1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/gpio/consumer.h>
28#include <linux/of.h>
29#include <linux/regmap.h>
30#include <linux/regulator/of_regulator.h>
31#include <linux/regulator/consumer.h>
32#include <linux/regulator/driver.h>
33#include <linux/regulator/machine.h>
34#include <linux/module.h>
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/regulator.h>
38
39#include "dummy.h"
40#include "internal.h"
41
42#define rdev_crit(rdev, fmt, ...)					\
43	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_err(rdev, fmt, ...)					\
45	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_warn(rdev, fmt, ...)					\
47	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_info(rdev, fmt, ...)					\
49	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50#define rdev_dbg(rdev, fmt, ...)					\
51	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53static DEFINE_MUTEX(regulator_list_mutex);
54static LIST_HEAD(regulator_map_list);
55static LIST_HEAD(regulator_ena_gpio_list);
56static LIST_HEAD(regulator_supply_alias_list);
57static bool has_full_constraints;
58
59static struct dentry *debugfs_root;
60
61static struct class regulator_class;
62
63/*
64 * struct regulator_map
65 *
66 * Used to provide symbolic supply names to devices.
67 */
68struct regulator_map {
69	struct list_head list;
70	const char *dev_name;   /* The dev_name() for the consumer */
71	const char *supply;
72	struct regulator_dev *regulator;
73};
74
75/*
76 * struct regulator_enable_gpio
77 *
78 * Management for shared enable GPIO pin
79 */
80struct regulator_enable_gpio {
81	struct list_head list;
82	struct gpio_desc *gpiod;
83	u32 enable_count;	/* a number of enabled shared GPIO */
84	u32 request_count;	/* a number of requested shared GPIO */
85	unsigned int ena_gpio_invert:1;
86};
87
88/*
89 * struct regulator_supply_alias
90 *
91 * Used to map lookups for a supply onto an alternative device.
92 */
93struct regulator_supply_alias {
94	struct list_head list;
95	struct device *src_dev;
96	const char *src_supply;
97	struct device *alias_dev;
98	const char *alias_supply;
99};
100
101static int _regulator_is_enabled(struct regulator_dev *rdev);
102static int _regulator_disable(struct regulator_dev *rdev);
103static int _regulator_get_voltage(struct regulator_dev *rdev);
104static int _regulator_get_current_limit(struct regulator_dev *rdev);
105static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106static int _notifier_call_chain(struct regulator_dev *rdev,
107				  unsigned long event, void *data);
108static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109				     int min_uV, int max_uV);
110static struct regulator *create_regulator(struct regulator_dev *rdev,
111					  struct device *dev,
112					  const char *supply_name);
113static void _regulator_put(struct regulator *regulator);
114
115static struct regulator_dev *dev_to_rdev(struct device *dev)
116{
117	return container_of(dev, struct regulator_dev, dev);
118}
119
120static const char *rdev_get_name(struct regulator_dev *rdev)
121{
122	if (rdev->constraints && rdev->constraints->name)
123		return rdev->constraints->name;
124	else if (rdev->desc->name)
125		return rdev->desc->name;
126	else
127		return "";
128}
129
130static bool have_full_constraints(void)
131{
132	return has_full_constraints || of_have_populated_dt();
133}
134
135static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
136{
137	if (rdev && rdev->supply)
138		return rdev->supply->rdev;
139
140	return NULL;
141}
142
143/**
144 * regulator_lock_supply - lock a regulator and its supplies
145 * @rdev:         regulator source
146 */
147static void regulator_lock_supply(struct regulator_dev *rdev)
148{
149	int i;
150
151	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152		mutex_lock_nested(&rdev->mutex, i);
153}
154
155/**
156 * regulator_unlock_supply - unlock a regulator and its supplies
157 * @rdev:         regulator source
158 */
159static void regulator_unlock_supply(struct regulator_dev *rdev)
160{
161	struct regulator *supply;
162
163	while (1) {
164		mutex_unlock(&rdev->mutex);
165		supply = rdev->supply;
166
167		if (!rdev->supply)
168			return;
169
170		rdev = supply->rdev;
171	}
172}
173
174/**
175 * of_get_regulator - get a regulator device node based on supply name
176 * @dev: Device pointer for the consumer (of regulator) device
177 * @supply: regulator supply name
178 *
179 * Extract the regulator device node corresponding to the supply name.
180 * returns the device node corresponding to the regulator if found, else
181 * returns NULL.
182 */
183static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184{
185	struct device_node *regnode = NULL;
186	char prop_name[32]; /* 32 is max size of property name */
187
188	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189
190	snprintf(prop_name, 32, "%s-supply", supply);
191	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192
193	if (!regnode) {
194		dev_dbg(dev, "Looking up %s property in node %s failed",
195				prop_name, dev->of_node->full_name);
196		return NULL;
197	}
198	return regnode;
199}
200
201static int _regulator_can_change_status(struct regulator_dev *rdev)
202{
203	if (!rdev->constraints)
204		return 0;
205
206	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207		return 1;
208	else
209		return 0;
210}
211
212/* Platform voltage constraint check */
213static int regulator_check_voltage(struct regulator_dev *rdev,
214				   int *min_uV, int *max_uV)
215{
216	BUG_ON(*min_uV > *max_uV);
217
218	if (!rdev->constraints) {
219		rdev_err(rdev, "no constraints\n");
220		return -ENODEV;
221	}
222	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223		rdev_err(rdev, "voltage operation not allowed\n");
224		return -EPERM;
225	}
226
227	if (*max_uV > rdev->constraints->max_uV)
228		*max_uV = rdev->constraints->max_uV;
229	if (*min_uV < rdev->constraints->min_uV)
230		*min_uV = rdev->constraints->min_uV;
231
232	if (*min_uV > *max_uV) {
233		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234			 *min_uV, *max_uV);
235		return -EINVAL;
236	}
237
238	return 0;
239}
240
241/* Make sure we select a voltage that suits the needs of all
242 * regulator consumers
243 */
244static int regulator_check_consumers(struct regulator_dev *rdev,
245				     int *min_uV, int *max_uV)
246{
247	struct regulator *regulator;
248
249	list_for_each_entry(regulator, &rdev->consumer_list, list) {
250		/*
251		 * Assume consumers that didn't say anything are OK
252		 * with anything in the constraint range.
253		 */
254		if (!regulator->min_uV && !regulator->max_uV)
255			continue;
256
257		if (*max_uV > regulator->max_uV)
258			*max_uV = regulator->max_uV;
259		if (*min_uV < regulator->min_uV)
260			*min_uV = regulator->min_uV;
261	}
262
263	if (*min_uV > *max_uV) {
264		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265			*min_uV, *max_uV);
266		return -EINVAL;
267	}
268
269	return 0;
270}
271
272/* current constraint check */
273static int regulator_check_current_limit(struct regulator_dev *rdev,
274					int *min_uA, int *max_uA)
275{
276	BUG_ON(*min_uA > *max_uA);
277
278	if (!rdev->constraints) {
279		rdev_err(rdev, "no constraints\n");
280		return -ENODEV;
281	}
282	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283		rdev_err(rdev, "current operation not allowed\n");
284		return -EPERM;
285	}
286
287	if (*max_uA > rdev->constraints->max_uA)
288		*max_uA = rdev->constraints->max_uA;
289	if (*min_uA < rdev->constraints->min_uA)
290		*min_uA = rdev->constraints->min_uA;
291
292	if (*min_uA > *max_uA) {
293		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294			 *min_uA, *max_uA);
295		return -EINVAL;
296	}
297
298	return 0;
299}
300
301/* operating mode constraint check */
302static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303{
304	switch (*mode) {
305	case REGULATOR_MODE_FAST:
306	case REGULATOR_MODE_NORMAL:
307	case REGULATOR_MODE_IDLE:
308	case REGULATOR_MODE_STANDBY:
309		break;
310	default:
311		rdev_err(rdev, "invalid mode %x specified\n", *mode);
312		return -EINVAL;
313	}
314
315	if (!rdev->constraints) {
316		rdev_err(rdev, "no constraints\n");
317		return -ENODEV;
318	}
319	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320		rdev_err(rdev, "mode operation not allowed\n");
321		return -EPERM;
322	}
323
324	/* The modes are bitmasks, the most power hungry modes having
325	 * the lowest values. If the requested mode isn't supported
326	 * try higher modes. */
327	while (*mode) {
328		if (rdev->constraints->valid_modes_mask & *mode)
329			return 0;
330		*mode /= 2;
331	}
332
333	return -EINVAL;
334}
335
336/* dynamic regulator mode switching constraint check */
337static int regulator_check_drms(struct regulator_dev *rdev)
338{
339	if (!rdev->constraints) {
340		rdev_err(rdev, "no constraints\n");
341		return -ENODEV;
342	}
343	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344		rdev_dbg(rdev, "drms operation not allowed\n");
345		return -EPERM;
346	}
347	return 0;
348}
349
350static ssize_t regulator_uV_show(struct device *dev,
351				struct device_attribute *attr, char *buf)
352{
353	struct regulator_dev *rdev = dev_get_drvdata(dev);
354	ssize_t ret;
355
356	mutex_lock(&rdev->mutex);
357	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358	mutex_unlock(&rdev->mutex);
359
360	return ret;
361}
362static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363
364static ssize_t regulator_uA_show(struct device *dev,
365				struct device_attribute *attr, char *buf)
366{
367	struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370}
371static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372
373static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374			 char *buf)
375{
376	struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378	return sprintf(buf, "%s\n", rdev_get_name(rdev));
379}
380static DEVICE_ATTR_RO(name);
381
382static ssize_t regulator_print_opmode(char *buf, int mode)
383{
384	switch (mode) {
385	case REGULATOR_MODE_FAST:
386		return sprintf(buf, "fast\n");
387	case REGULATOR_MODE_NORMAL:
388		return sprintf(buf, "normal\n");
389	case REGULATOR_MODE_IDLE:
390		return sprintf(buf, "idle\n");
391	case REGULATOR_MODE_STANDBY:
392		return sprintf(buf, "standby\n");
393	}
394	return sprintf(buf, "unknown\n");
395}
396
397static ssize_t regulator_opmode_show(struct device *dev,
398				    struct device_attribute *attr, char *buf)
399{
400	struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403}
404static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405
406static ssize_t regulator_print_state(char *buf, int state)
407{
408	if (state > 0)
409		return sprintf(buf, "enabled\n");
410	else if (state == 0)
411		return sprintf(buf, "disabled\n");
412	else
413		return sprintf(buf, "unknown\n");
414}
415
416static ssize_t regulator_state_show(struct device *dev,
417				   struct device_attribute *attr, char *buf)
418{
419	struct regulator_dev *rdev = dev_get_drvdata(dev);
420	ssize_t ret;
421
422	mutex_lock(&rdev->mutex);
423	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424	mutex_unlock(&rdev->mutex);
425
426	return ret;
427}
428static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429
430static ssize_t regulator_status_show(struct device *dev,
431				   struct device_attribute *attr, char *buf)
432{
433	struct regulator_dev *rdev = dev_get_drvdata(dev);
434	int status;
435	char *label;
436
437	status = rdev->desc->ops->get_status(rdev);
438	if (status < 0)
439		return status;
440
441	switch (status) {
442	case REGULATOR_STATUS_OFF:
443		label = "off";
444		break;
445	case REGULATOR_STATUS_ON:
446		label = "on";
447		break;
448	case REGULATOR_STATUS_ERROR:
449		label = "error";
450		break;
451	case REGULATOR_STATUS_FAST:
452		label = "fast";
453		break;
454	case REGULATOR_STATUS_NORMAL:
455		label = "normal";
456		break;
457	case REGULATOR_STATUS_IDLE:
458		label = "idle";
459		break;
460	case REGULATOR_STATUS_STANDBY:
461		label = "standby";
462		break;
463	case REGULATOR_STATUS_BYPASS:
464		label = "bypass";
465		break;
466	case REGULATOR_STATUS_UNDEFINED:
467		label = "undefined";
468		break;
469	default:
470		return -ERANGE;
471	}
472
473	return sprintf(buf, "%s\n", label);
474}
475static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476
477static ssize_t regulator_min_uA_show(struct device *dev,
478				    struct device_attribute *attr, char *buf)
479{
480	struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482	if (!rdev->constraints)
483		return sprintf(buf, "constraint not defined\n");
484
485	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486}
487static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488
489static ssize_t regulator_max_uA_show(struct device *dev,
490				    struct device_attribute *attr, char *buf)
491{
492	struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494	if (!rdev->constraints)
495		return sprintf(buf, "constraint not defined\n");
496
497	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498}
499static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500
501static ssize_t regulator_min_uV_show(struct device *dev,
502				    struct device_attribute *attr, char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	if (!rdev->constraints)
507		return sprintf(buf, "constraint not defined\n");
508
509	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510}
511static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512
513static ssize_t regulator_max_uV_show(struct device *dev,
514				    struct device_attribute *attr, char *buf)
515{
516	struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518	if (!rdev->constraints)
519		return sprintf(buf, "constraint not defined\n");
520
521	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522}
523static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524
525static ssize_t regulator_total_uA_show(struct device *dev,
526				      struct device_attribute *attr, char *buf)
527{
528	struct regulator_dev *rdev = dev_get_drvdata(dev);
529	struct regulator *regulator;
530	int uA = 0;
531
532	mutex_lock(&rdev->mutex);
533	list_for_each_entry(regulator, &rdev->consumer_list, list)
534		uA += regulator->uA_load;
535	mutex_unlock(&rdev->mutex);
536	return sprintf(buf, "%d\n", uA);
537}
538static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539
540static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541			      char *buf)
542{
543	struct regulator_dev *rdev = dev_get_drvdata(dev);
544	return sprintf(buf, "%d\n", rdev->use_count);
545}
546static DEVICE_ATTR_RO(num_users);
547
548static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549			 char *buf)
550{
551	struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553	switch (rdev->desc->type) {
554	case REGULATOR_VOLTAGE:
555		return sprintf(buf, "voltage\n");
556	case REGULATOR_CURRENT:
557		return sprintf(buf, "current\n");
558	}
559	return sprintf(buf, "unknown\n");
560}
561static DEVICE_ATTR_RO(type);
562
563static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564				struct device_attribute *attr, char *buf)
565{
566	struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569}
570static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571		regulator_suspend_mem_uV_show, NULL);
572
573static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574				struct device_attribute *attr, char *buf)
575{
576	struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579}
580static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581		regulator_suspend_disk_uV_show, NULL);
582
583static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584				struct device_attribute *attr, char *buf)
585{
586	struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589}
590static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591		regulator_suspend_standby_uV_show, NULL);
592
593static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594				struct device_attribute *attr, char *buf)
595{
596	struct regulator_dev *rdev = dev_get_drvdata(dev);
597
598	return regulator_print_opmode(buf,
599		rdev->constraints->state_mem.mode);
600}
601static DEVICE_ATTR(suspend_mem_mode, 0444,
602		regulator_suspend_mem_mode_show, NULL);
603
604static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605				struct device_attribute *attr, char *buf)
606{
607	struct regulator_dev *rdev = dev_get_drvdata(dev);
608
609	return regulator_print_opmode(buf,
610		rdev->constraints->state_disk.mode);
611}
612static DEVICE_ATTR(suspend_disk_mode, 0444,
613		regulator_suspend_disk_mode_show, NULL);
614
615static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616				struct device_attribute *attr, char *buf)
617{
618	struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620	return regulator_print_opmode(buf,
621		rdev->constraints->state_standby.mode);
622}
623static DEVICE_ATTR(suspend_standby_mode, 0444,
624		regulator_suspend_standby_mode_show, NULL);
625
626static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627				   struct device_attribute *attr, char *buf)
628{
629	struct regulator_dev *rdev = dev_get_drvdata(dev);
630
631	return regulator_print_state(buf,
632			rdev->constraints->state_mem.enabled);
633}
634static DEVICE_ATTR(suspend_mem_state, 0444,
635		regulator_suspend_mem_state_show, NULL);
636
637static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638				   struct device_attribute *attr, char *buf)
639{
640	struct regulator_dev *rdev = dev_get_drvdata(dev);
641
642	return regulator_print_state(buf,
643			rdev->constraints->state_disk.enabled);
644}
645static DEVICE_ATTR(suspend_disk_state, 0444,
646		regulator_suspend_disk_state_show, NULL);
647
648static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649				   struct device_attribute *attr, char *buf)
650{
651	struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653	return regulator_print_state(buf,
654			rdev->constraints->state_standby.enabled);
655}
656static DEVICE_ATTR(suspend_standby_state, 0444,
657		regulator_suspend_standby_state_show, NULL);
658
659static ssize_t regulator_bypass_show(struct device *dev,
660				     struct device_attribute *attr, char *buf)
661{
662	struct regulator_dev *rdev = dev_get_drvdata(dev);
663	const char *report;
664	bool bypass;
665	int ret;
666
667	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668
669	if (ret != 0)
670		report = "unknown";
671	else if (bypass)
672		report = "enabled";
673	else
674		report = "disabled";
675
676	return sprintf(buf, "%s\n", report);
677}
678static DEVICE_ATTR(bypass, 0444,
679		   regulator_bypass_show, NULL);
680
681/* Calculate the new optimum regulator operating mode based on the new total
682 * consumer load. All locks held by caller */
683static int drms_uA_update(struct regulator_dev *rdev)
684{
685	struct regulator *sibling;
686	int current_uA = 0, output_uV, input_uV, err;
687	unsigned int mode;
688
689	lockdep_assert_held_once(&rdev->mutex);
690
691	/*
692	 * first check to see if we can set modes at all, otherwise just
693	 * tell the consumer everything is OK.
