1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras	August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 *    {engebret|bergner}@us.ibm.com
9 *
10 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 *  Grant Likely.
14 *
15 *      This program is free software; you can redistribute it and/or
16 *      modify it under the terms of the GNU General Public License
17 *      as published by the Free Software Foundation; either version
18 *      2 of the License, or (at your option) any later version.
19 */
20#include <linux/console.h>
21#include <linux/ctype.h>
22#include <linux/cpu.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_graph.h>
26#include <linux/spinlock.h>
27#include <linux/slab.h>
28#include <linux/string.h>
29#include <linux/proc_fs.h>
30
31#include "of_private.h"
32
33LIST_HEAD(aliases_lookup);
34
35struct device_node *of_root;
36EXPORT_SYMBOL(of_root);
37struct device_node *of_chosen;
38struct device_node *of_aliases;
39struct device_node *of_stdout;
40static const char *of_stdout_options;
41
42struct kset *of_kset;
43
44/*
45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46 * This mutex must be held whenever modifications are being made to the
47 * device tree. The of_{attach,detach}_node() and
48 * of_{add,remove,update}_property() helpers make sure this happens.
49 */
50DEFINE_MUTEX(of_mutex);
51
52/* use when traversing tree through the child, sibling,
53 * or parent members of struct device_node.
54 */
55DEFINE_RAW_SPINLOCK(devtree_lock);
56
57int of_n_addr_cells(struct device_node *np)
58{
59	const __be32 *ip;
60
61	do {
62		if (np->parent)
63			np = np->parent;
64		ip = of_get_property(np, "#address-cells", NULL);
65		if (ip)
66			return be32_to_cpup(ip);
67	} while (np->parent);
68	/* No #address-cells property for the root node */
69	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
70}
71EXPORT_SYMBOL(of_n_addr_cells);
72
73int of_n_size_cells(struct device_node *np)
74{
75	const __be32 *ip;
76
77	do {
78		if (np->parent)
79			np = np->parent;
80		ip = of_get_property(np, "#size-cells", NULL);
81		if (ip)
82			return be32_to_cpup(ip);
83	} while (np->parent);
84	/* No #size-cells property for the root node */
85	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
86}
87EXPORT_SYMBOL(of_n_size_cells);
88
89#ifdef CONFIG_NUMA
90int __weak of_node_to_nid(struct device_node *np)
91{
92	return NUMA_NO_NODE;
93}
94#endif
95
96#ifndef CONFIG_OF_DYNAMIC
97static void of_node_release(struct kobject *kobj)
98{
99	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
100}
101#endif /* CONFIG_OF_DYNAMIC */
102
103struct kobj_type of_node_ktype = {
104	.release = of_node_release,
105};
106
107static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108				struct bin_attribute *bin_attr, char *buf,
109				loff_t offset, size_t count)
110{
111	struct property *pp = container_of(bin_attr, struct property, attr);
112	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
113}
114
115static const char *safe_name(struct kobject *kobj, const char *orig_name)
116{
117	const char *name = orig_name;
118	struct kernfs_node *kn;
119	int i = 0;
120
121	/* don't be a hero. After 16 tries give up */
122	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123		sysfs_put(kn);
124		if (name != orig_name)
125			kfree(name);
126		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
127	}
128
129	if (name != orig_name)
130		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131			kobject_name(kobj), name);
132	return name;
133}
134
135int __of_add_property_sysfs(struct device_node *np, struct property *pp)
136{
137	int rc;
138
139	/* Important: Don't leak passwords */
140	bool secure = strncmp(pp->name, "security-", 9) == 0;
141
142	if (!IS_ENABLED(CONFIG_SYSFS))
143		return 0;
144
145	if (!of_kset || !of_node_is_attached(np))
146		return 0;
147
148	sysfs_bin_attr_init(&pp->attr);
149	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151	pp->attr.size = secure ? 0 : pp->length;
152	pp->attr.read = of_node_property_read;
153
154	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
156	return rc;
157}
158
159int __of_attach_node_sysfs(struct device_node *np)
160{
161	const char *name;
162	struct property *pp;
163	int rc;
164
165	if (!IS_ENABLED(CONFIG_SYSFS))
166		return 0;
167
168	if (!of_kset)
169		return 0;
170
171	np->kobj.kset = of_kset;
172	if (!np->parent) {
173		/* Nodes without parents are new top level trees */
174		rc = kobject_add(&np->kobj, NULL, "%s",
175				 safe_name(&of_kset->kobj, "base"));
176	} else {
177		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178		if (!name || !name[0])
179			return -EINVAL;
180
181		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
182	}
183	if (rc)
184		return rc;
185
186	for_each_property_of_node(np, pp)
187		__of_add_property_sysfs(np, pp);
188
189	return 0;
190}
191
192void __init of_core_init(void)
193{
194	struct device_node *np;
195
196	/* Create the kset, and register existing nodes */
197	mutex_lock(&of_mutex);
198	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
199	if (!of_kset) {
200		mutex_unlock(&of_mutex);
201		pr_err("devicetree: failed to register existing nodes\n");
202		return;
203	}
204	for_each_of_allnodes(np)
205		__of_attach_node_sysfs(np);
206	mutex_unlock(&of_mutex);
207
208	/* Symlink in /proc as required by userspace ABI */
209	if (of_root)
210		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
211}
212
213static struct property *__of_find_property(const struct device_node *np,
214					   const char *name, int *lenp)
215{
216	struct property *pp;
217
218	if (!np)
219		return NULL;
220
221	for (pp = np->properties; pp; pp = pp->next) {
222		if (of_prop_cmp(pp->name, name) == 0) {
223			if (lenp)
224				*lenp = pp->length;
225			break;
226		}
227	}
228
229	return pp;
230}
231
232struct property *of_find_property(const struct device_node *np,
233				  const char *name,
234				  int *lenp)
235{
236	struct property *pp;
237	unsigned long flags;
238
239	raw_spin_lock_irqsave(&devtree_lock, flags);
240	pp = __of_find_property(np, name, lenp);
241	raw_spin_unlock_irqrestore(&devtree_lock, flags);
242
243	return pp;
244}
245EXPORT_SYMBOL(of_find_property);
246
247struct device_node *__of_find_all_nodes(struct device_node *prev)
248{
249	struct device_node *np;
250	if (!prev) {
251		np = of_root;
252	} else if (prev->child) {
253		np = prev->child;
254	} else {
255		/* Walk back up looking for a sibling, or the end of the structure */
256		np = prev;
257		while (np->parent && !np->sibling)
258			np = np->parent;
259		np = np->sibling; /* Might be null at the end of the tree */
260	}
261	return np;
262}
263
264/**
265 * of_find_all_nodes - Get next node in global list
266 * @prev:	Previous node or NULL to start iteration
267 *		of_node_put() will be called on it
268 *
269 * Returns a node pointer with refcount incremented, use
270 * of_node_put() on it when done.
271 */
272struct device_node *of_find_all_nodes(struct device_node *prev)
273{
274	struct device_node *np;
275	unsigned long flags;
276
277	raw_spin_lock_irqsave(&devtree_lock, flags);
278	np = __of_find_all_nodes(prev);
279	of_node_get(np);
280	of_node_put(prev);
281	raw_spin_unlock_irqrestore(&devtree_lock, flags);
282	return np;
283}
284EXPORT_SYMBOL(of_find_all_nodes);
285
286/*
287 * Find a property with a given name for a given node
288 * and return the value.
289 */
290const void *__of_get_property(const struct device_node *np,
291			      const char *name, int *lenp)
292{
293	struct property *pp = __of_find_property(np, name, lenp);
294
295	return pp ? pp->value : NULL;
296}
297
298/*
299 * Find a property with a given name for a given node
300 * and return the value.
301 */
302const void *of_get_property(const struct device_node *np, const char *name,
303			    int *lenp)
304{
305	struct property *pp = of_find_property(np, name, lenp);
306
307	return pp ? pp->value : NULL;
308}
309EXPORT_SYMBOL(of_get_property);
310
311/*
312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
313 *
314 * @cpu: logical cpu index of a core/thread
315 * @phys_id: physical identifier of a core/thread
316 *
317 * CPU logical to physical index mapping is architecture specific.
318 * However this __weak function provides a default match of physical
319 * id to logical cpu index. phys_id provided here is usually values read
320 * from the device tree which must match the hardware internal registers.
321 *
322 * Returns true if the physical identifier and the logical cpu index
323 * correspond to the same core/thread, false otherwise.
324 */
325bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
326{
327	return (u32)phys_id == cpu;
328}
329
330/**
331 * Checks if the given "prop_name" property holds the physical id of the
332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
333 * NULL, local thread number within the core is returned in it.
