1/*
2 * RapidIO interconnect services
3 * (RapidIO Interconnect Specification, http://www.rapidio.org)
4 *
5 * Copyright 2005 MontaVista Software, Inc.
6 * Matt Porter <mporter@kernel.crashing.org>
7 *
8 * Copyright 2009 - 2013 Integrated Device Technology, Inc.
9 * Alex Bounine <alexandre.bounine@idt.com>
10 *
11 * This program is free software; you can redistribute  it and/or modify it
12 * under  the terms of  the GNU General  Public License as published by the
13 * Free Software Foundation;  either version 2 of the  License, or (at your
14 * option) any later version.
15 */
16
17#include <linux/types.h>
18#include <linux/kernel.h>
19
20#include <linux/delay.h>
21#include <linux/init.h>
22#include <linux/rio.h>
23#include <linux/rio_drv.h>
24#include <linux/rio_ids.h>
25#include <linux/rio_regs.h>
26#include <linux/module.h>
27#include <linux/spinlock.h>
28#include <linux/slab.h>
29#include <linux/interrupt.h>
30
31#include "rio.h"
32
33MODULE_DESCRIPTION("RapidIO Subsystem Core");
34MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
35MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
36MODULE_LICENSE("GPL");
37
38static int hdid[RIO_MAX_MPORTS];
39static int ids_num;
40module_param_array(hdid, int, &ids_num, 0);
41MODULE_PARM_DESC(hdid,
42	"Destination ID assignment to local RapidIO controllers");
43
44static LIST_HEAD(rio_devices);
45static DEFINE_SPINLOCK(rio_global_list_lock);
46
47static LIST_HEAD(rio_mports);
48static LIST_HEAD(rio_scans);
49static DEFINE_MUTEX(rio_mport_list_lock);
50static unsigned char next_portid;
51static DEFINE_SPINLOCK(rio_mmap_lock);
52
53/**
54 * rio_local_get_device_id - Get the base/extended device id for a port
55 * @port: RIO master port from which to get the deviceid
56 *
57 * Reads the base/extended device id from the local device
58 * implementing the master port. Returns the 8/16-bit device
59 * id.
60 */
61u16 rio_local_get_device_id(struct rio_mport *port)
62{
63	u32 result;
64
65	rio_local_read_config_32(port, RIO_DID_CSR, &result);
66
67	return (RIO_GET_DID(port->sys_size, result));
68}
69
70/**
71 * rio_add_device- Adds a RIO device to the device model
72 * @rdev: RIO device
73 *
74 * Adds the RIO device to the global device list and adds the RIO
75 * device to the RIO device list.  Creates the generic sysfs nodes
76 * for an RIO device.
77 */
78int rio_add_device(struct rio_dev *rdev)
79{
80	int err;
81
82	err = device_add(&rdev->dev);
83	if (err)
84		return err;
85
86	spin_lock(&rio_global_list_lock);
87	list_add_tail(&rdev->global_list, &rio_devices);
88	spin_unlock(&rio_global_list_lock);
89
90	rio_create_sysfs_dev_files(rdev);
91
92	return 0;
93}
94EXPORT_SYMBOL_GPL(rio_add_device);
95
96/**
97 * rio_request_inb_mbox - request inbound mailbox service
98 * @mport: RIO master port from which to allocate the mailbox resource
99 * @dev_id: Device specific pointer to pass on event
100 * @mbox: Mailbox number to claim
101 * @entries: Number of entries in inbound mailbox queue
102 * @minb: Callback to execute when inbound message is received
103 *
104 * Requests ownership of an inbound mailbox resource and binds
105 * a callback function to the resource. Returns %0 on success.
106 */
107int rio_request_inb_mbox(struct rio_mport *mport,
108			 void *dev_id,
109			 int mbox,
110			 int entries,
111			 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
112				       int slot))
113{
114	int rc = -ENOSYS;
115	struct resource *res;
116
117	if (mport->ops->open_inb_mbox == NULL)
118		goto out;
119
120	res = kmalloc(sizeof(struct resource), GFP_KERNEL);
121
122	if (res) {
123		rio_init_mbox_res(res, mbox, mbox);
124
125		/* Make sure this mailbox isn't in use */
126		if ((rc =
127		     request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
128				      res)) < 0) {
129			kfree(res);
130			goto out;
131		}
132
133		mport->inb_msg[mbox].res = res;
134
135		/* Hook the inbound message callback */
136		mport->inb_msg[mbox].mcback = minb;
137
138		rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
139	} else
140		rc = -ENOMEM;
141
142      out:
143	return rc;
144}
145
146/**
147 * rio_release_inb_mbox - release inbound mailbox message service
148 * @mport: RIO master port from which to release the mailbox resource
149 * @mbox: Mailbox number to release
150 *
151 * Releases ownership of an inbound mailbox resource. Returns 0
152 * if the request has been satisfied.
153 */
154int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
155{
156	if (mport->ops->close_inb_mbox) {
157		mport->ops->close_inb_mbox(mport, mbox);
158
159		/* Release the mailbox resource */
160		return release_resource(mport->inb_msg[mbox].res);
161	} else
162		return -ENOSYS;
163}
164
165/**
166 * rio_request_outb_mbox - request outbound mailbox service
167 * @mport: RIO master port from which to allocate the mailbox resource
168 * @dev_id: Device specific pointer to pass on event
169 * @mbox: Mailbox number to claim
170 * @entries: Number of entries in outbound mailbox queue
171 * @moutb: Callback to execute when outbound message is sent
172 *
173 * Requests ownership of an outbound mailbox resource and binds
174 * a callback function to the resource. Returns 0 on success.
175 */
176int rio_request_outb_mbox(struct rio_mport *mport,
177			  void *dev_id,
178			  int mbox,
179			  int entries,
180			  void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
181{
182	int rc = -ENOSYS;
183	struct resource *res;
184
185	if (mport->ops->open_outb_mbox == NULL)
186		goto out;
187
188	res = kmalloc(sizeof(struct resource), GFP_KERNEL);
189
190	if (res) {
191		rio_init_mbox_res(res, mbox, mbox);
192
193		/* Make sure this outbound mailbox isn't in use */
194		if ((rc =
195		     request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
196				      res)) < 0) {
197			kfree(res);
198			goto out;
199		}
200
201		mport->outb_msg[mbox].res = res;
202
203		/* Hook the inbound message callback */
204		mport->outb_msg[mbox].mcback = moutb;
205
206		rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
207	} else
208		rc = -ENOMEM;
209
210      out:
211	return rc;
212}
213
214/**
215 * rio_release_outb_mbox - release outbound mailbox message service
216 * @mport: RIO master port from which to release the mailbox resource
217 * @mbox: Mailbox number to release
218 *
219 * Releases ownership of an inbound mailbox resource. Returns 0
220 * if the request has been satisfied.
221 */
222int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
223{
224	if (mport->ops->close_outb_mbox) {
225		mport->ops->close_outb_mbox(mport, mbox);
226
227		/* Release the mailbox resource */
228		return release_resource(mport->outb_msg[mbox].res);
229	} else
230		return -ENOSYS;
231}
232
233/**
234 * rio_setup_inb_dbell - bind inbound doorbell callback
235 * @mport: RIO master port to bind the doorbell callback
236 * @dev_id: Device specific pointer to pass on event
237 * @res: Doorbell message resource
238 * @dinb: Callback to execute when doorbell is received
239 *
240 * Adds a doorbell resource/callback pair into a port's
241 * doorbell event list. Returns 0 if the request has been
242 * satisfied.
