1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of version 2 of the GNU General Public License as
13  * published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
23  * USA
24  *
25  * The full GNU General Public License is included in this distribution
26  * in the file called COPYING.
27  *
28  * Contact Information:
29  *  Intel Linux Wireless <ilw@linux.intel.com>
30  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31  *
32  * BSD LICENSE
33  *
34  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
35  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  *
42  *  * Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  *  * Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in
46  *    the documentation and/or other materials provided with the
47  *    distribution.
48  *  * Neither the name Intel Corporation nor the names of its
49  *    contributors may be used to endorse or promote products derived
50  *    from this software without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
53  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
54  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
55  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
56  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
58  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
59  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
60  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
61  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
62  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63  *****************************************************************************/
64 #include <linux/types.h>
65 #include <linux/slab.h>
66 #include <linux/export.h>
67 #include <linux/etherdevice.h>
68 #include <linux/pci.h>
69 #include "iwl-drv.h"
70 #include "iwl-modparams.h"
71 #include "iwl-nvm-parse.h"
72 
73 /* NVM offsets (in words) definitions */
74 enum wkp_nvm_offsets {
75 	/* NVM HW-Section offset (in words) definitions */
76 	HW_ADDR = 0x15,
77 
78 	/* NVM SW-Section offset (in words) definitions */
79 	NVM_SW_SECTION = 0x1C0,
80 	NVM_VERSION = 0,
81 	RADIO_CFG = 1,
82 	SKU = 2,
83 	N_HW_ADDRS = 3,
84 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
85 
86 	/* NVM calibration section offset (in words) definitions */
87 	NVM_CALIB_SECTION = 0x2B8,
88 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
89 };
90 
91 enum family_8000_nvm_offsets {
92 	/* NVM HW-Section offset (in words) definitions */
93 	HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
94 	HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
95 	HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
96 	HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
97 	MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,
98 
99 	/* NVM SW-Section offset (in words) definitions */
100 	NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
101 	NVM_VERSION_FAMILY_8000 = 0,
102 	RADIO_CFG_FAMILY_8000 = 0,
103 	SKU_FAMILY_8000 = 2,
104 	N_HW_ADDRS_FAMILY_8000 = 3,
105 
106 	/* NVM REGULATORY -Section offset (in words) definitions */
107 	NVM_CHANNELS_FAMILY_8000 = 0,
108 	NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7,
109 	NVM_LAR_OFFSET_FAMILY_8000 = 0x507,
110 	NVM_LAR_ENABLED_FAMILY_8000 = 0x7,
111 
112 	/* NVM calibration section offset (in words) definitions */
113 	NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
114 	XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
115 };
116 
117 /* SKU Capabilities (actual values from NVM definition) */
118 enum nvm_sku_bits {
119 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
120 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
121 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
122 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
123 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
124 };
125 
126 /*
127  * These are the channel numbers in the order that they are stored in the NVM
128  */
129 static const u8 iwl_nvm_channels[] = {
130 	/* 2.4 GHz */
131 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
132 	/* 5 GHz */
133 	36, 40, 44 , 48, 52, 56, 60, 64,
134 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
135 	149, 153, 157, 161, 165
136 };
137 
138 static const u8 iwl_nvm_channels_family_8000[] = {
139 	/* 2.4 GHz */
140 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
141 	/* 5 GHz */
142 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
143 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
144 	149, 153, 157, 161, 165, 169, 173, 177, 181
145 };
146 
147 #define IWL_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
148 #define IWL_NUM_CHANNELS_FAMILY_8000	ARRAY_SIZE(iwl_nvm_channels_family_8000)
149 #define NUM_2GHZ_CHANNELS		14
150 #define NUM_2GHZ_CHANNELS_FAMILY_8000	14
151 #define FIRST_2GHZ_HT_MINUS		5
152 #define LAST_2GHZ_HT_PLUS		9
153 #define LAST_5GHZ_HT			165
154 #define LAST_5GHZ_HT_FAMILY_8000	181
155 #define N_HW_ADDR_MASK			0xF
156 
157 /* rate data (static) */
158 static struct ieee80211_rate iwl_cfg80211_rates[] = {
159 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
160 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
161 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
