1/*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT.  See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/slab.h>
33#include <linux/workqueue.h>
34#include <linux/proc_fs.h>
35#include <linux/pci.h>
36#include <linux/pci_hotplug.h>
37#include "../pci.h"
38#include "cpqphp.h"
39#include "cpqphp_nvram.h"
40
41
42u8 cpqhp_nic_irq;
43u8 cpqhp_disk_irq;
44
45static u16 unused_IRQ;
46
47/*
48 * detect_HRT_floating_pointer
49 *
50 * find the Hot Plug Resource Table in the specified region of memory.
51 *
52 */
53static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
54{
55	void __iomem *fp;
56	void __iomem *endp;
57	u8 temp1, temp2, temp3, temp4;
58	int status = 0;
59
60	endp = (end - sizeof(struct hrt) + 1);
61
62	for (fp = begin; fp <= endp; fp += 16) {
63		temp1 = readb(fp + SIG0);
64		temp2 = readb(fp + SIG1);
65		temp3 = readb(fp + SIG2);
66		temp4 = readb(fp + SIG3);
67		if (temp1 == '$' &&
68		    temp2 == 'H' &&
69		    temp3 == 'R' &&
70		    temp4 == 'T') {
71			status = 1;
72			break;
73		}
74	}
75
76	if (!status)
77		fp = NULL;
78
79	dbg("Discovered Hotplug Resource Table at %p\n", fp);
80	return fp;
81}
82
83
84int cpqhp_configure_device (struct controller *ctrl, struct pci_func *func)
85{
86	struct pci_bus *child;
87	int num;
88
89	pci_lock_rescan_remove();
90
91	if (func->pci_dev == NULL)
92		func->pci_dev = pci_get_bus_and_slot(func->bus,PCI_DEVFN(func->device, func->function));
93
94	/* No pci device, we need to create it then */
95	if (func->pci_dev == NULL) {
96		dbg("INFO: pci_dev still null\n");
97
98		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
99		if (num)
100			pci_bus_add_devices(ctrl->pci_dev->bus);
101
102		func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
103		if (func->pci_dev == NULL) {
104			dbg("ERROR: pci_dev still null\n");
105			goto out;
106		}
107	}
108
109	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
110		pci_hp_add_bridge(func->pci_dev);
111		child = func->pci_dev->subordinate;
112		if (child)
113			pci_bus_add_devices(child);
114	}
115
116	pci_dev_put(func->pci_dev);
117
118 out:
119	pci_unlock_rescan_remove();
120	return 0;
121}
122
123
124int cpqhp_unconfigure_device(struct pci_func *func)
125{
126	int j;
127
128	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
129
130	pci_lock_rescan_remove();
131	for (j=0; j<8 ; j++) {
132		struct pci_dev *temp = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, j));
133		if (temp) {
134			pci_dev_put(temp);
135			pci_stop_and_remove_bus_device(temp);
136		}
137	}
138	pci_unlock_rescan_remove();
139	return 0;
140}
141
142static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
143{
144	u32 vendID = 0;
145
146	if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
147		return -1;
148	if (vendID == 0xffffffff)
149		return -1;
150	return pci_bus_read_config_dword (bus, devfn, offset, value);
151}
152
153
154/*
155 * cpqhp_set_irq
156 *
157 * @bus_num: bus number of PCI device
158 * @dev_num: device number of PCI device
159 * @slot: pointer to u8 where slot number will be returned
160 */
161int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
162{
163	int rc = 0;
164
165	if (cpqhp_legacy_mode) {
166		struct pci_dev *fakedev;
167		struct pci_bus *fakebus;
168		u16 temp_word;
169
170		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
171		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
172		if (!fakedev || !fakebus) {
173			kfree(fakedev);
174			kfree(fakebus);
175			return -ENOMEM;
176		}
177
178		fakedev->devfn = dev_num << 3;
179		fakedev->bus = fakebus;
180		fakebus->number = bus_num;
181		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
182		    __func__, dev_num, bus_num, int_pin, irq_num);
183		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
184		kfree(fakedev);
185		kfree(fakebus);
186		dbg("%s: rc %d\n", __func__, rc);
187		if (!rc)
188			return !rc;
189
190		/* set the Edge Level Control Register (ELCR) */
191		temp_word = inb(0x4d0);
192		temp_word |= inb(0x4d1) << 8;
193
194		temp_word |= 0x01 << irq_num;
195
196		/* This should only be for x86 as it sets the Edge Level
197		 * Control Register
198		 */
199		outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word &
200		0xFF00) >> 8), 0x4d1); rc = 0; }
201
202	return rc;
203}
204
205
206static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
207{
208	u16 tdevice;
209	u32 work;
210	u8 tbus;
211
212	ctrl->pci_bus->number = bus_num;
213
214	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
215		/* Scan for access first */
216		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
217			continue;
218		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
219		/* Yep we got one. Not a bridge ? */
220		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
221			*dev_num = tdevice;
222			dbg("found it !\n");
223			return 0;
224		}
225	}
226	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
227		/* Scan for access first */
228		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
229			continue;
230		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
231		/* Yep we got one. bridge ? */
232		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
233			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
234			/* XXX: no recursion, wtf? */
235			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
236			return 0;
237		}
238	}
239
240	return -1;
241}
242
243
244static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
245{
246	int loop, len;
247	u32 work;
248	u8 tbus, tdevice, tslot;
249
250	len = cpqhp_routing_table_length();
251	for (loop = 0; loop < len; ++loop) {
252		tbus = cpqhp_routing_table->slots[loop].bus;
253		tdevice = cpqhp_routing_table->slots[loop].devfn;
254		tslot = cpqhp_routing_table->slots[loop].slot;
255
256		if (tslot == slot) {
257			*bus_num = tbus;
258			*dev_num = tdevice;
259			ctrl->pci_bus->number = tbus;
260			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
261			if (!nobridge || (work == 0xffffffff))
262				return 0;
263
264			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
265			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
266			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
267
268			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
269				pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
270				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
271				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
272					*bus_num = tbus;
273					return 0;
274				}
275			} else
276				return 0;
277		}
278	}
279	return -1;
280}
281
282
283int cpqhp_get_bus_dev (struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
284{
285	/* plain (bridges allowed) */
286	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
287}
288
289
290/* More PCI configuration routines; this time centered around hotplug
291 * controller
292 */
293
294
295/*
296 * cpqhp_save_config
297 *
298 * Reads configuration for all slots in a PCI bus and saves info.
