1/****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of version 2 of the GNU General Public License as 13 * published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 23 * USA 24 * 25 * The full GNU General Public License is included in this distribution 26 * in the file called COPYING. 27 * 28 * Contact Information: 29 * Intel Linux Wireless <ilw@linux.intel.com> 30 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 31 * 32 * BSD LICENSE 33 * 34 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 35 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 36 * All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 42 * * Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * * Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in 46 * the documentation and/or other materials provided with the 47 * distribution. 48 * * Neither the name Intel Corporation nor the names of its 49 * contributors may be used to endorse or promote products derived 50 * from this software without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 53 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 54 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 55 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 56 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 58 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 59 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 60 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 61 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 62 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 63 *****************************************************************************/ 64#include <linux/types.h> 65#include <linux/slab.h> 66#include <linux/export.h> 67#include <linux/etherdevice.h> 68#include <linux/pci.h> 69#include "iwl-drv.h" 70#include "iwl-modparams.h" 71#include "iwl-nvm-parse.h" 72 73/* NVM offsets (in words) definitions */ 74enum wkp_nvm_offsets { 75 /* NVM HW-Section offset (in words) definitions */ 76 HW_ADDR = 0x15, 77 78 /* NVM SW-Section offset (in words) definitions */ 79 NVM_SW_SECTION = 0x1C0, 80 NVM_VERSION = 0, 81 RADIO_CFG = 1, 82 SKU = 2, 83 N_HW_ADDRS = 3, 84 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, 85 86 /* NVM calibration section offset (in words) definitions */ 87 NVM_CALIB_SECTION = 0x2B8, 88 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION 89}; 90 91enum family_8000_nvm_offsets { 92 /* NVM HW-Section offset (in words) definitions */ 93 HW_ADDR0_WFPM_FAMILY_8000 = 0x12, 94 HW_ADDR1_WFPM_FAMILY_8000 = 0x16, 95 HW_ADDR0_PCIE_FAMILY_8000 = 0x8A, 96 HW_ADDR1_PCIE_FAMILY_8000 = 0x8E, 97 MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1, 98 99 /* NVM SW-Section offset (in words) definitions */ 100 NVM_SW_SECTION_FAMILY_8000 = 0x1C0, 101 NVM_VERSION_FAMILY_8000 = 0, 102 RADIO_CFG_FAMILY_8000 = 0, 103 SKU_FAMILY_8000 = 2, 104 N_HW_ADDRS_FAMILY_8000 = 3, 105 106 /* NVM REGULATORY -Section offset (in words) definitions */ 107 NVM_CHANNELS_FAMILY_8000 = 0, 108 NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7, 109 NVM_LAR_OFFSET_FAMILY_8000 = 0x507, 110 NVM_LAR_ENABLED_FAMILY_8000 = 0x7, 111 112 /* NVM calibration section offset (in words) definitions */ 113 NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8, 114 XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000 115}; 116 117/* SKU Capabilities (actual values from NVM definition) */ 118enum nvm_sku_bits { 119 NVM_SKU_CAP_BAND_24GHZ = BIT(0), 120 NVM_SKU_CAP_BAND_52GHZ = BIT(1), 121 NVM_SKU_CAP_11N_ENABLE = BIT(2), 122 NVM_SKU_CAP_11AC_ENABLE = BIT(3), 123 NVM_SKU_CAP_MIMO_DISABLE = BIT(5), 124}; 125 126/* 127 * These are the channel numbers in the order that they are stored in the NVM 128 */ 129static const u8 iwl_nvm_channels[] = { 130 /* 2.4 GHz */ 131 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 132 /* 5 GHz */ 133 36, 40, 44 , 48, 52, 56, 60, 