1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 *
20 */
21
22/****************************\
23  Reset function and helpers
24\****************************/
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <asm/unaligned.h>
29
30#include <linux/pci.h>		/* To determine if a card is pci-e */
31#include <linux/log2.h>
32#include <linux/platform_device.h>
33#include "ath5k.h"
34#include "reg.h"
35#include "debug.h"
36
37
38/**
39 * DOC: Reset function and helpers
40 *
41 * Here we implement the main reset routine, used to bring the card
42 * to a working state and ready to receive. We also handle routines
43 * that don't fit on other places such as clock, sleep and power control
44 */
45
46
47/******************\
48* Helper functions *
49\******************/
50
51/**
52 * ath5k_hw_register_timeout() - Poll a register for a flag/field change
53 * @ah: The &struct ath5k_hw
54 * @reg: The register to read
55 * @flag: The flag/field to check on the register
56 * @val: The field value we expect (if we check a field)
57 * @is_set: Instead of checking if the flag got cleared, check if it got set
58 *
59 * Some registers contain flags that indicate that an operation is
60 * running. We use this function to poll these registers and check
61 * if these flags get cleared. We also use it to poll a register
62 * field (containing multiple flags) until it gets a specific value.
63 *
64 * Returns -EAGAIN if we exceeded AR5K_TUNE_REGISTER_TIMEOUT * 15us or 0
65 */
66int
67ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
68			      bool is_set)
69{
70	int i;
71	u32 data;
72
73	for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
74		data = ath5k_hw_reg_read(ah, reg);
75		if (is_set && (data & flag))
76			break;
77		else if ((data & flag) == val)
78			break;
79		udelay(15);
80	}
81
82	return (i <= 0) ? -EAGAIN : 0;
83}
84
85
86/*************************\
87* Clock related functions *
88\*************************/
89
90/**
91 * ath5k_hw_htoclock() - Translate usec to hw clock units
92 * @ah: The &struct ath5k_hw
93 * @usec: value in microseconds
94 *
95 * Translate usecs to hw clock units based on the current
96 * hw clock rate.
97 *
98 * Returns number of clock units
99 */
100unsigned int
101ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec)
102{
103	struct ath_common *common = ath5k_hw_common(ah);
104	return usec * common->clockrate;
105}
106
107/**
108 * ath5k_hw_clocktoh() - Translate hw clock units to usec
109 * @ah: The &struct ath5k_hw
110 * @clock: value in hw clock units
111 *
112 * Translate hw clock units to usecs based on the current
113 * hw clock rate.
114 *
115 * Returns number of usecs
116 */
117unsigned int
118ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock)
119{
120	struct ath_common *common = ath5k_hw_common(ah);
121	return clock / common->clockrate;
122}
123
124/**
125 * ath5k_hw_init_core_clock() - Initialize core clock
126 * @ah: The &struct ath5k_hw
127 *
128 * Initialize core clock parameters (usec, usec32, latencies etc),
129 * based on current bwmode and chipset properties.
130 */
131static void
132ath5k_hw_init_core_clock(struct ath5k_hw *ah)
133{
134	struct ieee80211_channel *channel = ah->ah_current_channel;
135	struct ath_common *common = ath5k_hw_common(ah);
136	u32 usec_reg, txlat, rxlat, usec, clock, sclock, txf2txs;
137
138	/*
139	 * Set core clock frequency
140	 */
141	switch (channel->hw_value) {
142	case AR5K_MODE_11A:
143		clock = 40;
144		break;
145	case AR5K_MODE_11B:
146		clock = 22;
147		break;
148	case AR5K_MODE_11G:
149	default:
150		clock = 44;
151		break;
152	}
153
154	/* Use clock multiplier for non-default
155	 * bwmode */
156	switch (ah->ah_bwmode) {
157	case AR5K_BWMODE_40MHZ:
158		clock *= 2;
159		break;
160	case AR5K_BWMODE_10MHZ:
161		clock /= 2;
162		break;
163	case AR5K_BWMODE_5MHZ:
164		clock /= 4;
165		break;
166	default:
167		break;
168	}
169
170	common->clockrate = clock;
171
172	/*
173	 * Set USEC parameters
174	 */
175	/* Set USEC counter on PCU*/
176	usec = clock - 1;
177	usec = AR5K_REG_SM(usec, AR5K_USEC_1);
178
179	/* Set usec duration on DCU */
180	if (ah->ah_version != AR5K_AR5210)
181		AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC,
182					AR5K_DCU_GBL_IFS_MISC_USEC_DUR,
183					clock);
184
185	/* Set 32MHz USEC counter */
186	if ((ah->ah_radio == AR5K_RF5112) ||
187	    (ah->ah_radio == AR5K_RF2413) ||
188	    (ah->ah_radio == AR5K_RF5413) ||
189	    (ah->ah_radio == AR5K_RF2316) ||
190	    (ah->ah_radio == AR5K_RF2317))
191		/* Remain on 40MHz clock ? */
192		sclock = 40 - 1;
193	else
194		sclock = 32 - 1;
195	sclock = AR5K_REG_SM(sclock, AR5K_USEC_32);
196
197	/*
198	 * Set tx/rx latencies
199	 */
200	usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
201	txlat = AR5K_REG_MS(usec_reg, AR5K_USEC_TX_LATENCY_5211);
202	rxlat = AR5K_REG_MS(usec_reg, AR5K_USEC_RX_LATENCY_5211);
203
204	/*
205	 * Set default Tx frame to Tx data start delay
206	 */
207	txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
208
209	/*
210	 * 5210 initvals don't include usec settings
211	 * so we need to use magic values here for
212	 * tx/rx latencies
213	 */
214	if (ah->ah_version == AR5K_AR5210) {
215		/* same for turbo */
216		txlat = AR5K_INIT_TX_LATENCY_5210;
217		rxlat = AR5K_INIT_RX_LATENCY_5210;
218	}
219
220	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
221		/* 5311 has different tx/rx latency masks
222		 * from 5211, since we deal 5311 the same
223		 * as 5211 when setting initvals, shift
224		 * values here to their proper locations
225		 *
226		 * Note: Initvals indicate tx/rx/ latencies
227		 * are the same for turbo mode */
228		txlat = AR5K_REG_SM(txlat, AR5K_USEC_TX_LATENCY_5210);
