1/* 2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org> 3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com> 4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu> 5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org> 6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 * 20 */ 21 22/****************************\ 23 Reset function and helpers 24\****************************/ 25 26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28#include <asm/unaligned.h> 29 30#include <linux/pci.h> /* To determine if a card is pci-e */ 31#include <linux/log2.h> 32#include <linux/platform_device.h> 33#include "ath5k.h" 34#include "reg.h" 35#include "debug.h" 36 37 38/** 39 * DOC: Reset function and helpers 40 * 41 * Here we implement the main reset routine, used to bring the card 42 * to a working state and ready to receive. We also handle routines 43 * that don't fit on other places such as clock, sleep and power control 44 */ 45 46 47/******************\ 48* Helper functions * 49\******************/ 50 51/** 52 * ath5k_hw_register_timeout() - Poll a register for a flag/field change 53 * @ah: The &struct ath5k_hw 54 * @reg: The register to read 55 * @flag: The flag/field to check on the register 56 * @val: The field value we expect (if we check a field) 57 * @is_set: Instead of checking if the flag got cleared, check if it got set 58 * 59 * Some registers contain flags that indicate that an operation is 60 * running. We use this function to poll these registers and check 61 * if these flags get cleared. We also use it to poll a register 62 * field (containing multiple flags) until it gets a specific value. 63 * 64 * Returns -EAGAIN if we exceeded AR5K_TUNE_REGISTER_TIMEOUT * 15us or 0 65 */ 66int 67ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val, 68 bool is_set) 69{ 70 int i; 71 u32 data; 72 73 for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) { 74 data = ath5k_hw_reg_read(ah, reg); 75 if (is_set && (data & flag)) 76 break; 77 else if ((data & flag) == val) 78 break; 79 udelay(15); 80 } 81 82 return (i <= 0) ? -EAGAIN : 0; 83} 84 85 86/*************************\ 87* Clock related functions * 88\*************************/ 89 90/** 91 * ath5k_hw_htoclock() - Translate usec to hw clock units 92 * @ah: The &struct ath5k_hw 93 * @usec: value in microseconds 94 * 95 * Translate usecs to hw clock units based on the current 96 * hw clock rate. 97 * 98 * Returns number of clock units 99 */ 100unsigned int 101ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec) 102{ 103 struct ath_common *common = ath5k_hw_common(ah); 104 return usec * common->clockrate; 105} 106 107/** 108 * ath5k_hw_clocktoh() - Translate hw clock units to usec 109 * @ah: The &struct ath5k_hw 110 * @clock: value in hw clock units 111 * 112 * Translate hw clock units to usecs based on the current 113 * hw clock rate. 114 * 115 * Returns number of usecs 116 */ 117unsigned int 118ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock) 119{ 120 struct ath_common *common = ath5k_hw_common(ah); 121 return clock / common->clockrate; 122} 123 124/** 125 * ath5k_hw_init_core_clock() - Initialize core clock 126 * @ah: The &struct ath5k_hw 127 * 128 * Initialize core clock parameters (usec, usec32, latencies etc), 129 * based on current bwmode and chipset properties. 130 */ 131static void 132ath5k_hw_init_core_clock(struct ath5k_hw *ah) 133{ 134 struct ieee80211_channel *channel = ah->ah_current_channel; 135 struct ath_common *common = ath5k_hw_common(ah); 136 u32 usec_reg, txlat, rxlat, usec, clock, sclock, txf2txs; 137 138 /* 139 * Set core clock frequency 140 */ 141 switch (channel->hw_value) { 142 case AR5K_MODE_11A: 143 clock = 40; 144 break; 145 case AR5K_MODE_11B: 146 clock = 22; 147 break; 148 case AR5K_MODE_11G: 149 default: 150 clock = 44; 151 break; 152 } 153 154 /* Use clock multiplier for non-default 155 * bwmode */ 156 switch (ah->ah_bwmode) { 157 case AR5K_BWMODE_40MHZ: 158 clock *= 2; 159 break; 160 case AR5K_BWMODE_10MHZ: 161 clock /= 2; 162 break; 163 case AR5K_BWMODE_5MHZ: 164 clock /= 4; 165 break; 166 default: 167 break; 168 } 169 170 common->clockrate = clock; 171 172 /* 173 * Set USEC parameters 174 */ 175 /* Set USEC counter on PCU*/ 176 usec = clock - 1; 177 usec = AR5K_REG_SM(usec, AR5K_USEC_1); 178 179 /* Set usec duration on DCU */ 180 if (ah->ah_version != AR5K_AR5210) 181 AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC, 182 AR5K_DCU_GBL_IFS_MISC_USEC_DUR, 183 clock); 184 185 /* Set 32MHz USEC counter */ 186 if ((ah->ah_radio == AR5K_RF5112) || 187 (ah->ah_radio == AR5K_RF2413) || 188 (ah->ah_radio == AR5K_RF5413) || 189 (ah->ah_radio == AR5K_RF2316) || 190 (ah->ah_radio == AR5K_RF2317)) 191 /* Remain on 40MHz clock ? */ 192 sclock = 40 - 1; 193 else 194 sclock = 32 - 1; 195 sclock = AR5K_REG_SM(sclock, AR5K_USEC_32); 196 197 /* 198 * Set tx/rx latencies 199 */ 200 usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211); 201 txlat = AR5K_REG_MS(usec_reg, AR5K_USEC_TX_LATENCY_5211); 202 rxlat = AR5K_REG_MS(usec_reg, AR5K_USEC_RX_LATENCY_5211); 203 204 /* 205 * Set default Tx frame to Tx data start delay 206 */ 207 txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT; 