694	 */
695	err = regulator_check_drms(rdev);
696	if (err < 0)
697		return 0;
698
699	if (!rdev->desc->ops->get_optimum_mode &&
700	    !rdev->desc->ops->set_load)
701		return 0;
702
703	if (!rdev->desc->ops->set_mode &&
704	    !rdev->desc->ops->set_load)
705		return -EINVAL;
706
707	/* get output voltage */
708	output_uV = _regulator_get_voltage(rdev);
709	if (output_uV <= 0) {
710		rdev_err(rdev, "invalid output voltage found\n");
711		return -EINVAL;
712	}
713
714	/* get input voltage */
715	input_uV = 0;
716	if (rdev->supply)
717		input_uV = regulator_get_voltage(rdev->supply);
718	if (input_uV <= 0)
719		input_uV = rdev->constraints->input_uV;
720	if (input_uV <= 0) {
721		rdev_err(rdev, "invalid input voltage found\n");
722		return -EINVAL;
723	}
724
725	/* calc total requested load */
726	list_for_each_entry(sibling, &rdev->consumer_list, list)
727		current_uA += sibling->uA_load;
728
729	current_uA += rdev->constraints->system_load;
730
731	if (rdev->desc->ops->set_load) {
732		/* set the optimum mode for our new total regulator load */
733		err = rdev->desc->ops->set_load(rdev, current_uA);
734		if (err < 0)
735			rdev_err(rdev, "failed to set load %d\n", current_uA);
736	} else {
737		/* now get the optimum mode for our new total regulator load */
738		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739							 output_uV, current_uA);
740
741		/* check the new mode is allowed */
742		err = regulator_mode_constrain(rdev, &mode);
743		if (err < 0) {
744			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745				 current_uA, input_uV, output_uV);
746			return err;
747		}
748
749		err = rdev->desc->ops->set_mode(rdev, mode);
750		if (err < 0)
751			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752	}
753
754	return err;
755}
756
757static int suspend_set_state(struct regulator_dev *rdev,
758	struct regulator_state *rstate)
759{
760	int ret = 0;
761
762	/* If we have no suspend mode configration don't set anything;
763	 * only warn if the driver implements set_suspend_voltage or
764	 * set_suspend_mode callback.
765	 */
766	if (!rstate->enabled && !rstate->disabled) {
767		if (rdev->desc->ops->set_suspend_voltage ||
768		    rdev->desc->ops->set_suspend_mode)
769			rdev_warn(rdev, "No configuration\n");
770		return 0;
771	}
772
773	if (rstate->enabled && rstate->disabled) {
774		rdev_err(rdev, "invalid configuration\n");
775		return -EINVAL;
776	}
777
778	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779		ret = rdev->desc->ops->set_suspend_enable(rdev);
780	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781		ret = rdev->desc->ops->set_suspend_disable(rdev);
782	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783		ret = 0;
784
785	if (ret < 0) {
786		rdev_err(rdev, "failed to enabled/disable\n");
787		return ret;
788	}
789
790	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792		if (ret < 0) {
793			rdev_err(rdev, "failed to set voltage\n");
794			return ret;
795		}
796	}
797
798	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800		if (ret < 0) {
801			rdev_err(rdev, "failed to set mode\n");
802			return ret;
803		}
804	}
805	return ret;
806}
807
808/* locks held by caller */
809static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810{
811	lockdep_assert_held_once(&rdev->mutex);
812
813	if (!rdev->constraints)
814		return -EINVAL;
815
816	switch (state) {
817	case PM_SUSPEND_STANDBY:
818		return suspend_set_state(rdev,
819			&rdev->constraints->state_standby);
820	case PM_SUSPEND_MEM:
821		return suspend_set_state(rdev,
822			&rdev->constraints->state_mem);
823	case PM_SUSPEND_MAX:
824		return suspend_set_state(rdev,
825			&rdev->constraints->state_disk);
826	default:
827		return -EINVAL;
828	}
829}
830
831static void print_constraints(struct regulator_dev *rdev)
832{
833	struct regulation_constraints *constraints = rdev->constraints;
834	char buf[160] = "";
835	size_t len = sizeof(buf) - 1;
836	int count = 0;
837	int ret;
838
839	if (constraints->min_uV && constraints->max_uV) {
840		if (constraints->min_uV == constraints->max_uV)
841			count += scnprintf(buf + count, len - count, "%d mV ",
842					   constraints->min_uV / 1000);
843		else
844			count += scnprintf(buf + count, len - count,
845					   "%d <--> %d mV ",
846					   constraints->min_uV / 1000,
847					   constraints->max_uV / 1000);
848	}
849
850	if (!constraints->min_uV ||
851	    constraints->min_uV != constraints->max_uV) {
852		ret = _regulator_get_voltage(rdev);
853		if (ret > 0)
854			count += scnprintf(buf + count, len - count,
855					   "at %d mV ", ret / 1000);
856	}
857
858	if (constraints->uV_offset)
859		count += scnprintf(buf + count, len - count, "%dmV offset ",
860				   constraints->uV_offset / 1000);
861
862	if (constraints->min_uA && constraints->max_uA) {
863		if (constraints->min_uA == constraints->max_uA)
864			count += scnprintf(buf + count, len - count, "%d mA ",
865					   constraints->min_uA / 1000);
866		else
867			count += scnprintf(buf + count, len - count,
868					   "%d <--> %d mA ",
869					   constraints->min_uA / 1000,
870					   constraints->max_uA / 1000);
871	}
872
873	if (!constraints->min_uA ||
874	    constraints->min_uA != constraints->max_uA) {
875		ret = _regulator_get_current_limit(rdev);
876		if (ret > 0)
877			count += scnprintf(buf + count, len - count,
878					   "at %d mA ", ret / 1000);
879	}
880
881	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882		count += scnprintf(buf + count, len - count, "fast ");
883	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884		count += scnprintf(buf + count, len - count, "normal ");
885	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886		count += scnprintf(buf + count, len - count, "idle ");
887	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888		count += scnprintf(buf + count, len - count, "standby");
889
890	if (!count)
891		scnprintf(buf, len, "no parameters");
892
893	rdev_dbg(rdev, "%s\n", buf);
894
895	if ((constraints->min_uV != constraints->max_uV) &&
896	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897		rdev_warn(rdev,
898			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899}
900
901static int machine_constraints_voltage(struct regulator_dev *rdev,
902	struct regulation_constraints *constraints)
903{
904	const struct regulator_ops *ops = rdev->desc->ops;
905	int ret;
906
907	/* do we need to apply the constraint voltage */
908	if (rdev->constraints->apply_uV &&
909	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
910		int current_uV = _regulator_get_voltage(rdev);
911		if (current_uV < 0) {
912			rdev_err(rdev,
913				 "failed to get the current voltage(%d)\n",
914				 current_uV);
915			return current_uV;
916		}
917		if (current_uV < rdev->constraints->min_uV ||
918		    current_uV > rdev->constraints->max_uV) {
919			ret = _regulator_do_set_voltage(
920				rdev, rdev->constraints->min_uV,
921				rdev->constraints->max_uV);
922			if (ret < 0) {
923				rdev_err(rdev,
924					"failed to apply %duV constraint(%d)\n",
925					rdev->constraints->min_uV, ret);
926				return ret;
927			}
928		}
929	}
930
931	/* constrain machine-level voltage specs to fit
932	 * the actual range supported by this regulator.
933	 */
934	if (ops->list_voltage && rdev->desc->n_voltages) {
935		int	count = rdev->desc->n_voltages;
936		int	i;
937		int	min_uV = INT_MAX;
938		int	max_uV = INT_MIN;
939		int	cmin = constraints->min_uV;
940		int	cmax = constraints->max_uV;
941
942		/* it's safe to autoconfigure fixed-voltage supplies
943		   and the constraints are used by list_voltage. */
944		if (count == 1 && !cmin) {
945			cmin = 1;
946			cmax = INT_MAX;
947			constraints->min_uV = cmin;
948			constraints->max_uV = cmax;
949		}
950
951		/* voltage constraints are optional */
952		if ((cmin == 0) && (cmax == 0))
953			return 0;
954
955		/* else require explicit machine-level constraints */
956		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957			rdev_err(rdev, "invalid voltage constraints\n");
958			return -EINVAL;
959		}
960
961		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962		for (i = 0; i < count; i++) {
963			int	value;
964
965			value = ops->list_voltage(rdev, i);
966			if (value <= 0)
967				continue;
968
969			/* maybe adjust [min_uV..max_uV] */
970			if (value >= cmin && value < min_uV)
971				min_uV = value;
972			if (value <= cmax && value > max_uV)
973				max_uV = value;
974		}
975
976		/* final: [min_uV..max_uV] valid iff constraints valid */
977		if (max_uV < min_uV) {
978			rdev_err(rdev,
979				 "unsupportable voltage constraints %u-%uuV\n",
980				 min_uV, max_uV);
981			return -EINVAL;
982		}
983
984		/* use regulator's subset of machine constraints */
985		if (constraints->min_uV < min_uV) {
986			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
987				 constraints->min_uV, min_uV);
988			constraints->min_uV = min_uV;
989		}
990		if (constraints->max_uV > max_uV) {
991			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
992				 constraints->max_uV, max_uV);
993			constraints->max_uV = max_uV;
994		}
995	}
996
997	return 0;
998}
999
1000static int machine_constraints_current(struct regulator_dev *rdev,
1001	struct regulation_constraints *constraints)
1002{
1003	const struct regulator_ops *ops = rdev->desc->ops;
1004	int ret;
1005
1006	if (!constraints->min_uA && !constraints->max_uA)
1007		return 0;
1008
1009	if (constraints->min_uA > constraints->max_uA) {
1010		rdev_err(rdev, "Invalid current constraints\n");
1011		return -EINVAL;
1012	}
1013
1014	if (!ops->set_current_limit || !ops->get_current_limit) {
1015		rdev_warn(rdev, "Operation of current configuration missing\n");
1016		return 0;
1017	}
1018
1019	/* Set regulator current in constraints range */
1020	ret = ops->set_current_limit(rdev, constraints->min_uA,
1021			constraints->max_uA);
1022	if (ret < 0) {
1023		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024		return ret;
1025	}
1026
1027	return 0;
1028}
1029
1030static int _regulator_do_enable(struct regulator_dev *rdev);
1031
1032/**
1033 * set_machine_constraints - sets regulator constraints
1034 * @rdev: regulator source
1035 * @constraints: constraints to apply
1036 *
1037 * Allows platform initialisation code to define and constrain
1038 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1039 * Constraints *must* be set by platform code in order for some
1040 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041 * set_mode.
1042 */
1043static int set_machine_constraints(struct regulator_dev *rdev,
1044	const struct regulation_constraints *constraints)
1045{
1046	int ret = 0;
1047	const struct regulator_ops *ops = rdev->desc->ops;
1048
1049	if (constraints)
1050		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051					    GFP_KERNEL);
1052	else
1053		rdev->constraints = kzalloc(sizeof(*constraints),
1054					    GFP_KERNEL);
1055	if (!rdev->constraints)
1056		return -ENOMEM;
1057
1058	ret = machine_constraints_voltage(rdev, rdev->constraints);
1059	if (ret != 0)
1060		goto out;
1061
1062	ret = machine_constraints_current(rdev, rdev->constraints);
1063	if (ret != 0)
1064		goto out;
1065
1066	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067		ret = ops->set_input_current_limit(rdev,
1068						   rdev->constraints->ilim_uA);
1069		if (ret < 0) {
1070			rdev_err(rdev, "failed to set input limit\n");
1071			goto out;
1072		}
1073	}
1074
1075	/* do we need to setup our suspend state */
1076	if (rdev->constraints->initial_state) {
1077		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078		if (ret < 0) {
1079			rdev_err(rdev, "failed to set suspend state\n");
1080			goto out;
1081		}
1082	}
1083
1084	if (rdev->constraints->initial_mode) {
1085		if (!ops->set_mode) {
1086			rdev_err(rdev, "no set_mode operation\n");
1087			ret = -EINVAL;
1088			goto out;
1089		}
1090
1091		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1092		if (ret < 0) {
1093			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1094			goto out;
1095		}
1096	}
1097
1098	/* If the constraints say the regulator should be on at this point
1099	 * and we have control then make sure it is enabled.
1100	 */
1101	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1102		ret = _regulator_do_enable(rdev);
1103		if (ret < 0 && ret != -EINVAL) {
1104			rdev_err(rdev, "failed to enable\n");
1105			goto out;
1106		}
1107	}
1108
1109	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1110		&& ops->set_ramp_delay) {
1111		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1112		if (ret < 0) {
1113			rdev_err(rdev, "failed to set ramp_delay\n");
1114			goto out;
1115		}
1116	}
1117
1118	if (rdev->constraints->pull_down && ops->set_pull_down) {
1119		ret = ops->set_pull_down(rdev);
1120		if (ret < 0) {
1121			rdev_err(rdev, "failed to set pull down\n");
1122			goto out;
1123		}
1124	}
1125
1126	if (rdev->constraints->soft_start && ops->set_soft_start) {
1127		ret = ops->set_soft_start(rdev);
1128		if (ret < 0) {
1129			rdev_err(rdev, "failed to set soft start\n");
1130			goto out;
1131		}
1132	}
1133
1134	if (rdev->constraints->over_current_protection
1135		&& ops->set_over_current_protection) {
1136		ret = ops->set_over_current_protection(rdev);
1137		if (ret < 0) {
1138			rdev_err(rdev, "failed to set over current protection\n");
1139			goto out;
1140		}
1141	}
1142
1143	print_constraints(rdev);
1144	return 0;
1145out:
1146	kfree(rdev->constraints);
1147	rdev->constraints = NULL;
1148	return ret;
1149}
1150
1151/**
1152 * set_supply - set regulator supply regulator
1153 * @rdev: regulator name
1154 * @supply_rdev: supply regulator name
1155 *
1156 * Called by platform initialisation code to set the supply regulator for this
1157 * regulator. This ensures that a regulators supply will also be enabled by the
1158 * core if it's child is enabled.
1159 */
1160static int set_supply(struct regulator_dev *rdev,
1161		      struct regulator_dev *supply_rdev)
1162{
1163	int err;
1164
1165	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167	if (!try_module_get(supply_rdev->owner))
1168		return -ENODEV;
1169
1170	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171	if (rdev->supply == NULL) {
1172		err = -ENOMEM;
1173		return err;
1174	}
1175	supply_rdev->open_count++;
1176
1177	return 0;
1178}
1179
1180/**
1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182 * @rdev:         regulator source
1183 * @consumer_dev_name: dev_name() string for device supply applies to
1184 * @supply:       symbolic name for supply
1185 *
1186 * Allows platform initialisation code to map physical regulator
1187 * sources to symbolic names for supplies for use by devices.  Devices
1188 * should use these symbolic names to request regulators, avoiding the
1189 * need to provide board-specific regulator names as platform data.
