserved */
9765	0,			/* 55 reserved */
9766	0,			/* 56 cisptr_lsw */
9767	0,			/* 57 cisprt_msw */
9768	0,			/* 58 subsysvid */
9769	0,			/* 59 subsysid */
9770	0,			/* 60 reserved */
9771	0,			/* 61 reserved */
9772	0,			/* 62 reserved */
9773	0			/* 63 reserved */
9774};
9775
9776/*
9777 * Wait for EEPROM command to complete
9778 */
9779static void AdvWaitEEPCmd(AdvPortAddr iop_base)
9780{
9781	int eep_delay_ms;
9782
9783	for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
9784		if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
9785		    ASC_EEP_CMD_DONE) {
9786			break;
9787		}
9788		mdelay(1);
9789	}
9790	if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
9791	    0)
9792		BUG();
9793}
9794
9795/*
9796 * Read the EEPROM from specified location
9797 */
9798static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
9799{
9800	AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9801			     ASC_EEP_CMD_READ | eep_word_addr);
9802	AdvWaitEEPCmd(iop_base);
9803	return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
9804}
9805
9806/*
9807 * Write the EEPROM from 'cfg_buf'.
9808 */
9809static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
9810				ADVEEP_3550_CONFIG *cfg_buf)
9811{
9812	ushort *wbuf;
9813	ushort addr, chksum;
9814	ushort *charfields;
9815
9816	wbuf = (ushort *)cfg_buf;
9817	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9818	chksum = 0;
9819
9820	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9821	AdvWaitEEPCmd(iop_base);
9822
9823	/*
9824	 * Write EEPROM from word 0 to word 20.
9825	 */
9826	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9827	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9828		ushort word;
9829
9830		if (*charfields++) {
9831			word = cpu_to_le16(*wbuf);
9832		} else {
9833			word = *wbuf;
9834		}
9835		chksum += *wbuf;	/* Checksum is calculated from word values. */
9836		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9837		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9838				     ASC_EEP_CMD_WRITE | addr);
9839		AdvWaitEEPCmd(iop_base);
9840		mdelay(ADV_EEP_DELAY_MS);
9841	}
9842
9843	/*
9844	 * Write EEPROM checksum at word 21.
9845	 */
9846	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9847	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9848	AdvWaitEEPCmd(iop_base);
9849	wbuf++;
9850	charfields++;
9851
9852	/*
9853	 * Write EEPROM OEM name at words 22 to 29.
9854	 */
9855	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9856	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9857		ushort word;
9858
9859		if (*charfields++) {
9860			word = cpu_to_le16(*wbuf);
9861		} else {
9862			word = *wbuf;
9863		}
9864		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9865		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9866				     ASC_EEP_CMD_WRITE | addr);
9867		AdvWaitEEPCmd(iop_base);
9868	}
9869	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9870	AdvWaitEEPCmd(iop_base);
9871}
9872
9873/*
9874 * Write the EEPROM from 'cfg_buf'.
9875 */
9876static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
9877				   ADVEEP_38C0800_CONFIG *cfg_buf)
9878{
9879	ushort *wbuf;
9880	ushort *charfields;
9881	ushort addr, chksum;
9882
9883	wbuf = (ushort *)cfg_buf;
9884	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9885	chksum = 0;
9886
9887	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9888	AdvWaitEEPCmd(iop_base);
9889
9890	/*
9891	 * Write EEPROM from word 0 to word 20.
9892	 */
9893	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9894	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9895		ushort word;
9896
9897		if (*charfields++) {
9898			word = cpu_to_le16(*wbuf);
9899		} else {
9900			word = *wbuf;
9901		}
9902		chksum += *wbuf;	/* Checksum is calculated from word values. */
9903		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9904		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9905				     ASC_EEP_CMD_WRITE | addr);
9906		AdvWaitEEPCmd(iop_base);
9907		mdelay(ADV_EEP_DELAY_MS);
9908	}
9909
9910	/*
9911	 * Write EEPROM checksum at word 21.
9912	 */
9913	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9914	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9915	AdvWaitEEPCmd(iop_base);
9916	wbuf++;
9917	charfields++;
9918
9919	/*
9920	 * Write EEPROM OEM name at words 22 to 29.
9921	 */
9922	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9923	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9924		ushort word;
9925
9926		if (*charfields++) {
9927			word = cpu_to_le16(*wbuf);
9928		} else {
9929			word = *wbuf;
9930		}
9931		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9932		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9933				     ASC_EEP_CMD_WRITE | addr);
9934		AdvWaitEEPCmd(iop_base);
9935	}
9936	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9937	AdvWaitEEPCmd(iop_base);
9938}
9939
9940/*
9941 * Write the EEPROM from 'cfg_buf'.
9942 */
9943static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
9944				   ADVEEP_38C1600_CONFIG *cfg_buf)
9945{
9946	ushort *wbuf;
9947	ushort *charfields;
9948	ushort addr, chksum;
9949
9950	wbuf = (ushort *)cfg_buf;
9951	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9952	chksum = 0;
9953
9954	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9955	AdvWaitEEPCmd(iop_base);
9956
9957	/*
9958	 * Write EEPROM from word 0 to word 20.
9959	 */
9960	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9961	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9962		ushort word;
9963
9964		if (*charfields++) {
9965			word = cpu_to_le16(*wbuf);
9966		} else {
9967			word = *wbuf;
9968		}
9969		chksum += *wbuf;	/* Checksum is calculated from word values. */
9970		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9971		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9972				     ASC_EEP_CMD_WRITE | addr);
9973		AdvWaitEEPCmd(iop_base);
9974		mdelay(ADV_EEP_DELAY_MS);
9975	}
9976
9977	/*
9978	 * Write EEPROM checksum at word 21.
9979	 */
9980	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9981	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9982	AdvWaitEEPCmd(iop_base);
9983	wbuf++;
9984	charfields++;
9985
9986	/*
9987	 * Write EEPROM OEM name at words 22 to 29.
9988	 */
9989	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9990	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9991		ushort word;
9992
9993		if (*charfields++) {
9994			word = cpu_to_le16(*wbuf);
9995		} else {
9996			word = *wbuf;
9997		}
9998		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9999		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10000				     ASC_EEP_CMD_WRITE | addr);
10001		AdvWaitEEPCmd(iop_base);
10002	}
10003	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10004	AdvWaitEEPCmd(iop_base);
10005}
10006
10007/*
10008 * Read EEPROM configuration into the specified buffer.
10009 *
10010 * Return a checksum based on the EEPROM configuration read.
10011 */
10012static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
10013				  ADVEEP_3550_CONFIG *cfg_buf)
10014{
10015	ushort wval, chksum;
10016	ushort *wbuf;
10017	int eep_addr;
10018	ushort *charfields;
10019
10020	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10021	wbuf = (ushort *)cfg_buf;
10022	chksum = 0;
10023
10024	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10025	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10026		wval = AdvReadEEPWord(iop_base, eep_addr);
10027		chksum += wval;	/* Checksum is calculated from word values. */
10028		if (*charfields++) {
10029			*wbuf = le16_to_cpu(wval);
10030		} else {
10031			*wbuf = wval;
10032		}
10033	}
10034	/* Read checksum word. */
10035	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10036	wbuf++;
10037	charfields++;
10038
10039	/* Read rest of EEPROM not covered by the checksum. */
10040	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10041	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10042		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10043		if (*charfields++) {
10044			*wbuf = le16_to_cpu(*wbuf);
10045		}
10046	}
10047	return chksum;
10048}
10049
10050/*
10051 * Read EEPROM configuration into the specified buffer.
10052 *
10053 * Return a checksum based on the EEPROM configuration read.