162 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
163 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
164 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
165 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
166 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
167 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
168 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
169 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
170 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
171 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
172 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
173 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
174 };
175 #define RATES_24_OFFS	0
176 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
177 #define RATES_52_OFFS	4
178 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
179 
180 /**
181  * enum iwl_nvm_channel_flags - channel flags in NVM
182  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
183  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
184  * @NVM_CHANNEL_ACTIVE: active scanning allowed
185  * @NVM_CHANNEL_RADAR: radar detection required
186  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
187  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
188  *	on same channel on 2.4 or same UNII band on 5.2
189  * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
190  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
191  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
192  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
193  */
194 enum iwl_nvm_channel_flags {
195 	NVM_CHANNEL_VALID = BIT(0),
196 	NVM_CHANNEL_IBSS = BIT(1),
197 	NVM_CHANNEL_ACTIVE = BIT(3),
198 	NVM_CHANNEL_RADAR = BIT(4),
199 	NVM_CHANNEL_INDOOR_ONLY = BIT(5),
200 	NVM_CHANNEL_GO_CONCURRENT = BIT(6),
201 	NVM_CHANNEL_WIDE = BIT(8),
202 	NVM_CHANNEL_40MHZ = BIT(9),
203 	NVM_CHANNEL_80MHZ = BIT(10),
204 	NVM_CHANNEL_160MHZ = BIT(11),
205 };
206 
207 #define CHECK_AND_PRINT_I(x)	\
208 	((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
209 
iwl_get_channel_flags(u8 ch_num,int ch_idx,bool is_5ghz,u16 nvm_flags,const struct iwl_cfg * cfg)210 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
211 				 u16 nvm_flags, const struct iwl_cfg *cfg)
212 {
213 	u32 flags = IEEE80211_CHAN_NO_HT40;
214 	u32 last_5ghz_ht = LAST_5GHZ_HT;
215 
216 	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
217 		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
218 
219 	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
220 		if (ch_num <= LAST_2GHZ_HT_PLUS)
221 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
222 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
223 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
224 	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
225 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
226 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
227 		else
228 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
229 	}
230 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
231 		flags |= IEEE80211_CHAN_NO_80MHZ;
232 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
233 		flags |= IEEE80211_CHAN_NO_160MHZ;
234 
235 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
236 		flags |= IEEE80211_CHAN_NO_IR;
237 
238 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
239 		flags |= IEEE80211_CHAN_NO_IR;
240 
241 	if (nvm_flags & NVM_CHANNEL_RADAR)
242 		flags |= IEEE80211_CHAN_RADAR;
243 
244 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
245 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
246 
247 	/* Set the GO concurrent flag only in case that NO_IR is set.
248 	 * Otherwise it is meaningless
249 	 */
250 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
251 	    (flags & IEEE80211_CHAN_NO_IR))
252 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
253 
254 	return flags;
255 }
256 
iwl_init_channel_map(struct device * dev,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * const nvm_ch_flags,bool lar_supported)257 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
258 				struct iwl_nvm_data *data,
259 				const __le16 * const nvm_ch_flags,
260 				bool lar_supported)
261 {
262 	int ch_idx;
263 	int n_channels = 0;
264 	struct ieee80211_channel *channel;
265 	u16 ch_flags;
266 	bool is_5ghz;
267 	int num_of_ch, num_2ghz_channels;
268 	const u8 *nvm_chan;
269 
270 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
271 		num_of_ch = IWL_NUM_CHANNELS;
272 		nvm_chan = &iwl_nvm_channels[0];
273 		num_2ghz_channels = NUM_2GHZ_CHANNELS;
274 	} else {
275 		num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
276 		nvm_chan = &iwl_nvm_channels_family_8000[0];
277 		num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
278 	}
279 
280 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
281 		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
282 
283 		if (ch_idx >= num_2ghz_channels &&
284 		    !data->sku_cap_band_52GHz_enable)
285 			continue;
286 
287 		if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
288 			/*
289 			 * Channels might become valid later if lar is
290 			 * supported, hence we still want to add them to
291 			 * the list of supported channels to cfg80211.