299 *
300 * Note:  For non-hot plug buses, the slot # saved is the device #
301 *
302 * returns 0 if success
303 */
304int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
305{
306	long rc;
307	u8 class_code;
308	u8 header_type;
309	u32 ID;
310	u8 secondary_bus;
311	struct pci_func *new_slot;
312	int sub_bus;
313	int FirstSupported;
314	int LastSupported;
315	int max_functions;
316	int function;
317	u8 DevError;
318	int device = 0;
319	int cloop = 0;
320	int stop_it;
321	int index;
322
323	/* Decide which slots are supported */
324
325	if (is_hot_plug) {
326		/*
327		 * is_hot_plug is the slot mask
328		 */
329		FirstSupported = is_hot_plug >> 4;
330		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
331	} else {
332		FirstSupported = 0;
333		LastSupported = 0x1F;
334	}
335
336	/* Save PCI configuration space for all devices in supported slots */
337	ctrl->pci_bus->number = busnumber;
338	for (device = FirstSupported; device <= LastSupported; device++) {
339		ID = 0xFFFFFFFF;
340		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
341
342		if (ID == 0xFFFFFFFF) {
343			if (is_hot_plug) {
344				/* Setup slot structure with entry for empty
345				 * slot
346				 */
347				new_slot = cpqhp_slot_create(busnumber);
348				if (new_slot == NULL)
349					return 1;
350
351				new_slot->bus = (u8) busnumber;
352				new_slot->device = (u8) device;
353				new_slot->function = 0;
354				new_slot->is_a_board = 0;
355				new_slot->presence_save = 0;
356				new_slot->switch_save = 0;
357			}
358			continue;
359		}
360
361		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
362		if (rc)
363			return rc;
364
365		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
366		if (rc)
367			return rc;
368
369		/* If multi-function device, set max_functions to 8 */
370		if (header_type & 0x80)
371			max_functions = 8;
372		else
373			max_functions = 1;
374
375		function = 0;
376
377		do {
378			DevError = 0;
379			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
380				/* Recurse the subordinate bus
381				 * get the subordinate bus number
382				 */
383				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
384				if (rc) {
385					return rc;
386				} else {
387					sub_bus = (int) secondary_bus;
388
389					/* Save secondary bus cfg spc
390					 * with this recursive call.
391					 */
392					rc = cpqhp_save_config(ctrl, sub_bus, 0);
393					if (rc)
394						return rc;
395					ctrl->pci_bus->number = busnumber;
396				}
397			}
398
399			index = 0;
400			new_slot = cpqhp_slot_find(busnumber, device, index++);
401			while (new_slot &&
402			       (new_slot->function != (u8) function))
403				new_slot = cpqhp_slot_find(busnumber, device, index++);
404
405			if (!new_slot) {
406				/* Setup slot structure. */
407				new_slot = cpqhp_slot_create(busnumber);
408				if (new_slot == NULL)
409					return 1;
410			}
411
412			new_slot->bus = (u8) busnumber;
413			new_slot->device = (u8) device;
414			new_slot->function = (u8) function;
415			new_slot->is_a_board = 1;
416			new_slot->switch_save = 0x10;
417			/* In case of unsupported board */
418			new_slot->status = DevError;
419			new_slot->pci_dev = pci_get_bus_and_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
420
421			for (cloop = 0; cloop < 0x20; cloop++) {
422				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
423				if (rc)
424					return rc;
425			}
426
427			pci_dev_put(new_slot->pci_dev);
428
429			function++;
430
431			stop_it = 0;
432
433			/* this loop skips to the next present function
434			 * reading in Class Code and Header type.