334 */
335static bool __of_find_n_match_cpu_property(struct device_node *cpun,
336			const char *prop_name, int cpu, unsigned int *thread)
337{
338	const __be32 *cell;
339	int ac, prop_len, tid;
340	u64 hwid;
341
342	ac = of_n_addr_cells(cpun);
343	cell = of_get_property(cpun, prop_name, &prop_len);
344	if (!cell || !ac)
345		return false;
346	prop_len /= sizeof(*cell) * ac;
347	for (tid = 0; tid < prop_len; tid++) {
348		hwid = of_read_number(cell, ac);
349		if (arch_match_cpu_phys_id(cpu, hwid)) {
350			if (thread)
351				*thread = tid;
352			return true;
353		}
354		cell += ac;
355	}
356	return false;
357}
358
359/*
360 * arch_find_n_match_cpu_physical_id - See if the given device node is
361 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
362 * else false.  If 'thread' is non-NULL, the local thread number within the
363 * core is returned in it.
364 */
365bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
366					      int cpu, unsigned int *thread)
367{
368	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
369	 * for thread ids on PowerPC. If it doesn't exist fallback to
370	 * standard "reg" property.
371	 */
372	if (IS_ENABLED(CONFIG_PPC) &&
373	    __of_find_n_match_cpu_property(cpun,
374					   "ibm,ppc-interrupt-server#s",
375					   cpu, thread))
376		return true;
377
378	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
379}
380
381/**
382 * of_get_cpu_node - Get device node associated with the given logical CPU
383 *
384 * @cpu: CPU number(logical index) for which device node is required
385 * @thread: if not NULL, local thread number within the physical core is
386 *          returned
387 *
388 * The main purpose of this function is to retrieve the device node for the
389 * given logical CPU index. It should be used to initialize the of_node in
390 * cpu device. Once of_node in cpu device is populated, all the further
391 * references can use that instead.
392 *
393 * CPU logical to physical index mapping is architecture specific and is built
394 * before booting secondary cores. This function uses arch_match_cpu_phys_id
395 * which can be overridden by architecture specific implementation.
396 *
397 * Returns a node pointer for the logical cpu if found, else NULL.
398 */
399struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
400{
401	struct device_node *cpun;
402
403	for_each_node_by_type(cpun, "cpu") {
404		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
405			return cpun;
406	}
407	return NULL;
408}
409EXPORT_SYMBOL(of_get_cpu_node);
410
411/**
412 * __of_device_is_compatible() - Check if the node matches given constraints
413 * @device: pointer to node
414 * @compat: required compatible string, NULL or "" for any match
415 * @type: required device_type value, NULL or "" for any match
416 * @name: required node name, NULL or "" for any match
417 *
418 * Checks if the given @compat, @type and @name strings match the
419 * properties of the given @device. A constraints can be skipped by
420 * passing NULL or an empty string as the constraint.
421 *
422 * Returns 0 for no match, and a positive integer on match. The return
423 * value is a relative score with larger values indicating better
424 * matches. The score is weighted for the most specific compatible value
425 * to get the highest score. Matching type is next, followed by matching
426 * name. Practically speaking, this results in the following priority
427 * order for matches:
428 *
429 * 1. specific compatible && type && name
430 * 2. specific compatible && type
431 * 3. specific compatible && name
432 * 4. specific compatible
433 * 5. general compatible && type && name
434 * 6. general compatible && type
435 * 7. general compatible && name
436 * 8. general compatible
437 * 9. type && name
438 * 10. type
439 * 11. name
440 */
441static int __of_device_is_compatible(const struct device_node *device,
442				     const char *compat, const char *type, const char *name)
443{
444	struct property *prop;
445	const char *cp;
446	int index = 0, score = 0;
447
448	/* Compatible match has highest priority */
449	if (compat && compat[0]) {
450		prop = __of_find_property(device, "compatible", NULL);
451		for (cp = of_prop_next_string(prop, NULL); cp;
452		     cp = of_prop_next_string(prop, cp), index++) {
453			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
454				score = INT_MAX/2 - (index << 2);
455				break;
456			}
457		}
458		if (!score)
459			return 0;
460	}
461
462	/* Matching type is better than matching name */
463	if (type && type[0]) {
464		if (!device->type || of_node_cmp(type, device->type))
465			return 0;
466		score += 2;
467	}
468
469	/* Matching name is a bit better than not */
470	if (name && name[0]) {
471		if (!device->name || of_node_cmp(name, device->name))
472			return 0;
473		score++;
474	}
475
476	return score;
477}
478
479/** Checks if the given "compat" string matches one of the strings in
480 * the device's "compatible" property
481 */
482int of_device_is_compatible(const struct device_node *device,
483		const char *compat)
484{
485	unsigned long flags;
486	int res;
487
488	raw_spin_lock_irqsave(&devtree_lock, flags);
489	res = __of_device_is_compatible(device, compat, NULL, NULL);
490	raw_spin_unlock_irqrestore(&devtree_lock, flags);
491	return res;
492}
493EXPORT_SYMBOL(of_device_is_compatible);
494
495/**
496 * of_machine_is_compatible - Test root of device tree for a given compatible value
497 * @compat: compatible string to look for in root node's compatible property.
498 *
499 * Returns a positive integer if the root node has the given value in its
500 * compatible property.
501 */
502int of_machine_is_compatible(const char *compat)
503{
504	struct device_node *root;
505	int rc = 0;
506
507	root = of_find_node_by_path("/");
508	if (root) {
509		rc = of_device_is_compatible(root, compat);
510		of_node_put(root);
511	}
512	return rc;
513}
514EXPORT_SYMBOL(of_machine_is_compatible);
515
516/**
517 *  __of_device_is_available - check if a device is available for use
518 *
519 *  @device: Node to check for availability, with locks already held
520 *
521 *  Returns true if the status property is absent or set to "okay" or "ok",
522 *  false otherwise
523 */
524static bool __of_device_is_available(const struct device_node *device)
525{
526	const char *status;
527	int statlen;
528
529	if (!device)
530		return false;
531
532	status = __of_get_property(device, "status", &statlen);
533	if (status == NULL)
534		return true;
535
536	if (statlen > 0) {
537		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
538			return true;
539	}
540
541	return false;
542}
543
544/**
545 *  of_device_is_available - check if a device is available for use
546 *
547 *  @device: Node to check for availability
548 *
549 *  Returns true if the status property is absent or set to "okay" or "ok",
550 *  false otherwise
551 */
552bool of_device_is_available(const struct device_node *device)
553{
554	unsigned long flags;
555	bool res;
556
557	raw_spin_lock_irqsave(&devtree_lock, flags);
558	res = __of_device_is_available(device);
559	raw_spin_unlock_irqrestore(&devtree_lock, flags);
560	return res;
561
562}
563EXPORT_SYMBOL(of_device_is_available);
564
565/**
566 *  of_device_is_big_endian - check if a device has BE registers
567 *
568 *  @device: Node to check for endianness
569 *
570 *  Returns true if the device has a "big-endian" property, or if the kernel
571 *  was compiled for BE *and* the device has a "native-endian" property.
572 *  Returns false otherwise.
573 *
574 *  Callers would nominally use ioread32be/iowrite32be if
575 *  of_device_is_big_endian() == true, or readl/writel otherwise.
576 */
577bool of_device_is_big_endian(const struct device_node *device)
578{
579	if (of_property_read_bool(device, "big-endian"))
580		return true;
581	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
582	    of_property_read_bool(device, "native-endian"))
583		return true;
584	return false;
585}
586EXPORT_SYMBOL(of_device_is_big_endian);
587
588/**
589 *	of_get_parent - Get a node's parent if any
590 *	@node:	Node to get parent
591 *
592 *	Returns a node pointer with refcount incremented, use
593 *	of_node_put() on it when done.
594 */
595struct device_node *of_get_parent(const struct device_node *node)
596{
597	struct device_node *np;
598	unsigned long flags;
599
600	if (!node)
601		return NULL;
602
603	raw_spin_lock_irqsave(&devtree_lock, flags);
604	np = of_node_get(node->parent);
605	raw_spin_unlock_irqrestore(&devtree_lock, flags);
606	return np;
607}
608EXPORT_SYMBOL(of_get_parent);
609
610/**
611 *	of_get_next_parent - Iterate to a node's parent
612 *	@node:	Node to get parent of
613 *
614 *	This is like of_get_parent() except that it drops the
615 *	refcount on the passed node, making it suitable for iterating
616 *	through a node's parents.
617 *
618 *	Returns a node pointer with refcount incremented, use
619 *	of_node_put() on it when done.