292 			 */
293 			IWL_DEBUG_EEPROM(dev,
294 					 "Ch. %d Flags %x [%sGHz] - No traffic\n",
295 					 nvm_chan[ch_idx],
296 					 ch_flags,
297 					 (ch_idx >= num_2ghz_channels) ?
298 					 "5.2" : "2.4");
299 			continue;
300 		}
301 
302 		channel = &data->channels[n_channels];
303 		n_channels++;
304 
305 		channel->hw_value = nvm_chan[ch_idx];
306 		channel->band = (ch_idx < num_2ghz_channels) ?
307 				IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
308 		channel->center_freq =
309 			ieee80211_channel_to_frequency(
310 				channel->hw_value, channel->band);
311 
312 		/* Initialize regulatory-based run-time data */
313 
314 		/*
315 		 * Default value - highest tx power value.  max_power
316 		 * is not used in mvm, and is used for backwards compatibility
317 		 */
318 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
319 		is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
320 
321 		/* don't put limitations in case we're using LAR */
322 		if (!lar_supported)
323 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
324 							       ch_idx, is_5ghz,
325 							       ch_flags, cfg);
326 		else
327 			channel->flags = 0;
328 
329 		IWL_DEBUG_EEPROM(dev,
330 				 "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
331 				 channel->hw_value,
332 				 is_5ghz ? "5.2" : "2.4",
333 				 CHECK_AND_PRINT_I(VALID),
334 				 CHECK_AND_PRINT_I(IBSS),
335 				 CHECK_AND_PRINT_I(ACTIVE),
336 				 CHECK_AND_PRINT_I(RADAR),
337 				 CHECK_AND_PRINT_I(WIDE),
338 				 CHECK_AND_PRINT_I(INDOOR_ONLY),
339 				 CHECK_AND_PRINT_I(GO_CONCURRENT),
340 				 ch_flags,
341 				 channel->max_power,
342 				 ((ch_flags & NVM_CHANNEL_IBSS) &&
343 				  !(ch_flags & NVM_CHANNEL_RADAR))
344 					? "" : "not ");
345 	}
346 
347 	return n_channels;
348 }
349 
iwl_init_vht_hw_capab(const struct iwl_cfg * cfg,struct iwl_nvm_data * data,struct ieee80211_sta_vht_cap * vht_cap,u8 tx_chains,u8 rx_chains)350 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
351 				  struct iwl_nvm_data *data,
352 				  struct ieee80211_sta_vht_cap *vht_cap,
353 				  u8 tx_chains, u8 rx_chains)
354 {
355 	int num_rx_ants = num_of_ant(rx_chains);
356 	int num_tx_ants = num_of_ant(tx_chains);
357 	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
358 					   IEEE80211_VHT_MAX_AMPDU_1024K);
359 
360 	vht_cap->vht_supported = true;
361 
362 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
363 		       IEEE80211_VHT_CAP_RXSTBC_1 |
364 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
365 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
366 		       max_ampdu_exponent <<
367 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
368 
369 	if (cfg->ht_params->ldpc)
370 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
371 
372 	if (data->sku_cap_mimo_disabled) {
373 		num_rx_ants = 1;
374 		num_tx_ants = 1;
375 	}
376 
377 	if (num_tx_ants > 1)
378 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
379 	else
380 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
381 
382 	if (iwlwifi_mod_params.amsdu_size_8K)
383 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
384 
385 	vht_cap->vht_mcs.rx_mcs_map =
386 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
387 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
388 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
389 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
390 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
391 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
392 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
393 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
394 
395 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
396 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
397 		/* this works because NOT_SUPPORTED == 3 */
398 		vht_cap->vht_mcs.rx_mcs_map |=
399 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
400 	}
401 
402 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
403 }
404 
iwl_init_sbands(struct device * dev,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * ch_section,u8 tx_chains,u8 rx_chains,bool lar_supported)405 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
406 			    struct iwl_nvm_data *data,
407 			    const __le16 *ch_section,
408 			    u8 tx_chains, u8 rx_chains, bool lar_supported)
409 {
410 	int n_channels;
411 	int n_used = 0;
412 	struct ieee80211_supported_band *sband;
413 
414 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
415 		n_channels = iwl_init_channel_map(
416 				dev, cfg, data,
417 				&ch_section[NVM_CHANNELS], lar_supported);
418 	else
419 		n_channels = iwl_init_channel_map(
420 				dev, cfg, data,
421 				&ch_section[NVM_CHANNELS_FAMILY_8000],
422 				lar_supported);
423 
424 	sband = &data->bands[IEEE80211_BAND_2GHZ];
