1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license.  When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
23 * USA
24 *
25 * The full GNU General Public License is included in this distribution
26 * in the file called COPYING.
27 *
28 * Contact Information:
29 *  Intel Linux Wireless <ilw@linux.intel.com>
30 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 *
32 * BSD LICENSE
33 *
34 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
35 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 *
42 *  * Redistributions of source code must retain the above copyright
43 *    notice, this list of conditions and the following disclaimer.
44 *  * Redistributions in binary form must reproduce the above copyright
45 *    notice, this list of conditions and the following disclaimer in
46 *    the documentation and/or other materials provided with the
47 *    distribution.
48 *  * Neither the name Intel Corporation nor the names of its
49 *    contributors may be used to endorse or promote products derived
50 *    from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
53 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
54 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
55 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
56 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
58 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
59 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
60 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
61 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
62 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 *****************************************************************************/
64#include <linux/types.h>
65#include <linux/slab.h>
66#include <linux/export.h>
67#include <linux/etherdevice.h>
68#include <linux/pci.h>
69#include "iwl-drv.h"
70#include "iwl-modparams.h"
71#include "iwl-nvm-parse.h"
72
73/* NVM offsets (in words) definitions */
74enum wkp_nvm_offsets {
75	/* NVM HW-Section offset (in words) definitions */
76	HW_ADDR = 0x15,
77
78	/* NVM SW-Section offset (in words) definitions */
79	NVM_SW_SECTION = 0x1C0,
80	NVM_VERSION = 0,
81	RADIO_CFG = 1,
82	SKU = 2,
83	N_HW_ADDRS = 3,
84	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
85
86	/* NVM calibration section offset (in words) definitions */
87	NVM_CALIB_SECTION = 0x2B8,
88	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
89};
90
91enum family_8000_nvm_offsets {
92	/* NVM HW-Section offset (in words) definitions */
93	HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
94	HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
95	HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
96	HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
97	MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,
98
99	/* NVM SW-Section offset (in words) definitions */
100	NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
101	NVM_VERSION_FAMILY_8000 = 0,
102	RADIO_CFG_FAMILY_8000 = 0,
103	SKU_FAMILY_8000 = 2,
104	N_HW_ADDRS_FAMILY_8000 = 3,
105
106	/* NVM REGULATORY -Section offset (in words) definitions */
107	NVM_CHANNELS_FAMILY_8000 = 0,
108	NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7,
109	NVM_LAR_OFFSET_FAMILY_8000 = 0x507,
110	NVM_LAR_ENABLED_FAMILY_8000 = 0x7,
111
112	/* NVM calibration section offset (in words) definitions */
113	NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
114	XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
115};
116
117/* SKU Capabilities (actual values from NVM definition) */
118enum nvm_sku_bits {
119	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
120	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
121	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
122	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
123	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
124};
125
126/*
127 * These are the channel numbers in the order that they are stored in the NVM
128 */
129static const u8 iwl_nvm_channels[] = {
130	/* 2.4 GHz */
131	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
132	/* 5 GHz */
133	36, 40, 44 , 48, 52, 56, 60, 64,
134	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
135	149, 153, 157, 161, 165
136};
137
138static const u8 iwl_nvm_channels_family_8000[] = {
139	/* 2.4 GHz */
140	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
141	/* 5 GHz */
142	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
143	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
144	149, 153, 157, 161, 165, 169, 173, 177, 181
145};
146
147#define IWL_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
148#define IWL_NUM_CHANNELS_FAMILY_8000	ARRAY_SIZE(iwl_nvm_channels_family_8000)
149#define NUM_2GHZ_CHANNELS		14
150#define NUM_2GHZ_CHANNELS_FAMILY_8000	14
151#define FIRST_2GHZ_HT_MINUS		5
152#define LAST_2GHZ_HT_PLUS		9
153#define LAST_5GHZ_HT			165
154#define LAST_5GHZ_HT_FAMILY_8000	181
155#define N_HW_ADDR_MASK			0xF
156
157/* rate data (static) */
158static struct ieee80211_rate iwl_cfg80211_rates[] = {
159	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
160	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
161	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
162	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