243 */
244static int
245rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
246		    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
247				  u16 info))
248{
249	int rc = 0;
250	struct rio_dbell *dbell;
251
252	if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) {
253		rc = -ENOMEM;
254		goto out;
255	}
256
257	dbell->res = res;
258	dbell->dinb = dinb;
259	dbell->dev_id = dev_id;
260
261	list_add_tail(&dbell->node, &mport->dbells);
262
263      out:
264	return rc;
265}
266
267/**
268 * rio_request_inb_dbell - request inbound doorbell message service
269 * @mport: RIO master port from which to allocate the doorbell resource
270 * @dev_id: Device specific pointer to pass on event
271 * @start: Doorbell info range start
272 * @end: Doorbell info range end
273 * @dinb: Callback to execute when doorbell is received
274 *
275 * Requests ownership of an inbound doorbell resource and binds
276 * a callback function to the resource. Returns 0 if the request
277 * has been satisfied.
278 */
279int rio_request_inb_dbell(struct rio_mport *mport,
280			  void *dev_id,
281			  u16 start,
282			  u16 end,
283			  void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
284					u16 dst, u16 info))
285{
286	int rc = 0;
287
288	struct resource *res = kmalloc(sizeof(struct resource), GFP_KERNEL);
289
290	if (res) {
291		rio_init_dbell_res(res, start, end);
292
293		/* Make sure these doorbells aren't in use */
294		if ((rc =
295		     request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
296				      res)) < 0) {
297			kfree(res);
298			goto out;
299		}
300
301		/* Hook the doorbell callback */
302		rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
303	} else
304		rc = -ENOMEM;
305
306      out:
307	return rc;
308}
309
310/**
311 * rio_release_inb_dbell - release inbound doorbell message service
312 * @mport: RIO master port from which to release the doorbell resource
313 * @start: Doorbell info range start
314 * @end: Doorbell info range end
315 *
316 * Releases ownership of an inbound doorbell resource and removes
317 * callback from the doorbell event list. Returns 0 if the request
318 * has been satisfied.
319 */
320int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
321{
322	int rc = 0, found = 0;
323	struct rio_dbell *dbell;
324
325	list_for_each_entry(dbell, &mport->dbells, node) {
326		if ((dbell->res->start == start) && (dbell->res->end == end)) {
327			found = 1;
328			break;
329		}
330	}
331
332	/* If we can't find an exact match, fail */
333	if (!found) {
334		rc = -EINVAL;
335		goto out;
336	}
337
338	/* Delete from list */
339	list_del(&dbell->node);
340
341	/* Release the doorbell resource */
342	rc = release_resource(dbell->res);
343
344	/* Free the doorbell event */
345	kfree(dbell);
346
347      out:
348	return rc;
349}
350
351/**
352 * rio_request_outb_dbell - request outbound doorbell message range
353 * @rdev: RIO device from which to allocate the doorbell resource
354 * @start: Doorbell message range start
355 * @end: Doorbell message range end
356 *
357 * Requests ownership of a doorbell message range. Returns a resource
358 * if the request has been satisfied or %NULL on failure.
359 */
360struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
361					u16 end)
362{
363	struct resource *res = kmalloc(sizeof(struct resource), GFP_KERNEL);
364
365	if (res) {
366		rio_init_dbell_res(res, start, end);
367
368		/* Make sure these doorbells aren't in use */
369		if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
370		    < 0) {
371			kfree(res);
372			res = NULL;
373		}
374	}
375
376	return res;
377}
378
379/**
380 * rio_release_outb_dbell - release outbound doorbell message range
381 * @rdev: RIO device from which to release the doorbell resource
382 * @res: Doorbell resource to be freed
383 *
384 * Releases ownership of a doorbell message range. Returns 0 if the
385 * request has been satisfied.
386 */
387int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
388{
389	int rc = release_resource(res);
390
391	kfree(res);
392
393	return rc;
394}
395
396/**
397 * rio_request_inb_pwrite - request inbound port-write message service
398 * @rdev: RIO device to which register inbound port-write callback routine
399 * @pwcback: Callback routine to execute when port-write is received
400 *
401 * Binds a port-write callback function to the RapidIO device.
402 * Returns 0 if the request has been satisfied.
403 */
404int rio_request_inb_pwrite(struct rio_dev *rdev,
405	int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
406{
407	int rc = 0;
408
409	spin_lock(&rio_global_list_lock);
410	if (rdev->pwcback != NULL)
411		rc = -ENOMEM;
412	else
413		rdev->pwcback = pwcback;
414
415	spin_unlock(&rio_global_list_lock);
416	return rc;
417}
418EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
419
420/**
421 * rio_release_inb_pwrite - release inbound port-write message service
422 * @rdev: RIO device which registered for inbound port-write callback
423 *
424 * Removes callback from the rio_dev structure. Returns 0 if the request
425 * has been satisfied.
426 */
427int rio_release_inb_pwrite(struct rio_dev *rdev)
428{
429	int rc = -ENOMEM;
430
431	spin_lock(&rio_global_list_lock);
432	if (rdev->pwcback) {
433		rdev->pwcback = NULL;
434		rc = 0;
435	}
436
437	spin_unlock(&rio_global_list_lock);
438	return rc;
439}
440EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
441
442/**
443 * rio_map_inb_region -- Map inbound memory region.
444 * @mport: Master port.
445 * @local: physical address of memory region to be mapped
446 * @rbase: RIO base address assigned to this window
447 * @size: Size of the memory region
448 * @rflags: Flags for mapping.
449 *
450 * Return: 0 -- Success.
451 *
452 * This function will create the mapping from RIO space to local memory.
453 */
454int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
455			u64 rbase, u32 size, u32 rflags)
456{
457	int rc = 0;
458	unsigned long flags;
459
460	if (!mport->ops->map_inb)
461		return -1;
462	spin_lock_irqsave(&rio_mmap_lock, flags);
463	rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
464	spin_unlock_irqrestore(&rio_mmap_lock, flags);
465	return rc;
466}
467EXPORT_SYMBOL_GPL(rio_map_inb_region);
468
469/**
470 * rio_unmap_inb_region -- Unmap the inbound memory region
471 * @mport: Master port
472 * @lstart: physical address of memory region to be unmapped
473 */
474void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
475{
476	unsigned long flags;
477	if (!mport->ops->unmap_inb)
478		return;
479	spin_lock_irqsave(&rio_mmap_lock, flags);
480	mport->ops->unmap_inb(mport, lstart);
481	spin_unlock_irqrestore(&rio_mmap_lock, flags);
482}
483EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
484
485/**
486 * rio_mport_get_physefb - Helper function that returns register offset
487 *                      for Physical Layer Extended Features Block.
488 * @port: Master port to issue transaction
489 * @local: Indicate a local master port or remote device access
490 * @destid: Destination ID of the device
491 * @hopcount: Number of switch hops to the device
492 */
493u32
494rio_mport_get_physefb(struct rio_mport *port, int local,
495		      u16 destid, u8 hopcount)
496{
497	u32 ext_ftr_ptr;
498	u32 ftr_header;
499
500	ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
501
502	while (ext_ftr_ptr)  {
503		if (local)
504			rio_local_read_config_32(port, ext_ftr_ptr,
505						 &ftr_header);
506		else
507			rio_mport_read_config_32(port, destid, hopcount,
508						 ext_ftr_ptr, &ftr_header);
509
510		ftr_header = RIO_GET_BLOCK_ID(ftr_header);
511		switch (ftr_header) {
512
513		case RIO_EFB_SER_EP_ID_V13P:
514		case RIO_EFB_SER_EP_REC_ID_V13P:
515		case RIO_EFB_SER_EP_FREE_ID_V13P:
516		case RIO_EFB_SER_EP_ID:
517		case RIO_EFB_SER_EP_REC_ID:
518		case RIO_EFB_SER_EP_FREE_ID:
519		case RIO_EFB_SER_EP_FREC_ID:
520
521			return ext_ftr_ptr;
522
523		default:
524			break;
525		}
526
527		ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
528						hopcount, ext_ftr_ptr);
529	}
530
531	return ext_ftr_ptr;
532}
533EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
534
535/**
536 * rio_get_comptag - Begin or continue searching for a RIO device by component tag
537 * @comp_tag: RIO component tag to match
538 * @from: Previous RIO device found in search, or %NULL for new search
539 *
540 * Iterates through the list of known RIO devices. If a RIO device is
541 * found with a matching @comp_tag, a pointer to its device
542 * structure is returned. Otherwise, %NULL is returned. A new search
543 * is initiated by passing %NULL to the @from argument. Otherwise, if
544 * @from is not %NULL, searches continue from next device on the global
545 * list.