435			 */
436			while ((function < max_functions) && (!stop_it)) {
437				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
438				if (ID == 0xFFFFFFFF) {
439					function++;
440					continue;
441				}
442				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
443				if (rc)
444					return rc;
445
446				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
447				if (rc)
448					return rc;
449
450				stop_it++;
451			}
452
453		} while (function < max_functions);
454	}			/* End of FOR loop */
455
456	return 0;
457}
458
459
460/*
461 * cpqhp_save_slot_config
462 *
463 * Saves configuration info for all PCI devices in a given slot
464 * including subordinate buses.
465 *
466 * returns 0 if success
467 */
468int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func *new_slot)
469{
470	long rc;
471	u8 class_code;
472	u8 header_type;
473	u32 ID;
474	u8 secondary_bus;
475	int sub_bus;
476	int max_functions;
477	int function = 0;
478	int cloop = 0;
479	int stop_it;
480
481	ID = 0xFFFFFFFF;
482
483	ctrl->pci_bus->number = new_slot->bus;
484	pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
485
486	if (ID == 0xFFFFFFFF)
487		return 2;
488
489	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
490	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
491
492	if (header_type & 0x80)	/* Multi-function device */
493		max_functions = 8;
494	else
495		max_functions = 1;
496
497	while (function < max_functions) {
498		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
499			/*  Recurse the subordinate bus */
500			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
501
502			sub_bus = (int) secondary_bus;
503
504			/* Save the config headers for the secondary
505			 * bus.
506			 */
507			rc = cpqhp_save_config(ctrl, sub_bus, 0);
508			if (rc)
509				return(rc);
510			ctrl->pci_bus->number = new_slot->bus;
511
512		}
513
514		new_slot->status = 0;
515
516		for (cloop = 0; cloop < 0x20; cloop++)
517			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
518
519		function++;
520
521		stop_it = 0;
522
523		/* this loop skips to the next present function
524		 * reading in the Class Code and the Header type.
525		 */
526		while ((function < max_functions) && (!stop_it)) {
527			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
528
529			if (ID == 0xFFFFFFFF)
530				function++;
531			else {
532				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
533				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
534				stop_it++;
535			}
536		}
537
538	}
539
540	return 0;
541}
542
543
544/*
545 * cpqhp_save_base_addr_length
546 *
547 * Saves the length of all base address registers for the
548 * specified slot.  this is for hot plug REPLACE
549 *
550 * returns 0 if success
551 */
552int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
553{
554	u8 cloop;
555	u8 header_type;
556	u8 secondary_bus;
557	u8 type;
558	int sub_bus;
559	u32 temp_register;
560	u32 base;
561	u32 rc;
562	struct pci_func *next;
563	int index = 0;
564	struct pci_bus *pci_bus = ctrl->pci_bus;
565	unsigned int devfn;
566
567	func = cpqhp_slot_find(func->bus, func->device, index++);
568
569	while (func != NULL) {
570		pci_bus->number = func->bus;
571		devfn = PCI_DEVFN(func->device, func->function);
572
573		/* Check for Bridge */
574		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
575
576		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
577			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
578
579			sub_bus = (int) secondary_bus;
580
581			next = cpqhp_slot_list[sub_bus];
582
583			while (next != NULL) {
584				rc = cpqhp_save_base_addr_length(ctrl, next);
585				if (rc)
586					return rc;
587
588				next = next->next;
589			}
590			pci_bus->number = func->bus;
591
592			/* FIXME: this loop is duplicated in the non-bridge
593			 * case.  The two could be rolled together Figure out
594			 * IO and memory base lengths
595			 */
596			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
597				temp_register = 0xFFFFFFFF;
598				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
599				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
600				/* If this register is implemented */
601				if (base) {
602					if (base & 0x01L) {
603						/* IO base
604						 * set base = amount of IO space
605						 * requested
606						 */
607						base = base & 0xFFFFFFFE;
608						base = (~base) + 1;
609
610						type = 1;
611					} else {
612						/* memory base */
613						base = base & 0xFFFFFFF0;
614						base = (~base) + 1;
615
616						type = 0;
617					}
618				} else {
619					base = 0x0L;
620					type = 0;
621				}
622
623				/* Save information in slot structure */
624				func->base_length[(cloop - 0x10) >> 2] =
625				base;
626				func->base_type[(cloop - 0x10) >> 2] = type;
627
628			}	/* End of base register loop */
629
630		} else if ((header_type & 0x7F) == 0x00) {
631			/* Figure out IO and memory base lengths */
632			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
633				temp_register = 0xFFFFFFFF;
634				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
635				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
636
637				/* If this register is implemented */
638				if (base) {
639					if (base & 0x01L) {
640						/* IO base
641						 * base = amount of IO space
642						 * requested
643						 */
644						base = base & 0xFFFFFFFE;
645						base = (~base) + 1;
646
647						type = 1;
648					} else {
649						/* memory base
650						 * base = amount of memory
651						 * space requested
652						 */
653						base = base & 0xFFFFFFF0;
654						base = (~base) + 1;
655
656						type = 0;
657					}
658				} else {
659					base = 0x0L;
660					type = 0;
661				}
662
663				/* Save information in slot structure */
664				func->base_length[(cloop - 0x10) >> 2] = base;
665				func->base_type[(cloop - 0x10) >> 2] = type;
666
667			}	/* End of base register loop */
668
669		} else {	  /* Some other unknown header type */
670		}
671
672		/* find the next device in this slot */
673		func = cpqhp_slot_find(func->bus, func->device, index++);
674	}
675
676	return(0);
677}
678
679
680/*
681 * cpqhp_save_used_resources
682 *
683 * Stores used resource information for existing boards.  this is
684 * for boards that were in the system when this driver was loaded.