1190 */
1191static int set_consumer_device_supply(struct regulator_dev *rdev,
1192				      const char *consumer_dev_name,
1193				      const char *supply)
1194{
1195	struct regulator_map *node;
1196	int has_dev;
1197
1198	if (supply == NULL)
1199		return -EINVAL;
1200
1201	if (consumer_dev_name != NULL)
1202		has_dev = 1;
1203	else
1204		has_dev = 0;
1205
1206	list_for_each_entry(node, &regulator_map_list, list) {
1207		if (node->dev_name && consumer_dev_name) {
1208			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209				continue;
1210		} else if (node->dev_name || consumer_dev_name) {
1211			continue;
1212		}
1213
1214		if (strcmp(node->supply, supply) != 0)
1215			continue;
1216
1217		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218			 consumer_dev_name,
1219			 dev_name(&node->regulator->dev),
1220			 node->regulator->desc->name,
1221			 supply,
1222			 dev_name(&rdev->dev), rdev_get_name(rdev));
1223		return -EBUSY;
1224	}
1225
1226	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227	if (node == NULL)
1228		return -ENOMEM;
1229
1230	node->regulator = rdev;
1231	node->supply = supply;
1232
1233	if (has_dev) {
1234		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235		if (node->dev_name == NULL) {
1236			kfree(node);
1237			return -ENOMEM;
1238		}
1239	}
1240
1241	list_add(&node->list, &regulator_map_list);
1242	return 0;
1243}
1244
1245static void unset_regulator_supplies(struct regulator_dev *rdev)
1246{
1247	struct regulator_map *node, *n;
1248
1249	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250		if (rdev == node->regulator) {
1251			list_del(&node->list);
1252			kfree(node->dev_name);
1253			kfree(node);
1254		}
1255	}
1256}
1257
1258#define REG_STR_SIZE	64
1259
1260static struct regulator *create_regulator(struct regulator_dev *rdev,
1261					  struct device *dev,
1262					  const char *supply_name)
1263{
1264	struct regulator *regulator;
1265	char buf[REG_STR_SIZE];
1266	int err, size;
1267
1268	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1269	if (regulator == NULL)
1270		return NULL;
1271
1272	mutex_lock(&rdev->mutex);
1273	regulator->rdev = rdev;
1274	list_add(&regulator->list, &rdev->consumer_list);
1275
1276	if (dev) {
1277		regulator->dev = dev;
1278
1279		/* Add a link to the device sysfs entry */
1280		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1281				 dev->kobj.name, supply_name);
1282		if (size >= REG_STR_SIZE)
1283			goto overflow_err;
1284
1285		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1286		if (regulator->supply_name == NULL)
1287			goto overflow_err;
1288
1289		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1290					buf);
1291		if (err) {
1292			rdev_dbg(rdev, "could not add device link %s err %d\n",
1293				  dev->kobj.name, err);
1294			/* non-fatal */
1295		}
1296	} else {
1297		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1298		if (regulator->supply_name == NULL)
1299			goto overflow_err;
1300	}
1301
1302	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1303						rdev->debugfs);
1304	if (!regulator->debugfs) {
1305		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1306	} else {
1307		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1308				   &regulator->uA_load);
1309		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1310				   &regulator->min_uV);
1311		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1312				   &regulator->max_uV);
1313	}
1314
1315	/*
1316	 * Check now if the regulator is an always on regulator - if
1317	 * it is then we don't need to do nearly so much work for
1318	 * enable/disable calls.
1319	 */
1320	if (!_regulator_can_change_status(rdev) &&
1321	    _regulator_is_enabled(rdev))
1322		regulator->always_on = true;
1323
1324	mutex_unlock(&rdev->mutex);
1325	return regulator;
1326overflow_err:
1327	list_del(&regulator->list);
1328	kfree(regulator);
1329	mutex_unlock(&rdev->mutex);
1330	return NULL;
1331}
1332
1333static int _regulator_get_enable_time(struct regulator_dev *rdev)
1334{
1335	if (rdev->constraints && rdev->constraints->enable_time)
1336		return rdev->constraints->enable_time;
1337	if (!rdev->desc->ops->enable_time)
1338		return rdev->desc->enable_time;
1339	return rdev->desc->ops->enable_time(rdev);
1340}
1341
1342static struct regulator_supply_alias *regulator_find_supply_alias(
1343		struct device *dev, const char *supply)
1344{
1345	struct regulator_supply_alias *map;
1346
1347	list_for_each_entry(map, &regulator_supply_alias_list, list)
1348		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1349			return map;
1350
1351	return NULL;
1352}
1353
1354static void regulator_supply_alias(struct device **dev, const char **supply)
1355{
1356	struct regulator_supply_alias *map;
1357
1358	map = regulator_find_supply_alias(*dev, *supply);
1359	if (map) {
1360		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1361				*supply, map->alias_supply,
1362				dev_name(map->alias_dev));
1363		*dev = map->alias_dev;
1364		*supply = map->alias_supply;
1365	}
1366}
1367
1368static int of_node_match(struct device *dev, const void *data)
1369{
1370	return dev->of_node == data;
1371}
1372
1373static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1374{
1375	struct device *dev;
1376
1377	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1378
1379	return dev ? dev_to_rdev(dev) : NULL;
1380}
1381
1382static int regulator_match(struct device *dev, const void *data)
1383{
1384	struct regulator_dev *r = dev_to_rdev(dev);
1385
1386	return strcmp(rdev_get_name(r), data) == 0;
1387}
1388
1389static struct regulator_dev *regulator_lookup_by_name(const char *name)
1390{
1391	struct device *dev;
1392
1393	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1394
1395	return dev ? dev_to_rdev(dev) : NULL;
1396}
1397
1398/**
1399 * regulator_dev_lookup - lookup a regulator device.
1400 * @dev: device for regulator "consumer".
1401 * @supply: Supply name or regulator ID.
1402 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1403 * lookup could succeed in the future.
1404 *
1405 * If successful, returns a struct regulator_dev that corresponds to the name
1406 * @supply and with the embedded struct device refcount incremented by one,
1407 * or NULL on failure. The refcount must be dropped by calling put_device().
1408 */
1409static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1410						  const char *supply,
1411						  int *ret)
1412{
1413	struct regulator_dev *r;
1414	struct device_node *node;
1415	struct regulator_map *map;
1416	const char *devname = NULL;
1417
1418	regulator_supply_alias(&dev, &supply);
1419
1420	/* first do a dt based lookup */
1421	if (dev && dev->of_node) {
1422		node = of_get_regulator(dev, supply);
1423		if (node) {
1424			r = of_find_regulator_by_node(node);
1425			if (r)
1426				return r;
1427			*ret = -EPROBE_DEFER;
1428			return NULL;
1429		} else {
1430			/*
1431			 * If we couldn't even get the node then it's
1432			 * not just that the device didn't register
1433			 * yet, there's no node and we'll never
1434			 * succeed.
1435			 */
1436			*ret = -ENODEV;
1437		}
1438	}
1439
1440	/* if not found, try doing it non-dt way */
1441	if (dev)
1442		devname = dev_name(dev);
1443
1444	r = regulator_lookup_by_name(supply);
1445	if (r)
1446		return r;
1447
1448	mutex_lock(&regulator_list_mutex);
1449	list_for_each_entry(map, &regulator_map_list, list) {
1450		/* If the mapping has a device set up it must match */
1451		if (map->dev_name &&
1452		    (!devname || strcmp(map->dev_name, devname)))
1453			continue;
1454
1455		if (strcmp(map->supply, supply) == 0 &&
1456		    get_device(&map->regulator->dev)) {
1457			mutex_unlock(&regulator_list_mutex);
1458			return map->regulator;
1459		}
1460	}
1461	mutex_unlock(&regulator_list_mutex);
1462
1463	return NULL;
1464}
1465
1466static int regulator_resolve_supply(struct regulator_dev *rdev)
1467{
1468	struct regulator_dev *r;
1469	struct device *dev = rdev->dev.parent;
1470	int ret;
1471
1472	/* No supply to resovle? */
1473	if (!rdev->supply_name)
1474		return 0;
1475
1476	/* Supply already resolved? */
1477	if (rdev->supply)
1478		return 0;
1479
1480	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1481	if (!r) {
1482		if (ret == -ENODEV) {
1483			/*
1484			 * No supply was specified for this regulator and
1485			 * there will never be one.
1486			 */
1487			return 0;
1488		}
1489
1490		/* Did the lookup explicitly defer for us? */
1491		if (ret == -EPROBE_DEFER)
1492			return ret;
1493
1494		if (have_full_constraints()) {
1495			r = dummy_regulator_rdev;
1496			get_device(&r->dev);
1497		} else {
1498			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1499				rdev->supply_name, rdev->desc->name);
1500			return -EPROBE_DEFER;
1501		}
1502	}
1503
1504	/* Recursively resolve the supply of the supply */
1505	ret = regulator_resolve_supply(r);
1506	if (ret < 0) {
1507		put_device(&r->dev);
1508		return ret;
1509	}
1510
1511	ret = set_supply(rdev, r);
1512	if (ret < 0) {
1513		put_device(&r->dev);
1514		return ret;
1515	}
1516
1517	/* Cascade always-on state to supply */
1518	if (_regulator_is_enabled(rdev) && rdev->supply) {
1519		ret = regulator_enable(rdev->supply);
1520		if (ret < 0) {
1521			_regulator_put(rdev->supply);
1522			return ret;
1523		}
1524	}
1525
1526	return 0;
1527}
1528
1529/* Internal regulator request function */
1530static struct regulator *_regulator_get(struct device *dev, const char *id,
1531					bool exclusive, bool allow_dummy)
1532{
1533	struct regulator_dev *rdev;
1534	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1535	const char *devname = NULL;
1536	int ret;
1537
1538	if (id == NULL) {
1539		pr_err("get() with no identifier\n");
1540		return ERR_PTR(-EINVAL);
1541	}
1542
1543	if (dev)
1544		devname = dev_name(dev);
1545
1546	if (have_full_constraints())
1547		ret = -ENODEV;
1548	else
1549		ret = -EPROBE_DEFER;
1550
1551	rdev = regulator_dev_lookup(dev, id, &ret);
1552	if (rdev)
1553		goto found;
1554
1555	regulator = ERR_PTR(ret);
1556
1557	/*
1558	 * If we have return value from dev_lookup fail, we do not expect to
1559	 * succeed, so, quit with appropriate error value
1560	 */
1561	if (ret && ret != -ENODEV)
1562		return regulator;
1563
1564	if (!devname)
1565		devname = "deviceless";
1566
1567	/*
1568	 * Assume that a regulator is physically present and enabled
1569	 * even if it isn't hooked up and just provide a dummy.
1570	 */
1571	if (have_full_constraints() && allow_dummy) {
1572		pr_warn("%s supply %s not found, using dummy regulator\n",
1573			devname, id);
1574
1575		rdev = dummy_regulator_rdev;
1576		get_device(&rdev->dev);
1577		goto found;
1578	/* Don't log an error when called from regulator_get_optional() */
1579	} else if (!have_full_constraints() || exclusive) {
1580		dev_warn(dev, "dummy supplies not allowed\n");
1581	}
1582
1583	return regulator;
1584
1585found:
1586	if (rdev->exclusive) {
1587		regulator = ERR_PTR(-EPERM);
1588		put_device(&rdev->dev);
1589		return regulator;
1590	}
1591
1592	if (exclusive && rdev->open_count) {
1593		regulator = ERR_PTR(-EBUSY);
1594		put_device(&rdev->dev);
1595		return regulator;
1596	}
1597
1598	ret = regulator_resolve_supply(rdev);
1599	if (ret < 0) {
1600		regulator = ERR_PTR(ret);
1601		put_device(&rdev->dev);
1602		return regulator;
1603	}
1604
1605	if (!try_module_get(rdev->owner)) {
1606		put_device(&rdev->dev);
1607		return regulator;
1608	}
1609
1610	regulator = create_regulator(rdev, dev, id);
1611	if (regulator == NULL) {
1612		regulator = ERR_PTR(-ENOMEM);
1613		put_device(&rdev->dev);
1614		module_put(rdev->owner);
1615		return regulator;
1616	}
1617
1618	rdev->open_count++;
1619	if (exclusive) {
1620		rdev->exclusive = 1;
1621
1622		ret = _regulator_is_enabled(rdev);
1623		if (ret > 0)
1624			rdev->use_count = 1;
1625		else
1626			rdev->use_count = 0;
1627	}
1628
1629	return regulator;
1630}
1631
1632/**
1633 * regulator_get - lookup and obtain a reference to a regulator.
1634 * @dev: device for regulator "consumer"
1635 * @id: Supply name or regulator ID.
1636 *
1637 * Returns a struct regulator corresponding to the regulator producer,
1638 * or IS_ERR() condition containing errno.
1639 *
1640 * Use of supply names configured via regulator_set_device_supply() is
1641 * strongly encouraged.  It is recommended that the supply name used
1642 * should match the name used for the supply and/or the relevant
1643 * device pins in the datasheet.
1644 */
1645struct regulator *regulator_get(struct device *dev, const char *id)
1646{
1647	return _regulator_get(dev, id, false, true);
1648}
1649EXPORT_SYMBOL_GPL(regulator_get);
1650
1651/**
1652 * regulator_get_exclusive - obtain exclusive access to a regulator.
1653 * @dev: device for regulator "consumer"
1654 * @id: Supply name or regulator ID.
1655 *
1656 * Returns a struct regulator corresponding to the regulator producer,
1657 * or IS_ERR() condition containing errno.  Other consumers will be
1658 * unable to obtain this regulator while this reference is held and the
1659 * use count for the regulator will be initialised to reflect the current
1660 * state of the regulator.
1661 *
1662 * This is intended for use by consumers which cannot tolerate shared
1663 * use of the regulator such as those which need to force the
1664 * regulator off for correct operation of the hardware they are
1665 * controlling.
1666 *
1667 * Use of supply names configured via regulator_set_device_supply() is
1668 * strongly encouraged.  It is recommended that the supply name used
1669 * should match the name used for the supply and/or the relevant
1670 * device pins in the datasheet.
1671 */
1672struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1673{
1674	return _regulator_get(dev, id, true, false);
1675}
1676EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1677
1678/**
1679 * regulator_get_optional - obtain optional access to a regulator.
1680 * @dev: device for regulator "consumer"
1681 * @id: Supply name or regulator ID.
1682 *
1683 * Returns a struct regulator corresponding to the regulator producer,
1684 * or IS_ERR() condition containing errno.
1685 *
1686 * This is intended for use by consumers for devices which can have
1687 * some supplies unconnected in normal use, such as some MMC devices.
1688 * It can allow the regulator core to provide stub supplies for other
1689 * supplies requested using normal regulator_get() calls without
1690 * disrupting the operation of drivers that can handle absent
1691 * supplies.
1692 *
1693 * Use of supply names configured via regulator_set_device_supply() is
1694 * strongly encouraged.  It is recommended that the supply name used
1695 * should match the name used for the supply and/or the relevant
1696 * device pins in the datasheet.
1697 */
1698struct regulator *regulator_get_optional(struct device *dev, const char *id)
1699{
1700	return _regulator_get(dev, id, false, false);
1701}
1702EXPORT_SYMBOL_GPL(regulator_get_optional);
1703
1704/* regulator_list_mutex lock held by regulator_put() */
1705static void _regulator_put(struct regulator *regulator)
1706{
1707	struct regulator_dev *rdev;
1708
1709	if (IS_ERR_OR_NULL(regulator))
1710		return;
1711
1712	lockdep_assert_held_once(&regulator_list_mutex);
1713
1714	rdev = regulator->rdev;
1715
1716	debugfs_remove_recursive(regulator->debugfs);
1717
1718	/* remove any sysfs entries */
1719	if (regulator->dev)
1720		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1721	mutex_lock(&rdev->mutex);
1722	list_del(&regulator->list);
1723
1724	rdev->open_count--;
1725	rdev->exclusive = 0;
1726	put_device(&rdev->dev);
1727	mutex_unlock(&rdev->mutex);
1728
1729	kfree(regulator->supply_name);
1730	kfree(regulator);
1731
1732	module_put(rdev->owner);
1733}
1734
1735/**
1736 * regulator_put - "free" the regulator source
1737 * @regulator: regulator source
1738 *
1739 * Note: drivers must ensure that all regulator_enable calls made on this
1740 * regulator source are balanced by regulator_disable calls prior to calling
1741 * this function.
