1/*
2 * Core driver for the pin control subsystem
3 *
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
7 *
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11 *
12 * License terms: GNU General Public License (GPL) version 2
13 */
14#define pr_fmt(fmt) "pinctrl core: " fmt
15
16#include <linux/kernel.h>
17#include <linux/kref.h>
18#include <linux/export.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/slab.h>
22#include <linux/err.h>
23#include <linux/list.h>
24#include <linux/sysfs.h>
25#include <linux/debugfs.h>
26#include <linux/seq_file.h>
27#include <linux/pinctrl/consumer.h>
28#include <linux/pinctrl/pinctrl.h>
29#include <linux/pinctrl/machine.h>
30
31#ifdef CONFIG_GPIOLIB
32#include <asm-generic/gpio.h>
33#endif
34
35#include "core.h"
36#include "devicetree.h"
37#include "pinmux.h"
38#include "pinconf.h"
39
40
41static bool pinctrl_dummy_state;
42
43/* Mutex taken to protect pinctrl_list */
44static DEFINE_MUTEX(pinctrl_list_mutex);
45
46/* Mutex taken to protect pinctrl_maps */
47DEFINE_MUTEX(pinctrl_maps_mutex);
48
49/* Mutex taken to protect pinctrldev_list */
50static DEFINE_MUTEX(pinctrldev_list_mutex);
51
52/* Global list of pin control devices (struct pinctrl_dev) */
53static LIST_HEAD(pinctrldev_list);
54
55/* List of pin controller handles (struct pinctrl) */
56static LIST_HEAD(pinctrl_list);
57
58/* List of pinctrl maps (struct pinctrl_maps) */
59LIST_HEAD(pinctrl_maps);
60
61
62/**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 *
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
69 */
70void pinctrl_provide_dummies(void)
71{
72	pinctrl_dummy_state = true;
73}
74
75const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76{
77	/* We're not allowed to register devices without name */
78	return pctldev->desc->name;
79}
80EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83{
84	return dev_name(pctldev->dev);
85}
86EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89{
90	return pctldev->driver_data;
91}
92EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94/**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
97 *
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
100 */
101struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102{
103	struct pinctrl_dev *pctldev = NULL;
104
105	if (!devname)
106		return NULL;
107
108	mutex_lock(&pinctrldev_list_mutex);
109
110	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111		if (!strcmp(dev_name(pctldev->dev), devname)) {
112			/* Matched on device name */
113			mutex_unlock(&pinctrldev_list_mutex);
114			return pctldev;
115		}
116	}
117
118	mutex_unlock(&pinctrldev_list_mutex);
119
120	return NULL;
121}
122
123struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124{
125	struct pinctrl_dev *pctldev;
126
127	mutex_lock(&pinctrldev_list_mutex);
128
129	list_for_each_entry(pctldev, &pinctrldev_list, node)
130		if (pctldev->dev->of_node == np) {
131			mutex_unlock(&pinctrldev_list_mutex);
132			return pctldev;
133		}
134
135	mutex_unlock(&pinctrldev_list_mutex);
136
137	return NULL;
138}
139
140/**
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
144 */
145int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146{
147	unsigned i, pin;
148
149	/* The pin number can be retrived from the pin controller descriptor */
150	for (i = 0; i < pctldev->desc->npins; i++) {
151		struct pin_desc *desc;
152
153		pin = pctldev->desc->pins[i].number;
154		desc = pin_desc_get(pctldev, pin);
155		/* Pin space may be sparse */
156		if (desc && !strcmp(name, desc->name))
157			return pin;
158	}
159
160	return -EINVAL;
161}
162
163/**
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
167 */
168const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169{
170	const struct pin_desc *desc;
171
172	desc = pin_desc_get(pctldev, pin);
173	if (desc == NULL) {
174		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175			pin);
176		return NULL;
177	}
178
179	return desc->name;
180}
181
182/**
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
186 *
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
189 */
190bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191{
192	struct pin_desc *pindesc;
193
194	if (pin < 0)
195		return false;
196
197	mutex_lock(&pctldev->mutex);
198	pindesc = pin_desc_get(pctldev, pin);
199	mutex_unlock(&pctldev->mutex);
200
201	return pindesc != NULL;
202}
203EXPORT_SYMBOL_GPL(pin_is_valid);
204
205/* Deletes a range of pin descriptors */
206static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207				  const struct pinctrl_pin_desc *pins,
208				  unsigned num_pins)
209{
210	int i;
211
212	for (i = 0; i < num_pins; i++) {
213		struct pin_desc *pindesc;
214
215		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216					    pins[i].number);
217		if (pindesc != NULL) {
218			radix_tree_delete(&pctldev->pin_desc_tree,
219					  pins[i].number);
220			if (pindesc->dynamic_name)
221				kfree(pindesc->name);
222		}
223		kfree(pindesc);
224	}
225}
226
227static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228				    unsigned number, const char *name)
229{
230	struct pin_desc *pindesc;
231
232	pindesc = pin_desc_get(pctldev, number);
233	if (pindesc != NULL) {
234		dev_err(pctldev->dev, "pin %d already registered\n", number);
235		return -EINVAL;
236	}
237
238	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
239	if (pindesc == NULL) {
240		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
241		return -ENOMEM;
242	}
243
244	/* Set owner */
245	pindesc->pctldev = pctldev;
246
247	/* Copy basic pin info */
248	if (name) {
249		pindesc->name = name;
250	} else {
251		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
252		if (pindesc->name == NULL) {
253			kfree(pindesc);
254			return -ENOMEM;
255		}
256		pindesc->dynamic_name = true;
257	}
258
259	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
260	pr_debug("registered pin %d (%s) on %s\n",
261		 number, pindesc->name, pctldev->desc->name);
262	return 0;
263}
264
265static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
266				 struct pinctrl_pin_desc const *pins,
267				 unsigned num_descs)
268{
269	unsigned i;
270	int ret = 0;
271
272	for (i = 0; i < num_descs; i++) {
273		ret = pinctrl_register_one_pin(pctldev,
274					       pins[i].number, pins[i].name);
275		if (ret)
276			return ret;
277	}
278
279	return 0;
280}
281
282/**
283 * gpio_to_pin() - GPIO range GPIO number to pin number translation
284 * @range: GPIO range used for the translation
285 * @gpio: gpio pin to translate to a pin number
286 *
287 * Finds the pin number for a given GPIO using the specified GPIO range
288 * as a base for translation. The distinction between linear GPIO ranges
289 * and pin list based GPIO ranges is managed correctly by this function.
290 *
291 * This function assumes the gpio is part of the specified GPIO range, use
292 * only after making sure this is the case (e.g. by calling it on the
293 * result of successful pinctrl_get_device_gpio_range calls)!
