1/* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20#include <linux/console.h> 21#include <linux/ctype.h> 22#include <linux/cpu.h> 23#include <linux/module.h> 24#include <linux/of.h> 25#include <linux/of_graph.h> 26#include <linux/spinlock.h> 27#include <linux/slab.h> 28#include <linux/string.h> 29#include <linux/proc_fs.h> 30 31#include "of_private.h" 32 33LIST_HEAD(aliases_lookup); 34 35struct device_node *of_root; 36EXPORT_SYMBOL(of_root); 37struct device_node *of_chosen; 38struct device_node *of_aliases; 39struct device_node *of_stdout; 40static const char *of_stdout_options; 41 42struct kset *of_kset; 43 44/* 45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 46 * This mutex must be held whenever modifications are being made to the 47 * device tree. The of_{attach,detach}_node() and 48 * of_{add,remove,update}_property() helpers make sure this happens. 49 */ 50DEFINE_MUTEX(of_mutex); 51 52/* use when traversing tree through the child, sibling, 53 * or parent members of struct device_node. 54 */ 55DEFINE_RAW_SPINLOCK(devtree_lock); 56 57int of_n_addr_cells(struct device_node *np) 58{ 59 const __be32 *ip; 60 61 do { 62 if (np->parent) 63 np = np->parent; 64 ip = of_get_property(np, "#address-cells", NULL); 65 if (ip) 66 return be32_to_cpup(ip); 67 } while (np->parent); 68 /* No #address-cells property for the root node */ 69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 70} 71EXPORT_SYMBOL(of_n_addr_cells); 72 73int of_n_size_cells(struct device_node *np) 74{ 75 const __be32 *ip; 76 77 do { 78 if (np->parent) 79 np = np->parent; 80 ip = of_get_property(np, "#size-cells", NULL); 81 if (ip) 82 return be32_to_cpup(ip); 83 } while (np->parent); 84 /* No #size-cells property for the root node */ 85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 86} 87EXPORT_SYMBOL(of_n_size_cells); 88 89#ifdef CONFIG_NUMA 90int __weak of_node_to_nid(struct device_node *np) 91{ 92 return NUMA_NO_NODE; 93} 94#endif 95 96#ifndef CONFIG_OF_DYNAMIC 97static void of_node_release(struct kobject *kobj) 98{ 99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 100} 101#endif /* CONFIG_OF_DYNAMIC */ 102 103struct kobj_type of_node_ktype = { 104 .release = of_node_release, 105}; 106 107static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 108 struct bin_attribute *bin_attr, char *buf, 109 loff_t offset, size_t count) 110{ 111 struct property *pp = container_of(bin_attr, struct property, attr); 112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 113} 114 115static const char *safe_name(struct kobject *kobj, const char *orig_name) 116{ 117 const char *name = orig_name; 118 struct kernfs_node *kn; 119 int i = 0; 120 121 /* don't be a hero. After 16 tries give up */ 122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 123 sysfs_put(kn); 124 if (name != orig_name) 125 kfree(name); 126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 127 } 128 129 if (name != orig_name) 130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n", 131 kobject_name(kobj), name); 132 return name; 133} 134 135int __of_add_property_sysfs(struct device_node *np, struct property *pp) 136{ 137 int rc; 138 139 /* Important: Don't leak passwords */ 140 bool secure = strncmp(pp->name, "security-", 9) == 0; 141 142 if (!IS_ENABLED(CONFIG_SYSFS)) 143 return 0; 144 145 if (!of_kset || !of_node_is_attached(np)) 146 return 0; 147 148 sysfs_bin_attr_init(&pp->attr); 149 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 151 pp->attr.size = secure ? 0 : pp->length; 152 pp->attr.read = of_node_property_read; 153 154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 156 return rc; 157} 158 159int __of_attach_node_sysfs(struct device_node *np) 160{ 161 const char *name; 162 struct property *pp; 163 int rc; 164 165 if (!IS_ENABLED(CONFIG_SYSFS)) 166 return 0; 167 168 if (!of_kset) 169 return 0; 170 171 np->kobj.kset = of_kset; 172 if (!np->parent) { 173 /* Nodes without parents are new top level trees */ 174 rc = kobject_add(&np->kobj, NULL, "%s", 175 safe_name(&of_kset->kobj, "base")); 176 } else { 177 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 178 if (!name || !name[0]) 179 return -EINVAL; 180 181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name); 182 } 183 if (rc) 184 return rc; 185 186 for_each_property_of_node(np, pp) 187 __of_add_property_sysfs(np, pp); 188 189 return 0; 190} 191 192void __init of_core_init(void) 193{ 194 struct device_node *np; 195 196 /* Create the kset, and register existing nodes */ 197 mutex_lock(&of_mutex); 198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 199 if (!of_kset) { 200 mutex_unlock(&of_mutex); 201 pr_err("devicetree: failed to register existing nodes\n"); 202 return; 203 } 204 for_each_of_allnodes(np) 205 __of_attach_node_sysfs(np); 206 mutex_unlock(&of_mutex); 207 208 /* Symlink in /proc as required by userspace ABI */ 209 if (of_root) 210 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 211} 212 213static struct property *__of_find_property(const struct device_node *np, 214 const char *name, int *lenp) 215{ 216 struct property *pp; 217 218 if (!np) 219 return NULL; 220 221 for (pp = np->properties; pp; pp = pp->next) { 222 if (of_prop_cmp(pp->name, name) == 0) { 223 if (lenp) 224 *lenp = pp->length; 225 break; 226 } 227 } 228 229 return pp; 230} 231 232struct property *of_find_property(const struct device_node *np, 233 const char *name, 234 int *lenp) 235{ 236 struct property *pp; 237 unsigned long flags; 238 239 raw_spin_lock_irqsave(&devtree_lock, flags); 240 pp = __of_find_property(np, name, lenp); 241 raw_spin_unlock_irqrestore(&devtree_lock, flags); 242 243 return pp; 244} 245EXPORT_SYMBOL(of_find_property); 246 247struct device_node *__of_find_all_nodes(struct device_node *prev) 248{ 249 struct device_node *np; 250 if (!prev) { 251 np = of_root; 252 } else if (prev->child) { 253 np = prev->child; 254 } else { 255 /* Walk back up looking for a sibling, or the end of the structure */ 256 np = prev; 257 while (np->parent && !np->sibling) 258 np = np->parent; 259 np = np->sibling; /* Might be null at the end of the tree */ 260 } 261 return np; 262} 263 264/** 265 * of_find_all_nodes - Get next node in global list 266 * @prev: Previous node or NULL to start iteration 267 * of_node_put() will be called on it 268 * 269 * Returns a node pointer with refcount incremented, use 270 * of_node_put() on it when done. 271 */ 272struct device_node *of_find_all_nodes(struct device_node *prev) 273{ 274 struct device_node *np; 275 unsigned long flags; 276 277 raw_spin_lock_irqsave(&devtree_lock, flags); 278 np = __of_find_all_nodes(prev); 279 of_node_get(np); 280 of_node_put(prev); 281 raw_spin_unlock_irqrestore(&devtree_lock, flags); 282 return np; 283} 284EXPORT_SYMBOL(of_find_all_nodes); 285 286/* 287 * Find a property with a given name for a given node 288 * and return the value. 289 */ 290const void *__of_get_property(const struct device_node *np, 291 const char *name, int *lenp) 292{ 293 struct property *pp = __of_find_property(np, name, lenp); 294 295 return pp ? pp->value : NULL; 296} 297 298/* 299 * Find a property with a given name for a given node 300 * and return the value. 301 */ 302const void *of_get_property(const struct device_node *np, const char *name, 303 int *lenp) 304{ 305 struct property *pp = of_find_property(np, name, lenp); 306 307 return pp ? pp->value : NULL; 308} 309EXPORT_SYMBOL(of_get_property); 310 311/* 312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 313 * 314 * @cpu: logical cpu index of a core/thread 315 * @phys_id: physical identifier of a core/thread 316 * 317 * CPU logical to physical index mapping is architecture specific. 318 * However this __weak function provides a default match of physical 319 * id to logical cpu index. phys_id provided here is usually values read 320 * from the device tree which must match the hardware internal registers. 321 * 322 * Returns true if the physical identifier and the logical cpu index 323 * correspond to the same core/thread, false otherwise. 