163	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
164	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
165	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
166	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
167	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
168	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
169	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
170	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
171	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
172	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
173	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
174};
175#define RATES_24_OFFS	0
176#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
177#define RATES_52_OFFS	4
178#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
179
180/**
181 * enum iwl_nvm_channel_flags - channel flags in NVM
182 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
183 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
184 * @NVM_CHANNEL_ACTIVE: active scanning allowed
185 * @NVM_CHANNEL_RADAR: radar detection required
186 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
187 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
188 *	on same channel on 2.4 or same UNII band on 5.2
189 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
190 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
191 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
192 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
193 */
194enum iwl_nvm_channel_flags {
195	NVM_CHANNEL_VALID = BIT(0),
196	NVM_CHANNEL_IBSS = BIT(1),
197	NVM_CHANNEL_ACTIVE = BIT(3),
198	NVM_CHANNEL_RADAR = BIT(4),
199	NVM_CHANNEL_INDOOR_ONLY = BIT(5),
200	NVM_CHANNEL_GO_CONCURRENT = BIT(6),
201	NVM_CHANNEL_WIDE = BIT(8),
202	NVM_CHANNEL_40MHZ = BIT(9),
203	NVM_CHANNEL_80MHZ = BIT(10),
204	NVM_CHANNEL_160MHZ = BIT(11),
205};
206
207#define CHECK_AND_PRINT_I(x)	\
208	((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
209
210static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
211				 u16 nvm_flags, const struct iwl_cfg *cfg)
212{
213	u32 flags = IEEE80211_CHAN_NO_HT40;
214	u32 last_5ghz_ht = LAST_5GHZ_HT;
215
216	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
217		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
218
219	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
220		if (ch_num <= LAST_2GHZ_HT_PLUS)
221			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
222		if (ch_num >= FIRST_2GHZ_HT_MINUS)
223			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
224	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
225		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
226			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
227		else
228			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
229	}
230	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
231		flags |= IEEE80211_CHAN_NO_80MHZ;
232	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
233		flags |= IEEE80211_CHAN_NO_160MHZ;
234
235	if (!(nvm_flags & NVM_CHANNEL_IBSS))
236		flags |= IEEE80211_CHAN_NO_IR;
237
238	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
239		flags |= IEEE80211_CHAN_NO_IR;
240
241	if (nvm_flags & NVM_CHANNEL_RADAR)
242		flags |= IEEE80211_CHAN_RADAR;
243
244	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
245		flags |= IEEE80211_CHAN_INDOOR_ONLY;
246
247	/* Set the GO concurrent flag only in case that NO_IR is set.
248	 * Otherwise it is meaningless
249	 */
250	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
251	    (flags & IEEE80211_CHAN_NO_IR))
252		flags |= IEEE80211_CHAN_IR_CONCURRENT;
253
254	return flags;
255}
256
257static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
258				struct iwl_nvm_data *data,
259				const __le16 * const nvm_ch_flags,
260				bool lar_supported)
261{
262	int ch_idx;
263	int n_channels = 0;
264	struct ieee80211_channel *channel;
265	u16 ch_flags;
266	bool is_5ghz;
267	int num_of_ch, num_2ghz_channels;
268	const u8 *nvm_chan;
269
270	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
271		num_of_ch = IWL_NUM_CHANNELS;
272		nvm_chan = &iwl_nvm_channels[0];
273		num_2ghz_channels = NUM_2GHZ_CHANNELS;
274	} else {
275		num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
276		nvm_chan = &iwl_nvm_channels_family_8000[0];
277		num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
278	}
279
280	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
281		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
282
283		if (ch_idx >= num_2ghz_channels &&
284		    !data->sku_cap_band_52GHz_enable)
285			continue;
286
287		if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
288			/*
289			 * Channels might become valid later if lar is
290			 * supported, hence we still want to add them to
291			 * the list of supported channels to cfg80211.
292			 */
293			IWL_DEBUG_EEPROM(dev,
294					 "Ch. %d Flags %x [%sGHz] - No traffic\n",
295					 nvm_chan[ch_idx],
296					 ch_flags,
297					 (ch_idx >= num_2ghz_channels) ?
298					 "5.2" : "2.4");
299			continue;
300		}
301
302		channel = &data->channels[n_channels];
303		n_channels++;
304
305		channel->hw_value = nvm_chan[ch_idx];
306		channel->band = (ch_idx < num_2ghz_channels) ?