294 */
295static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
296				unsigned int gpio)
297{
298	unsigned int offset = gpio - range->base;
299	if (range->pins)
300		return range->pins[offset];
301	else
302		return range->pin_base + offset;
303}
304
305/**
306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
307 * @pctldev: pin controller device to check
308 * @gpio: gpio pin to check taken from the global GPIO pin space
309 *
310 * Tries to match a GPIO pin number to the ranges handled by a certain pin
311 * controller, return the range or NULL
312 */
313static struct pinctrl_gpio_range *
314pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
315{
316	struct pinctrl_gpio_range *range = NULL;
317
318	mutex_lock(&pctldev->mutex);
319	/* Loop over the ranges */
320	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
321		/* Check if we're in the valid range */
322		if (gpio >= range->base &&
323		    gpio < range->base + range->npins) {
324			mutex_unlock(&pctldev->mutex);
325			return range;
326		}
327	}
328	mutex_unlock(&pctldev->mutex);
329	return NULL;
330}
331
332/**
333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
334 * the same GPIO chip are in range
335 * @gpio: gpio pin to check taken from the global GPIO pin space
336 *
337 * This function is complement of pinctrl_match_gpio_range(). If the return
338 * value of pinctrl_match_gpio_range() is NULL, this function could be used
339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
340 * of the same GPIO chip don't have back-end pinctrl interface.
341 * If the return value is true, it means that pinctrl device is ready & the
342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
343 * is false, it means that pinctrl device may not be ready.
344 */
345#ifdef CONFIG_GPIOLIB
346static bool pinctrl_ready_for_gpio_range(unsigned gpio)
347{
348	struct pinctrl_dev *pctldev;
349	struct pinctrl_gpio_range *range = NULL;
350	struct gpio_chip *chip = gpio_to_chip(gpio);
351
352	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
353		return false;
354
355	mutex_lock(&pinctrldev_list_mutex);
356
357	/* Loop over the pin controllers */
358	list_for_each_entry(pctldev, &pinctrldev_list, node) {
359		/* Loop over the ranges */
360		mutex_lock(&pctldev->mutex);
361		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
362			/* Check if any gpio range overlapped with gpio chip */
363			if (range->base + range->npins - 1 < chip->base ||
364			    range->base > chip->base + chip->ngpio - 1)
365				continue;
366			mutex_unlock(&pctldev->mutex);
367			mutex_unlock(&pinctrldev_list_mutex);
368			return true;
369		}
370		mutex_unlock(&pctldev->mutex);
371	}
372
373	mutex_unlock(&pinctrldev_list_mutex);
374
375	return false;
376}
377#else
378static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
379#endif
380
381/**
382 * pinctrl_get_device_gpio_range() - find device for GPIO range
383 * @gpio: the pin to locate the pin controller for
384 * @outdev: the pin control device if found
385 * @outrange: the GPIO range if found
386 *
387 * Find the pin controller handling a certain GPIO pin from the pinspace of
388 * the GPIO subsystem, return the device and the matching GPIO range. Returns
389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
390 * may still have not been registered.
391 */
392static int pinctrl_get_device_gpio_range(unsigned gpio,
393					 struct pinctrl_dev **outdev,
394					 struct pinctrl_gpio_range **outrange)
395{
396	struct pinctrl_dev *pctldev = NULL;
397
398	mutex_lock(&pinctrldev_list_mutex);
399
400	/* Loop over the pin controllers */
401	list_for_each_entry(pctldev, &pinctrldev_list, node) {
402		struct pinctrl_gpio_range *range;
403
404		range = pinctrl_match_gpio_range(pctldev, gpio);
405		if (range != NULL) {
406			*outdev = pctldev;
407			*outrange = range;
408			mutex_unlock(&pinctrldev_list_mutex);
409			return 0;
410		}
411	}
412
413	mutex_unlock(&pinctrldev_list_mutex);
414
415	return -EPROBE_DEFER;
416}
417
418/**
419 * pinctrl_add_gpio_range() - register a GPIO range for a controller
420 * @pctldev: pin controller device to add the range to
421 * @range: the GPIO range to add
422 *
423 * This adds a range of GPIOs to be handled by a certain pin controller. Call
424 * this to register handled ranges after registering your pin controller.
425 */
426void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427			    struct pinctrl_gpio_range *range)
428{
429	mutex_lock(&pctldev->mutex);
430	list_add_tail(&range->node, &pctldev->gpio_ranges);
431	mutex_unlock(&pctldev->mutex);
432}
433EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
434
435void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436			     struct pinctrl_gpio_range *ranges,
437			     unsigned nranges)
438{
439	int i;
440
441	for (i = 0; i < nranges; i++)
442		pinctrl_add_gpio_range(pctldev, &ranges[i]);
443}
444EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
445
446struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447		struct pinctrl_gpio_range *range)
448{
449	struct pinctrl_dev *pctldev;
450
451	pctldev = get_pinctrl_dev_from_devname(devname);
452
453	/*
454	 * If we can't find this device, let's assume that is because
455	 * it has not probed yet, so the driver trying to register this
456	 * range need to defer probing.
457	 */
458	if (!pctldev) {
459		return ERR_PTR(-EPROBE_DEFER);
460	}
461	pinctrl_add_gpio_range(pctldev, range);
462
463	return pctldev;
464}
465EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
466
467int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468				const unsigned **pins, unsigned *num_pins)
469{
470	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
471	int gs;
472
473	if (!pctlops->get_group_pins)
474		return -EINVAL;
475
476	gs = pinctrl_get_group_selector(pctldev, pin_group);
477	if (gs < 0)
478		return gs;
479
480	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
481}
482EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
483
484/**
485 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
486 * @pctldev: the pin controller device to look in
487 * @pin: a controller-local number to find the range for
488 */
489struct pinctrl_gpio_range *
490pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
491				 unsigned int pin)
492{
493	struct pinctrl_gpio_range *range;
494
495	mutex_lock(&pctldev->mutex);
496	/* Loop over the ranges */
497	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
498		/* Check if we're in the valid range */
499		if (range->pins) {
500			int a;
501			for (a = 0; a < range->npins; a++) {
502				if (range->pins[a] == pin)
503					goto out;
504			}
505		} else if (pin >= range->pin_base &&
506			   pin < range->pin_base + range->npins)
507			goto out;
508	}
509	range = NULL;
510out:
511	mutex_unlock(&pctldev->mutex);
512	return range;
513}
514EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
515
516/**
517 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
518 * @pctldev: pin controller device to remove the range from
519 * @range: the GPIO range to remove
520 */
521void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
522			       struct pinctrl_gpio_range *range)
523{
524	mutex_lock(&pctldev->mutex);
525	list_del(&range->node);
526	mutex_unlock(&pctldev->mutex);
527}
528EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
529
530/**
531 * pinctrl_get_group_selector() - returns the group selector for a group
532 * @pctldev: the pin controller handling the group
533 * @pin_group: the pin group to look up
534 */
535int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
536			       const char *pin_group)
537{
538	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
539	unsigned ngroups = pctlops->get_groups_count(pctldev);
540	unsigned group_selector = 0;
541
542	while (group_selector < ngroups) {
543		const char *gname = pctlops->get_group_name(pctldev,
544							    group_selector);
545		if (!strcmp(gname, pin_group)) {
546			dev_dbg(pctldev->dev,
547				"found group selector %u for %s\n",
548				group_selector,
549				pin_group);
550			return group_selector;
551		}
552
553		group_selector++;
554	}
555
556	dev_err(pctldev->dev, "does not have pin group %s\n",
557		pin_group);
558
559	return -EINVAL;
560}
561
562/**
563 * pinctrl_request_gpio() - request a single pin to be used as GPIO
564 * @gpio: the GPIO pin number from the GPIO subsystem number space
565 *
566 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
567 * as part of their gpio_request() semantics, platforms and individual drivers
568 * shall *NOT* request GPIO pins to be muxed in.