324 */ 325bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 326{ 327 return (u32)phys_id == cpu; 328} 329 330/** 331 * Checks if the given "prop_name" property holds the physical id of the 332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 333 * NULL, local thread number within the core is returned in it. 334 */ 335static bool __of_find_n_match_cpu_property(struct device_node *cpun, 336 const char *prop_name, int cpu, unsigned int *thread) 337{ 338 const __be32 *cell; 339 int ac, prop_len, tid; 340 u64 hwid; 341 342 ac = of_n_addr_cells(cpun); 343 cell = of_get_property(cpun, prop_name, &prop_len); 344 if (!cell || !ac) 345 return false; 346 prop_len /= sizeof(*cell) * ac; 347 for (tid = 0; tid < prop_len; tid++) { 348 hwid = of_read_number(cell, ac); 349 if (arch_match_cpu_phys_id(cpu, hwid)) { 350 if (thread) 351 *thread = tid; 352 return true; 353 } 354 cell += ac; 355 } 356 return false; 357} 358 359/* 360 * arch_find_n_match_cpu_physical_id - See if the given device node is 361 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 362 * else false. If 'thread' is non-NULL, the local thread number within the 363 * core is returned in it. 364 */ 365bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 366 int cpu, unsigned int *thread) 367{ 368 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 369 * for thread ids on PowerPC. If it doesn't exist fallback to 370 * standard "reg" property. 371 */ 372 if (IS_ENABLED(CONFIG_PPC) && 373 __of_find_n_match_cpu_property(cpun, 374 "ibm,ppc-interrupt-server#s", 375 cpu, thread)) 376 return true; 377 378 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 379} 380 381/** 382 * of_get_cpu_node - Get device node associated with the given logical CPU 383 * 384 * @cpu: CPU number(logical index) for which device node is required 385 * @thread: if not NULL, local thread number within the physical core is 386 * returned 387 * 388 * The main purpose of this function is to retrieve the device node for the 389 * given logical CPU index. It should be used to initialize the of_node in 390 * cpu device. Once of_node in cpu device is populated, all the further 391 * references can use that instead. 392 * 393 * CPU logical to physical index mapping is architecture specific and is built 394 * before booting secondary cores. This function uses arch_match_cpu_phys_id 395 * which can be overridden by architecture specific implementation. 396 * 397 * Returns a node pointer for the logical cpu if found, else NULL. 398 */ 399struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 400{ 401 struct device_node *cpun; 402 403 for_each_node_by_type(cpun, "cpu") { 404 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 405 return cpun; 406 } 407 return NULL; 408} 409EXPORT_SYMBOL(of_get_cpu_node); 410 411/** 412 * __of_device_is_compatible() - Check if the node matches given constraints 413 * @device: pointer to node 414 * @compat: required compatible string, NULL or "" for any match 415 * @type: required device_type value, NULL or "" for any match 416 * @name: required node name, NULL or "" for any match 417 * 418 * Checks if the given @compat, @type and @name strings match the 419 * properties of the given @device. A constraints can be skipped by 420 * passing NULL or an empty string as the constraint. 421 * 422 * Returns 0 for no match, and a positive integer on match. The return 423 * value is a relative score with larger values indicating better 424 * matches. The score is weighted for the most specific compatible value 425 * to get the highest score. Matching type is next, followed by matching 426 * name. Practically speaking, this results in the following priority 427 * order for matches: 428 * 429 * 1. specific compatible && type && name 430 * 2. specific compatible && type 431 * 3. specific compatible && name 432 * 4. specific compatible 433 * 5. general compatible && type && name 434 * 6. general compatible && type 435 * 7. general compatible && name 436 * 8. general compatible 437 * 9. type && name 438 * 10. type 439 * 11. name 440 */ 441static int __of_device_is_compatible(const struct device_node *device, 442 const char *compat, const char *type, const char *name) 443{ 444 struct property *prop; 445 const char *cp; 446 int index = 0, score = 0; 447 448 /* Compatible match has highest priority */ 449 if (compat && compat[0]) { 450 prop = __of_find_property(device, "compatible", NULL); 451 for (cp = of_prop_next_string(prop, NULL); cp; 452 cp = of_prop_next_string(prop, cp), index++) { 453 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 454 score = INT_MAX/2 - (index << 2); 455 break; 456 } 457 } 458 if (!score) 459 return 0; 460 } 461 462 /* Matching type is better than matching name */ 463 if (type && type[0]) { 464 if (!device->type || of_node_cmp(type, device->type)) 465 return 0; 466 score += 2; 467 } 468 469 /* Matching name is a bit better than not */ 470 if (name && name[0]) { 471 if (!device->name || of_node_cmp(name, device->name)) 472 return 0; 473 score++; 474 } 475 476 return score; 477} 478 479/** Checks if the given "compat" string matches one of the strings in 480 * the device's "compatible" property 481 */ 482int of_device_is_compatible(const struct device_node *device, 483 const char *compat) 484{ 485 unsigned long flags; 486 int res; 487 488 raw_spin_lock_irqsave(&devtree_lock, flags); 489 res = __of_device_is_compatible(device, compat, NULL, NULL); 490 raw_spin_unlock_irqrestore(&devtree_lock, flags); 491 return res; 492} 493EXPORT_SYMBOL(of_device_is_compatible); 494 495/** 496 * of_machine_is_compatible - Test root of device tree for a given compatible value 497 * @compat: compatible string to look for in root node's compatible property. 498 * 499 * Returns a positive integer if the root node has the given value in its 500 * compatible property. 501 */ 502int of_machine_is_compatible(const char *compat) 503{ 504 struct device_node *root; 505 int rc = 0; 506 507 root = of_find_node_by_path("/"); 508 if (root) { 509 rc = of_device_is_compatible(root, compat); 510 of_node_put(root); 511 } 512 return rc; 513} 514EXPORT_SYMBOL(of_machine_is_compatible); 515 516/** 517 * __of_device_is_available - check if a device is available for use 518 * 519 * @device: Node to check for availability, with locks already held 520 * 521 * Returns true if the status property is absent or set to "okay" or "ok", 522 * false otherwise 523 */ 524static bool __of_device_is_available(const struct device_node *device) 525{ 526 const char *status; 527 int statlen; 528 529 if (!device) 530 return false; 531 532 status = __of_get_property(device, "status", &statlen); 533 if (status == NULL) 534 return true; 535 536 if (statlen > 0) { 537 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 538 return true; 539 } 540 541 return false; 542} 543 544/** 545 * of_device_is_available - check if a device is available for use 546 * 547 * @device: Node to check for availability 548 * 549 * Returns true if the status property is absent or set to "okay" or "ok", 550 * false otherwise 551 */ 552bool of_device_is_available(const struct device_node *device) 553{ 554 unsigned long flags; 555 bool res; 556 557 raw_spin_lock_irqsave(&devtree_lock, flags); 558 res = __of_device_is_available(device); 559 raw_spin_unlock_irqrestore(&devtree_lock, flags); 560 return res; 561 562} 563EXPORT_SYMBOL(of_device_is_available); 564 565/** 566 * of_device_is_big_endian - check if a device has BE registers 567 * 568 * @device: Node to check for endianness 569 * 570 * Returns true if the device has a "big-endian" property, or if the kernel 571 * was compiled for BE *and* the device has a "native-endian" property. 572 * Returns false otherwise. 573 * 574 * Callers would nominally use ioread32be/iowrite32be if 575 * of_device_is_big_endian() == true, or readl/writel otherwise. 576 */ 577bool of_device_is_big_endian(const struct device_node *device) 578{ 579 if (of_property_read_bool(device, "big-endian")) 580 return true; 581 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 582 of_property_read_bool(device, "native-endian")) 583 return true; 584 return false; 585} 586EXPORT_SYMBOL(of_device_is_big_endian); 587 588/** 589 * of_get_parent - Get a node's parent if any 590 * @node: Node to get parent 591 * 592 * Returns a node pointer with refcount incremented, use 593 * of_node_put() on it when done. 594 */ 595struct device_node *of_get_parent(const struct device_node *node) 596{ 597 struct device_node *np; 598 unsigned long flags; 599 600 if (!node) 601 return NULL; 602 603 raw_spin_lock_irqsave(&devtree_lock, flags); 604 np = of_node_get(node->parent); 605 raw_spin_unlock_irqrestore(&devtree_lock, flags); 606 return np; 607} 608EXPORT_SYMBOL(of_get_parent); 609 610/** 611 * of_get_next_parent - Iterate to a node's parent 612 * @node: Node to get parent of 613 * 614 * This is like of_get_parent() except that it drops the 615 * refcount on the passed node, making it suitable for iterating 616 * through a node's parents. 