307				IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
308		channel->center_freq =
309			ieee80211_channel_to_frequency(
310				channel->hw_value, channel->band);
311
312		/* Initialize regulatory-based run-time data */
313
314		/*
315		 * Default value - highest tx power value.  max_power
316		 * is not used in mvm, and is used for backwards compatibility
317		 */
318		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
319		is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
320
321		/* don't put limitations in case we're using LAR */
322		if (!lar_supported)
323			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
324							       ch_idx, is_5ghz,
325							       ch_flags, cfg);
326		else
327			channel->flags = 0;
328
329		IWL_DEBUG_EEPROM(dev,
330				 "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
331				 channel->hw_value,
332				 is_5ghz ? "5.2" : "2.4",
333				 CHECK_AND_PRINT_I(VALID),
334				 CHECK_AND_PRINT_I(IBSS),
335				 CHECK_AND_PRINT_I(ACTIVE),
336				 CHECK_AND_PRINT_I(RADAR),
337				 CHECK_AND_PRINT_I(WIDE),
338				 CHECK_AND_PRINT_I(INDOOR_ONLY),
339				 CHECK_AND_PRINT_I(GO_CONCURRENT),
340				 ch_flags,
341				 channel->max_power,
342				 ((ch_flags & NVM_CHANNEL_IBSS) &&
343				  !(ch_flags & NVM_CHANNEL_RADAR))
344					? "" : "not ");
345	}
346
347	return n_channels;
348}
349
350static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
351				  struct iwl_nvm_data *data,
352				  struct ieee80211_sta_vht_cap *vht_cap,
353				  u8 tx_chains, u8 rx_chains)
354{
355	int num_rx_ants = num_of_ant(rx_chains);
356	int num_tx_ants = num_of_ant(tx_chains);
357	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
358					   IEEE80211_VHT_MAX_AMPDU_1024K);
359
360	vht_cap->vht_supported = true;
361
362	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
363		       IEEE80211_VHT_CAP_RXSTBC_1 |
364		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
365		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
366		       max_ampdu_exponent <<
367		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
368
369	if (cfg->ht_params->ldpc)
370		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
371
372	if (data->sku_cap_mimo_disabled) {
373		num_rx_ants = 1;
374		num_tx_ants = 1;
375	}
376
377	if (num_tx_ants > 1)
378		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
379	else
380		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
381
382	if (iwlwifi_mod_params.amsdu_size_8K)
383		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
384
385	vht_cap->vht_mcs.rx_mcs_map =
386		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
387			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
388			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
389			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
390			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
391			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
392			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
393			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
394
395	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
396		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
397		/* this works because NOT_SUPPORTED == 3 */
398		vht_cap->vht_mcs.rx_mcs_map |=
399			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
400	}
401
402	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
403}
404
405static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
406			    struct iwl_nvm_data *data,
407			    const __le16 *ch_section,
408			    u8 tx_chains, u8 rx_chains, bool lar_supported)
409{
410	int n_channels;
411	int n_used = 0;
412	struct ieee80211_supported_band *sband;
413
414	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
415		n_channels = iwl_init_channel_map(
416				dev, cfg, data,
417				&ch_section[NVM_CHANNELS], lar_supported);
418	else
419		n_channels = iwl_init_channel_map(
420				dev, cfg, data,
421				&ch_section[NVM_CHANNELS_FAMILY_8000],
422				lar_supported);
423
424	sband = &data->bands[IEEE80211_BAND_2GHZ];
425	sband->band = IEEE80211_BAND_2GHZ;
426	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
427	sband->n_bitrates = N_RATES_24;
428	n_used += iwl_init_sband_channels(data, sband, n_channels,
429					  IEEE80211_BAND_2GHZ);
430	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ,
431			     tx_chains, rx_chains);
432
433	sband = &data->bands[IEEE80211_BAND_5GHZ];
434	sband->band = IEEE80211_BAND_5GHZ;
435	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
436	sband->n_bitrates = N_RATES_52;
437	n_used += iwl_init_sband_channels(data, sband, n_channels,
438					  IEEE80211_BAND_5GHZ);
439	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ,