229		rxlat = AR5K_REG_SM(rxlat, AR5K_USEC_RX_LATENCY_5210);
230	} else
231	switch (ah->ah_bwmode) {
232	case AR5K_BWMODE_10MHZ:
233		txlat = AR5K_REG_SM(txlat * 2,
234				AR5K_USEC_TX_LATENCY_5211);
235		rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
236				AR5K_USEC_RX_LATENCY_5211);
237		txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_10MHZ;
238		break;
239	case AR5K_BWMODE_5MHZ:
240		txlat = AR5K_REG_SM(txlat * 4,
241				AR5K_USEC_TX_LATENCY_5211);
242		rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
243				AR5K_USEC_RX_LATENCY_5211);
244		txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_5MHZ;
245		break;
246	case AR5K_BWMODE_40MHZ:
247		txlat = AR5K_INIT_TX_LAT_MIN;
248		rxlat = AR5K_REG_SM(rxlat / 2,
249				AR5K_USEC_RX_LATENCY_5211);
250		txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
251		break;
252	default:
253		break;
254	}
255
256	usec_reg = (usec | sclock | txlat | rxlat);
257	ath5k_hw_reg_write(ah, usec_reg, AR5K_USEC);
258
259	/* On 5112 set tx frame to tx data start delay */
260	if (ah->ah_radio == AR5K_RF5112) {
261		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL2,
262					AR5K_PHY_RF_CTL2_TXF2TXD_START,
263					txf2txs);
264	}
265}
266
267/**
268 * ath5k_hw_set_sleep_clock() - Setup sleep clock operation
269 * @ah: The &struct ath5k_hw
270 * @enable: Enable sleep clock operation (false to disable)
271 *
272 * If there is an external 32KHz crystal available, use it
273 * as ref. clock instead of 32/40MHz clock and baseband clocks
274 * to save power during sleep or restore normal 32/40MHz
275 * operation.
276 *
277 * NOTE: When operating on 32KHz certain PHY registers (27 - 31,
278 * 123 - 127) require delay on access.
279 */
280static void
281ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
282{
283	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
284	u32 scal, spending, sclock;
285
286	/* Only set 32KHz settings if we have an external
287	 * 32KHz crystal present */
288	if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
289	AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
290	enable) {
291
292		/* 1 usec/cycle */
293		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
294		/* Set up tsf increment on each cycle */
295		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
296
297		/* Set baseband sleep control registers
298		 * and sleep control rate */
299		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
300
301		if ((ah->ah_radio == AR5K_RF5112) ||
302		(ah->ah_radio == AR5K_RF5413) ||
303		(ah->ah_radio == AR5K_RF2316) ||
304		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
305			spending = 0x14;
306		else
307			spending = 0x18;
308		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
309
310		if ((ah->ah_radio == AR5K_RF5112) ||
311		(ah->ah_radio == AR5K_RF5413) ||
312		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
313			ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
314			ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
315			ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
316			ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
317			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
318				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
319		} else {
320			ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
321			ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
322			ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
323			ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
324			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
325				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
326		}
327
328		/* Enable sleep clock operation */
329		AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
330				AR5K_PCICFG_SLEEP_CLOCK_EN);
331
332	} else {
333
334		/* Disable sleep clock operation and
335		 * restore default parameters */
336		AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
337				AR5K_PCICFG_SLEEP_CLOCK_EN);
338
339		AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
340				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
341
342		/* Set DAC/ADC delays */
343		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
344		ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
345
346		if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
347			scal = AR5K_PHY_SCAL_32MHZ_2417;
348		else if (ee->ee_is_hb63)
349			scal = AR5K_PHY_SCAL_32MHZ_HB63;
350		else
351			scal = AR5K_PHY_SCAL_32MHZ;
352		ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
353
354		ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
355		ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
356
357		if ((ah->ah_radio == AR5K_RF5112) ||
358		(ah->ah_radio == AR5K_RF5413) ||
359		(ah->ah_radio == AR5K_RF2316) ||
360		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
361			spending = 0x14;
362		else
363			spending = 0x18;
364		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
365
366		/* Set up tsf increment on each cycle */
367		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
368
369		if ((ah->ah_radio == AR5K_RF5112) ||
370			(ah->ah_radio == AR5K_RF5413) ||
371			(ah->ah_radio == AR5K_RF2316) ||
372			(ah->ah_radio == AR5K_RF2317))
373			sclock = 40 - 1;
374		else
375			sclock = 32 - 1;
376		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, sclock);
377	}
378}
379
380
381/*********************\
382* Reset/Sleep control *
383\*********************/
384
385/**
386 * ath5k_hw_nic_reset() - Reset the various chipset units
387 * @ah: The &struct ath5k_hw
388 * @val: Mask to indicate what units to reset
389 *
390 * To reset the various chipset units we need to write
391 * the mask to AR5K_RESET_CTL and poll the register until
392 * all flags are cleared.