425 	sband->band = IEEE80211_BAND_2GHZ;
426 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
427 	sband->n_bitrates = N_RATES_24;
428 	n_used += iwl_init_sband_channels(data, sband, n_channels,
429 					  IEEE80211_BAND_2GHZ);
430 	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ,
431 			     tx_chains, rx_chains);
432 
433 	sband = &data->bands[IEEE80211_BAND_5GHZ];
434 	sband->band = IEEE80211_BAND_5GHZ;
435 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
436 	sband->n_bitrates = N_RATES_52;
437 	n_used += iwl_init_sband_channels(data, sband, n_channels,
438 					  IEEE80211_BAND_5GHZ);
439 	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ,
440 			     tx_chains, rx_chains);
441 	if (data->sku_cap_11ac_enable)
442 		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
443 				      tx_chains, rx_chains);
444 
445 	if (n_channels != n_used)
446 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
447 			    n_used, n_channels);
448 }
449 
iwl_get_sku(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)450 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
451 		       const __le16 *phy_sku)
452 {
453 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
454 		return le16_to_cpup(nvm_sw + SKU);
455 
456 	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
457 }
458 
iwl_get_nvm_version(const struct iwl_cfg * cfg,const __le16 * nvm_sw)459 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
460 {
461 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
462 		return le16_to_cpup(nvm_sw + NVM_VERSION);
463 	else
464 		return le32_to_cpup((__le32 *)(nvm_sw +
465 					       NVM_VERSION_FAMILY_8000));
466 }
467 
iwl_get_radio_cfg(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)468 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
469 			     const __le16 *phy_sku)
470 {
471 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
472 		return le16_to_cpup(nvm_sw + RADIO_CFG);
473 
474 	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000));
475 
476 }
477 
iwl_get_n_hw_addrs(const struct iwl_cfg * cfg,const __le16 * nvm_sw)478 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
479 {
480 	int n_hw_addr;
481 
482 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
483 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
484 
485 	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
486 
487 	return n_hw_addr & N_HW_ADDR_MASK;
488 }
489 
iwl_set_radio_cfg(const struct iwl_cfg * cfg,struct iwl_nvm_data * data,u32 radio_cfg)490 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
491 			      struct iwl_nvm_data *data,
492 			      u32 radio_cfg)
493 {
494 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
495 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
496 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
497 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
498 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
499 		return;
500 	}
501 
502 	/* set the radio configuration for family 8000 */
503 	data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
504 	data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
505 	data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
506 	data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
507 	data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg);
508 	data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg);
509 }
510 
iwl_set_hw_address(const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * nvm_sec)511 static void iwl_set_hw_address(const struct iwl_cfg *cfg,
512 			       struct iwl_nvm_data *data,
513 			       const __le16 *nvm_sec)
514 {
515 	const u8 *hw_addr = (const u8 *)(nvm_sec + HW_ADDR);
516 
517 	/* The byte order is little endian 16 bit, meaning 214365 */
518 	data->hw_addr[0] = hw_addr[1];
519 	data->hw_addr[1] = hw_addr[0];
520 	data->hw_addr[2] = hw_addr[3];
521 	data->hw_addr[3] = hw_addr[2];
522 	data->hw_addr[4] = hw_addr[5];
523 	data->hw_addr[5] = hw_addr[4];
524 }
525 
iwl_set_hw_address_family_8000(struct device * dev,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * mac_override,const __le16 * nvm_hw,u32 mac_addr0,u32 mac_addr1)526 static void iwl_set_hw_address_family_8000(struct device *dev,
527 					   const struct iwl_cfg *cfg,
528 					   struct iwl_nvm_data *data,
529 					   const __le16 *mac_override,
530 					   const __le16 *nvm_hw,
531 					   u32 mac_addr0, u32 mac_addr1)
532 {
533 	const u8 *hw_addr;
534 
535 	if (mac_override) {
536 		static const u8 reserved_mac[] = {
537 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
538 		};
539 
540 		hw_addr = (const u8 *)(mac_override +
541 				 MAC_ADDRESS_OVERRIDE_FAMILY_8000);
542 
543 		/*
544 		 * Store the MAC address from MAO section.