617 * 618 * Returns a node pointer with refcount incremented, use 619 * of_node_put() on it when done. 620 */ 621struct device_node *of_get_next_parent(struct device_node *node) 622{ 623 struct device_node *parent; 624 unsigned long flags; 625 626 if (!node) 627 return NULL; 628 629 raw_spin_lock_irqsave(&devtree_lock, flags); 630 parent = of_node_get(node->parent); 631 of_node_put(node); 632 raw_spin_unlock_irqrestore(&devtree_lock, flags); 633 return parent; 634} 635EXPORT_SYMBOL(of_get_next_parent); 636 637static struct device_node *__of_get_next_child(const struct device_node *node, 638 struct device_node *prev) 639{ 640 struct device_node *next; 641 642 if (!node) 643 return NULL; 644 645 next = prev ? prev->sibling : node->child; 646 for (; next; next = next->sibling) 647 if (of_node_get(next)) 648 break; 649 of_node_put(prev); 650 return next; 651} 652#define __for_each_child_of_node(parent, child) \ 653 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 654 child = __of_get_next_child(parent, child)) 655 656/** 657 * of_get_next_child - Iterate a node childs 658 * @node: parent node 659 * @prev: previous child of the parent node, or NULL to get first 660 * 661 * Returns a node pointer with refcount incremented, use of_node_put() on 662 * it when done. Returns NULL when prev is the last child. Decrements the 663 * refcount of prev. 664 */ 665struct device_node *of_get_next_child(const struct device_node *node, 666 struct device_node *prev) 667{ 668 struct device_node *next; 669 unsigned long flags; 670 671 raw_spin_lock_irqsave(&devtree_lock, flags); 672 next = __of_get_next_child(node, prev); 673 raw_spin_unlock_irqrestore(&devtree_lock, flags); 674 return next; 675} 676EXPORT_SYMBOL(of_get_next_child); 677 678/** 679 * of_get_next_available_child - Find the next available child node 680 * @node: parent node 681 * @prev: previous child of the parent node, or NULL to get first 682 * 683 * This function is like of_get_next_child(), except that it 684 * automatically skips any disabled nodes (i.e. status = "disabled"). 685 */ 686struct device_node *of_get_next_available_child(const struct device_node *node, 687 struct device_node *prev) 688{ 689 struct device_node *next; 690 unsigned long flags; 691 692 if (!node) 693 return NULL; 694 695 raw_spin_lock_irqsave(&devtree_lock, flags); 696 next = prev ? prev->sibling : node->child; 697 for (; next; next = next->sibling) { 698 if (!__of_device_is_available(next)) 699 continue; 700 if (of_node_get(next)) 701 break; 702 } 703 of_node_put(prev); 704 raw_spin_unlock_irqrestore(&devtree_lock, flags); 705 return next; 706} 707EXPORT_SYMBOL(of_get_next_available_child); 708 709/** 710 * of_get_child_by_name - Find the child node by name for a given parent 711 * @node: parent node 712 * @name: child name to look for. 713 * 714 * This function looks for child node for given matching name 715 * 716 * Returns a node pointer if found, with refcount incremented, use 717 * of_node_put() on it when done. 718 * Returns NULL if node is not found. 719 */ 720struct device_node *of_get_child_by_name(const struct device_node *node, 721 const char *name) 722{ 723 struct device_node *child; 724 725 for_each_child_of_node(node, child) 726 if (child->name && (of_node_cmp(child->name, name) == 0)) 727 break; 728 return child; 729} 730EXPORT_SYMBOL(of_get_child_by_name); 731 732static struct device_node *__of_find_node_by_path(struct device_node *parent, 733 const char *path) 734{ 735 struct device_node *child; 736 int len; 737 738 len = strcspn(path, "/:"); 739 if (!len) 740 return NULL; 741 742 __for_each_child_of_node(parent, child) { 743 const char *name = strrchr(child->full_name, '/'); 744 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 745 continue; 746 name++; 747 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 748 return child; 749 } 750 return NULL; 751} 752 753/** 754 * of_find_node_opts_by_path - Find a node matching a full OF path 755 * @path: Either the full path to match, or if the path does not 756 * start with '/', the name of a property of the /aliases 757 * node (an alias). In the case of an alias, the node 758 * matching the alias' value will be returned. 759 * @opts: Address of a pointer into which to store the start of 760 * an options string appended to the end of the path with 761 * a ':' separator. 762 * 763 * Valid paths: 764 * /foo/bar Full path 765 * foo Valid alias 766 * foo/bar Valid alias + relative path 767 * 768 * Returns a node pointer with refcount incremented, use 769 * of_node_put() on it when done. 770 */ 771struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 772{ 773 struct device_node *np = NULL; 774 struct property *pp; 775 unsigned long flags; 776 const char *separator = strchr(path, ':'); 777 778 if (opts) 779 *opts = separator ? separator + 1 : NULL; 780 781 if (strcmp(path, "/") == 0) 782 return of_node_get(of_root); 783 784 /* The path could begin with an alias */ 785 if (*path != '/') { 786 int len; 787 const char *p = separator; 788 789 if (!p) 790 p = strchrnul(path, '/'); 791 len = p - path; 792 793 /* of_aliases must not be NULL */ 794 if (!of_aliases) 795 return NULL; 796 797 for_each_property_of_node(of_aliases, pp) { 798 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 799 np = of_find_node_by_path(pp->value); 800 break; 801 } 802 } 803 if (!np) 804 return NULL; 805 path = p; 806 } 807 808 /* Step down the tree matching path components */ 809 raw_spin_lock_irqsave(&devtree_lock, flags); 810 if (!np) 811 np = of_node_get(of_root); 812 while (np && *path == '/') { 813 path++; /* Increment past '/' delimiter */ 814 np = __of_find_node_by_path(np, path); 815 path = strchrnul(path, '/'); 816 if (separator && separator < path) 817 break; 818 } 819 raw_spin_unlock_irqrestore(&devtree_lock, flags); 820 return np; 821} 822EXPORT_SYMBOL(of_find_node_opts_by_path); 823 824/** 825 * of_find_node_by_name - Find a node by its "name" property 826 * @from: The node to start searching from or NULL, the node 827 * you pass will not be searched, only the next one 828 * will; typically, you pass what the previous call 829 * returned. of_node_put() will be called on it 830 * @name: The name string to match against 831 * 832 * Returns a node pointer with refcount incremented, use 833 * of_node_put() on it when done. 834 */ 835struct device_node *of_find_node_by_name(struct device_node *from, 836 const char *name) 837{ 838 struct device_node *np; 839 unsigned long flags; 840 841 raw_spin_lock_irqsave(&devtree_lock, flags); 842 for_each_of_allnodes_from(from, np) 843 if (np->name && (of_node_cmp(np->name, name) == 0) 844 && of_node_get(np)) 845 break; 846 of_node_put(from); 847 raw_spin_unlock_irqrestore(&devtree_lock, flags); 848 return np; 849} 850EXPORT_SYMBOL(of_find_node_by_name); 851 852/** 853 * of_find_node_by_type - Find a node by its "device_type" property 854 * @from: The node to start searching from, or NULL to start searching 855 * the entire device tree. The node you pass will not be 856 * searched, only the next one will; typically, you pass 857 * what the previous call returned. of_node_put() will be 858 * called on from for you. 859 * @type: The type string to match against 860 * 861 * Returns a node pointer with refcount incremented, use 862 * of_node_put() on it when done. 863 */ 864struct device_node *of_find_node_by_type(struct device_node *from, 865 const char *type) 866{ 867 struct device_node *np; 868 unsigned long flags; 869 870 raw_spin_lock_irqsave(&devtree_lock, flags); 871 for_each_of_allnodes_from(from, np) 872 if (np->type && (of_node_cmp(np->type, type) == 0) 873 && of_node_get(np)) 874 break; 875 of_node_put(from); 876 raw_spin_unlock_irqrestore(&devtree_lock, flags); 877 return np; 878} 879EXPORT_SYMBOL(of_find_node_by_type); 880 881/** 882 * of_find_compatible_node - Find a node based on type and one of the 883 * tokens in its "compatible" property 884 * @from: The node to start searching from or NULL, the node 885 * you pass will not be searched, only the next one 886 * will; typically, you pass what the previous call 887 * returned. of_node_put() will be called on it 888 * @type: The type string to match "device_type" or NULL to ignore 889 * @compatible: The string to match to one of the tokens in the device 890 * "compatible" list. 891 * 892 * Returns a node pointer with refcount incremented, use 893 * of_node_put() on it when done. 894 */ 895struct device_node *of_find_compatible_node(struct device_node *from, 896 const char *type, const char *compatible) 897{ 898 struct device_node *np; 899 unsigned long flags; 900 901 raw_spin_lock_irqsave(&devtree_lock, flags); 902 for_each_of_allnodes_from(from, np) 903 if (__of_device_is_compatible(np, compatible, type, NULL) && 904 of_node_get(np)) 905 