393 *
394 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
395 */
396static int
397ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
398{
399	int ret;
400	u32 mask = val ? val : ~0U;
401
402	/* Read-and-clear RX Descriptor Pointer*/
403	ath5k_hw_reg_read(ah, AR5K_RXDP);
404
405	/*
406	 * Reset the device and wait until success
407	 */
408	ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
409
410	/* Wait at least 128 PCI clocks */
411	usleep_range(15, 20);
412
413	if (ah->ah_version == AR5K_AR5210) {
414		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
415			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
416		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
417			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
418	} else {
419		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
420		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
421	}
422
423	ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
424
425	/*
426	 * Reset configuration register (for hw byte-swap). Note that this
427	 * is only set for big endian. We do the necessary magic in
428	 * AR5K_INIT_CFG.
429	 */
430	if ((val & AR5K_RESET_CTL_PCU) == 0)
431		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
432
433	return ret;
434}
435
436/**
437 * ath5k_hw_wisoc_reset() -  Reset AHB chipset
438 * @ah: The &struct ath5k_hw
439 * @flags: Mask to indicate what units to reset
440 *
441 * Same as ath5k_hw_nic_reset but for AHB based devices
442 *
443 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
444 */
445static int
446ath5k_hw_wisoc_reset(struct ath5k_hw *ah, u32 flags)
447{
448	u32 mask = flags ? flags : ~0U;
449	u32 __iomem *reg;
450	u32 regval;
451	u32 val = 0;
452
453	/* ah->ah_mac_srev is not available at this point yet */
454	if (ah->devid >= AR5K_SREV_AR2315_R6) {
455		reg = (u32 __iomem *) AR5K_AR2315_RESET;
456		if (mask & AR5K_RESET_CTL_PCU)
457			val |= AR5K_AR2315_RESET_WMAC;
458		if (mask & AR5K_RESET_CTL_BASEBAND)
459			val |= AR5K_AR2315_RESET_BB_WARM;
460	} else {
461		reg = (u32 __iomem *) AR5K_AR5312_RESET;
462		if (to_platform_device(ah->dev)->id == 0) {
463			if (mask & AR5K_RESET_CTL_PCU)
464				val |= AR5K_AR5312_RESET_WMAC0;
465			if (mask & AR5K_RESET_CTL_BASEBAND)
466				val |= AR5K_AR5312_RESET_BB0_COLD |
467				       AR5K_AR5312_RESET_BB0_WARM;
468		} else {
469			if (mask & AR5K_RESET_CTL_PCU)
470				val |= AR5K_AR5312_RESET_WMAC1;
471			if (mask & AR5K_RESET_CTL_BASEBAND)
472				val |= AR5K_AR5312_RESET_BB1_COLD |
473				       AR5K_AR5312_RESET_BB1_WARM;
474		}
475	}
476
477	/* Put BB/MAC into reset */
478	regval = ioread32(reg);
479	iowrite32(regval | val, reg);
480	regval = ioread32(reg);
481	udelay(100);	/* NB: should be atomic */
482
483	/* Bring BB/MAC out of reset */
484	iowrite32(regval & ~val, reg);
485	regval = ioread32(reg);
486
487	/*
488	 * Reset configuration register (for hw byte-swap). Note that this
489	 * is only set for big endian. We do the necessary magic in
490	 * AR5K_INIT_CFG.
491	 */
492	if ((flags & AR5K_RESET_CTL_PCU) == 0)
493		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
494
495	return 0;
496}
497
498/**
499 * ath5k_hw_set_power_mode() - Set power mode
500 * @ah: The &struct ath5k_hw
501 * @mode: One of enum ath5k_power_mode
502 * @set_chip: Set to true to write sleep control register
503 * @sleep_duration: How much time the device is allowed to sleep
504 * when sleep logic is enabled (in 128 microsecond increments).
505 *
506 * This function is used to configure sleep policy and allowed
507 * sleep modes. For more information check out the sleep control
508 * register on reg.h and STA_ID1.
509 *
510 * Returns 0 on success, -EIO if chip didn't wake up or -EINVAL if an invalid
511 * mode is requested.