620 */
621struct device_node *of_get_next_parent(struct device_node *node)
622{
623	struct device_node *parent;
624	unsigned long flags;
625
626	if (!node)
627		return NULL;
628
629	raw_spin_lock_irqsave(&devtree_lock, flags);
630	parent = of_node_get(node->parent);
631	of_node_put(node);
632	raw_spin_unlock_irqrestore(&devtree_lock, flags);
633	return parent;
634}
635EXPORT_SYMBOL(of_get_next_parent);
636
637static struct device_node *__of_get_next_child(const struct device_node *node,
638						struct device_node *prev)
639{
640	struct device_node *next;
641
642	if (!node)
643		return NULL;
644
645	next = prev ? prev->sibling : node->child;
646	for (; next; next = next->sibling)
647		if (of_node_get(next))
648			break;
649	of_node_put(prev);
650	return next;
651}
652#define __for_each_child_of_node(parent, child) \
653	for (child = __of_get_next_child(parent, NULL); child != NULL; \
654	     child = __of_get_next_child(parent, child))
655
656/**
657 *	of_get_next_child - Iterate a node childs
658 *	@node:	parent node
659 *	@prev:	previous child of the parent node, or NULL to get first
660 *
661 *	Returns a node pointer with refcount incremented, use of_node_put() on
662 *	it when done. Returns NULL when prev is the last child. Decrements the
663 *	refcount of prev.
664 */
665struct device_node *of_get_next_child(const struct device_node *node,
666	struct device_node *prev)
667{
668	struct device_node *next;
669	unsigned long flags;
670
671	raw_spin_lock_irqsave(&devtree_lock, flags);
672	next = __of_get_next_child(node, prev);
673	raw_spin_unlock_irqrestore(&devtree_lock, flags);
674	return next;
675}
676EXPORT_SYMBOL(of_get_next_child);
677
678/**
679 *	of_get_next_available_child - Find the next available child node
680 *	@node:	parent node
681 *	@prev:	previous child of the parent node, or NULL to get first
682 *
683 *      This function is like of_get_next_child(), except that it
684 *      automatically skips any disabled nodes (i.e. status = "disabled").
685 */
686struct device_node *of_get_next_available_child(const struct device_node *node,
687	struct device_node *prev)
688{
689	struct device_node *next;
690	unsigned long flags;
691
692	if (!node)
693		return NULL;
694
695	raw_spin_lock_irqsave(&devtree_lock, flags);
696	next = prev ? prev->sibling : node->child;
697	for (; next; next = next->sibling) {
698		if (!__of_device_is_available(next))
699			continue;
700		if (of_node_get(next))
701			break;
702	}
703	of_node_put(prev);
704	raw_spin_unlock_irqrestore(&devtree_lock, flags);
705	return next;
706}
707EXPORT_SYMBOL(of_get_next_available_child);
708
709/**
710 *	of_get_child_by_name - Find the child node by name for a given parent
711 *	@node:	parent node
712 *	@name:	child name to look for.
713 *
714 *      This function looks for child node for given matching name
715 *
716 *	Returns a node pointer if found, with refcount incremented, use
717 *	of_node_put() on it when done.
718 *	Returns NULL if node is not found.
719 */
720struct device_node *of_get_child_by_name(const struct device_node *node,
721				const char *name)
722{
723	struct device_node *child;
724
725	for_each_child_of_node(node, child)
726		if (child->name && (of_node_cmp(child->name, name) == 0))
727			break;
728	return child;
729}
730EXPORT_SYMBOL(of_get_child_by_name);
731
732static struct device_node *__of_find_node_by_path(struct device_node *parent,
733						const char *path)
734{
735	struct device_node *child;
736	int len;
737
738	len = strcspn(path, "/:");
739	if (!len)
740		return NULL;
741
742	__for_each_child_of_node(parent, child) {
743		const char *name = strrchr(child->full_name, '/');
744		if (WARN(!name, "malformed device_node %s\n", child->full_name))
745			continue;
746		name++;
747		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
748			return child;
749	}
750	return NULL;
751}
752
753/**
754 *	of_find_node_opts_by_path - Find a node matching a full OF path
755 *	@path: Either the full path to match, or if the path does not
756 *	       start with '/', the name of a property of the /aliases
757 *	       node (an alias).  In the case of an alias, the node
758 *	       matching the alias' value will be returned.
759 *	@opts: Address of a pointer into which to store the start of
760 *	       an options string appended to the end of the path with
761 *	       a ':' separator.
762 *
763 *	Valid paths:
764 *		/foo/bar	Full path
765 *		foo		Valid alias
766 *		foo/bar		Valid alias + relative path
767 *
768 *	Returns a node pointer with refcount incremented, use
769 *	of_node_put() on it when done.
770 */
771struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
772{
773	struct device_node *np = NULL;
774	struct property *pp;
775	unsigned long flags;
776	const char *separator = strchr(path, ':');
777
778	if (opts)
779		*opts = separator ? separator + 1 : NULL;
780
781	if (strcmp(path, "/") == 0)
782		return of_node_get(of_root);
783
784	/* The path could begin with an alias */
785	if (*path != '/') {
786		int len;
787		const char *p = separator;
788
789		if (!p)
790			p = strchrnul(path, '/');
791		len = p - path;
792
793		/* of_aliases must not be NULL */
794		if (!of_aliases)
795			return NULL;
796
797		for_each_property_of_node(of_aliases, pp) {
798			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
799				np = of_find_node_by_path(pp->value);
800				break;
801			}
802		}
803		if (!np)
804			return NULL;
805		path = p;
806	}
807
808	/* Step down the tree matching path components */
809	raw_spin_lock_irqsave(&devtree_lock, flags);
810	if (!np)
811		np = of_node_get(of_root);
812	while (np && *path == '/') {
813		path++; /* Increment past '/' delimiter */
814		np = __of_find_node_by_path(np, path);
815		path = strchrnul(path, '/');
816		if (separator && separator < path)
817			break;
818	}
819	raw_spin_unlock_irqrestore(&devtree_lock, flags);
820	return np;
821}
822EXPORT_SYMBOL(of_find_node_opts_by_path);
823
824/**
825 *	of_find_node_by_name - Find a node by its "name" property
826 *	@from:	The node to start searching from or NULL, the node
827 *		you pass will not be searched, only the next one
828 *		will; typically, you pass what the previous call
829 *		returned. of_node_put() will be called on it
830 *	@name:	The name string to match against
831 *
832 *	Returns a node pointer with refcount incremented, use
833 *	of_node_put() on it when done.
834 */
835struct device_node *of_find_node_by_name(struct device_node *from,
836	const char *name)
837{
838	struct device_node *np;
839	unsigned long flags;
840
841	raw_spin_lock_irqsave(&devtree_lock, flags);
842	for_each_of_allnodes_from(from, np)
843		if (np->name && (of_node_cmp(np->name, name) == 0)
844		    && of_node_get(np))
845			break;
846	of_node_put(from);
847	raw_spin_unlock_irqrestore(&devtree_lock, flags);
848	return np;
849}
850EXPORT_SYMBOL(of_find_node_by_name);
851
852/**
853 *	of_find_node_by_type - Find a node by its "device_type" property
854 *	@from:	The node to start searching from, or NULL to start searching
855 *		the entire device tree. The node you pass will not be
856 *		searched, only the next one will; typically, you pass
857 *		what the previous call returned. of_node_put() will be
858 *		called on from for you.
859 *	@type:	The type string to match against
860 *
861 *	Returns a node pointer with refcount incremented, use
862 *	of_node_put() on it when done.
863 */
864struct device_node *of_find_node_by_type(struct device_node *from,
865	const char *type)
866{
867	struct device_node *np;
868	unsigned long flags;
869
870	raw_spin_lock_irqsave(&devtree_lock, flags);
871	for_each_of_allnodes_from(from, np)
872		if (np->type && (of_node_cmp(np->type, type) == 0)
873		    && of_node_get(np))
874			break;
875	of_node_put(from);
876	raw_spin_unlock_irqrestore(&devtree_lock, flags);
877	return np;
878}
879EXPORT_SYMBOL(of_find_node_by_type);
880
881/**
882 *	of_find_compatible_node - Find a node based on type and one of the
883 *                                tokens in its "compatible" property
884 *	@from:		The node to start searching from or NULL, the node
885 *			you pass will not be searched, only the next one
886 *			will; typically, you pass what the previous call
887 *			returned. of_node_put() will be called on it
888 *	@type:		The type string to match "device_type" or NULL to ignore
889 *	@compatible:	The string to match to one of the tokens in the device
890 *			"compatible" list.
891 *
892 *	Returns a node pointer with refcount incremented, use
893 *	of_node_put() on it when done.
894 */
895struct device_node *of_find_compatible_node(struct device_node *from,
896	const char *type, const char *compatible)
897{
898	struct device_node *np;
899	unsigned long flags;
900
901	raw_spin_lock_irqsave(&devtree_lock, flags);
902	for_each_of_allnodes_from(from, np)
903		if (__of_device_is_compatible(np, compatible, type, NULL) &&
904		    of_node_get(np))
905			break;
906	of_node_put(from);
907	raw_spin_unlock_irqrestore(&devtree_lock, flags);
908	return np;
909}
910EXPORT_SYMBOL(of_find_compatible_node);
911
912/**
913 *	of_find_node_with_property - Find a node which has a property with
914 *                                   the given name.