break; 906 of_node_put(from); 907 raw_spin_unlock_irqrestore(&devtree_lock, flags); 908 return np; 909} 910EXPORT_SYMBOL(of_find_compatible_node); 911 912/** 913 * of_find_node_with_property - Find a node which has a property with 914 * the given name. 915 * @from: The node to start searching from or NULL, the node 916 * you pass will not be searched, only the next one 917 * will; typically, you pass what the previous call 918 * returned. of_node_put() will be called on it 919 * @prop_name: The name of the property to look for. 920 * 921 * Returns a node pointer with refcount incremented, use 922 * of_node_put() on it when done. 923 */ 924struct device_node *of_find_node_with_property(struct device_node *from, 925 const char *prop_name) 926{ 927 struct device_node *np; 928 struct property *pp; 929 unsigned long flags; 930 931 raw_spin_lock_irqsave(&devtree_lock, flags); 932 for_each_of_allnodes_from(from, np) { 933 for (pp = np->properties; pp; pp = pp->next) { 934 if (of_prop_cmp(pp->name, prop_name) == 0) { 935 of_node_get(np); 936 goto out; 937 } 938 } 939 } 940out: 941 of_node_put(from); 942 raw_spin_unlock_irqrestore(&devtree_lock, flags); 943 return np; 944} 945EXPORT_SYMBOL(of_find_node_with_property); 946 947static 948const struct of_device_id *__of_match_node(const struct of_device_id *matches, 949 const struct device_node *node) 950{ 951 const struct of_device_id *best_match = NULL; 952 int score, best_score = 0; 953 954 if (!matches) 955 return NULL; 956 957 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 958 score = __of_device_is_compatible(node, matches->compatible, 959 matches->type, matches->name); 960 if (score > best_score) { 961 best_match = matches; 962 best_score = score; 963 } 964 } 965 966 return best_match; 967} 968 969/** 970 * of_match_node - Tell if a device_node has a matching of_match structure 971 * @matches: array of of device match structures to search in 972 * @node: the of device structure to match against 973 * 974 * Low level utility function used by device matching. 975 */ 976const struct of_device_id *of_match_node(const struct of_device_id *matches, 977 const struct device_node *node) 978{ 979 const struct of_device_id *match; 980 unsigned long flags; 981 982 raw_spin_lock_irqsave(&devtree_lock, flags); 983 match = __of_match_node(matches, node); 984 raw_spin_unlock_irqrestore(&devtree_lock, flags); 985 return match; 986} 987EXPORT_SYMBOL(of_match_node); 988 989/** 990 * of_find_matching_node_and_match - Find a node based on an of_device_id 991 * match table. 992 * @from: The node to start searching from or NULL, the node 993 * you pass will not be searched, only the next one 994 * will; typically, you pass what the previous call 995 * returned. of_node_put() will be called on it 996 * @matches: array of of device match structures to search in 997 * @match Updated to point at the matches entry which matched 998 * 999 * Returns a node pointer with refcount incremented, use 1000 * of_node_put() on it when done. 1001 */ 1002struct device_node *of_find_matching_node_and_match(struct device_node *from, 1003 const struct of_device_id *matches, 1004 const struct of_device_id **match) 1005{ 1006 struct device_node *np; 1007 const struct of_device_id *m; 1008 unsigned long flags; 1009 1010 if (match) 1011 *match = NULL; 1012 1013 raw_spin_lock_irqsave(&devtree_lock, flags); 1014 for_each_of_allnodes_from(from, np) { 1015 m = __of_match_node(matches, np); 1016 if (m && of_node_get(np)) { 1017 if (match) 1018 *match = m; 1019 break; 1020 } 1021 } 1022 of_node_put(from); 1023 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1024 return np; 1025} 1026EXPORT_SYMBOL(of_find_matching_node_and_match); 1027 1028/** 1029 * of_modalias_node - Lookup appropriate modalias for a device node 1030 * @node: pointer to a device tree node 1031 * @modalias: Pointer to buffer that modalias value will be copied into 1032 * @len: Length of modalias value 1033 * 1034 * Based on the value of the compatible property, this routine will attempt 1035 * to choose an appropriate modalias value for a particular device tree node. 1036 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1037 * from the first entry in the compatible list property. 1038 * 1039 * This routine returns 0 on success, <0 on failure. 1040 */ 1041int of_modalias_node(struct device_node *node, char *modalias, int len) 1042{ 1043 const char *compatible, *p; 1044 int cplen; 1045 1046 compatible = of_get_property(node, "compatible", &cplen); 1047 if (!compatible || strlen(compatible) > cplen) 1048 return -ENODEV; 1049 p = strchr(compatible, ','); 1050 strlcpy(modalias, p ? p + 1 : compatible, len); 1051 return 0; 1052} 1053EXPORT_SYMBOL_GPL(of_modalias_node); 1054 1055/** 1056 * of_find_node_by_phandle - Find a node given a phandle 1057 * @handle: phandle of the node to find 1058 * 1059 * Returns a node pointer with refcount incremented, use 1060 * of_node_put() on it when done. 1061 */ 1062struct device_node *of_find_node_by_phandle(phandle handle) 1063{ 1064 struct device_node *np; 1065 unsigned long flags; 1066 1067 if (!handle) 1068 return NULL; 1069 1070 raw_spin_lock_irqsave(&devtree_lock, flags); 1071 for_each_of_allnodes(np) 1072 if (np->phandle == handle) 1073 break; 1074 of_node_get(np); 1075 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1076 return np; 1077} 1078EXPORT_SYMBOL(of_find_node_by_phandle); 1079 1080/** 1081 * of_property_count_elems_of_size - Count the number of elements in a property 1082 * 1083 * @np: device node from which the property value is to be read. 1084 * @propname: name of the property to be searched. 1085 * @elem_size: size of the individual element 1086 * 1087 * Search for a property in a device node and count the number of elements of 1088 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1089 * property does not exist or its length does not match a multiple of elem_size 1090 * and -ENODATA if the property does not have a value. 1091 */ 1092int of_property_count_elems_of_size(const struct device_node *np, 1093 const char *propname, int elem_size) 1094{ 1095 struct property *prop = of_find_property(np, propname, NULL); 1096 1097 if (!prop) 1098 return -EINVAL; 1099 if (!prop->value) 1100 return -ENODATA; 1101 1102 if (prop->length % elem_size != 0) { 1103 pr_err("size of %s in node %s is not a multiple of %d\n", 1104 propname, np->full_name, elem_size); 1105 return -EINVAL; 1106 } 1107 1108 return prop->length / elem_size; 1109} 1110EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1111 1112/** 1113 * of_find_property_value_of_size 1114 * 1115 * @np: device node from which the property value is to be read. 1116 * @propname: name of the property to be searched. 1117 * @len: requested length of property value 1118 * 1119 * Search for a property in a device node and valid the requested size. 1120 * Returns the property value on success, -EINVAL if the property does not 1121 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1122 * property data isn't large enough. 1123 * 1124 */ 1125static void *of_find_property_value_of_size(const struct device_node *np, 1126 const char *propname, u32 len) 1127{ 1128 struct property *prop = of_find_property(np, propname, NULL); 1129 1130 if (!prop) 1131 return ERR_PTR(-EINVAL); 1132 if (!prop->value) 1133 return ERR_PTR(-ENODATA); 1134 if (len > prop->length) 1135 return ERR_PTR(-EOVERFLOW); 1136 1137 return prop->value; 1138} 1139 1140/** 1141 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1142 * 1143 * @np: device node from which the property value is to be read. 1144 * @propname: name of the property to be searched. 1145 * @index: index of the u32 in the list of values 1146 * @out_value: pointer to return value, modified only if no error. 1147 * 1148 * Search for a property in a device node and read nth 32-bit value from 1149 * it. Returns 0 on success, -EINVAL if the property does not exist, 1150 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1151 * property data isn't large enough. 1152 * 1153 * The out_value is modified only if a valid u32 value can be decoded. 1154 */ 1155int of_property_read_u32_index(const struct device_node *np, 1156 const char *propname, 1157 u32 index, u32 *out_value) 1158{ 1159 const u32 *val = of_find_property_value_of_size(np, propname, 1160 ((index + 1) * sizeof(*out_value))); 1161 1162 if (IS_ERR(val)) 1163 return PTR_ERR(val); 1164 1165 *out_value = be32_to_cpup(((__be32 *)val) + index); 1166 return 0; 1167} 1168EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1169 1170/** 1171 * of_property_read_u8_array - Find and read an array of u8 from a property. 