1/** 2 * @file buffer_sync.c 3 * 4 * @remark Copyright 2002-2009 OProfile authors 5 * @remark Read the file COPYING 6 * 7 * @author John Levon <levon@movementarian.org> 8 * @author Barry Kasindorf 9 * @author Robert Richter <robert.richter@amd.com> 10 * 11 * This is the core of the buffer management. Each 12 * CPU buffer is processed and entered into the 13 * global event buffer. Such processing is necessary 14 * in several circumstances, mentioned below. 15 * 16 * The processing does the job of converting the 17 * transitory EIP value into a persistent dentry/offset 18 * value that the profiler can record at its leisure. 19 * 20 * See fs/dcookies.c for a description of the dentry/offset 21 * objects. 22 */ 23 24#include <linux/file.h> 25#include <linux/mm.h> 26#include <linux/workqueue.h> 27#include <linux/notifier.h> 28#include <linux/dcookies.h> 29#include <linux/profile.h> 30#include <linux/module.h> 31#include <linux/fs.h> 32#include <linux/oprofile.h> 33#include <linux/sched.h> 34#include <linux/gfp.h> 35 36#include "oprofile_stats.h" 37#include "event_buffer.h" 38#include "cpu_buffer.h" 39#include "buffer_sync.h" 40 41static LIST_HEAD(dying_tasks); 42static LIST_HEAD(dead_tasks); 43static cpumask_var_t marked_cpus; 44static DEFINE_SPINLOCK(task_mortuary); 45static void process_task_mortuary(void); 46 47/* Take ownership of the task struct and place it on the 48 * list for processing. Only after two full buffer syncs 49 * does the task eventually get freed, because by then 50 * we are sure we will not reference it again. 51 * Can be invoked from softirq via RCU callback due to 52 * call_rcu() of the task struct, hence the _irqsave. 53 */ 54static int 55task_free_notify(struct notifier_block *self, unsigned long val, void *data) 56{ 57 unsigned long flags; 58 struct task_struct *task = data; 59 spin_lock_irqsave(&task_mortuary, flags); 60 list_add(&task->tasks, &dying_tasks); 61 spin_unlock_irqrestore(&task_mortuary, flags); 62 return NOTIFY_OK; 63} 64 65 66/* The task is on its way out. A sync of the buffer means we can catch 67 * any remaining samples for this task. 68 */ 69static int 70task_exit_notify(struct notifier_block *self, unsigned long val, void *data) 71{ 72 /* To avoid latency problems, we only process the current CPU, 73 * hoping that most samples for the task are on this CPU 74 */ 75 sync_buffer(raw_smp_processor_id()); 76 return 0; 77} 78 79 80/* The task is about to try a do_munmap(). We peek at what it's going to 81 * do, and if it's an executable region, process the samples first, so 82 * we don't lose any. This does not have to be exact, it's a QoI issue 83 * only. 84 */ 85static int 86munmap_notify(struct notifier_block *self, unsigned long val, void *data) 87{ 88 unsigned long addr = (unsigned long)data; 89 struct mm_struct *mm = current->mm; 90 struct vm_area_struct *mpnt; 91 92 down_read(&mm->mmap_sem); 93 94 mpnt = find_vma(mm, addr); 95 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) { 96 up_read(&mm->mmap_sem); 97 /* To avoid latency problems, we only process the current CPU, 98 * hoping that most samples for the task are on this CPU 99 */ 100 sync_buffer(raw_smp_processor_id()); 101 return 0; 102 } 103 104 up_read(&mm->mmap_sem); 105 return 0; 106} 107 108 109/* We need to be told about new modules so we don't attribute to a previously 110 * loaded module, or drop the samples on the floor. 