208 209 /* 210 * 5210 initvals don't include usec settings 211 * so we need to use magic values here for 212 * tx/rx latencies 213 */ 214 if (ah->ah_version == AR5K_AR5210) { 215 /* same for turbo */ 216 txlat = AR5K_INIT_TX_LATENCY_5210; 217 rxlat = AR5K_INIT_RX_LATENCY_5210; 218 } 219 220 if (ah->ah_mac_srev < AR5K_SREV_AR5211) { 221 /* 5311 has different tx/rx latency masks 222 * from 5211, since we deal 5311 the same 223 * as 5211 when setting initvals, shift 224 * values here to their proper locations 225 * 226 * Note: Initvals indicate tx/rx/ latencies 227 * are the same for turbo mode */ 228 txlat = AR5K_REG_SM(txlat, AR5K_USEC_TX_LATENCY_5210); 229 rxlat = AR5K_REG_SM(rxlat, AR5K_USEC_RX_LATENCY_5210); 230 } else 231 switch (ah->ah_bwmode) { 232 case AR5K_BWMODE_10MHZ: 233 txlat = AR5K_REG_SM(txlat * 2, 234 AR5K_USEC_TX_LATENCY_5211); 235 rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX, 236 AR5K_USEC_RX_LATENCY_5211); 237 txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_10MHZ; 238 break; 239 case AR5K_BWMODE_5MHZ: 240 txlat = AR5K_REG_SM(txlat * 4, 241 AR5K_USEC_TX_LATENCY_5211); 242 rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX, 243 AR5K_USEC_RX_LATENCY_5211); 244 txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_5MHZ; 245 break; 246 case AR5K_BWMODE_40MHZ: 247 txlat = AR5K_INIT_TX_LAT_MIN; 248 rxlat = AR5K_REG_SM(rxlat / 2, 249 AR5K_USEC_RX_LATENCY_5211); 250 txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT; 251 break; 252 default: 253 break; 254 } 255 256 usec_reg = (usec | sclock | txlat | rxlat); 257 ath5k_hw_reg_write(ah, usec_reg, AR5K_USEC); 258 259 /* On 5112 set tx frame to tx data start delay */ 260 if (ah->ah_radio == AR5K_RF5112) { 261 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL2, 262 AR5K_PHY_RF_CTL2_TXF2TXD_START, 263 txf2txs); 264 } 265} 266 267/** 268 * ath5k_hw_set_sleep_clock() - Setup sleep clock operation 269 * @ah: The &struct ath5k_hw 270 * @enable: Enable sleep clock operation (false to disable) 271 * 272 * If there is an external 32KHz crystal available, use it 273 * as ref. clock instead of 32/40MHz clock and baseband clocks 274 * to save power during sleep or restore normal 32/40MHz 275 * operation. 276 * 277 * NOTE: When operating on 32KHz certain PHY registers (27 - 31, 278 * 123 - 127) require delay on access. 279 */ 280static void 281ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable) 282{ 283 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 284 u32 scal, spending, sclock; 285 286 /* Only set 32KHz settings if we have an external 287 * 32KHz crystal present */ 288 if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) || 289 AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) && 290 enable) { 291 292 /* 1 usec/cycle */ 293 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1); 294 /* Set up tsf increment on each cycle */ 295 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61); 296 297 /* Set baseband sleep control registers 298 * and sleep control rate */ 299 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR); 300 301 if ((ah->ah_radio == AR5K_RF5112) || 302 (ah->ah_radio == AR5K_RF5413) || 303 (ah->ah_radio == AR5K_RF2316) || 304 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) 305 spending = 0x14; 306 else 307 spending = 0x18; 308 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING); 309 310 if ((ah->ah_radio == AR5K_RF5112) || 311 (ah->ah_radio == AR5K_RF5413) || 312 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) { 313 ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT); 314 ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL); 315 ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK); 316 ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY); 317 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG, 318 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02); 319 } else { 320 ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT); 321 ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL); 322 ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK); 323 ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY); 324 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG, 325 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03); 326 } 327 328 /* Enable sleep clock operation */ 329 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, 330 AR5K_PCICFG_SLEEP_CLOCK_EN); 331 332 } else { 333 334 /* Disable sleep clock operation and 335 * restore default parameters */ 336 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG, 337 AR5K_PCICFG_SLEEP_CLOCK_EN); 338 339 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG, 340 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0); 341 342 /* Set DAC/ADC delays */ 343 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR); 344 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT); 345 346 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)) 347 scal = AR5K_PHY_SCAL_32MHZ_2417; 348 else if (ee->ee_is_hb63) 349 scal = AR5K_PHY_SCAL_32MHZ_HB63; 350 else 351 scal = AR5K_PHY_SCAL_32MHZ; 352 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL); 353 354 