569 */
570int pinctrl_request_gpio(unsigned gpio)
571{
572	struct pinctrl_dev *pctldev;
573	struct pinctrl_gpio_range *range;
574	int ret;
575	int pin;
576
577	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
578	if (ret) {
579		if (pinctrl_ready_for_gpio_range(gpio))
580			ret = 0;
581		return ret;
582	}
583
584	mutex_lock(&pctldev->mutex);
585
586	/* Convert to the pin controllers number space */
587	pin = gpio_to_pin(range, gpio);
588
589	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
590
591	mutex_unlock(&pctldev->mutex);
592
593	return ret;
594}
595EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
596
597/**
598 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
599 * @gpio: the GPIO pin number from the GPIO subsystem number space
600 *
601 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
602 * as part of their gpio_free() semantics, platforms and individual drivers
603 * shall *NOT* request GPIO pins to be muxed out.
604 */
605void pinctrl_free_gpio(unsigned gpio)
606{
607	struct pinctrl_dev *pctldev;
608	struct pinctrl_gpio_range *range;
609	int ret;
610	int pin;
611
612	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
613	if (ret) {
614		return;
615	}
616	mutex_lock(&pctldev->mutex);
617
618	/* Convert to the pin controllers number space */
619	pin = gpio_to_pin(range, gpio);
620
621	pinmux_free_gpio(pctldev, pin, range);
622
623	mutex_unlock(&pctldev->mutex);
624}
625EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
626
627static int pinctrl_gpio_direction(unsigned gpio, bool input)
628{
629	struct pinctrl_dev *pctldev;
630	struct pinctrl_gpio_range *range;
631	int ret;
632	int pin;
633
634	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
635	if (ret) {
636		return ret;
637	}
638
639	mutex_lock(&pctldev->mutex);
640
641	/* Convert to the pin controllers number space */
642	pin = gpio_to_pin(range, gpio);
643	ret = pinmux_gpio_direction(pctldev, range, pin, input);
644
645	mutex_unlock(&pctldev->mutex);
646
647	return ret;
648}
649
650/**
651 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
652 * @gpio: the GPIO pin number from the GPIO subsystem number space
653 *
654 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
655 * as part of their gpio_direction_input() semantics, platforms and individual
656 * drivers shall *NOT* touch pin control GPIO calls.
657 */
658int pinctrl_gpio_direction_input(unsigned gpio)
659{
660	return pinctrl_gpio_direction(gpio, true);
661}
662EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
663
664/**
665 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
666 * @gpio: the GPIO pin number from the GPIO subsystem number space
667 *
668 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
669 * as part of their gpio_direction_output() semantics, platforms and individual
670 * drivers shall *NOT* touch pin control GPIO calls.
671 */
672int pinctrl_gpio_direction_output(unsigned gpio)
673{
674	return pinctrl_gpio_direction(gpio, false);
675}
676EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
677
678static struct pinctrl_state *find_state(struct pinctrl *p,
679					const char *name)
680{
681	struct pinctrl_state *state;
682
683	list_for_each_entry(state, &p->states, node)
684		if (!strcmp(state->name, name))
685			return state;
686
687	return NULL;
688}
689
690static struct pinctrl_state *create_state(struct pinctrl *p,
691					  const char *name)
692{
693	struct pinctrl_state *state;
694
695	state = kzalloc(sizeof(*state), GFP_KERNEL);
696	if (state == NULL) {
697		dev_err(p->dev,
698			"failed to alloc struct pinctrl_state\n");
699		return ERR_PTR(-ENOMEM);
700	}
701
702	state->name = name;
703	INIT_LIST_HEAD(&state->settings);
704
705	list_add_tail(&state->node, &p->states);
706
707	return state;
708}
709
710static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
711{
712	struct pinctrl_state *state;
713	struct pinctrl_setting *setting;
714	int ret;
715
716	state = find_state(p, map->name);
717	if (!state)
718		state = create_state(p, map->name);
719	if (IS_ERR(state))
720		return PTR_ERR(state);
721
722	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
723		return 0;
724
725	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
726	if (setting == NULL) {
727		dev_err(p->dev,
728			"failed to alloc struct pinctrl_setting\n");
729		return -ENOMEM;
730	}
731
732	setting->type = map->type;
733
734	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
735	if (setting->pctldev == NULL) {
736		kfree(setting);
737		/* Do not defer probing of hogs (circular loop) */
738		if (!strcmp(map->ctrl_dev_name, map->dev_name))
739			return -ENODEV;
740		/*
741		 * OK let us guess that the driver is not there yet, and
742		 * let's defer obtaining this pinctrl handle to later...