1172 * 1173 * @np: device node from which the property value is to be read. 1174 * @propname: name of the property to be searched. 1175 * @out_values: pointer to return value, modified only if return value is 0. 1176 * @sz: number of array elements to read 1177 * 1178 * Search for a property in a device node and read 8-bit value(s) from 1179 * it. Returns 0 on success, -EINVAL if the property does not exist, 1180 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1181 * property data isn't large enough. 1182 * 1183 * dts entry of array should be like: 1184 * property = /bits/ 8 <0x50 0x60 0x70>; 1185 * 1186 * The out_values is modified only if a valid u8 value can be decoded. 1187 */ 1188int of_property_read_u8_array(const struct device_node *np, 1189 const char *propname, u8 *out_values, size_t sz) 1190{ 1191 const u8 *val = of_find_property_value_of_size(np, propname, 1192 (sz * sizeof(*out_values))); 1193 1194 if (IS_ERR(val)) 1195 return PTR_ERR(val); 1196 1197 while (sz--) 1198 *out_values++ = *val++; 1199 return 0; 1200} 1201EXPORT_SYMBOL_GPL(of_property_read_u8_array); 1202 1203/** 1204 * of_property_read_u16_array - Find and read an array of u16 from a property. 1205 * 1206 * @np: device node from which the property value is to be read. 1207 * @propname: name of the property to be searched. 1208 * @out_values: pointer to return value, modified only if return value is 0. 1209 * @sz: number of array elements to read 1210 * 1211 * Search for a property in a device node and read 16-bit value(s) from 1212 * it. Returns 0 on success, -EINVAL if the property does not exist, 1213 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1214 * property data isn't large enough. 1215 * 1216 * dts entry of array should be like: 1217 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1218 * 1219 * The out_values is modified only if a valid u16 value can be decoded. 1220 */ 1221int of_property_read_u16_array(const struct device_node *np, 1222 const char *propname, u16 *out_values, size_t sz) 1223{ 1224 const __be16 *val = of_find_property_value_of_size(np, propname, 1225 (sz * sizeof(*out_values))); 1226 1227 if (IS_ERR(val)) 1228 return PTR_ERR(val); 1229 1230 while (sz--) 1231 *out_values++ = be16_to_cpup(val++); 1232 return 0; 1233} 1234EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1235 1236/** 1237 * of_property_read_u32_array - Find and read an array of 32 bit integers 1238 * from a property. 1239 * 1240 * @np: device node from which the property value is to be read. 1241 * @propname: name of the property to be searched. 1242 * @out_values: pointer to return value, modified only if return value is 0. 1243 * @sz: number of array elements to read 1244 * 1245 * Search for a property in a device node and read 32-bit value(s) from 1246 * it. Returns 0 on success, -EINVAL if the property does not exist, 1247 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1248 * property data isn't large enough. 1249 * 1250 * The out_values is modified only if a valid u32 value can be decoded. 1251 */ 1252int of_property_read_u32_array(const struct device_node *np, 1253 const char *propname, u32 *out_values, 1254 size_t sz) 1255{ 1256 const __be32 *val = of_find_property_value_of_size(np, propname, 1257 (sz * sizeof(*out_values))); 1258 1259 if (IS_ERR(val)) 1260 return PTR_ERR(val); 1261 1262 while (sz--) 1263 *out_values++ = be32_to_cpup(val++); 1264 return 0; 1265} 1266EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1267 1268/** 1269 * of_property_read_u64 - Find and read a 64 bit integer from a property 1270 * @np: device node from which the property value is to be read. 1271 * @propname: name of the property to be searched. 1272 * @out_value: pointer to return value, modified only if return value is 0. 1273 * 1274 * Search for a property in a device node and read a 64-bit value from 1275 * it. Returns 0 on success, -EINVAL if the property does not exist, 1276 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1277 * property data isn't large enough. 1278 * 1279 * The out_value is modified only if a valid u64 value can be decoded. 1280 */ 1281int of_property_read_u64(const struct device_node *np, const char *propname, 1282 u64 *out_value) 1283{ 1284 const __be32 *val = of_find_property_value_of_size(np, propname, 1285 sizeof(*out_value)); 1286 1287 if (IS_ERR(val)) 1288 return PTR_ERR(val); 1289 1290 *out_value = of_read_number(val, 2); 1291 return 0; 1292} 1293EXPORT_SYMBOL_GPL(of_property_read_u64); 1294 1295/** 1296 * of_property_read_u64_array - Find and read an array of 64 bit integers 1297 * from a property. 1298 * 1299 * @np: device node from which the property value is to be read. 1300 * @propname: name of the property to be searched. 1301 * @out_values: pointer to return value, modified only if return value is 0. 1302 * @sz: number of array elements to read 1303 * 1304 * Search for a property in a device node and read 64-bit value(s) from 1305 * it. Returns 0 on success, -EINVAL if the property does not exist, 1306 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1307 * property data isn't large enough. 1308 * 1309 * The out_values is modified only if a valid u64 value can be decoded. 1310 */ 1311int of_property_read_u64_array(const struct device_node *np, 1312 const char *propname, u64 *out_values, 1313 size_t sz) 1314{ 1315 const __be32 *val = of_find_property_value_of_size(np, propname, 1316 (sz * sizeof(*out_values))); 1317 1318 if (IS_ERR(val)) 1319 return PTR_ERR(val); 1320 1321 while (sz--) { 1322 *out_values++ = of_read_number(val, 2); 1323 val += 2; 1324 } 1325 return 0; 1326} 1327EXPORT_SYMBOL_GPL(of_property_read_u64_array); 1328 1329/** 1330 * of_property_read_string - Find and read a string from a property 1331 * @np: device node from which the property value is to be read. 1332 * @propname: name of the property to be searched. 1333 * @out_string: pointer to null terminated return string, modified only if 1334 * return value is 0. 1335 * 1336 * Search for a property in a device tree node and retrieve a null 1337 * terminated string value (pointer to data, not a copy). Returns 0 on 1338 * success, -EINVAL if the property does not exist, -ENODATA if property 1339 * does not have a value, and -EILSEQ if the string is not null-terminated 1340 * within the length of the property data. 1341 * 1342 * The out_string pointer is modified only if a valid string can be decoded. 1343 */ 1344int of_property_read_string(struct device_node *np, const char *propname, 1345 const char **out_string) 1346{ 1347 struct property *prop = of_find_property(np, propname, NULL); 1348 if (!prop) 1349 return -EINVAL; 1350 if (!prop->value) 1351 return -ENODATA; 1352 if (strnlen(prop->value, prop->length) >= prop->length) 1353 return -EILSEQ; 1354 *out_string = prop->value; 1355 return 0; 1356} 1357EXPORT_SYMBOL_GPL(of_property_read_string); 1358 1359/** 1360 * of_property_match_string() - Find string in a list and return index 1361 * @np: pointer to node containing string list property 1362 * @propname: string list property name 1363 * @string: pointer to string to search for in string list 1364 * 1365 * This function searches a string list property and returns the index 1366 * of a specific string value. 1367 */ 1368int of_property_match_string(struct device_node *np, const char *propname, 1369 const char *string) 1370{ 1371 struct property *prop = of_find_property(np, propname, NULL); 1372 size_t l; 1373 int i; 1374 const char *p, *end; 1375 1376 if (!prop) 1377 return -EINVAL; 1378 if (!prop->value) 1379 return -ENODATA; 1380 1381 p = prop->value; 1382 end = p + prop->length; 1383 1384 for (i = 0; p < end; i++, p += l) { 1385 l = strnlen(p, end - p) + 1; 1386 if (p + l > end) 1387 return -EILSEQ; 1388 pr_debug("comparing %s with %s\n", string, p); 1389 if (strcmp(string, p) == 0) 1390 return i; /* Found it; return index */ 1391 } 1392 return -ENODATA; 1393} 1394EXPORT_SYMBOL_GPL(of_property_match_string); 1395 1396/** 1397 * of_property_read_string_helper() - Utility helper for parsing string properties 1398 * @np: device node from which the property value is to be read. 1399 * @propname: name of the property to be searched. 1400 * @out_strs: output array of string pointers. 1401 * @sz: number of array elements to read. 1402 * @skip: Number of strings to skip over at beginning of list. 1403 * 1404 * Don't call this function directly. It is a utility helper for the 1405 * of_property_read_string*() family of functions. 