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK); 355 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY); 356 357 if ((ah->ah_radio == AR5K_RF5112) || 358 (ah->ah_radio == AR5K_RF5413) || 359 (ah->ah_radio == AR5K_RF2316) || 360 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) 361 spending = 0x14; 362 else 363 spending = 0x18; 364 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING); 365 366 /* Set up tsf increment on each cycle */ 367 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1); 368 369 if ((ah->ah_radio == AR5K_RF5112) || 370 (ah->ah_radio == AR5K_RF5413) || 371 (ah->ah_radio == AR5K_RF2316) || 372 (ah->ah_radio == AR5K_RF2317)) 373 sclock = 40 - 1; 374 else 375 sclock = 32 - 1; 376 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, sclock); 377 } 378} 379 380 381/*********************\ 382* Reset/Sleep control * 383\*********************/ 384 385/** 386 * ath5k_hw_nic_reset() - Reset the various chipset units 387 * @ah: The &struct ath5k_hw 388 * @val: Mask to indicate what units to reset 389 * 390 * To reset the various chipset units we need to write 391 * the mask to AR5K_RESET_CTL and poll the register until 392 * all flags are cleared. 393 * 394 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout) 395 */ 396static int 397ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val) 398{ 399 int ret; 400 u32 mask = val ? val : ~0U; 401 402 /* Read-and-clear RX Descriptor Pointer*/ 403 ath5k_hw_reg_read(ah, AR5K_RXDP); 404 405 /* 406 * Reset the device and wait until success 407 */ 408 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL); 409 410 /* Wait at least 128 PCI clocks */ 411 usleep_range(15, 20); 412 413 if (ah->ah_version == AR5K_AR5210) { 414 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA 415 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY; 416 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA 417 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY; 418 } else { 419 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND; 420 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND; 421 } 422 423 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false); 424 425 /* 426 * Reset configuration register (for hw byte-swap). Note that this 427 * is only set for big endian. We do the necessary magic in 428 * AR5K_INIT_CFG. 429 */ 430 if ((val & AR5K_RESET_CTL_PCU) == 0) 431 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG); 432 433 return ret; 434} 435 436/** 437 * ath5k_hw_wisoc_reset() - Reset AHB chipset 438 * @ah: The &struct ath5k_hw 439 * @flags: Mask to indicate what units to reset 440 * 441 * Same as ath5k_hw_nic_reset but for AHB based devices 442 * 443 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout) 444 */ 445static int 446ath5k_hw_wisoc_reset(struct ath5k_hw *ah, u32 flags) 447{ 448 u32 mask = flags ? flags : ~0U; 449 u32 __iomem *reg; 450 u32 regval; 451 u32 val = 0; 452 453 /* ah->ah_mac_srev is not available at this point yet */ 454 if (ah->devid >= AR5K_SREV_AR2315_R6) { 455 reg = (u32 __iomem *) AR5K_AR2315_RESET; 456 if (mask & AR5K_RESET_CTL_PCU) 457 val |= AR5K_AR2315_RESET_WMAC; 458 if (mask & AR5K_RESET_CTL_BASEBAND) 459 val |= AR5K_AR2315_RESET_BB_WARM; 460 } else { 461 reg = (u32 __iomem *) AR5K_AR5312_RESET; 462 if (to_platform_device(ah->dev)->id == 0) { 463 if (mask & AR5K_RESET_CTL_PCU) 464 val |= AR5K_AR5312_RESET_WMAC0; 465 if (mask & AR5K_RESET_CTL_BASEBAND) 466 val |= AR5K_AR5312_RESET_BB0_COLD | 467 AR5K_AR5312_RESET_BB0_WARM; 468 } else { 469 if (mask & AR5K_RESET_CTL_PCU) 470 val |= AR5K_AR5312_RESET_WMAC1; 471 if (mask & AR5K_RESET_CTL_BASEBAND) 472 val |= AR5K_AR5312_RESET_BB1_COLD | 473 AR5K_AR5312_RESET_BB1_WARM; 474 } 475 } 476 477 /* Put BB/MAC into reset */ 478 regval = ioread32(reg); 479 iowrite32(regval | val, reg); 480 regval = ioread32(reg); 481 udelay(100); /* NB: should be atomic */ 482 483 /* Bring BB/MAC out of reset */ 484 iowrite32(regval & ~val, reg); 485 regval = ioread32(reg); 486 487 /* 488 * Reset configuration register (for hw byte-swap). Note that this 489 * is only set for big endian. We do the necessary magic in 490 * AR5K_INIT_CFG. 491 */ 492 if ((flags & AR5K_RESET_CTL_PCU) == 0) 493 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG); 494 495 return 0; 496} 497 498/** 499 * ath5k_hw_set_power_mode() - Set power mode 500 * @ah: The &struct ath5k_hw 501 * @mode: One of enum ath5k_power_mode 502 * @set_chip: Set to true to write sleep control register 503 * @sleep_duration: How much time the device is allowed to sleep 504 * when sleep logic is enabled (in 128 microsecond increments). 505 * 506 * This function is used to configure sleep policy and allowed 507 * sleep modes. For more information check out the sleep control 508 * register on reg.h and STA_ID1. 509 * 510 * Returns 0 on success, -EIO if chip didn't wake up or -EINVAL if an invalid 511 * mode is requested. 