545 		 * No byte swapping is required in MAO section
546 		 */
547 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
548 
549 		/*
550 		 * Force the use of the OTP MAC address in case of reserved MAC
551 		 * address in the NVM, or if address is given but invalid.
552 		 */
553 		if (is_valid_ether_addr(data->hw_addr) &&
554 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
555 			return;
556 
557 		IWL_ERR_DEV(dev,
558 			    "mac address from nvm override section is not valid\n");
559 	}
560 
561 	if (nvm_hw) {
562 		/* read the MAC address from HW resisters */
563 		hw_addr = (const u8 *)&mac_addr0;
564 		data->hw_addr[0] = hw_addr[3];
565 		data->hw_addr[1] = hw_addr[2];
566 		data->hw_addr[2] = hw_addr[1];
567 		data->hw_addr[3] = hw_addr[0];
568 
569 		hw_addr = (const u8 *)&mac_addr1;
570 		data->hw_addr[4] = hw_addr[1];
571 		data->hw_addr[5] = hw_addr[0];
572 
573 		if (!is_valid_ether_addr(data->hw_addr))
574 			IWL_ERR_DEV(dev,
575 				    "mac address from hw section is not valid\n");
576 
577 		return;
578 	}
579 
580 	IWL_ERR_DEV(dev, "mac address is not found\n");
581 }
582 
583 #define IWL_4165_DEVICE_ID 0x5501
584 
585 struct iwl_nvm_data *
iwl_parse_nvm_data(struct device * dev,const struct iwl_cfg * cfg,const __le16 * nvm_hw,const __le16 * nvm_sw,const __le16 * nvm_calib,const __le16 * regulatory,const __le16 * mac_override,const __le16 * phy_sku,u8 tx_chains,u8 rx_chains,bool lar_fw_supported,u32 mac_addr0,u32 mac_addr1,u32 hw_id)586 iwl_parse_nvm_data(struct device *dev, const struct iwl_cfg *cfg,
587 		   const __le16 *nvm_hw, const __le16 *nvm_sw,
588 		   const __le16 *nvm_calib, const __le16 *regulatory,
589 		   const __le16 *mac_override, const __le16 *phy_sku,
590 		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported,
591 		   u32 mac_addr0, u32 mac_addr1, u32 hw_id)
592 {
593 	struct iwl_nvm_data *data;
594 	u32 sku;
595 	u32 radio_cfg;
596 	u16 lar_config;
597 
598 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
599 		data = kzalloc(sizeof(*data) +
600 			       sizeof(struct ieee80211_channel) *
601 			       IWL_NUM_CHANNELS,
602 			       GFP_KERNEL);
603 	else
604 		data = kzalloc(sizeof(*data) +
605 			       sizeof(struct ieee80211_channel) *
606 			       IWL_NUM_CHANNELS_FAMILY_8000,
607 			       GFP_KERNEL);
608 	if (!data)
609 		return NULL;
610 
611 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
612 
613 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
614 	iwl_set_radio_cfg(cfg, data, radio_cfg);
615 	if (data->valid_tx_ant)
616 		tx_chains &= data->valid_tx_ant;
617 	if (data->valid_rx_ant)
618 		rx_chains &= data->valid_rx_ant;
619 
620 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
621 	data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
622 	data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
623 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
624 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
625 		data->sku_cap_11n_enable = false;
626 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
627 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
628 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
629 
630 	/*
631 	 * OTP 0x52 bug work around