1406 */ 1407int of_property_read_string_helper(struct device_node *np, const char *propname, 1408 const char **out_strs, size_t sz, int skip) 1409{ 1410 struct property *prop = of_find_property(np, propname, NULL); 1411 int l = 0, i = 0; 1412 const char *p, *end; 1413 1414 if (!prop) 1415 return -EINVAL; 1416 if (!prop->value) 1417 return -ENODATA; 1418 p = prop->value; 1419 end = p + prop->length; 1420 1421 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 1422 l = strnlen(p, end - p) + 1; 1423 if (p + l > end) 1424 return -EILSEQ; 1425 if (out_strs && i >= skip) 1426 *out_strs++ = p; 1427 } 1428 i -= skip; 1429 return i <= 0 ? -ENODATA : i; 1430} 1431EXPORT_SYMBOL_GPL(of_property_read_string_helper); 1432 1433void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1434{ 1435 int i; 1436 printk("%s %s", msg, of_node_full_name(args->np)); 1437 for (i = 0; i < args->args_count; i++) 1438 printk(i ? ",%08x" : ":%08x", args->args[i]); 1439 printk("\n"); 1440} 1441 1442static int __of_parse_phandle_with_args(const struct device_node *np, 1443 const char *list_name, 1444 const char *cells_name, 1445 int cell_count, int index, 1446 struct of_phandle_args *out_args) 1447{ 1448 const __be32 *list, *list_end; 1449 int rc = 0, size, cur_index = 0; 1450 uint32_t count = 0; 1451 struct device_node *node = NULL; 1452 phandle phandle; 1453 1454 /* Retrieve the phandle list property */ 1455 list = of_get_property(np, list_name, &size); 1456 if (!list) 1457 return -ENOENT; 1458 list_end = list + size / sizeof(*list); 1459 1460 /* Loop over the phandles until all the requested entry is found */ 1461 while (list < list_end) { 1462 rc = -EINVAL; 1463 count = 0; 1464 1465 /* 1466 * If phandle is 0, then it is an empty entry with no 1467 * arguments. Skip forward to the next entry. 1468 */ 1469 phandle = be32_to_cpup(list++); 1470 if (phandle) { 1471 /* 1472 * Find the provider node and parse the #*-cells 1473 * property to determine the argument length. 1474 * 1475 * This is not needed if the cell count is hard-coded 1476 * (i.e. cells_name not set, but cell_count is set), 1477 * except when we're going to return the found node 1478 * below. 1479 */ 1480 if (cells_name || cur_index == index) { 1481 node = of_find_node_by_phandle(phandle); 1482 if (!node) { 1483 pr_err("%s: could not find phandle\n", 1484 np->full_name); 1485 goto err; 1486 } 1487 } 1488 1489 if (cells_name) { 1490 if (of_property_read_u32(node, cells_name, 1491 &count)) { 1492 pr_err("%s: could not get %s for %s\n", 1493 np->full_name, cells_name, 1494 node->full_name); 1495 goto err; 1496 } 1497 } else { 1498 count = cell_count; 1499 } 1500 1501 /* 1502 * Make sure that the arguments actually fit in the 1503 * remaining property data length 1504 */ 1505 if (list + count > list_end) { 1506 pr_err("%s: arguments longer than property\n", 1507 np->full_name); 1508 goto err; 1509 } 1510 } 1511 1512 /* 1513 * All of the error cases above bail out of the loop, so at 1514 * this point, the parsing is successful. If the requested 1515 * index matches, then fill the out_args structure and return, 1516 * or return -ENOENT for an empty entry. 1517 */ 1518 rc = -ENOENT; 1519 if (cur_index == index) { 1520 if (!phandle) 1521 goto err; 1522 1523 if (out_args) { 1524 int i; 1525 if (WARN_ON(count > MAX_PHANDLE_ARGS)) 1526 count = MAX_PHANDLE_ARGS; 1527 out_args->np = node; 1528 out_args->args_count = count; 1529 for (i = 0; i < count; i++) 1530 out_args->args[i] = be32_to_cpup(list++); 1531 } else { 1532 of_node_put(node); 1533 } 1534 1535 /* Found it! return success */ 1536 return 0; 1537 } 1538 1539 of_node_put(node); 1540 node = NULL; 1541 list += count; 1542 cur_index++; 1543 } 1544 1545 /* 1546 * Unlock node before returning result; will be one of: 1547 * -ENOENT : index is for empty phandle 1548 * -EINVAL : parsing error on data 1549 * [1..n] : Number of phandle (count mode; when index = -1) 1550 */ 1551 rc = index < 0 ? cur_index : -ENOENT; 1552 err: 1553 if (node) 1554 of_node_put(node); 1555 return rc; 1556} 1557 1558/** 1559 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1560 * @np: Pointer to device node holding phandle property 1561 * @phandle_name: Name of property holding a phandle value 1562 * @index: For properties holding a table of phandles, this is the index into 1563 * the table 1564 * 1565 * Returns the device_node pointer with refcount incremented. Use 1566 * of_node_put() on it when done. 1567 */ 1568struct device_node *of_parse_phandle(const struct device_node *np, 1569 const char *phandle_name, int index) 1570{ 1571 struct of_phandle_args args; 1572 1573 if (index < 0) 1574 return NULL; 1575 1576 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1577 index, &args)) 1578 return NULL; 1579 1580 return args.np; 1581} 1582EXPORT_SYMBOL(of_parse_phandle); 1583 1584/** 1585 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1586 * @np: pointer to a device tree node containing a list 1587 * @list_name: property name that contains a list 1588 * @cells_name: property name that specifies phandles' arguments count 1589 * @index: index of a phandle to parse out 1590 * @out_args: optional pointer to output arguments structure (will be filled) 1591 * 1592 * This function is useful to parse lists of phandles and their arguments. 1593 * Returns 0 on success and fills out_args, on error returns appropriate 1594 * errno value. 1595 * 1596 * Caller is responsible to call of_node_put() on the returned out_args->np 1597 * pointer. 1598 * 1599 * Example: 1600 * 1601 * phandle1: node1 { 1602 * #list-cells = <2>; 1603 * } 1604 * 1605 * phandle2: node2 { 1606 * #list-cells = <1>; 1607 * } 1608 * 1609 * node3 { 1610 * list = <&phandle1 1 2 &phandle2 3>; 1611 * } 1612 * 1613 * To get a device_node of the `node2' node you may call this: 1614 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1615 */ 1616int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1617 const char *cells_name, int index, 1618 struct of_phandle_args *out_args) 1619{ 1620 if (index < 0) 1621 return -EINVAL; 1622 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1623 index, out_args); 1624} 1625EXPORT_SYMBOL(of_parse_phandle_with_args); 1626 1627/** 1628 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1629 * @np: pointer to a device tree node containing a list 1630 * @list_name: property name that contains a list 1631 * @cell_count: number of argument cells following the phandle 1632 * @index: index of a phandle to parse out 1633 * @out_args: optional pointer to output arguments structure (will be filled) 1634 * 1635 * This function is useful to parse lists of phandles and their arguments. 1636 * Returns 0 on success and fills out_args, on error returns appropriate 1637 * errno value. 1638 * 1639 * Caller is responsible to call of_node_put() on the returned out_args->np 1640 * pointer. 1641 * 1642 * Example: 1643 * 1644 * phandle1: node1 { 1645 * } 1646 * 1647 * phandle2: node2 { 1648 * } 1649 * 1650 * node3 { 1651 * list = <&phandle1 0 2 &phandle2 2 3>; 1652 * } 1653 * 1654 * To get a device_node of the `node2' node you may call this: 1655 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1656 */ 1657int of_parse_phandle_with_fixed_args(const struct device_node *np, 1658 const char *list_name, int cell_count, 1659 int index, struct of_phandle_args *out_args) 1660{ 1661 if (index < 0) 1662 return -EINVAL; 1663 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1664 index, out_args); 1665} 1666EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1667 1668/** 1669 * of_count_phandle_with_args() - Find the number of phandles references in a property 1670 * @np: pointer to a device tree node containing a list 1671 * @list_name: property name that contains a list 1672 * @cells_name: property name that specifies phandles' arguments count 1673 * 1674 * Returns the number of phandle + argument tuples within a property. It 1675 * is a typical pattern to encode a list of phandle and variable 1676 * arguments into a single property. The number of arguments is encoded 1677 * by a property in the phandle-target node. For example, a gpios 1678 * property would contain a list of GPIO specifies consisting of a 1679 * phandle and 1 or more arguments. The number of arguments are 1680 * determined by the #gpio-cells property in the node pointed to by the 1681 * phandle. 