1#undef DEBUG
2
3/*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code.
11 */
12#define pr_fmt(fmt) "hw perfevents: " fmt
13
14#include <linux/bitmap.h>
15#include <linux/cpumask.h>
16#include <linux/export.h>
17#include <linux/kernel.h>
18#include <linux/of_device.h>
19#include <linux/perf/arm_pmu.h>
20#include <linux/platform_device.h>
21#include <linux/slab.h>
22#include <linux/spinlock.h>
23#include <linux/irq.h>
24#include <linux/irqdesc.h>
25
26#include <asm/cputype.h>
27#include <asm/irq_regs.h>
28
29static int
30armpmu_map_cache_event(const unsigned (*cache_map)
31				      [PERF_COUNT_HW_CACHE_MAX]
32				      [PERF_COUNT_HW_CACHE_OP_MAX]
33				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
34		       u64 config)
35{
36	unsigned int cache_type, cache_op, cache_result, ret;
37
38	cache_type = (config >>  0) & 0xff;
39	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
40		return -EINVAL;
41
42	cache_op = (config >>  8) & 0xff;
43	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
44		return -EINVAL;
45
46	cache_result = (config >> 16) & 0xff;
47	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
48		return -EINVAL;
49
50	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
51
52	if (ret == CACHE_OP_UNSUPPORTED)
53		return -ENOENT;
54
55	return ret;
56}
57
58static int
59armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
60{
61	int mapping;
62
63	if (config >= PERF_COUNT_HW_MAX)
64		return -EINVAL;
65
66	mapping = (*event_map)[config];
67	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
68}
69
70static int
71armpmu_map_raw_event(u32 raw_event_mask, u64 config)
72{
73	return (int)(config & raw_event_mask);
74}
75
76int
77armpmu_map_event(struct perf_event *event,
78		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
79		 const unsigned (*cache_map)
80				[PERF_COUNT_HW_CACHE_MAX]
81				[PERF_COUNT_HW_CACHE_OP_MAX]
82				[PERF_COUNT_HW_CACHE_RESULT_MAX],
83		 u32 raw_event_mask)
84{
85	u64 config = event->attr.config;
86	int type = event->attr.type;
87
88	if (type == event->pmu->type)
89		return armpmu_map_raw_event(raw_event_mask, config);
90
91	switch (type) {
92	case PERF_TYPE_HARDWARE:
93		return armpmu_map_hw_event(event_map, config);
94	case PERF_TYPE_HW_CACHE:
95		return armpmu_map_cache_event(cache_map, config);
96	case PERF_TYPE_RAW:
97		return armpmu_map_raw_event(raw_event_mask, config);
98	}
99
100	return -ENOENT;
101}
102
103int armpmu_event_set_period(struct perf_event *event)
104{
105	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
106	struct hw_perf_event *hwc = &event->hw;
107	s64 left = local64_read(&hwc->period_left);
108	s64 period = hwc->sample_period;
109	int ret = 0;
110
111	if (unlikely(left <= -period)) {
112		left = period;
113		local64_set(&hwc->period_left, left);
114		hwc->last_period = period;
115		ret = 1;
116	}
117
118	if (unlikely(left <= 0)) {
119		left += period;
120		local64_set(&hwc->period_left, left);
121		hwc->last_period = period;
122		ret = 1;
123	}
124
125	/*
126	 * Limit the maximum period to prevent the counter value
127	 * from overtaking the one we are about to program. In
128	 * effect we are reducing max_period to account for
129	 * interrupt latency (and we are being very conservative).
130	 */
131	if (left > (armpmu->max_period >> 1))
132		left = armpmu->max_period >> 1;
133
134	local64_set(&hwc->prev_count, (u64)-left);
135
136	armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
137
138	perf_event_update_userpage(event);
139
140	return ret;
141}
142
143u64 armpmu_event_update(struct perf_event *event)
144{
145	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
146	struct hw_perf_event *hwc = &event->hw;
147	u64 delta, prev_raw_count, new_raw_count;
148
149again:
150	prev_raw_count = local64_read(&hwc->prev_count);
151	new_raw_count = armpmu->read_counter(event);
152
153	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
154			     new_raw_count) != prev_raw_count)
155		goto again;
156
157	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
158
159	local64_add(delta, &event->count);
160	local64_sub(delta, &hwc->period_left);
161
162	return new_raw_count;
163}
164
165static void
166armpmu_read(struct perf_event *event)
167{
168	armpmu_event_update(event);
169}
170
171static void
172armpmu_stop(struct perf_event *event, int flags)
173{
174	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
175	struct hw_perf_event *hwc = &event->hw;
176
177	/*
178	 * ARM pmu always has to update the counter, so ignore
179	 * PERF_EF_UPDATE, see comments in armpmu_start().