64, 134 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 135 149, 153, 157, 161, 165 136}; 137 138static const u8 iwl_nvm_channels_family_8000[] = { 139 /* 2.4 GHz */ 140 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 141 /* 5 GHz */ 142 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 143 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 144 149, 153, 157, 161, 165, 169, 173, 177, 181 145}; 146 147#define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) 148#define IWL_NUM_CHANNELS_FAMILY_8000 ARRAY_SIZE(iwl_nvm_channels_family_8000) 149#define NUM_2GHZ_CHANNELS 14 150#define NUM_2GHZ_CHANNELS_FAMILY_8000 14 151#define FIRST_2GHZ_HT_MINUS 5 152#define LAST_2GHZ_HT_PLUS 9 153#define LAST_5GHZ_HT 165 154#define LAST_5GHZ_HT_FAMILY_8000 181 155#define N_HW_ADDR_MASK 0xF 156 157/* rate data (static) */ 158static struct ieee80211_rate iwl_cfg80211_rates[] = { 159 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, 160 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, 161 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 162 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, 163 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 164 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, 165 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 166 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, 167 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, 168 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, 169 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, 170 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, 171 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, 172 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, 173 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, 174}; 175#define RATES_24_OFFS 0 176#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) 177#define RATES_52_OFFS 4 178#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) 179 180/** 181 * enum iwl_nvm_channel_flags - channel flags in NVM 182 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo 183 * @NVM_CHANNEL_IBSS: usable as an IBSS channel 184 * @NVM_CHANNEL_ACTIVE: active scanning allowed 185 * @NVM_CHANNEL_RADAR: radar detection required 186 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed 187 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS 188 * on same channel on 2.4 or same UNII band on 5.2 189 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?) 190 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?) 191 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?) 192 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?) 193 */ 194enum iwl_nvm_channel_flags { 195 NVM_CHANNEL_VALID = BIT(0), 196 NVM_CHANNEL_IBSS = BIT(1), 197 NVM_CHANNEL_ACTIVE = BIT(3), 198 NVM_CHANNEL_RADAR = BIT(4), 199 NVM_CHANNEL_INDOOR_ONLY = BIT(5), 200 NVM_CHANNEL_GO_CONCURRENT = BIT(6), 201 NVM_CHANNEL_WIDE = BIT(8), 202 NVM_CHANNEL_40MHZ = BIT(9), 203 NVM_CHANNEL_80MHZ = BIT(10), 204 NVM_CHANNEL_160MHZ = BIT(11), 205}; 206 207#define CHECK_AND_PRINT_I(x) \ 208 ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "") 209 210static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz, 211 u16 nvm_flags, const struct iwl_cfg *cfg) 212{ 213 u32 flags = IEEE80211_CHAN_NO_HT40; 214 u32 last_5ghz_ht = LAST_5GHZ_HT; 215 216 if (cfg->device_family == IWL_DEVICE_FAMILY_8000) 217 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000; 218 219 if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) { 220 if (ch_num <= LAST_2GHZ_HT_PLUS) 221 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 222 if (ch_num >= FIRST_2GHZ_HT_MINUS) 223 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 224 } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) { 225 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 226 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 227 else 228 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 229 } 230 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 231 flags |= IEEE80211_CHAN_NO_80MHZ; 232 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 233 flags |= IEEE80211_CHAN_NO_160MHZ; 234 235 if (!