1742 */
1743void regulator_put(struct regulator *regulator)
1744{
1745	mutex_lock(&regulator_list_mutex);
1746	_regulator_put(regulator);
1747	mutex_unlock(&regulator_list_mutex);
1748}
1749EXPORT_SYMBOL_GPL(regulator_put);
1750
1751/**
1752 * regulator_register_supply_alias - Provide device alias for supply lookup
1753 *
1754 * @dev: device that will be given as the regulator "consumer"
1755 * @id: Supply name or regulator ID
1756 * @alias_dev: device that should be used to lookup the supply
1757 * @alias_id: Supply name or regulator ID that should be used to lookup the
1758 * supply
1759 *
1760 * All lookups for id on dev will instead be conducted for alias_id on
1761 * alias_dev.
1762 */
1763int regulator_register_supply_alias(struct device *dev, const char *id,
1764				    struct device *alias_dev,
1765				    const char *alias_id)
1766{
1767	struct regulator_supply_alias *map;
1768
1769	map = regulator_find_supply_alias(dev, id);
1770	if (map)
1771		return -EEXIST;
1772
1773	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1774	if (!map)
1775		return -ENOMEM;
1776
1777	map->src_dev = dev;
1778	map->src_supply = id;
1779	map->alias_dev = alias_dev;
1780	map->alias_supply = alias_id;
1781
1782	list_add(&map->list, &regulator_supply_alias_list);
1783
1784	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1785		id, dev_name(dev), alias_id, dev_name(alias_dev));
1786
1787	return 0;
1788}
1789EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1790
1791/**
1792 * regulator_unregister_supply_alias - Remove device alias
1793 *
1794 * @dev: device that will be given as the regulator "consumer"
1795 * @id: Supply name or regulator ID
1796 *
1797 * Remove a lookup alias if one exists for id on dev.
1798 */
1799void regulator_unregister_supply_alias(struct device *dev, const char *id)
1800{
1801	struct regulator_supply_alias *map;
1802
1803	map = regulator_find_supply_alias(dev, id);
1804	if (map) {
1805		list_del(&map->list);
1806		kfree(map);
1807	}
1808}
1809EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1810
1811/**
1812 * regulator_bulk_register_supply_alias - register multiple aliases
1813 *
1814 * @dev: device that will be given as the regulator "consumer"
1815 * @id: List of supply names or regulator IDs
1816 * @alias_dev: device that should be used to lookup the supply
1817 * @alias_id: List of supply names or regulator IDs that should be used to
1818 * lookup the supply
1819 * @num_id: Number of aliases to register
1820 *
1821 * @return 0 on success, an errno on failure.
1822 *
1823 * This helper function allows drivers to register several supply
1824 * aliases in one operation.  If any of the aliases cannot be
1825 * registered any aliases that were registered will be removed
1826 * before returning to the caller.
1827 */
1828int regulator_bulk_register_supply_alias(struct device *dev,
1829					 const char *const *id,
1830					 struct device *alias_dev,
1831					 const char *const *alias_id,
1832					 int num_id)
1833{
1834	int i;
1835	int ret;
1836
1837	for (i = 0; i < num_id; ++i) {
1838		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1839						      alias_id[i]);
1840		if (ret < 0)
1841			goto err;
1842	}
1843
1844	return 0;
1845
1846err:
1847	dev_err(dev,
1848		"Failed to create supply alias %s,%s -> %s,%s\n",
1849		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1850
1851	while (--i >= 0)
1852		regulator_unregister_supply_alias(dev, id[i]);
1853
1854	return ret;
1855}
1856EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1857
1858/**
1859 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1860 *
1861 * @dev: device that will be given as the regulator "consumer"
1862 * @id: List of supply names or regulator IDs
1863 * @num_id: Number of aliases to unregister
1864 *
1865 * This helper function allows drivers to unregister several supply
1866 * aliases in one operation.
1867 */
1868void regulator_bulk_unregister_supply_alias(struct device *dev,
1869					    const char *const *id,
1870					    int num_id)
1871{
1872	int i;
1873
1874	for (i = 0; i < num_id; ++i)
1875		regulator_unregister_supply_alias(dev, id[i]);
1876}
1877EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1878
1879
1880/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1881static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1882				const struct regulator_config *config)
1883{
1884	struct regulator_enable_gpio *pin;
1885	struct gpio_desc *gpiod;
1886	int ret;
1887
1888	gpiod = gpio_to_desc(config->ena_gpio);
1889
1890	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1891		if (pin->gpiod == gpiod) {
1892			rdev_dbg(rdev, "GPIO %d is already used\n",
1893				config->ena_gpio);
1894			goto update_ena_gpio_to_rdev;
1895		}
1896	}
1897
1898	ret = gpio_request_one(config->ena_gpio,
1899				GPIOF_DIR_OUT | config->ena_gpio_flags,
1900				rdev_get_name(rdev));
1901	if (ret)
1902		return ret;
1903
1904	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1905	if (pin == NULL) {
1906		gpio_free(config->ena_gpio);
1907		return -ENOMEM;
1908	}
1909
1910	pin->gpiod = gpiod;
1911	pin->ena_gpio_invert = config->ena_gpio_invert;
1912	list_add(&pin->list, &regulator_ena_gpio_list);
1913
1914update_ena_gpio_to_rdev:
1915	pin->request_count++;
1916	rdev->ena_pin = pin;
1917	return 0;
1918}
1919
1920static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1921{
1922	struct regulator_enable_gpio *pin, *n;
1923
1924	if (!rdev->ena_pin)
1925		return;
1926
1927	/* Free the GPIO only in case of no use */
1928	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1929		if (pin->gpiod == rdev->ena_pin->gpiod) {
1930			if (pin->request_count <= 1) {
1931				pin->request_count = 0;
1932				gpiod_put(pin->gpiod);
1933				list_del(&pin->list);
1934				kfree(pin);
1935				rdev->ena_pin = NULL;
1936				return;
1937			} else {
1938				pin->request_count--;
1939			}
1940		}
1941	}
1942}
1943
1944/**
1945 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1946 * @rdev: regulator_dev structure
1947 * @enable: enable GPIO at initial use?
1948 *
1949 * GPIO is enabled in case of initial use. (enable_count is 0)
1950 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1951 */
1952static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1953{
1954	struct regulator_enable_gpio *pin = rdev->ena_pin;
1955
1956	if (!pin)
1957		return -EINVAL;
1958
1959	if (enable) {
1960		/* Enable GPIO at initial use */
1961		if (pin->enable_count == 0)
1962			gpiod_set_value_cansleep(pin->gpiod,
1963						 !pin->ena_gpio_invert);
1964
1965		pin->enable_count++;
1966	} else {
1967		if (pin->enable_count > 1) {
1968			pin->enable_count--;
1969			return 0;
1970		}
1971
1972		/* Disable GPIO if not used */
1973		if (pin->enable_count <= 1) {
1974			gpiod_set_value_cansleep(pin->gpiod,
1975						 pin->ena_gpio_invert);
1976			pin->enable_count = 0;
1977		}
1978	}
1979
1980	return 0;
1981}
1982
1983/**
1984 * _regulator_enable_delay - a delay helper function
1985 * @delay: time to delay in microseconds
1986 *
1987 * Delay for the requested amount of time as per the guidelines in:
1988 *
1989 *     Documentation/timers/timers-howto.txt
1990 *
1991 * The assumption here is that regulators will never be enabled in
1992 * atomic context and therefore sleeping functions can be used.
1993 */
1994static void _regulator_enable_delay(unsigned int delay)
1995{
1996	unsigned int ms = delay / 1000;
1997	unsigned int us = delay % 1000;
1998
1999	if (ms > 0) {
2000		/*
2001		 * For small enough values, handle super-millisecond
2002		 * delays in the usleep_range() call below.
2003		 */
2004		if (ms < 20)
2005			us += ms * 1000;
2006		else
2007			msleep(ms);
2008	}
2009
2010	/*
2011	 * Give the scheduler some room to coalesce with any other
2012	 * wakeup sources. For delays shorter than 10 us, don't even
2013	 * bother setting up high-resolution timers and just busy-
2014	 * loop.
2015	 */
2016	if (us >= 10)
2017		usleep_range(us, us + 100);
2018	else
2019		udelay(us);
2020}
2021
2022static int _regulator_do_enable(struct regulator_dev *rdev)
2023{
2024	int ret, delay;
2025
2026	/* Query before enabling in case configuration dependent.  */
2027	ret = _regulator_get_enable_time(rdev);
2028	if (ret >= 0) {
2029		delay = ret;
2030	} else {
2031		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2032		delay = 0;
2033	}
2034
2035	trace_regulator_enable(rdev_get_name(rdev));
2036
2037	if (rdev->desc->off_on_delay) {
2038		/* if needed, keep a distance of off_on_delay from last time
2039		 * this regulator was disabled.
2040		 */
2041		unsigned long start_jiffy = jiffies;
2042		unsigned long intended, max_delay, remaining;
2043
2044		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2045		intended = rdev->last_off_jiffy + max_delay;
2046
2047		if (time_before(start_jiffy, intended)) {
2048			/* calc remaining jiffies to deal with one-time
2049			 * timer wrapping.
2050			 * in case of multiple timer wrapping, either it can be
2051			 * detected by out-of-range remaining, or it cannot be
2052			 * detected and we gets a panelty of
2053			 * _regulator_enable_delay().
2054			 */
2055			remaining = intended - start_jiffy;
2056			if (remaining <= max_delay)
2057				_regulator_enable_delay(
2058						jiffies_to_usecs(remaining));
2059		}
2060	}
2061
2062	if (rdev->ena_pin) {
2063		if (!rdev->ena_gpio_state) {
2064			ret = regulator_ena_gpio_ctrl(rdev, true);
2065			if (ret < 0)
2066				return ret;
2067			rdev->ena_gpio_state = 1;
2068		}
2069	} else if (rdev->desc->ops->enable) {
2070		ret = rdev->desc->ops->enable(rdev);
2071		if (ret < 0)
2072			return ret;
2073	} else {
2074		return -EINVAL;
2075	}
2076
2077	/* Allow the regulator to ramp; it would be useful to extend
2078	 * this for bulk operations so that the regulators can ramp
2079	 * together.  */
2080	trace_regulator_enable_delay(rdev_get_name(rdev));
2081
2082	_regulator_enable_delay(delay);
2083
2084	trace_regulator_enable_complete(rdev_get_name(rdev));
2085
2086	return 0;
2087}
2088
2089/* locks held by regulator_enable() */
2090static int _regulator_enable(struct regulator_dev *rdev)
2091{
2092	int ret;
2093
2094	lockdep_assert_held_once(&rdev->mutex);
2095
2096	/* check voltage and requested load before enabling */
2097	if (rdev->constraints &&
2098	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2099		drms_uA_update(rdev);
2100
2101	if (rdev->use_count == 0) {
2102		/* The regulator may on if it's not switchable or left on */
2103		ret = _regulator_is_enabled(rdev);
2104		if (ret == -EINVAL || ret == 0) {
2105			if (!_regulator_can_change_status(rdev))
2106				return -EPERM;
2107
2108			ret = _regulator_do_enable(rdev);
2109			if (ret < 0)
2110				return ret;
2111
2112		} else if (ret < 0) {
2113			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2114			return ret;
2115		}
2116		/* Fallthrough on positive return values - already enabled */
2117	}
2118
2119	rdev->use_count++;
2120
2121	return 0;
2122}
2123
2124/**
2125 * regulator_enable - enable regulator output
2126 * @regulator: regulator source
2127 *
2128 * Request that the regulator be enabled with the regulator output at
2129 * the predefined voltage or current value.  Calls to regulator_enable()
2130 * must be balanced with calls to regulator_disable().
2131 *
2132 * NOTE: the output value can be set by other drivers, boot loader or may be
2133 * hardwired in the regulator.
2134 */
2135int regulator_enable(struct regulator *regulator)
2136{
2137	struct regulator_dev *rdev = regulator->rdev;
2138	int ret = 0;
2139
2140	if (regulator->always_on)
2141		return 0;
2142
2143	if (rdev->supply) {
2144		ret = regulator_enable(rdev->supply);
2145		if (ret != 0)
2146			return ret;
2147	}
2148
2149	mutex_lock(&rdev->mutex);
2150	ret = _regulator_enable(rdev);
2151	mutex_unlock(&rdev->mutex);
2152
2153	if (ret != 0 && rdev->supply)
2154		regulator_disable(rdev->supply);
2155
2156	return ret;
2157}
2158EXPORT_SYMBOL_GPL(regulator_enable);
2159
2160static int _regulator_do_disable(struct regulator_dev *rdev)
2161{
2162	int ret;
2163
2164	trace_regulator_disable(rdev_get_name(rdev));
2165
2166	if (rdev->ena_pin) {
2167		if (rdev->ena_gpio_state) {
2168			ret = regulator_ena_gpio_ctrl(rdev, false);
2169			if (ret < 0)
2170				return ret;
2171			rdev->ena_gpio_state = 0;
2172		}
2173
2174	} else if (rdev->desc->ops->disable) {
2175		ret = rdev->desc->ops->disable(rdev);
2176		if (ret != 0)
2177			return ret;
2178	}
2179
2180	/* cares about last_off_jiffy only if off_on_delay is required by
2181	 * device.
2182	 */
2183	if (rdev->desc->off_on_delay)
2184		rdev->last_off_jiffy = jiffies;
2185
2186	trace_regulator_disable_complete(rdev_get_name(rdev));
2187
2188	return 0;
2189}
2190
2191/* locks held by regulator_disable() */
2192static int _regulator_disable(struct regulator_dev *rdev)
2193{
2194	int ret = 0;
2195
2196	lockdep_assert_held_once(&rdev->mutex);
2197
2198	if (WARN(rdev->use_count <= 0,
2199		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2200		return -EIO;
2201
2202	/* are we the last user and permitted to disable ? */
2203	if (rdev->use_count == 1 &&
2204	    (rdev->constraints && !rdev->constraints->always_on)) {
2205
2206		/* we are last user */
2207		if (_regulator_can_change_status(rdev)) {
2208			ret = _notifier_call_chain(rdev,
2209						   REGULATOR_EVENT_PRE_DISABLE,
2210						   NULL);
2211			if (ret & NOTIFY_STOP_MASK)
2212				return -EINVAL;
2213
2214			ret = _regulator_do_disable(rdev);
2215			if (ret < 0) {
2216				rdev_err(rdev, "failed to disable\n");
2217				_notifier_call_chain(rdev,
2218						REGULATOR_EVENT_ABORT_DISABLE,
2219						NULL);
2220				return ret;
2221			}
2222			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2223					NULL);
2224		}
2225
2226		rdev->use_count = 0;
2227	} else if (rdev->use_count > 1) {
2228
2229		if (rdev->constraints &&
2230			(rdev->constraints->valid_ops_mask &
2231			REGULATOR_CHANGE_DRMS))
2232			drms_uA_update(rdev);
2233
2234		rdev->use_count--;
2235	}
2236
2237	return ret;
2238}
2239
2240/**
2241 * regulator_disable - disable regulator output
2242 * @regulator: regulator source
2243 *
2244 * Disable the regulator output voltage or current.  Calls to
2245 * regulator_enable() must be balanced with calls to
2246 * regulator_disable().
2247 *
2248 * NOTE: this will only disable the regulator output if no other consumer
2249 * devices have it enabled, the regulator device supports disabling and
2250 * machine constraints permit this operation.
2251 */
2252int regulator_disable(struct regulator *regulator)
2253{
2254	struct regulator_dev *rdev = regulator->rdev;
2255	int ret = 0;
2256
2257	if (regulator->always_on)
2258		return 0;
2259
2260	mutex_lock(&rdev->mutex);
2261	ret = _regulator_disable(rdev);
2262	mutex_unlock(&rdev->mutex);
2263
2264	if (ret == 0 && rdev->supply)
2265		regulator_disable(rdev->supply);
2266
2267	return ret;
2268}
2269EXPORT_SYMBOL_GPL(regulator_disable);
2270
2271/* locks held by regulator_force_disable() */
2272static int _regulator_force_disable(struct regulator_dev *rdev)
2273{
2274	int ret = 0;
2275
2276	lockdep_assert_held_once(&rdev->mutex);
2277
2278	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2279			REGULATOR_EVENT_PRE_DISABLE, NULL);
2280	if (ret & NOTIFY_STOP_MASK)
2281		return -EINVAL;
2282
2283	ret = _regulator_do_disable(rdev);
2284	if (ret < 0) {
2285		rdev_err(rdev, "failed to force disable\n");
2286		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2287				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2288		return ret;
2289	}
2290
2291	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2292			REGULATOR_EVENT_DISABLE, NULL);
2293
2294	return 0;
2295}
2296
2297/**
2298 * regulator_force_disable - force disable regulator output
2299 * @regulator: regulator source
2300 *
2301 * Forcibly disable the regulator output voltage or current.