180	 */
181	if (!(hwc->state & PERF_HES_STOPPED)) {
182		armpmu->disable(event);
183		armpmu_event_update(event);
184		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
185	}
186}
187
188static void armpmu_start(struct perf_event *event, int flags)
189{
190	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
191	struct hw_perf_event *hwc = &event->hw;
192
193	/*
194	 * ARM pmu always has to reprogram the period, so ignore
195	 * PERF_EF_RELOAD, see the comment below.
196	 */
197	if (flags & PERF_EF_RELOAD)
198		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
199
200	hwc->state = 0;
201	/*
202	 * Set the period again. Some counters can't be stopped, so when we
203	 * were stopped we simply disabled the IRQ source and the counter
204	 * may have been left counting. If we don't do this step then we may
205	 * get an interrupt too soon or *way* too late if the overflow has
206	 * happened since disabling.
207	 */
208	armpmu_event_set_period(event);
209	armpmu->enable(event);
210}
211
212static void
213armpmu_del(struct perf_event *event, int flags)
214{
215	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
216	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
217	struct hw_perf_event *hwc = &event->hw;
218	int idx = hwc->idx;
219
220	armpmu_stop(event, PERF_EF_UPDATE);
221	hw_events->events[idx] = NULL;
222	clear_bit(idx, hw_events->used_mask);
223	if (armpmu->clear_event_idx)
224		armpmu->clear_event_idx(hw_events, event);
225
226	perf_event_update_userpage(event);
227}
228
229static int
230armpmu_add(struct perf_event *event, int flags)
231{
232	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
233	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
234	struct hw_perf_event *hwc = &event->hw;
235	int idx;
236	int err = 0;
237
238	/* An event following a process won't be stopped earlier */
239	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
240		return -ENOENT;
241
242	perf_pmu_disable(event->pmu);
243
244	/* If we don't have a space for the counter then finish early. */
245	idx = armpmu->get_event_idx(hw_events, event);
246	if (idx < 0) {
247		err = idx;
248		goto out;
249	}
250
251	/*
252	 * If there is an event in the counter we are going to use then make
253	 * sure it is disabled.
254	 */
255	event->hw.idx = idx;
256	armpmu->disable(event);
257	hw_events->events[idx] = event;
258
259	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
260	if (flags & PERF_EF_START)
261		armpmu_start(event, PERF_EF_RELOAD);
262
263	/* Propagate our changes to the userspace mapping. */
264	perf_event_update_userpage(event);
265
266out:
267	perf_pmu_enable(event->pmu);
268	return err;
269}
270
271static int
272validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
273			       struct perf_event *event)
274{
275	struct arm_pmu *armpmu;
276
277	if (is_software_event(event))
278		return 1;
279
280	/*
281	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
282	 * core perf code won't check that the pmu->ctx == leader->ctx
283	 * until after pmu->event_init(event).
284	 */
285	if (event->pmu != pmu)
286		return 0;
287
288	if (event->state < PERF_EVENT_STATE_OFF)
289		return 1;
290
291	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
292		return 1;
293
294	armpmu = to_arm_pmu(event->pmu);
295	return armpmu->get_event_idx(hw_events, event) >= 0;
296}
297
298static int
299validate_group(struct perf_event *event)
300{
301	struct perf_event *sibling, *leader = event->group_leader;
302	struct pmu_hw_events fake_pmu;
303
304	/*
305	 * Initialise the fake PMU. We only need to populate the
306	 * used_mask for the purposes of validation.
307	 */
308	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
309
310	if (!validate_event(event->pmu, &fake_pmu, leader))
311		return -EINVAL;
312
313	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
314		if (!validate_event(event->pmu, &fake_pmu, sibling))
315			return -EINVAL;
316	}
317
318	if (!validate_event(event->pmu, &fake_pmu, event))
319		return -EINVAL;
320
321	return 0;
322}
323
324static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
325{
326	struct arm_pmu *armpmu;
327	struct platform_device *plat_device;
328	struct arm_pmu_platdata *plat;
329	int ret;
330	u64 start_clock, finish_clock;
331
332	/*
333	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
334	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
335	 * do any necessary shifting, we just need to perform the first
336	 * dereference.