1682 */ 1683int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1684 const char *cells_name) 1685{ 1686 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, 1687 NULL); 1688} 1689EXPORT_SYMBOL(of_count_phandle_with_args); 1690 1691/** 1692 * __of_add_property - Add a property to a node without lock operations 1693 */ 1694int __of_add_property(struct device_node *np, struct property *prop) 1695{ 1696 struct property **next; 1697 1698 prop->next = NULL; 1699 next = &np->properties; 1700 while (*next) { 1701 if (strcmp(prop->name, (*next)->name) == 0) 1702 /* duplicate ! don't insert it */ 1703 return -EEXIST; 1704 1705 next = &(*next)->next; 1706 } 1707 *next = prop; 1708 1709 return 0; 1710} 1711 1712/** 1713 * of_add_property - Add a property to a node 1714 */ 1715int of_add_property(struct device_node *np, struct property *prop) 1716{ 1717 unsigned long flags; 1718 int rc; 1719 1720 mutex_lock(&of_mutex); 1721 1722 raw_spin_lock_irqsave(&devtree_lock, flags); 1723 rc = __of_add_property(np, prop); 1724 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1725 1726 if (!rc) 1727 __of_add_property_sysfs(np, prop); 1728 1729 mutex_unlock(&of_mutex); 1730 1731 if (!rc) 1732 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1733 1734 return rc; 1735} 1736 1737int __of_remove_property(struct device_node *np, struct property *prop) 1738{ 1739 struct property **next; 1740 1741 for (next = &np->properties; *next; next = &(*next)->next) { 1742 if (*next == prop) 1743 break; 1744 } 1745 if (*next == NULL) 1746 return -ENODEV; 1747 1748 /* found the node */ 1749 *next = prop->next; 1750 prop->next = np->deadprops; 1751 np->deadprops = prop; 1752 1753 return 0; 1754} 1755 1756void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1757{ 1758 if (!IS_ENABLED(CONFIG_SYSFS)) 1759 return; 1760 1761 /* at early boot, bail here and defer setup to of_init() */ 1762 if (of_kset && of_node_is_attached(np)) 1763 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1764} 1765 1766/** 1767 * of_remove_property - Remove a property from a node. 1768 * 1769 * Note that we don't actually remove it, since we have given out 1770 * who-knows-how-many pointers to the data using get-property. 1771 * Instead we just move the property to the "dead properties" 1772 * list, so it won't be found any more. 1773 */ 1774int of_remove_property(struct device_node *np, struct property *prop) 1775{ 1776 unsigned long flags; 1777 int rc; 1778 1779 mutex_lock(&of_mutex); 1780 1781 raw_spin_lock_irqsave(&devtree_lock, flags); 1782 rc = __of_remove_property(np, prop); 1783 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1784 1785 if (!rc) 1786 __of_remove_property_sysfs(np, prop); 1787 1788 mutex_unlock(&of_mutex); 1789 1790 if (!rc) 1791 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1792 1793 return rc; 1794} 1795 1796int __of_update_property(struct device_node *np, struct property *newprop, 1797 struct property **oldpropp) 1798{ 1799 struct property **next, *oldprop; 1800 1801 for (next = &np->properties; *next; next = &(*next)->next) { 1802 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1803 break; 1804 } 1805 *oldpropp = oldprop = *next; 1806 1807 if (oldprop) { 1808 /* replace the node */ 1809 newprop->next = oldprop->next; 1810 *next = newprop; 1811 oldprop->next = np->deadprops; 1812 np->deadprops = oldprop; 1813 } else { 1814 /* new node */ 1815 newprop->next = NULL; 1816 *next = newprop; 1817 } 1818 1819 return 0; 1820} 1821 1822void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1823 struct property *oldprop) 1824{ 1825 if (!IS_ENABLED(CONFIG_SYSFS)) 1826 return; 1827 1828 /* At early boot, bail out and defer setup to of_init() */ 1829 if (!of_kset) 1830 return; 1831 1832 if (oldprop) 1833 sysfs_remove_bin_file(&np->kobj, &oldprop->attr); 1834 __of_add_property_sysfs(np, newprop); 1835} 1836 1837/* 1838 * of_update_property - Update a property in a node, if the property does 1839 * not exist, add it. 1840 * 1841 * Note that we don't actually remove it, since we have given out 1842 * who-knows-how-many pointers to the data using get-property. 1843 * Instead we just move the property to the "dead properties" list, 1844 * and add the new property to the property list 1845 */ 1846int of_update_property(struct device_node *np, struct property *newprop) 1847{ 1848 struct property *oldprop; 1849 unsigned long flags; 1850 int rc; 1851 1852 if (!newprop->name) 1853 return -EINVAL; 1854 1855 mutex_lock(&of_mutex); 1856 1857 raw_spin_lock_irqsave(&devtree_lock, flags); 1858 rc = __of_update_property(np, newprop, &oldprop); 1859 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1860 1861 if (!rc) 1862 __of_update_property_sysfs(np, newprop, oldprop); 1863 1864 mutex_unlock(&of_mutex); 1865 1866 if (!rc) 1867 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1868 1869 return rc; 1870} 1871 1872static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1873 int id, const char *stem, int stem_len) 1874{ 1875 ap->np = np; 1876 ap->id = id; 1877 strncpy(ap->stem, stem, stem_len); 1878 ap->stem[stem_len] = 0; 1879 list_add_tail(&ap->link, &aliases_lookup); 1880 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1881 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1882} 1883 1884/** 1885 * of_alias_scan - Scan all properties of the 'aliases' node 1886 * 1887 * The function scans all the properties of the 'aliases' node and populates 1888 * the global lookup table with the properties. It returns the 1889 * number of alias properties found, or an error code in case of failure. 1890 * 1891 * @dt_alloc: An allocator that provides a virtual address to memory 1892 * for storing the resulting tree 1893 */ 1894void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1895{ 1896 struct property *pp; 1897 1898 of_aliases = of_find_node_by_path("/aliases"); 1899 of_chosen = of_find_node_by_path("/chosen"); 1900 if (of_chosen == NULL) 1901 of_chosen = of_find_node_by_path("/chosen@0"); 1902 1903 if (of_chosen) { 1904 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1905 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 1906 if (!name) 1907 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1908 if (IS_ENABLED(CONFIG_PPC) && !name) 1909 name = of_get_property(of_aliases, "stdout", NULL); 1910 if (name) 1911 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1912 } 1913 1914 if (!of_aliases) 1915 return; 1916 1917 for_each_property_of_node(of_aliases, pp) { 1918 const char *start = pp->name; 1919 const char *end = start + strlen(start); 1920 struct device_node *np; 1921 struct alias_prop *ap; 1922 int id, len; 1923 1924 /* Skip those we do not want to proceed */ 1925 if (!strcmp(pp->name, "name") || 1926 !strcmp(pp->name, "phandle") || 1927 !strcmp(pp->name, "linux,phandle")) 1928 continue; 1929 1930 np = of_find_node_by_path(pp->value); 1931 if (!np) 1932 continue; 1933 1934 /* walk the alias backwards to extract the id and work out 1935 * the 'stem' string */ 1936 while (isdigit(*(end-1)) && end > start) 1937 end--; 1938 len = end - start; 1939 1940 if (kstrtoint(end, 10, &id) < 0) 1941 continue; 1942 1943 /* Allocate an alias_prop with enough space for the stem */ 1944 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 1945 if (!ap) 1946 continue; 1947 memset(ap, 0, sizeof(*ap) + len + 1); 1948 ap->alias = start; 1949 of_alias_add(ap, np, id, start, len); 1950 } 1951} 1952 1953/** 1954 * of_alias_get_id - Get alias id for the given device_node 1955 * @np: Pointer to the given device_node 1956 * @stem: Alias stem of the given device_node 1957 * 1958 * The function travels the lookup table to get the alias id for the given 1959 * device_node and alias stem. It returns the alias id if found. 1960 */ 1961int of_alias_get_id(struct device_node *np, const char *stem) 1962{ 1963 struct alias_prop *app; 1964 int id = -ENODEV; 1965 1966 mutex_lock(&of_mutex); 1967 list_for_each_entry(app, &aliases_lookup, link) { 1968 if (strcmp(app->stem, stem) != 0) 1969 continue; 1970 1971 if (np == app->np) { 1972 id = app->id; 1973 break; 1974 } 1975 } 1976 mutex_unlock(&of_mutex); 1977 1978 return id; 1979} 1980EXPORT_SYMBOL_GPL(of_alias_get_id); 1981 1982/** 1983 * of_alias_get_highest_id - Get highest alias id for the given stem 1984 * @stem: Alias stem to be examined 1985 * 1986 * The function travels the lookup table to get the highest alias id for the 1987 * given alias stem. It returns the alias id if found. 