632 	 * define antenna 1x1 according to MIMO disabled
633 	 */
634 	if (hw_id == IWL_4165_DEVICE_ID && data->sku_cap_mimo_disabled) {
635 		data->valid_tx_ant = ANT_B;
636 		data->valid_rx_ant = ANT_B;
637 		tx_chains = ANT_B;
638 		rx_chains = ANT_B;
639 	}
640 
641 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
642 
643 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
644 		/* Checking for required sections */
645 		if (!nvm_calib) {
646 			IWL_ERR_DEV(dev,
647 				    "Can't parse empty Calib NVM sections\n");
648 			kfree(data);
649 			return NULL;
650 		}
651 		/* in family 8000 Xtal calibration values moved to OTP */
652 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
653 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
654 	}
655 
656 	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
657 		iwl_set_hw_address(cfg, data, nvm_hw);
658 
659 		iwl_init_sbands(dev, cfg, data, nvm_sw,
660 				tx_chains, rx_chains, lar_fw_supported);
661 	} else {
662 		u16 lar_offset = data->nvm_version < 0xE39 ?
663 				 NVM_LAR_OFFSET_FAMILY_8000_OLD :
664 				 NVM_LAR_OFFSET_FAMILY_8000;
665 
666 		lar_config = le16_to_cpup(regulatory + lar_offset);
667 		data->lar_enabled = !!(lar_config &
668 				       NVM_LAR_ENABLED_FAMILY_8000);
669 
670 		/* MAC address in family 8000 */
671 		iwl_set_hw_address_family_8000(dev, cfg, data, mac_override,
672 					       nvm_hw, mac_addr0, mac_addr1);
673 
674 		iwl_init_sbands(dev, cfg, data, regulatory,
675 				tx_chains, rx_chains,
676 				lar_fw_supported && data->lar_enabled);
677 	}
678 
679 	data->calib_version = 255;
680 
681 	return data;
682 }
683 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
684 
iwl_nvm_get_regdom_bw_flags(const u8 * nvm_chan,int ch_idx,u16 nvm_flags,const struct iwl_cfg * cfg)685 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
686 				       int ch_idx, u16 nvm_flags,
687 				       const struct iwl_cfg *cfg)
688 {
689 	u32 flags = NL80211_RRF_NO_HT40;
690 	u32 last_5ghz_ht = LAST_5GHZ_HT;
691 
692 	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
693 		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
694 
695 	if (ch_idx < NUM_2GHZ_CHANNELS &&
696 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
697 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
698 			flags &= ~NL80211_RRF_NO_HT40PLUS;
699 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
700 			flags &= ~NL80211_RRF_NO_HT40MINUS;
701 	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
702 		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
703 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
704 			flags &= ~NL80211_RRF_NO_HT40PLUS;
705 		else
706 			flags &= ~NL80211_RRF_NO_HT40MINUS;
707 	}
708 
709 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
710 		flags |= NL80211_RRF_NO_80MHZ;
711 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
712 		flags |= NL80211_RRF_NO_160MHZ;
713 
714 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
715 		flags |= NL80211_RRF_NO_IR;
716 
717 	if (nvm_flags & NVM_CHANNEL_RADAR)
718 		flags |= NL80211_RRF_DFS;
719 
720 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
721 		flags |= NL80211_RRF_NO_OUTDOOR;
722 
723 	/* Set the GO concurrent flag only in case that NO_IR is set.