915 *	@from:		The node to start searching from or NULL, the node
916 *			you pass will not be searched, only the next one
917 *			will; typically, you pass what the previous call
918 *			returned. of_node_put() will be called on it
919 *	@prop_name:	The name of the property to look for.
920 *
921 *	Returns a node pointer with refcount incremented, use
922 *	of_node_put() on it when done.
923 */
924struct device_node *of_find_node_with_property(struct device_node *from,
925	const char *prop_name)
926{
927	struct device_node *np;
928	struct property *pp;
929	unsigned long flags;
930
931	raw_spin_lock_irqsave(&devtree_lock, flags);
932	for_each_of_allnodes_from(from, np) {
933		for (pp = np->properties; pp; pp = pp->next) {
934			if (of_prop_cmp(pp->name, prop_name) == 0) {
935				of_node_get(np);
936				goto out;
937			}
938		}
939	}
940out:
941	of_node_put(from);
942	raw_spin_unlock_irqrestore(&devtree_lock, flags);
943	return np;
944}
945EXPORT_SYMBOL(of_find_node_with_property);
946
947static
948const struct of_device_id *__of_match_node(const struct of_device_id *matches,
949					   const struct device_node *node)
950{
951	const struct of_device_id *best_match = NULL;
952	int score, best_score = 0;
953
954	if (!matches)
955		return NULL;
956
957	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
958		score = __of_device_is_compatible(node, matches->compatible,
959						  matches->type, matches->name);
960		if (score > best_score) {
961			best_match = matches;
962			best_score = score;
963		}
964	}
965
966	return best_match;
967}
968
969/**
970 * of_match_node - Tell if a device_node has a matching of_match structure
971 *	@matches:	array of of device match structures to search in
972 *	@node:		the of device structure to match against
973 *
974 *	Low level utility function used by device matching.
975 */
976const struct of_device_id *of_match_node(const struct of_device_id *matches,
977					 const struct device_node *node)
978{
979	const struct of_device_id *match;
980	unsigned long flags;
981
982	raw_spin_lock_irqsave(&devtree_lock, flags);
983	match = __of_match_node(matches, node);
984	raw_spin_unlock_irqrestore(&devtree_lock, flags);
985	return match;
986}
987EXPORT_SYMBOL(of_match_node);
988
989/**
990 *	of_find_matching_node_and_match - Find a node based on an of_device_id
991 *					  match table.
992 *	@from:		The node to start searching from or NULL, the node
993 *			you pass will not be searched, only the next one
994 *			will; typically, you pass what the previous call
995 *			returned. of_node_put() will be called on it
996 *	@matches:	array of of device match structures to search in
997 *	@match		Updated to point at the matches entry which matched
998 *
999 *	Returns a node pointer with refcount incremented, use
1000 *	of_node_put() on it when done.
1001 */
1002struct device_node *of_find_matching_node_and_match(struct device_node *from,
1003					const struct of_device_id *matches,
1004					const struct of_device_id **match)
1005{
1006	struct device_node *np;
1007	const struct of_device_id *m;
1008	unsigned long flags;
1009
1010	if (match)
1011		*match = NULL;
1012
1013	raw_spin_lock_irqsave(&devtree_lock, flags);
1014	for_each_of_allnodes_from(from, np) {
1015		m = __of_match_node(matches, np);
1016		if (m && of_node_get(np)) {
1017			if (match)
1018				*match = m;
1019			break;
1020		}
1021	}
1022	of_node_put(from);
1023	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1024	return np;
1025}
1026EXPORT_SYMBOL(of_find_matching_node_and_match);
1027
1028/**
1029 * of_modalias_node - Lookup appropriate modalias for a device node
1030 * @node:	pointer to a device tree node
1031 * @modalias:	Pointer to buffer that modalias value will be copied into
1032 * @len:	Length of modalias value
1033 *
1034 * Based on the value of the compatible property, this routine will attempt
1035 * to choose an appropriate modalias value for a particular device tree node.
1036 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1037 * from the first entry in the compatible list property.
1038 *
1039 * This routine returns 0 on success, <0 on failure.
1040 */
1041int of_modalias_node(struct device_node *node, char *modalias, int len)
1042{
1043	const char *compatible, *p;
1044	int cplen;
1045
1046	compatible = of_get_property(node, "compatible", &cplen);
1047	if (!compatible || strlen(compatible) > cplen)
1048		return -ENODEV;
1049	p = strchr(compatible, ',');
1050	strlcpy(modalias, p ? p + 1 : compatible, len);
1051	return 0;
1052}
1053EXPORT_SYMBOL_GPL(of_modalias_node);
1054
1055/**
1056 * of_find_node_by_phandle - Find a node given a phandle
1057 * @handle:	phandle of the node to find
1058 *
1059 * Returns a node pointer with refcount incremented, use
1060 * of_node_put() on it when done.
1061 */
1062struct device_node *of_find_node_by_phandle(phandle handle)
1063{
1064	struct device_node *np;
1065	unsigned long flags;
1066
1067	if (!handle)
1068		return NULL;
1069
1070	raw_spin_lock_irqsave(&devtree_lock, flags);
1071	for_each_of_allnodes(np)
1072		if (np->phandle == handle)
1073			break;
1074	of_node_get(np);
1075	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1076	return np;
1077}
1078EXPORT_SYMBOL(of_find_node_by_phandle);
1079
1080/**
1081 * of_property_count_elems_of_size - Count the number of elements in a property
1082 *
1083 * @np:		device node from which the property value is to be read.
1084 * @propname:	name of the property to be searched.
1085 * @elem_size:	size of the individual element
1086 *
1087 * Search for a property in a device node and count the number of elements of
1088 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1089 * property does not exist or its length does not match a multiple of elem_size
1090 * and -ENODATA if the property does not have a value.
1091 */
1092int of_property_count_elems_of_size(const struct device_node *np,
1093				const char *propname, int elem_size)
1094{
1095	struct property *prop = of_find_property(np, propname, NULL);
1096
1097	if (!prop)
1098		return -EINVAL;
1099	if (!prop->value)
1100		return -ENODATA;
1101
1102	if (prop->length % elem_size != 0) {
1103		pr_err("size of %s in node %s is not a multiple of %d\n",
1104		       propname, np->full_name, elem_size);
1105		return -EINVAL;
1106	}
1107
1108	return prop->length / elem_size;
1109}
1110EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1111
1112/**
1113 * of_find_property_value_of_size
1114 *
1115 * @np:		device node from which the property value is to be read.
1116 * @propname:	name of the property to be searched.
1117 * @len:	requested length of property value
1118 *
1119 * Search for a property in a device node and valid the requested size.
1120 * Returns the property value on success, -EINVAL if the property does not
1121 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1122 * property data isn't large enough.
1123 *
1124 */
1125static void *of_find_property_value_of_size(const struct device_node *np,
1126			const char *propname, u32 len)
1127{
1128	struct property *prop = of_find_property(np, propname, NULL);
1129
1130	if (!prop)
1131		return ERR_PTR(-EINVAL);
1132	if (!prop->value)
1133		return ERR_PTR(-ENODATA);
1134	if (len > prop->length)
1135		return ERR_PTR(-EOVERFLOW);
1136
1137	return prop->value;
1138}
1139
1140/**
1141 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1142 *
1143 * @np:		device node from which the property value is to be read.
1144 * @propname:	name of the property to be searched.
1145 * @index:	index of the u32 in the list of values
1146 * @out_value:	pointer to return value, modified only if no error.
1147 *
1148 * Search for a property in a device node and read nth 32-bit value from
1149 * it. Returns 0 on success, -EINVAL if the property does not exist,
1150 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1151 * property data isn't large enough.
1152 *
1153 * The out_value is modified only if a valid u32 value can be decoded.
1154 */
1155int of_property_read_u32_index(const struct device_node *np,
1156				       const char *propname,
1157				       u32 index, u32 *out_value)
1158{
1159	const u32 *val = of_find_property_value_of_size(np, propname,
1160					((index + 1) * sizeof(*out_value)));
1161
1162	if (IS_ERR(val))
1163		return PTR_ERR(val);
1164
1165	*out_value = be32_to_cpup(((__be32 *)val) + index);
1166	return 0;
1167}
1168EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1169
1170/**
1171 * of_property_read_u8_array - Find and read an array of u8 from a property.
1172 *
1173 * @np:		device node from which the property value is to be read.
1174 * @propname:	name of the property to be searched.
1175 * @out_values:	pointer to return value, modified only if return value is 0.