685 * this function is for hot plug ADD
686 *
687 * returns 0 if success
688 */
689int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func *func)
690{
691	u8 cloop;
692	u8 header_type;
693	u8 secondary_bus;
694	u8 temp_byte;
695	u8 b_base;
696	u8 b_length;
697	u16 command;
698	u16 save_command;
699	u16 w_base;
700	u16 w_length;
701	u32 temp_register;
702	u32 save_base;
703	u32 base;
704	int index = 0;
705	struct pci_resource *mem_node;
706	struct pci_resource *p_mem_node;
707	struct pci_resource *io_node;
708	struct pci_resource *bus_node;
709	struct pci_bus *pci_bus = ctrl->pci_bus;
710	unsigned int devfn;
711
712	func = cpqhp_slot_find(func->bus, func->device, index++);
713
714	while ((func != NULL) && func->is_a_board) {
715		pci_bus->number = func->bus;
716		devfn = PCI_DEVFN(func->device, func->function);
717
718		/* Save the command register */
719		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
720
721		/* disable card */
722		command = 0x00;
723		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
724
725		/* Check for Bridge */
726		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
727
728		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
729			/* Clear Bridge Control Register */
730			command = 0x00;
731			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
732			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
733			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
734
735			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
736			if (!bus_node)
737				return -ENOMEM;
738
739			bus_node->base = secondary_bus;
740			bus_node->length = temp_byte - secondary_bus + 1;
741
742			bus_node->next = func->bus_head;
743			func->bus_head = bus_node;
744
745			/* Save IO base and Limit registers */
746			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
747			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
748
749			if ((b_base <= b_length) && (save_command & 0x01)) {
750				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
751				if (!io_node)
752					return -ENOMEM;
753
754				io_node->base = (b_base & 0xF0) << 8;
755				io_node->length = (b_length - b_base + 0x10) << 8;
756
757				io_node->next = func->io_head;
758				func->io_head = io_node;
759			}
760
761			/* Save memory base and Limit registers */
762			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
763			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
764
765			if ((w_base <= w_length) && (save_command & 0x02)) {
766				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
767				if (!mem_node)
768					return -ENOMEM;
769
770				mem_node->base = w_base << 16;
771				mem_node->length = (w_length - w_base + 0x10) << 16;
772
773				mem_node->next = func->mem_head;
774				func->mem_head = mem_node;
775			}
776
777			/* Save prefetchable memory base and Limit registers */
778			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
779			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
780
781			if ((w_base <= w_length) && (save_command & 0x02)) {
782				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
783				if (!p_mem_node)
784					return -ENOMEM;
785
786				p_mem_node->base = w_base << 16;
787				p_mem_node->length = (w_length - w_base + 0x10) << 16;
788
789				p_mem_node->next = func->p_mem_head;
790				func->p_mem_head = p_mem_node;
791			}
792			/* Figure out IO and memory base lengths */
793			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
794				pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base);
795
796				temp_register = 0xFFFFFFFF;
797				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
798				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
799
800				temp_register = base;
801
802				/* If this register is implemented */
803				if (base) {
804					if (((base & 0x03L) == 0x01)
805					    && (save_command & 0x01)) {
806						/* IO base
807						 * set temp_register = amount
808						 * of IO space requested
809						 */
810						temp_register = base & 0xFFFFFFFE;
811						temp_register = (~temp_register) + 1;
812
813						io_node = kmalloc(sizeof(*io_node),
814								GFP_KERNEL);
815						if (!io_node)
816							return -ENOMEM;
817
818						io_node->base =
819						save_base & (~0x03L);
820						io_node->length = temp_register;
821
822						io_node->next = func->io_head;
823						func->io_head = io_node;
824					} else
825						if (((base & 0x0BL) == 0x08)
826						    && (save_command & 0x02)) {
827						/* prefetchable memory base */
828						temp_register = base & 0xFFFFFFF0;
829						temp_register = (~temp_register) + 1;
830
831						p_mem_node = kmalloc(sizeof(*p_mem_node),
832								GFP_KERNEL);
833						if (!p_mem_node)
834							return -ENOMEM;
835