546 */
547struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
548{
549	struct list_head *n;
550	struct rio_dev *rdev;
551
552	spin_lock(&rio_global_list_lock);
553	n = from ? from->global_list.next : rio_devices.next;
554
555	while (n && (n != &rio_devices)) {
556		rdev = rio_dev_g(n);
557		if (rdev->comp_tag == comp_tag)
558			goto exit;
559		n = n->next;
560	}
561	rdev = NULL;
562exit:
563	spin_unlock(&rio_global_list_lock);
564	return rdev;
565}
566EXPORT_SYMBOL_GPL(rio_get_comptag);
567
568/**
569 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
570 * @rdev: Pointer to RIO device control structure
571 * @pnum: Switch port number to set LOCKOUT bit
572 * @lock: Operation : set (=1) or clear (=0)
573 */
574int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
575{
576	u32 regval;
577
578	rio_read_config_32(rdev,
579				 rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
580				 &regval);
581	if (lock)
582		regval |= RIO_PORT_N_CTL_LOCKOUT;
583	else
584		regval &= ~RIO_PORT_N_CTL_LOCKOUT;
585
586	rio_write_config_32(rdev,
587				  rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
588				  regval);
589	return 0;
590}
591EXPORT_SYMBOL_GPL(rio_set_port_lockout);
592
593/**
594 * rio_enable_rx_tx_port - enable input receiver and output transmitter of
595 * given port
596 * @port: Master port associated with the RIO network
597 * @local: local=1 select local port otherwise a far device is reached
598 * @destid: Destination ID of the device to check host bit
599 * @hopcount: Number of hops to reach the target
600 * @port_num: Port (-number on switch) to enable on a far end device
601 *
602 * Returns 0 or 1 from on General Control Command and Status Register
603 * (EXT_PTR+0x3C)
604 */
605int rio_enable_rx_tx_port(struct rio_mport *port,
606			  int local, u16 destid,
607			  u8 hopcount, u8 port_num)
608{
609#ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
610	u32 regval;
611	u32 ext_ftr_ptr;
612
613	/*
614	* enable rx input tx output port
615	*/
616	pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
617		 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
618
619	ext_ftr_ptr = rio_mport_get_physefb(port, local, destid, hopcount);
620
621	if (local) {
622		rio_local_read_config_32(port, ext_ftr_ptr +
623				RIO_PORT_N_CTL_CSR(0),
624				&regval);
625	} else {
626		if (rio_mport_read_config_32(port, destid, hopcount,
627		ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), &regval) < 0)
628			return -EIO;
629	}
630
631	if (regval & RIO_PORT_N_CTL_P_TYP_SER) {
632		/* serial */
633		regval = regval | RIO_PORT_N_CTL_EN_RX_SER
634				| RIO_PORT_N_CTL_EN_TX_SER;
635	} else {
636		/* parallel */
637		regval = regval | RIO_PORT_N_CTL_EN_RX_PAR
638				| RIO_PORT_N_CTL_EN_TX_PAR;
639	}
640
641	if (local) {
642		rio_local_write_config_32(port, ext_ftr_ptr +
643					  RIO_PORT_N_CTL_CSR(0), regval);
644	} else {
645		if (rio_mport_write_config_32(port, destid, hopcount,
646		    ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), regval) < 0)
647			return -EIO;
648	}
649#endif
650	return 0;
651}
652EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
653
654
655/**
656 * rio_chk_dev_route - Validate route to the specified device.
657 * @rdev:  RIO device failed to respond
658 * @nrdev: Last active device on the route to rdev
659 * @npnum: nrdev's port number on the route to rdev
660 *
661 * Follows a route to the specified RIO device to determine the last available
662 * device (and corresponding RIO port) on the route.
663 */
664static int
665rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
666{
667	u32 result;
668	int p_port, rc = -EIO;
669	struct rio_dev *prev = NULL;
670
671	/* Find switch with failed RIO link */
672	while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
673		if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
674			prev = rdev->prev;
675			break;
676		}
677		rdev = rdev->prev;
678	}
679
680	if (prev == NULL)
681		goto err_out;
682
683	p_port = prev->rswitch->route_table[rdev->destid];
684
685	if (p_port != RIO_INVALID_ROUTE) {
686		pr_debug("RIO: link failed on [%s]-P%d\n",
687			 rio_name(prev), p_port);
688		*nrdev = prev;
689		*npnum = p_port;
690		rc = 0;
691	} else
692		pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
693err_out:
694	return rc;
695}
696
697/**
698 * rio_mport_chk_dev_access - Validate access to the specified device.
699 * @mport: Master port to send transactions
700 * @destid: Device destination ID in network
701 * @hopcount: Number of hops into the network
702 */
703int
704rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
705{
706	int i = 0;
707	u32 tmp;
708
709	while (rio_mport_read_config_32(mport, destid, hopcount,
710					RIO_DEV_ID_CAR, &tmp)) {
711		i++;
712		if (i == RIO_MAX_CHK_RETRY)
713			return -EIO;
714		mdelay(1);
715	}
716
717	return 0;
718}
719EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
720
721/**
722 * rio_chk_dev_access - Validate access to the specified device.
723 * @rdev: Pointer to RIO device control structure
724 */
725static int rio_chk_dev_access(struct rio_dev *rdev)
726{
727	return rio_mport_chk_dev_access(rdev->net->hport,
728					rdev->destid, rdev->hopcount);
729}
730
731/**
732 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
733 *                        returns link-response (if requested).
734 * @rdev: RIO devive to issue Input-status command
735 * @pnum: Device port number to issue the command
736 * @lnkresp: Response from a link partner
737 */
738static int
739rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
740{
741	u32 regval;
742	int checkcount;
743
744	if (lnkresp) {
745		/* Read from link maintenance response register
746		 * to clear valid bit */
747		rio_read_config_32(rdev,
748			rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
749			&regval);
750		udelay(50);
751	}
752
753	/* Issue Input-status command */
754	rio_write_config_32(rdev,
755		rdev->phys_efptr + RIO_PORT_N_MNT_REQ_CSR(pnum),
756		RIO_MNT_REQ_CMD_IS);
757
758	/* Exit if the response is not expected */
759	if (lnkresp == NULL)
760		return 0;
761
762	checkcount = 3;
763	while (checkcount--) {
764		udelay(50);
765		rio_read_config_32(rdev,
766			rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
767			&regval);
768		if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
769			*lnkresp = regval;
770			return 0;
771		}
772	}
773
774	return -EIO;
775}
776
777/**
778 * rio_clr_err_stopped - Clears port Error-stopped states.