1176 * @sz:		number of array elements to read
1177 *
1178 * Search for a property in a device node and read 8-bit value(s) from
1179 * it. Returns 0 on success, -EINVAL if the property does not exist,
1180 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1181 * property data isn't large enough.
1182 *
1183 * dts entry of array should be like:
1184 *	property = /bits/ 8 <0x50 0x60 0x70>;
1185 *
1186 * The out_values is modified only if a valid u8 value can be decoded.
1187 */
1188int of_property_read_u8_array(const struct device_node *np,
1189			const char *propname, u8 *out_values, size_t sz)
1190{
1191	const u8 *val = of_find_property_value_of_size(np, propname,
1192						(sz * sizeof(*out_values)));
1193
1194	if (IS_ERR(val))
1195		return PTR_ERR(val);
1196
1197	while (sz--)
1198		*out_values++ = *val++;
1199	return 0;
1200}
1201EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1202
1203/**
1204 * of_property_read_u16_array - Find and read an array of u16 from a property.
1205 *
1206 * @np:		device node from which the property value is to be read.
1207 * @propname:	name of the property to be searched.
1208 * @out_values:	pointer to return value, modified only if return value is 0.
1209 * @sz:		number of array elements to read
1210 *
1211 * Search for a property in a device node and read 16-bit value(s) from
1212 * it. Returns 0 on success, -EINVAL if the property does not exist,
1213 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1214 * property data isn't large enough.
1215 *
1216 * dts entry of array should be like:
1217 *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1218 *
1219 * The out_values is modified only if a valid u16 value can be decoded.
1220 */
1221int of_property_read_u16_array(const struct device_node *np,
1222			const char *propname, u16 *out_values, size_t sz)
1223{
1224	const __be16 *val = of_find_property_value_of_size(np, propname,
1225						(sz * sizeof(*out_values)));
1226
1227	if (IS_ERR(val))
1228		return PTR_ERR(val);
1229
1230	while (sz--)
1231		*out_values++ = be16_to_cpup(val++);
1232	return 0;
1233}
1234EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1235
1236/**
1237 * of_property_read_u32_array - Find and read an array of 32 bit integers
1238 * from a property.
1239 *
1240 * @np:		device node from which the property value is to be read.
1241 * @propname:	name of the property to be searched.
1242 * @out_values:	pointer to return value, modified only if return value is 0.
1243 * @sz:		number of array elements to read
1244 *
1245 * Search for a property in a device node and read 32-bit value(s) from
1246 * it. Returns 0 on success, -EINVAL if the property does not exist,
1247 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1248 * property data isn't large enough.
1249 *
1250 * The out_values is modified only if a valid u32 value can be decoded.
1251 */
1252int of_property_read_u32_array(const struct device_node *np,
1253			       const char *propname, u32 *out_values,
1254			       size_t sz)
1255{
1256	const __be32 *val = of_find_property_value_of_size(np, propname,
1257						(sz * sizeof(*out_values)));
1258
1259	if (IS_ERR(val))
1260		return PTR_ERR(val);
1261
1262	while (sz--)
1263		*out_values++ = be32_to_cpup(val++);
1264	return 0;
1265}
1266EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1267
1268/**
1269 * of_property_read_u64 - Find and read a 64 bit integer from a property
1270 * @np:		device node from which the property value is to be read.
1271 * @propname:	name of the property to be searched.
1272 * @out_value:	pointer to return value, modified only if return value is 0.
1273 *
1274 * Search for a property in a device node and read a 64-bit value from
1275 * it. Returns 0 on success, -EINVAL if the property does not exist,
1276 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1277 * property data isn't large enough.
1278 *
1279 * The out_value is modified only if a valid u64 value can be decoded.
1280 */
1281int of_property_read_u64(const struct device_node *np, const char *propname,
1282			 u64 *out_value)
1283{
1284	const __be32 *val = of_find_property_value_of_size(np, propname,
1285						sizeof(*out_value));
1286
1287	if (IS_ERR(val))
1288		return PTR_ERR(val);
1289
1290	*out_value = of_read_number(val, 2);
1291	return 0;
1292}
1293EXPORT_SYMBOL_GPL(of_property_read_u64);
1294
1295/**
1296 * of_property_read_u64_array - Find and read an array of 64 bit integers
1297 * from a property.
1298 *
1299 * @np:		device node from which the property value is to be read.
1300 * @propname:	name of the property to be searched.
1301 * @out_values:	pointer to return value, modified only if return value is 0.
1302 * @sz:		number of array elements to read
1303 *
1304 * Search for a property in a device node and read 64-bit value(s) from
1305 * it. Returns 0 on success, -EINVAL if the property does not exist,
1306 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1307 * property data isn't large enough.
1308 *
1309 * The out_values is modified only if a valid u64 value can be decoded.
1310 */
1311int of_property_read_u64_array(const struct device_node *np,
1312			       const char *propname, u64 *out_values,
1313			       size_t sz)
1314{
1315	const __be32 *val = of_find_property_value_of_size(np, propname,
1316						(sz * sizeof(*out_values)));
1317
1318	if (IS_ERR(val))
1319		return PTR_ERR(val);
1320
1321	while (sz--) {
1322		*out_values++ = of_read_number(val, 2);
1323		val += 2;
1324	}
1325	return 0;
1326}
1327EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1328
1329/**
1330 * of_property_read_string - Find and read a string from a property
1331 * @np:		device node from which the property value is to be read.
1332 * @propname:	name of the property to be searched.
1333 * @out_string:	pointer to null terminated return string, modified only if
1334 *		return value is 0.
1335 *
1336 * Search for a property in a device tree node and retrieve a null
1337 * terminated string value (pointer to data, not a copy). Returns 0 on
1338 * success, -EINVAL if the property does not exist, -ENODATA if property
1339 * does not have a value, and -EILSEQ if the string is not null-terminated
1340 * within the length of the property data.
1341 *
1342 * The out_string pointer is modified only if a valid string can be decoded.
1343 */
1344int of_property_read_string(struct device_node *np, const char *propname,
1345				const char **out_string)
1346{
1347	struct property *prop = of_find_property(np, propname, NULL);
1348	if (!prop)
1349		return -EINVAL;
1350	if (!prop->value)
1351		return -ENODATA;
1352	if (strnlen(prop->value, prop->length) >= prop->length)
1353		return -EILSEQ;
1354	*out_string = prop->value;
1355	return 0;
1356}
1357EXPORT_SYMBOL_GPL(of_property_read_string);
1358
1359/**
1360 * of_property_match_string() - Find string in a list and return index
1361 * @np: pointer to node containing string list property
1362 * @propname: string list property name
1363 * @string: pointer to string to search for in string list
1364 *
1365 * This function searches a string list property and returns the index
1366 * of a specific string value.
1367 */
1368int of_property_match_string(struct device_node *np, const char *propname,
1369			     const char *string)
1370{
1371	struct property *prop = of_find_property(np, propname, NULL);
1372	size_t l;
1373	int i;
1374	const char *p, *end;
1375
1376	if (!prop)
1377		return -EINVAL;
1378	if (!prop->value)
1379		return -ENODATA;
1380
1381	p = prop->value;
1382	end = p + prop->length;
1383
1384	for (i = 0; p < end; i++, p += l) {
1385		l = strnlen(p, end - p) + 1;
1386		if (p + l > end)
1387			return -EILSEQ;
1388		pr_debug("comparing %s with %s\n", string, p);
1389		if (strcmp(string, p) == 0)
1390			return i; /* Found it; return index */
1391	}
1392	return -ENODATA;
1393}
1394EXPORT_SYMBOL_GPL(of_property_match_string);
1395
1396/**
1397 * of_property_read_string_helper() - Utility helper for parsing string properties
1398 * @np:		device node from which the property value is to be read.
1399 * @propname:	name of the property to be searched.
1400 * @out_strs:	output array of string pointers.
1401 * @sz:		number of array elements to read.
1402 * @skip:	Number of strings to skip over at beginning of list.
1403 *
1404 * Don't call this function directly. It is a utility helper for the
1405 * of_property_read_string*() family of functions.