743		 */
744		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
745			map->ctrl_dev_name);
746		return -EPROBE_DEFER;
747	}
748
749	setting->dev_name = map->dev_name;
750
751	switch (map->type) {
752	case PIN_MAP_TYPE_MUX_GROUP:
753		ret = pinmux_map_to_setting(map, setting);
754		break;
755	case PIN_MAP_TYPE_CONFIGS_PIN:
756	case PIN_MAP_TYPE_CONFIGS_GROUP:
757		ret = pinconf_map_to_setting(map, setting);
758		break;
759	default:
760		ret = -EINVAL;
761		break;
762	}
763	if (ret < 0) {
764		kfree(setting);
765		return ret;
766	}
767
768	list_add_tail(&setting->node, &state->settings);
769
770	return 0;
771}
772
773static struct pinctrl *find_pinctrl(struct device *dev)
774{
775	struct pinctrl *p;
776
777	mutex_lock(&pinctrl_list_mutex);
778	list_for_each_entry(p, &pinctrl_list, node)
779		if (p->dev == dev) {
780			mutex_unlock(&pinctrl_list_mutex);
781			return p;
782		}
783
784	mutex_unlock(&pinctrl_list_mutex);
785	return NULL;
786}
787
788static void pinctrl_free(struct pinctrl *p, bool inlist);
789
790static struct pinctrl *create_pinctrl(struct device *dev)
791{
792	struct pinctrl *p;
793	const char *devname;
794	struct pinctrl_maps *maps_node;
795	int i;
796	struct pinctrl_map const *map;
797	int ret;
798
799	/*
800	 * create the state cookie holder struct pinctrl for each
801	 * mapping, this is what consumers will get when requesting
802	 * a pin control handle with pinctrl_get()
803	 */
804	p = kzalloc(sizeof(*p), GFP_KERNEL);
805	if (p == NULL) {
806		dev_err(dev, "failed to alloc struct pinctrl\n");
807		return ERR_PTR(-ENOMEM);
808	}
809	p->dev = dev;
810	INIT_LIST_HEAD(&p->states);
811	INIT_LIST_HEAD(&p->dt_maps);
812
813	ret = pinctrl_dt_to_map(p);
814	if (ret < 0) {
815		kfree(p);
816		return ERR_PTR(ret);
817	}
818
819	devname = dev_name(dev);
820
821	mutex_lock(&pinctrl_maps_mutex);
822	/* Iterate over the pin control maps to locate the right ones */
823	for_each_maps(maps_node, i, map) {
824		/* Map must be for this device */
825		if (strcmp(map->dev_name, devname))
826			continue;
827
828		ret = add_setting(p, map);
829		/*
830		 * At this point the adding of a setting may:
831		 *
832		 * - Defer, if the pinctrl device is not yet available
833		 * - Fail, if the pinctrl device is not yet available,
834		 *   AND the setting is a hog. We cannot defer that, since
835		 *   the hog will kick in immediately after the device
836		 *   is registered.
837		 *
838		 * If the error returned was not -EPROBE_DEFER then we
839		 * accumulate the errors to see if we end up with
840		 * an -EPROBE_DEFER later, as that is the worst case.
841		 */
842		if (ret == -EPROBE_DEFER) {
843			pinctrl_free(p, false);
844			mutex_unlock(&pinctrl_maps_mutex);
845			return ERR_PTR(ret);
846		}
847	}
848	mutex_unlock(&pinctrl_maps_mutex);
849
850	if (ret < 0) {
851		/* If some other error than deferral occured, return here */
852		pinctrl_free(p, false);
853		return ERR_PTR(ret);
854	}
855
856	kref_init(&p->users);
857
858	/* Add the pinctrl handle to the global list */
859	mutex_lock(&pinctrl_list_mutex);
860	list_add_tail(&p->node, &pinctrl_list);
861	mutex_unlock(&pinctrl_list_mutex);
862
863	return p;
864}
865
866/**
867 * pinctrl_get() - retrieves the pinctrl handle for a device
868 * @dev: the device to obtain the handle for
869 */
870struct pinctrl *pinctrl_get(struct device *dev)
871{
872	struct pinctrl *p;
873
874	if (WARN_ON(!dev))
875		return ERR_PTR(-EINVAL);
876
877	/*
878	 * See if somebody else (such as the device core) has already
879	 * obtained a handle to the pinctrl for this device. In that case,
880	 * return another pointer to it.
881	 */
882	p = find_pinctrl(dev);
883	if (p != NULL) {
884		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
885		kref_get(&p->users);
886		return p;
887	}
888
889	return create_pinctrl(dev);
890}
891EXPORT_SYMBOL_GPL(pinctrl_get);
892
893static void pinctrl_free_setting(bool disable_setting,
894				 struct pinctrl_setting *setting)
895{
896	switch (setting->type) {
897	case PIN_MAP_TYPE_MUX_GROUP:
898		if (disable_setting)
899			pinmux_disable_setting(setting);
900		pinmux_free_setting(setting);
901		break;
902	case PIN_MAP_TYPE_CONFIGS_PIN:
903	case PIN_MAP_TYPE_CONFIGS_GROUP:
904		pinconf_free_setting(setting);
905		break;
906	default:
907		break;
908	}
909}
910
911static void pinctrl_free(struct pinctrl *p, bool inlist)
912{
913	struct pinctrl_state *state, *n1;
914	struct pinctrl_setting *setting, *n2;
915
916	mutex_lock(&pinctrl_list_mutex);
917	list_for_each_entry_safe(state, n1, &p->states, node) {
918		list_for_each_entry_safe(setting, n2, &state->settings, node) {
919			pinctrl_free_setting(state == p->state, setting);
920			list_del(&setting->node);
921			kfree(setting);
922		}
923		list_del(&state->node);
924		kfree(state);
925	}
926
927	pinctrl_dt_free_maps(p);
928
929	if (inlist)
930		list_del(&p->node);
931	kfree(p);
932	mutex_unlock(&pinctrl_list_mutex);
933}
934
935/**
936 * pinctrl_release() - release the pinctrl handle
937 * @kref: the kref in the pinctrl being released
938 */
939static void pinctrl_release(struct kref *kref)
940{
941	struct pinctrl *p = container_of(kref, struct pinctrl, users);
942
943	pinctrl_free(p, true);
944}
945
946/**
947 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
948 * @p: the pinctrl handle to release
949 */
950void pinctrl_put(struct pinctrl *p)
951{
952	kref_put(&p->users, pinctrl_release);
953}
954EXPORT_SYMBOL_GPL(pinctrl_put);
955
956/**
957 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
958 * @p: the pinctrl handle to retrieve the state from
959 * @name: the state name to retrieve
960 */
961struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
962						 const char *name)
963{
964	struct pinctrl_state *state;
965
966	state = find_state(p, name);
967	if (!state) {
968		if (pinctrl_dummy_state) {
969			/* create dummy state */
970			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
971				name);
972			state = create_state(p, name);
973		} else
974			state = ERR_PTR(-ENODEV);
975	}
976
977	return state;
978}
979EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
980
981/**
982 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
983 * @p: the pinctrl handle for the device that requests configuration
984 * @state: the state handle to select/activate/program
985 */
986int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
987{
988	struct pinctrl_setting *setting, *setting2;
989	struct pinctrl_state *old_state = p->state;
990	int ret;
991
992	if (p->state == state)
993		return 0;
994
995	if (p->state) {
996		/*
997		 * For each pinmux setting in the old state, forget SW's record
998		 * of mux owner for that pingroup. Any pingroups which are
999		 * still owned by the new state will be re-acquired by the call
1000		 * to pinmux_enable_setting() in the loop below.