836						p_mem_node->base = save_base & (~0x0FL);
837						p_mem_node->length = temp_register;
838
839						p_mem_node->next = func->p_mem_head;
840						func->p_mem_head = p_mem_node;
841					} else
842						if (((base & 0x0BL) == 0x00)
843						    && (save_command & 0x02)) {
844						/* prefetchable memory base */
845						temp_register = base & 0xFFFFFFF0;
846						temp_register = (~temp_register) + 1;
847
848						mem_node = kmalloc(sizeof(*mem_node),
849								GFP_KERNEL);
850						if (!mem_node)
851							return -ENOMEM;
852
853						mem_node->base = save_base & (~0x0FL);
854						mem_node->length = temp_register;
855
856						mem_node->next = func->mem_head;
857						func->mem_head = mem_node;
858					} else
859						return(1);
860				}
861			}	/* End of base register loop */
862		/* Standard header */
863		} else if ((header_type & 0x7F) == 0x00) {
864			/* Figure out IO and memory base lengths */
865			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
866				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
867
868				temp_register = 0xFFFFFFFF;
869				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
870				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
871
872				temp_register = base;
873
874				/* If this register is implemented */
875				if (base) {
876					if (((base & 0x03L) == 0x01)
877					    && (save_command & 0x01)) {
878						/* IO base
879						 * set temp_register = amount
880						 * of IO space requested
881						 */
882						temp_register = base & 0xFFFFFFFE;
883						temp_register = (~temp_register) + 1;
884
885						io_node = kmalloc(sizeof(*io_node),
886								GFP_KERNEL);
887						if (!io_node)
888							return -ENOMEM;
889
890						io_node->base = save_base & (~0x01L);
891						io_node->length = temp_register;
892
893						io_node->next = func->io_head;
894						func->io_head = io_node;
895					} else
896						if (((base & 0x0BL) == 0x08)
897						    && (save_command & 0x02)) {
898						/* prefetchable memory base */
899						temp_register = base & 0xFFFFFFF0;
900						temp_register = (~temp_register) + 1;
901
902						p_mem_node = kmalloc(sizeof(*p_mem_node),
903								GFP_KERNEL);
904						if (!p_mem_node)
905							return -ENOMEM;
906
907						p_mem_node->base = save_base & (~0x0FL);
908						p_mem_node->length = temp_register;
909
910						p_mem_node->next = func->p_mem_head;
911						func->p_mem_head = p_mem_node;
912					} else
913						if (((base & 0x0BL) == 0x00)
914						    && (save_command & 0x02)) {
915						/* prefetchable memory base */
916						temp_register = base & 0xFFFFFFF0;
917						temp_register = (~temp_register) + 1;
918
919						mem_node = kmalloc(sizeof(*mem_node),
920								GFP_KERNEL);
921						if (!mem_node)
922							return -ENOMEM;
923
924						mem_node->base = save_base & (~0x0FL);
925						mem_node->length = temp_register;
926
927						mem_node->next = func->mem_head;
928						func->mem_head = mem_node;
929					} else
930						return(1);
931				}
932			}	/* End of base register loop */
933		}
934
935		/* find the next device in this slot */
936		func = cpqhp_slot_find(func->bus, func->device, index++);
937	}
938
939	return 0;
940}
941
942
943/*
944 * cpqhp_configure_board
945 *
946 * Copies saved configuration information to one slot.
947 * this is called recursively for bridge devices.
948 * this is for hot plug REPLACE!
949 *
950 * returns 0 if success
951 */
952int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
953{
954	int cloop;
955	u8 header_type;
956	u8 secondary_bus;
957	int sub_bus;
958	struct pci_func *next;
959	u32 temp;
960	u32 rc;
961	int index = 0;
962	struct pci_bus *pci_bus = ctrl->pci_bus;
963	unsigned int devfn;
964
965	func = cpqhp_slot_find(func->bus, func->device, index++);
966
967	while (func != NULL) {
968		pci_bus->number = func->bus;
969		devfn = PCI_DEVFN(func->device, func->function);
970
971		/* Start at the top of config space so that the control
972		 * registers are programmed last
973		 */
974		for (cloop = 0x3C; cloop > 0; cloop -= 4)
975			pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
976
977		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
978
979		/* If this is a bridge device, restore subordinate devices */
980		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
981			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
982
983			sub_bus = (int) secondary_bus;
984
985			next = cpqhp_slot_list[sub_bus];
986
987			while (next != NULL) {
988				rc = cpqhp_configure_board(ctrl, next);
989				if (rc)
990					return rc;
991
992				next = next->next;
993			}
994		} else {
995
996			/* Check all the base Address Registers to make sure
997			 * they are the same.  If not, the board is different.