512 */
513static int
514ath5k_hw_set_power_mode(struct ath5k_hw *ah, enum ath5k_power_mode mode,
515			      bool set_chip, u16 sleep_duration)
516{
517	unsigned int i;
518	u32 staid, data;
519
520	staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
521
522	switch (mode) {
523	case AR5K_PM_AUTO:
524		staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
525		/* fallthrough */
526	case AR5K_PM_NETWORK_SLEEP:
527		if (set_chip)
528			ath5k_hw_reg_write(ah,
529				AR5K_SLEEP_CTL_SLE_ALLOW |
530				sleep_duration,
531				AR5K_SLEEP_CTL);
532
533		staid |= AR5K_STA_ID1_PWR_SV;
534		break;
535
536	case AR5K_PM_FULL_SLEEP:
537		if (set_chip)
538			ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
539				AR5K_SLEEP_CTL);
540
541		staid |= AR5K_STA_ID1_PWR_SV;
542		break;
543
544	case AR5K_PM_AWAKE:
545
546		staid &= ~AR5K_STA_ID1_PWR_SV;
547
548		if (!set_chip)
549			goto commit;
550
551		data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
552
553		/* If card is down we 'll get 0xffff... so we
554		 * need to clean this up before we write the register
555		 */
556		if (data & 0xffc00000)
557			data = 0;
558		else
559			/* Preserve sleep duration etc */
560			data = data & ~AR5K_SLEEP_CTL_SLE;
561
562		ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
563							AR5K_SLEEP_CTL);
564		usleep_range(15, 20);
565
566		for (i = 200; i > 0; i--) {
567			/* Check if the chip did wake up */
568			if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
569					AR5K_PCICFG_SPWR_DN) == 0)
570				break;
571
572			/* Wait a bit and retry */
573			usleep_range(50, 75);
574			ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
575							AR5K_SLEEP_CTL);
576		}
577
578		/* Fail if the chip didn't wake up */
579		if (i == 0)
580			return -EIO;
581
582		break;
583
584	default:
585		return -EINVAL;
586	}
587
588commit:
589	ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
590
591	return 0;
592}
593
594/**
595 * ath5k_hw_on_hold() - Put device on hold
596 * @ah: The &struct ath5k_hw
597 *
598 * Put MAC and Baseband on warm reset and keep that state
599 * (don't clean sleep control register). After this MAC
600 * and Baseband are disabled and a full reset is needed
601 * to come back. This way we save as much power as possible
602 * without putting the card on full sleep.
603 *
604 * Returns 0 on success or -EIO on error
605 */
606int
607ath5k_hw_on_hold(struct ath5k_hw *ah)
608{
609	struct pci_dev *pdev = ah->pdev;
610	u32 bus_flags;
611	int ret;
612
613	if (ath5k_get_bus_type(ah) == ATH_AHB)
614		return 0;
615
616	/* Make sure device is awake */
617	ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
618	if (ret) {
619		ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
620		return ret;
621	}
622
623	/*
624	 * Put chipset on warm reset...
625	 *
626	 * Note: putting PCI core on warm reset on PCI-E cards
627	 * results card to hang and always return 0xffff... so
628	 * we ignore that flag for PCI-E cards. On PCI cards
629	 * this flag gets cleared after 64 PCI clocks.
630	 */
631	bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
632
633	if (ah->ah_version == AR5K_AR5210) {
634		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
635			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
636			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
637			usleep_range(2000, 2500);
638	} else {
639		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
640			AR5K_RESET_CTL_BASEBAND | bus_flags);
641	}
642
643	if (ret) {
644		ATH5K_ERR(ah, "failed to put device on warm reset\n");
645		return -EIO;
646	}
647
648	/* ...wakeup again!*/
649	ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
650	if (ret) {
651		ATH5K_ERR(ah, "failed to put device on hold\n");
652		return ret;
653	}
654
655	return ret;
656}
657
658/**
659 * ath5k_hw_nic_wakeup() - Force card out of sleep
660 * @ah: The &struct ath5k_hw
661 * @channel: The &struct ieee80211_channel
662 *
663 * Bring up MAC + PHY Chips and program PLL
664 * NOTE: Channel is NULL for the initial wakeup.
665 *
666 * Returns 0 on success, -EIO on hw failure or -EINVAL for false channel infos
667 */
668int
669ath5k_hw_nic_wakeup(struct ath5k_hw *ah, struct ieee80211_channel *channel)
670{
671	struct pci_dev *pdev = ah->pdev;
672	u32 turbo, mode, clock, bus_flags;
673	int ret;
674
675	turbo = 0;
676	mode = 0;
677	clock = 0;
678
679	if ((ath5k_get_bus_type(ah) != ATH_AHB) || channel) {
680		/* Wakeup the device */
681		ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
682		if (ret) {
683			ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
684			return ret;
685		}
686	}
687
688	/*
689	 * Put chipset on warm reset...
690	 *
691	 * Note: putting PCI core on warm reset on PCI-E cards
692	 * results card to hang and always return 0xffff... so
693	 * we ignore that flag for PCI-E cards. On PCI cards
694	 * this flag gets cleared after 64 PCI clocks.
695	 */
696	bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
697
698	if (ah->ah_version == AR5K_AR5210) {
699		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
700			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
701			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
702			usleep_range(2000, 2500);
703	} else {
704		if (ath5k_get_bus_type(ah) == ATH_AHB)
705			ret = ath5k_hw_wisoc_reset(ah, AR5K_RESET_CTL_PCU |
706				AR5K_RESET_CTL_BASEBAND);
707		else
708			ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
709				AR5K_RESET_CTL_BASEBAND | bus_flags);
710	}
711
712	if (ret) {
713		ATH5K_ERR(ah, "failed to reset the MAC Chip\n");
714		return -EIO;
715	}
716
717	/* ...wakeup again!...*/
718	ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
719	if (ret) {
720		ATH5K_ERR(ah, "failed to resume the MAC Chip\n");
721		return ret;
722	}
723
724	/* ...reset configuration register on Wisoc ...