10054 */
10055static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10056				     ADVEEP_38C0800_CONFIG *cfg_buf)
10057{
10058	ushort wval, chksum;
10059	ushort *wbuf;
10060	int eep_addr;
10061	ushort *charfields;
10062
10063	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10064	wbuf = (ushort *)cfg_buf;
10065	chksum = 0;
10066
10067	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10068	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10069		wval = AdvReadEEPWord(iop_base, eep_addr);
10070		chksum += wval;	/* Checksum is calculated from word values. */
10071		if (*charfields++) {
10072			*wbuf = le16_to_cpu(wval);
10073		} else {
10074			*wbuf = wval;
10075		}
10076	}
10077	/* Read checksum word. */
10078	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10079	wbuf++;
10080	charfields++;
10081
10082	/* Read rest of EEPROM not covered by the checksum. */
10083	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10084	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10085		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10086		if (*charfields++) {
10087			*wbuf = le16_to_cpu(*wbuf);
10088		}
10089	}
10090	return chksum;
10091}
10092
10093/*
10094 * Read EEPROM configuration into the specified buffer.
10095 *
10096 * Return a checksum based on the EEPROM configuration read.
10097 */
10098static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10099				     ADVEEP_38C1600_CONFIG *cfg_buf)
10100{
10101	ushort wval, chksum;
10102	ushort *wbuf;
10103	int eep_addr;
10104	ushort *charfields;
10105
10106	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10107	wbuf = (ushort *)cfg_buf;
10108	chksum = 0;
10109
10110	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10111	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10112		wval = AdvReadEEPWord(iop_base, eep_addr);
10113		chksum += wval;	/* Checksum is calculated from word values. */
10114		if (*charfields++) {
10115			*wbuf = le16_to_cpu(wval);
10116		} else {
10117			*wbuf = wval;
10118		}
10119	}
10120	/* Read checksum word. */
10121	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10122	wbuf++;
10123	charfields++;
10124
10125	/* Read rest of EEPROM not covered by the checksum. */
10126	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10127	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10128		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10129		if (*charfields++) {
10130			*wbuf = le16_to_cpu(*wbuf);
10131		}
10132	}
10133	return chksum;
10134}
10135
10136/*
10137 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10138 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10139 * all of this is done.
10140 *
10141 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10142 *
10143 * For a non-fatal error return a warning code. If there are no warnings
10144 * then 0 is returned.
10145 *
10146 * Note: Chip is stopped on entry.
10147 */
10148static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10149{
10150	AdvPortAddr iop_base;
10151	ushort warn_code;
10152	ADVEEP_3550_CONFIG eep_config;
10153
10154	iop_base = asc_dvc->iop_base;
10155
10156	warn_code = 0;
10157
10158	/*
10159	 * Read the board's EEPROM configuration.
10160	 *
10161	 * Set default values if a bad checksum is found.
10162	 */
10163	if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10164		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10165
10166		/*
10167		 * Set EEPROM default values.
10168		 */
10169		memcpy(&eep_config, &Default_3550_EEPROM_Config,
10170			sizeof(ADVEEP_3550_CONFIG));
10171
10172		/*
10173		 * Assume the 6 byte board serial number that was read from
10174		 * EEPROM is correct even if the EEPROM checksum failed.
10175		 */
10176		eep_config.serial_number_word3 =
10177		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10178
10179		eep_config.serial_number_word2 =
10180		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10181
10182		eep_config.serial_number_word1 =
10183		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10184
10185		AdvSet3550EEPConfig(iop_base, &eep_config);
10186	}
10187	/*
10188	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10189	 * EEPROM configuration that was read.
10190	 *
10191	 * This is the mapping of EEPROM fields to Adv Library fields.
10192	 */
10193	asc_dvc->wdtr_able = eep_config.wdtr_able;
10194	asc_dvc->sdtr_able = eep_config.sdtr_able;
10195	asc_dvc->ultra_able = eep_config.ultra_able;
10196	asc_dvc->tagqng_able = eep_config.tagqng_able;
10197	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10198	asc_dvc->max_host_qng = eep_config.max_host_qng;
10199	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10200	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10201	asc_dvc->start_motor = eep_config.start_motor;
10202	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10203	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10204	asc_dvc->no_scam = eep_config.scam_tolerant;
10205	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10206	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10207	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10208
10209	/*
10210	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10211	 * maximum queuing (max. 63, min. 4).
10212	 */
10213	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10214		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10215	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10216		/* If the value is zero, assume it is uninitialized. */
10217		if (eep_config.max_host_qng == 0) {
10218			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10219		} else {
10220			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10221		}
10222	}
10223
10224	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10225		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10226	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10227		/* If the value is zero, assume it is uninitialized. */
10228		if (eep_config.max_dvc_qng == 0) {
10229			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10230		} else {
10231			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10232		}
10233	}
10234
10235	/*
10236	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10237	 * set 'max_dvc_qng' to 'max_host_qng'.
10238	 */
10239	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10240		eep_config.max_dvc_qng = eep_config.max_host_qng;
10241	}
10242
10243	/*
10244	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10245	 * values based on possibly adjusted EEPROM values.
10246	 */
10247	asc_dvc->max_host_qng = eep_config.max_host_qng;
10248	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10249
10250	/*
10251	 * If the EEPROM 'termination' field is set to automatic (0), then set
10252	 * the ADV_DVC_CFG 'termination' field to automatic also.
10253	 *
10254	 * If the termination is specified with a non-zero 'termination'
10255	 * value check that a legal value is set and set the ADV_DVC_CFG
10256	 * 'termination' field appropriately.
10257	 */
10258	if (eep_config.termination == 0) {
10259		asc_dvc->cfg->termination = 0;	/* auto termination */
10260	} else {
10261		/* Enable manual control with low off / high off. */
10262		if (eep_config.termination == 1) {
10263			asc_dvc->cfg->termination = TERM_CTL_SEL;
10264
10265			/* Enable manual control with low off / high on. */
10266		} else if (eep_config.termination == 2) {
10267			asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10268
10269			/* Enable manual control with low on / high on. */
10270		} else if (eep_config.termination == 3) {
10271			asc_dvc->cfg->termination =
10272			    TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10273		} else {
10274			/*
10275			 * The EEPROM 'termination' field contains a bad value. Use
10276			 * automatic termination instead.
10277			 */
10278			asc_dvc->cfg->termination = 0;
10279			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10280		}
10281	}
10282
10283	return warn_code;
10284}
10285
10286/*
10287 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10288 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10289 * all of this is done.
10290 *
10291 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10292 *
10293 * For a non-fatal error return a warning code. If there are no warnings
10294 * then 0 is returned.
10295 *
10296 * Note: Chip is stopped on entry.
10297 */
10298static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10299{
10300	AdvPortAddr iop_base;
10301	ushort warn_code;
10302	ADVEEP_38C0800_CONFIG eep_config;
10303	uchar tid, termination;
10304	ushort sdtr_speed = 0;
10305
10306	iop_base = asc_dvc->iop_base;
10307
10308	warn_code = 0;
10309
10310	/*
10311	 * Read the board's EEPROM configuration.
10312	 *
10313	 * Set default values if a bad checksum is found.
10314	 */
10315	if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10316	    eep_config.check_sum) {
10317		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10318
10319		/*
10320		 * Set EEPROM default values.
10321		 */
10322		memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10323			sizeof(ADVEEP_38C0800_CONFIG));
10324
10325		/*
10326		 * Assume the 6 byte board serial number that was read from
10327		 * EEPROM is correct even if the EEPROM checksum failed.
10328		 */
10329		eep_config.serial_number_word3 =
10330		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10331
10332		eep_config.serial_number_word2 =
10333		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10334
10335		eep_config.serial_number_word1 =
10336		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10337
10338		AdvSet38C0800EEPConfig(iop_base, &eep_config);
10339	}
10340	/*
10341	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10342	 * EEPROM configuration that was read.
10343	 *
10344	 * This is the mapping of EEPROM fields to Adv Library fields.