1001		 */
1002		list_for_each_entry(setting, &p->state->settings, node) {
1003			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1004				continue;
1005			pinmux_disable_setting(setting);
1006		}
1007	}
1008
1009	p->state = NULL;
1010
1011	/* Apply all the settings for the new state */
1012	list_for_each_entry(setting, &state->settings, node) {
1013		switch (setting->type) {
1014		case PIN_MAP_TYPE_MUX_GROUP:
1015			ret = pinmux_enable_setting(setting);
1016			break;
1017		case PIN_MAP_TYPE_CONFIGS_PIN:
1018		case PIN_MAP_TYPE_CONFIGS_GROUP:
1019			ret = pinconf_apply_setting(setting);
1020			break;
1021		default:
1022			ret = -EINVAL;
1023			break;
1024		}
1025
1026		if (ret < 0) {
1027			goto unapply_new_state;
1028		}
1029	}
1030
1031	p->state = state;
1032
1033	return 0;
1034
1035unapply_new_state:
1036	dev_err(p->dev, "Error applying setting, reverse things back\n");
1037
1038	list_for_each_entry(setting2, &state->settings, node) {
1039		if (&setting2->node == &setting->node)
1040			break;
1041		/*
1042		 * All we can do here is pinmux_disable_setting.
1043		 * That means that some pins are muxed differently now
1044		 * than they were before applying the setting (We can't
1045		 * "unmux a pin"!), but it's not a big deal since the pins
1046		 * are free to be muxed by another apply_setting.
1047		 */
1048		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1049			pinmux_disable_setting(setting2);
1050	}
1051
1052	/* There's no infinite recursive loop here because p->state is NULL */
1053	if (old_state)
1054		pinctrl_select_state(p, old_state);
1055
1056	return ret;
1057}
1058EXPORT_SYMBOL_GPL(pinctrl_select_state);
1059
1060static void devm_pinctrl_release(struct device *dev, void *res)
1061{
1062	pinctrl_put(*(struct pinctrl **)res);
1063}
1064
1065/**
1066 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1067 * @dev: the device to obtain the handle for
1068 *
1069 * If there is a need to explicitly destroy the returned struct pinctrl,
1070 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1071 */
1072struct pinctrl *devm_pinctrl_get(struct device *dev)
1073{
1074	struct pinctrl **ptr, *p;
1075
1076	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1077	if (!ptr)
1078		return ERR_PTR(-ENOMEM);
1079
1080	p = pinctrl_get(dev);
1081	if (!IS_ERR(p)) {
1082		*ptr = p;
1083		devres_add(dev, ptr);
1084	} else {
1085		devres_free(ptr);
1086	}
1087
1088	return p;
1089}
1090EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1091
1092static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1093{
1094	struct pinctrl **p = res;
1095
1096	return *p == data;
1097}
1098
1099/**
1100 * devm_pinctrl_put() - Resource managed pinctrl_put()
1101 * @p: the pinctrl handle to release
1102 *
1103 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1104 * this function will not need to be called and the resource management
1105 * code will ensure that the resource is freed.
1106 */
1107void devm_pinctrl_put(struct pinctrl *p)
1108{
1109	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1110			       devm_pinctrl_match, p));
1111}
1112EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1113
1114int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1115			 bool dup)
1116{
1117	int i, ret;
1118	struct pinctrl_maps *maps_node;
1119
1120	pr_debug("add %u pinctrl maps\n", num_maps);
1121
1122	/* First sanity check the new mapping */
1123	for (i = 0; i < num_maps; i++) {
1124		if (!maps[i].dev_name) {
1125			pr_err("failed to register map %s (%d): no device given\n",
1126			       maps[i].name, i);
1127			return -EINVAL;
1128		}
1129
1130		if (!maps[i].name) {
1131			pr_err("failed to register map %d: no map name given\n",
1132			       i);
1133			return -EINVAL;
1134		}
1135
1136		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1137				!maps[i].ctrl_dev_name) {
1138			pr_err("failed to register map %s (%d): no pin control device given\n",
1139			       maps[i].name, i);
1140			return -EINVAL;
1141		}
1142
1143		switch (maps[i].type) {
1144		case PIN_MAP_TYPE_DUMMY_STATE:
1145			break;
1146		case PIN_MAP_TYPE_MUX_GROUP:
1147			ret = pinmux_validate_map(&maps[i], i);
1148			if (ret < 0)
1149				return ret;
1150			break;
1151		case PIN_MAP_TYPE_CONFIGS_PIN:
1152		case PIN_MAP_TYPE_CONFIGS_GROUP:
1153			ret = pinconf_validate_map(&maps[i], i);
1154			if (ret < 0)
1155				return ret;
1156			break;
1157		default:
1158			pr_err("failed to register map %s (%d): invalid type given\n",
1159			       maps[i].name, i);
1160			return -EINVAL;
1161		}
1162	}
1163
1164	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1165	if (!maps_node) {
1166		pr_err("failed to alloc struct pinctrl_maps\n");
1167		return -ENOMEM;
1168	}
1169
1170	maps_node->num_maps = num_maps;
1171	if (dup) {
1172		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1173					  GFP_KERNEL);
1174		if (!maps_node->maps) {
1175			pr_err("failed to duplicate mapping table\n");
1176			kfree(maps_node);
1177			return -ENOMEM;
1178		}
1179	} else {
1180		maps_node->maps = maps;
1181	}
1182
1183	mutex_lock(&pinctrl_maps_mutex);
1184	list_add_tail(&maps_node->node, &pinctrl_maps);
1185	mutex_unlock(&pinctrl_maps_mutex);
1186
1187	return 0;
1188}
1189
1190/**
1191 * pinctrl_register_mappings() - register a set of pin controller mappings
1192 * @maps: the pincontrol mappings table to register. This should probably be
1193 *	marked with __initdata so it can be discarded after boot. This
1194 *	function will perform a shallow copy for the mapping entries.