512 */ 513static int 514ath5k_hw_set_power_mode(struct ath5k_hw *ah, enum ath5k_power_mode mode, 515 bool set_chip, u16 sleep_duration) 516{ 517 unsigned int i; 518 u32 staid, data; 519 520 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1); 521 522 switch (mode) { 523 case AR5K_PM_AUTO: 524 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA; 525 /* fallthrough */ 526 case AR5K_PM_NETWORK_SLEEP: 527 if (set_chip) 528 ath5k_hw_reg_write(ah, 529 AR5K_SLEEP_CTL_SLE_ALLOW | 530 sleep_duration, 531 AR5K_SLEEP_CTL); 532 533 staid |= AR5K_STA_ID1_PWR_SV; 534 break; 535 536 case AR5K_PM_FULL_SLEEP: 537 if (set_chip) 538 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP, 539 AR5K_SLEEP_CTL); 540 541 staid |= AR5K_STA_ID1_PWR_SV; 542 break; 543 544 case AR5K_PM_AWAKE: 545 546 staid &= ~AR5K_STA_ID1_PWR_SV; 547 548 if (!set_chip) 549 goto commit; 550 551 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL); 552 553 /* If card is down we 'll get 0xffff... so we 554 * need to clean this up before we write the register 555 */ 556 if (data & 0xffc00000) 557 data = 0; 558 else 559 /* Preserve sleep duration etc */ 560 data = data & ~AR5K_SLEEP_CTL_SLE; 561 562 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE, 563 AR5K_SLEEP_CTL); 564 usleep_range(15, 20); 565 566 for (i = 200; i > 0; i--) { 567 /* Check if the chip did wake up */ 568 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) & 569 AR5K_PCICFG_SPWR_DN) == 0) 570 break; 571 572 /* Wait a bit and retry */ 573 usleep_range(50, 75); 574 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE, 575 AR5K_SLEEP_CTL); 576 } 577 578 /* Fail if the chip didn't wake up */ 579 if (i == 0) 580 return -EIO; 581 582 break; 583 584 default: 585 return -EINVAL; 586 } 587 588commit: 589 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1); 590 591 return 0; 592} 593 594/** 595 * ath5k_hw_on_hold() - Put device on hold 596 * @ah: The &struct ath5k_hw 597 * 598 * Put MAC and Baseband on warm reset and keep that state 599 * (don't clean sleep control register). After this MAC 600 * and Baseband are disabled and a full reset is needed 601 * to come back. This way we save as much power as possible 602 * without putting the card on full sleep. 603 * 604 * Returns 0 on success or -EIO on error 605 */ 606int 607ath5k_hw_on_hold(struct ath5k_hw *ah) 608{ 609 struct pci_dev *pdev = ah->pdev; 610 u32 bus_flags; 611 int ret; 612 613 if (ath5k_get_bus_type(ah) == ATH_AHB) 614 return 0; 615 616 /* Make sure device is awake */ 617 ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0); 618 if (ret) { 619 ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n"); 620 return ret; 621 } 622 623 /* 624 * Put chipset on warm reset... 625 * 626 * Note: putting PCI core on warm reset on PCI-E cards 627 * results card to hang and always return 0xffff... so 628 * we ignore that flag for PCI-E cards. On PCI cards 629 * this flag gets cleared after 64 PCI clocks. 630 */ 631 bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI; 632 633 if (ah->ah_version == AR5K_AR5210) { 634 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | 635 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA | 636 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI); 637 usleep_range(2000, 2500); 638 } else { 639 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | 640 AR5K_RESET_CTL_BASEBAND | bus_flags); 641 } 642 643 if (ret) { 644 ATH5K_ERR(ah, "failed to put device on warm reset\n"); 645 return -EIO; 646 } 647 648 /* ...wakeup again!*/ 649 ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0); 650 if (ret) { 651 ATH5K_ERR(ah, "failed to put device on hold\n"); 652 return ret; 653 } 654 655 return ret; 656} 657 658/** 659 * ath5k_hw_nic_wakeup() - Force card out of sleep 660 * @ah: The &struct ath5k_hw 661 * @channel: The &struct ieee80211_channel 662 * 663 * Bring up MAC + PHY Chips and program PLL 664 * NOTE: Channel is NULL for the initial wakeup. 665 * 666 * Returns 0 on success, -EIO on hw failure or -EINVAL for false channel infos 667 */ 668int 669ath5k_hw_nic_wakeup(struct ath5k_hw *ah, struct ieee80211_channel *channel) 670{ 671 struct pci_dev *pdev = ah->pdev; 672 u32 turbo, mode, clock, bus_flags; 673 int ret; 674 675 turbo = 0; 676 mode = 0; 677 clock = 0; 678 679 if ((ath5k_get_bus_type(ah) != ATH_AHB) || channel) { 680 /* Wakeup the device */ 681 ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0); 682 if (ret) { 683 ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n"); 684 return ret; 685 } 686 } 687 688 /* 689 * Put chipset on warm reset... 690 * 691 * Note: putting PCI core on warm reset on PCI-E cards 692 * results card to hang and always return 0xffff... so 693 * we ignore that flag for PCI-E cards. On PCI cards 694 * this flag gets cleared after 64 PCI clocks. 695 */ 696 bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI; 697 698 if (ah->ah_version == AR5K_AR5210) { 699 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | 700 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA | 701 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI); 702 usleep_range(2000, 2500); 703 } else { 704 if (ath5k_get_bus_type(ah) == ATH_AHB) 705 ret = ath5k_hw_wisoc_reset(ah, AR5K_RESET_CTL_PCU | 706 AR5K_RESET_CTL_BASEBAND); 707 else 708 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | 709 AR5K_RESET_CTL_BASEBAND | bus_flags); 710 } 711 712 if (ret) { 713 ATH5K_ERR(ah, "failed to reset the MAC Chip\n"); 714 return -EIO; 715 } 716 717 /* ...wakeup again!...