111 */ 112static int 113module_load_notify(struct notifier_block *self, unsigned long val, void *data) 114{ 115#ifdef CONFIG_MODULES 116 if (val != MODULE_STATE_COMING) 117 return 0; 118 119 /* FIXME: should we process all CPU buffers ? */ 120 mutex_lock(&buffer_mutex); 121 add_event_entry(ESCAPE_CODE); 122 add_event_entry(MODULE_LOADED_CODE); 123 mutex_unlock(&buffer_mutex); 124#endif 125 return 0; 126} 127 128 129static struct notifier_block task_free_nb = { 130 .notifier_call = task_free_notify, 131}; 132 133static struct notifier_block task_exit_nb = { 134 .notifier_call = task_exit_notify, 135}; 136 137static struct notifier_block munmap_nb = { 138 .notifier_call = munmap_notify, 139}; 140 141static struct notifier_block module_load_nb = { 142 .notifier_call = module_load_notify, 143}; 144 145static void free_all_tasks(void) 146{ 147 /* make sure we don't leak task structs */ 148 process_task_mortuary(); 149 process_task_mortuary(); 150} 151 152int sync_start(void) 153{ 154 int err; 155 156 if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL)) 157 return -ENOMEM; 158 159 err = task_handoff_register(&task_free_nb); 160 if (err) 161 goto out1; 162 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb); 163 if (err) 164 goto out2; 165 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb); 166 if (err) 167 goto out3; 168 err = register_module_notifier(&module_load_nb); 169 if (err) 170 goto out4; 171 172 start_cpu_work(); 173 174out: 175 return err; 176out4: 177 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 178out3: 179 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 180out2: 181 task_handoff_unregister(&task_free_nb); 182 free_all_tasks(); 183out1: 184 free_cpumask_var(marked_cpus); 185 goto out; 186} 187 188 189void sync_stop(void) 190{ 191 end_cpu_work(); 192 unregister_module_notifier(&module_load_nb); 193 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 194 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 195 task_handoff_unregister(&task_free_nb); 196 barrier(); /* do all of the above first */ 197 198 flush_cpu_work(); 199 200 free_all_tasks(); 201 free_cpumask_var(marked_cpus); 202} 203 204 205/* Optimisation. We can manage without taking the dcookie sem 206 * because we cannot reach this code without at least one 207 * dcookie user still being registered (namely, the reader 208 * of the event buffer). */ 209static inline unsigned long fast_get_dcookie(struct path *path) 210{ 211 unsigned long cookie; 212 213 if (path->dentry->d_flags & DCACHE_COOKIE) 214 return (unsigned long)path->dentry; 215 get_dcookie(path, &cookie); 216 return cookie; 217} 218 219 220/* Look up the dcookie for the task's mm->exe_file, 221 * which corresponds loosely to "application name". This is 222 * not strictly necessary but allows oprofile to associate 223 * shared-library samples with particular applications 224 */ 225static unsigned long get_exec_dcookie(struct mm_struct *mm) 226{ 227 unsigned long cookie = NO_COOKIE; 228 struct file *exe_file; 229 230 if (!mm) 231 goto done; 232 233 exe_file = get_mm_exe_file(mm); 234 if (!exe_file) 235 goto done; 236 237 cookie = fast_get_dcookie(&exe_file->f_path); 238 fput(exe_file); 239done: 240 return cookie; 241} 242 243 244/* Convert the EIP value of a sample into a persistent dentry/offset 245 * pair that can then be added to the global event buffer. We make 246 * sure to do this lookup before a mm->mmap modification happens so 247 * we don't lose track. 248 * 249 * The caller must ensure the mm is not nil (ie: not a kernel thread). 250 */ 251static unsigned long 252lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset) 253{ 254 unsigned long cookie = NO_COOKIE; 255 struct vm_area_struct *vma; 256 257 down_read(&mm->mmap_sem); 258 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { 259 260 if (addr < vma->vm_start || addr >= vma->vm_end) 261 continue; 262 263 if (vma->vm_file) { 264 cookie = fast_get_dcookie(&vma->vm_file->f_path); 265 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - 266 vma->vm_start; 267 } else { 268 /* must be an anonymous map */ 269 *offset = addr; 270 } 271 272 break; 273 } 274 275 if (!vma) 276 