10345	 */
10346	asc_dvc->wdtr_able = eep_config.wdtr_able;
10347	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10348	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10349	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10350	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10351	asc_dvc->tagqng_able = eep_config.tagqng_able;
10352	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10353	asc_dvc->max_host_qng = eep_config.max_host_qng;
10354	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10355	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10356	asc_dvc->start_motor = eep_config.start_motor;
10357	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10358	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10359	asc_dvc->no_scam = eep_config.scam_tolerant;
10360	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10361	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10362	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10363
10364	/*
10365	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10366	 * are set, then set an 'sdtr_able' bit for it.
10367	 */
10368	asc_dvc->sdtr_able = 0;
10369	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10370		if (tid == 0) {
10371			sdtr_speed = asc_dvc->sdtr_speed1;
10372		} else if (tid == 4) {
10373			sdtr_speed = asc_dvc->sdtr_speed2;
10374		} else if (tid == 8) {
10375			sdtr_speed = asc_dvc->sdtr_speed3;
10376		} else if (tid == 12) {
10377			sdtr_speed = asc_dvc->sdtr_speed4;
10378		}
10379		if (sdtr_speed & ADV_MAX_TID) {
10380			asc_dvc->sdtr_able |= (1 << tid);
10381		}
10382		sdtr_speed >>= 4;
10383	}
10384
10385	/*
10386	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10387	 * maximum queuing (max. 63, min. 4).
10388	 */
10389	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10390		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10391	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10392		/* If the value is zero, assume it is uninitialized. */
10393		if (eep_config.max_host_qng == 0) {
10394			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10395		} else {
10396			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10397		}
10398	}
10399
10400	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10401		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10402	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10403		/* If the value is zero, assume it is uninitialized. */
10404		if (eep_config.max_dvc_qng == 0) {
10405			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10406		} else {
10407			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10408		}
10409	}
10410
10411	/*
10412	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10413	 * set 'max_dvc_qng' to 'max_host_qng'.
10414	 */
10415	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10416		eep_config.max_dvc_qng = eep_config.max_host_qng;
10417	}
10418
10419	/*
10420	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10421	 * values based on possibly adjusted EEPROM values.
10422	 */
10423	asc_dvc->max_host_qng = eep_config.max_host_qng;
10424	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10425
10426	/*
10427	 * If the EEPROM 'termination' field is set to automatic (0), then set
10428	 * the ADV_DVC_CFG 'termination' field to automatic also.
10429	 *
10430	 * If the termination is specified with a non-zero 'termination'
10431	 * value check that a legal value is set and set the ADV_DVC_CFG
10432	 * 'termination' field appropriately.
10433	 */
10434	if (eep_config.termination_se == 0) {
10435		termination = 0;	/* auto termination for SE */
10436	} else {
10437		/* Enable manual control with low off / high off. */
10438		if (eep_config.termination_se == 1) {
10439			termination = 0;
10440
10441			/* Enable manual control with low off / high on. */
10442		} else if (eep_config.termination_se == 2) {
10443			termination = TERM_SE_HI;
10444
10445			/* Enable manual control with low on / high on. */
10446		} else if (eep_config.termination_se == 3) {
10447			termination = TERM_SE;
10448		} else {
10449			/*
10450			 * The EEPROM 'termination_se' field contains a bad value.
10451			 * Use automatic termination instead.
10452			 */
10453			termination = 0;
10454			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10455		}
10456	}
10457
10458	if (eep_config.termination_lvd == 0) {
10459		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10460	} else {
10461		/* Enable manual control with low off / high off. */
10462		if (eep_config.termination_lvd == 1) {
10463			asc_dvc->cfg->termination = termination;
10464
10465			/* Enable manual control with low off / high on. */
10466		} else if (eep_config.termination_lvd == 2) {
10467			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10468
10469			/* Enable manual control with low on / high on. */
10470		} else if (eep_config.termination_lvd == 3) {
10471			asc_dvc->cfg->termination = termination | TERM_LVD;
10472		} else {
10473			/*
10474			 * The EEPROM 'termination_lvd' field contains a bad value.
10475			 * Use automatic termination instead.
10476			 */
10477			asc_dvc->cfg->termination = termination;
10478			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10479		}
10480	}
10481
10482	return warn_code;
10483}
10484
10485/*
10486 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10487 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10488 * all of this is done.
10489 *
10490 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10491 *
10492 * For a non-fatal error return a warning code. If there are no warnings
10493 * then 0 is returned.
10494 *
10495 * Note: Chip is stopped on entry.
10496 */
10497static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10498{
10499	AdvPortAddr iop_base;
10500	ushort warn_code;
10501	ADVEEP_38C1600_CONFIG eep_config;
10502	uchar tid, termination;
10503	ushort sdtr_speed = 0;
10504
10505	iop_base = asc_dvc->iop_base;
10506
10507	warn_code = 0;
10508
10509	/*
10510	 * Read the board's EEPROM configuration.
10511	 *
10512	 * Set default values if a bad checksum is found.
10513	 */
10514	if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10515	    eep_config.check_sum) {
10516		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10517		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10518
10519		/*
10520		 * Set EEPROM default values.
10521		 */
10522		memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10523			sizeof(ADVEEP_38C1600_CONFIG));
10524
10525		if (PCI_FUNC(pdev->devfn) != 0) {
10526			u8 ints;
10527			/*
10528			 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10529			 * and old Mac system booting problem. The Expansion
10530			 * ROM must be disabled in Function 1 for these systems
10531			 */
10532			eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10533			/*
10534			 * Clear the INTAB (bit 11) if the GPIO 0 input
10535			 * indicates the Function 1 interrupt line is wired
10536			 * to INTB.
10537			 *
10538			 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10539			 *   1 - Function 1 interrupt line wired to INT A.
10540			 *   0 - Function 1 interrupt line wired to INT B.
10541			 *
10542			 * Note: Function 0 is always wired to INTA.
10543			 * Put all 5 GPIO bits in input mode and then read
10544			 * their input values.
10545			 */
10546			AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10547			ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10548			if ((ints & 0x01) == 0)
10549				eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10550		}
10551
10552		/*
10553		 * Assume the 6 byte board serial number that was read from
10554		 * EEPROM is correct even if the EEPROM checksum failed.
10555		 */
10556		eep_config.serial_number_word3 =
10557			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10558		eep_config.serial_number_word2 =
10559			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10560		eep_config.serial_number_word1 =
10561			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10562
10563		AdvSet38C1600EEPConfig(iop_base, &eep_config);
10564	}
10565
10566	/*
10567	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10568	 * EEPROM configuration that was read.
10569	 *
10570	 * This is the mapping of EEPROM fields to Adv Library fields.
10571	 */
10572	asc_dvc->wdtr_able = eep_config.wdtr_able;
10573	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10574	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10575	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10576	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10577	asc_dvc->ppr_able = 0;
10578	asc_dvc->tagqng_able = eep_config.tagqng_able;
10579	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10580	asc_dvc->max_host_qng = eep_config.max_host_qng;
10581	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10582	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
10583	asc_dvc->start_motor = eep_config.start_motor;
10584	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10585	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10586	asc_dvc->no_scam = eep_config.scam_tolerant;
10587
10588	/*
10589	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10590	 * are set, then set an 'sdtr_able' bit for it.
10591	 */
10592	asc_dvc->sdtr_able = 0;
10593	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
10594		if (tid == 0) {
10595			sdtr_speed = asc_dvc->sdtr_speed1;
10596		} else if (tid == 4) {
10597			sdtr_speed = asc_dvc->sdtr_speed2;
10598		} else if (tid == 8) {
10599			sdtr_speed = asc_dvc->sdtr_speed3;
10600		} else if (tid == 12) {
10601			sdtr_speed = asc_dvc->sdtr_speed4;
10602		}
10603		if (sdtr_speed & ASC_MAX_TID) {
10604			asc_dvc->sdtr_able |= (1 << tid);
10605		}
10606		sdtr_speed >>= 4;
10607	}
10608
10609	/*
10610	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10611	 * maximum queuing (max. 63, min. 4).