725	 * ...clear reset control register and pull device out of
726	 * warm reset on others */
727	if (ath5k_get_bus_type(ah) == ATH_AHB)
728		ret = ath5k_hw_wisoc_reset(ah, 0);
729	else
730		ret = ath5k_hw_nic_reset(ah, 0);
731
732	if (ret) {
733		ATH5K_ERR(ah, "failed to warm reset the MAC Chip\n");
734		return -EIO;
735	}
736
737	/* On initialization skip PLL programming since we don't have
738	 * a channel / mode set yet */
739	if (!channel)
740		return 0;
741
742	if (ah->ah_version != AR5K_AR5210) {
743		/*
744		 * Get channel mode flags
745		 */
746
747		if (ah->ah_radio >= AR5K_RF5112) {
748			mode = AR5K_PHY_MODE_RAD_RF5112;
749			clock = AR5K_PHY_PLL_RF5112;
750		} else {
751			mode = AR5K_PHY_MODE_RAD_RF5111;	/*Zero*/
752			clock = AR5K_PHY_PLL_RF5111;		/*Zero*/
753		}
754
755		if (channel->band == IEEE80211_BAND_2GHZ) {
756			mode |= AR5K_PHY_MODE_FREQ_2GHZ;
757			clock |= AR5K_PHY_PLL_44MHZ;
758
759			if (channel->hw_value == AR5K_MODE_11B) {
760				mode |= AR5K_PHY_MODE_MOD_CCK;
761			} else {
762				/* XXX Dynamic OFDM/CCK is not supported by the
763				 * AR5211 so we set MOD_OFDM for plain g (no
764				 * CCK headers) operation. We need to test
765				 * this, 5211 might support ofdm-only g after
766				 * all, there are also initial register values
767				 * in the code for g mode (see initvals.c).
768				 */
769				if (ah->ah_version == AR5K_AR5211)
770					mode |= AR5K_PHY_MODE_MOD_OFDM;
771				else
772					mode |= AR5K_PHY_MODE_MOD_DYN;
773			}
774		} else if (channel->band == IEEE80211_BAND_5GHZ) {
775			mode |= (AR5K_PHY_MODE_FREQ_5GHZ |
776				 AR5K_PHY_MODE_MOD_OFDM);
777
778			/* Different PLL setting for 5413 */
779			if (ah->ah_radio == AR5K_RF5413)
780				clock = AR5K_PHY_PLL_40MHZ_5413;
781			else
782				clock |= AR5K_PHY_PLL_40MHZ;
783		} else {
784			ATH5K_ERR(ah, "invalid radio frequency mode\n");
785			return -EINVAL;
786		}
787
788		/*XXX: Can bwmode be used with dynamic mode ?
789		 * (I don't think it supports 44MHz) */
790		/* On 2425 initvals TURBO_SHORT is not present */
791		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
792			turbo = AR5K_PHY_TURBO_MODE;
793			if (ah->ah_radio != AR5K_RF2425)
794				turbo |= AR5K_PHY_TURBO_SHORT;
795		} else if (ah->ah_bwmode != AR5K_BWMODE_DEFAULT) {
796			if (ah->ah_radio == AR5K_RF5413) {
797				mode |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
798					AR5K_PHY_MODE_HALF_RATE :
799					AR5K_PHY_MODE_QUARTER_RATE;
800			} else if (ah->ah_version == AR5K_AR5212) {
801				clock |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
802					AR5K_PHY_PLL_HALF_RATE :
803					AR5K_PHY_PLL_QUARTER_RATE;
804			}
805		}
806
807	} else { /* Reset the device */
808
809		/* ...enable Atheros turbo mode if requested */
810		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
811			ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
812					AR5K_PHY_TURBO);
813	}
814
815	if (ah->ah_version != AR5K_AR5210) {
816
817		/* ...update PLL if needed */
818		if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
819			ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
820			usleep_range(300, 350);
821		}
822
823		/* ...set the PHY operating mode */
824		ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
825		ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
826	}
827
828	return 0;
829}
830
831
832/**************************************\
833* Post-initvals register modifications *
834\**************************************/
835
836/**
837 * ath5k_hw_tweak_initval_settings() - Tweak initial settings
838 * @ah: The &struct ath5k_hw
839 * @channel: The &struct ieee80211_channel
840 *
841 * Some settings are not handled on initvals, e.g. bwmode
842 * settings, some phy settings, workarounds etc that in general
843 * don't fit anywhere else or are too small to introduce a separate
844 * function for each one. So we have this function to handle
845 * them all during reset and complete card's initialization.