cookie = INVALID_COOKIE; 277 up_read(&mm->mmap_sem); 278 279 return cookie; 280} 281 282static unsigned long last_cookie = INVALID_COOKIE; 283 284static void add_cpu_switch(int i) 285{ 286 add_event_entry(ESCAPE_CODE); 287 add_event_entry(CPU_SWITCH_CODE); 288 add_event_entry(i); 289 last_cookie = INVALID_COOKIE; 290} 291 292static void add_kernel_ctx_switch(unsigned int in_kernel) 293{ 294 add_event_entry(ESCAPE_CODE); 295 if (in_kernel) 296 add_event_entry(KERNEL_ENTER_SWITCH_CODE); 297 else 298 add_event_entry(KERNEL_EXIT_SWITCH_CODE); 299} 300 301static void 302add_user_ctx_switch(struct task_struct const *task, unsigned long cookie) 303{ 304 add_event_entry(ESCAPE_CODE); 305 add_event_entry(CTX_SWITCH_CODE); 306 add_event_entry(task->pid); 307 add_event_entry(cookie); 308 /* Another code for daemon back-compat */ 309 add_event_entry(ESCAPE_CODE); 310 add_event_entry(CTX_TGID_CODE); 311 add_event_entry(task->tgid); 312} 313 314 315static void add_cookie_switch(unsigned long cookie) 316{ 317 add_event_entry(ESCAPE_CODE); 318 add_event_entry(COOKIE_SWITCH_CODE); 319 add_event_entry(cookie); 320} 321 322 323static void add_trace_begin(void) 324{ 325 add_event_entry(ESCAPE_CODE); 326 add_event_entry(TRACE_BEGIN_CODE); 327} 328 329static void add_data(struct op_entry *entry, struct mm_struct *mm) 330{ 331 unsigned long code, pc, val; 332 unsigned long cookie; 333 off_t offset; 334 335 if (!op_cpu_buffer_get_data(entry, &code)) 336 return; 337 if (!op_cpu_buffer_get_data(entry, &pc)) 338 return; 339 if (!op_cpu_buffer_get_size(entry)) 340 return; 341 342 if (mm) { 343 cookie = lookup_dcookie(mm, pc, &offset); 344 345 if (cookie == NO_COOKIE) 346 offset = pc; 347 if (cookie == INVALID_COOKIE) { 348 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 349 offset = pc; 350 } 351 if (cookie != last_cookie) { 352 add_cookie_switch(cookie); 353 last_cookie = cookie; 354 } 355 } else 356 offset = pc; 357 358 add_event_entry(ESCAPE_CODE); 359 add_event_entry(code); 360 add_event_entry(offset); /* Offset from Dcookie */ 361 362 while (op_cpu_buffer_get_data(entry, &val)) 363 add_event_entry(val); 364} 365 366static inline void add_sample_entry(unsigned long offset, unsigned long event) 367{ 368 add_event_entry(offset); 369 add_event_entry(event); 370} 371 372 373/* 374 * Add a sample to the global event buffer. If possible the 375 * sample is converted into a persistent dentry/offset pair 376 * for later lookup from userspace. Return 0 on failure. 377 */ 378static int 379add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel) 380{ 381 unsigned long cookie; 382 off_t offset; 383 384 if (in_kernel) { 385 add_sample_entry(s->eip, s->event); 386 return 1; 387 } 388 389 /* add userspace sample */ 390 391 if (!mm) { 392 atomic_inc(&oprofile_stats.sample_lost_no_mm); 393 return 0; 394 } 395 396 cookie = lookup_dcookie(mm, s->eip, &offset); 397 398 if (cookie == INVALID_COOKIE) { 399 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 400 return 0; 401 } 402 403 if (cookie != last_cookie) { 404 add_cookie_switch(cookie); 405 last_cookie = cookie; 406 } 407 408 add_sample_entry(offset, s->event); 409 410 return 1; 411} 412 413 414static void release_mm(struct mm_struct *mm) 415{ 416 if (!mm) 417 return; 418 mmput(mm); 419} 420 421static inline int is_code(unsigned long val) 422{ 423 return val == ESCAPE_CODE; 424} 425 426 427/* Move tasks along towards death. Any tasks on dead_tasks 428 * will definitely have no remaining references in any 429 * CPU buffers at this point, because we use two lists, 430 * and to have reached the list, it must have gone through 431 * one full sync already. 