10612	 */
10613	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10614		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10615	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10616		/* If the value is zero, assume it is uninitialized. */
10617		if (eep_config.max_host_qng == 0) {
10618			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10619		} else {
10620			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10621		}
10622	}
10623
10624	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10625		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10626	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10627		/* If the value is zero, assume it is uninitialized. */
10628		if (eep_config.max_dvc_qng == 0) {
10629			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10630		} else {
10631			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10632		}
10633	}
10634
10635	/*
10636	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10637	 * set 'max_dvc_qng' to 'max_host_qng'.
10638	 */
10639	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10640		eep_config.max_dvc_qng = eep_config.max_host_qng;
10641	}
10642
10643	/*
10644	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10645	 * values based on possibly adjusted EEPROM values.
10646	 */
10647	asc_dvc->max_host_qng = eep_config.max_host_qng;
10648	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10649
10650	/*
10651	 * If the EEPROM 'termination' field is set to automatic (0), then set
10652	 * the ASC_DVC_CFG 'termination' field to automatic also.
10653	 *
10654	 * If the termination is specified with a non-zero 'termination'
10655	 * value check that a legal value is set and set the ASC_DVC_CFG
10656	 * 'termination' field appropriately.
10657	 */
10658	if (eep_config.termination_se == 0) {
10659		termination = 0;	/* auto termination for SE */
10660	} else {
10661		/* Enable manual control with low off / high off. */
10662		if (eep_config.termination_se == 1) {
10663			termination = 0;
10664
10665			/* Enable manual control with low off / high on. */
10666		} else if (eep_config.termination_se == 2) {
10667			termination = TERM_SE_HI;
10668
10669			/* Enable manual control with low on / high on. */
10670		} else if (eep_config.termination_se == 3) {
10671			termination = TERM_SE;
10672		} else {
10673			/*
10674			 * The EEPROM 'termination_se' field contains a bad value.
10675			 * Use automatic termination instead.
10676			 */
10677			termination = 0;
10678			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10679		}
10680	}
10681
10682	if (eep_config.termination_lvd == 0) {
10683		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10684	} else {
10685		/* Enable manual control with low off / high off. */
10686		if (eep_config.termination_lvd == 1) {
10687			asc_dvc->cfg->termination = termination;
10688
10689			/* Enable manual control with low off / high on. */
10690		} else if (eep_config.termination_lvd == 2) {
10691			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10692
10693			/* Enable manual control with low on / high on. */
10694		} else if (eep_config.termination_lvd == 3) {
10695			asc_dvc->cfg->termination = termination | TERM_LVD;
10696		} else {
10697			/*
10698			 * The EEPROM 'termination_lvd' field contains a bad value.
10699			 * Use automatic termination instead.
10700			 */
10701			asc_dvc->cfg->termination = termination;
10702			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10703		}
10704	}
10705
10706	return warn_code;
10707}
10708
10709/*
10710 * Initialize the ADV_DVC_VAR structure.
10711 *
10712 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10713 *
10714 * For a non-fatal error return a warning code. If there are no warnings
10715 * then 0 is returned.
10716 */
10717static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10718{
10719	struct asc_board *board = shost_priv(shost);
10720	ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
10721	unsigned short warn_code = 0;
10722	AdvPortAddr iop_base = asc_dvc->iop_base;
10723	u16 cmd;
10724	int status;
10725
10726	asc_dvc->err_code = 0;
10727
10728	/*
10729	 * Save the state of the PCI Configuration Command Register
10730	 * "Parity Error Response Control" Bit. If the bit is clear (0),
10731	 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10732	 * DMA parity errors.
10733	 */
10734	asc_dvc->cfg->control_flag = 0;
10735	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
10736	if ((cmd & PCI_COMMAND_PARITY) == 0)
10737		asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
10738
10739	asc_dvc->cfg->chip_version =
10740	    AdvGetChipVersion(iop_base, asc_dvc->bus_type);
10741
10742	ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10743		 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
10744		 (ushort)ADV_CHIP_ID_BYTE);
10745
10746	ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10747		 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
10748		 (ushort)ADV_CHIP_ID_WORD);
10749
10750	/*
10751	 * Reset the chip to start and allow register writes.
10752	 */
10753	if (AdvFindSignature(iop_base) == 0) {
10754		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10755		return ADV_ERROR;
10756	} else {
10757		/*
10758		 * The caller must set 'chip_type' to a valid setting.
10759		 */
10760		if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
10761		    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
10762		    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
10763			asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
10764			return ADV_ERROR;
10765		}
10766
10767		/*
10768		 * Reset Chip.
10769		 */
10770		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10771				     ADV_CTRL_REG_CMD_RESET);
10772		mdelay(100);
10773		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10774				     ADV_CTRL_REG_CMD_WR_IO_REG);
10775
10776		if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
10777			status = AdvInitFrom38C1600EEP(asc_dvc);
10778		} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10779			status = AdvInitFrom38C0800EEP(asc_dvc);
10780		} else {
10781			status = AdvInitFrom3550EEP(asc_dvc);
10782		}
10783		warn_code |= status;
10784	}
10785
10786	if (warn_code != 0)
10787		shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
10788
10789	if (asc_dvc->err_code)
10790		shost_printk(KERN_ERR, shost, "error code 0x%x\n",
10791				asc_dvc->err_code);
10792
10793	return asc_dvc->err_code;
10794}
10795#endif
10796
10797static struct scsi_host_template advansys_template = {
10798	.proc_name = DRV_NAME,
10799#ifdef CONFIG_PROC_FS
10800	.show_info = advansys_show_info,
10801#endif
10802	.name = DRV_NAME,
10803	.info = advansys_info,
10804	.queuecommand = advansys_queuecommand,
10805	.eh_host_reset_handler = advansys_reset,
10806	.bios_param = advansys_biosparam,
10807	.slave_configure = advansys_slave_configure,
10808	/*
10809	 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
10810	 * must be set. The flag will be cleared in advansys_board_found
10811	 * for non-ISA adapters.
10812	 */
10813	.unchecked_isa_dma = true,
10814	/*
10815	 * All adapters controlled by this driver are capable of large
10816	 * scatter-gather lists. According to the mid-level SCSI documentation
10817	 * this obviates any performance gain provided by setting
10818	 * 'use_clustering'. But empirically while CPU utilization is increased
10819	 * by enabling clustering, I/O throughput increases as well.
10820	 */
10821	.use_clustering = ENABLE_CLUSTERING,
10822};
10823
10824static int advansys_wide_init_chip(struct Scsi_Host *shost)
10825{
10826	struct asc_board *board = shost_priv(shost);
10827	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10828	size_t sgblk_pool_size;
10829	int warn_code, err_code;
10830
10831	/*
10832	 * Allocate buffer carrier structures. The total size
10833	 * is about 8 KB, so allocate all at once.
10834	 */
10835	adv_dvc->carrier = dma_alloc_coherent(board->dev,
10836		ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
10837	ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
10838
10839	if (!adv_dvc->carrier)
10840		goto kmalloc_failed;
10841
10842	/*
10843	 * Allocate up to 'max_host_qng' request structures for the Wide
10844	 * board. The total size is about 16 KB, so allocate all at once.
10845	 * If the allocation fails decrement and try again.
10846	 */
10847	board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
10848	if (board->adv_reqp_size & 0x1f) {
10849		ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
10850		board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
10851	}
10852	board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
10853		&board->adv_reqp_addr, GFP_KERNEL);
10854
10855	if (!board->adv_reqp)
10856		goto kmalloc_failed;
10857
10858	ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
10859		adv_dvc->max_host_qng, board->adv_reqp_size);
10860
10861	/*
10862	 * Allocate up to ADV_TOT_SG_BLOCK request structures for
10863	 * the Wide board. Each structure is about 136 bytes.