846 */
847static void
848ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
849				struct ieee80211_channel *channel)
850{
851	if (ah->ah_version == AR5K_AR5212 &&
852	    ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
853
854		/* Setup ADC control */
855		ath5k_hw_reg_write(ah,
856				(AR5K_REG_SM(2,
857				AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
858				AR5K_REG_SM(2,
859				AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
860				AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
861				AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
862				AR5K_PHY_ADC_CTL);
863
864
865
866		/* Disable barker RSSI threshold */
867		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
868				AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
869
870		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
871			AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
872
873		/* Set the mute mask */
874		ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
875	}
876
877	/* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
878	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
879		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
880
881	/* Enable DCU double buffering */
882	if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
883		AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
884				AR5K_TXCFG_DCU_DBL_BUF_DIS);
885
886	/* Set fast ADC */
887	if ((ah->ah_radio == AR5K_RF5413) ||
888		(ah->ah_radio == AR5K_RF2317) ||
889		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
890		u32 fast_adc = true;
891
892		if (channel->center_freq == 2462 ||
893		channel->center_freq == 2467)
894			fast_adc = 0;
895
896		/* Only update if needed */
897		if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
898				ath5k_hw_reg_write(ah, fast_adc,
899						AR5K_PHY_FAST_ADC);
900	}
901
902	/* Fix for first revision of the RF5112 RF chipset */
903	if (ah->ah_radio == AR5K_RF5112 &&
904			ah->ah_radio_5ghz_revision <
905			AR5K_SREV_RAD_5112A) {
906		u32 data;
907		ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
908				AR5K_PHY_CCKTXCTL);
909		if (channel->band == IEEE80211_BAND_5GHZ)
910			data = 0xffb81020;
911		else
912			data = 0xffb80d20;
913		ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
914	}
915
916	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
917		/* Clear QCU/DCU clock gating register */
918		ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
919		/* Set DAC/ADC delays */
920		ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ_5311,
921						AR5K_PHY_SCAL);
922		/* Enable PCU FIFO corruption ECO */
923		AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
924					AR5K_DIAG_SW_ECO_ENABLE);
925	}
926
927	if (ah->ah_bwmode) {
928		/* Increase PHY switch and AGC settling time
929		 * on turbo mode (ath5k_hw_commit_eeprom_settings
930		 * will override settling time if available) */
931		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
932
933			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
934						AR5K_PHY_SETTLING_AGC,
935						AR5K_AGC_SETTLING_TURBO);
936
937			/* XXX: Initvals indicate we only increase
938			 * switch time on AR5212, 5211 and 5210
939			 * only change agc time (bug?) */
940			if (ah->ah_version == AR5K_AR5212)
941				AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
942						AR5K_PHY_SETTLING_SWITCH,
943						AR5K_SWITCH_SETTLING_TURBO);
944
945			if (ah->ah_version == AR5K_AR5210) {
946				/* Set Frame Control Register */
947				ath5k_hw_reg_write(ah,
948					(AR5K_PHY_FRAME_CTL_INI |
949					AR5K_PHY_TURBO_MODE |
950					AR5K_PHY_TURBO_SHORT | 0x2020),
951					AR5K_PHY_FRAME_CTL_5210);
952			}
953		/* On 5413 PHY force window length for half/quarter rate*/
954		} else if ((ah->ah_mac_srev >= AR5K_SREV_AR5424) &&
955		(ah->ah_mac_srev <= AR5K_SREV_AR5414)) {
956			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL_5211,
957						AR5K_PHY_FRAME_CTL_WIN_LEN,
958						3);
959		}
960	} else if (ah->ah_version == AR5K_AR5210) {
961		/* Set Frame Control Register for normal operation */
962		ath5k_hw_reg_write(ah, (AR5K_PHY_FRAME_CTL_INI | 0x1020),
963						AR5K_PHY_FRAME_CTL_5210);
964	}
965}
966
967/**
968 * ath5k_hw_commit_eeprom_settings() - Commit settings from EEPROM
969 * @ah: The &struct ath5k_hw
970 * @channel: The &struct ieee80211_channel
971 *
972 * Use settings stored on EEPROM to properly initialize the card
973 * based on various infos and per-mode calibration data.
974 */
975static void
976ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
977		struct ieee80211_channel *channel)
978{
979	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
980	s16 cck_ofdm_pwr_delta;
981	u8 ee_mode;
982
983	/* TODO: Add support for AR5210 EEPROM */
984	if (ah->ah_version == AR5K_AR5210)
985		return;
986
987	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
988
989	/* Adjust power delta for channel 14 */
990	if (channel->center_freq == 2484)
991		cck_ofdm_pwr_delta =
992			((ee->ee_cck_ofdm_power_delta -
993			ee->ee_scaled_cck_delta) * 2) / 10;
994	else
995		cck_ofdm_pwr_delta =
996			(ee->ee_cck_ofdm_power_delta * 2) / 10;
997
998	/* Set CCK to OFDM power delta on tx power
999	 * adjustment register */
1000	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1001		if (channel->hw_value == AR5K_MODE_11G)
1002			ath5k_hw_reg_write(ah,
1003			AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
1004				AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
1005			AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
1006				AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
1007				AR5K_PHY_TX_PWR_ADJ);
1008		else
1009			ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
1010	} else {
1011		/* For older revs we scale power on sw during tx power
1012		 * setup */
1013		ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
1014		ah->ah_txpower.txp_cck_ofdm_gainf_delta =
1015						ee->ee_cck_ofdm_gain_delta;
1016	}
1017
1018	/* XXX: necessary here? is called from ath5k_hw_set_antenna_mode()
1019	 * too */
1020	ath5k_hw_set_antenna_switch(ah, ee_mode);
1021
1022	/* Noise floor threshold */
1023	ath5k_hw_reg_write(ah,