779 * @rdev: Pointer to RIO device control structure
780 * @pnum: Switch port number to clear errors
781 * @err_status: port error status (if 0 reads register from device)
782 */
783static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
784{
785	struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
786	u32 regval;
787	u32 far_ackid, far_linkstat, near_ackid;
788
789	if (err_status == 0)
790		rio_read_config_32(rdev,
791			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
792			&err_status);
793
794	if (err_status & RIO_PORT_N_ERR_STS_PW_OUT_ES) {
795		pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
796		/*
797		 * Send a Link-Request/Input-Status control symbol
798		 */
799		if (rio_get_input_status(rdev, pnum, &regval)) {
800			pr_debug("RIO_EM: Input-status response timeout\n");
801			goto rd_err;
802		}
803
804		pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
805			 pnum, regval);
806		far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
807		far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
808		rio_read_config_32(rdev,
809			rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
810			&regval);
811		pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
812		near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
813		pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
814			 " near_ackID=0x%02x\n",
815			pnum, far_ackid, far_linkstat, near_ackid);
816
817		/*
818		 * If required, synchronize ackIDs of near and
819		 * far sides.
820		 */
821		if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
822		    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
823			/* Align near outstanding/outbound ackIDs with
824			 * far inbound.
825			 */
826			rio_write_config_32(rdev,
827				rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
828				(near_ackid << 24) |
829					(far_ackid << 8) | far_ackid);
830			/* Align far outstanding/outbound ackIDs with
831			 * near inbound.
832			 */
833			far_ackid++;
834			if (nextdev)
835				rio_write_config_32(nextdev,
836					nextdev->phys_efptr +
837					RIO_PORT_N_ACK_STS_CSR(RIO_GET_PORT_NUM(nextdev->swpinfo)),
838					(far_ackid << 24) |
839					(near_ackid << 8) | near_ackid);
840			else
841				pr_debug("RIO_EM: Invalid nextdev pointer (NULL)\n");
842		}
843rd_err:
844		rio_read_config_32(rdev,
845			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
846			&err_status);
847		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
848	}
849
850	if ((err_status & RIO_PORT_N_ERR_STS_PW_INP_ES) && nextdev) {
851		pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
852		rio_get_input_status(nextdev,
853				     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
854		udelay(50);
855
856		rio_read_config_32(rdev,
857			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
858			&err_status);
859		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
860	}
861
862	return (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
863			      RIO_PORT_N_ERR_STS_PW_INP_ES)) ? 1 : 0;
864}
865
866/**
867 * rio_inb_pwrite_handler - process inbound port-write message
868 * @pw_msg: pointer to inbound port-write message
869 *
870 * Processes an inbound port-write message. Returns 0 if the request
871 * has been satisfied.
872 */
873int rio_inb_pwrite_handler(union rio_pw_msg *pw_msg)
874{
875	struct rio_dev *rdev;
876	u32 err_status, em_perrdet, em_ltlerrdet;
877	int rc, portnum;
878
879	rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
880	if (rdev == NULL) {
881		/* Device removed or enumeration error */
882		pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
883			__func__, pw_msg->em.comptag);
884		return -EIO;
885	}
886
887	pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
888
889#ifdef DEBUG_PW
890	{
891	u32 i;
892	for (i = 0; i < RIO_PW_MSG_SIZE/sizeof(u32);) {
893			pr_debug("0x%02x: %08x %08x %08x %08x\n",
894				 i*4, pw_msg->raw[i], pw_msg->raw[i + 1],
895				 pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
896			i += 4;
897	}
898	}
899#endif
900
901	/* Call an external service function (if such is registered
902	 * for this device). This may be the service for endpoints that send
903	 * device-specific port-write messages. End-point messages expected
904	 * to be handled completely by EP specific device driver.
905	 * For switches rc==0 signals that no standard processing required.
906	 */
907	if (rdev->pwcback != NULL) {
908		rc = rdev->pwcback(rdev, pw_msg, 0);
909		if (rc == 0)
910			return 0;
911	}
912
913	portnum = pw_msg->em.is_port & 0xFF;
914
915	/* Check if device and route to it are functional:
916	 * Sometimes devices may send PW message(s) just before being
917	 * powered down (or link being lost).
918	 */
919	if (rio_chk_dev_access(rdev)) {
920		pr_debug("RIO: device access failed - get link partner\n");
921		/* Scan route to the device and identify failed link.
922		 * This will replace device and port reported in PW message.
923		 * PW message should not be used after this point.
924		 */
925		if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
926			pr_err("RIO: Route trace for %s failed\n",
927				rio_name(rdev));
928			return -EIO;
929		}
930		pw_msg = NULL;
931	}
932
933	/* For End-point devices processing stops here */
934	if (!(rdev->pef & RIO_PEF_SWITCH))
935		return 0;
936
937	if (rdev->phys_efptr == 0) {
938		pr_err("RIO_PW: Bad switch initialization for %s\n",
939			rio_name(rdev));
940		return 0;
941	}
942
943	/*
944	 * Process the port-write notification from switch
945	 */
946	if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
947		rdev->rswitch->ops->em_handle(rdev, portnum);
948
949	rio_read_config_32(rdev,
950			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
951			&err_status);
952	pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
953
954	if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
955
956		if (!(rdev->rswitch->port_ok & (1 << portnum))) {
957			rdev->rswitch->port_ok |= (1 << portnum);
958			rio_set_port_lockout(rdev, portnum, 0);
959			/* Schedule Insertion Service */
960			pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
961			       rio_name(rdev), portnum);
962		}
963
964		/* Clear error-stopped states (if reported).
965		 * Depending on the link partner state, two attempts
966		 * may be needed for successful recovery.
967		 */
968		if (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
969				  RIO_PORT_N_ERR_STS_PW_INP_ES)) {
970			if (rio_clr_err_stopped(rdev, portnum, err_status))
971				rio_clr_err_stopped(rdev, portnum, 0);
972		}
973	}  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
974
975		if (rdev->rswitch->port_ok & (1 << portnum)) {
976			rdev->rswitch->port_ok &= ~(1 << portnum);
977			rio_set_port_lockout(rdev, portnum, 1);
978
979			rio_write_config_32(rdev,
980				rdev->phys_efptr +
981					RIO_PORT_N_ACK_STS_CSR(portnum),
982				RIO_PORT_N_ACK_CLEAR);
983
984			/* Schedule Extraction Service */
985			pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
986			       rio_name(rdev), portnum);
987		}
988	}
989
990	rio_read_config_32(rdev,
991		rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
992	if (em_perrdet) {
993		pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
994			 portnum, em_perrdet);
995		/* Clear EM Port N Error Detect CSR */
996		rio_write_config_32(rdev,
997			rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
998	}
999
1000	rio_read_config_32(rdev,
1001		rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1002	if (em_ltlerrdet) {
1003		pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1004			 em_ltlerrdet);
1005		/* Clear EM L/T Layer Error Detect CSR */
1006		rio_write_config_32(rdev,
1007			rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1008	}
1009
1010	/* Clear remaining error bits and Port-Write Pending bit */
1011	rio_write_config_32(rdev,
1012			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
1013			err_status);
1014
1015	return 0;
1016}
1017EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1018
1019/**
1020 * rio_mport_get_efb - get pointer to next extended features block
1021 * @port: Master port to issue transaction
1022 * @local: Indicate a local master port or remote device access
1023 * @destid: Destination ID of the device
1024 * @hopcount: Number of switch hops to the device
1025 * @from: Offset of  current Extended Feature block header (if 0 starts
1026 * from	ExtFeaturePtr)
1027 */
1028u32
1029rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1030		      u8 hopcount, u32 from)
1031{
1032	u32 reg_val;
1033
1034	if (from == 0) {
1035		if (local)
1036			rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1037						 &reg_val);
1038		else
1039			rio_mport_read_config_32(port, destid, hopcount,
1040						 RIO_ASM_INFO_CAR, &reg_val);
1041		return reg_val & RIO_EXT_FTR_PTR_MASK;
1042	} else {
1043		if (local)
1044			rio_local_read_config_32(port, from, &reg_val);
1045		else
1046			rio_mport_read_config_32(port, destid, hopcount,
1047						 from, &reg_val);
1048		return RIO_GET_BLOCK_ID(reg_val);
1049	}
1050}
1051EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1052
1053/**
1054 * rio_mport_get_feature - query for devices' extended features
1055 * @port: Master port to issue transaction
1056 * @local: Indicate a local master port or remote device access
1057 * @destid: Destination ID of the device
1058 * @hopcount: Number of switch hops to the device
1059 * @ftr: Extended feature code
1060 *
1061 * Tell if a device supports a given RapidIO capability.