440			     tx_chains, rx_chains);
441	if (data->sku_cap_11ac_enable)
442		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
443				      tx_chains, rx_chains);
444
445	if (n_channels != n_used)
446		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
447			    n_used, n_channels);
448}
449
450static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
451		       const __le16 *phy_sku)
452{
453	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
454		return le16_to_cpup(nvm_sw + SKU);
455
456	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
457}
458
459static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
460{
461	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
462		return le16_to_cpup(nvm_sw + NVM_VERSION);
463	else
464		return le32_to_cpup((__le32 *)(nvm_sw +
465					       NVM_VERSION_FAMILY_8000));
466}
467
468static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
469			     const __le16 *phy_sku)
470{
471	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
472		return le16_to_cpup(nvm_sw + RADIO_CFG);
473
474	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000));
475
476}
477
478static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
479{
480	int n_hw_addr;
481
482	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
483		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
484
485	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
486
487	return n_hw_addr & N_HW_ADDR_MASK;
488}
489
490static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
491			      struct iwl_nvm_data *data,
492			      u32 radio_cfg)
493{
494	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
495		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
496		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
497		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
498		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
499		return;
500	}
501
502	/* set the radio configuration for family 8000 */
503	data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
504	data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
505	data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
506	data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
507	data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg);
508	data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg);
509}
510
511static void iwl_set_hw_address(const struct iwl_cfg *cfg,
512			       struct iwl_nvm_data *data,
513			       const __le16 *nvm_sec)
514{
515	const u8 *hw_addr = (const u8 *)(nvm_sec + HW_ADDR);
516
517	/* The byte order is little endian 16 bit, meaning 214365 */
518	data->hw_addr[0] = hw_addr[1];
519	data->hw_addr[1] = hw_addr[0];
520	data->hw_addr[2] = hw_addr[3];
521	data->hw_addr[3] = hw_addr[2];
522	data->hw_addr[4] = hw_addr[5];
523	data->hw_addr[5] = hw_addr[4];
524}
525
526static void iwl_set_hw_address_family_8000(struct device *dev,
527					   const struct iwl_cfg *cfg,
528					   struct iwl_nvm_data *data,
529					   const __le16 *mac_override,
530					   const __le16 *nvm_hw,
531					   u32 mac_addr0, u32 mac_addr1)
532{
533	const u8 *hw_addr;
534
535	if (mac_override) {
536		static const u8 reserved_mac[] = {
537			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
538		};
539
540		hw_addr = (const u8 *)(mac_override +
541				 MAC_ADDRESS_OVERRIDE_FAMILY_8000);
542
543		/*
544		 * Store the MAC address from MAO section.
545		 * No byte swapping is required in MAO section
546		 */
547		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
548
549		/*
550		 * Force the use of the OTP MAC address in case of reserved MAC
551		 * address in the NVM, or if address is given but invalid.
552		 */
553		if (is_valid_ether_addr(data->hw_addr) &&
554		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
555			return;
556
557		IWL_ERR_DEV(dev,
558			    "mac address from nvm override section is not valid\n");
559	}
560
561	if (nvm_hw) {
562		/* read the MAC address from HW resisters */
563		hw_addr = (const u8 *)&mac_addr0;
564		data->hw_addr[0] = hw_addr[3];
565		data->hw_addr[1] = hw_addr[2];
566		data->hw_addr[2] = hw_addr[1];
567		data->hw_addr[3] = hw_addr[0];
568
569		hw_addr = (const u8 *)&mac_addr1;
570		data->hw_addr[4] = hw_addr[1];
571		data->hw_addr[5] = hw_addr[0];
572
573		if (!is_valid_ether_addr(data->hw_addr))
574			IWL_ERR_DEV(dev,
575				    "mac address from hw section is not valid\n");
576
577		return;
578	}
579
580	IWL_ERR_DEV(dev, "mac address is not found\n");
581}
582
583#define IWL_4165_DEVICE_ID 0x5501
584
585struct iwl_nvm_data *
586iwl_parse_nvm_data(struct device *dev, const struct iwl_cfg *cfg,
587		   const __le16 *nvm_hw, const __le16 *nvm_sw,