337	 */
338	armpmu = *(void **)dev;
339	plat_device = armpmu->plat_device;
340	plat = dev_get_platdata(&plat_device->dev);
341
342	start_clock = sched_clock();
343	if (plat && plat->handle_irq)
344		ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
345	else
346		ret = armpmu->handle_irq(irq, armpmu);
347	finish_clock = sched_clock();
348
349	perf_sample_event_took(finish_clock - start_clock);
350	return ret;
351}
352
353static void
354armpmu_release_hardware(struct arm_pmu *armpmu)
355{
356	armpmu->free_irq(armpmu);
357}
358
359static int
360armpmu_reserve_hardware(struct arm_pmu *armpmu)
361{
362	int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
363	if (err) {
364		armpmu_release_hardware(armpmu);
365		return err;
366	}
367
368	return 0;
369}
370
371static void
372hw_perf_event_destroy(struct perf_event *event)
373{
374	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
375	atomic_t *active_events	 = &armpmu->active_events;
376	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
377
378	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
379		armpmu_release_hardware(armpmu);
380		mutex_unlock(pmu_reserve_mutex);
381	}
382}
383
384static int
385event_requires_mode_exclusion(struct perf_event_attr *attr)
386{
387	return attr->exclude_idle || attr->exclude_user ||
388	       attr->exclude_kernel || attr->exclude_hv;
389}
390
391static int
392__hw_perf_event_init(struct perf_event *event)
393{
394	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
395	struct hw_perf_event *hwc = &event->hw;
396	int mapping;
397
398	mapping = armpmu->map_event(event);
399
400	if (mapping < 0) {
401		pr_debug("event %x:%llx not supported\n", event->attr.type,
402			 event->attr.config);
403		return mapping;
404	}
405
406	/*
407	 * We don't assign an index until we actually place the event onto
408	 * hardware. Use -1 to signify that we haven't decided where to put it
409	 * yet. For SMP systems, each core has it's own PMU so we can't do any
410	 * clever allocation or constraints checking at this point.
411	 */
412	hwc->idx		= -1;
413	hwc->config_base	= 0;
414	hwc->config		= 0;
415	hwc->event_base		= 0;
416
417	/*
418	 * Check whether we need to exclude the counter from certain modes.
419	 */
420	if ((!armpmu->set_event_filter ||
421	     armpmu->set_event_filter(hwc, &event->attr)) &&
422	     event_requires_mode_exclusion(&event->attr)) {
423		pr_debug("ARM performance counters do not support "
424			 "mode exclusion\n");
425		return -EOPNOTSUPP;
426	}
427
428	/*
429	 * Store the event encoding into the config_base field.
430	 */
431	hwc->config_base	    |= (unsigned long)mapping;
432
433	if (!is_sampling_event(event)) {
434		/*
435		 * For non-sampling runs, limit the sample_period to half
436		 * of the counter width. That way, the new counter value
437		 * is far less likely to overtake the previous one unless
438		 * you have some serious IRQ latency issues.
439		 */
440		hwc->sample_period  = armpmu->max_period >> 1;
441		hwc->last_period    = hwc->sample_period;
442		local64_set(&hwc->period_left, hwc->sample_period);
443	}
444
445	if (event->group_leader != event) {
446		if (validate_group(event) != 0)
447			return -EINVAL;
448	}
449
450	return 0;
451}
452
453static int armpmu_event_init(struct perf_event *event)
454{
455	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
456	int err = 0;
457	atomic_t *active_events = &armpmu->active_events;
458
459	/*
460	 * Reject CPU-affine events for CPUs that are of a different class to
461	 * that which this PMU handles. Process-following events (where
462	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
463	 * reject them later (in armpmu_add) if they're scheduled on a
464	 * different class of CPU.