10864	 */
10865	sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
10866	board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
10867						sgblk_pool_size, 32, 0);
10868
10869	ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
10870		sizeof(adv_sgblk_t), sgblk_pool_size);
10871
10872	if (!board->adv_sgblk_pool)
10873		goto kmalloc_failed;
10874
10875	if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
10876		ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10877		warn_code = AdvInitAsc3550Driver(adv_dvc);
10878	} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10879		ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10880		warn_code = AdvInitAsc38C0800Driver(adv_dvc);
10881	} else {
10882		ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10883		warn_code = AdvInitAsc38C1600Driver(adv_dvc);
10884	}
10885	err_code = adv_dvc->err_code;
10886
10887	if (warn_code || err_code) {
10888		shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
10889			"0x%x\n", warn_code, err_code);
10890	}
10891
10892	goto exit;
10893
10894 kmalloc_failed:
10895	shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
10896	err_code = ADV_ERROR;
10897 exit:
10898	return err_code;
10899}
10900
10901static void advansys_wide_free_mem(struct asc_board *board)
10902{
10903	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10904
10905	if (adv_dvc->carrier) {
10906		dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
10907				  adv_dvc->carrier, adv_dvc->carrier_addr);
10908		adv_dvc->carrier = NULL;
10909	}
10910	if (board->adv_reqp) {
10911		dma_free_coherent(board->dev, board->adv_reqp_size,
10912				  board->adv_reqp, board->adv_reqp_addr);
10913		board->adv_reqp = NULL;
10914	}
10915	if (board->adv_sgblk_pool) {
10916		dma_pool_destroy(board->adv_sgblk_pool);
10917		board->adv_sgblk_pool = NULL;
10918	}
10919}
10920
10921static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
10922				int bus_type)
10923{
10924	struct pci_dev *pdev;
10925	struct asc_board *boardp = shost_priv(shost);
10926	ASC_DVC_VAR *asc_dvc_varp = NULL;
10927	ADV_DVC_VAR *adv_dvc_varp = NULL;
10928	int share_irq, warn_code, ret;
10929
10930	pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
10931
10932	if (ASC_NARROW_BOARD(boardp)) {
10933		ASC_DBG(1, "narrow board\n");
10934		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
10935		asc_dvc_varp->bus_type = bus_type;
10936		asc_dvc_varp->drv_ptr = boardp;
10937		asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
10938		asc_dvc_varp->iop_base = iop;
10939	} else {
10940#ifdef CONFIG_PCI
10941		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
10942		adv_dvc_varp->drv_ptr = boardp;
10943		adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
10944		if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
10945			ASC_DBG(1, "wide board ASC-3550\n");
10946			adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
10947		} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
10948			ASC_DBG(1, "wide board ASC-38C0800\n");
10949			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
10950		} else {
10951			ASC_DBG(1, "wide board ASC-38C1600\n");
10952			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
10953		}
10954
10955		boardp->asc_n_io_port = pci_resource_len(pdev, 1);
10956		boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
10957		if (!boardp->ioremap_addr) {
10958			shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
10959					"returned NULL\n",
10960					(long)pci_resource_start(pdev, 1),
10961					boardp->asc_n_io_port);
10962			ret = -ENODEV;
10963			goto err_shost;
10964		}
10965		adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
10966		ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
10967
10968		/*
10969		 * Even though it isn't used to access wide boards, other
10970		 * than for the debug line below, save I/O Port address so
10971		 * that it can be reported.
10972		 */
10973		boardp->ioport = iop;
10974
10975		ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10976				(ushort)inp(iop + 1), (ushort)inpw(iop));
10977#endif /* CONFIG_PCI */
10978	}
10979
10980	if (ASC_NARROW_BOARD(boardp)) {
10981		/*
10982		 * Set the board bus type and PCI IRQ before
10983		 * calling AscInitGetConfig().
10984		 */
10985		switch (asc_dvc_varp->bus_type) {
10986#ifdef CONFIG_ISA
10987		case ASC_IS_ISA:
10988			shost->unchecked_isa_dma = true;
10989			share_irq = 0;
10990			break;
10991		case ASC_IS_VL:
10992			shost->unchecked_isa_dma = false;
10993			share_irq = 0;
10994			break;
10995		case ASC_IS_EISA:
10996			shost->unchecked_isa_dma = false;
10997			share_irq = IRQF_SHARED;
10998			break;
10999#endif /* CONFIG_ISA */
11000#ifdef CONFIG_PCI
11001		case ASC_IS_PCI:
11002			shost->unchecked_isa_dma = false;
11003			share_irq = IRQF_SHARED;
11004			break;
11005#endif /* CONFIG_PCI */
11006		default:
11007			shost_printk(KERN_ERR, shost, "unknown adapter type: "
11008					"%d\n", asc_dvc_varp->bus_type);
11009			shost->unchecked_isa_dma = false;
11010			share_irq = 0;
11011			break;
11012		}
11013
11014		/*
11015		 * NOTE: AscInitGetConfig() may change the board's
11016		 * bus_type value. The bus_type value should no
11017		 * longer be used. If the bus_type field must be
11018		 * referenced only use the bit-wise AND operator "&".
11019		 */
11020		ASC_DBG(2, "AscInitGetConfig()\n");
11021		ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11022	} else {
11023#ifdef CONFIG_PCI
11024		/*
11025		 * For Wide boards set PCI information before calling
11026		 * AdvInitGetConfig().
11027		 */
11028		shost->unchecked_isa_dma = false;
11029		share_irq = IRQF_SHARED;
11030		ASC_DBG(2, "AdvInitGetConfig()\n");
11031
11032		ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11033#endif /* CONFIG_PCI */
11034	}
11035
11036	if (ret)
11037		goto err_unmap;
11038
11039	/*
11040	 * Save the EEPROM configuration so that it can be displayed
11041	 * from /proc/scsi/advansys/[0...].
11042	 */
11043	if (ASC_NARROW_BOARD(boardp)) {
11044
11045		ASCEEP_CONFIG *ep;
11046
11047		/*
11048		 * Set the adapter's target id bit in the 'init_tidmask' field.
11049		 */
11050		boardp->init_tidmask |=
11051		    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11052
11053		/*
11054		 * Save EEPROM settings for the board.
11055		 */
11056		ep = &boardp->eep_config.asc_eep;
11057
11058		ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11059		ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11060		ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11061		ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11062		ep->start_motor = asc_dvc_varp->start_motor;
11063		ep->cntl = asc_dvc_varp->dvc_cntl;
11064		ep->no_scam = asc_dvc_varp->no_scam;
11065		ep->max_total_qng = asc_dvc_varp->max_total_qng;
11066		ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11067		/* 'max_tag_qng' is set to the same value for every device. */
11068		ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11069		ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11070		ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11071		ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11072		ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11073		ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11074		ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11075
11076		/*
11077		 * Modify board configuration.
11078		 */
11079		ASC_DBG(2, "AscInitSetConfig()\n");
11080		ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11081		if (ret)
11082			goto err_unmap;
11083	} else {
11084		ADVEEP_3550_CONFIG *ep_3550;
11085		ADVEEP_38C0800_CONFIG *ep_38C0800;
11086		ADVEEP_38C1600_CONFIG *ep_38C1600;
11087
11088		/*
11089		 * Save Wide EEP Configuration Information.