588		   const __le16 *nvm_calib, const __le16 *regulatory,
589		   const __le16 *mac_override, const __le16 *phy_sku,
590		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported,
591		   u32 mac_addr0, u32 mac_addr1, u32 hw_id)
592{
593	struct iwl_nvm_data *data;
594	u32 sku;
595	u32 radio_cfg;
596	u16 lar_config;
597
598	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
599		data = kzalloc(sizeof(*data) +
600			       sizeof(struct ieee80211_channel) *
601			       IWL_NUM_CHANNELS,
602			       GFP_KERNEL);
603	else
604		data = kzalloc(sizeof(*data) +
605			       sizeof(struct ieee80211_channel) *
606			       IWL_NUM_CHANNELS_FAMILY_8000,
607			       GFP_KERNEL);
608	if (!data)
609		return NULL;
610
611	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
612
613	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
614	iwl_set_radio_cfg(cfg, data, radio_cfg);
615	if (data->valid_tx_ant)
616		tx_chains &= data->valid_tx_ant;
617	if (data->valid_rx_ant)
618		rx_chains &= data->valid_rx_ant;
619
620	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
621	data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
622	data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
623	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
624	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
625		data->sku_cap_11n_enable = false;
626	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
627				    (sku & NVM_SKU_CAP_11AC_ENABLE);
628	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
629
630	/*
631	 * OTP 0x52 bug work around
632	 * define antenna 1x1 according to MIMO disabled
633	 */
634	if (hw_id == IWL_4165_DEVICE_ID && data->sku_cap_mimo_disabled) {
635		data->valid_tx_ant = ANT_B;
636		data->valid_rx_ant = ANT_B;
637		tx_chains = ANT_B;
638		rx_chains = ANT_B;
639	}
640
641	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
642
643	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
644		/* Checking for required sections */
645		if (!nvm_calib) {
646			IWL_ERR_DEV(dev,
647				    "Can't parse empty Calib NVM sections\n");
648			kfree(data);
649			return NULL;
650		}
651		/* in family 8000 Xtal calibration values moved to OTP */
652		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
653		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
654	}
655
656	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
657		iwl_set_hw_address(cfg, data, nvm_hw);
658
659		iwl_init_sbands(dev, cfg, data, nvm_sw,
660				tx_chains, rx_chains, lar_fw_supported);
661	} else {
662		u16 lar_offset = data->nvm_version < 0xE39 ?
663				 NVM_LAR_OFFSET_FAMILY_8000_OLD :
664				 NVM_LAR_OFFSET_FAMILY_8000;
665
666		lar_config = le16_to_cpup(regulatory + lar_offset);
667		data->lar_enabled = !!(lar_config &
668				       NVM_LAR_ENABLED_FAMILY_8000);
669
670		/* MAC address in family 8000 */
671		iwl_set_hw_address_family_8000(dev, cfg, data, mac_override,
672					       nvm_hw, mac_addr0, mac_addr1);
673
674		iwl_init_sbands(dev, cfg, data, regulatory,
675				tx_chains, rx_chains,
676				lar_fw_supported && data->lar_enabled);
677	}
678
679	data->calib_version = 255;
680
681	return data;
682}
683IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
684
685static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
686				       int ch_idx, u16 nvm_flags,
687				       const struct iwl_cfg *cfg)
688{
689	u32 flags = NL80211_RRF_NO_HT40;
690	u32 last_5ghz_ht = LAST_5GHZ_HT;
691
692	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
693		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
694
695	if (ch_idx < NUM_2GHZ_CHANNELS &&
696	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
697		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
698			flags &= ~NL80211_RRF_NO_HT40PLUS;
699		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
700			flags &= ~NL80211_RRF_NO_HT40MINUS;
701	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
702		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
703		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
704			flags &= ~NL80211_RRF_NO_HT40PLUS;
705		else
706			flags &= ~NL80211_RRF_NO_HT40MINUS;
707	}
708
709	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
710		flags |= NL80211_RRF_NO_80MHZ;
711	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
712		flags |= NL80211_RRF_NO_160MHZ;
713
714	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
715		flags |= NL80211_RRF_NO_IR;
716
717	if (nvm_flags & NVM_CHANNEL_RADAR)
718		flags |= NL80211_RRF_DFS;
719
720	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
721		flags |= NL80211_RRF_NO_OUTDOOR;
722
723	/* Set the GO concurrent flag only in case that NO_IR is set.