(nvm_flags & NVM_CHANNEL_IBSS)) 236 flags |= IEEE80211_CHAN_NO_IR; 237 238 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 239 flags |= IEEE80211_CHAN_NO_IR; 240 241 if (nvm_flags & NVM_CHANNEL_RADAR) 242 flags |= IEEE80211_CHAN_RADAR; 243 244 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 245 flags |= IEEE80211_CHAN_INDOOR_ONLY; 246 247 /* Set the GO concurrent flag only in case that NO_IR is set. 248 * Otherwise it is meaningless 249 */ 250 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 251 (flags & IEEE80211_CHAN_NO_IR)) 252 flags |= IEEE80211_CHAN_IR_CONCURRENT; 253 254 return flags; 255} 256 257static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, 258 struct iwl_nvm_data *data, 259 const __le16 * const nvm_ch_flags, 260 bool lar_supported) 261{ 262 int ch_idx; 263 int n_channels = 0; 264 struct ieee80211_channel *channel; 265 u16 ch_flags; 266 bool is_5ghz; 267 int num_of_ch, num_2ghz_channels; 268 const u8 *nvm_chan; 269 270 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 271 num_of_ch = IWL_NUM_CHANNELS; 272 nvm_chan = &iwl_nvm_channels[0]; 273 num_2ghz_channels = NUM_2GHZ_CHANNELS; 274 } else { 275 num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000; 276 nvm_chan = &iwl_nvm_channels_family_8000[0]; 277 num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000; 278 } 279 280 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 281 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx); 282 283 if (ch_idx >= num_2ghz_channels && 284 !data->sku_cap_band_52GHz_enable) 285 continue; 286 287 if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) { 288 /* 289 * Channels might become valid later if lar is 290 * supported, hence we still want to add them to 291 * the list of supported channels to cfg80211. 292 */ 293 IWL_DEBUG_EEPROM(dev, 294 "Ch. %d Flags %x [%sGHz] - No traffic\n", 295 nvm_chan[ch_idx], 296 ch_flags, 297 (ch_idx >= num_2ghz_channels) ? 298 "5.2" : "2.4"); 299 continue; 300 } 301 302 channel = &data->channels[n_channels]; 303 n_channels++; 304 305 channel->hw_value = nvm_chan[ch_idx]; 306 channel->band = (ch_idx < num_2ghz_channels) ? 307 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; 308 channel->center_freq = 309 ieee80211_channel_to_frequency( 310 channel->hw_value, channel->band); 311 312 /* Initialize regulatory-based run-time data */ 313 314 /* 315 * Default value - highest tx power value. max_power 316 * is not used in mvm, and is used for backwards compatibility 317 */ 318 channel->max_power = IWL_DEFAULT_MAX_TX_POWER; 319 is_5ghz = channel->band == IEEE80211_BAND_5GHZ; 320 321 /* don't put limitations in case we're using LAR */ 322 if (!lar_supported) 323 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], 324 ch_idx, is_5ghz, 325 ch_flags, cfg); 326 else 327 channel->flags = 0; 328 329 IWL_DEBUG_EEPROM(dev, 330 "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n", 331 channel->hw_value, 332 is_5ghz ? "5.2" : "2.4", 333 CHECK_AND_PRINT_I(VALID), 334 CHECK_AND_PRINT_I(IBSS), 335 CHECK_AND_PRINT_I(ACTIVE), 336 CHECK_AND_PRINT_I(RADAR), 337 CHECK_AND_PRINT_I(WIDE), 338 CHECK_AND_PRINT_I(INDOOR_ONLY), 339 CHECK_AND_PRINT_I(GO_CONCURRENT), 340 ch_flags, 341 channel->max_power, 342 ((ch_flags & NVM_CHANNEL_IBSS) && 343 !