1988 */ 1989int of_alias_get_highest_id(const char *stem) 1990{ 1991 struct alias_prop *app; 1992 int id = -ENODEV; 1993 1994 mutex_lock(&of_mutex); 1995 list_for_each_entry(app, &aliases_lookup, link) { 1996 if (strcmp(app->stem, stem) != 0) 1997 continue; 1998 1999 if (app->id > id) 2000 id = app->id; 2001 } 2002 mutex_unlock(&of_mutex); 2003 2004 return id; 2005} 2006EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2007 2008const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 2009 u32 *pu) 2010{ 2011 const void *curv = cur; 2012 2013 if (!prop) 2014 return NULL; 2015 2016 if (!cur) { 2017 curv = prop->value; 2018 goto out_val; 2019 } 2020 2021 curv += sizeof(*cur); 2022 if (curv >= prop->value + prop->length) 2023 return NULL; 2024 2025out_val: 2026 *pu = be32_to_cpup(curv); 2027 return curv; 2028} 2029EXPORT_SYMBOL_GPL(of_prop_next_u32); 2030 2031const char *of_prop_next_string(struct property *prop, const char *cur) 2032{ 2033 const void *curv = cur; 2034 2035 if (!prop) 2036 return NULL; 2037 2038 if (!cur) 2039 return prop->value; 2040 2041 curv += strlen(cur) + 1; 2042 if (curv >= prop->value + prop->length) 2043 return NULL; 2044 2045 return curv; 2046} 2047EXPORT_SYMBOL_GPL(of_prop_next_string); 2048 2049/** 2050 * of_console_check() - Test and setup console for DT setup 2051 * @dn - Pointer to device node 2052 * @name - Name to use for preferred console without index. ex. "ttyS" 2053 * @index - Index to use for preferred console. 2054 * 2055 * Check if the given device node matches the stdout-path property in the 2056 * /chosen node. If it does then register it as the preferred console and return 2057 * TRUE. Otherwise return FALSE. 2058 */ 2059bool of_console_check(struct device_node *dn, char *name, int index) 2060{ 2061 if (!dn || dn != of_stdout || console_set_on_cmdline) 2062 return false; 2063 return !add_preferred_console(name, index, 2064 kstrdup(of_stdout_options, GFP_KERNEL)); 2065} 2066EXPORT_SYMBOL_GPL(of_console_check); 2067 2068/** 2069 * of_find_next_cache_node - Find a node's subsidiary cache 2070 * @np: node of type "cpu" or "cache" 2071 * 2072 * Returns a node pointer with refcount incremented, use 2073 * of_node_put() on it when done. Caller should hold a reference 2074 * to np. 2075 */ 2076struct device_node *of_find_next_cache_node(const struct device_node *np) 2077{ 2078 struct device_node *child; 2079 const phandle *handle; 2080 2081 handle = of_get_property(np, "l2-cache", NULL); 2082 if (!handle) 2083 handle = of_get_property(np, "next-level-cache", NULL); 2084 2085 if (handle) 2086 return of_find_node_by_phandle(be32_to_cpup(handle)); 2087 2088 /* OF on pmac has nodes instead of properties named "l2-cache" 2089 * beneath CPU nodes. 2090 */ 2091 if (!strcmp(np->type, "cpu")) 2092 for_each_child_of_node(np, child) 2093 if (!strcmp(child->type, "cache")) 2094 return child; 2095 2096 return NULL; 2097} 2098 2099/** 2100 * of_graph_parse_endpoint() - parse common endpoint node properties 2101 * @node: pointer to endpoint device_node 2102 * @endpoint: pointer to the OF endpoint data structure 2103 * 2104 * The caller should hold a reference to @node. 2105 */ 2106int of_graph_parse_endpoint(const struct device_node *node, 2107 struct of_endpoint *endpoint) 2108{ 2109 struct device_node *port_node = of_get_parent(node); 2110 2111 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2112 __func__, node->full_name); 2113 2114 memset(endpoint, 0, sizeof(*endpoint)); 2115 2116 endpoint->local_node = node; 2117 /* 2118 * It doesn't matter whether the two calls below succeed. 2119 * If they don't then the default value 0 is used. 2120 */ 2121 of_property_read_u32(port_node, "reg", &endpoint->port); 2122 of_property_read_u32(node, "reg", &endpoint->id); 2123 2124 of_node_put(port_node); 2125 2126 return 0; 2127} 2128EXPORT_SYMBOL(of_graph_parse_endpoint); 2129 2130/** 2131 * of_graph_get_port_by_id() - get the port matching a given id 2132 * @parent: pointer to the parent device node 2133 * @id: id of the port 2134 * 2135 * Return: A 'port' node pointer with refcount incremented. The caller 2136 * has to use of_node_put() on it when done. 2137 */ 2138struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 2139{ 2140 struct device_node *node, *port; 2141 2142 node = of_get_child_by_name(parent, "ports"); 2143 if (node) 2144 parent = node; 2145 2146 for_each_child_of_node(parent, port) { 2147 u32 port_id = 0; 2148 2149 if (of_node_cmp(port->name, "port") != 0) 2150 continue; 2151 of_property_read_u32(port, "reg", &port_id); 2152 if (id == port_id) 2153 break; 2154 } 2155 2156 of_node_put(node); 2157 2158 return port; 2159} 2160EXPORT_SYMBOL(of_graph_get_port_by_id); 2161 2162/** 2163 * of_graph_get_next_endpoint() - get next endpoint node 2164 * @parent: pointer to the parent device node 2165 * @prev: previous endpoint node, or NULL to get first 2166 * 2167 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2168 * of the passed @prev node is decremented. 2169 */ 2170struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2171 struct device_node *prev) 2172{ 2173 struct device_node *endpoint; 2174 struct device_node *port; 2175 2176 if (!parent) 2177 return NULL; 2178 2179 /* 2180 * Start by locating the port node. If no previous endpoint is specified 2181 * search for the first port node, otherwise get the previous endpoint 2182 * parent port node. 2183 */ 2184 if (!prev) { 2185 struct device_node *node; 2186 2187 node = of_get_child_by_name(parent, "ports"); 2188 if (node) 2189 parent = node; 2190 2191 port = of_get_child_by_name(parent, "port"); 2192 of_node_put(node); 2193 2194 if (!port) { 2195 pr_err("%s(): no port node found in %s\n", 2196 __func__, parent->full_name); 2197 return NULL; 2198 } 2199 } else { 2200 port = of_get_parent(prev); 2201 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2202 __func__, prev->full_name)) 2203 return NULL; 2204 } 2205 2206 while (1) { 2207 /* 2208 * Now that we have a port node, get the next endpoint by 2209 * getting the next child. If the previous endpoint is NULL this 2210 * will return the first child. 2211 */ 2212 endpoint = of_get_next_child(port, prev); 2213 if (endpoint) { 2214 of_node_put(port); 2215 return endpoint; 2216 } 2217 2218 /* No more endpoints under this port, try the next one. */ 2219 prev = NULL; 2220 2221 do { 2222 port = of_get_next_child(parent, port); 2223 if (!port) 2224 return NULL; 2225 } while (of_node_cmp(port->name, "port")); 2226 } 2227} 2228EXPORT_SYMBOL(of_graph_get_next_endpoint); 2229 2230/** 2231 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 2232 * @parent: pointer to the parent device node 2233 * @port_reg: identifier (value of reg property) of the parent port node 2234 * @reg: identifier (value of reg property) of the endpoint node 2235 * 2236 * Return: An 'endpoint' node pointer which is identified by reg and at the same 2237 * is the child of a port node identified by port_reg. reg and port_reg are 2238 * ignored when they are -1. 2239 */ 2240struct device_node *of_graph_get_endpoint_by_regs( 2241 const struct device_node *parent, int port_reg, int reg) 2242{ 2243 struct of_endpoint endpoint; 2244 struct device_node *node, *prev_node = NULL; 2245 2246 while (1) { 2247 node = of_graph_get_next_endpoint(parent, prev_node); 2248 of_node_put(prev_node); 2249 if (!node) 2250 break; 2251 2252 of_graph_parse_endpoint(node, &endpoint); 2253 if (((port_reg == -1) || (endpoint.port == port_reg)) && 2254 ((reg == -1) || (endpoint.id == reg))) 2255 return node; 2256 2257 prev_node = node; 2258 } 2259 2260 return NULL; 2261} 2262EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 2263 2264/** 2265 * of_graph_get_remote_port_parent() - get remote port's parent node 2266 * @node: pointer to a local endpoint device_node 2267 * 2268 * Return: Remote device node associated with remote endpoint node linked 2269 * to @node. Use of_node_put() on it when done. 2270 */ 2271struct device_node *of_graph_get_remote_port_parent( 2272 const struct device_node *node) 2273{ 2274 struct device_node *np; 2275 unsigned int depth; 2276 2277 /* Get remote endpoint node. */ 2278 np = of_parse_phandle(node, "remote-endpoint", 0); 2279 2280 /* Walk 3 levels up only if there is 'ports' node. */ 2281 for (depth = 3; depth && np; depth--) { 2282 np = of_get_next_parent(np); 2283 if (depth == 2 && of_node_cmp(np->name, "ports")) 2284 break; 2285 } 2286 return np; 2287} 2288EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2289 2290/** 2291 * of_graph_get_remote_port() - get remote port node 2292 * @node: pointer to a local endpoint device_node 2293 * 2294 * Return: Remote port node associated with remote endpoint node linked 2295 * to @node. Use of_node_put() on it when done. 2296 */ 2297struct device_node *of_graph_get_remote_port(const struct device_node *node) 2298{ 2299 struct device_node *np; 2300 2301 /* Get remote endpoint node. */ 2302 np = of_parse_phandle(node, "remote-endpoint", 0); 2303 if (!np) 2304 return NULL; 2305 return of_get_next_parent(np); 2306} 2307EXPORT_SYMBOL(of_graph_get_remote_port); 2308