*/ 718 ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0); 719 if (ret) { 720 ATH5K_ERR(ah, "failed to resume the MAC Chip\n"); 721 return ret; 722 } 723 724 /* ...reset configuration register on Wisoc ... 725 * ...clear reset control register and pull device out of 726 * warm reset on others */ 727 if (ath5k_get_bus_type(ah) == ATH_AHB) 728 ret = ath5k_hw_wisoc_reset(ah, 0); 729 else 730 ret = ath5k_hw_nic_reset(ah, 0); 731 732 if (ret) { 733 ATH5K_ERR(ah, "failed to warm reset the MAC Chip\n"); 734 return -EIO; 735 } 736 737 /* On initialization skip PLL programming since we don't have 738 * a channel / mode set yet */ 739 if (!channel) 740 return 0; 741 742 if (ah->ah_version != AR5K_AR5210) { 743 /* 744 * Get channel mode flags 745 */ 746 747 if (ah->ah_radio >= AR5K_RF5112) { 748 mode = AR5K_PHY_MODE_RAD_RF5112; 749 clock = AR5K_PHY_PLL_RF5112; 750 } else { 751 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/ 752 clock = AR5K_PHY_PLL_RF5111; /*Zero*/ 753 } 754 755 if (channel->band == IEEE80211_BAND_2GHZ) { 756 mode |= AR5K_PHY_MODE_FREQ_2GHZ; 757 clock |= AR5K_PHY_PLL_44MHZ; 758 759 if (channel->hw_value == AR5K_MODE_11B) { 760 mode |= AR5K_PHY_MODE_MOD_CCK; 761 } else { 762 /* XXX Dynamic OFDM/CCK is not supported by the 763 * AR5211 so we set MOD_OFDM for plain g (no 764 * CCK headers) operation. We need to test 765 * this, 5211 might support ofdm-only g after 766 * all, there are also initial register values 767 * in the code for g mode (see initvals.c). 768 */ 769 if (ah->ah_version == AR5K_AR5211) 770 mode |= AR5K_PHY_MODE_MOD_OFDM; 771 else 772 mode |= AR5K_PHY_MODE_MOD_DYN; 773 } 774 } else if (channel->band == IEEE80211_BAND_5GHZ) { 775 mode |= (AR5K_PHY_MODE_FREQ_5GHZ | 776 AR5K_PHY_MODE_MOD_OFDM); 777 778 /* Different PLL setting for 5413 */ 779 if (ah->ah_radio == AR5K_RF5413) 780 clock = AR5K_PHY_PLL_40MHZ_5413; 781 else 782 clock |= AR5K_PHY_PLL_40MHZ; 783 } else { 784 ATH5K_ERR(ah, "invalid radio frequency mode\n"); 785 return -EINVAL; 786 } 787 788 /*XXX: Can bwmode be used with dynamic mode ? 789 * (I don't think it supports 44MHz) */ 790 /* On 2425 initvals TURBO_SHORT is not present */ 791 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) { 792 turbo = AR5K_PHY_TURBO_MODE; 793 if (ah->ah_radio != AR5K_RF2425) 794 turbo |= AR5K_PHY_TURBO_SHORT; 795 } else if (ah->ah_bwmode != AR5K_BWMODE_DEFAULT) { 796 if (ah->ah_radio == AR5K_RF5413) { 797 mode |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ? 798 AR5K_PHY_MODE_HALF_RATE : 799 AR5K_PHY_MODE_QUARTER_RATE; 800 } else if (ah->ah_version == AR5K_AR5212) { 801 clock |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ? 802 AR5K_PHY_PLL_HALF_RATE : 803 AR5K_PHY_PLL_QUARTER_RATE; 804 } 805 } 806 807 } else { /* Reset the device */ 808 809 /* ...enable Atheros turbo mode if requested */ 810 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) 811 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE, 812 AR5K_PHY_TURBO); 813 } 814 815 if (ah->ah_version != AR5K_AR5210) { 816 817 /* ...update PLL if needed */ 818 if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) { 819 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL); 820 usleep_range(300, 350); 821 } 822 823 /* ...set the PHY operating mode */ 824 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE); 825 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO); 826 } 827 828 return 0; 829} 830 831 832/**************************************\ 833* Post-initvals register modifications * 834\**************************************/ 835 836/** 837 * ath5k_hw_tweak_initval_settings() - Tweak initial settings 838 * @ah: The &struct ath5k_hw 839 * @channel: The &struct ieee80211_channel 840 * 841 * Some settings are not handled on initvals, e.g. bwmode 842 * settings, some phy settings, workarounds etc that in general 843 * don't fit anywhere else or are too small to introduce a separate 844 * function for each one. So we have this function to handle 845 * them all during reset and complete card's initialization. 846 */ 847static void 848ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah, 849 struct ieee80211_channel *channel) 850{ 851 if (ah->ah_version == AR5K_AR5212 && 852 ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { 853 854 /* Setup ADC control */ 855 ath5k_hw_reg_write(ah, 856 (AR5K_REG_SM(2, 857 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) | 858 AR5K_REG_SM(2, 859 AR5K_PHY_ADC_CTL_INBUFGAIN_ON) | 860 AR5K_PHY_ADC_CTL_PWD_DAC_OFF | 861 AR5K_PHY_ADC_CTL_PWD_ADC_OFF), 862 AR5K_PHY_ADC_CTL); 863 864 865 866 /* Disable barker RSSI threshold */ 867 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL, 868 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR); 869 870 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL, 871 AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2); 872 873 /* Set the mute mask */ 874 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK); 875 } 876 877 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */ 878 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B) 879 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH); 880 881 /* Enable