465	 */
466	if (event->cpu != -1 &&
467		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
468		return -ENOENT;
469
470	/* does not support taken branch sampling */
471	if (has_branch_stack(event))
472		return -EOPNOTSUPP;
473
474	if (armpmu->map_event(event) == -ENOENT)
475		return -ENOENT;
476
477	event->destroy = hw_perf_event_destroy;
478
479	if (!atomic_inc_not_zero(active_events)) {
480		mutex_lock(&armpmu->reserve_mutex);
481		if (atomic_read(active_events) == 0)
482			err = armpmu_reserve_hardware(armpmu);
483
484		if (!err)
485			atomic_inc(active_events);
486		mutex_unlock(&armpmu->reserve_mutex);
487	}
488
489	if (err)
490		return err;
491
492	err = __hw_perf_event_init(event);
493	if (err)
494		hw_perf_event_destroy(event);
495
496	return err;
497}
498
499static void armpmu_enable(struct pmu *pmu)
500{
501	struct arm_pmu *armpmu = to_arm_pmu(pmu);
502	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
503	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
504
505	/* For task-bound events we may be called on other CPUs */
506	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
507		return;
508
509	if (enabled)
510		armpmu->start(armpmu);
511}
512
513static void armpmu_disable(struct pmu *pmu)
514{
515	struct arm_pmu *armpmu = to_arm_pmu(pmu);
516
517	/* For task-bound events we may be called on other CPUs */
518	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
519		return;
520
521	armpmu->stop(armpmu);
522}
523
524/*
525 * In heterogeneous systems, events are specific to a particular
526 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
527 * the same microarchitecture.
528 */
529static int armpmu_filter_match(struct perf_event *event)
530{
531	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
532	unsigned int cpu = smp_processor_id();
533	return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
534}
535
536static void armpmu_init(struct arm_pmu *armpmu)
537{
538	atomic_set(&armpmu->active_events, 0);
539	mutex_init(&armpmu->reserve_mutex);
540
541	armpmu->pmu = (struct pmu) {
542		.pmu_enable	= armpmu_enable,
543		.pmu_disable	= armpmu_disable,
544		.event_init	= armpmu_event_init,
545		.add		= armpmu_add,
546		.del		= armpmu_del,
547		.start		= armpmu_start,
548		.stop		= armpmu_stop,
549		.read		= armpmu_read,
550		.filter_match	= armpmu_filter_match,
551	};
552}
553
554int armpmu_register(struct arm_pmu *armpmu, int type)
555{
556	armpmu_init(armpmu);
557	pr_info("enabled with %s PMU driver, %d counters available\n",
558			armpmu->name, armpmu->num_events);
559	return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
560}
561
562/* Set at runtime when we know what CPU type we are. */
563static struct arm_pmu *__oprofile_cpu_pmu;
564
565/*
566 * Despite the names, these two functions are CPU-specific and are used
567 * by the OProfile/perf code.
568 */
569const char *perf_pmu_name(void)
570{
571	if (!__oprofile_cpu_pmu)
572		return NULL;
573
574	return __oprofile_cpu_pmu->name;
575}
576EXPORT_SYMBOL_GPL(perf_pmu_name);
577
578int perf_num_counters(void)
579{
580	int max_events = 0;
581
582	if (__oprofile_cpu_pmu != NULL)
583		max_events = __oprofile_cpu_pmu->num_events;
584
585	return max_events;
586}
587EXPORT_SYMBOL_GPL(perf_num_counters);
588
589static void cpu_pmu_enable_percpu_irq(void *data)
590{
591	int irq = *(int *)data;
592
593	enable_percpu_irq(irq, IRQ_TYPE_NONE);
594}
595
596static void cpu_pmu_disable_percpu_irq(void *data)
597{
598	int irq = *(int *)data;
599
600	disable_percpu_irq(irq);
601}
602
603static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
604{
605	int i, irq, irqs;
606	struct platform_device *pmu_device = cpu_pmu->plat_device;
607	struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
608
609	irqs = min(pmu_device->num_resources, num_possible_cpus());
610
611	irq = platform_get_irq(pmu_device, 0);
612	if (irq >= 0 && irq_is_percpu(irq)) {
613		on_each_cpu(cpu_pmu_disable_percpu_irq, &irq, 1);
614		free_percpu_irq(irq, &hw_events->percpu_pmu);
615	} else {
616		for (i = 0; i < irqs; ++i) {
617			int cpu = i;
618
619			if (cpu_pmu->irq_affinity)
620				cpu = cpu_pmu->irq_affinity[i];
621