1062 * Returns the offset of the requested extended feature
1063 * block within the device's RIO configuration space or
1064 * 0 in case the device does not support it.  Possible
1065 * values for @ftr:
1066 *
1067 * %RIO_EFB_PAR_EP_ID		LP/LVDS EP Devices
1068 *
1069 * %RIO_EFB_PAR_EP_REC_ID	LP/LVDS EP Recovery Devices
1070 *
1071 * %RIO_EFB_PAR_EP_FREE_ID	LP/LVDS EP Free Devices
1072 *
1073 * %RIO_EFB_SER_EP_ID		LP/Serial EP Devices
1074 *
1075 * %RIO_EFB_SER_EP_REC_ID	LP/Serial EP Recovery Devices
1076 *
1077 * %RIO_EFB_SER_EP_FREE_ID	LP/Serial EP Free Devices
1078 */
1079u32
1080rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1081		      u8 hopcount, int ftr)
1082{
1083	u32 asm_info, ext_ftr_ptr, ftr_header;
1084
1085	if (local)
1086		rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1087	else
1088		rio_mport_read_config_32(port, destid, hopcount,
1089					 RIO_ASM_INFO_CAR, &asm_info);
1090
1091	ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1092
1093	while (ext_ftr_ptr) {
1094		if (local)
1095			rio_local_read_config_32(port, ext_ftr_ptr,
1096						 &ftr_header);
1097		else
1098			rio_mport_read_config_32(port, destid, hopcount,
1099						 ext_ftr_ptr, &ftr_header);
1100		if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1101			return ext_ftr_ptr;
1102		if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header)))
1103			break;
1104	}
1105
1106	return 0;
1107}
1108EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1109
1110/**
1111 * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1112 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1113 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1114 * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1115 * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1116 * @from: Previous RIO device found in search, or %NULL for new search
1117 *
1118 * Iterates through the list of known RIO devices. If a RIO device is
1119 * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1120 * count to the device is incrememted and a pointer to its device
1121 * structure is returned. Otherwise, %NULL is returned. A new search
1122 * is initiated by passing %NULL to the @from argument. Otherwise, if
1123 * @from is not %NULL, searches continue from next device on the global
1124 * list. The reference count for @from is always decremented if it is
1125 * not %NULL.
1126 */
1127struct rio_dev *rio_get_asm(u16 vid, u16 did,
1128			    u16 asm_vid, u16 asm_did, struct rio_dev *from)
1129{
1130	struct list_head *n;
1131	struct rio_dev *rdev;
1132
1133	WARN_ON(in_interrupt());
1134	spin_lock(&rio_global_list_lock);
1135	n = from ? from->global_list.next : rio_devices.next;
1136
1137	while (n && (n != &rio_devices)) {
1138		rdev = rio_dev_g(n);
1139		if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1140		    (did == RIO_ANY_ID || rdev->did == did) &&
1141		    (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1142		    (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1143			goto exit;
1144		n = n->next;
1145	}
1146	rdev = NULL;
1147      exit:
1148	rio_dev_put(from);
1149	rdev = rio_dev_get(rdev);
1150	spin_unlock(&rio_global_list_lock);
1151	return rdev;
1152}
1153
1154/**
1155 * rio_get_device - Begin or continue searching for a RIO device by vid/did
1156 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1157 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1158 * @from: Previous RIO device found in search, or %NULL for new search
1159 *
1160 * Iterates through the list of known RIO devices. If a RIO device is
1161 * found with a matching @vid and @did, the reference count to the
1162 * device is incrememted and a pointer to its device structure is returned.
1163 * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1164 * to the @from argument. Otherwise, if @from is not %NULL, searches
1165 * continue from next device on the global list. The reference count for
1166 * @from is always decremented if it is not %NULL.
1167 */
1168struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1169{
1170	return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1171}
1172
1173/**
1174 * rio_std_route_add_entry - Add switch route table entry using standard
1175 *   registers defined in RIO specification rev.1.3
1176 * @mport: Master port to issue transaction
1177 * @destid: Destination ID of the device
1178 * @hopcount: Number of switch hops to the device
1179 * @table: routing table ID (global or port-specific)
1180 * @route_destid: destID entry in the RT
1181 * @route_port: destination port for specified destID
1182 */
1183static int
1184rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1185			u16 table, u16 route_destid, u8 route_port)
1186{
1187	if (table == RIO_GLOBAL_TABLE) {
1188		rio_mport_write_config_32(mport, destid, hopcount,
1189				RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1190				(u32)route_destid);
1191		rio_mport_write_config_32(mport, destid, hopcount,
1192				RIO_STD_RTE_CONF_PORT_SEL_CSR,
1193				(u32)route_port);
1194	}
1195
1196	udelay(10);
1197	return 0;
1198}
1199
1200/**
1201 * rio_std_route_get_entry - Read switch route table entry (port number)
1202 *   associated with specified destID using standard registers defined in RIO
1203 *   specification rev.1.3
1204 * @mport: Master port to issue transaction
1205 * @destid: Destination ID of the device
1206 * @hopcount: Number of switch hops to the device
1207 * @table: routing table ID (global or port-specific)
1208 * @route_destid: destID entry in the RT
1209 * @route_port: returned destination port for specified destID
1210 */
1211static int
1212rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1213			u16 table, u16 route_destid, u8 *route_port)
1214{
1215	u32 result;
1216
1217	if (table == RIO_GLOBAL_TABLE) {
1218		rio_mport_write_config_32(mport, destid, hopcount,
1219				RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1220		rio_mport_read_config_32(mport, destid, hopcount,
1221				RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1222
1223		*route_port = (u8)result;
1224	}
1225
1226	return 0;
1227}
1228
1229/**
1230 * rio_std_route_clr_table - Clear swotch route table using standard registers
1231 *   defined in RIO specification rev.1.3.
1232 * @mport: Master port to issue transaction
1233 * @destid: Destination ID of the device
1234 * @hopcount: Number of switch hops to the device
1235 * @table: routing table ID (global or port-specific)
1236 */
1237static int
1238rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1239			u16 table)
1240{
1241	u32 max_destid = 0xff;
1242	u32 i, pef, id_inc = 1, ext_cfg = 0;
1243	u32 port_sel = RIO_INVALID_ROUTE;
1244
1245	if (table == RIO_GLOBAL_TABLE) {
1246		rio_mport_read_config_32(mport, destid, hopcount,
1247					 RIO_PEF_CAR, &pef);
1248
1249		if (mport->sys_size) {
1250			rio_mport_read_config_32(mport, destid, hopcount,
1251						 RIO_SWITCH_RT_LIMIT,
1252						 &max_destid);
1253			max_destid &= RIO_RT_MAX_DESTID;
1254		}
1255
1256		if (pef & RIO_PEF_EXT_RT) {
1257			ext_cfg = 0x80000000;
1258			id_inc = 4;
1259			port_sel = (RIO_INVALID_ROUTE << 24) |
1260				   (RIO_INVALID_ROUTE << 16) |
1261				   (RIO_INVALID_ROUTE << 8) |
1262				   RIO_INVALID_ROUTE;
1263		}
1264
1265		for (i = 0; i <= max_destid;) {
1266			rio_mport_write_config_32(mport, destid, hopcount,
1267					RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1268					ext_cfg | i);
1269			rio_mport_write_config_32(mport, destid, hopcount,
1270					RIO_STD_RTE_CONF_PORT_SEL_CSR,
1271					port_sel);
1272			i += id_inc;
1273		}
1274	}
1275
1276	udelay(10);
1277	return 0;
1278}
1279
1280/**
1281 * rio_lock_device - Acquires host device lock for specified device
1282 * @port: Master port to send transaction
1283 * @destid: Destination ID for device/switch
1284 * @hopcount: Hopcount to reach switch
1285 * @wait_ms: Max wait time in msec (0 = no timeout)
1286 *
1287 * Attepts to acquire host device lock for specified device
1288 * Returns 0 if device lock acquired or EINVAL if timeout expires.