1195 * @num_maps: the number of maps in the mapping table
1196 */
1197int pinctrl_register_mappings(struct pinctrl_map const *maps,
1198			      unsigned num_maps)
1199{
1200	return pinctrl_register_map(maps, num_maps, true);
1201}
1202
1203void pinctrl_unregister_map(struct pinctrl_map const *map)
1204{
1205	struct pinctrl_maps *maps_node;
1206
1207	mutex_lock(&pinctrl_maps_mutex);
1208	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1209		if (maps_node->maps == map) {
1210			list_del(&maps_node->node);
1211			kfree(maps_node);
1212			mutex_unlock(&pinctrl_maps_mutex);
1213			return;
1214		}
1215	}
1216	mutex_unlock(&pinctrl_maps_mutex);
1217}
1218
1219/**
1220 * pinctrl_force_sleep() - turn a given controller device into sleep state
1221 * @pctldev: pin controller device
1222 */
1223int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1224{
1225	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1226		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1227	return 0;
1228}
1229EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1230
1231/**
1232 * pinctrl_force_default() - turn a given controller device into default state
1233 * @pctldev: pin controller device
1234 */
1235int pinctrl_force_default(struct pinctrl_dev *pctldev)
1236{
1237	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1238		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1239	return 0;
1240}
1241EXPORT_SYMBOL_GPL(pinctrl_force_default);
1242
1243/**
1244 * pinctrl_init_done() - tell pinctrl probe is done
1245 *
1246 * We'll use this time to switch the pins from "init" to "default" unless the
1247 * driver selected some other state.
1248 *
1249 * @dev: device to that's done probing
1250 */
1251int pinctrl_init_done(struct device *dev)
1252{
1253	struct dev_pin_info *pins = dev->pins;
1254	int ret;
1255
1256	if (!pins)
1257		return 0;
1258
1259	if (IS_ERR(pins->init_state))
1260		return 0; /* No such state */
1261
1262	if (pins->p->state != pins->init_state)
1263		return 0; /* Not at init anyway */
1264
1265	if (IS_ERR(pins->default_state))
1266		return 0; /* No default state */
1267
1268	ret = pinctrl_select_state(pins->p, pins->default_state);
1269	if (ret)
1270		dev_err(dev, "failed to activate default pinctrl state\n");
1271
1272	return ret;
1273}
1274
1275#ifdef CONFIG_PM
1276
1277/**
1278 * pinctrl_pm_select_state() - select pinctrl state for PM
1279 * @dev: device to select default state for
1280 * @state: state to set
1281 */
1282static int pinctrl_pm_select_state(struct device *dev,
1283				   struct pinctrl_state *state)
1284{
1285	struct dev_pin_info *pins = dev->pins;
1286	int ret;
1287
1288	if (IS_ERR(state))
1289		return 0; /* No such state */
1290	ret = pinctrl_select_state(pins->p, state);
1291	if (ret)
1292		dev_err(dev, "failed to activate pinctrl state %s\n",
1293			state->name);
1294	return ret;
1295}
1296
1297/**
1298 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1299 * @dev: device to select default state for
1300 */
1301int pinctrl_pm_select_default_state(struct device *dev)
1302{
1303	if (!dev->pins)
1304		return 0;
1305
1306	return pinctrl_pm_select_state(dev, dev->pins->default_state);
1307}
1308EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1309
1310/**
1311 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1312 * @dev: device to select sleep state for
1313 */
1314int pinctrl_pm_select_sleep_state(struct device *dev)
1315{
1316	if (!dev->pins)
1317		return 0;
1318
1319	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1320}
1321EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1322
1323/**
1324 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1325 * @dev: device to select idle state for
1326 */
1327int pinctrl_pm_select_idle_state(struct device *dev)
1328{
1329	if (!dev->pins)
1330		return 0;
1331
1332	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1333}
1334EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1335#endif
1336
1337#ifdef CONFIG_DEBUG_FS
1338
1339static int pinctrl_pins_show(struct seq_file *s, void *what)
1340{
1341	struct pinctrl_dev *pctldev = s->private;
1342	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1343	unsigned i, pin;
1344
1345	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1346
1347	mutex_lock(&pctldev->mutex);
1348
1349	/* The pin number can be retrived from the pin controller descriptor */
1350	for (i = 0; i < pctldev->desc->npins; i++) {
1351		struct pin_desc *desc;
1352
1353		pin = pctldev->desc->pins[i].number;
1354		desc = pin_desc_get(pctldev, pin);
1355		/* Pin space may be sparse */
1356		if (desc == NULL)
1357			continue;
1358
1359		seq_printf(s, "pin %d (%s) ", pin,
1360			   desc->name ? desc->name : "unnamed");
1361
1362		/* Driver-specific info per pin */
1363		if (ops->pin_dbg_show)
1364			ops->pin_dbg_show(pctldev, s, pin);
1365
1366		seq_puts(s, "\n");
1367	}
1368
1369	mutex_unlock(&pctldev->mutex);
1370
1371	return 0;
1372}
1373
1374static int pinctrl_groups_show(struct seq_file *s, void *what)
1375{
1376	struct pinctrl_dev *pctldev = s->private;
1377	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1378	unsigned ngroups, selector = 0;
1379
1380	mutex_lock(&pctldev->mutex);
1381
1382	ngroups = ops->get_groups_count(pctldev);
1383
1384	seq_puts(s, "registered pin groups:\n");
1385	while (selector < ngroups) {
1386		const unsigned *pins = NULL;
1387		unsigned num_pins = 0;
1388		const char *gname = ops->get_group_name(pctldev, selector);
1389		const char *pname;
1390		int ret = 0;
1391		int i;
1392
1393		if (ops->get_group_pins)
1394			ret = ops->get_group_pins(pctldev, selector,
1395						  &pins, &num_pins);
1396		if (ret)
1397			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1398				   gname);
1399		else {
1400			seq_printf(s, "group: %s\n", gname);
1401			for (i = 0; i < num_pins; i++) {
1402				pname = pin_get_name(pctldev, pins[i]);
1403				if (WARN_ON(!pname)) {
1404					mutex_unlock(&pctldev->mutex);
1405					return -EINVAL;
1406				}
1407				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1408			}
1409			seq_puts(s, "\n");
1410		}
1411		selector++;
1412	}
1413
1414	mutex_unlock(&pctldev->mutex);
1415
1416	return 0;
1417}
1418
1419static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1420{
1421	struct pinctrl_dev *pctldev = s->private;
1422	struct pinctrl_gpio_range *range = NULL;
1423