11090		 */
11091		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11092			ep_3550 = &boardp->eep_config.adv_3550_eep;
11093
11094			ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11095			ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11096			ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11097			ep_3550->termination = adv_dvc_varp->cfg->termination;
11098			ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11099			ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11100			ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11101			ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11102			ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11103			ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11104			ep_3550->start_motor = adv_dvc_varp->start_motor;
11105			ep_3550->scsi_reset_delay =
11106			    adv_dvc_varp->scsi_reset_wait;
11107			ep_3550->serial_number_word1 =
11108			    adv_dvc_varp->cfg->serial1;
11109			ep_3550->serial_number_word2 =
11110			    adv_dvc_varp->cfg->serial2;
11111			ep_3550->serial_number_word3 =
11112			    adv_dvc_varp->cfg->serial3;
11113		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11114			ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11115
11116			ep_38C0800->adapter_scsi_id =
11117			    adv_dvc_varp->chip_scsi_id;
11118			ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11119			ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11120			ep_38C0800->termination_lvd =
11121			    adv_dvc_varp->cfg->termination;
11122			ep_38C0800->disc_enable =
11123			    adv_dvc_varp->cfg->disc_enable;
11124			ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11125			ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11126			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11127			ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11128			ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11129			ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11130			ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11131			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11132			ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11133			ep_38C0800->scsi_reset_delay =
11134			    adv_dvc_varp->scsi_reset_wait;
11135			ep_38C0800->serial_number_word1 =
11136			    adv_dvc_varp->cfg->serial1;
11137			ep_38C0800->serial_number_word2 =
11138			    adv_dvc_varp->cfg->serial2;
11139			ep_38C0800->serial_number_word3 =
11140			    adv_dvc_varp->cfg->serial3;
11141		} else {
11142			ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11143
11144			ep_38C1600->adapter_scsi_id =
11145			    adv_dvc_varp->chip_scsi_id;
11146			ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11147			ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11148			ep_38C1600->termination_lvd =
11149			    adv_dvc_varp->cfg->termination;
11150			ep_38C1600->disc_enable =
11151			    adv_dvc_varp->cfg->disc_enable;
11152			ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11153			ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11154			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11155			ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11156			ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11157			ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11158			ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11159			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11160			ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11161			ep_38C1600->scsi_reset_delay =
11162			    adv_dvc_varp->scsi_reset_wait;
11163			ep_38C1600->serial_number_word1 =
11164			    adv_dvc_varp->cfg->serial1;
11165			ep_38C1600->serial_number_word2 =
11166			    adv_dvc_varp->cfg->serial2;
11167			ep_38C1600->serial_number_word3 =
11168			    adv_dvc_varp->cfg->serial3;
11169		}
11170
11171		/*
11172		 * Set the adapter's target id bit in the 'init_tidmask' field.
11173		 */
11174		boardp->init_tidmask |=
11175		    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11176	}
11177
11178	/*
11179	 * Channels are numbered beginning with 0. For AdvanSys one host
11180	 * structure supports one channel. Multi-channel boards have a
11181	 * separate host structure for each channel.
11182	 */
11183	shost->max_channel = 0;
11184	if (ASC_NARROW_BOARD(boardp)) {
11185		shost->max_id = ASC_MAX_TID + 1;
11186		shost->max_lun = ASC_MAX_LUN + 1;
11187		shost->max_cmd_len = ASC_MAX_CDB_LEN;
11188
11189		shost->io_port = asc_dvc_varp->iop_base;
11190		boardp->asc_n_io_port = ASC_IOADR_GAP;
11191		shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11192
11193		/* Set maximum number of queues the adapter can handle. */
11194		shost->can_queue = asc_dvc_varp->max_total_qng;
11195	} else {
11196		shost->max_id = ADV_MAX_TID + 1;
11197		shost->max_lun = ADV_MAX_LUN + 1;
11198		shost->max_cmd_len = ADV_MAX_CDB_LEN;
11199
11200		/*
11201		 * Save the I/O Port address and length even though
11202		 * I/O ports are not used to access Wide boards.
11203		 * Instead the Wide boards are accessed with
11204		 * PCI Memory Mapped I/O.
11205		 */
11206		shost->io_port = iop;
11207
11208		shost->this_id = adv_dvc_varp->chip_scsi_id;
11209
11210		/* Set maximum number of queues the adapter can handle. */
11211		shost->can_queue = adv_dvc_varp->max_host_qng;
11212	}
11213
11214	/*
11215	 * Set the maximum number of scatter-gather elements the
11216	 * adapter can handle.
11217	 */
11218	if (ASC_NARROW_BOARD(boardp)) {
11219		/*
11220		 * Allow two commands with 'sg_tablesize' scatter-gather
11221		 * elements to be executed simultaneously. This value is
11222		 * the theoretical hardware limit. It may be decreased
11223		 * below.
11224		 */
11225		shost->sg_tablesize =
11226		    (((asc_dvc_varp->max_total_qng - 2) / 2) *
11227		     ASC_SG_LIST_PER_Q) + 1;
11228	} else {
11229		shost->sg_tablesize = ADV_MAX_SG_LIST;
11230	}
11231
11232	/*
11233	 * The value of 'sg_tablesize' can not exceed the SCSI
11234	 * mid-level driver definition of SG_ALL. SG_ALL also
11235	 * must not be exceeded, because it is used to define the
11236	 * size of the scatter-gather table in 'struct asc_sg_head'.
11237	 */
11238	if (shost->sg_tablesize > SG_ALL) {
11239		shost->sg_tablesize = SG_ALL;
11240	}
11241
11242	ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11243
11244	/* BIOS start address. */
11245	if (ASC_NARROW_BOARD(boardp)) {
11246		shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11247						    asc_dvc_varp->bus_type);
11248	} else {
11249		/*
11250		 * Fill-in BIOS board variables. The Wide BIOS saves
11251		 * information in LRAM that is used by the driver.
11252		 */
11253		AdvReadWordLram(adv_dvc_varp->iop_base,
11254				BIOS_SIGNATURE, boardp->bios_signature);
11255		AdvReadWordLram(adv_dvc_varp->iop_base,
11256				BIOS_VERSION, boardp->bios_version);
11257		AdvReadWordLram(adv_dvc_varp->iop_base,
11258				BIOS_CODESEG, boardp->bios_codeseg);
11259		AdvReadWordLram(adv_dvc_varp->iop_base,
11260				BIOS_CODELEN, boardp->bios_codelen);
11261
11262		ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11263			 boardp->bios_signature, boardp->bios_version);
11264
11265		ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11266			 boardp->bios_codeseg, boardp->bios_codelen);
11267
11268		/*
11269		 * If the BIOS saved a valid signature, then fill in
11270		 * the BIOS code segment base address.
11271		 */
11272		if (boardp->bios_signature == 0x55AA) {
11273			/*
11274			 * Convert x86 realmode code segment to a linear
11275			 * address by shifting left 4.
11276			 */
11277			shost->base = ((ulong)boardp->bios_codeseg << 4);
11278		} else {
11279			shost->base = 0;
11280		}
11281	}
11282
11283	/*
11284	 * Register Board Resources - I/O Port, DMA, IRQ
11285	 */
11286
11287	/* Register DMA Channel for Narrow boards. */
11288	shost->dma_channel = NO_ISA_DMA;	/* Default to no ISA DMA. */
11289#ifdef CONFIG_ISA
11290	if (ASC_NARROW_BOARD(boardp)) {
11291		/* Register DMA channel for ISA bus. */
11292		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11293			shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11294			ret = request_dma(shost->dma_channel, DRV_NAME);
11295			if (ret) {
11296				shost_printk(KERN_ERR, shost, "request_dma() "
11297						"%d failed %d\n",
11298						shost->dma_channel, ret);
11299				goto err_unmap;
11300			}
11301			AscEnableIsaDma(shost->dma_channel);
11302		}
11303	}
11304#endif /* CONFIG_ISA */
11305
11306	/* Register IRQ Number. */
11307	ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11308
11309	ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11310			  DRV_NAME, shost);
11311
11312	if (ret) {
11313		if (ret == -EBUSY) {
11314			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11315					"already in use\n", boardp->irq);
11316		} else if (ret == -EINVAL) {
11317			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11318					"not valid\n", boardp->irq);
11319		} else {
11320			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11321					"failed with %d\n", boardp->irq, ret);
11322		}
11323		goto err_free_dma;
11324	}
11325
11326	/*
11327	 * Initialize board RISC chip and enable interrupts.