1289 */
1290int rio_lock_device(struct rio_mport *port, u16 destid,
1291		    u8 hopcount, int wait_ms)
1292{
1293	u32 result;
1294	int tcnt = 0;
1295
1296	/* Attempt to acquire device lock */
1297	rio_mport_write_config_32(port, destid, hopcount,
1298				  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1299	rio_mport_read_config_32(port, destid, hopcount,
1300				 RIO_HOST_DID_LOCK_CSR, &result);
1301
1302	while (result != port->host_deviceid) {
1303		if (wait_ms != 0 && tcnt == wait_ms) {
1304			pr_debug("RIO: timeout when locking device %x:%x\n",
1305				destid, hopcount);
1306			return -EINVAL;
1307		}
1308
1309		/* Delay a bit */
1310		mdelay(1);
1311		tcnt++;
1312		/* Try to acquire device lock again */
1313		rio_mport_write_config_32(port, destid,
1314			hopcount,
1315			RIO_HOST_DID_LOCK_CSR,
1316			port->host_deviceid);
1317		rio_mport_read_config_32(port, destid,
1318			hopcount,
1319			RIO_HOST_DID_LOCK_CSR, &result);
1320	}
1321
1322	return 0;
1323}
1324EXPORT_SYMBOL_GPL(rio_lock_device);
1325
1326/**
1327 * rio_unlock_device - Releases host device lock for specified device
1328 * @port: Master port to send transaction
1329 * @destid: Destination ID for device/switch
1330 * @hopcount: Hopcount to reach switch
1331 *
1332 * Returns 0 if device lock released or EINVAL if fails.
1333 */
1334int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1335{
1336	u32 result;
1337
1338	/* Release device lock */
1339	rio_mport_write_config_32(port, destid,
1340				  hopcount,
1341				  RIO_HOST_DID_LOCK_CSR,
1342				  port->host_deviceid);
1343	rio_mport_read_config_32(port, destid, hopcount,
1344		RIO_HOST_DID_LOCK_CSR, &result);
1345	if ((result & 0xffff) != 0xffff) {
1346		pr_debug("RIO: badness when releasing device lock %x:%x\n",
1347			 destid, hopcount);
1348		return -EINVAL;
1349	}
1350
1351	return 0;
1352}
1353EXPORT_SYMBOL_GPL(rio_unlock_device);
1354
1355/**
1356 * rio_route_add_entry- Add a route entry to a switch routing table
1357 * @rdev: RIO device
1358 * @table: Routing table ID
1359 * @route_destid: Destination ID to be routed
1360 * @route_port: Port number to be routed
1361 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1362 *
1363 * If available calls the switch specific add_entry() method to add a route
1364 * entry into a switch routing table. Otherwise uses standard RT update method
1365 * as defined by RapidIO specification. A specific routing table can be selected
1366 * using the @table argument if a switch has per port routing tables or
1367 * the standard (or global) table may be used by passing
1368 * %RIO_GLOBAL_TABLE in @table.
1369 *
1370 * Returns %0 on success or %-EINVAL on failure.
1371 */
1372int rio_route_add_entry(struct rio_dev *rdev,
1373			u16 table, u16 route_destid, u8 route_port, int lock)
1374{
1375	int rc = -EINVAL;
1376	struct rio_switch_ops *ops = rdev->rswitch->ops;
1377
1378	if (lock) {
1379		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1380				     rdev->hopcount, 1000);
1381		if (rc)
1382			return rc;
1383	}
1384
1385	spin_lock(&rdev->rswitch->lock);
1386
1387	if (ops == NULL || ops->add_entry == NULL) {
1388		rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1389					     rdev->hopcount, table,
1390					     route_destid, route_port);
1391	} else if (try_module_get(ops->owner)) {
1392		rc = ops->add_entry(rdev->net->hport, rdev->destid,
1393				    rdev->hopcount, table, route_destid,
1394				    route_port);
1395		module_put(ops->owner);
1396	}
1397
1398	spin_unlock(&rdev->rswitch->lock);
1399
1400	if (lock)
1401		rio_unlock_device(rdev->net->hport, rdev->destid,
1402				  rdev->hopcount);
1403
1404	return rc;
1405}
1406EXPORT_SYMBOL_GPL(rio_route_add_entry);
1407
1408/**
1409 * rio_route_get_entry- Read an entry from a switch routing table
1410 * @rdev: RIO device
1411 * @table: Routing table ID
1412 * @route_destid: Destination ID to be routed
1413 * @route_port: Pointer to read port number into
1414 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1415 *
1416 * If available calls the switch specific get_entry() method to fetch a route
1417 * entry from a switch routing table. Otherwise uses standard RT read method
1418 * as defined by RapidIO specification. A specific routing table can be selected
1419 * using the @table argument if a switch has per port routing tables or
1420 * the standard (or global) table may be used by passing
1421 * %RIO_GLOBAL_TABLE in @table.
1422 *
1423 * Returns %0 on success or %-EINVAL on failure.
1424 */
1425int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1426			u16 route_destid, u8 *route_port, int lock)
1427{
1428	int rc = -EINVAL;
1429	struct rio_switch_ops *ops = rdev->rswitch->ops;
1430
1431	if (lock) {
1432		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1433				     rdev->hopcount, 1000);
1434		if (rc)
1435			return rc;
1436	}
1437
1438	spin_lock(&rdev->rswitch->lock);
1439
1440	if (ops == NULL || ops->get_entry == NULL) {
1441		rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1442					     rdev->hopcount, table,
1443					     route_destid, route_port);
1444	} else if (try_module_get(ops->owner)) {
1445		rc = ops->get_entry(rdev->net->hport, rdev->destid,
1446				    rdev->hopcount, table, route_destid,
1447				    route_port);
1448		module_put(ops->owner);
1449	}
1450
1451	spin_unlock(&rdev->rswitch->lock);
1452
1453	if (lock)
1454		rio_unlock_device(rdev->net->hport, rdev->destid,
1455				  rdev->hopcount);
1456	return rc;
1457}
1458EXPORT_SYMBOL_GPL(rio_route_get_entry);
1459
1460/**
1461 * rio_route_clr_table - Clear a switch routing table
1462 * @rdev: RIO device
1463 * @table: Routing table ID
1464 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1465 *
1466 * If available calls the switch specific clr_table() method to clear a switch
1467 * routing table. Otherwise uses standard RT write method as defined by RapidIO
1468 * specification. A specific routing table can be selected using the @table
1469 * argument if a switch has per port routing tables or the standard (or global)
1470 * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1471 *
1472 * Returns %0 on success or %-EINVAL on failure.