DCU double buffering */ 882 if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B) 883 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, 884 AR5K_TXCFG_DCU_DBL_BUF_DIS); 885 886 /* Set fast ADC */ 887 if ((ah->ah_radio == AR5K_RF5413) || 888 (ah->ah_radio == AR5K_RF2317) || 889 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) { 890 u32 fast_adc = true; 891 892 if (channel->center_freq == 2462 || 893 channel->center_freq == 2467) 894 fast_adc = 0; 895 896 /* Only update if needed */ 897 if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc) 898 ath5k_hw_reg_write(ah, fast_adc, 899 AR5K_PHY_FAST_ADC); 900 } 901 902 /* Fix for first revision of the RF5112 RF chipset */ 903 if (ah->ah_radio == AR5K_RF5112 && 904 ah->ah_radio_5ghz_revision < 905 AR5K_SREV_RAD_5112A) { 906 u32 data; 907 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD, 908 AR5K_PHY_CCKTXCTL); 909 if (channel->band == IEEE80211_BAND_5GHZ) 910 data = 0xffb81020; 911 else 912 data = 0xffb80d20; 913 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL); 914 } 915 916 if (ah->ah_mac_srev < AR5K_SREV_AR5211) { 917 /* Clear QCU/DCU clock gating register */ 918 ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT); 919 /* Set DAC/ADC delays */ 920 ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ_5311, 921 AR5K_PHY_SCAL); 922 /* Enable PCU FIFO corruption ECO */ 923 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211, 924 AR5K_DIAG_SW_ECO_ENABLE); 925 } 926 927 if (ah->ah_bwmode) { 928 /* Increase PHY switch and AGC settling time 929 * on turbo mode (ath5k_hw_commit_eeprom_settings 930 * will override settling time if available) */ 931 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) { 932 933 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING, 934 AR5K_PHY_SETTLING_AGC, 935 AR5K_AGC_SETTLING_TURBO); 936 937 /* XXX: Initvals indicate we only increase 938 * switch time on AR5212, 5211 and 5210 939 * only change agc time (bug?) */ 940 if (ah->ah_version == AR5K_AR5212) 941 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING, 942 AR5K_PHY_SETTLING_SWITCH, 943 AR5K_SWITCH_SETTLING_TURBO); 944 945 if (ah->ah_version == AR5K_AR5210) { 946 /* Set Frame Control Register */ 947 ath5k_hw_reg_write(ah, 948 (AR5K_PHY_FRAME_CTL_INI | 949 AR5K_PHY_TURBO_MODE | 950 AR5K_PHY_TURBO_SHORT | 0x2020), 951 AR5K_PHY_FRAME_CTL_5210); 952 } 953 /* On 5413 PHY force window length for half/quarter rate*/ 954 } else if ((ah->ah_mac_srev >= AR5K_SREV_AR5424) && 955 (ah->ah_mac_srev <= AR5K_SREV_AR5414)) { 956 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL_5211, 957 AR5K_PHY_FRAME_CTL_WIN_LEN, 958 3); 959 } 960 } else if (ah->ah_version == AR5K_AR5210) { 961 /* Set Frame Control Register for normal operation */ 962 ath5k_hw_reg_write(ah, (AR5K_PHY_FRAME_CTL_INI | 0x1020), 963 AR5K_PHY_FRAME_CTL_5210); 964 } 965} 966 967/** 968 * ath5k_hw_commit_eeprom_settings() - Commit settings from EEPROM 969 * @ah: The &struct ath5k_hw 970 * @channel: The &struct ieee80211_channel 971 * 972 * Use settings stored on EEPROM to properly initialize the card 973 * based on various infos and per-mode calibration data. 974 */ 975static void 976ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah, 977 struct ieee80211_channel *channel) 978{ 979 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 980 s16 cck_ofdm_pwr_delta; 981 u8 ee_mode; 982 983 /* TODO: Add support for AR5210 EEPROM */ 984 if (ah->ah_version == AR5K_AR5210) 985 return; 986 987 ee_mode = ath5k_eeprom_mode_from_channel(ah, channel); 988 989 /* Adjust power delta for channel 14 */ 990 if (channel->center_freq == 2484) 991 cck_ofdm_pwr_delta = 992 ((ee->ee_cck_ofdm_power_delta - 993 ee->ee_scaled_cck_delta) * 2) / 10; 994 else 995 cck_ofdm_pwr_delta = 996 (ee->ee_cck_ofdm_power_delta * 2) / 10; 997 998 /* Set CCK to OFDM power delta on tx power 999 * adjustment register */ 1000 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { 1001 if (channel->hw_value == AR5K_MODE_11G) 1002 ath5k_hw_reg_write(ah, 1003 AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1), 1004 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) | 1005 AR5K_REG_SM((cck_ofdm_pwr_delta * -1), 1006 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX), 1007 AR5K_PHY_TX_PWR_ADJ); 1008 else 1009 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ); 1010 } else { 1011 /* For older revs we scale power on sw during tx power 1012 * setup */ 1013 ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta; 1014 ah->ah_txpower.txp_cck_ofdm_gainf_delta = 1015 ee->ee_cck_ofdm_gain_delta; 1016 } 1017 1018 /* XXX: necessary here? is called from ath5k_hw_set_antenna_mode() 1019 * too */ 1020 ath5k_hw_set_antenna_switch(ah, ee_mode); 1021 1022 /* Noise floor threshold */ 1023 ath5k_hw_reg_write(ah, 1024 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]), 1025 AR5K_PHY_NFTHRES); 1026 1027 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) && 1028 (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) { 1029 /* Switch settling time (Turbo) */ 1030 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING, 1031 AR5K_PHY_SETTLING_SWITCH, 1032 ee->ee_switch_settling_turbo[ee_mode]); 