11328	 */
11329	if (ASC_NARROW_BOARD(boardp)) {
11330		ASC_DBG(2, "AscInitAsc1000Driver()\n");
11331
11332		asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11333		if (!asc_dvc_varp->overrun_buf) {
11334			ret = -ENOMEM;
11335			goto err_free_irq;
11336		}
11337		warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11338
11339		if (warn_code || asc_dvc_varp->err_code) {
11340			shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11341					"warn 0x%x, error 0x%x\n",
11342					asc_dvc_varp->init_state, warn_code,
11343					asc_dvc_varp->err_code);
11344			if (!asc_dvc_varp->overrun_dma) {
11345				ret = -ENODEV;
11346				goto err_free_mem;
11347			}
11348		}
11349	} else {
11350		if (advansys_wide_init_chip(shost)) {
11351			ret = -ENODEV;
11352			goto err_free_mem;
11353		}
11354	}
11355
11356	ASC_DBG_PRT_SCSI_HOST(2, shost);
11357
11358	ret = scsi_add_host(shost, boardp->dev);
11359	if (ret)
11360		goto err_free_mem;
11361
11362	scsi_scan_host(shost);
11363	return 0;
11364
11365 err_free_mem:
11366	if (ASC_NARROW_BOARD(boardp)) {
11367		if (asc_dvc_varp->overrun_dma)
11368			dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11369					 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11370		kfree(asc_dvc_varp->overrun_buf);
11371	} else
11372		advansys_wide_free_mem(boardp);
11373 err_free_irq:
11374	free_irq(boardp->irq, shost);
11375 err_free_dma:
11376#ifdef CONFIG_ISA
11377	if (shost->dma_channel != NO_ISA_DMA)
11378		free_dma(shost->dma_channel);
11379#endif
11380 err_unmap:
11381	if (boardp->ioremap_addr)
11382		iounmap(boardp->ioremap_addr);
11383#ifdef CONFIG_PCI
11384 err_shost:
11385#endif
11386	return ret;
11387}
11388
11389/*
11390 * advansys_release()
11391 *
11392 * Release resources allocated for a single AdvanSys adapter.
11393 */
11394static int advansys_release(struct Scsi_Host *shost)
11395{
11396	struct asc_board *board = shost_priv(shost);
11397	ASC_DBG(1, "begin\n");
11398	scsi_remove_host(shost);
11399	free_irq(board->irq, shost);
11400#ifdef CONFIG_ISA
11401	if (shost->dma_channel != NO_ISA_DMA) {
11402		ASC_DBG(1, "free_dma()\n");
11403		free_dma(shost->dma_channel);
11404	}
11405#endif
11406	if (ASC_NARROW_BOARD(board)) {
11407		dma_unmap_single(board->dev,
11408					board->dvc_var.asc_dvc_var.overrun_dma,
11409					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11410		kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11411	} else {
11412		iounmap(board->ioremap_addr);
11413		advansys_wide_free_mem(board);
11414	}
11415	scsi_host_put(shost);
11416	ASC_DBG(1, "end\n");
11417	return 0;
11418}
11419
11420#define ASC_IOADR_TABLE_MAX_IX  11
11421
11422static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11423	0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11424	0x0210, 0x0230, 0x0250, 0x0330
11425};
11426
11427/*
11428 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as:
11429 * 00: 10
11430 * 01: 11
11431 * 10: 12
11432 * 11: 15
11433 */
11434static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11435{
11436	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11437	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11438	if (chip_irq == 13)
11439		chip_irq = 15;
11440	return chip_irq;
11441}
11442
11443static int advansys_isa_probe(struct device *dev, unsigned int id)
11444{
11445	int err = -ENODEV;
11446	PortAddr iop_base = _asc_def_iop_base[id];
11447	struct Scsi_Host *shost;
11448	struct asc_board *board;
11449
11450	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11451		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11452		return -ENODEV;
11453	}
11454	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11455	if (!AscFindSignature(iop_base))
11456		goto release_region;
11457	if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11458		goto release_region;
11459
11460	err = -ENOMEM;
11461	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11462	if (!shost)
11463		goto release_region;
11464
11465	board = shost_priv(shost);
11466	board->irq = advansys_isa_irq_no(iop_base);
11467	board->dev = dev;
11468	board->shost = shost;
11469
11470	err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11471	if (err)
11472		goto free_host;
11473
11474	dev_set_drvdata(dev, shost);
11475	return 0;
11476
11477 free_host:
11478	scsi_host_put(shost);
11479 release_region:
11480	release_region(iop_base, ASC_IOADR_GAP);
11481	return err;
11482}
11483
11484static int advansys_isa_remove(struct device *dev, unsigned int id)
11485{
11486	int ioport = _asc_def_iop_base[id];
11487	advansys_release(dev_get_drvdata(dev));
11488	release_region(ioport, ASC_IOADR_GAP);
11489	return 0;
11490}
11491
11492static struct isa_driver advansys_isa_driver = {
11493	.probe		= advansys_isa_probe,
11494	.remove		= advansys_isa_remove,
11495	.driver = {
11496		.owner	= THIS_MODULE,
11497		.name	= DRV_NAME,
11498	},
11499};
11500
11501/*
11502 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11503 * 000: invalid
11504 * 001: 10
11505 * 010: 11
11506 * 011: 12
11507 * 100: invalid
11508 * 101: 14
11509 * 110: 15
11510 * 111: invalid
11511 */
11512static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11513{
11514	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11515	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11516	if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11517		return 0;
11518	return chip_irq;
11519}
11520
11521static int advansys_vlb_probe(struct device *dev, unsigned int id)
11522{
11523	int err = -ENODEV;
11524	PortAddr iop_base = _asc_def_iop_base[id];
11525	struct Scsi_Host *shost;
11526	struct asc_board *board;
11527
11528	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11529		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11530		return -ENODEV;
11531	}
11532	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11533	if (!AscFindSignature(iop_base))
11534		goto release_region;
11535	/*
11536	 * I don't think this condition can actually happen, but the old
11537	 * driver did it, and the chances of finding a VLB setup in 2007
11538	 * to do testing with is slight to none.