1406 */
1407int of_property_read_string_helper(struct device_node *np, const char *propname,
1408				   const char **out_strs, size_t sz, int skip)
1409{
1410	struct property *prop = of_find_property(np, propname, NULL);
1411	int l = 0, i = 0;
1412	const char *p, *end;
1413
1414	if (!prop)
1415		return -EINVAL;
1416	if (!prop->value)
1417		return -ENODATA;
1418	p = prop->value;
1419	end = p + prop->length;
1420
1421	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1422		l = strnlen(p, end - p) + 1;
1423		if (p + l > end)
1424			return -EILSEQ;
1425		if (out_strs && i >= skip)
1426			*out_strs++ = p;
1427	}
1428	i -= skip;
1429	return i <= 0 ? -ENODATA : i;
1430}
1431EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1432
1433void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1434{
1435	int i;
1436	printk("%s %s", msg, of_node_full_name(args->np));
1437	for (i = 0; i < args->args_count; i++)
1438		printk(i ? ",%08x" : ":%08x", args->args[i]);
1439	printk("\n");
1440}
1441
1442static int __of_parse_phandle_with_args(const struct device_node *np,
1443					const char *list_name,
1444					const char *cells_name,
1445					int cell_count, int index,
1446					struct of_phandle_args *out_args)
1447{
1448	const __be32 *list, *list_end;
1449	int rc = 0, size, cur_index = 0;
1450	uint32_t count = 0;
1451	struct device_node *node = NULL;
1452	phandle phandle;
1453
1454	/* Retrieve the phandle list property */
1455	list = of_get_property(np, list_name, &size);
1456	if (!list)
1457		return -ENOENT;
1458	list_end = list + size / sizeof(*list);
1459
1460	/* Loop over the phandles until all the requested entry is found */
1461	while (list < list_end) {
1462		rc = -EINVAL;
1463		count = 0;
1464
1465		/*
1466		 * If phandle is 0, then it is an empty entry with no
1467		 * arguments.  Skip forward to the next entry.
1468		 */
1469		phandle = be32_to_cpup(list++);
1470		if (phandle) {
1471			/*
1472			 * Find the provider node and parse the #*-cells
1473			 * property to determine the argument length.
1474			 *
1475			 * This is not needed if the cell count is hard-coded
1476			 * (i.e. cells_name not set, but cell_count is set),
1477			 * except when we're going to return the found node
1478			 * below.
1479			 */
1480			if (cells_name || cur_index == index) {
1481				node = of_find_node_by_phandle(phandle);
1482				if (!node) {
1483					pr_err("%s: could not find phandle\n",
1484						np->full_name);
1485					goto err;
1486				}
1487			}
1488
1489			if (cells_name) {
1490				if (of_property_read_u32(node, cells_name,
1491							 &count)) {
1492					pr_err("%s: could not get %s for %s\n",
1493						np->full_name, cells_name,
1494						node->full_name);
1495					goto err;
1496				}
1497			} else {
1498				count = cell_count;
1499			}
1500
1501			/*
1502			 * Make sure that the arguments actually fit in the
1503			 * remaining property data length
1504			 */
1505			if (list + count > list_end) {
1506				pr_err("%s: arguments longer than property\n",
1507					 np->full_name);
1508				goto err;
1509			}
1510		}
1511
1512		/*
1513		 * All of the error cases above bail out of the loop, so at
1514		 * this point, the parsing is successful. If the requested
1515		 * index matches, then fill the out_args structure and return,
1516		 * or return -ENOENT for an empty entry.
1517		 */
1518		rc = -ENOENT;
1519		if (cur_index == index) {
1520			if (!phandle)
1521				goto err;
1522
1523			if (out_args) {
1524				int i;
1525				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1526					count = MAX_PHANDLE_ARGS;
1527				out_args->np = node;
1528				out_args->args_count = count;
1529				for (i = 0; i < count; i++)
1530					out_args->args[i] = be32_to_cpup(list++);
1531			} else {
1532				of_node_put(node);
1533			}
1534
1535			/* Found it! return success */
1536			return 0;
1537		}
1538
1539		of_node_put(node);
1540		node = NULL;
1541		list += count;
1542		cur_index++;
1543	}
1544
1545	/*
1546	 * Unlock node before returning result; will be one of:
1547	 * -ENOENT : index is for empty phandle
1548	 * -EINVAL : parsing error on data
1549	 * [1..n]  : Number of phandle (count mode; when index = -1)
1550	 */
1551	rc = index < 0 ? cur_index : -ENOENT;
1552 err:
1553	if (node)
1554		of_node_put(node);
1555	return rc;
1556}
1557
1558/**
1559 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1560 * @np: Pointer to device node holding phandle property
1561 * @phandle_name: Name of property holding a phandle value
1562 * @index: For properties holding a table of phandles, this is the index into
1563 *         the table
1564 *
1565 * Returns the device_node pointer with refcount incremented.  Use
1566 * of_node_put() on it when done.
1567 */
1568struct device_node *of_parse_phandle(const struct device_node *np,
1569				     const char *phandle_name, int index)
1570{
1571	struct of_phandle_args args;
1572
1573	if (index < 0)
1574		return NULL;
1575
1576	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1577					 index, &args))
1578		return NULL;
1579
1580	return args.np;
1581}
1582EXPORT_SYMBOL(of_parse_phandle);
1583
1584/**
1585 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1586 * @np:		pointer to a device tree node containing a list
1587 * @list_name:	property name that contains a list
1588 * @cells_name:	property name that specifies phandles' arguments count
1589 * @index:	index of a phandle to parse out
1590 * @out_args:	optional pointer to output arguments structure (will be filled)
1591 *
1592 * This function is useful to parse lists of phandles and their arguments.
1593 * Returns 0 on success and fills out_args, on error returns appropriate
1594 * errno value.
1595 *
1596 * Caller is responsible to call of_node_put() on the returned out_args->np
1597 * pointer.
1598 *
1599 * Example:
1600 *
1601 * phandle1: node1 {
1602 *	#list-cells = <2>;
1603 * }
1604 *
1605 * phandle2: node2 {
1606 *	#list-cells = <1>;
1607 * }
1608 *
1609 * node3 {
1610 *	list = <&phandle1 1 2 &phandle2 3>;
1611 * }
1612 *
1613 * To get a device_node of the `node2' node you may call this:
1614 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1615 */
1616int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1617				const char *cells_name, int index,
1618				struct of_phandle_args *out_args)
1619{
1620	if (index < 0)
1621		return -EINVAL;
1622	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1623					    index, out_args);
1624}
1625EXPORT_SYMBOL(of_parse_phandle_with_args);
1626
1627/**
1628 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1629 * @np:		pointer to a device tree node containing a list
1630 * @list_name:	property name that contains a list
1631 * @cell_count: number of argument cells following the phandle
1632 * @index:	index of a phandle to parse out
1633 * @out_args:	optional pointer to output arguments structure (will be filled)
1634 *
1635 * This function is useful to parse lists of phandles and their arguments.
1636 * Returns 0 on success and fills out_args, on error returns appropriate
1637 * errno value.
1638 *
1639 * Caller is responsible to call of_node_put() on the returned out_args->np
1640 * pointer.
1641 *
1642 * Example:
1643 *
1644 * phandle1: node1 {
1645 * }
1646 *
1647 * phandle2: node2 {
1648 * }
1649 *
1650 * node3 {
1651 *	list = <&phandle1 0 2 &phandle2 2 3>;
1652 * }
1653 *
1654 * To get a device_node of the `node2' node you may call this:
1655 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1656 */
1657int of_parse_phandle_with_fixed_args(const struct device_node *np,
1658				const char *list_name, int cell_count,
1659				int index, struct of_phandle_args *out_args)
1660{
1661	if (index < 0)
1662		return -EINVAL;
1663	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1664					   index, out_args);
1665}
1666EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1667
1668/**
1669 * of_count_phandle_with_args() - Find the number of phandles references in a property
1670 * @np:		pointer to a device tree node containing a list
1671 * @list_name:	property name that contains a list
1672 * @cells_name:	property name that specifies phandles' arguments count
1673 *
1674 * Returns the number of phandle + argument tuples within a property. It
1675 * is a typical pattern to encode a list of phandle and variable
1676 * arguments into a single property. The number of arguments is encoded
1677 * by a property in the phandle-target node. For example, a gpios
1678 * property would contain a list of GPIO specifies consisting of a
1679 * phandle and 1 or more arguments. The number of arguments are
1680 * determined by the #gpio-cells property in the node pointed to by the
1681 * phandle.