724 	 * Otherwise it is meaningless
725 	 */
726 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
727 	    (flags & NL80211_RRF_NO_IR))
728 		flags |= NL80211_RRF_GO_CONCURRENT;
729 
730 	return flags;
731 }
732 
733 struct ieee80211_regdomain *
iwl_parse_nvm_mcc_info(struct device * dev,const struct iwl_cfg * cfg,int num_of_ch,__le32 * channels,u16 fw_mcc)734 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
735 		       int num_of_ch, __le32 *channels, u16 fw_mcc)
736 {
737 	int ch_idx;
738 	u16 ch_flags, prev_ch_flags = 0;
739 	const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
740 			     iwl_nvm_channels_family_8000 : iwl_nvm_channels;
741 	struct ieee80211_regdomain *regd;
742 	int size_of_regd;
743 	struct ieee80211_reg_rule *rule;
744 	enum ieee80211_band band;
745 	int center_freq, prev_center_freq = 0;
746 	int valid_rules = 0;
747 	bool new_rule;
748 	int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
749 			 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS;
750 
751 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
752 		return ERR_PTR(-EINVAL);
753 
754 	if (WARN_ON(num_of_ch > max_num_ch))
755 		num_of_ch = max_num_ch;
756 
757 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
758 		      num_of_ch);
759 
760 	/* build a regdomain rule for every valid channel */
761 	size_of_regd =
762 		sizeof(struct ieee80211_regdomain) +
763 		num_of_ch * sizeof(struct ieee80211_reg_rule);
764 
765 	regd = kzalloc(size_of_regd, GFP_KERNEL);
766 	if (!regd)
767 		return ERR_PTR(-ENOMEM);
768 
769 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
770 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
771 		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
772 		       IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
773 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
774 							     band);
775 		new_rule = false;
776 
777 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
778 			IWL_DEBUG_DEV(dev, IWL_DL_LAR,
779 				      "Ch. %d Flags %x [%sGHz] - No traffic\n",
780 				      nvm_chan[ch_idx],
781 				      ch_flags,
782 				      (ch_idx >= NUM_2GHZ_CHANNELS) ?
783 				      "5.2" : "2.4");
784 			continue;
785 		}
786 
787 		/* we can't continue the same rule */
788 		if (ch_idx == 0 || prev_ch_flags != ch_flags ||
789 		    center_freq - prev_center_freq > 20) {
790 			valid_rules++;
791 			new_rule = true;
792 		}
793 
794 		rule = &regd->reg_rules[valid_rules - 1];
795 
796 		if (new_rule)
797 			rule->freq_range.start_freq_khz =
798 						MHZ_TO_KHZ(center_freq - 10);
799 
800 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
801 
802 		/* this doesn't matter - not used by FW */
803 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
804 		rule->power_rule.max_eirp =
805 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
806 
807 		rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
808 							  ch_flags, cfg);
809 
810 		/* rely on auto-calculation to merge BW of contiguous chans */
811 		rule->flags |= NL80211_RRF_AUTO_BW;
812 		rule->freq_range.max_bandwidth_khz = 0;
813 
814 		prev_ch_flags = ch_flags;
815 		prev_center_freq = center_freq;
816 
817 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
818 			      "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
819 			      center_freq,
820 			      band == IEEE80211_BAND_5GHZ ? "5.2" : "2.4",
821 			      CHECK_AND_PRINT_I(VALID),
822 			      CHECK_AND_PRINT_I(ACTIVE),
823 			      CHECK_AND_PRINT_I(RADAR),
824 			      CHECK_AND_PRINT_I(WIDE),
825 			      CHECK_AND_PRINT_I(40MHZ),
826 			      CHECK_AND_PRINT_I(80MHZ),
827 			      CHECK_AND_PRINT_I(160MHZ),
828 			      CHECK_AND_PRINT_I(INDOOR_ONLY),
829 			      CHECK_AND_PRINT_I(GO_CONCURRENT),
830 			      ch_flags,
831 			      ((ch_flags & NVM_CHANNEL_ACTIVE) &&
832 			       !(ch_flags & NVM_CHANNEL_RADAR))
833 					 ? "" : "not ");
834 	}
835 
836 	regd->n_reg_rules = valid_rules;
837 
838 	/* set alpha2 from FW. */
839 	regd->alpha2[0] = fw_mcc >> 8;
840 	regd->alpha2[1] = fw_mcc & 0xff;
841 
842 	return regd;
843 }
844 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
845