432 */ 433static void process_task_mortuary(void) 434{ 435 unsigned long flags; 436 LIST_HEAD(local_dead_tasks); 437 struct task_struct *task; 438 struct task_struct *ttask; 439 440 spin_lock_irqsave(&task_mortuary, flags); 441 442 list_splice_init(&dead_tasks, &local_dead_tasks); 443 list_splice_init(&dying_tasks, &dead_tasks); 444 445 spin_unlock_irqrestore(&task_mortuary, flags); 446 447 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) { 448 list_del(&task->tasks); 449 free_task(task); 450 } 451} 452 453 454static void mark_done(int cpu) 455{ 456 int i; 457 458 cpumask_set_cpu(cpu, marked_cpus); 459 460 for_each_online_cpu(i) { 461 if (!cpumask_test_cpu(i, marked_cpus)) 462 return; 463 } 464 465 /* All CPUs have been processed at least once, 466 * we can process the mortuary once 467 */ 468 process_task_mortuary(); 469 470 cpumask_clear(marked_cpus); 471} 472 473 474/* FIXME: this is not sufficient if we implement syscall barrier backtrace 475 * traversal, the code switch to sb_sample_start at first kernel enter/exit 476 * switch so we need a fifth state and some special handling in sync_buffer() 477 */ 478typedef enum { 479 sb_bt_ignore = -2, 480 sb_buffer_start, 481 sb_bt_start, 482 sb_sample_start, 483} sync_buffer_state; 484 485/* Sync one of the CPU's buffers into the global event buffer. 486 * Here we need to go through each batch of samples punctuated 487 * by context switch notes, taking the task's mmap_sem and doing 488 * lookup in task->mm->mmap to convert EIP into dcookie/offset 489 * value. 490 */ 491void sync_buffer(int cpu) 492{ 493 struct mm_struct *mm = NULL; 494 struct mm_struct *oldmm; 495 unsigned long val; 496 struct task_struct *new; 497 unsigned long cookie = 0; 498 int in_kernel = 1; 499 sync_buffer_state state = sb_buffer_start; 500 unsigned int i; 501 unsigned long available; 502 unsigned long flags; 503 struct op_entry entry; 504 struct op_sample *sample; 505 506 mutex_lock(&buffer_mutex); 507 508 add_cpu_switch(cpu); 509 510 op_cpu_buffer_reset(cpu); 511 available = op_cpu_buffer_entries(cpu); 512 513 for (i = 0; i < available; ++i) { 514 sample = op_cpu_buffer_read_entry(&entry, cpu); 515 if (!sample) 516 break; 517 518 if (is_code(sample->eip)) { 519 flags = sample->event; 520 if (flags & TRACE_BEGIN) { 521 state = sb_bt_start; 522 add_trace_begin(); 523 } 524 if (flags & KERNEL_CTX_SWITCH) { 525 /* kernel/userspace switch */ 526 in_kernel = flags & IS_KERNEL; 527 if (state == sb_buffer_start) 528 state = sb_sample_start; 529 add_kernel_ctx_switch(flags & IS_KERNEL); 530 } 531 if (flags & USER_CTX_SWITCH 532 && op_cpu_buffer_get_data(&entry, &val)) { 533 /* userspace context switch */ 534 new = (struct task_struct *)val; 535 oldmm = mm; 536 release_mm(oldmm); 537 mm = get_task_mm(new); 538 if (mm != oldmm) 539 cookie = get_exec_dcookie(mm); 540 add_user_ctx_switch(new, cookie); 541 } 542 if (op_cpu_buffer_get_size(&entry)) 543 add_data(&entry, mm); 544 continue; 545 } 546 547 if (state < sb_bt_start) 548 /* ignore sample */ 549 continue; 550 551 if (add_sample(mm, sample, in_kernel)) 552 continue; 553 554 /* ignore backtraces if failed to add a sample */ 555 if (state == sb_bt_start) { 556 state = sb_bt_ignore; 557 atomic_inc(&oprofile_stats.bt_lost_no_mapping); 558 } 559 } 560 release_mm(mm); 561 562 mark_done(cpu); 563 564 mutex_unlock(&buffer_mutex); 565} 566 567/* The function can be used to add a buffer worth of data directly to 568 * the kernel buffer. The buffer is assumed to be a circular buffer. 569 * Take the entries from index start and end at index end, wrapping 570 * at max_entries. 571 */ 572void oprofile_put_buff(unsigned long *buf, unsigned int start, 573 unsigned int stop, unsigned int max) 574{ 575 int i; 576 577 i = start; 578 579 mutex_lock(&buffer_mutex); 580 while (i != stop) { 581 add_event_entry(buf[i++]); 582 583 if (i >= max) 584 i = 0; 585 } 586 587 mutex_unlock(&buffer_mutex); 588} 589 590