998			 */
999
1000			for (cloop = 16; cloop < 40; cloop += 4) {
1001				pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp);
1002
1003				if (temp != func->config_space[cloop >> 2]) {
1004					dbg("Config space compare failure!!! offset = %x\n", cloop);
1005					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1006					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1007					return 1;
1008				}
1009			}
1010		}
1011
1012		func->configured = 1;
1013
1014		func = cpqhp_slot_find(func->bus, func->device, index++);
1015	}
1016
1017	return 0;
1018}
1019
1020
1021/*
1022 * cpqhp_valid_replace
1023 *
1024 * this function checks to see if a board is the same as the
1025 * one it is replacing.  this check will detect if the device's
1026 * vendor or device id's are the same
1027 *
1028 * returns 0 if the board is the same nonzero otherwise
1029 */
1030int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1031{
1032	u8 cloop;
1033	u8 header_type;
1034	u8 secondary_bus;
1035	u8 type;
1036	u32 temp_register = 0;
1037	u32 base;
1038	u32 rc;
1039	struct pci_func *next;
1040	int index = 0;
1041	struct pci_bus *pci_bus = ctrl->pci_bus;
1042	unsigned int devfn;
1043
1044	if (!func->is_a_board)
1045		return(ADD_NOT_SUPPORTED);
1046
1047	func = cpqhp_slot_find(func->bus, func->device, index++);
1048
1049	while (func != NULL) {
1050		pci_bus->number = func->bus;
1051		devfn = PCI_DEVFN(func->device, func->function);
1052
1053		pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1054
1055		/* No adapter present */
1056		if (temp_register == 0xFFFFFFFF)
1057			return(NO_ADAPTER_PRESENT);
1058
1059		if (temp_register != func->config_space[0])
1060			return(ADAPTER_NOT_SAME);
1061
1062		/* Check for same revision number and class code */
1063		pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1064
1065		/* Adapter not the same */
1066		if (temp_register != func->config_space[0x08 >> 2])
1067			return(ADAPTER_NOT_SAME);
1068
1069		/* Check for Bridge */
1070		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1071
1072		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1073			/* In order to continue checking, we must program the
1074			 * bus registers in the bridge to respond to accesses
1075			 * for its subordinate bus(es)
1076			 */
1077
1078			temp_register = func->config_space[0x18 >> 2];
1079			pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1080
1081			secondary_bus = (temp_register >> 8) & 0xFF;
1082
1083			next = cpqhp_slot_list[secondary_bus];
1084
1085			while (next != NULL) {
1086				rc = cpqhp_valid_replace(ctrl, next);
1087				if (rc)
1088					return rc;
1089
1090				next = next->next;
1091			}
1092
1093		}
1094		/* Check to see if it is a standard config header */
1095		else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1096			/* Check subsystem vendor and ID */
1097			pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1098
1099			if (temp_register != func->config_space[0x2C >> 2]) {
1100				/* If it's a SMART-2 and the register isn't
1101				 * filled in, ignore the difference because
1102				 * they just have an old rev of the firmware
1103				 */
1104				if (!((func->config_space[0] == 0xAE100E11)
1105				      && (temp_register == 0x00L)))
1106					return(ADAPTER_NOT_SAME);
1107			}
1108			/* Figure out IO and memory base lengths */
1109			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1110				temp_register = 0xFFFFFFFF;
1111				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
1112				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
1113
1114				/* If this register is implemented */
1115				if (base) {
1116					if (base & 0x01L) {
1117						/* IO base
1118						 * set base = amount of IO
1119						 * space requested
1120						 */
1121						base = base & 0xFFFFFFFE;
1122						base = (~base) + 1;
1123
1124						type = 1;
1125					} else {
1126						/* memory base */
1127						base = base & 0xFFFFFFF0;
1128						base = (~base) + 1;
1129
1130						type = 0;
1131					}
1132				} else {
1133					base = 0x0L;
1134					type = 0;
1135				}
1136
1137				/* Check information in slot structure */
1138				if (func->base_length[(cloop - 0x10) >> 2] != base)
1139					return(ADAPTER_NOT_SAME);
1140
1141				if (func->base_type[(cloop - 0x10) >> 2] != type)
1142					return(ADAPTER_NOT_SAME);
1143
1144			}	/* End of base register loop */
1145
1146		}		/* End of (type 0 config space) else */
1147		else {
1148			/* this is not a type 0 or 1 config space header so
1149			 * we don't know how to do it
1150			 */
1151			return(DEVICE_TYPE_NOT_SUPPORTED);
1152		}
1153
1154		/* Get the next function */
1155		func = cpqhp_slot_find(func->bus, func->device, index++);
1156	}
1157
1158
1159	return 0;
1160}
1161
1162
1163/*
1164 * cpqhp_find_available_resources
1165 *
1166 * Finds available memory, IO, and IRQ resources for programming
1167 * devices which may be added to the system
1168 * this function is for hot plug ADD!