1682 */
1683int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1684				const char *cells_name)
1685{
1686	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1687					    NULL);
1688}
1689EXPORT_SYMBOL(of_count_phandle_with_args);
1690
1691/**
1692 * __of_add_property - Add a property to a node without lock operations
1693 */
1694int __of_add_property(struct device_node *np, struct property *prop)
1695{
1696	struct property **next;
1697
1698	prop->next = NULL;
1699	next = &np->properties;
1700	while (*next) {
1701		if (strcmp(prop->name, (*next)->name) == 0)
1702			/* duplicate ! don't insert it */
1703			return -EEXIST;
1704
1705		next = &(*next)->next;
1706	}
1707	*next = prop;
1708
1709	return 0;
1710}
1711
1712/**
1713 * of_add_property - Add a property to a node
1714 */
1715int of_add_property(struct device_node *np, struct property *prop)
1716{
1717	unsigned long flags;
1718	int rc;
1719
1720	mutex_lock(&of_mutex);
1721
1722	raw_spin_lock_irqsave(&devtree_lock, flags);
1723	rc = __of_add_property(np, prop);
1724	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1725
1726	if (!rc)
1727		__of_add_property_sysfs(np, prop);
1728
1729	mutex_unlock(&of_mutex);
1730
1731	if (!rc)
1732		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1733
1734	return rc;
1735}
1736
1737int __of_remove_property(struct device_node *np, struct property *prop)
1738{
1739	struct property **next;
1740
1741	for (next = &np->properties; *next; next = &(*next)->next) {
1742		if (*next == prop)
1743			break;
1744	}
1745	if (*next == NULL)
1746		return -ENODEV;
1747
1748	/* found the node */
1749	*next = prop->next;
1750	prop->next = np->deadprops;
1751	np->deadprops = prop;
1752
1753	return 0;
1754}
1755
1756void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1757{
1758	if (!IS_ENABLED(CONFIG_SYSFS))
1759		return;
1760
1761	/* at early boot, bail here and defer setup to of_init() */
1762	if (of_kset && of_node_is_attached(np))
1763		sysfs_remove_bin_file(&np->kobj, &prop->attr);
1764}
1765
1766/**
1767 * of_remove_property - Remove a property from a node.
1768 *
1769 * Note that we don't actually remove it, since we have given out
1770 * who-knows-how-many pointers to the data using get-property.
1771 * Instead we just move the property to the "dead properties"
1772 * list, so it won't be found any more.
1773 */
1774int of_remove_property(struct device_node *np, struct property *prop)
1775{
1776	unsigned long flags;
1777	int rc;
1778
1779	mutex_lock(&of_mutex);
1780
1781	raw_spin_lock_irqsave(&devtree_lock, flags);
1782	rc = __of_remove_property(np, prop);
1783	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1784
1785	if (!rc)
1786		__of_remove_property_sysfs(np, prop);
1787
1788	mutex_unlock(&of_mutex);
1789
1790	if (!rc)
1791		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1792
1793	return rc;
1794}
1795
1796int __of_update_property(struct device_node *np, struct property *newprop,
1797		struct property **oldpropp)
1798{
1799	struct property **next, *oldprop;
1800
1801	for (next = &np->properties; *next; next = &(*next)->next) {
1802		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1803			break;
1804	}
1805	*oldpropp = oldprop = *next;
1806
1807	if (oldprop) {
1808		/* replace the node */
1809		newprop->next = oldprop->next;
1810		*next = newprop;
1811		oldprop->next = np->deadprops;
1812		np->deadprops = oldprop;
1813	} else {
1814		/* new node */
1815		newprop->next = NULL;
1816		*next = newprop;
1817	}
1818
1819	return 0;
1820}
1821
1822void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1823		struct property *oldprop)
1824{
1825	if (!IS_ENABLED(CONFIG_SYSFS))
1826		return;
1827
1828	/* At early boot, bail out and defer setup to of_init() */
1829	if (!of_kset)
1830		return;
1831
1832	if (oldprop)
1833		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1834	__of_add_property_sysfs(np, newprop);
1835}
1836
1837/*
1838 * of_update_property - Update a property in a node, if the property does
1839 * not exist, add it.
1840 *
1841 * Note that we don't actually remove it, since we have given out
1842 * who-knows-how-many pointers to the data using get-property.
1843 * Instead we just move the property to the "dead properties" list,
1844 * and add the new property to the property list
1845 */
1846int of_update_property(struct device_node *np, struct property *newprop)
1847{
1848	struct property *oldprop;
1849	unsigned long flags;
1850	int rc;
1851
1852	if (!newprop->name)
1853		return -EINVAL;
1854
1855	mutex_lock(&of_mutex);
1856
1857	raw_spin_lock_irqsave(&devtree_lock, flags);
1858	rc = __of_update_property(np, newprop, &oldprop);
1859	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1860
1861	if (!rc)
1862		__of_update_property_sysfs(np, newprop, oldprop);
1863
1864	mutex_unlock(&of_mutex);
1865
1866	if (!rc)
1867		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1868
1869	return rc;
1870}
1871
1872static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1873			 int id, const char *stem, int stem_len)
1874{
1875	ap->np = np;
1876	ap->id = id;
1877	strncpy(ap->stem, stem, stem_len);
1878	ap->stem[stem_len] = 0;
1879	list_add_tail(&ap->link, &aliases_lookup);
1880	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1881		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1882}
1883
1884/**
1885 * of_alias_scan - Scan all properties of the 'aliases' node
1886 *
1887 * The function scans all the properties of the 'aliases' node and populates
1888 * the global lookup table with the properties.  It returns the
1889 * number of alias properties found, or an error code in case of failure.
1890 *
1891 * @dt_alloc:	An allocator that provides a virtual address to memory
1892 *		for storing the resulting tree
1893 */
1894void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1895{
1896	struct property *pp;
1897
1898	of_aliases = of_find_node_by_path("/aliases");
1899	of_chosen = of_find_node_by_path("/chosen");
1900	if (of_chosen == NULL)
1901		of_chosen = of_find_node_by_path("/chosen@0");
1902
1903	if (of_chosen) {
1904		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1905		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1906		if (!name)
1907			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1908		if (IS_ENABLED(CONFIG_PPC) && !name)
1909			name = of_get_property(of_aliases, "stdout", NULL);
1910		if (name)
1911			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1912	}
1913
1914	if (!of_aliases)
1915		return;
1916
1917	for_each_property_of_node(of_aliases, pp) {
1918		const char *start = pp->name;
1919		const char *end = start + strlen(start);
1920		struct device_node *np;
1921		struct alias_prop *ap;
1922		int id, len;
1923
1924		/* Skip those we do not want to proceed */
1925		if (!strcmp(pp->name, "name") ||
1926		    !strcmp(pp->name, "phandle") ||
1927		    !strcmp(pp->name, "linux,phandle"))
1928			continue;
1929
1930		np = of_find_node_by_path(pp->value);
1931		if (!np)
1932			continue;
1933
1934		/* walk the alias backwards to extract the id and work out
1935		 * the 'stem' string */
1936		while (isdigit(*(end-1)) && end > start)
1937			end--;
1938		len = end - start;
1939
1940		if (kstrtoint(end, 10, &id) < 0)
1941			continue;
1942
1943		/* Allocate an alias_prop with enough space for the stem */
1944		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1945		if (!ap)
1946			continue;
1947		memset(ap, 0, sizeof(*ap) + len + 1);
1948		ap->alias = start;
1949		of_alias_add(ap, np, id, start, len);
1950	}
1951}
1952
1953/**
1954 * of_alias_get_id - Get alias id for the given device_node
1955 * @np:		Pointer to the given device_node
1956 * @stem:	Alias stem of the given device_node
1957 *
1958 * The function travels the lookup table to get the alias id for the given
1959 * device_node and alias stem.  It returns the alias id if found.
1960 */
1961int of_alias_get_id(struct device_node *np, const char *stem)
1962{
1963	struct alias_prop *app;
1964	int id = -ENODEV;
1965
1966	mutex_lock(&of_mutex);
1967	list_for_each_entry(app, &aliases_lookup, link) {
1968		if (strcmp(app->stem, stem) != 0)
1969			continue;
1970
1971		if (np == app->np) {
1972			id = app->id;
1973			break;
1974		}
1975	}
1976	mutex_unlock(&of_mutex);
1977
1978	return id;
1979}
1980EXPORT_SYMBOL_GPL(of_alias_get_id);
1981
1982/**
1983 * of_alias_get_highest_id - Get highest alias id for the given stem
1984 * @stem:	Alias stem to be examined
1985 *
1986 * The function travels the lookup table to get the highest alias id for the
1987 * given alias stem.  It returns the alias id if found.
1988 */
1989int of_alias_get_highest_id(const char *stem)
1990{
1991	struct alias_prop *app;
1992	int id = -ENODEV;
1993
1994	mutex_lock(&of_mutex);
1995	list_for_each_entry(app, &aliases_lookup, link) {
1996		if (strcmp(app->stem, stem) != 0)
1997			continue;
1998
1999		if (app->id > id)
2000			id = app->id;
2001	}
2002	mutex_unlock(&of_mutex);
2003
2004	return id;
2005}
2006EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2007
2008const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2009			       u32 *pu)
2010{
2011	const void *curv = cur;
2012
2013	if (!prop)
2014		return NULL;
2015
2016	if (!cur) {
2017		curv = prop->value;
2018		goto out_val;
2019	}
2020
2021	curv += sizeof(*cur);
2022	if (curv >= prop->value + prop->length)
2023		return NULL;
2024
2025out_val:
2026	*pu = be32_to_cpup(curv);
2027	return curv;
2028}
2029EXPORT_SYMBOL_GPL(of_prop_next_u32);
2030
2031const char *of_prop_next_string(struct property *prop, const char *cur)
2032{
2033	const void *curv = cur;
2034
2035	if (!prop)
2036		return NULL;
2037
2038	if (!cur)
2039		return prop->value;
2040
2041	curv += strlen(cur) + 1;
2042	if (curv >= prop->value + prop->length)
2043		return NULL;
2044
2045	return curv;
2046}
2047EXPORT_SYMBOL_GPL(of_prop_next_string);
2048
2049/**
2050 * of_console_check() - Test and setup console for DT setup
2051 * @dn - Pointer to device node
2052 * @name - Name to use for preferred console without index. ex. "ttyS"
2053 * @index - Index to use for preferred console.