2302 * NOTE: this *will* disable the regulator output even if other consumer
2303 * devices have it enabled. This should be used for situations when device
2304 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2305 */
2306int regulator_force_disable(struct regulator *regulator)
2307{
2308	struct regulator_dev *rdev = regulator->rdev;
2309	int ret;
2310
2311	mutex_lock(&rdev->mutex);
2312	regulator->uA_load = 0;
2313	ret = _regulator_force_disable(regulator->rdev);
2314	mutex_unlock(&rdev->mutex);
2315
2316	if (rdev->supply)
2317		while (rdev->open_count--)
2318			regulator_disable(rdev->supply);
2319
2320	return ret;
2321}
2322EXPORT_SYMBOL_GPL(regulator_force_disable);
2323
2324static void regulator_disable_work(struct work_struct *work)
2325{
2326	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2327						  disable_work.work);
2328	int count, i, ret;
2329
2330	mutex_lock(&rdev->mutex);
2331
2332	BUG_ON(!rdev->deferred_disables);
2333
2334	count = rdev->deferred_disables;
2335	rdev->deferred_disables = 0;
2336
2337	for (i = 0; i < count; i++) {
2338		ret = _regulator_disable(rdev);
2339		if (ret != 0)
2340			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2341	}
2342
2343	mutex_unlock(&rdev->mutex);
2344
2345	if (rdev->supply) {
2346		for (i = 0; i < count; i++) {
2347			ret = regulator_disable(rdev->supply);
2348			if (ret != 0) {
2349				rdev_err(rdev,
2350					 "Supply disable failed: %d\n", ret);
2351			}
2352		}
2353	}
2354}
2355
2356/**
2357 * regulator_disable_deferred - disable regulator output with delay
2358 * @regulator: regulator source
2359 * @ms: miliseconds until the regulator is disabled
2360 *
2361 * Execute regulator_disable() on the regulator after a delay.  This
2362 * is intended for use with devices that require some time to quiesce.
2363 *
2364 * NOTE: this will only disable the regulator output if no other consumer
2365 * devices have it enabled, the regulator device supports disabling and
2366 * machine constraints permit this operation.
2367 */
2368int regulator_disable_deferred(struct regulator *regulator, int ms)
2369{
2370	struct regulator_dev *rdev = regulator->rdev;
2371	int ret;
2372
2373	if (regulator->always_on)
2374		return 0;
2375
2376	if (!ms)
2377		return regulator_disable(regulator);
2378
2379	mutex_lock(&rdev->mutex);
2380	rdev->deferred_disables++;
2381	mutex_unlock(&rdev->mutex);
2382
2383	ret = queue_delayed_work(system_power_efficient_wq,
2384				 &rdev->disable_work,
2385				 msecs_to_jiffies(ms));
2386	if (ret < 0)
2387		return ret;
2388	else
2389		return 0;
2390}
2391EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2392
2393static int _regulator_is_enabled(struct regulator_dev *rdev)
2394{
2395	/* A GPIO control always takes precedence */
2396	if (rdev->ena_pin)
2397		return rdev->ena_gpio_state;
2398
2399	/* If we don't know then assume that the regulator is always on */
2400	if (!rdev->desc->ops->is_enabled)
2401		return 1;
2402
2403	return rdev->desc->ops->is_enabled(rdev);
2404}
2405
2406static int _regulator_list_voltage(struct regulator *regulator,
2407				    unsigned selector, int lock)
2408{
2409	struct regulator_dev *rdev = regulator->rdev;
2410	const struct regulator_ops *ops = rdev->desc->ops;
2411	int ret;
2412
2413	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2414		return rdev->desc->fixed_uV;
2415
2416	if (ops->list_voltage) {
2417		if (selector >= rdev->desc->n_voltages)
2418			return -EINVAL;
2419		if (lock)
2420			mutex_lock(&rdev->mutex);
2421		ret = ops->list_voltage(rdev, selector);
2422		if (lock)
2423			mutex_unlock(&rdev->mutex);
2424	} else if (rdev->supply) {
2425		ret = _regulator_list_voltage(rdev->supply, selector, lock);
2426	} else {
2427		return -EINVAL;
2428	}
2429
2430	if (ret > 0) {
2431		if (ret < rdev->constraints->min_uV)
2432			ret = 0;
2433		else if (ret > rdev->constraints->max_uV)
2434			ret = 0;
2435	}
2436
2437	return ret;
2438}
2439
2440/**
2441 * regulator_is_enabled - is the regulator output enabled
2442 * @regulator: regulator source
2443 *
2444 * Returns positive if the regulator driver backing the source/client
2445 * has requested that the device be enabled, zero if it hasn't, else a
2446 * negative errno code.
2447 *
2448 * Note that the device backing this regulator handle can have multiple
2449 * users, so it might be enabled even if regulator_enable() was never
2450 * called for this particular source.
2451 */
2452int regulator_is_enabled(struct regulator *regulator)
2453{
2454	int ret;
2455
2456	if (regulator->always_on)
2457		return 1;
2458
2459	mutex_lock(&regulator->rdev->mutex);
2460	ret = _regulator_is_enabled(regulator->rdev);
2461	mutex_unlock(&regulator->rdev->mutex);
2462
2463	return ret;
2464}
2465EXPORT_SYMBOL_GPL(regulator_is_enabled);
2466
2467/**
2468 * regulator_can_change_voltage - check if regulator can change voltage
2469 * @regulator: regulator source
2470 *
2471 * Returns positive if the regulator driver backing the source/client
2472 * can change its voltage, false otherwise. Useful for detecting fixed
2473 * or dummy regulators and disabling voltage change logic in the client
2474 * driver.
2475 */
2476int regulator_can_change_voltage(struct regulator *regulator)
2477{
2478	struct regulator_dev	*rdev = regulator->rdev;
2479
2480	if (rdev->constraints &&
2481	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2482		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2483			return 1;
2484
2485		if (rdev->desc->continuous_voltage_range &&
2486		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2487		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2488			return 1;
2489	}
2490
2491	return 0;
2492}
2493EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2494
2495/**
2496 * regulator_count_voltages - count regulator_list_voltage() selectors
2497 * @regulator: regulator source
2498 *
2499 * Returns number of selectors, or negative errno.  Selectors are
2500 * numbered starting at zero, and typically correspond to bitfields
2501 * in hardware registers.
2502 */
2503int regulator_count_voltages(struct regulator *regulator)
2504{
2505	struct regulator_dev	*rdev = regulator->rdev;
2506
2507	if (rdev->desc->n_voltages)
2508		return rdev->desc->n_voltages;
2509
2510	if (!rdev->supply)
2511		return -EINVAL;
2512
2513	return regulator_count_voltages(rdev->supply);
2514}
2515EXPORT_SYMBOL_GPL(regulator_count_voltages);
2516
2517/**
2518 * regulator_list_voltage - enumerate supported voltages
2519 * @regulator: regulator source
2520 * @selector: identify voltage to list
2521 * Context: can sleep
2522 *
2523 * Returns a voltage that can be passed to @regulator_set_voltage(),
2524 * zero if this selector code can't be used on this system, or a
2525 * negative errno.
2526 */
2527int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2528{
2529	return _regulator_list_voltage(regulator, selector, 1);
2530}
2531EXPORT_SYMBOL_GPL(regulator_list_voltage);
2532
2533/**
2534 * regulator_get_regmap - get the regulator's register map
2535 * @regulator: regulator source
2536 *
2537 * Returns the register map for the given regulator, or an ERR_PTR value
2538 * if the regulator doesn't use regmap.
2539 */
2540struct regmap *regulator_get_regmap(struct regulator *regulator)
2541{
2542	struct regmap *map = regulator->rdev->regmap;
2543
2544	return map ? map : ERR_PTR(-EOPNOTSUPP);
2545}
2546
2547/**
2548 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2549 * @regulator: regulator source
2550 * @vsel_reg: voltage selector register, output parameter
2551 * @vsel_mask: mask for voltage selector bitfield, output parameter
2552 *
2553 * Returns the hardware register offset and bitmask used for setting the
2554 * regulator voltage. This might be useful when configuring voltage-scaling
2555 * hardware or firmware that can make I2C requests behind the kernel's back,
2556 * for example.
2557 *
2558 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2559 * and 0 is returned, otherwise a negative errno is returned.
2560 */
2561int regulator_get_hardware_vsel_register(struct regulator *regulator,
2562					 unsigned *vsel_reg,
2563					 unsigned *vsel_mask)
2564{
2565	struct regulator_dev *rdev = regulator->rdev;
2566	const struct regulator_ops *ops = rdev->desc->ops;
2567
2568	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2569		return -EOPNOTSUPP;
2570
2571	 *vsel_reg = rdev->desc->vsel_reg;
2572	 *vsel_mask = rdev->desc->vsel_mask;
2573
2574	 return 0;
2575}
2576EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2577
2578/**
2579 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2580 * @regulator: regulator source
2581 * @selector: identify voltage to list
2582 *
2583 * Converts the selector to a hardware-specific voltage selector that can be
2584 * directly written to the regulator registers. The address of the voltage
2585 * register can be determined by calling @regulator_get_hardware_vsel_register.
2586 *
2587 * On error a negative errno is returned.
2588 */
2589int regulator_list_hardware_vsel(struct regulator *regulator,
2590				 unsigned selector)
2591{
2592	struct regulator_dev *rdev = regulator->rdev;
2593	const struct regulator_ops *ops = rdev->desc->ops;
2594
2595	if (selector >= rdev->desc->n_voltages)
2596		return -EINVAL;
2597	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2598		return -EOPNOTSUPP;
2599
2600	return selector;
2601}
2602EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2603
2604/**
2605 * regulator_get_linear_step - return the voltage step size between VSEL values
2606 * @regulator: regulator source
2607 *
2608 * Returns the voltage step size between VSEL values for linear
2609 * regulators, or return 0 if the regulator isn't a linear regulator.
2610 */
2611unsigned int regulator_get_linear_step(struct regulator *regulator)
2612{
2613	struct regulator_dev *rdev = regulator->rdev;
2614
2615	return rdev->desc->uV_step;
2616}
2617EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2618
2619/**
2620 * regulator_is_supported_voltage - check if a voltage range can be supported
2621 *
2622 * @regulator: Regulator to check.
2623 * @min_uV: Minimum required voltage in uV.
2624 * @max_uV: Maximum required voltage in uV.
2625 *
2626 * Returns a boolean or a negative error code.
2627 */
2628int regulator_is_supported_voltage(struct regulator *regulator,
2629				   int min_uV, int max_uV)
2630{
2631	struct regulator_dev *rdev = regulator->rdev;
2632	int i, voltages, ret;
2633
2634	/* If we can't change voltage check the current voltage */
2635	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2636		ret = regulator_get_voltage(regulator);
2637		if (ret >= 0)
2638			return min_uV <= ret && ret <= max_uV;
2639		else
2640			return ret;
2641	}
2642
2643	/* Any voltage within constrains range is fine? */
2644	if (rdev->desc->continuous_voltage_range)
2645		return min_uV >= rdev->constraints->min_uV &&
2646				max_uV <= rdev->constraints->max_uV;
2647
2648	ret = regulator_count_voltages(regulator);
2649	if (ret < 0)
2650		return ret;
2651	voltages = ret;
2652
2653	for (i = 0; i < voltages; i++) {
2654		ret = regulator_list_voltage(regulator, i);
2655
2656		if (ret >= min_uV && ret <= max_uV)
2657			return 1;
2658	}
2659
2660	return 0;
2661}
2662EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2663
2664static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2665				 int max_uV)
2666{
2667	const struct regulator_desc *desc = rdev->desc;
2668
2669	if (desc->ops->map_voltage)
2670		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2671
2672	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2673		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2674
2675	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2676		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2677
2678	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2679}
2680
2681static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2682				       int min_uV, int max_uV,
2683				       unsigned *selector)
2684{
2685	struct pre_voltage_change_data data;
2686	int ret;
2687
2688	data.old_uV = _regulator_get_voltage(rdev);
2689	data.min_uV = min_uV;
2690	data.max_uV = max_uV;
2691	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2692				   &data);
2693	if (ret & NOTIFY_STOP_MASK)
2694		return -EINVAL;
2695
2696	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2697	if (ret >= 0)
2698		return ret;
2699
2700	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2701			     (void *)data.old_uV);
2702
2703	return ret;
2704}
2705
2706static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2707					   int uV, unsigned selector)
2708{
2709	struct pre_voltage_change_data data;
2710	int ret;
2711
2712	data.old_uV = _regulator_get_voltage(rdev);
2713	data.min_uV = uV;
2714	data.max_uV = uV;
2715	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2716				   &data);
2717	if (ret & NOTIFY_STOP_MASK)
2718		return -EINVAL;
2719
2720	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2721	if (ret >= 0)
2722		return ret;
2723
2724	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2725			     (void *)data.old_uV);
2726
2727	return ret;
2728}
2729
2730static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2731				     int min_uV, int max_uV)
2732{
2733	int ret;
2734	int delay = 0;
2735	int best_val = 0;
2736	unsigned int selector;
2737	int old_selector = -1;
2738
2739	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2740
2741	min_uV += rdev->constraints->uV_offset;
2742	max_uV += rdev->constraints->uV_offset;
2743
2744	/*
2745	 * If we can't obtain the old selector there is not enough
2746	 * info to call set_voltage_time_sel().
2747	 */
2748	if (_regulator_is_enabled(rdev) &&
2749	    rdev->desc->ops->set_voltage_time_sel &&
2750	    rdev->desc->ops->get_voltage_sel) {
2751		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2752		if (old_selector < 0)
2753			return old_selector;
2754	}
2755
2756	if (rdev->desc->ops->set_voltage) {
2757		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2758						  &selector);
2759
2760		if (ret >= 0) {
2761			if (rdev->desc->ops->list_voltage)
2762				best_val = rdev->desc->ops->list_voltage(rdev,
2763									 selector);
2764			else
2765				best_val = _regulator_get_voltage(rdev);
2766		}
2767
2768	} else if (rdev->desc->ops->set_voltage_sel) {
2769		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2770		if (ret >= 0) {
2771			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2772			if (min_uV <= best_val && max_uV >= best_val) {
2773				selector = ret;
2774				if (old_selector == selector)
2775					ret = 0;
2776				else
2777					ret = _regulator_call_set_voltage_sel(
2778						rdev, best_val, selector);
2779			} else {
2780				ret = -EINVAL;
2781			}
2782		}
2783	} else {
2784		ret = -EINVAL;
2785	}
2786
2787	/* Call set_voltage_time_sel if successfully obtained old_selector */
2788	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2789		&& old_selector != selector) {
2790
2791		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2792						old_selector, selector);
2793		if (delay < 0) {
2794			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2795				  delay);
2796			delay = 0;
2797		}
2798
2799		/* Insert any necessary delays */
2800		if (delay >= 1000) {
2801			mdelay(delay / 1000);
2802			udelay(delay % 1000);
2803		} else if (delay) {
2804			udelay(delay);
2805		}
2806	}
2807
2808	if (ret == 0 && best_val >= 0) {
2809		unsigned long data = best_val;
2810
2811		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2812				     (void *)data);
2813	}
2814
2815	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2816
2817	return ret;
2818}
2819
2820static int regulator_set_voltage_unlocked(struct regulator *regulator,
2821					  int min_uV, int max_uV)
2822{
2823	struct regulator_dev *rdev = regulator->rdev;
2824	int ret = 0;
2825	int old_min_uV, old_max_uV;
2826	int current_uV;
2827	int best_supply_uV = 0;
2828	int supply_change_uV = 0;
2829
2830	/* If we're setting the same range as last time the change
2831	 * should be a noop (some cpufreq implementations use the same
2832	 * voltage for multiple frequencies, for example).
2833	 */
2834	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2835		goto out;
2836
2837	/* If we're trying to set a range that overlaps the current voltage,
2838	 * return successfully even though the regulator does not support
2839	 * changing the voltage.