1169 *
1170 * returns 0 if success
1171 */
1172int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1173{
1174	u8 temp;
1175	u8 populated_slot;
1176	u8 bridged_slot;
1177	void __iomem *one_slot;
1178	void __iomem *rom_resource_table;
1179	struct pci_func *func = NULL;
1180	int i = 10, index;
1181	u32 temp_dword, rc;
1182	struct pci_resource *mem_node;
1183	struct pci_resource *p_mem_node;
1184	struct pci_resource *io_node;
1185	struct pci_resource *bus_node;
1186
1187	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1188	dbg("rom_resource_table = %p\n", rom_resource_table);
1189
1190	if (rom_resource_table == NULL)
1191		return -ENODEV;
1192
1193	/* Sum all resources and setup resource maps */
1194	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1195	dbg("unused_IRQ = %x\n", unused_IRQ);
1196
1197	temp = 0;
1198	while (unused_IRQ) {
1199		if (unused_IRQ & 1) {
1200			cpqhp_disk_irq = temp;
1201			break;
1202		}
1203		unused_IRQ = unused_IRQ >> 1;
1204		temp++;
1205	}
1206
1207	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1208	unused_IRQ = unused_IRQ >> 1;
1209	temp++;
1210
1211	while (unused_IRQ) {
1212		if (unused_IRQ & 1) {
1213			cpqhp_nic_irq = temp;
1214			break;
1215		}
1216		unused_IRQ = unused_IRQ >> 1;
1217		temp++;
1218	}
1219
1220	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1221	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1222
1223	temp = 0;
1224
1225	if (!cpqhp_nic_irq)
1226		cpqhp_nic_irq = ctrl->cfgspc_irq;
1227
1228	if (!cpqhp_disk_irq)
1229		cpqhp_disk_irq = ctrl->cfgspc_irq;
1230
1231	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1232
1233	rc = compaq_nvram_load(rom_start, ctrl);
1234	if (rc)
1235		return rc;
1236
1237	one_slot = rom_resource_table + sizeof (struct hrt);
1238
1239	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1240	dbg("number_of_entries = %d\n", i);
1241
1242	if (!readb(one_slot + SECONDARY_BUS))
1243		return 1;
1244
1245	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1246
1247	while (i && readb(one_slot + SECONDARY_BUS)) {
1248		u8 dev_func = readb(one_slot + DEV_FUNC);
1249		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1250		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1251		u8 max_bus = readb(one_slot + MAX_BUS);
1252		u16 io_base = readw(one_slot + IO_BASE);
1253		u16 io_length = readw(one_slot + IO_LENGTH);
1254		u16 mem_base = readw(one_slot + MEM_BASE);
1255		u16 mem_length = readw(one_slot + MEM_LENGTH);
1256		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1257		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1258
1259		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1260		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1261		    primary_bus, secondary_bus, max_bus);
1262
1263		/* If this entry isn't for our controller's bus, ignore it */
1264		if (primary_bus != ctrl->bus) {
1265			i--;
1266			one_slot += sizeof (struct slot_rt);
1267			continue;
1268		}
1269		/* find out if this entry is for an occupied slot */
1270		ctrl->pci_bus->number = primary_bus;
1271		pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1272		dbg("temp_D_word = %x\n", temp_dword);
1273
1274		if (temp_dword != 0xFFFFFFFF) {
1275			index = 0;
1276			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1277
1278			while (func && (func->function != (dev_func & 0x07))) {
1279				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1280				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1281			}
1282
1283			/* If we can't find a match, skip this table entry */
1284			if (!func) {
1285				i--;
1286				one_slot += sizeof (struct slot_rt);
1287				continue;
1288			}
1289			/* this may not work and shouldn't be used */
1290			if (secondary_bus != primary_bus)
1291				bridged_slot = 1;
1292			else
1293				bridged_slot = 0;
1294
1295			populated_slot = 1;
1296		} else {
1297			populated_slot = 0;
1298			bridged_slot = 0;
1299		}
1300
1301
1302		/* If we've got a valid IO base, use it */
1303
1304		temp_dword = io_base + io_length;
1305
1306		if ((io_base) && (temp_dword < 0x10000)) {
1307			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1308			if (!io_node)
1309				return -ENOMEM;
1310
1311			io_node->base = io_base;
1312			io_node->length = io_length;
1313
1314			dbg("found io_node(base, length) = %x, %x\n",
1315					io_node->base, io_node->length);
1316			dbg("populated slot =%d \n", populated_slot);
1317			if (!populated_slot) {
1318				io_node->next = ctrl->io_head;
1319				ctrl->io_head = io_node;
1320			} else {
1321				io_node->next = func->io_head;
1322				func->io_head = io_node;
1323			}
1324		}
1325
1326		/* If we've got a valid memory base, use it */
1327		temp_dword = mem_base + mem_length;
1328		if ((mem_base) && (temp_dword < 0x10000)) {
1329			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1330			if (!mem_node)
1331				return -ENOMEM;
1332
1333			mem_node->base = mem_base << 16;
1334
1335			mem_node->length = mem_length << 16;
1336
1337			dbg("found mem_node(base, length) = %x, %x\n",
1338					mem_node->base, mem_node->length);
1339			dbg("populated slot =%d \n", populated_slot);
1340			if (!populated_slot) {
1341				mem_node->next = ctrl->mem_head;
1342				ctrl->mem_head = mem_node;
1343			} else {
1344				mem_node->next = func->mem_head;
1345				func->mem_head = mem_node;