1473 */
1474int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1475{
1476	int rc = -EINVAL;
1477	struct rio_switch_ops *ops = rdev->rswitch->ops;
1478
1479	if (lock) {
1480		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1481				     rdev->hopcount, 1000);
1482		if (rc)
1483			return rc;
1484	}
1485
1486	spin_lock(&rdev->rswitch->lock);
1487
1488	if (ops == NULL || ops->clr_table == NULL) {
1489		rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1490					     rdev->hopcount, table);
1491	} else if (try_module_get(ops->owner)) {
1492		rc = ops->clr_table(rdev->net->hport, rdev->destid,
1493				    rdev->hopcount, table);
1494
1495		module_put(ops->owner);
1496	}
1497
1498	spin_unlock(&rdev->rswitch->lock);
1499
1500	if (lock)
1501		rio_unlock_device(rdev->net->hport, rdev->destid,
1502				  rdev->hopcount);
1503
1504	return rc;
1505}
1506EXPORT_SYMBOL_GPL(rio_route_clr_table);
1507
1508#ifdef CONFIG_RAPIDIO_DMA_ENGINE
1509
1510static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1511{
1512	struct rio_mport *mport = arg;
1513
1514	/* Check that DMA device belongs to the right MPORT */
1515	return mport == container_of(chan->device, struct rio_mport, dma);
1516}
1517
1518/**
1519 * rio_request_mport_dma - request RapidIO capable DMA channel associated
1520 *   with specified local RapidIO mport device.
1521 * @mport: RIO mport to perform DMA data transfers
1522 *
1523 * Returns pointer to allocated DMA channel or NULL if failed.
1524 */
1525struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1526{
1527	dma_cap_mask_t mask;
1528
1529	dma_cap_zero(mask);
1530	dma_cap_set(DMA_SLAVE, mask);
1531	return dma_request_channel(mask, rio_chan_filter, mport);
1532}
1533EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1534
1535/**
1536 * rio_request_dma - request RapidIO capable DMA channel that supports
1537 *   specified target RapidIO device.
1538 * @rdev: RIO device associated with DMA transfer
1539 *
1540 * Returns pointer to allocated DMA channel or NULL if failed.
1541 */
1542struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1543{
1544	return rio_request_mport_dma(rdev->net->hport);
1545}
1546EXPORT_SYMBOL_GPL(rio_request_dma);
1547
1548/**
1549 * rio_release_dma - release specified DMA channel
1550 * @dchan: DMA channel to release
1551 */
1552void rio_release_dma(struct dma_chan *dchan)
1553{
1554	dma_release_channel(dchan);
1555}
1556EXPORT_SYMBOL_GPL(rio_release_dma);
1557
1558/**
1559 * rio_dma_prep_xfer - RapidIO specific wrapper
1560 *   for device_prep_slave_sg callback defined by DMAENGINE.
1561 * @dchan: DMA channel to configure
1562 * @destid: target RapidIO device destination ID
1563 * @data: RIO specific data descriptor
1564 * @direction: DMA data transfer direction (TO or FROM the device)
1565 * @flags: dmaengine defined flags
1566 *
1567 * Initializes RapidIO capable DMA channel for the specified data transfer.
1568 * Uses DMA channel private extension to pass information related to remote
1569 * target RIO device.
1570 * Returns pointer to DMA transaction descriptor or NULL if failed.
1571 */
1572struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1573	u16 destid, struct rio_dma_data *data,
1574	enum dma_transfer_direction direction, unsigned long flags)
1575{
1576	struct rio_dma_ext rio_ext;
1577
1578	if (dchan->device->device_prep_slave_sg == NULL) {
1579		pr_err("%s: prep_rio_sg == NULL\n", __func__);
1580		return NULL;
1581	}
1582
1583	rio_ext.destid = destid;
1584	rio_ext.rio_addr_u = data->rio_addr_u;
1585	rio_ext.rio_addr = data->rio_addr;
1586	rio_ext.wr_type = data->wr_type;
1587
1588	return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1589				     direction, flags, &rio_ext);
1590}
1591EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1592
1593/**
1594 * rio_dma_prep_slave_sg - RapidIO specific wrapper
1595 *   for device_prep_slave_sg callback defined by DMAENGINE.
1596 * @rdev: RIO device control structure
1597 * @dchan: DMA channel to configure
1598 * @data: RIO specific data descriptor
1599 * @direction: DMA data transfer direction (TO or FROM the device)
1600 * @flags: dmaengine defined flags
1601 *
1602 * Initializes RapidIO capable DMA channel for the specified data transfer.
1603 * Uses DMA channel private extension to pass information related to remote
1604 * target RIO device.
1605 * Returns pointer to DMA transaction descriptor or NULL if failed.
1606 */
1607struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1608	struct dma_chan *dchan, struct rio_dma_data *data,
1609	enum dma_transfer_direction direction, unsigned long flags)
1610{
1611	return rio_dma_prep_xfer(dchan,	rdev->destid, data, direction, flags);
1612}
1613EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1614
1615#endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1616
1617/**
1618 * rio_find_mport - find RIO mport by its ID
1619 * @mport_id: number (ID) of mport device
1620 *
1621 * Given a RIO mport number, the desired mport is located
1622 * in the global list of mports. If the mport is found, a pointer to its
1623 * data structure is returned.  If no mport is found, %NULL is returned.
1624 */
1625struct rio_mport *rio_find_mport(int mport_id)
1626{
1627	struct rio_mport *port;
1628
1629	mutex_lock(&rio_mport_list_lock);
1630	list_for_each_entry(port, &rio_mports, node) {
1631		if (port->id == mport_id)
1632			goto found;
1633	}
1634	port = NULL;
1635found:
1636	mutex_unlock(&rio_mport_list_lock);
1637
1638	return port;
1639}
1640
1641/**
1642 * rio_register_scan - enumeration/discovery method registration interface
1643 * @mport_id: mport device ID for which fabric scan routine has to be set
1644 *            (RIO_MPORT_ANY = set for all available mports)
1645 * @scan_ops: enumeration/discovery operations structure
1646 *
1647 * Registers enumeration/discovery operations with RapidIO subsystem and
1648 * attaches it to the specified mport device (or all available mports
1649 * if RIO_MPORT_ANY is specified).
1650 *
1651 * Returns error if the mport already has an enumerator attached to it.
1652 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1653 */
1654int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1655{
1656	struct rio_mport *port;
1657	struct rio_scan_node *scan;
1658	int rc = 0;
1659
1660	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1661
1662	if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1663	    !scan_ops)
1664		return -EINVAL;
1665
1666	mutex_lock(&rio_mport_list_lock);
1667
1668	/*
1669	 * Check if there is another enumerator already registered for
1670	 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1671	 * for the same mport ID are not supported.
1672	 */
1673	list_for_each_entry(scan, &rio_scans, node) {
1674		if (scan->mport_id == mport_id) {
1675			rc = -EBUSY;
1676			goto err_out;
1677		}
1678	}
1679
1680	/*
1681	 * Allocate and initialize new scan registration node.
1682	 */
1683	scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1684	if (!scan) {
1685		rc = -ENOMEM;
1686		goto err_out;
1687	}
1688
1689	scan->mport_id = mport_id;
1690	scan->ops = scan_ops;
1691
1692	/*
1693	 * Traverse the list of registered mports to attach this new scan.
1694	 *
1695	 * The new scan with matching mport ID overrides any previously attached
1696	 * scan assuming that old scan (if any) is the default one (based on the
1697	 * enumerator registration check above).
1698	 * If the new scan is the global one, it will be attached only to mports
1699	 * that do not have their own individual operations already attached.
1700	 */
1701	list_for_each_entry(port, &rio_mports, node) {
1702		if (port->id == mport_id) {
1703			port->nscan = scan_ops;
1704			break;
1705		} else if (mport_id == RIO_MPORT_ANY && !port->nscan)
1706			port->nscan = scan_ops;
1707	}
1708
1709	list_add_tail(&scan->node, &rio_scans);
1710
1711err_out:
1712	mutex_unlock(&rio_mport_list_lock);
1713
1714	return rc;
1715}
1716EXPORT_SYMBOL_GPL(rio_register_scan);
1717
1718/**
1719 * rio_unregister_scan - removes enumeration/discovery method from mport
1720 * @mport_id: mport device ID for which fabric scan routine has to be
1721 *            unregistered (RIO_MPORT_ANY = apply to all mports that use
1722 *            the specified scan_ops)
1723 * @scan_ops: enumeration/discovery operations structure
1724 *
1725 * Removes enumeration or discovery method assigned to the specified mport
1726 * device. If RIO_MPORT_ANY is specified, removes the specified operations from
1727 * all mports that have them attached.