1024		AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
1025		AR5K_PHY_NFTHRES);
1026
1027	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
1028	(ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
1029		/* Switch settling time (Turbo) */
1030		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
1031				AR5K_PHY_SETTLING_SWITCH,
1032				ee->ee_switch_settling_turbo[ee_mode]);
1033
1034		/* Tx/Rx attenuation (Turbo) */
1035		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
1036				AR5K_PHY_GAIN_TXRX_ATTEN,
1037				ee->ee_atn_tx_rx_turbo[ee_mode]);
1038
1039		/* ADC/PGA desired size (Turbo) */
1040		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1041				AR5K_PHY_DESIRED_SIZE_ADC,
1042				ee->ee_adc_desired_size_turbo[ee_mode]);
1043
1044		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1045				AR5K_PHY_DESIRED_SIZE_PGA,
1046				ee->ee_pga_desired_size_turbo[ee_mode]);
1047
1048		/* Tx/Rx margin (Turbo) */
1049		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
1050				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
1051				ee->ee_margin_tx_rx_turbo[ee_mode]);
1052
1053	} else {
1054		/* Switch settling time */
1055		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
1056				AR5K_PHY_SETTLING_SWITCH,
1057				ee->ee_switch_settling[ee_mode]);
1058
1059		/* Tx/Rx attenuation */
1060		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
1061				AR5K_PHY_GAIN_TXRX_ATTEN,
1062				ee->ee_atn_tx_rx[ee_mode]);
1063
1064		/* ADC/PGA desired size */
1065		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1066				AR5K_PHY_DESIRED_SIZE_ADC,
1067				ee->ee_adc_desired_size[ee_mode]);
1068
1069		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1070				AR5K_PHY_DESIRED_SIZE_PGA,
1071				ee->ee_pga_desired_size[ee_mode]);
1072
1073		/* Tx/Rx margin */
1074		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
1075			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
1076				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
1077				ee->ee_margin_tx_rx[ee_mode]);
1078	}
1079
1080	/* XPA delays */
1081	ath5k_hw_reg_write(ah,
1082		(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
1083		(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
1084		(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
1085		(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
1086
1087	/* XLNA delay */
1088	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
1089			AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
1090			ee->ee_tx_end2xlna_enable[ee_mode]);
1091
1092	/* Thresh64 (ANI) */
1093	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
1094			AR5K_PHY_NF_THRESH62,
1095			ee->ee_thr_62[ee_mode]);
1096
1097	/* False detect backoff for channels
1098	 * that have spur noise. Write the new
1099	 * cyclic power RSSI threshold. */
1100	if (ath5k_hw_chan_has_spur_noise(ah, channel))
1101		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1102				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1103				AR5K_INIT_CYCRSSI_THR1 +
1104				ee->ee_false_detect[ee_mode]);
1105	else
1106		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1107				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1108				AR5K_INIT_CYCRSSI_THR1);
1109
1110	/* I/Q correction (set enable bit last to match HAL sources) */
1111	/* TODO: Per channel i/q infos ? */
1112	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1113		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF,
1114			    ee->ee_i_cal[ee_mode]);
1115		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF,
1116			    ee->ee_q_cal[ee_mode]);
1117		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1118	}
1119
1120	/* Heavy clipping -disable for now */
1121	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
1122		ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
1123}
1124
1125
1126/*********************\
1127* Main reset function *
1128\*********************/
1129
1130/**
1131 * ath5k_hw_reset() - The main reset function
1132 * @ah: The &struct ath5k_hw
1133 * @op_mode: One of enum nl80211_iftype
1134 * @channel: The &struct ieee80211_channel
1135 * @fast: Enable fast channel switching
1136 * @skip_pcu: Skip pcu initialization
1137 *
1138 * This is the function we call each time we want to (re)initialize the
1139 * card and pass new settings to hw. We also call it when hw runs into
1140 * trouble to make it come back to a working state.
1141 *
1142 * Returns 0 on success, -EINVAL on false op_mode or channel infos, or -EIO
1143 * on failure.
1144 */
1145int
1146ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
1147		struct ieee80211_channel *channel, bool fast, bool skip_pcu)
1148{
1149	u32 s_seq[10], s_led[3], tsf_up, tsf_lo;
1150	u8 mode;
1151	int i, ret;
1152
1153	tsf_up = 0;
1154	tsf_lo = 0;
1155	mode = 0;
1156
1157	/*
1158	 * Sanity check for fast flag
1159	 * Fast channel change only available
1160	 * on AR2413/AR5413.
1161	 */
1162	if (fast && (ah->ah_radio != AR5K_RF2413) &&
1163	(ah->ah_radio != AR5K_RF5413))
1164		fast = false;
1165
1166	/* Disable sleep clock operation
1167	 * to avoid register access delay on certain
1168	 * PHY registers */
1169	if (ah->ah_version == AR5K_AR5212)
1170		ath5k_hw_set_sleep_clock(ah, false);
1171
1172	mode = channel->hw_value;
1173	switch (mode) {
1174	case AR5K_MODE_11A:
1175		break;
1176	case AR5K_MODE_11G:
1177		if (ah->ah_version <= AR5K_AR5211) {
1178			ATH5K_ERR(ah,
1179				"G mode not available on 5210/5211");
1180			return -EINVAL;
1181		}
1182		break;
1183	case AR5K_MODE_11B:
1184		if (ah->ah_version < AR5K_AR5211) {
1185			ATH5K_ERR(ah,
1186				"B mode not available on 5210");
1187			return -EINVAL;
1188		}
1189		break;
1190	default:
1191		ATH5K_ERR(ah,
1192			"invalid channel: %d\n", channel->center_freq);
1193		return -EINVAL;
1194	}
1195
1196	/*
1197	 * If driver requested fast channel change and DMA has stopped
1198	 * go on. If it fails continue with a normal reset.
1199	 */
1200	if (fast) {
1201		ret = ath5k_hw_phy_init(ah, channel, mode, true);
1202		if (ret) {
1203			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1204				"fast chan change failed, falling back to normal reset\n");
1205			/* Non fatal, can happen eg.