2840	 */
2841	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2842		current_uV = _regulator_get_voltage(rdev);
2843		if (min_uV <= current_uV && current_uV <= max_uV) {
2844			regulator->min_uV = min_uV;
2845			regulator->max_uV = max_uV;
2846			goto out;
2847		}
2848	}
2849
2850	/* sanity check */
2851	if (!rdev->desc->ops->set_voltage &&
2852	    !rdev->desc->ops->set_voltage_sel) {
2853		ret = -EINVAL;
2854		goto out;
2855	}
2856
2857	/* constraints check */
2858	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2859	if (ret < 0)
2860		goto out;
2861
2862	/* restore original values in case of error */
2863	old_min_uV = regulator->min_uV;
2864	old_max_uV = regulator->max_uV;
2865	regulator->min_uV = min_uV;
2866	regulator->max_uV = max_uV;
2867
2868	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2869	if (ret < 0)
2870		goto out2;
2871
2872	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2873				!rdev->desc->ops->get_voltage)) {
2874		int current_supply_uV;
2875		int selector;
2876
2877		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2878		if (selector < 0) {
2879			ret = selector;
2880			goto out2;
2881		}
2882
2883		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2884		if (best_supply_uV < 0) {
2885			ret = best_supply_uV;
2886			goto out2;
2887		}
2888
2889		best_supply_uV += rdev->desc->min_dropout_uV;
2890
2891		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2892		if (current_supply_uV < 0) {
2893			ret = current_supply_uV;
2894			goto out2;
2895		}
2896
2897		supply_change_uV = best_supply_uV - current_supply_uV;
2898	}
2899
2900	if (supply_change_uV > 0) {
2901		ret = regulator_set_voltage_unlocked(rdev->supply,
2902				best_supply_uV, INT_MAX);
2903		if (ret) {
2904			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2905					ret);
2906			goto out2;
2907		}
2908	}
2909
2910	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2911	if (ret < 0)
2912		goto out2;
2913
2914	if (supply_change_uV < 0) {
2915		ret = regulator_set_voltage_unlocked(rdev->supply,
2916				best_supply_uV, INT_MAX);
2917		if (ret)
2918			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2919					ret);
2920		/* No need to fail here */
2921		ret = 0;
2922	}
2923
2924out:
2925	return ret;
2926out2:
2927	regulator->min_uV = old_min_uV;
2928	regulator->max_uV = old_max_uV;
2929
2930	return ret;
2931}
2932
2933/**
2934 * regulator_set_voltage - set regulator output voltage
2935 * @regulator: regulator source
2936 * @min_uV: Minimum required voltage in uV
2937 * @max_uV: Maximum acceptable voltage in uV
2938 *
2939 * Sets a voltage regulator to the desired output voltage. This can be set
2940 * during any regulator state. IOW, regulator can be disabled or enabled.
2941 *
2942 * If the regulator is enabled then the voltage will change to the new value
2943 * immediately otherwise if the regulator is disabled the regulator will
2944 * output at the new voltage when enabled.
2945 *
2946 * NOTE: If the regulator is shared between several devices then the lowest
2947 * request voltage that meets the system constraints will be used.
2948 * Regulator system constraints must be set for this regulator before
2949 * calling this function otherwise this call will fail.
2950 */
2951int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2952{
2953	int ret = 0;
2954
2955	regulator_lock_supply(regulator->rdev);
2956
2957	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2958
2959	regulator_unlock_supply(regulator->rdev);
2960
2961	return ret;
2962}
2963EXPORT_SYMBOL_GPL(regulator_set_voltage);
2964
2965/**
2966 * regulator_set_voltage_time - get raise/fall time
2967 * @regulator: regulator source
2968 * @old_uV: starting voltage in microvolts
2969 * @new_uV: target voltage in microvolts
2970 *
2971 * Provided with the starting and ending voltage, this function attempts to
2972 * calculate the time in microseconds required to rise or fall to this new
2973 * voltage.
2974 */
2975int regulator_set_voltage_time(struct regulator *regulator,
2976			       int old_uV, int new_uV)
2977{
2978	struct regulator_dev *rdev = regulator->rdev;
2979	const struct regulator_ops *ops = rdev->desc->ops;
2980	int old_sel = -1;
2981	int new_sel = -1;
2982	int voltage;
2983	int i;
2984
2985	/* Currently requires operations to do this */
2986	if (!ops->list_voltage || !ops->set_voltage_time_sel
2987	    || !rdev->desc->n_voltages)
2988		return -EINVAL;
2989
2990	for (i = 0; i < rdev->desc->n_voltages; i++) {
2991		/* We only look for exact voltage matches here */
2992		voltage = regulator_list_voltage(regulator, i);
2993		if (voltage < 0)
2994			return -EINVAL;
2995		if (voltage == 0)
2996			continue;
2997		if (voltage == old_uV)
2998			old_sel = i;
2999		if (voltage == new_uV)
3000			new_sel = i;
3001	}
3002
3003	if (old_sel < 0 || new_sel < 0)
3004		return -EINVAL;
3005
3006	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3007}
3008EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3009
3010/**
3011 * regulator_set_voltage_time_sel - get raise/fall time
3012 * @rdev: regulator source device
3013 * @old_selector: selector for starting voltage
3014 * @new_selector: selector for target voltage
3015 *
3016 * Provided with the starting and target voltage selectors, this function
3017 * returns time in microseconds required to rise or fall to this new voltage
3018 *
3019 * Drivers providing ramp_delay in regulation_constraints can use this as their
3020 * set_voltage_time_sel() operation.
3021 */
3022int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3023				   unsigned int old_selector,
3024				   unsigned int new_selector)
3025{
3026	unsigned int ramp_delay = 0;
3027	int old_volt, new_volt;
3028
3029	if (rdev->constraints->ramp_delay)
3030		ramp_delay = rdev->constraints->ramp_delay;
3031	else if (rdev->desc->ramp_delay)
3032		ramp_delay = rdev->desc->ramp_delay;
3033
3034	if (ramp_delay == 0) {
3035		rdev_warn(rdev, "ramp_delay not set\n");
3036		return 0;
3037	}
3038
3039	/* sanity check */
3040	if (!rdev->desc->ops->list_voltage)
3041		return -EINVAL;
3042
3043	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3044	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3045
3046	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3047}
3048EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3049
3050/**
3051 * regulator_sync_voltage - re-apply last regulator output voltage
3052 * @regulator: regulator source
3053 *
3054 * Re-apply the last configured voltage.  This is intended to be used
3055 * where some external control source the consumer is cooperating with
3056 * has caused the configured voltage to change.
3057 */
3058int regulator_sync_voltage(struct regulator *regulator)
3059{
3060	struct regulator_dev *rdev = regulator->rdev;
3061	int ret, min_uV, max_uV;
3062
3063	mutex_lock(&rdev->mutex);
3064
3065	if (!rdev->desc->ops->set_voltage &&
3066	    !rdev->desc->ops->set_voltage_sel) {
3067		ret = -EINVAL;
3068		goto out;
3069	}
3070
3071	/* This is only going to work if we've had a voltage configured. */
3072	if (!regulator->min_uV && !regulator->max_uV) {
3073		ret = -EINVAL;
3074		goto out;
3075	}
3076
3077	min_uV = regulator->min_uV;
3078	max_uV = regulator->max_uV;
3079
3080	/* This should be a paranoia check... */
3081	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3082	if (ret < 0)
3083		goto out;
3084
3085	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3086	if (ret < 0)
3087		goto out;
3088
3089	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3090
3091out:
3092	mutex_unlock(&rdev->mutex);
3093	return ret;
3094}
3095EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3096
3097static int _regulator_get_voltage(struct regulator_dev *rdev)
3098{
3099	int sel, ret;
3100
3101	if (rdev->desc->ops->get_voltage_sel) {
3102		sel = rdev->desc->ops->get_voltage_sel(rdev);
3103		if (sel < 0)
3104			return sel;
3105		ret = rdev->desc->ops->list_voltage(rdev, sel);
3106	} else if (rdev->desc->ops->get_voltage) {
3107		ret = rdev->desc->ops->get_voltage(rdev);
3108	} else if (rdev->desc->ops->list_voltage) {
3109		ret = rdev->desc->ops->list_voltage(rdev, 0);
3110	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3111		ret = rdev->desc->fixed_uV;
3112	} else if (rdev->supply) {
3113		ret = _regulator_get_voltage(rdev->supply->rdev);
3114	} else {
3115		return -EINVAL;
3116	}
3117
3118	if (ret < 0)
3119		return ret;
3120	return ret - rdev->constraints->uV_offset;
3121}
3122
3123/**
3124 * regulator_get_voltage - get regulator output voltage
3125 * @regulator: regulator source
3126 *
3127 * This returns the current regulator voltage in uV.
3128 *
3129 * NOTE: If the regulator is disabled it will return the voltage value. This
3130 * function should not be used to determine regulator state.
3131 */
3132int regulator_get_voltage(struct regulator *regulator)
3133{
3134	int ret;
3135
3136	regulator_lock_supply(regulator->rdev);
3137
3138	ret = _regulator_get_voltage(regulator->rdev);
3139
3140	regulator_unlock_supply(regulator->rdev);
3141
3142	return ret;
3143}
3144EXPORT_SYMBOL_GPL(regulator_get_voltage);
3145
3146/**
3147 * regulator_set_current_limit - set regulator output current limit
3148 * @regulator: regulator source
3149 * @min_uA: Minimum supported current in uA
3150 * @max_uA: Maximum supported current in uA
3151 *
3152 * Sets current sink to the desired output current. This can be set during
3153 * any regulator state. IOW, regulator can be disabled or enabled.
3154 *
3155 * If the regulator is enabled then the current will change to the new value
3156 * immediately otherwise if the regulator is disabled the regulator will
3157 * output at the new current when enabled.
3158 *
3159 * NOTE: Regulator system constraints must be set for this regulator before
3160 * calling this function otherwise this call will fail.
3161 */
3162int regulator_set_current_limit(struct regulator *regulator,
3163			       int min_uA, int max_uA)
3164{
3165	struct regulator_dev *rdev = regulator->rdev;
3166	int ret;
3167
3168	mutex_lock(&rdev->mutex);
3169
3170	/* sanity check */
3171	if (!rdev->desc->ops->set_current_limit) {
3172		ret = -EINVAL;
3173		goto out;
3174	}
3175
3176	/* constraints check */
3177	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3178	if (ret < 0)
3179		goto out;
3180
3181	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3182out:
3183	mutex_unlock(&rdev->mutex);
3184	return ret;
3185}
3186EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3187
3188static int _regulator_get_current_limit(struct regulator_dev *rdev)
3189{
3190	int ret;
3191
3192	mutex_lock(&rdev->mutex);
3193
3194	/* sanity check */
3195	if (!rdev->desc->ops->get_current_limit) {
3196		ret = -EINVAL;
3197		goto out;
3198	}
3199
3200	ret = rdev->desc->ops->get_current_limit(rdev);
3201out:
3202	mutex_unlock(&rdev->mutex);
3203	return ret;
3204}
3205
3206/**
3207 * regulator_get_current_limit - get regulator output current
3208 * @regulator: regulator source
3209 *
3210 * This returns the current supplied by the specified current sink in uA.
3211 *
3212 * NOTE: If the regulator is disabled it will return the current value. This
3213 * function should not be used to determine regulator state.
3214 */
3215int regulator_get_current_limit(struct regulator *regulator)
3216{
3217	return _regulator_get_current_limit(regulator->rdev);
3218}
3219EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3220
3221/**
3222 * regulator_set_mode - set regulator operating mode
3223 * @regulator: regulator source
3224 * @mode: operating mode - one of the REGULATOR_MODE constants
3225 *
3226 * Set regulator operating mode to increase regulator efficiency or improve
3227 * regulation performance.
3228 *
3229 * NOTE: Regulator system constraints must be set for this regulator before
3230 * calling this function otherwise this call will fail.
3231 */
3232int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3233{
3234	struct regulator_dev *rdev = regulator->rdev;
3235	int ret;
3236	int regulator_curr_mode;
3237
3238	mutex_lock(&rdev->mutex);
3239
3240	/* sanity check */
3241	if (!rdev->desc->ops->set_mode) {
3242		ret = -EINVAL;
3243		goto out;
3244	}
3245
3246	/* return if the same mode is requested */
3247	if (rdev->desc->ops->get_mode) {
3248		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3249		if (regulator_curr_mode == mode) {
3250			ret = 0;
3251			goto out;
3252		}
3253	}
3254
3255	/* constraints check */
3256	ret = regulator_mode_constrain(rdev, &mode);
3257	if (ret < 0)
3258		goto out;
3259
3260	ret = rdev->desc->ops->set_mode(rdev, mode);
3261out:
3262	mutex_unlock(&rdev->mutex);
3263	return ret;
3264}
3265EXPORT_SYMBOL_GPL(regulator_set_mode);
3266
3267static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3268{
3269	int ret;
3270
3271	mutex_lock(&rdev->mutex);
3272
3273	/* sanity check */
3274	if (!rdev->desc->ops->get_mode) {
3275		ret = -EINVAL;
3276		goto out;
3277	}
3278
3279	ret = rdev->desc->ops->get_mode(rdev);
3280out:
3281	mutex_unlock(&rdev->mutex);
3282	return ret;
3283}
3284
3285/**
3286 * regulator_get_mode - get regulator operating mode
3287 * @regulator: regulator source
3288 *
3289 * Get the current regulator operating mode.
3290 */
3291unsigned int regulator_get_mode(struct regulator *regulator)
3292{
3293	return _regulator_get_mode(regulator->rdev);
3294}
3295EXPORT_SYMBOL_GPL(regulator_get_mode);
3296
3297/**
3298 * regulator_set_load - set regulator load
3299 * @regulator: regulator source
3300 * @uA_load: load current
3301 *
3302 * Notifies the regulator core of a new device load. This is then used by
3303 * DRMS (if enabled by constraints) to set the most efficient regulator
3304 * operating mode for the new regulator loading.
3305 *
3306 * Consumer devices notify their supply regulator of the maximum power
3307 * they will require (can be taken from device datasheet in the power
3308 * consumption tables) when they change operational status and hence power
3309 * state. Examples of operational state changes that can affect power
3310 * consumption are :-
3311 *
3312 *    o Device is opened / closed.
3313 *    o Device I/O is about to begin or has just finished.
3314 *    o Device is idling in between work.
3315 *
3316 * This information is also exported via sysfs to userspace.
3317 *
3318 * DRMS will sum the total requested load on the regulator and change
3319 * to the most efficient operating mode if platform constraints allow.
3320 *
3321 * On error a negative errno is returned.
3322 */
3323int regulator_set_load(struct regulator *regulator, int uA_load)
3324{
3325	struct regulator_dev *rdev = regulator->rdev;
3326	int ret;
3327
3328	mutex_lock(&rdev->mutex);
3329	regulator->uA_load = uA_load;
3330	ret = drms_uA_update(rdev);
3331	mutex_unlock(&rdev->mutex);
3332
3333	return ret;
3334}
3335EXPORT_SYMBOL_GPL(regulator_set_load);
3336
3337/**
3338 * regulator_allow_bypass - allow the regulator to go into bypass mode
3339 *
3340 * @regulator: Regulator to configure
3341 * @enable: enable or disable bypass mode
3342 *
3343 * Allow the regulator to go into bypass mode if all other consumers
3344 * for the regulator also enable bypass mode and the machine
3345 * constraints allow this.  Bypass mode means that the regulator is
3346 * simply passing the input directly to the output with no regulation.
3347 */
3348int regulator_allow_bypass(struct regulator *regulator, bool enable)
3349{
3350	struct regulator_dev *rdev = regulator->rdev;
3351	int ret = 0;
3352
3353	if (!rdev->desc->ops->set_bypass)
3354		return 0;
3355
3356	if (rdev->constraints &&
3357	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3358		return 0;
3359
3360	mutex_lock(&rdev->mutex);
3361
3362	if (enable && !regulator->bypass) {
3363		rdev->bypass_count++;
3364
3365		if (rdev->bypass_count == rdev->open_count) {
3366			ret = rdev->desc->ops->set_bypass(rdev, enable);
3367			if (ret != 0)
3368				rdev->bypass_count--;
3369		}
3370
3371	} else if (!enable && regulator->bypass) {
3372		rdev->bypass_count--;
3373
3374		if (rdev->bypass_count != rdev->open_count) {
3375			ret = rdev->desc->ops->set_bypass(rdev, enable);
3376			if (ret != 0)
3377				rdev->bypass_count++;
3378		}
3379	}
3380
3381	if (ret == 0)
3382		regulator->bypass = enable;
3383
3384	mutex_unlock(&rdev->mutex);
3385
3386	return ret;
3387}
3388EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3389
3390/**
3391 * regulator_register_notifier - register regulator event notifier
3392 * @regulator: regulator source
3393 * @nb: notifier block
3394 *
3395 * Register notifier block to receive regulator events.