(ch_flags & NVM_CHANNEL_RADAR)) 344 ? "" : "not "); 345 } 346 347 return n_channels; 348} 349 350static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg, 351 struct iwl_nvm_data *data, 352 struct ieee80211_sta_vht_cap *vht_cap, 353 u8 tx_chains, u8 rx_chains) 354{ 355 int num_rx_ants = num_of_ant(rx_chains); 356 int num_tx_ants = num_of_ant(tx_chains); 357 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?: 358 IEEE80211_VHT_MAX_AMPDU_1024K); 359 360 vht_cap->vht_supported = true; 361 362 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | 363 IEEE80211_VHT_CAP_RXSTBC_1 | 364 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 365 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | 366 max_ampdu_exponent << 367 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 368 369 if (cfg->ht_params->ldpc) 370 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; 371 372 if (data->sku_cap_mimo_disabled) { 373 num_rx_ants = 1; 374 num_tx_ants = 1; 375 } 376 377 if (num_tx_ants > 1) 378 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 379 else 380 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; 381 382 if (iwlwifi_mod_params.amsdu_size_8K) 383 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; 384 385 vht_cap->vht_mcs.rx_mcs_map = 386 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | 387 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | 388 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | 389 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | 390 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | 391 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | 392 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | 393 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); 394 395 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { 396 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; 397 /* this works because NOT_SUPPORTED == 3 */ 398 vht_cap->vht_mcs.rx_mcs_map |= 399 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); 400 } 401 402 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; 403} 404 405static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg, 406 struct iwl_nvm_data *data, 407 const __le16 *ch_section, 408 u8 tx_chains, u8 rx_chains, bool lar_supported) 409{ 410 int n_channels; 411 int n_used = 0; 412 struct ieee80211_supported_band *sband; 413 414 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 415 n_channels = iwl_init_channel_map( 416 dev, cfg, data, 417 &ch_section[NVM_CHANNELS], lar_supported); 418 else 419 n_channels = iwl_init_channel_map( 420 dev, cfg, data, 421 &ch_section[NVM_CHANNELS_FAMILY_8000], 422 lar_supported); 423 424 sband = &data->bands[IEEE80211_BAND_2GHZ]; 425 sband->band = IEEE80211_BAND_2GHZ; 426 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; 427 sband->n_bitrates = N_RATES_24; 428 n_used += iwl_init_sband_channels(data, sband, n_channels, 429 IEEE80211_BAND_2GHZ); 430 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ, 431 tx_chains, rx_chains); 432 433 sband = &data->bands[IEEE80211_BAND_5GHZ]; 434 sband->band = IEEE80211_BAND_5GHZ; 435 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 436 sband->n_bitrates = N_RATES_52; 437 n_used += iwl_init_sband_channels(data, sband, n_channels, 438 IEEE80211_BAND_5GHZ); 439 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ, 440 tx_chains, rx_chains); 441 if (data->sku_cap_11ac_enable) 442 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap, 443 tx_chains, rx_chains); 444 445 if (n_channels != n_used) 446 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", 447 n_used, n_channels); 448} 449 450static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 451 const __le16 *phy_sku) 452{ 453 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 454 return le16_to_cpup(nvm_sw + SKU); 455 456 return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000)); 457} 458 459static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 460{ 461 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 462 return le16_to_cpup(nvm_sw + NVM_VERSION); 463 else 464 return le32_to_cpup((__le32 *)(nvm_sw + 465 NVM_VERSION_FAMILY_8000)); 466} 467 468static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 469 const __le16 *phy_sku) 470{ 471 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 472 return le16_to_cpup(nvm_sw + RADIO_CFG); 473 474 return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000)); 475 476} 477 478static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 479{ 480 int n_hw_addr; 481 482 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 483 return le16_to_cpup(nvm_sw + N_HW_ADDRS); 484 485 n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)); 486 487 return n_hw_addr & N_HW_ADDR_MASK; 488} 489 490static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, 491 struct iwl_nvm_data *data, 492 u32 radio_cfg) 493{ 494 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 495 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); 496 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); 497 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); 498 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); 499 return; 500 } 501 502 /* set the radio configuration for family 8000 */ 503 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg); 504 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg); 505 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg); 506 data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg); 507 data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg); 508 data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg); 509} 510 511static void iwl_set_hw_address(const struct iwl_cfg *cfg, 512 struct iwl_nvm_data *data, 513 const __le16 *nvm_sec) 514{ 515 const u8 *hw_addr = (const u8 *)(nvm_sec + HW_ADDR); 516 517 /* The byte order is little endian 16 bit, meaning 214365 */ 518 data->hw_addr[0] = hw_addr[1]; 519 data->hw_addr[1] = hw_addr[0]; 520 data->hw_addr[2] = hw_addr[3]; 521 data->hw_addr[3] = hw_addr[2]; 522 data->hw_addr[4] = hw_addr[5]; 523 data->hw_addr[5] = hw_addr[4]; 524} 525 526static void iwl_set_hw_address_family_8000(struct device *dev, 527 const struct iwl_cfg *cfg, 528 struct iwl_nvm_data *data, 529 const __le16 *mac_override, 530 const __le16 *nvm_hw, 531 u32 mac_addr0, u32 mac_addr1) 532{ 533 const u8 *hw_addr; 534 535 if (mac_override) { 536 static const u8 reserved_mac[] = { 537 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 538 }; 539 540 hw_addr = (const u8 *)(mac_override + 541 MAC_ADDRESS_OVERRIDE_FAMILY_8000); 542 543 /* 544 * Store the MAC address from MAO section. 545 * No byte swapping is required in MAO section 546 */ 547 memcpy(data->hw_addr, hw_addr, ETH_ALEN); 548 549 /* 550 * Force the use of the OTP MAC address in case of reserved MAC 551 * address in the NVM, or if address is given but invalid. 552 */ 553 if (is_valid_ether_addr(data->hw_addr) && 554 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) 555 return; 556 557 IWL_ERR_DEV(dev, 558 "mac address from nvm override section is not valid\n"); 559 } 560 561 if (nvm_hw) { 562 /* read the MAC address from HW resisters */ 563 hw_addr = (const u8 *)&mac_addr0; 564 data->hw_addr[0] = hw_addr[3]; 565 data->hw_addr[1] = hw_addr[2]; 566 data->hw_addr[2] = hw_addr[1]; 567 data->hw_addr[3] = hw_addr[0]; 568 569 hw_addr = (const u8 *)&mac_addr1; 570 data->hw_addr[4] = hw_addr[1]; 571 data->hw_addr[5] = hw_addr[0]; 572 573 if (!is_valid_ether_addr(data->hw_addr)) 574 IWL_ERR_DEV(dev, 575 "mac address from hw section is not valid\n"); 576 577 return; 578 } 579 580 IWL_ERR_DEV(dev, "mac address is not found\n"); 581} 582 583#define IWL_4165_DEVICE_ID 0x5501 584 585struct iwl_nvm_data * 586iwl_parse_nvm_data(struct device *dev, const struct iwl_cfg *cfg, 587 const __le16 *nvm_hw, const __le16 *nvm_sw, 588 const __le16 *nvm_calib, const __le16 *regulatory, 589 const __le16 *mac_override, const __le16 *phy_sku, 590 u8 tx_chains, u8 rx_chains, bool lar_fw_supported, 591 u32 mac_addr0, u32 mac_addr1, u32 hw_id) 592{ 593 struct iwl_nvm_data *data; 594 u32 sku; 595 u32 radio_cfg; 596 u16 