1346			}
1347		}
1348
1349		/* If we've got a valid prefetchable memory base, and
1350		 * the base + length isn't greater than 0xFFFF
1351		 */
1352		temp_dword = pre_mem_base + pre_mem_length;
1353		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1354			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1355			if (!p_mem_node)
1356				return -ENOMEM;
1357
1358			p_mem_node->base = pre_mem_base << 16;
1359
1360			p_mem_node->length = pre_mem_length << 16;
1361			dbg("found p_mem_node(base, length) = %x, %x\n",
1362					p_mem_node->base, p_mem_node->length);
1363			dbg("populated slot =%d \n", populated_slot);
1364
1365			if (!populated_slot) {
1366				p_mem_node->next = ctrl->p_mem_head;
1367				ctrl->p_mem_head = p_mem_node;
1368			} else {
1369				p_mem_node->next = func->p_mem_head;
1370				func->p_mem_head = p_mem_node;
1371			}
1372		}
1373
1374		/* If we've got a valid bus number, use it
1375		 * The second condition is to ignore bus numbers on
1376		 * populated slots that don't have PCI-PCI bridges
1377		 */
1378		if (secondary_bus && (secondary_bus != primary_bus)) {
1379			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1380			if (!bus_node)
1381				return -ENOMEM;
1382
1383			bus_node->base = secondary_bus;
1384			bus_node->length = max_bus - secondary_bus + 1;
1385			dbg("found bus_node(base, length) = %x, %x\n",
1386					bus_node->base, bus_node->length);
1387			dbg("populated slot =%d \n", populated_slot);
1388			if (!populated_slot) {
1389				bus_node->next = ctrl->bus_head;
1390				ctrl->bus_head = bus_node;
1391			} else {
1392				bus_node->next = func->bus_head;
1393				func->bus_head = bus_node;
1394			}
1395		}
1396
1397		i--;
1398		one_slot += sizeof (struct slot_rt);
1399	}
1400
1401	/* If all of the following fail, we don't have any resources for
1402	 * hot plug add
1403	 */
1404	rc = 1;
1405	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1406	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1407	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1408	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1409
1410	return rc;
1411}
1412
1413
1414/*
1415 * cpqhp_return_board_resources
1416 *
1417 * this routine returns all resources allocated to a board to
1418 * the available pool.
1419 *
1420 * returns 0 if success
1421 */
1422int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1423{
1424	int rc = 0;
1425	struct pci_resource *node;
1426	struct pci_resource *t_node;
1427	dbg("%s\n", __func__);
1428
1429	if (!func)
1430		return 1;
1431
1432	node = func->io_head;
1433	func->io_head = NULL;
1434	while (node) {
1435		t_node = node->next;
1436		return_resource(&(resources->io_head), node);
1437		node = t_node;
1438	}
1439
1440	node = func->mem_head;
1441	func->mem_head = NULL;
1442	while (node) {
1443		t_node = node->next;
1444		return_resource(&(resources->mem_head), node);
1445		node = t_node;
1446	}
1447
1448	node = func->p_mem_head;
1449	func->p_mem_head = NULL;
1450	while (node) {
1451		t_node = node->next;
1452		return_resource(&(resources->p_mem_head), node);
1453		node = t_node;
1454	}
1455
1456	node = func->bus_head;
1457	func->bus_head = NULL;
1458	while (node) {
1459		t_node = node->next;
1460		return_resource(&(resources->bus_head), node);
1461		node = t_node;
1462	}
1463
1464	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1465	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1466	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1467	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1468
1469	return rc;
1470}
1471
1472
1473/*
1474 * cpqhp_destroy_resource_list
1475 *
1476 * Puts node back in the resource list pointed to by head
1477 */
1478void cpqhp_destroy_resource_list (struct resource_lists *resources)
1479{
1480	struct pci_resource *res, *tres;
1481
1482	res = resources->io_head;
1483	resources->io_head = NULL;
1484
1485	while (res) {
1486		tres = res;
1487		res = res->next;
1488		kfree(tres);
1489	}
1490
1491	res = resources->mem_head;
1492	resources->mem_head = NULL;
1493
1494	while (res) {
1495		tres = res;
1496		res = res->next;
1497		kfree(tres);
1498	}
1499
1500	res = resources->p_mem_head;
1501	resources->p_mem_head = NULL;
1502
1503	while (res) {
1504		tres = res;
1505		res = res->next;
1506		kfree(tres);
1507	}
1508
1509	res = resources->bus_head;
1510	resources->bus_head = NULL;
1511
1512	while (res) {
1513		tres = res;
1514		res = res->next;
1515		kfree(tres);
1516	}
1517}
1518
1519
1520/*
1521 * cpqhp_destroy_board_resources
1522 *
1523 * Puts node back in the resource list pointed to by head
1524 */
1525void cpqhp_destroy_board_resources (struct pci_func *func)
1526{
1527	struct pci_resource *res, *tres;
1528
1529	res = func->io_head;
1530	func->io_head = NULL;
1531
1532	while (res) {
1533		tres = res;
1534		res = res->next;
1535		kfree(tres);
1536	}
1537
1538	res = func->mem_head;
1539	func->mem_head = NULL;
1540
1541	while (res) {
1542		tres = res;
1543		res = res->next;
1544		kfree(tres);
1545	}
1546
1547	res = func->p_mem_head;
1548	func->p_mem_head = NULL;
1549
1550	while (res) {
1551		tres = res;
1552		res = res->next;
1553		kfree(tres);
1554	}
1555
1556	res = func->bus_head;
1557	func->bus_head = NULL;
1558
1559	while (res) {
1560		tres = res;
1561		res = res->next;
1562		kfree(tres);
1563	}
1564}
1565