1033 1034 /* Tx/Rx attenuation (Turbo) */ 1035 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN, 1036 AR5K_PHY_GAIN_TXRX_ATTEN, 1037 ee->ee_atn_tx_rx_turbo[ee_mode]); 1038 1039 /* ADC/PGA desired size (Turbo) */ 1040 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, 1041 AR5K_PHY_DESIRED_SIZE_ADC, 1042 ee->ee_adc_desired_size_turbo[ee_mode]); 1043 1044 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, 1045 AR5K_PHY_DESIRED_SIZE_PGA, 1046 ee->ee_pga_desired_size_turbo[ee_mode]); 1047 1048 /* Tx/Rx margin (Turbo) */ 1049 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ, 1050 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX, 1051 ee->ee_margin_tx_rx_turbo[ee_mode]); 1052 1053 } else { 1054 /* Switch settling time */ 1055 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING, 1056 AR5K_PHY_SETTLING_SWITCH, 1057 ee->ee_switch_settling[ee_mode]); 1058 1059 /* Tx/Rx attenuation */ 1060 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN, 1061 AR5K_PHY_GAIN_TXRX_ATTEN, 1062 ee->ee_atn_tx_rx[ee_mode]); 1063 1064 /* ADC/PGA desired size */ 1065 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, 1066 AR5K_PHY_DESIRED_SIZE_ADC, 1067 ee->ee_adc_desired_size[ee_mode]); 1068 1069 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, 1070 AR5K_PHY_DESIRED_SIZE_PGA, 1071 ee->ee_pga_desired_size[ee_mode]); 1072 1073 /* Tx/Rx margin */ 1074 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) 1075 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ, 1076 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX, 1077 ee->ee_margin_tx_rx[ee_mode]); 1078 } 1079 1080 /* XPA delays */ 1081 ath5k_hw_reg_write(ah, 1082 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) | 1083 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) | 1084 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) | 1085 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4); 1086 1087 /* XLNA delay */ 1088 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3, 1089 AR5K_PHY_RF_CTL3_TXE2XLNA_ON, 1090 ee->ee_tx_end2xlna_enable[ee_mode]); 1091 1092 /* Thresh64 (ANI) */ 1093 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF, 1094 AR5K_PHY_NF_THRESH62, 1095 ee->ee_thr_62[ee_mode]); 1096 1097 /* False detect backoff for channels 1098 * that have spur noise. Write the new 1099 * cyclic power RSSI threshold. */ 1100 if (ath5k_hw_chan_has_spur_noise(ah, channel)) 1101 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR, 1102 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1, 1103 AR5K_INIT_CYCRSSI_THR1 + 1104 ee->ee_false_detect[ee_mode]); 1105 else 1106 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR, 1107 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1, 1108 AR5K_INIT_CYCRSSI_THR1); 1109 1110 /* I/Q correction (set enable bit last to match HAL sources) */ 1111 /* TODO: Per channel i/q infos ? */ 1112 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) { 1113 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, 1114 ee->ee_i_cal[ee_mode]); 1115 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, 1116 ee->ee_q_cal[ee_mode]); 1117 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE); 1118 } 1119 1120 /* Heavy clipping -disable for now */ 1121 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1) 1122 ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE); 1123} 1124 1125 1126/*********************\ 1127* Main reset function * 1128\*********************/ 1129 1130/** 1131 * ath5k_hw_reset() - The main reset function 1132 * @ah: The &struct ath5k_hw 1133 * @op_mode: One of enum nl80211_iftype 1134 * @channel: The &struct ieee80211_channel 1135 * @fast: Enable fast channel switching 1136 * @skip_pcu: Skip pcu initialization 1137 * 1138 * This is the function we call each time we want to (re)initialize the 1139 * card and pass new settings to hw. We also call it when hw runs into 1140 * trouble to make it come back to a working state. 1141 * 1142 * Returns 0 on success, -EINVAL on false op_mode or channel infos, or -EIO 1143 * on failure. 1144 */ 1145int 1146ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode, 1147 struct ieee80211_channel *channel, bool fast, bool skip_pcu) 1148{ 1149 u32 s_seq[10], s_led[3], tsf_up, tsf_lo; 1150 u8 mode; 1151 int i, ret; 1152 1153 tsf_up = 0; 1154 tsf_lo = 0; 1155 mode = 0; 1156 1157 /* 1158 * Sanity check for fast flag 1159 * Fast channel change only available 1160 * on AR2413/AR5413. 1161 */ 1162 if (fast && (ah->ah_radio != AR5K_RF2413) && 1163 (ah->ah_radio != AR5K_RF5413)) 1164 fast = false; 1165 1166 /* Disable sleep clock operation 1167 * to avoid register access delay on certain 1168 * PHY registers */ 1169 if (ah->ah_version == AR5K_AR5212) 1170 ath5k_hw_set_sleep_clock(ah, false); 1171 1172 mode = channel->hw_value; 1173 switch (mode) { 1174 case AR5K_MODE_11A: 1175 break; 1176 case AR5K_MODE_11G: 1177 if (ah->ah_version <= AR5K_AR5211) { 1178 ATH5K_ERR(ah, 1179 "G mode not available on 5210/5211"); 1180 return -EINVAL; 1181 } 1182 break; 1183 case AR5K_MODE_11B: 1184 if (ah->ah_version < AR5K_AR5211) { 1185 ATH5K_ERR(ah, 1186 "B mode not available on 5210"); 1187 return -EINVAL; 1188 } 1189 break; 1190 default: 1191 ATH5K_ERR(ah, 1192 "invalid channel: %d\n", channel->center_freq); 1193 return -EINVAL; 1194 } 1195 1196 /* 1197 * If driver requested fast channel change and DMA has stopped 1198 * go on. If it fails continue with a normal reset. 