1206			 * on mode change */
1207			ret = 0;
1208		} else {
1209			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1210				"fast chan change successful\n");
1211			return 0;
1212		}
1213	}
1214
1215	/*
1216	 * Save some registers before a reset
1217	 */
1218	if (ah->ah_version != AR5K_AR5210) {
1219		/*
1220		 * Save frame sequence count
1221		 * For revs. after Oahu, only save
1222		 * seq num for DCU 0 (Global seq num)
1223		 */
1224		if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1225
1226			for (i = 0; i < 10; i++)
1227				s_seq[i] = ath5k_hw_reg_read(ah,
1228					AR5K_QUEUE_DCU_SEQNUM(i));
1229
1230		} else {
1231			s_seq[0] = ath5k_hw_reg_read(ah,
1232					AR5K_QUEUE_DCU_SEQNUM(0));
1233		}
1234
1235		/* TSF accelerates on AR5211 during reset
1236		 * As a workaround save it here and restore
1237		 * it later so that it's back in time after
1238		 * reset. This way it'll get re-synced on the
1239		 * next beacon without breaking ad-hoc.
1240		 *
1241		 * On AR5212 TSF is almost preserved across a
1242		 * reset so it stays back in time anyway and
1243		 * we don't have to save/restore it.
1244		 *
1245		 * XXX: Since this breaks power saving we have
1246		 * to disable power saving until we receive the
1247		 * next beacon, so we can resync beacon timers */
1248		if (ah->ah_version == AR5K_AR5211) {
1249			tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
1250			tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
1251		}
1252	}
1253
1254
1255	/*GPIOs*/
1256	s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1257					AR5K_PCICFG_LEDSTATE;
1258	s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
1259	s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
1260
1261
1262	/*
1263	 * Since we are going to write rf buffer
1264	 * check if we have any pending gain_F
1265	 * optimization settings
1266	 */
1267	if (ah->ah_version == AR5K_AR5212 &&
1268	(ah->ah_radio <= AR5K_RF5112)) {
1269		if (!fast && ah->ah_rf_banks != NULL)
1270				ath5k_hw_gainf_calibrate(ah);
1271	}
1272
1273	/* Wakeup the device */
1274	ret = ath5k_hw_nic_wakeup(ah, channel);
1275	if (ret)
1276		return ret;
1277
1278	/* PHY access enable */
1279	if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
1280		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1281	else
1282		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
1283							AR5K_PHY(0));
1284
1285	/* Write initial settings */
1286	ret = ath5k_hw_write_initvals(ah, mode, skip_pcu);
1287	if (ret)
1288		return ret;
1289
1290	/* Initialize core clock settings */
1291	ath5k_hw_init_core_clock(ah);
1292
1293	/*
1294	 * Tweak initval settings for revised
1295	 * chipsets and add some more config
1296	 * bits
1297	 */
1298	ath5k_hw_tweak_initval_settings(ah, channel);
1299
1300	/* Commit values from EEPROM */
1301	ath5k_hw_commit_eeprom_settings(ah, channel);
1302
1303
1304	/*
1305	 * Restore saved values
1306	 */
1307
1308	/* Seqnum, TSF */
1309	if (ah->ah_version != AR5K_AR5210) {
1310		if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1311			for (i = 0; i < 10; i++)
1312				ath5k_hw_reg_write(ah, s_seq[i],
1313					AR5K_QUEUE_DCU_SEQNUM(i));
1314		} else {
1315			ath5k_hw_reg_write(ah, s_seq[0],
1316				AR5K_QUEUE_DCU_SEQNUM(0));
1317		}
1318
1319		if (ah->ah_version == AR5K_AR5211) {
1320			ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1321			ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1322		}
1323	}
1324
1325	/* Ledstate */
1326	AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1327
1328	/* Gpio settings */
1329	ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1330	ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1331
1332	/*
1333	 * Initialize PCU
1334	 */
1335	ath5k_hw_pcu_init(ah, op_mode);
1336
1337	/*
1338	 * Initialize PHY
1339	 */
1340	ret = ath5k_hw_phy_init(ah, channel, mode, false);
1341	if (ret) {
1342		ATH5K_ERR(ah,
1343			"failed to initialize PHY (%i) !\n", ret);
1344		return ret;
1345	}
1346
1347	/*
1348	 * Configure QCUs/DCUs
1349	 */
1350	ret = ath5k_hw_init_queues(ah);
1351	if (ret)
1352		return ret;
1353
1354
1355	/*
1356	 * Initialize DMA/Interrupts
1357	 */
1358	ath5k_hw_dma_init(ah);
1359
1360
1361	/*
1362	 * Enable 32KHz clock function for AR5212+ chips
1363	 * Set clocks to 32KHz operation and use an
1364	 * external 32KHz crystal when sleeping if one
1365	 * exists.
1366	 * Disabled by default because it is also disabled in
1367	 * other drivers and it is known to cause stability
1368	 * issues on some devices
1369	 */
1370	if (ah->ah_use_32khz_clock && ah->ah_version == AR5K_AR5212 &&
1371	    op_mode != NL80211_IFTYPE_AP)
1372		ath5k_hw_set_sleep_clock(ah, true);
1373
1374	/*
1375	 * Disable beacons and reset the TSF
1376	 */
1377	AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE);
1378	ath5k_hw_reset_tsf(ah);
1379	return 0;
1380}
1381