3396 */
3397int regulator_register_notifier(struct regulator *regulator,
3398			      struct notifier_block *nb)
3399{
3400	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3401						nb);
3402}
3403EXPORT_SYMBOL_GPL(regulator_register_notifier);
3404
3405/**
3406 * regulator_unregister_notifier - unregister regulator event notifier
3407 * @regulator: regulator source
3408 * @nb: notifier block
3409 *
3410 * Unregister regulator event notifier block.
3411 */
3412int regulator_unregister_notifier(struct regulator *regulator,
3413				struct notifier_block *nb)
3414{
3415	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3416						  nb);
3417}
3418EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3419
3420/* notify regulator consumers and downstream regulator consumers.
3421 * Note mutex must be held by caller.
3422 */
3423static int _notifier_call_chain(struct regulator_dev *rdev,
3424				  unsigned long event, void *data)
3425{
3426	/* call rdev chain first */
3427	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3428}
3429
3430/**
3431 * regulator_bulk_get - get multiple regulator consumers
3432 *
3433 * @dev:           Device to supply
3434 * @num_consumers: Number of consumers to register
3435 * @consumers:     Configuration of consumers; clients are stored here.
3436 *
3437 * @return 0 on success, an errno on failure.
3438 *
3439 * This helper function allows drivers to get several regulator
3440 * consumers in one operation.  If any of the regulators cannot be
3441 * acquired then any regulators that were allocated will be freed
3442 * before returning to the caller.
3443 */
3444int regulator_bulk_get(struct device *dev, int num_consumers,
3445		       struct regulator_bulk_data *consumers)
3446{
3447	int i;
3448	int ret;
3449
3450	for (i = 0; i < num_consumers; i++)
3451		consumers[i].consumer = NULL;
3452
3453	for (i = 0; i < num_consumers; i++) {
3454		consumers[i].consumer = regulator_get(dev,
3455						      consumers[i].supply);
3456		if (IS_ERR(consumers[i].consumer)) {
3457			ret = PTR_ERR(consumers[i].consumer);
3458			dev_err(dev, "Failed to get supply '%s': %d\n",
3459				consumers[i].supply, ret);
3460			consumers[i].consumer = NULL;
3461			goto err;
3462		}
3463	}
3464
3465	return 0;
3466
3467err:
3468	while (--i >= 0)
3469		regulator_put(consumers[i].consumer);
3470
3471	return ret;
3472}
3473EXPORT_SYMBOL_GPL(regulator_bulk_get);
3474
3475static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3476{
3477	struct regulator_bulk_data *bulk = data;
3478
3479	bulk->ret = regulator_enable(bulk->consumer);
3480}
3481
3482/**
3483 * regulator_bulk_enable - enable multiple regulator consumers
3484 *
3485 * @num_consumers: Number of consumers
3486 * @consumers:     Consumer data; clients are stored here.
3487 * @return         0 on success, an errno on failure
3488 *
3489 * This convenience API allows consumers to enable multiple regulator
3490 * clients in a single API call.  If any consumers cannot be enabled
3491 * then any others that were enabled will be disabled again prior to
3492 * return.
3493 */
3494int regulator_bulk_enable(int num_consumers,
3495			  struct regulator_bulk_data *consumers)
3496{
3497	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3498	int i;
3499	int ret = 0;
3500
3501	for (i = 0; i < num_consumers; i++) {
3502		if (consumers[i].consumer->always_on)
3503			consumers[i].ret = 0;
3504		else
3505			async_schedule_domain(regulator_bulk_enable_async,
3506					      &consumers[i], &async_domain);
3507	}
3508
3509	async_synchronize_full_domain(&async_domain);
3510
3511	/* If any consumer failed we need to unwind any that succeeded */
3512	for (i = 0; i < num_consumers; i++) {
3513		if (consumers[i].ret != 0) {
3514			ret = consumers[i].ret;
3515			goto err;
3516		}
3517	}
3518
3519	return 0;
3520
3521err:
3522	for (i = 0; i < num_consumers; i++) {
3523		if (consumers[i].ret < 0)
3524			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3525			       consumers[i].ret);
3526		else
3527			regulator_disable(consumers[i].consumer);
3528	}
3529
3530	return ret;
3531}
3532EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3533
3534/**
3535 * regulator_bulk_disable - disable multiple regulator consumers
3536 *
3537 * @num_consumers: Number of consumers
3538 * @consumers:     Consumer data; clients are stored here.
3539 * @return         0 on success, an errno on failure
3540 *
3541 * This convenience API allows consumers to disable multiple regulator
3542 * clients in a single API call.  If any consumers cannot be disabled
3543 * then any others that were disabled will be enabled again prior to
3544 * return.
3545 */
3546int regulator_bulk_disable(int num_consumers,
3547			   struct regulator_bulk_data *consumers)
3548{
3549	int i;
3550	int ret, r;
3551
3552	for (i = num_consumers - 1; i >= 0; --i) {
3553		ret = regulator_disable(consumers[i].consumer);
3554		if (ret != 0)
3555			goto err;
3556	}
3557
3558	return 0;
3559
3560err:
3561	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3562	for (++i; i < num_consumers; ++i) {
3563		r = regulator_enable(consumers[i].consumer);
3564		if (r != 0)
3565			pr_err("Failed to reename %s: %d\n",
3566			       consumers[i].supply, r);
3567	}
3568
3569	return ret;
3570}
3571EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3572
3573/**
3574 * regulator_bulk_force_disable - force disable multiple regulator consumers
3575 *
3576 * @num_consumers: Number of consumers
3577 * @consumers:     Consumer data; clients are stored here.
3578 * @return         0 on success, an errno on failure
3579 *
3580 * This convenience API allows consumers to forcibly disable multiple regulator
3581 * clients in a single API call.
3582 * NOTE: This should be used for situations when device damage will
3583 * likely occur if the regulators are not disabled (e.g. over temp).
3584 * Although regulator_force_disable function call for some consumers can
3585 * return error numbers, the function is called for all consumers.
3586 */
3587int regulator_bulk_force_disable(int num_consumers,
3588			   struct regulator_bulk_data *consumers)
3589{
3590	int i;
3591	int ret;
3592
3593	for (i = 0; i < num_consumers; i++)
3594		consumers[i].ret =
3595			    regulator_force_disable(consumers[i].consumer);
3596
3597	for (i = 0; i < num_consumers; i++) {
3598		if (consumers[i].ret != 0) {
3599			ret = consumers[i].ret;
3600			goto out;
3601		}
3602	}
3603
3604	return 0;
3605out:
3606	return ret;
3607}
3608EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3609
3610/**
3611 * regulator_bulk_free - free multiple regulator consumers
3612 *
3613 * @num_consumers: Number of consumers
3614 * @consumers:     Consumer data; clients are stored here.
3615 *
3616 * This convenience API allows consumers to free multiple regulator
3617 * clients in a single API call.
3618 */
3619void regulator_bulk_free(int num_consumers,
3620			 struct regulator_bulk_data *consumers)
3621{
3622	int i;
3623
3624	for (i = 0; i < num_consumers; i++) {
3625		regulator_put(consumers[i].consumer);
3626		consumers[i].consumer = NULL;
3627	}
3628}
3629EXPORT_SYMBOL_GPL(regulator_bulk_free);
3630
3631/**
3632 * regulator_notifier_call_chain - call regulator event notifier
3633 * @rdev: regulator source
3634 * @event: notifier block
3635 * @data: callback-specific data.
3636 *
3637 * Called by regulator drivers to notify clients a regulator event has
3638 * occurred. We also notify regulator clients downstream.
3639 * Note lock must be held by caller.
3640 */
3641int regulator_notifier_call_chain(struct regulator_dev *rdev,
3642				  unsigned long event, void *data)
3643{
3644	lockdep_assert_held_once(&rdev->mutex);
3645
3646	_notifier_call_chain(rdev, event, data);
3647	return NOTIFY_DONE;
3648
3649}
3650EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3651
3652/**
3653 * regulator_mode_to_status - convert a regulator mode into a status
3654 *
3655 * @mode: Mode to convert
3656 *
3657 * Convert a regulator mode into a status.
3658 */
3659int regulator_mode_to_status(unsigned int mode)
3660{
3661	switch (mode) {
3662	case REGULATOR_MODE_FAST:
3663		return REGULATOR_STATUS_FAST;
3664	case REGULATOR_MODE_NORMAL:
3665		return REGULATOR_STATUS_NORMAL;
3666	case REGULATOR_MODE_IDLE:
3667		return REGULATOR_STATUS_IDLE;
3668	case REGULATOR_MODE_STANDBY:
3669		return REGULATOR_STATUS_STANDBY;
3670	default:
3671		return REGULATOR_STATUS_UNDEFINED;
3672	}
3673}
3674EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3675
3676static struct attribute *regulator_dev_attrs[] = {
3677	&dev_attr_name.attr,
3678	&dev_attr_num_users.attr,
3679	&dev_attr_type.attr,
3680	&dev_attr_microvolts.attr,
3681	&dev_attr_microamps.attr,
3682	&dev_attr_opmode.attr,
3683	&dev_attr_state.attr,
3684	&dev_attr_status.attr,
3685	&dev_attr_bypass.attr,
3686	&dev_attr_requested_microamps.attr,
3687	&dev_attr_min_microvolts.attr,
3688	&dev_attr_max_microvolts.attr,
3689	&dev_attr_min_microamps.attr,
3690	&dev_attr_max_microamps.attr,
3691	&dev_attr_suspend_standby_state.attr,
3692	&dev_attr_suspend_mem_state.attr,
3693	&dev_attr_suspend_disk_state.attr,
3694	&dev_attr_suspend_standby_microvolts.attr,
3695	&dev_attr_suspend_mem_microvolts.attr,
3696	&dev_attr_suspend_disk_microvolts.attr,
3697	&dev_attr_suspend_standby_mode.attr,
3698	&dev_attr_suspend_mem_mode.attr,
3699	&dev_attr_suspend_disk_mode.attr,
3700	NULL
3701};
3702
3703/*
3704 * To avoid cluttering sysfs (and memory) with useless state, only
3705 * create attributes that can be meaningfully displayed.
3706 */
3707static umode_t regulator_attr_is_visible(struct kobject *kobj,
3708					 struct attribute *attr, int idx)
3709{
3710	struct device *dev = kobj_to_dev(kobj);
3711	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3712	const struct regulator_ops *ops = rdev->desc->ops;
3713	umode_t mode = attr->mode;
3714
3715	/* these three are always present */
3716	if (attr == &dev_attr_name.attr ||
3717	    attr == &dev_attr_num_users.attr ||
3718	    attr == &dev_attr_type.attr)
3719		return mode;
3720
3721	/* some attributes need specific methods to be displayed */
3722	if (attr == &dev_attr_microvolts.attr) {
3723		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3724		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3725		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3726		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3727			return mode;
3728		return 0;
3729	}
3730
3731	if (attr == &dev_attr_microamps.attr)
3732		return ops->get_current_limit ? mode : 0;
3733
3734	if (attr == &dev_attr_opmode.attr)
3735		return ops->get_mode ? mode : 0;
3736
3737	if (attr == &dev_attr_state.attr)
3738		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3739
3740	if (attr == &dev_attr_status.attr)
3741		return ops->get_status ? mode : 0;
3742
3743	if (attr == &dev_attr_bypass.attr)
3744		return ops->get_bypass ? mode : 0;
3745
3746	/* some attributes are type-specific */
3747	if (attr == &dev_attr_requested_microamps.attr)
3748		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3749
3750	/* constraints need specific supporting methods */
3751	if (attr == &dev_attr_min_microvolts.attr ||
3752	    attr == &dev_attr_max_microvolts.attr)
3753		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3754
3755	if (attr == &dev_attr_min_microamps.attr ||
3756	    attr == &dev_attr_max_microamps.attr)
3757		return ops->set_current_limit ? mode : 0;
3758
3759	if (attr == &dev_attr_suspend_standby_state.attr ||
3760	    attr == &dev_attr_suspend_mem_state.attr ||
3761	    attr == &dev_attr_suspend_disk_state.attr)
3762		return mode;
3763
3764	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3765	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3766	    attr == &dev_attr_suspend_disk_microvolts.attr)
3767		return ops->set_suspend_voltage ? mode : 0;
3768
3769	if (attr == &dev_attr_suspend_standby_mode.attr ||
3770	    attr == &dev_attr_suspend_mem_mode.attr ||
3771	    attr == &dev_attr_suspend_disk_mode.attr)
3772		return ops->set_suspend_mode ? mode : 0;
3773
3774	return mode;
3775}
3776
3777static const struct attribute_group regulator_dev_group = {
3778	.attrs = regulator_dev_attrs,
3779	.is_visible = regulator_attr_is_visible,
3780};
3781
3782static const struct attribute_group *regulator_dev_groups[] = {
3783	&regulator_dev_group,
3784	NULL
3785};
3786
3787static void regulator_dev_release(struct device *dev)
3788{
3789	struct regulator_dev *rdev = dev_get_drvdata(dev);
3790
3791	kfree(rdev->constraints);
3792	of_node_put(rdev->dev.of_node);
3793	kfree(rdev);
3794}
3795
3796static struct class regulator_class = {
3797	.name = "regulator",
3798	.dev_release = regulator_dev_release,
3799	.dev_groups = regulator_dev_groups,
3800};
3801
3802static void rdev_init_debugfs(struct regulator_dev *rdev)
3803{
3804	struct device *parent = rdev->dev.parent;
3805	const char *rname = rdev_get_name(rdev);
3806	char name[NAME_MAX];
3807
3808	/* Avoid duplicate debugfs directory names */
3809	if (parent && rname == rdev->desc->name) {
3810		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3811			 rname);
3812		rname = name;
3813	}
3814
3815	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3816	if (!rdev->debugfs) {
3817		rdev_warn(rdev, "Failed to create debugfs directory\n");
3818		return;
3819	}
3820
3821	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3822			   &rdev->use_count);
3823	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3824			   &rdev->open_count);
3825	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3826			   &rdev->bypass_count);
3827}
3828
3829/**
3830 * regulator_register - register regulator
3831 * @regulator_desc: regulator to register
3832 * @cfg: runtime configuration for regulator
3833 *
3834 * Called by regulator drivers to register a regulator.
3835 * Returns a valid pointer to struct regulator_dev on success
3836 * or an ERR_PTR() on error.
3837 */
3838struct regulator_dev *
3839regulator_register(const struct regulator_desc *regulator_desc,
3840		   const struct regulator_config *cfg)
3841{
3842	const struct regulation_constraints *constraints = NULL;
3843	const struct regulator_init_data *init_data;
3844	struct regulator_config *config = NULL;
3845	static atomic_t regulator_no = ATOMIC_INIT(-1);
3846	struct regulator_dev *rdev;
3847	struct device *dev;
3848	int ret, i;
3849
3850	if (regulator_desc == NULL || cfg == NULL)
3851		return ERR_PTR(-EINVAL);
3852
3853	dev = cfg->dev;
3854	WARN_ON(!dev);
3855
3856	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3857		return ERR_PTR(-EINVAL);
3858
3859	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3860	    regulator_desc->type != REGULATOR_CURRENT)
3861		return ERR_PTR(-EINVAL);
3862
3863	/* Only one of each should be implemented */
3864	WARN_ON(regulator_desc->ops->get_voltage &&
3865		regulator_desc->ops->get_voltage_sel);
3866	WARN_ON(regulator_desc->ops->set_voltage &&
3867		regulator_desc->ops->set_voltage_sel);
3868
3869	/* If we're using selectors we must implement list_voltage. */
3870	if (regulator_desc->ops->get_voltage_sel &&
3871	    !regulator_desc->ops->list_voltage) {
3872		return ERR_PTR(-EINVAL);
3873	}
3874	if (regulator_desc->ops->set_voltage_sel &&
3875	    !regulator_desc->ops->list_voltage) {
3876		return ERR_PTR(-EINVAL);
3877	}
3878
3879	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3880	if (rdev == NULL)
3881		return ERR_PTR(-ENOMEM);
3882
3883	/*
3884	 * Duplicate the config so the driver could override it after
3885	 * parsing init data.