622			if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
623				continue;
624			irq = platform_get_irq(pmu_device, i);
625			if (irq >= 0)
626				free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
627		}
628	}
629}
630
631static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
632{
633	int i, err, irq, irqs;
634	struct platform_device *pmu_device = cpu_pmu->plat_device;
635	struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
636
637	if (!pmu_device)
638		return -ENODEV;
639
640	irqs = min(pmu_device->num_resources, num_possible_cpus());
641	if (irqs < 1) {
642		pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
643		return 0;
644	}
645
646	irq = platform_get_irq(pmu_device, 0);
647	if (irq >= 0 && irq_is_percpu(irq)) {
648		err = request_percpu_irq(irq, handler, "arm-pmu",
649					 &hw_events->percpu_pmu);
650		if (err) {
651			pr_err("unable to request IRQ%d for ARM PMU counters\n",
652				irq);
653			return err;
654		}
655		on_each_cpu(cpu_pmu_enable_percpu_irq, &irq, 1);
656	} else {
657		for (i = 0; i < irqs; ++i) {
658			int cpu = i;
659
660			err = 0;
661			irq = platform_get_irq(pmu_device, i);
662			if (irq < 0)
663				continue;
664
665			if (cpu_pmu->irq_affinity)
666				cpu = cpu_pmu->irq_affinity[i];
667
668			/*
669			 * If we have a single PMU interrupt that we can't shift,
670			 * assume that we're running on a uniprocessor machine and
671			 * continue. Otherwise, continue without this interrupt.
672			 */
673			if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
674				pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
675					irq, cpu);
676				continue;
677			}
678
679			err = request_irq(irq, handler,
680					  IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
681					  per_cpu_ptr(&hw_events->percpu_pmu, cpu));
682			if (err) {
683				pr_err("unable to request IRQ%d for ARM PMU counters\n",
684					irq);
685				return err;
686			}
687
688			cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
689		}
690	}
691
692	return 0;
693}
694
695/*
696 * PMU hardware loses all context when a CPU goes offline.
697 * When a CPU is hotplugged back in, since some hardware registers are
698 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
699 * junk values out of them.
700 */
701static int cpu_pmu_notify(struct notifier_block *b, unsigned long action,
702			  void *hcpu)
703{
704	int cpu = (unsigned long)hcpu;
705	struct arm_pmu *pmu = container_of(b, struct arm_pmu, hotplug_nb);
706
707	if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
708		return NOTIFY_DONE;
709
710	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
711		return NOTIFY_DONE;
712
713	if (pmu->reset)
714		pmu->reset(pmu);
715	else
716		return NOTIFY_DONE;
717
718	return NOTIFY_OK;
719}
720
721static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
722{
723	int err;
724	int cpu;
725	struct pmu_hw_events __percpu *cpu_hw_events;
726
727	cpu_hw_events = alloc_percpu(struct pmu_hw_events);
728	if (!cpu_hw_events)
729		return -ENOMEM;
730
731	cpu_pmu->hotplug_nb.notifier_call = cpu_pmu_notify;
732	err = register_cpu_notifier(&cpu_pmu->hotplug_nb);
733	if (err)
734		goto out_hw_events;
735
736	for_each_possible_cpu(cpu) {
737		struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
738		raw_spin_lock_init(&events->pmu_lock);
739		events->percpu_pmu = cpu_pmu;
740	}
741
742	cpu_pmu->hw_events	= cpu_hw_events;
743	cpu_pmu->request_irq	= cpu_pmu_request_irq;
744	cpu_pmu->free_irq	= cpu_pmu_free_irq;
745
746	/* Ensure the PMU has sane values out of reset. */
747	if (cpu_pmu->reset)
748		on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
749			 cpu_pmu, 1);
750
751	/* If no interrupts available, set the corresponding capability flag */
752	if (!platform_get_irq(cpu_pmu->plat_device, 0))
753		cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
754
755	return 0;
756
757out_hw_events:
758	free_percpu(cpu_hw_events);
759	return err;
760}
761
762static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
763{
764	unregister_cpu_notifier(&cpu_pmu->hotplug_nb);
765	free_percpu(cpu_pmu->hw_events);
766}
767
768/*
769 * CPU PMU identification and probing.