lar_config; 597 598 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 599 data = kzalloc(sizeof(*data) + 600 sizeof(struct ieee80211_channel) * 601 IWL_NUM_CHANNELS, 602 GFP_KERNEL); 603 else 604 data = kzalloc(sizeof(*data) + 605 sizeof(struct ieee80211_channel) * 606 IWL_NUM_CHANNELS_FAMILY_8000, 607 GFP_KERNEL); 608 if (!data) 609 return NULL; 610 611 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); 612 613 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku); 614 iwl_set_radio_cfg(cfg, data, radio_cfg); 615 if (data->valid_tx_ant) 616 tx_chains &= data->valid_tx_ant; 617 if (data->valid_rx_ant) 618 rx_chains &= data->valid_rx_ant; 619 620 sku = iwl_get_sku(cfg, nvm_sw, phy_sku); 621 data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; 622 data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; 623 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; 624 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) 625 data->sku_cap_11n_enable = false; 626 data->sku_cap_11ac_enable = data->sku_cap_11n_enable && 627 (sku & NVM_SKU_CAP_11AC_ENABLE); 628 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE; 629 630 /* 631 * OTP 0x52 bug work around 632 * define antenna 1x1 according to MIMO disabled 633 */ 634 if (hw_id == IWL_4165_DEVICE_ID && data->sku_cap_mimo_disabled) { 635 data->valid_tx_ant = ANT_B; 636 data->valid_rx_ant = ANT_B; 637 tx_chains = ANT_B; 638 rx_chains = ANT_B; 639 } 640 641 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); 642 643 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 644 /* Checking for required sections */ 645 if (!nvm_calib) { 646 IWL_ERR_DEV(dev, 647 "Can't parse empty Calib NVM sections\n"); 648 kfree(data); 649 return NULL; 650 } 651 /* in family 8000 Xtal calibration values moved to OTP */ 652 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB); 653 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1); 654 } 655 656 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 657 iwl_set_hw_address(cfg, data, nvm_hw); 658 659 iwl_init_sbands(dev, cfg, data, nvm_sw, 660 tx_chains, rx_chains, lar_fw_supported); 661 } else { 662 u16 lar_offset = data->nvm_version < 0xE39 ? 663 NVM_LAR_OFFSET_FAMILY_8000_OLD : 664 NVM_LAR_OFFSET_FAMILY_8000; 665 666 lar_config = le16_to_cpup(regulatory + lar_offset); 667 data->lar_enabled = !!(lar_config & 668 NVM_LAR_ENABLED_FAMILY_8000); 669 670 /* MAC address in family 8000 */ 671 iwl_set_hw_address_family_8000(dev, cfg, data, mac_override, 672 nvm_hw, mac_addr0, mac_addr1); 673 674 iwl_init_sbands(dev, cfg, data, regulatory, 675 tx_chains, rx_chains, 676 lar_fw_supported && data->lar_enabled); 677 } 678 679 data->calib_version = 255; 680 681 return data; 682} 683IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); 684 685static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan, 686 int ch_idx, u16 nvm_flags, 687 const struct iwl_cfg *cfg) 688{ 689 u32 flags = NL80211_RRF_NO_HT40; 690 u32 last_5ghz_ht = LAST_5GHZ_HT; 691 692 if (cfg->device_family == IWL_DEVICE_FAMILY_8000) 693 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000; 694 695 if (ch_idx < NUM_2GHZ_CHANNELS && 696 (nvm_flags & NVM_CHANNEL_40MHZ)) { 697 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) 698 flags &= ~NL80211_RRF_NO_HT40PLUS; 699 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) 700 flags &= ~NL80211_RRF_NO_HT40MINUS; 701 } else if (nvm_chan[ch_idx] <= last_5ghz_ht && 702 (nvm_flags & NVM_CHANNEL_40MHZ)) { 703 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 704 flags &= ~NL80211_RRF_NO_HT40PLUS; 705 else 706 flags &= ~NL80211_RRF_NO_HT40MINUS; 707 } 708 709 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 710 flags |= NL80211_RRF_NO_80MHZ; 711 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 712 flags |= NL80211_RRF_NO_160MHZ; 713 714 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 715 flags |= NL80211_RRF_NO_IR; 716 717 if (nvm_flags & NVM_CHANNEL_RADAR) 718 flags |= NL80211_RRF_DFS; 719 720 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 721 flags |= NL80211_RRF_NO_OUTDOOR; 722 723 /* Set the GO concurrent flag only in case that NO_IR is set. 724 * Otherwise it is meaningless 725 */ 726 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 727 (flags & NL80211_RRF_NO_IR)) 728 flags |= NL80211_RRF_GO_CONCURRENT; 729 730 return flags; 731} 732 733struct ieee80211_regdomain * 734iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg, 735 int num_of_ch, __le32 *channels, u16 fw_mcc) 736{ 737 int ch_idx; 738 u16 ch_flags, prev_ch_flags = 0; 739 const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ? 740 iwl_nvm_channels_family_8000 : iwl_nvm_channels; 741 struct ieee80211_regdomain *regd; 742 int size_of_regd; 743 struct ieee80211_reg_rule *rule; 744 enum ieee80211_band band; 745 int center_freq, prev_center_freq = 0; 746 int valid_rules = 0; 747 bool new_rule; 748 int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ? 749 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS; 750 751 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) 752 return ERR_PTR(-EINVAL); 753 754 if (WARN_ON(num_of_ch > max_num_ch)) 755 num_of_ch = max_num_ch; 756 757 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", 758 num_of_ch); 759 760 /* build a regdomain rule for every valid channel */ 761 size_of_regd = 762 sizeof(struct ieee80211_regdomain) + 763 num_of_ch * sizeof(struct ieee80211_reg_rule); 764 765 regd = kzalloc(size_of_regd, GFP_KERNEL); 766 if (!regd) 767 return ERR_PTR(-ENOMEM); 768 769 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 770 ch_flags = (u16)__le32_to_cpup(channels + ch_idx); 771 band = (ch_idx < NUM_2GHZ_CHANNELS) ? 772 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; 773 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], 774 band); 775 new_rule = false; 776 777 if (!(ch_flags & NVM_CHANNEL_VALID)) { 778 IWL_DEBUG_DEV(dev, IWL_DL_LAR, 779 "Ch. %d Flags %x [%sGHz] - No traffic\n", 780 nvm_chan[ch_idx], 781 ch_flags, 782 (ch_idx >= NUM_2GHZ_CHANNELS) ? 783 "5.2" : "2.4"); 784 continue; 785 } 786 787 /* we can't continue the same rule */ 788 if (ch_idx == 0 || prev_ch_flags != ch_flags || 789 center_freq - prev_center_freq > 20) { 790 valid_rules++; 791 new_rule = true; 792 } 793 794 rule = ®d->reg_rules[valid_rules - 1]; 795 796 if (new_rule) 797 rule->freq_range.start_freq_khz = 798 MHZ_TO_KHZ(center_freq - 10); 799 800 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); 801 802 /* this doesn't matter - not used by FW */ 803 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); 804 rule->power_rule.max_eirp = 805 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); 806 807 rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, 808 ch_flags, cfg); 809 810 /* rely on auto-calculation to merge BW of contiguous chans */ 811 rule->flags |= NL80211_RRF_AUTO_BW; 812 rule->freq_range.max_bandwidth_khz = 0; 813 814 prev_ch_flags = ch_flags; 815 prev_center_freq = center_freq; 816 817 IWL_DEBUG_DEV(dev, IWL_DL_LAR, 818 "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n", 819 center_freq, 820 band == IEEE80211_BAND_5GHZ ? "5.2" : "2.4", 821 CHECK_AND_PRINT_I(VALID), 822 CHECK_AND_PRINT_I(ACTIVE), 823 CHECK_AND_PRINT_I(RADAR), 824 CHECK_AND_PRINT_I(WIDE), 825 CHECK_AND_PRINT_I(40MHZ), 826 CHECK_AND_PRINT_I(80MHZ), 827 CHECK_AND_PRINT_I(160MHZ), 828 CHECK_AND_PRINT_I(INDOOR_ONLY), 829 CHECK_AND_PRINT_I(GO_CONCURRENT), 830 ch_flags, 831 ((ch_flags & NVM_CHANNEL_ACTIVE) && 832 !(ch_flags & NVM_CHANNEL_RADAR)) 833 ? "" : "not "); 834 } 835 836 regd->n_reg_rules = valid_rules; 837 838 /* set alpha2 from FW. */ 839 regd->alpha2[0] = fw_mcc >> 8; 840 regd->alpha2[1] = fw_mcc & 0xff; 841 842 return regd; 843} 844IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info); 845