2054 *
2055 * Check if the given device node matches the stdout-path property in the
2056 * /chosen node. If it does then register it as the preferred console and return
2057 * TRUE. Otherwise return FALSE.
2058 */
2059bool of_console_check(struct device_node *dn, char *name, int index)
2060{
2061	if (!dn || dn != of_stdout || console_set_on_cmdline)
2062		return false;
2063	return !add_preferred_console(name, index,
2064				      kstrdup(of_stdout_options, GFP_KERNEL));
2065}
2066EXPORT_SYMBOL_GPL(of_console_check);
2067
2068/**
2069 *	of_find_next_cache_node - Find a node's subsidiary cache
2070 *	@np:	node of type "cpu" or "cache"
2071 *
2072 *	Returns a node pointer with refcount incremented, use
2073 *	of_node_put() on it when done.  Caller should hold a reference
2074 *	to np.
2075 */
2076struct device_node *of_find_next_cache_node(const struct device_node *np)
2077{
2078	struct device_node *child;
2079	const phandle *handle;
2080
2081	handle = of_get_property(np, "l2-cache", NULL);
2082	if (!handle)
2083		handle = of_get_property(np, "next-level-cache", NULL);
2084
2085	if (handle)
2086		return of_find_node_by_phandle(be32_to_cpup(handle));
2087
2088	/* OF on pmac has nodes instead of properties named "l2-cache"
2089	 * beneath CPU nodes.
2090	 */
2091	if (!strcmp(np->type, "cpu"))
2092		for_each_child_of_node(np, child)
2093			if (!strcmp(child->type, "cache"))
2094				return child;
2095
2096	return NULL;
2097}
2098
2099/**
2100 * of_graph_parse_endpoint() - parse common endpoint node properties
2101 * @node: pointer to endpoint device_node
2102 * @endpoint: pointer to the OF endpoint data structure
2103 *
2104 * The caller should hold a reference to @node.
2105 */
2106int of_graph_parse_endpoint(const struct device_node *node,
2107			    struct of_endpoint *endpoint)
2108{
2109	struct device_node *port_node = of_get_parent(node);
2110
2111	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2112		  __func__, node->full_name);
2113
2114	memset(endpoint, 0, sizeof(*endpoint));
2115
2116	endpoint->local_node = node;
2117	/*
2118	 * It doesn't matter whether the two calls below succeed.
2119	 * If they don't then the default value 0 is used.
2120	 */
2121	of_property_read_u32(port_node, "reg", &endpoint->port);
2122	of_property_read_u32(node, "reg", &endpoint->id);
2123
2124	of_node_put(port_node);
2125
2126	return 0;
2127}
2128EXPORT_SYMBOL(of_graph_parse_endpoint);
2129
2130/**
2131 * of_graph_get_port_by_id() - get the port matching a given id
2132 * @parent: pointer to the parent device node
2133 * @id: id of the port
2134 *
2135 * Return: A 'port' node pointer with refcount incremented. The caller
2136 * has to use of_node_put() on it when done.
2137 */
2138struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2139{
2140	struct device_node *node, *port;
2141
2142	node = of_get_child_by_name(parent, "ports");
2143	if (node)
2144		parent = node;
2145
2146	for_each_child_of_node(parent, port) {
2147		u32 port_id = 0;
2148
2149		if (of_node_cmp(port->name, "port") != 0)
2150			continue;
2151		of_property_read_u32(port, "reg", &port_id);
2152		if (id == port_id)
2153			break;
2154	}
2155
2156	of_node_put(node);
2157
2158	return port;
2159}
2160EXPORT_SYMBOL(of_graph_get_port_by_id);
2161
2162/**
2163 * of_graph_get_next_endpoint() - get next endpoint node
2164 * @parent: pointer to the parent device node
2165 * @prev: previous endpoint node, or NULL to get first
2166 *
2167 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2168 * of the passed @prev node is decremented.
2169 */
2170struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2171					struct device_node *prev)
2172{
2173	struct device_node *endpoint;
2174	struct device_node *port;
2175
2176	if (!parent)
2177		return NULL;
2178
2179	/*
2180	 * Start by locating the port node. If no previous endpoint is specified
2181	 * search for the first port node, otherwise get the previous endpoint
2182	 * parent port node.
2183	 */
2184	if (!prev) {
2185		struct device_node *node;
2186
2187		node = of_get_child_by_name(parent, "ports");
2188		if (node)
2189			parent = node;
2190
2191		port = of_get_child_by_name(parent, "port");
2192		of_node_put(node);
2193
2194		if (!port) {
2195			pr_err("%s(): no port node found in %s\n",
2196			       __func__, parent->full_name);
2197			return NULL;
2198		}
2199	} else {
2200		port = of_get_parent(prev);
2201		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2202			      __func__, prev->full_name))
2203			return NULL;
2204	}
2205
2206	while (1) {
2207		/*
2208		 * Now that we have a port node, get the next endpoint by
2209		 * getting the next child. If the previous endpoint is NULL this
2210		 * will return the first child.
2211		 */
2212		endpoint = of_get_next_child(port, prev);
2213		if (endpoint) {
2214			of_node_put(port);
2215			return endpoint;
2216		}
2217
2218		/* No more endpoints under this port, try the next one. */
2219		prev = NULL;
2220
2221		do {
2222			port = of_get_next_child(parent, port);
2223			if (!port)
2224				return NULL;
2225		} while (of_node_cmp(port->name, "port"));
2226	}
2227}
2228EXPORT_SYMBOL(of_graph_get_next_endpoint);
2229
2230/**
2231 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2232 * @parent: pointer to the parent device node
2233 * @port_reg: identifier (value of reg property) of the parent port node
2234 * @reg: identifier (value of reg property) of the endpoint node
2235 *
2236 * Return: An 'endpoint' node pointer which is identified by reg and at the same
2237 * is the child of a port node identified by port_reg. reg and port_reg are
2238 * ignored when they are -1.
2239 */
2240struct device_node *of_graph_get_endpoint_by_regs(
2241	const struct device_node *parent, int port_reg, int reg)
2242{
2243	struct of_endpoint endpoint;
2244	struct device_node *node, *prev_node = NULL;
2245
2246	while (1) {
2247		node = of_graph_get_next_endpoint(parent, prev_node);
2248		of_node_put(prev_node);
2249		if (!node)
2250			break;
2251
2252		of_graph_parse_endpoint(node, &endpoint);
2253		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2254			((reg == -1) || (endpoint.id == reg)))
2255			return node;
2256
2257		prev_node = node;
2258	}
2259
2260	return NULL;
2261}
2262EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2263
2264/**
2265 * of_graph_get_remote_port_parent() - get remote port's parent node
2266 * @node: pointer to a local endpoint device_node
2267 *
2268 * Return: Remote device node associated with remote endpoint node linked
2269 *	   to @node. Use of_node_put() on it when done.
2270 */
2271struct device_node *of_graph_get_remote_port_parent(
2272			       const struct device_node *node)
2273{
2274	struct device_node *np;
2275	unsigned int depth;
2276
2277	/* Get remote endpoint node. */
2278	np = of_parse_phandle(node, "remote-endpoint", 0);
2279
2280	/* Walk 3 levels up only if there is 'ports' node. */
2281	for (depth = 3; depth && np; depth--) {
2282		np = of_get_next_parent(np);
2283		if (depth == 2 && of_node_cmp(np->name, "ports"))
2284			break;
2285	}
2286	return np;
2287}
2288EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2289
2290/**
2291 * of_graph_get_remote_port() - get remote port node
2292 * @node: pointer to a local endpoint device_node
2293 *
2294 * Return: Remote port node associated with remote endpoint node linked
2295 *	   to @node. Use of_node_put() on it when done.
2296 */
2297struct device_node *of_graph_get_remote_port(const struct device_node *node)
2298{
2299	struct device_node *np;
2300
2301	/* Get remote endpoint node. */
2302	np = of_parse_phandle(node, "remote-endpoint", 0);
2303	if (!np)
2304		return NULL;
2305	return of_get_next_parent(np);
2306}
2307EXPORT_SYMBOL(of_graph_get_remote_port);
2308