1199 */ 1200 if (fast) { 1201 ret = ath5k_hw_phy_init(ah, channel, mode, true); 1202 if (ret) { 1203 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 1204 "fast chan change failed, falling back to normal reset\n"); 1205 /* Non fatal, can happen eg. 1206 * on mode change */ 1207 ret = 0; 1208 } else { 1209 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 1210 "fast chan change successful\n"); 1211 return 0; 1212 } 1213 } 1214 1215 /* 1216 * Save some registers before a reset 1217 */ 1218 if (ah->ah_version != AR5K_AR5210) { 1219 /* 1220 * Save frame sequence count 1221 * For revs. after Oahu, only save 1222 * seq num for DCU 0 (Global seq num) 1223 */ 1224 if (ah->ah_mac_srev < AR5K_SREV_AR5211) { 1225 1226 for (i = 0; i < 10; i++) 1227 s_seq[i] = ath5k_hw_reg_read(ah, 1228 AR5K_QUEUE_DCU_SEQNUM(i)); 1229 1230 } else { 1231 s_seq[0] = ath5k_hw_reg_read(ah, 1232 AR5K_QUEUE_DCU_SEQNUM(0)); 1233 } 1234 1235 /* TSF accelerates on AR5211 during reset 1236 * As a workaround save it here and restore 1237 * it later so that it's back in time after 1238 * reset. This way it'll get re-synced on the 1239 * next beacon without breaking ad-hoc. 1240 * 1241 * On AR5212 TSF is almost preserved across a 1242 * reset so it stays back in time anyway and 1243 * we don't have to save/restore it. 1244 * 1245 * XXX: Since this breaks power saving we have 1246 * to disable power saving until we receive the 1247 * next beacon, so we can resync beacon timers */ 1248 if (ah->ah_version == AR5K_AR5211) { 1249 tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32); 1250 tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32); 1251 } 1252 } 1253 1254 1255 /*GPIOs*/ 1256 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & 1257 AR5K_PCICFG_LEDSTATE; 1258 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR); 1259 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO); 1260 1261 1262 /* 1263 * Since we are going to write rf buffer 1264 * check if we have any pending gain_F 1265 * optimization settings 1266 */ 1267 if (ah->ah_version == AR5K_AR5212 && 1268 (ah->ah_radio <= AR5K_RF5112)) { 1269 if (!fast && ah->ah_rf_banks != NULL) 1270 ath5k_hw_gainf_calibrate(ah); 1271 } 1272 1273 /* Wakeup the device */ 1274 ret = ath5k_hw_nic_wakeup(ah, channel); 1275 if (ret) 1276 return ret; 1277 1278 /* PHY access enable */ 1279 if (ah->ah_mac_srev >= AR5K_SREV_AR5211) 1280 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); 1281 else 1282 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40, 1283 AR5K_PHY(0)); 1284 1285 /* Write initial settings */ 1286 ret = ath5k_hw_write_initvals(ah, mode, skip_pcu); 1287 if (ret) 1288 return ret; 1289 1290 /* Initialize core clock settings */ 1291 ath5k_hw_init_core_clock(ah); 1292 1293 /* 1294 * Tweak initval settings for revised 1295 * chipsets and add some more config 1296 * bits 1297 */ 1298 ath5k_hw_tweak_initval_settings(ah, channel); 1299 1300 /* Commit values from EEPROM */ 1301 ath5k_hw_commit_eeprom_settings(ah, channel); 1302 1303 1304 /* 1305 * Restore saved values 1306 */ 1307 1308 /* Seqnum, TSF */ 1309 if (ah->ah_version != AR5K_AR5210) { 1310 if (ah->ah_mac_srev < AR5K_SREV_AR5211) { 1311 for (i = 0; i < 10; i++) 1312 ath5k_hw_reg_write(ah, s_seq[i], 1313 AR5K_QUEUE_DCU_SEQNUM(i)); 1314 } else { 1315 ath5k_hw_reg_write(ah, s_seq[0], 1316 AR5K_QUEUE_DCU_SEQNUM(0)); 1317 } 1318 1319 if (ah->ah_version == AR5K_AR5211) { 1320 ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32); 1321 ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32); 1322 } 1323 } 1324 1325 /* Ledstate */ 1326 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]); 1327 1328 /* Gpio settings */ 1329 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR); 1330 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO); 1331 1332 /* 1333 * Initialize PCU 1334 */ 1335 ath5k_hw_pcu_init(ah, op_mode); 1336 1337 /* 1338 * Initialize PHY 1339 */ 1340 ret = ath5k_hw_phy_init(ah, channel, mode, false); 1341 if (ret) { 1342 ATH5K_ERR(ah, 1343 "failed to initialize PHY (%i) !\n", ret); 1344 return ret; 1345 } 1346 1347 /* 1348 * Configure QCUs/DCUs 1349 */ 1350 ret = ath5k_hw_init_queues(ah); 1351 if (ret) 1352 return ret; 1353 1354 1355 /* 1356 * Initialize DMA/Interrupts 1357 */ 1358 ath5k_hw_dma_init(ah); 1359 1360 1361 /* 1362 * Enable 32KHz clock function for AR5212+ chips 1363 * Set clocks to 32KHz operation and use an 1364 * external 32KHz crystal when sleeping if one 1365 * exists. 1366 * Disabled by default because it is also disabled in 1367 * other drivers and it is known to cause stability 1368 * issues on some devices 1369 */ 1370 if (ah->ah_use_32khz_clock && ah->ah_version == AR5K_AR5212 && 1371 op_mode != NL80211_IFTYPE_AP) 1372 ath5k_hw_set_sleep_clock(ah, true); 1373 1374 /* 1375 * Disable beacons and reset the TSF 1376 */ 1377 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE); 1378 ath5k_hw_reset_tsf(ah); 1379 return 0; 1380} 1381