1424	seq_puts(s, "GPIO ranges handled:\n");
1425
1426	mutex_lock(&pctldev->mutex);
1427
1428	/* Loop over the ranges */
1429	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1430		if (range->pins) {
1431			int a;
1432			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1433				range->id, range->name,
1434				range->base, (range->base + range->npins - 1));
1435			for (a = 0; a < range->npins - 1; a++)
1436				seq_printf(s, "%u, ", range->pins[a]);
1437			seq_printf(s, "%u}\n", range->pins[a]);
1438		}
1439		else
1440			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1441				range->id, range->name,
1442				range->base, (range->base + range->npins - 1),
1443				range->pin_base,
1444				(range->pin_base + range->npins - 1));
1445	}
1446
1447	mutex_unlock(&pctldev->mutex);
1448
1449	return 0;
1450}
1451
1452static int pinctrl_devices_show(struct seq_file *s, void *what)
1453{
1454	struct pinctrl_dev *pctldev;
1455
1456	seq_puts(s, "name [pinmux] [pinconf]\n");
1457
1458	mutex_lock(&pinctrldev_list_mutex);
1459
1460	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1461		seq_printf(s, "%s ", pctldev->desc->name);
1462		if (pctldev->desc->pmxops)
1463			seq_puts(s, "yes ");
1464		else
1465			seq_puts(s, "no ");
1466		if (pctldev->desc->confops)
1467			seq_puts(s, "yes");
1468		else
1469			seq_puts(s, "no");
1470		seq_puts(s, "\n");
1471	}
1472
1473	mutex_unlock(&pinctrldev_list_mutex);
1474
1475	return 0;
1476}
1477
1478static inline const char *map_type(enum pinctrl_map_type type)
1479{
1480	static const char * const names[] = {
1481		"INVALID",
1482		"DUMMY_STATE",
1483		"MUX_GROUP",
1484		"CONFIGS_PIN",
1485		"CONFIGS_GROUP",
1486	};
1487
1488	if (type >= ARRAY_SIZE(names))
1489		return "UNKNOWN";
1490
1491	return names[type];
1492}
1493
1494static int pinctrl_maps_show(struct seq_file *s, void *what)
1495{
1496	struct pinctrl_maps *maps_node;
1497	int i;
1498	struct pinctrl_map const *map;
1499
1500	seq_puts(s, "Pinctrl maps:\n");
1501
1502	mutex_lock(&pinctrl_maps_mutex);
1503	for_each_maps(maps_node, i, map) {
1504		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1505			   map->dev_name, map->name, map_type(map->type),
1506			   map->type);
1507
1508		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1509			seq_printf(s, "controlling device %s\n",
1510				   map->ctrl_dev_name);
1511
1512		switch (map->type) {
1513		case PIN_MAP_TYPE_MUX_GROUP:
1514			pinmux_show_map(s, map);
1515			break;
1516		case PIN_MAP_TYPE_CONFIGS_PIN:
1517		case PIN_MAP_TYPE_CONFIGS_GROUP:
1518			pinconf_show_map(s, map);
1519			break;
1520		default:
1521			break;
1522		}
1523
1524		seq_printf(s, "\n");
1525	}
1526	mutex_unlock(&pinctrl_maps_mutex);
1527
1528	return 0;
1529}
1530
1531static int pinctrl_show(struct seq_file *s, void *what)
1532{
1533	struct pinctrl *p;
1534	struct pinctrl_state *state;
1535	struct pinctrl_setting *setting;
1536
1537	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1538
1539	mutex_lock(&pinctrl_list_mutex);
1540
1541	list_for_each_entry(p, &pinctrl_list, node) {
1542		seq_printf(s, "device: %s current state: %s\n",
1543			   dev_name(p->dev),
1544			   p->state ? p->state->name : "none");
1545
1546		list_for_each_entry(state, &p->states, node) {
1547			seq_printf(s, "  state: %s\n", state->name);
1548
1549			list_for_each_entry(setting, &state->settings, node) {
1550				struct pinctrl_dev *pctldev = setting->pctldev;
1551
1552				seq_printf(s, "    type: %s controller %s ",
1553					   map_type(setting->type),
1554					   pinctrl_dev_get_name(pctldev));
1555
1556				switch (setting->type) {
1557				case PIN_MAP_TYPE_MUX_GROUP:
1558					pinmux_show_setting(s, setting);
1559					break;
1560				case PIN_MAP_TYPE_CONFIGS_PIN:
1561				case PIN_MAP_TYPE_CONFIGS_GROUP:
1562					pinconf_show_setting(s, setting);
1563					break;
1564				default:
1565					break;
1566				}
1567			}
1568		}
1569	}
1570
1571	mutex_unlock(&pinctrl_list_mutex);
1572
1573	return 0;
1574}
1575
1576static int pinctrl_pins_open(struct inode *inode, struct file *file)
1577{
1578	return single_open(file, pinctrl_pins_show, inode->i_private);
1579}
1580
1581static int pinctrl_groups_open(struct inode *inode, struct file *file)
1582{
1583	return single_open(file, pinctrl_groups_show, inode->i_private);
1584}
1585
1586static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1587{
1588	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1589}
1590
1591static int pinctrl_devices_open(struct inode *inode, struct file *file)
1592{
1593	return single_open(file, pinctrl_devices_show, NULL);
1594}
1595
1596static int pinctrl_maps_open(struct inode *inode, struct file *file)
1597{
1598	return single_open(file, pinctrl_maps_show, NULL);
1599}
1600
1601static int pinctrl_open(struct inode *inode, struct file *file)
1602{
1603	return single_open(file, pinctrl_show, NULL);
1604}
1605
1606static const struct file_operations pinctrl_pins_ops = {
1607	.open		= pinctrl_pins_open,
1608	.read		= seq_read,
1609	.llseek		= seq_lseek,
1610	.release	= single_release,
1611};
1612
1613static const struct file_operations pinctrl_groups_ops = {
1614	.open		= pinctrl_groups_open,
1615	.read		= seq_read,
1616	.llseek		= seq_lseek,
1617	.release	= single_release,
1618};
1619
1620static const struct file_operations pinctrl_gpioranges_ops = {
1621	.open		= pinctrl_gpioranges_open,
1622	.read		= seq_read,
1623	.llseek		= seq_lseek,
1624	.release	= single_release,
1625};
1626
1627static const struct file_operations pinctrl_devices_ops = {
1628	.open		= pinctrl_devices_open,
1629	.read		= seq_read,
1630	.llseek		= seq_lseek,
1631	.release	= single_release,
1632};
1633
1634static const struct file_operations pinctrl_maps_ops = {
1635	.open		= pinctrl_maps_open,
1636	.read		= seq_read,
1637	.llseek		= seq_lseek,
1638	.release	= single_release,
1639};
1640
1641static const struct file_operations pinctrl_ops = {
1642	.open		= pinctrl_open,
1643	.read		= seq_read,
1644	.llseek		= seq_lseek,
1645	.release	= single_release,
1646};
1647
1648static struct dentry *debugfs_root;
1649
1650static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1651{
1652	struct dentry *device_root;
1653
1654	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1655					 debugfs_root);
1656	pctldev->device_root = device_root;
1657
1658	if (IS_ERR(device_root) || !device_root) {