11539	 */
11540	if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
11541		goto release_region;
11542
11543	err = -ENOMEM;
11544	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11545	if (!shost)
11546		goto release_region;
11547
11548	board = shost_priv(shost);
11549	board->irq = advansys_vlb_irq_no(iop_base);
11550	board->dev = dev;
11551	board->shost = shost;
11552
11553	err = advansys_board_found(shost, iop_base, ASC_IS_VL);
11554	if (err)
11555		goto free_host;
11556
11557	dev_set_drvdata(dev, shost);
11558	return 0;
11559
11560 free_host:
11561	scsi_host_put(shost);
11562 release_region:
11563	release_region(iop_base, ASC_IOADR_GAP);
11564	return -ENODEV;
11565}
11566
11567static struct isa_driver advansys_vlb_driver = {
11568	.probe		= advansys_vlb_probe,
11569	.remove		= advansys_isa_remove,
11570	.driver = {
11571		.owner	= THIS_MODULE,
11572		.name	= "advansys_vlb",
11573	},
11574};
11575
11576static struct eisa_device_id advansys_eisa_table[] = {
11577	{ "ABP7401" },
11578	{ "ABP7501" },
11579	{ "" }
11580};
11581
11582MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
11583
11584/*
11585 * EISA is a little more tricky than PCI; each EISA device may have two
11586 * channels, and this driver is written to make each channel its own Scsi_Host
11587 */
11588struct eisa_scsi_data {
11589	struct Scsi_Host *host[2];
11590};
11591
11592/*
11593 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
11594 * 000: 10
11595 * 001: 11
11596 * 010: 12
11597 * 011: invalid
11598 * 100: 14
11599 * 101: 15
11600 * 110: invalid
11601 * 111: invalid
11602 */
11603static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
11604{
11605	unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
11606	unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
11607	if ((chip_irq == 13) || (chip_irq > 15))
11608		return 0;
11609	return chip_irq;
11610}
11611
11612static int advansys_eisa_probe(struct device *dev)
11613{
11614	int i, ioport, irq = 0;
11615	int err;
11616	struct eisa_device *edev = to_eisa_device(dev);
11617	struct eisa_scsi_data *data;
11618
11619	err = -ENOMEM;
11620	data = kzalloc(sizeof(*data), GFP_KERNEL);
11621	if (!data)
11622		goto fail;
11623	ioport = edev->base_addr + 0xc30;
11624
11625	err = -ENODEV;
11626	for (i = 0; i < 2; i++, ioport += 0x20) {
11627		struct asc_board *board;
11628		struct Scsi_Host *shost;
11629		if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
11630			printk(KERN_WARNING "Region %x-%x busy\n", ioport,
11631			       ioport + ASC_IOADR_GAP - 1);
11632			continue;
11633		}
11634		if (!AscFindSignature(ioport)) {
11635			release_region(ioport, ASC_IOADR_GAP);
11636			continue;
11637		}
11638
11639		/*
11640		 * I don't know why we need to do this for EISA chips, but
11641		 * not for any others.  It looks to be equivalent to
11642		 * AscGetChipCfgMsw, but I may have overlooked something,
11643		 * so I'm not converting it until I get an EISA board to
11644		 * test with.
11645		 */
11646		inw(ioport + 4);
11647
11648		if (!irq)
11649			irq = advansys_eisa_irq_no(edev);
11650
11651		err = -ENOMEM;
11652		shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11653		if (!shost)
11654			goto release_region;
11655
11656		board = shost_priv(shost);
11657		board->irq = irq;
11658		board->dev = dev;
11659		board->shost = shost;
11660
11661		err = advansys_board_found(shost, ioport, ASC_IS_EISA);
11662		if (!err) {
11663			data->host[i] = shost;
11664			continue;
11665		}
11666
11667		scsi_host_put(shost);
11668 release_region:
11669		release_region(ioport, ASC_IOADR_GAP);
11670		break;
11671	}
11672
11673	if (err)
11674		goto free_data;
11675	dev_set_drvdata(dev, data);
11676	return 0;
11677
11678 free_data:
11679	kfree(data->host[0]);
11680	kfree(data->host[1]);
11681	kfree(data);
11682 fail:
11683	return err;
11684}
11685
11686static int advansys_eisa_remove(struct device *dev)
11687{
11688	int i;
11689	struct eisa_scsi_data *data = dev_get_drvdata(dev);
11690
11691	for (i = 0; i < 2; i++) {
11692		int ioport;
11693		struct Scsi_Host *shost = data->host[i];
11694		if (!shost)
11695			continue;
11696		ioport = shost->io_port;
11697		advansys_release(shost);
11698		release_region(ioport, ASC_IOADR_GAP);
11699	}
11700
11701	kfree(data);
11702	return 0;
11703}
11704
11705static struct eisa_driver advansys_eisa_driver = {
11706	.id_table =		advansys_eisa_table,
11707	.driver = {
11708		.name =		DRV_NAME,
11709		.probe =	advansys_eisa_probe,
11710		.remove =	advansys_eisa_remove,
11711	}
11712};
11713
11714/* PCI Devices supported by this driver */
11715static struct pci_device_id advansys_pci_tbl[] = {
11716	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
11717	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11718	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
11719	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11720	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
11721	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11722	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
11723	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11724	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
11725	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11726	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
11727	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11728	{}
11729};
11730
11731MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
11732
11733static void advansys_set_latency(struct pci_dev *pdev)
11734{
11735	if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
11736	    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
11737		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
11738	} else {
11739		u8 latency;
11740		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
11741		if (latency < 0x20)
11742			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
11743	}
11744}
11745
11746static int advansys_pci_probe(struct pci_dev *pdev,
11747			      const struct pci_device_id *ent)
11748{
11749	int err, ioport;
11750	struct Scsi_Host *shost;
11751	struct asc_board *board;
11752
11753	err = pci_enable_device(pdev);
11754	if (err)
11755		goto fail;
11756	err = pci_request_regions(pdev, DRV_NAME);
11757	if (err)
11758		goto disable_device;
11759	pci_set_master(pdev);
11760	advansys_set_latency(pdev);
11761
11762	err = -ENODEV;
11763	if (pci_resource_len(pdev, 0) == 0)
11764		goto release_region;
11765
11766	ioport = pci_resource_start(pdev, 0);
11767
11768	err = -ENOMEM;
11769	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11770	if (!shost)
11771		goto release_region;
11772
11773	board = shost_priv(shost);
11774	board->irq = pdev->irq;
11775	board->dev = &pdev->dev;
11776	board->shost = shost;
11777
11778	if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
11779	    pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
11780	    pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
11781		board->flags |= ASC_IS_WIDE_BOARD;
11782	}
11783
11784	err = advansys_board_found(shost, ioport, ASC_IS_PCI);
11785	if (err)
11786		goto free_host;
11787
11788	pci_set_drvdata(pdev, shost);
11789	return 0;
11790
11791 free_host:
11792	scsi_host_put(shost);
11793 release_region:
11794	pci_release_regions(pdev);
11795 disable_device:
11796	pci_disable_device(pdev);
11797 fail:
11798	return err;
11799}
11800
11801static void advansys_pci_remove(struct pci_dev *pdev)
11802{
11803	advansys_release(pci_get_drvdata(pdev));
11804	pci_release_regions(pdev);
11805	pci_disable_device(pdev);
11806}
11807
11808static struct pci_driver advansys_pci_driver = {
11809	.name =		DRV_NAME,
11810	.id_table =	advansys_pci_tbl,
11811	.probe =	advansys_pci_probe,
11812	.remove =	advansys_pci_remove,
11813};
11814
11815static int __init advansys_init(void)
11816{
11817	int error;
11818
11819	error = isa_register_driver(&advansys_isa_driver,
11820				    ASC_IOADR_TABLE_MAX_IX);
11821	if (error)
11822		goto fail;
11823
11824	error = isa_register_driver(&advansys_vlb_driver,
11825				    ASC_IOADR_TABLE_MAX_IX);
11826	if (error)
11827		goto unregister_isa;
11828
11829	error = eisa_driver_register(&advansys_eisa_driver);
11830	if (error)
11831		goto unregister_vlb;
11832
11833	error = pci_register_driver(&advansys_pci_driver);
11834	if (error)
11835		goto unregister_eisa;
11836
11837	return 0;
11838
11839 unregister_eisa:
11840	eisa_driver_unregister(&advansys_eisa_driver);
11841 unregister_vlb:
11842	isa_unregister_driver(&advansys_vlb_driver);
11843 unregister_isa:
11844	isa_unregister_driver(&advansys_isa_driver);
11845 fail:
11846	return error;
11847}
11848
11849static void __exit advansys_exit(void)
11850{
11851	pci_unregister_driver(&advansys_pci_driver);
11852	eisa_driver_unregister(&advansys_eisa_driver);
11853	isa_unregister_driver(&advansys_vlb_driver);
11854	isa_unregister_driver(&advansys_isa_driver);
11855}
11856
11857module_init(advansys_init);
11858module_exit(advansys_exit);
11859
11860MODULE_LICENSE("GPL");
11861MODULE_FIRMWARE("advansys/mcode.bin");
11862MODULE_FIRMWARE("advansys/3550.bin");
11863MODULE_FIRMWARE("advansys/38C0800.bin");
11864MODULE_FIRMWARE("advansys/38C1600.bin");
11865