770 */
771static int probe_current_pmu(struct arm_pmu *pmu,
772			     const struct pmu_probe_info *info)
773{
774	int cpu = get_cpu();
775	unsigned int cpuid = read_cpuid_id();
776	int ret = -ENODEV;
777
778	pr_info("probing PMU on CPU %d\n", cpu);
779
780	for (; info->init != NULL; info++) {
781		if ((cpuid & info->mask) != info->cpuid)
782			continue;
783		ret = info->init(pmu);
784		break;
785	}
786
787	put_cpu();
788	return ret;
789}
790
791static int of_pmu_irq_cfg(struct arm_pmu *pmu)
792{
793	int *irqs, i = 0;
794	bool using_spi = false;
795	struct platform_device *pdev = pmu->plat_device;
796
797	irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
798	if (!irqs)
799		return -ENOMEM;
800
801	do {
802		struct device_node *dn;
803		int cpu, irq;
804
805		/* See if we have an affinity entry */
806		dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
807		if (!dn)
808			break;
809
810		/* Check the IRQ type and prohibit a mix of PPIs and SPIs */
811		irq = platform_get_irq(pdev, i);
812		if (irq >= 0) {
813			bool spi = !irq_is_percpu(irq);
814
815			if (i > 0 && spi != using_spi) {
816				pr_err("PPI/SPI IRQ type mismatch for %s!\n",
817					dn->name);
818				kfree(irqs);
819				return -EINVAL;
820			}
821
822			using_spi = spi;
823		}
824
825		/* Now look up the logical CPU number */
826		for_each_possible_cpu(cpu) {
827			struct device_node *cpu_dn;
828
829			cpu_dn = of_cpu_device_node_get(cpu);
830			of_node_put(cpu_dn);
831
832			if (dn == cpu_dn)
833				break;
834		}
835
836		if (cpu >= nr_cpu_ids) {
837			pr_warn("Failed to find logical CPU for %s\n",
838				dn->name);
839			of_node_put(dn);
840			cpumask_setall(&pmu->supported_cpus);
841			break;
842		}
843		of_node_put(dn);
844
845		/* For SPIs, we need to track the affinity per IRQ */
846		if (using_spi) {
847			if (i >= pdev->num_resources) {
848				of_node_put(dn);
849				break;
850			}
851
852			irqs[i] = cpu;
853		}
854
855		/* Keep track of the CPUs containing this PMU type */
856		cpumask_set_cpu(cpu, &pmu->supported_cpus);
857		of_node_put(dn);
858		i++;
859	} while (1);
860
861	/* If we didn't manage to parse anything, claim to support all CPUs */
862	if (cpumask_weight(&pmu->supported_cpus) == 0)
863		cpumask_setall(&pmu->supported_cpus);
864
865	/* If we matched up the IRQ affinities, use them to route the SPIs */
866	if (using_spi && i == pdev->num_resources)
867		pmu->irq_affinity = irqs;
868	else
869		kfree(irqs);
870
871	return 0;
872}
873
874int arm_pmu_device_probe(struct platform_device *pdev,
875			 const struct of_device_id *of_table,
876			 const struct pmu_probe_info *probe_table)
877{
878	const struct of_device_id *of_id;
879	const int (*init_fn)(struct arm_pmu *);
880	struct device_node *node = pdev->dev.of_node;
881	struct arm_pmu *pmu;
882	int ret = -ENODEV;
883
884	pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
885	if (!pmu) {
886		pr_info("failed to allocate PMU device!\n");
887		return -ENOMEM;
888	}
889
890	if (!__oprofile_cpu_pmu)
891		__oprofile_cpu_pmu = pmu;
892
893	pmu->plat_device = pdev;
894
895	if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
896		init_fn = of_id->data;
897
898		ret = of_pmu_irq_cfg(pmu);
899		if (!ret)
900			ret = init_fn(pmu);
901	} else {
902		ret = probe_current_pmu(pmu, probe_table);
903		cpumask_setall(&pmu->supported_cpus);
904	}
905
906	if (ret) {
907		pr_info("failed to probe PMU!\n");
908		goto out_free;
909	}
910
911	ret = cpu_pmu_init(pmu);
912	if (ret)
913		goto out_free;
914
915	ret = armpmu_register(pmu, -1);
916	if (ret)
917		goto out_destroy;
918
919	return 0;
920
921out_destroy:
922	cpu_pmu_destroy(pmu);
923out_free:
924	pr_info("failed to register PMU devices!\n");
925	kfree(pmu);
926	return ret;
927}
928