3886	 */
3887	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3888	if (config == NULL) {
3889		kfree(rdev);
3890		return ERR_PTR(-ENOMEM);
3891	}
3892
3893	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3894					       &rdev->dev.of_node);
3895	if (!init_data) {
3896		init_data = config->init_data;
3897		rdev->dev.of_node = of_node_get(config->of_node);
3898	}
3899
3900	mutex_lock(&regulator_list_mutex);
3901
3902	mutex_init(&rdev->mutex);
3903	rdev->reg_data = config->driver_data;
3904	rdev->owner = regulator_desc->owner;
3905	rdev->desc = regulator_desc;
3906	if (config->regmap)
3907		rdev->regmap = config->regmap;
3908	else if (dev_get_regmap(dev, NULL))
3909		rdev->regmap = dev_get_regmap(dev, NULL);
3910	else if (dev->parent)
3911		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3912	INIT_LIST_HEAD(&rdev->consumer_list);
3913	INIT_LIST_HEAD(&rdev->list);
3914	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3915	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3916
3917	/* preform any regulator specific init */
3918	if (init_data && init_data->regulator_init) {
3919		ret = init_data->regulator_init(rdev->reg_data);
3920		if (ret < 0)
3921			goto clean;
3922	}
3923
3924	/* register with sysfs */
3925	rdev->dev.class = &regulator_class;
3926	rdev->dev.parent = dev;
3927	dev_set_name(&rdev->dev, "regulator.%lu",
3928		    (unsigned long) atomic_inc_return(&regulator_no));
3929	ret = device_register(&rdev->dev);
3930	if (ret != 0) {
3931		put_device(&rdev->dev);
3932		goto clean;
3933	}
3934
3935	dev_set_drvdata(&rdev->dev, rdev);
3936
3937	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3938	    gpio_is_valid(config->ena_gpio)) {
3939		ret = regulator_ena_gpio_request(rdev, config);
3940		if (ret != 0) {
3941			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3942				 config->ena_gpio, ret);
3943			goto wash;
3944		}
3945	}
3946
3947	/* set regulator constraints */
3948	if (init_data)
3949		constraints = &init_data->constraints;
3950
3951	ret = set_machine_constraints(rdev, constraints);
3952	if (ret < 0)
3953		goto scrub;
3954
3955	if (init_data && init_data->supply_regulator)
3956		rdev->supply_name = init_data->supply_regulator;
3957	else if (regulator_desc->supply_name)
3958		rdev->supply_name = regulator_desc->supply_name;
3959
3960	/* add consumers devices */
3961	if (init_data) {
3962		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3963			ret = set_consumer_device_supply(rdev,
3964				init_data->consumer_supplies[i].dev_name,
3965				init_data->consumer_supplies[i].supply);
3966			if (ret < 0) {
3967				dev_err(dev, "Failed to set supply %s\n",
3968					init_data->consumer_supplies[i].supply);
3969				goto unset_supplies;
3970			}
3971		}
3972	}
3973
3974	rdev_init_debugfs(rdev);
3975out:
3976	mutex_unlock(&regulator_list_mutex);
3977	kfree(config);
3978	return rdev;
3979
3980unset_supplies:
3981	unset_regulator_supplies(rdev);
3982
3983scrub:
3984	regulator_ena_gpio_free(rdev);
3985	kfree(rdev->constraints);
3986wash:
3987	device_unregister(&rdev->dev);
3988	/* device core frees rdev */
3989	rdev = ERR_PTR(ret);
3990	goto out;
3991
3992clean:
3993	kfree(rdev);
3994	rdev = ERR_PTR(ret);
3995	goto out;
3996}
3997EXPORT_SYMBOL_GPL(regulator_register);
3998
3999/**
4000 * regulator_unregister - unregister regulator
4001 * @rdev: regulator to unregister
4002 *
4003 * Called by regulator drivers to unregister a regulator.
4004 */
4005void regulator_unregister(struct regulator_dev *rdev)
4006{
4007	if (rdev == NULL)
4008		return;
4009
4010	if (rdev->supply) {
4011		while (rdev->use_count--)
4012			regulator_disable(rdev->supply);
4013		regulator_put(rdev->supply);
4014	}
4015	mutex_lock(&regulator_list_mutex);
4016	debugfs_remove_recursive(rdev->debugfs);
4017	flush_work(&rdev->disable_work.work);
4018	WARN_ON(rdev->open_count);
4019	unset_regulator_supplies(rdev);
4020	list_del(&rdev->list);
4021	mutex_unlock(&regulator_list_mutex);
4022	regulator_ena_gpio_free(rdev);
4023	device_unregister(&rdev->dev);
4024}
4025EXPORT_SYMBOL_GPL(regulator_unregister);
4026
4027static int _regulator_suspend_prepare(struct device *dev, void *data)
4028{
4029	struct regulator_dev *rdev = dev_to_rdev(dev);
4030	const suspend_state_t *state = data;
4031	int ret;
4032
4033	mutex_lock(&rdev->mutex);
4034	ret = suspend_prepare(rdev, *state);
4035	mutex_unlock(&rdev->mutex);
4036
4037	return ret;
4038}
4039
4040/**
4041 * regulator_suspend_prepare - prepare regulators for system wide suspend
4042 * @state: system suspend state
4043 *
4044 * Configure each regulator with it's suspend operating parameters for state.
4045 * This will usually be called by machine suspend code prior to supending.
4046 */
4047int regulator_suspend_prepare(suspend_state_t state)
4048{
4049	/* ON is handled by regulator active state */
4050	if (state == PM_SUSPEND_ON)
4051		return -EINVAL;
4052
4053	return class_for_each_device(&regulator_class, NULL, &state,
4054				     _regulator_suspend_prepare);
4055}
4056EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4057
4058static int _regulator_suspend_finish(struct device *dev, void *data)
4059{
4060	struct regulator_dev *rdev = dev_to_rdev(dev);
4061	int ret;
4062
4063	mutex_lock(&rdev->mutex);
4064	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4065		if (!_regulator_is_enabled(rdev)) {
4066			ret = _regulator_do_enable(rdev);
4067			if (ret)
4068				dev_err(dev,
4069					"Failed to resume regulator %d\n",
4070					ret);
4071		}
4072	} else {
4073		if (!have_full_constraints())
4074			goto unlock;
4075		if (!_regulator_is_enabled(rdev))
4076			goto unlock;
4077
4078		ret = _regulator_do_disable(rdev);
4079		if (ret)
4080			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4081	}
4082unlock:
4083	mutex_unlock(&rdev->mutex);
4084
4085	/* Keep processing regulators in spite of any errors */
4086	return 0;
4087}
4088
4089/**
4090 * regulator_suspend_finish - resume regulators from system wide suspend
4091 *
4092 * Turn on regulators that might be turned off by regulator_suspend_prepare
4093 * and that should be turned on according to the regulators properties.
4094 */
4095int regulator_suspend_finish(void)
4096{
4097	return class_for_each_device(&regulator_class, NULL, NULL,
4098				     _regulator_suspend_finish);
4099}
4100EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4101
4102/**
4103 * regulator_has_full_constraints - the system has fully specified constraints
4104 *
4105 * Calling this function will cause the regulator API to disable all
4106 * regulators which have a zero use count and don't have an always_on
4107 * constraint in a late_initcall.
4108 *
4109 * The intention is that this will become the default behaviour in a
4110 * future kernel release so users are encouraged to use this facility
4111 * now.
4112 */
4113void regulator_has_full_constraints(void)
4114{
4115	has_full_constraints = 1;
4116}
4117EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4118
4119/**
4120 * rdev_get_drvdata - get rdev regulator driver data
4121 * @rdev: regulator
4122 *
4123 * Get rdev regulator driver private data. This call can be used in the
4124 * regulator driver context.
4125 */
4126void *rdev_get_drvdata(struct regulator_dev *rdev)
4127{
4128	return rdev->reg_data;
4129}
4130EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4131
4132/**
4133 * regulator_get_drvdata - get regulator driver data
4134 * @regulator: regulator
4135 *
4136 * Get regulator driver private data. This call can be used in the consumer
4137 * driver context when non API regulator specific functions need to be called.
4138 */
4139void *regulator_get_drvdata(struct regulator *regulator)
4140{
4141	return regulator->rdev->reg_data;
4142}
4143EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4144
4145/**
4146 * regulator_set_drvdata - set regulator driver data
4147 * @regulator: regulator
4148 * @data: data
4149 */
4150void regulator_set_drvdata(struct regulator *regulator, void *data)
4151{
4152	regulator->rdev->reg_data = data;
4153}
4154EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4155
4156/**
4157 * regulator_get_id - get regulator ID
4158 * @rdev: regulator
4159 */
4160int rdev_get_id(struct regulator_dev *rdev)
4161{
4162	return rdev->desc->id;
4163}
4164EXPORT_SYMBOL_GPL(rdev_get_id);
4165
4166struct device *rdev_get_dev(struct regulator_dev *rdev)
4167{
4168	return &rdev->dev;
4169}
4170EXPORT_SYMBOL_GPL(rdev_get_dev);
4171
4172void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4173{
4174	return reg_init_data->driver_data;
4175}
4176EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4177
4178#ifdef CONFIG_DEBUG_FS
4179static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4180				    size_t count, loff_t *ppos)
4181{
4182	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4183	ssize_t len, ret = 0;
4184	struct regulator_map *map;
4185
4186	if (!buf)
4187		return -ENOMEM;
4188
4189	list_for_each_entry(map, &regulator_map_list, list) {
4190		len = snprintf(buf + ret, PAGE_SIZE - ret,
4191			       "%s -> %s.%s\n",
4192			       rdev_get_name(map->regulator), map->dev_name,
4193			       map->supply);
4194		if (len >= 0)
4195			ret += len;
4196		if (ret > PAGE_SIZE) {
4197			ret = PAGE_SIZE;
4198			break;
4199		}
4200	}
4201
4202	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4203
4204	kfree(buf);
4205
4206	return ret;
4207}
4208#endif
4209
4210static const struct file_operations supply_map_fops = {
4211#ifdef CONFIG_DEBUG_FS
4212	.read = supply_map_read_file,
4213	.llseek = default_llseek,
4214#endif
4215};
4216
4217#ifdef CONFIG_DEBUG_FS
4218struct summary_data {
4219	struct seq_file *s;
4220	struct regulator_dev *parent;
4221	int level;
4222};
4223
4224static void regulator_summary_show_subtree(struct seq_file *s,
4225					   struct regulator_dev *rdev,
4226					   int level);
4227
4228static int regulator_summary_show_children(struct device *dev, void *data)
4229{
4230	struct regulator_dev *rdev = dev_to_rdev(dev);
4231	struct summary_data *summary_data = data;
4232
4233	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4234		regulator_summary_show_subtree(summary_data->s, rdev,
4235					       summary_data->level + 1);
4236
4237	return 0;
4238}
4239
4240static void regulator_summary_show_subtree(struct seq_file *s,
4241					   struct regulator_dev *rdev,
4242					   int level)
4243{
4244	struct regulation_constraints *c;
4245	struct regulator *consumer;
4246	struct summary_data summary_data;
4247
4248	if (!rdev)
4249		return;
4250
4251	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4252		   level * 3 + 1, "",
4253		   30 - level * 3, rdev_get_name(rdev),
4254		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4255
4256	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4257	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4258
4259	c = rdev->constraints;
4260	if (c) {
4261		switch (rdev->desc->type) {
4262		case REGULATOR_VOLTAGE:
4263			seq_printf(s, "%5dmV %5dmV ",
4264				   c->min_uV / 1000, c->max_uV / 1000);
4265			break;
4266		case REGULATOR_CURRENT:
4267			seq_printf(s, "%5dmA %5dmA ",
4268				   c->min_uA / 1000, c->max_uA / 1000);
4269			break;
4270		}
4271	}
4272
4273	seq_puts(s, "\n");
4274
4275	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4276		if (consumer->dev->class == &regulator_class)
4277			continue;
4278
4279		seq_printf(s, "%*s%-*s ",
4280			   (level + 1) * 3 + 1, "",
4281			   30 - (level + 1) * 3, dev_name(consumer->dev));
4282
4283		switch (rdev->desc->type) {
4284		case REGULATOR_VOLTAGE:
4285			seq_printf(s, "%37dmV %5dmV",
4286				   consumer->min_uV / 1000,
4287				   consumer->max_uV / 1000);
4288			break;
4289		case REGULATOR_CURRENT:
4290			break;
4291		}
4292
4293		seq_puts(s, "\n");
4294	}
4295
4296	summary_data.s = s;
4297	summary_data.level = level;
4298	summary_data.parent = rdev;
4299
4300	class_for_each_device(&regulator_class, NULL, &summary_data,
4301			      regulator_summary_show_children);
4302}
4303
4304static int regulator_summary_show_roots(struct device *dev, void *data)
4305{
4306	struct regulator_dev *rdev = dev_to_rdev(dev);
4307	struct seq_file *s = data;
4308
4309	if (!rdev->supply)
4310		regulator_summary_show_subtree(s, rdev, 0);
4311
4312	return 0;
4313}
4314
4315static int regulator_summary_show(struct seq_file *s, void *data)
4316{
4317	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4318	seq_puts(s, "-------------------------------------------------------------------------------\n");
4319
4320	class_for_each_device(&regulator_class, NULL, s,
4321			      regulator_summary_show_roots);
4322
4323	return 0;
4324}
4325
4326static int regulator_summary_open(struct inode *inode, struct file *file)
4327{
4328	return single_open(file, regulator_summary_show, inode->i_private);
4329}
4330#endif
4331
4332static const struct file_operations regulator_summary_fops = {
4333#ifdef CONFIG_DEBUG_FS
4334	.open		= regulator_summary_open,
4335	.read		= seq_read,
4336	.llseek		= seq_lseek,
4337	.release	= single_release,
4338#endif
4339};
4340
4341static int __init regulator_init(void)
4342{
4343	int ret;
4344
4345	ret = class_register(&regulator_class);
4346
4347	debugfs_root = debugfs_create_dir("regulator", NULL);
4348	if (!debugfs_root)
4349		pr_warn("regulator: Failed to create debugfs directory\n");
4350
4351	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4352			    &supply_map_fops);
4353
4354	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4355			    NULL, &regulator_summary_fops);
4356
4357	regulator_dummy_init();
4358
4359	return ret;
4360}
4361
4362/* init early to allow our consumers to complete system booting */
4363core_initcall(regulator_init);
4364
4365static int __init regulator_late_cleanup(struct device *dev, void *data)
4366{
4367	struct regulator_dev *rdev = dev_to_rdev(dev);
4368	const struct regulator_ops *ops = rdev->desc->ops;
4369	struct regulation_constraints *c = rdev->constraints;
4370	int enabled, ret;
4371
4372	if (c && c->always_on)
4373		return 0;
4374
4375	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4376		return 0;
4377
4378	mutex_lock(&rdev->mutex);
4379
4380	if (rdev->use_count)
4381		goto unlock;
4382
4383	/* If we can't read the status assume it's on. */
4384	if (ops->is_enabled)
4385		enabled = ops->is_enabled(rdev);
4386	else
4387		enabled = 1;
4388
4389	if (!enabled)
4390		goto unlock;
4391
4392	if (have_full_constraints()) {
4393		/* We log since this may kill the system if it goes
4394		 * wrong. */
4395		rdev_info(rdev, "disabling\n");
4396		ret = _regulator_do_disable(rdev);
4397		if (ret != 0)
4398			rdev_err(rdev, "couldn't disable: %d\n", ret);
4399	} else {
4400		/* The intention is that in future we will
4401		 * assume that full constraints are provided
4402		 * so warn even if we aren't going to do
4403		 * anything here.
4404		 */
4405		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4406	}
4407
4408unlock:
4409	mutex_unlock(&rdev->mutex);
4410
4411	return 0;
4412}
4413
4414static int __init regulator_init_complete(void)
4415{
4416	/*
4417	 * Since DT doesn't provide an idiomatic mechanism for
4418	 * enabling full constraints and since it's much more natural
4419	 * with DT to provide them just assume that a DT enabled
4420	 * system has full constraints.
4421	 */
4422	if (of_have_populated_dt())
4423		has_full_constraints = true;
4424
4425	/* If we have a full configuration then disable any regulators
4426	 * we have permission to change the status for and which are
4427	 * not in use or always_on.  This is effectively the default
4428	 * for DT and ACPI as they have full constraints.
4429	 */
4430	class_for_each_device(&regulator_class, NULL, NULL,
4431			      regulator_late_cleanup);
4432
4433	return 0;
4434}
4435late_initcall_sync(regulator_init_complete);
4436