724	 * Otherwise it is meaningless
725	 */
726	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
727	    (flags & NL80211_RRF_NO_IR))
728		flags |= NL80211_RRF_GO_CONCURRENT;
729
730	return flags;
731}
732
733struct ieee80211_regdomain *
734iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
735		       int num_of_ch, __le32 *channels, u16 fw_mcc)
736{
737	int ch_idx;
738	u16 ch_flags, prev_ch_flags = 0;
739	const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
740			     iwl_nvm_channels_family_8000 : iwl_nvm_channels;
741	struct ieee80211_regdomain *regd;
742	int size_of_regd;
743	struct ieee80211_reg_rule *rule;
744	enum ieee80211_band band;
745	int center_freq, prev_center_freq = 0;
746	int valid_rules = 0;
747	bool new_rule;
748	int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
749			 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS;
750
751	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
752		return ERR_PTR(-EINVAL);
753
754	if (WARN_ON(num_of_ch > max_num_ch))
755		num_of_ch = max_num_ch;
756
757	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
758		      num_of_ch);
759
760	/* build a regdomain rule for every valid channel */
761	size_of_regd =
762		sizeof(struct ieee80211_regdomain) +
763		num_of_ch * sizeof(struct ieee80211_reg_rule);
764
765	regd = kzalloc(size_of_regd, GFP_KERNEL);
766	if (!regd)
767		return ERR_PTR(-ENOMEM);
768
769	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
770		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
771		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
772		       IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
773		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
774							     band);
775		new_rule = false;
776
777		if (!(ch_flags & NVM_CHANNEL_VALID)) {
778			IWL_DEBUG_DEV(dev, IWL_DL_LAR,
779				      "Ch. %d Flags %x [%sGHz] - No traffic\n",
780				      nvm_chan[ch_idx],
781				      ch_flags,
782				      (ch_idx >= NUM_2GHZ_CHANNELS) ?
783				      "5.2" : "2.4");
784			continue;
785		}
786
787		/* we can't continue the same rule */
788		if (ch_idx == 0 || prev_ch_flags != ch_flags ||
789		    center_freq - prev_center_freq > 20) {
790			valid_rules++;
791			new_rule = true;
792		}
793
794		rule = &regd->reg_rules[valid_rules - 1];
795
796		if (new_rule)
797			rule->freq_range.start_freq_khz =
798						MHZ_TO_KHZ(center_freq - 10);
799
800		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
801
802		/* this doesn't matter - not used by FW */
803		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
804		rule->power_rule.max_eirp =
805			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
806
807		rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
808							  ch_flags, cfg);
809
810		/* rely on auto-calculation to merge BW of contiguous chans */
811		rule->flags |= NL80211_RRF_AUTO_BW;
812		rule->freq_range.max_bandwidth_khz = 0;
813
814		prev_ch_flags = ch_flags;
815		prev_center_freq = center_freq;
816
817		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
818			      "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
819			      center_freq,
820			      band == IEEE80211_BAND_5GHZ ? "5.2" : "2.4",
821			      CHECK_AND_PRINT_I(VALID),
822			      CHECK_AND_PRINT_I(ACTIVE),
823			      CHECK_AND_PRINT_I(RADAR),
824			      CHECK_AND_PRINT_I(WIDE),
825			      CHECK_AND_PRINT_I(40MHZ),
826			      CHECK_AND_PRINT_I(80MHZ),
827			      CHECK_AND_PRINT_I(160MHZ),
828			      CHECK_AND_PRINT_I(INDOOR_ONLY),
829			      CHECK_AND_PRINT_I(GO_CONCURRENT),
830			      ch_flags,
831			      ((ch_flags & NVM_CHANNEL_ACTIVE) &&
832			       !(ch_flags & NVM_CHANNEL_RADAR))
833					 ? "" : "not ");
834	}
835
836	regd->n_reg_rules = valid_rules;
837
838	/* set alpha2 from FW. */
839	regd->alpha2[0] = fw_mcc >> 8;
840	regd->alpha2[1] = fw_mcc & 0xff;
841
842	return regd;
843}
844IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
845