1728 */
1729int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
1730{
1731	struct rio_mport *port;
1732	struct rio_scan_node *scan;
1733
1734	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1735
1736	if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
1737		return -EINVAL;
1738
1739	mutex_lock(&rio_mport_list_lock);
1740
1741	list_for_each_entry(port, &rio_mports, node)
1742		if (port->id == mport_id ||
1743		    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
1744			port->nscan = NULL;
1745
1746	list_for_each_entry(scan, &rio_scans, node) {
1747		if (scan->mport_id == mport_id) {
1748			list_del(&scan->node);
1749			kfree(scan);
1750			break;
1751		}
1752	}
1753
1754	mutex_unlock(&rio_mport_list_lock);
1755
1756	return 0;
1757}
1758EXPORT_SYMBOL_GPL(rio_unregister_scan);
1759
1760/**
1761 * rio_mport_scan - execute enumeration/discovery on the specified mport
1762 * @mport_id: number (ID) of mport device
1763 */
1764int rio_mport_scan(int mport_id)
1765{
1766	struct rio_mport *port = NULL;
1767	int rc;
1768
1769	mutex_lock(&rio_mport_list_lock);
1770	list_for_each_entry(port, &rio_mports, node) {
1771		if (port->id == mport_id)
1772			goto found;
1773	}
1774	mutex_unlock(&rio_mport_list_lock);
1775	return -ENODEV;
1776found:
1777	if (!port->nscan) {
1778		mutex_unlock(&rio_mport_list_lock);
1779		return -EINVAL;
1780	}
1781
1782	if (!try_module_get(port->nscan->owner)) {
1783		mutex_unlock(&rio_mport_list_lock);
1784		return -ENODEV;
1785	}
1786
1787	mutex_unlock(&rio_mport_list_lock);
1788
1789	if (port->host_deviceid >= 0)
1790		rc = port->nscan->enumerate(port, 0);
1791	else
1792		rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
1793
1794	module_put(port->nscan->owner);
1795	return rc;
1796}
1797
1798static void rio_fixup_device(struct rio_dev *dev)
1799{
1800}
1801
1802static int rio_init(void)
1803{
1804	struct rio_dev *dev = NULL;
1805
1806	while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
1807		rio_fixup_device(dev);
1808	}
1809	return 0;
1810}
1811
1812static struct workqueue_struct *rio_wq;
1813
1814struct rio_disc_work {
1815	struct work_struct	work;
1816	struct rio_mport	*mport;
1817};
1818
1819static void disc_work_handler(struct work_struct *_work)
1820{
1821	struct rio_disc_work *work;
1822
1823	work = container_of(_work, struct rio_disc_work, work);
1824	pr_debug("RIO: discovery work for mport %d %s\n",
1825		 work->mport->id, work->mport->name);
1826	if (try_module_get(work->mport->nscan->owner)) {
1827		work->mport->nscan->discover(work->mport, 0);
1828		module_put(work->mport->nscan->owner);
1829	}
1830}
1831
1832int rio_init_mports(void)
1833{
1834	struct rio_mport *port;
1835	struct rio_disc_work *work;
1836	int n = 0;
1837
1838	if (!next_portid)
1839		return -ENODEV;
1840
1841	/*
1842	 * First, run enumerations and check if we need to perform discovery
1843	 * on any of the registered mports.
1844	 */
1845	mutex_lock(&rio_mport_list_lock);
1846	list_for_each_entry(port, &rio_mports, node) {
1847		if (port->host_deviceid >= 0) {
1848			if (port->nscan && try_module_get(port->nscan->owner)) {
1849				port->nscan->enumerate(port, 0);
1850				module_put(port->nscan->owner);
1851			}
1852		} else
1853			n++;
1854	}
1855	mutex_unlock(&rio_mport_list_lock);
1856
1857	if (!n)
1858		goto no_disc;
1859
1860	/*
1861	 * If we have mports that require discovery schedule a discovery work
1862	 * for each of them. If the code below fails to allocate needed
1863	 * resources, exit without error to keep results of enumeration
1864	 * process (if any).
1865	 * TODO: Implement restart of discovery process for all or
1866	 * individual discovering mports.
1867	 */
1868	rio_wq = alloc_workqueue("riodisc", 0, 0);
1869	if (!rio_wq) {
1870		pr_err("RIO: unable allocate rio_wq\n");
1871		goto no_disc;
1872	}
1873
1874	work = kcalloc(n, sizeof *work, GFP_KERNEL);
1875	if (!work) {
1876		pr_err("RIO: no memory for work struct\n");
1877		destroy_workqueue(rio_wq);
1878		goto no_disc;
1879	}
1880
1881	n = 0;
1882	mutex_lock(&rio_mport_list_lock);
1883	list_for_each_entry(port, &rio_mports, node) {
1884		if (port->host_deviceid < 0 && port->nscan) {
1885			work[n].mport = port;
1886			INIT_WORK(&work[n].work, disc_work_handler);
1887			queue_work(rio_wq, &work[n].work);
1888			n++;
1889		}
1890	}
1891
1892	flush_workqueue(rio_wq);
1893	mutex_unlock(&rio_mport_list_lock);
1894	pr_debug("RIO: destroy discovery workqueue\n");
1895	destroy_workqueue(rio_wq);
1896	kfree(work);
1897
1898no_disc:
1899	rio_init();
1900
1901	return 0;
1902}
1903
1904static int rio_get_hdid(int index)
1905{
1906	if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
1907		return -1;
1908
1909	return hdid[index];
1910}
1911
1912int rio_register_mport(struct rio_mport *port)
1913{
1914	struct rio_scan_node *scan = NULL;
1915	int res = 0;
1916
1917	if (next_portid >= RIO_MAX_MPORTS) {
1918		pr_err("RIO: reached specified max number of mports\n");
1919		return 1;
1920	}
1921
1922	port->id = next_portid++;
1923	port->host_deviceid = rio_get_hdid(port->id);
1924	port->nscan = NULL;
1925
1926	dev_set_name(&port->dev, "rapidio%d", port->id);
1927	port->dev.class = &rio_mport_class;
1928
1929	res = device_register(&port->dev);
1930	if (res)
1931		dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
1932			port->id, res);
1933	else
1934		dev_dbg(&port->dev, "RIO: mport%d registered\n", port->id);
1935
1936	mutex_lock(&rio_mport_list_lock);
1937	list_add_tail(&port->node, &rio_mports);
1938
1939	/*
1940	 * Check if there are any registered enumeration/discovery operations
1941	 * that have to be attached to the added mport.
1942	 */
1943	list_for_each_entry(scan, &rio_scans, node) {
1944		if (port->id == scan->mport_id ||
1945		    scan->mport_id == RIO_MPORT_ANY) {
1946			port->nscan = scan->ops;
1947			if (port->id == scan->mport_id)
1948				break;
1949		}
1950	}
1951	mutex_unlock(&rio_mport_list_lock);
1952
1953	pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
1954	return 0;
1955}
1956EXPORT_SYMBOL_GPL(rio_register_mport);
1957
1958EXPORT_SYMBOL_GPL(rio_local_get_device_id);
1959EXPORT_SYMBOL_GPL(rio_get_device);
1960EXPORT_SYMBOL_GPL(rio_get_asm);
1961EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
1962EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
1963EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
1964EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
1965EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
1966EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
1967EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
1968EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
1969EXPORT_SYMBOL_GPL(rio_init_mports);
1970