1659		pr_warn("failed to create debugfs directory for %s\n",
1660			dev_name(pctldev->dev));
1661		return;
1662	}
1663	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1664			    device_root, pctldev, &pinctrl_pins_ops);
1665	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1666			    device_root, pctldev, &pinctrl_groups_ops);
1667	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1668			    device_root, pctldev, &pinctrl_gpioranges_ops);
1669	if (pctldev->desc->pmxops)
1670		pinmux_init_device_debugfs(device_root, pctldev);
1671	if (pctldev->desc->confops)
1672		pinconf_init_device_debugfs(device_root, pctldev);
1673}
1674
1675static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1676{
1677	debugfs_remove_recursive(pctldev->device_root);
1678}
1679
1680static void pinctrl_init_debugfs(void)
1681{
1682	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1683	if (IS_ERR(debugfs_root) || !debugfs_root) {
1684		pr_warn("failed to create debugfs directory\n");
1685		debugfs_root = NULL;
1686		return;
1687	}
1688
1689	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1690			    debugfs_root, NULL, &pinctrl_devices_ops);
1691	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1692			    debugfs_root, NULL, &pinctrl_maps_ops);
1693	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1694			    debugfs_root, NULL, &pinctrl_ops);
1695}
1696
1697#else /* CONFIG_DEBUG_FS */
1698
1699static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1700{
1701}
1702
1703static void pinctrl_init_debugfs(void)
1704{
1705}
1706
1707static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1708{
1709}
1710
1711#endif
1712
1713static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1714{
1715	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1716
1717	if (!ops ||
1718	    !ops->get_groups_count ||
1719	    !ops->get_group_name)
1720		return -EINVAL;
1721
1722	if (ops->dt_node_to_map && !ops->dt_free_map)
1723		return -EINVAL;
1724
1725	return 0;
1726}
1727
1728/**
1729 * pinctrl_register() - register a pin controller device
1730 * @pctldesc: descriptor for this pin controller
1731 * @dev: parent device for this pin controller
1732 * @driver_data: private pin controller data for this pin controller
1733 */
1734struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1735				    struct device *dev, void *driver_data)
1736{
1737	struct pinctrl_dev *pctldev;
1738	int ret;
1739
1740	if (!pctldesc)
1741		return ERR_PTR(-EINVAL);
1742	if (!pctldesc->name)
1743		return ERR_PTR(-EINVAL);
1744
1745	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1746	if (pctldev == NULL) {
1747		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1748		return ERR_PTR(-ENOMEM);
1749	}
1750
1751	/* Initialize pin control device struct */
1752	pctldev->owner = pctldesc->owner;
1753	pctldev->desc = pctldesc;
1754	pctldev->driver_data = driver_data;
1755	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1756	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1757	pctldev->dev = dev;
1758	mutex_init(&pctldev->mutex);
1759
1760	/* check core ops for sanity */
1761	ret = pinctrl_check_ops(pctldev);
1762	if (ret) {
1763		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1764		goto out_err;
1765	}
1766
1767	/* If we're implementing pinmuxing, check the ops for sanity */
1768	if (pctldesc->pmxops) {
1769		ret = pinmux_check_ops(pctldev);
1770		if (ret)
1771			goto out_err;
1772	}
1773
1774	/* If we're implementing pinconfig, check the ops for sanity */
1775	if (pctldesc->confops) {
1776		ret = pinconf_check_ops(pctldev);
1777		if (ret)
1778			goto out_err;
1779	}
1780
1781	/* Register all the pins */
1782	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1783	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1784	if (ret) {
1785		dev_err(dev, "error during pin registration\n");
1786		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1787				      pctldesc->npins);
1788		goto out_err;
1789	}
1790
1791	mutex_lock(&pinctrldev_list_mutex);
1792	list_add_tail(&pctldev->node, &pinctrldev_list);
1793	mutex_unlock(&pinctrldev_list_mutex);
1794
1795	pctldev->p = pinctrl_get(pctldev->dev);
1796
1797	if (!IS_ERR(pctldev->p)) {
1798		pctldev->hog_default =
1799			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1800		if (IS_ERR(pctldev->hog_default)) {
1801			dev_dbg(dev, "failed to lookup the default state\n");
1802		} else {
1803			if (pinctrl_select_state(pctldev->p,
1804						pctldev->hog_default))
1805				dev_err(dev,
1806					"failed to select default state\n");
1807		}
1808
1809		pctldev->hog_sleep =
1810			pinctrl_lookup_state(pctldev->p,
1811						    PINCTRL_STATE_SLEEP);
1812		if (IS_ERR(pctldev->hog_sleep))
1813			dev_dbg(dev, "failed to lookup the sleep state\n");
1814	}
1815
1816	pinctrl_init_device_debugfs(pctldev);
1817
1818	return pctldev;
1819
1820out_err:
1821	mutex_destroy(&pctldev->mutex);
1822	kfree(pctldev);
1823	return ERR_PTR(ret);
1824}
1825EXPORT_SYMBOL_GPL(pinctrl_register);
1826
1827/**
1828 * pinctrl_unregister() - unregister pinmux
1829 * @pctldev: pin controller to unregister
1830 *
1831 * Called by pinmux drivers to unregister a pinmux.
1832 */
1833void pinctrl_unregister(struct pinctrl_dev *pctldev)
1834{
1835	struct pinctrl_gpio_range *range, *n;
1836	if (pctldev == NULL)
1837		return;
1838
1839	mutex_lock(&pctldev->mutex);
1840	pinctrl_remove_device_debugfs(pctldev);
1841	mutex_unlock(&pctldev->mutex);
1842
1843	if (!IS_ERR(pctldev->p))
1844		pinctrl_put(pctldev->p);
1845
1846	mutex_lock(&pinctrldev_list_mutex);
1847	mutex_lock(&pctldev->mutex);
1848	/* TODO: check that no pinmuxes are still active? */
1849	list_del(&pctldev->node);
1850	/* Destroy descriptor tree */
1851	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1852			      pctldev->desc->npins);
1853	/* remove gpio ranges map */
1854	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1855		list_del(&range->node);
1856
1857	mutex_unlock(&pctldev->mutex);
1858	mutex_destroy(&pctldev->mutex);
1859	kfree(pctldev);
1860	mutex_unlock(&pinctrldev_list_mutex);
1861}
1862EXPORT_SYMBOL_GPL(pinctrl_unregister);
1863
1864static int __init pinctrl_init(void)
1865{
1866	pr_info("initialized pinctrl subsystem\n");
1867	pinctrl_init_debugfs();
1868	return 0;
1869}
1870
1871/* init early since many drivers really need to initialized pinmux early */
1872core_initcall(pinctrl_init);
1873