1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 *
18 */
19
20/*************************************\
21* EEPROM access functions and helpers *
22\*************************************/
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/slab.h>
27
28#include "ath5k.h"
29#include "reg.h"
30#include "debug.h"
31
32
33/******************\
34* Helper functions *
35\******************/
36
37/*
38 * Translate binary channel representation in EEPROM to frequency
39 */
40static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
41							unsigned int mode)
42{
43	u16 val;
44
45	if (bin == AR5K_EEPROM_CHANNEL_DIS)
46		return bin;
47
48	if (mode == AR5K_EEPROM_MODE_11A) {
49		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
50			val = (5 * bin) + 4800;
51		else
52			val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
53				(bin * 10) + 5100;
54	} else {
55		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
56			val = bin + 2300;
57		else
58			val = bin + 2400;
59	}
60
61	return val;
62}
63
64
65/*********\
66* Parsers *
67\*********/
68
69/*
70 * Initialize eeprom & capabilities structs
71 */
72static int
73ath5k_eeprom_init_header(struct ath5k_hw *ah)
74{
75	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
76	u16 val;
77	u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
78
79	/*
80	 * Read values from EEPROM and store them in the capability structure
81	 */
82	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
83	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
84	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
85	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
86	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
87
88	/* Return if we have an old EEPROM */
89	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
90		return 0;
91
92	/*
93	 * Validate the checksum of the EEPROM date. There are some
94	 * devices with invalid EEPROMs.
95	 */
96	AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
97	if (val) {
98		eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
99			   AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
100		AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
101		eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
102
103		/*
104		 * Fail safe check to prevent stupid loops due
105		 * to busted EEPROMs. XXX: This value is likely too
106		 * big still, waiting on a better value.
107		 */
108		if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
109			ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
110				  "%d (0x%04x) max expected: %d (0x%04x)\n",
111				  eep_max, eep_max,
112				  3 * AR5K_EEPROM_INFO_MAX,
113				  3 * AR5K_EEPROM_INFO_MAX);
114			return -EIO;
115		}
116	}
117
118	for (cksum = 0, offset = 0; offset < eep_max; offset++) {
119		AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
120		cksum ^= val;
121	}
122	if (cksum != AR5K_EEPROM_INFO_CKSUM) {
123		ATH5K_ERR(ah, "Invalid EEPROM "
124			  "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
125			  cksum, eep_max,
126			  eep_max == AR5K_EEPROM_INFO_MAX ?
127				"default size" : "custom size");
128		return -EIO;
129	}
130
131	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
132	    ee_ant_gain);
133
134	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
135		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
136		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
137
138		/* XXX: Don't know which versions include these two */
139		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
140
141		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
142			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
143
144		if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
145			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
146			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
147			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
148		}
149	}
150
151	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
152		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
153		ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
154		ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
155
156		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
157		ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
158		ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
159	}
160
161	AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
162
163	if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
164		ee->ee_is_hb63 = true;
165	else
166		ee->ee_is_hb63 = false;
167
168	AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
169	ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
170	ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
171
172	/* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
173	 * and enable serdes programming if needed.
174	 *
175	 * XXX: Serdes values seem to be fixed so
176	 * no need to read them here, we write them
177	 * during ath5k_hw_init */
178	AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
179	ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
180							true : false;
181
182	return 0;
183}
184
185
186/*
187 * Read antenna infos from eeprom
188 */
189static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
190		unsigned int mode)
191{
192	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
193	u32 o = *offset;
194	u16 val;
195	int i = 0;
196
197	AR5K_EEPROM_READ(o++, val);
198	ee->ee_switch_settling[mode]	= (val >> 8) & 0x7f;
199	ee->ee_atn_tx_rx[mode]		= (val >> 2) & 0x3f;
200	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
201
202	AR5K_EEPROM_READ(o++, val);
203	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
204	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
205	ee->ee_ant_control[mode][i++]	= val & 0x3f;
206
207	AR5K_EEPROM_READ(o++, val);
208	ee->ee_ant_control[mode][i++]	= (val >> 10) & 0x3f;
209	ee->ee_ant_control[mode][i++]	= (val >> 4) & 0x3f;
210	ee->ee_ant_control[mode][i]	= (val << 2) & 0x3f;
211
212	AR5K_EEPROM_READ(o++, val);
213	ee->ee_ant_control[mode][i++]	|= (val >> 14) & 0x3;
214	ee->ee_ant_control[mode][i++]	= (val >> 8) & 0x3f;
215	ee->ee_ant_control[mode][i++]	= (val >> 2) & 0x3f;
216	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
217
218	AR5K_EEPROM_READ(o++, val);
219	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
220	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
221	ee->ee_ant_control[mode][i++]	= val & 0x3f;
222
223	/* Get antenna switch tables */
224	ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
225	    (ee->ee_ant_control[mode][0] << 4);
226	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
227	     ee->ee_ant_control[mode][1]	|
228	    (ee->ee_ant_control[mode][2] << 6)	|
229	    (ee->ee_ant_control[mode][3] << 12) |
230	    (ee->ee_ant_control[mode][4] << 18) |
231	    (ee->ee_ant_control[mode][5] << 24);
232	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
233	     ee->ee_ant_control[mode][6]	|
234	    (ee->ee_ant_control[mode][7] << 6)	|
235	    (ee->ee_ant_control[mode][8] << 12) |
236	    (ee->ee_ant_control[mode][9] << 18) |
237	    (ee->ee_ant_control[mode][10] << 24);
238
239	/* return new offset */
240	*offset = o;
241
242	return 0;
243}
244
245/*
246 * Read supported modes and some mode-specific calibration data
247 * from eeprom
248 */
249static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
250		unsigned int mode)
251{
252	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
253	u32 o = *offset;
254	u16 val;
255
256	ee->ee_n_piers[mode] = 0;
257	AR5K_EEPROM_READ(o++, val);
258	ee->ee_adc_desired_size[mode]	= (s8)((val >> 8) & 0xff);
259	switch (mode) {
260	case AR5K_EEPROM_MODE_11A:
261		ee->ee_ob[mode][3]	= (val >> 5) & 0x7;
262		ee->ee_db[mode][3]	= (val >> 2) & 0x7;
263		ee->ee_ob[mode][2]	= (val << 1) & 0x7;
264
265		AR5K_EEPROM_READ(o++, val);
266		ee->ee_ob[mode][2]	|= (val >> 15) & 0x1;
267		ee->ee_db[mode][2]	= (val >> 12) & 0x7;
268		ee->ee_ob[mode][1]	= (val >> 9) & 0x7;
269		ee->ee_db[mode][1]	= (val >> 6) & 0x7;
270		ee->ee_ob[mode][0]	= (val >> 3) & 0x7;
271		ee->ee_db[mode][0]	= val & 0x7;
272		break;
273	case AR5K_EEPROM_MODE_11G:
274	case AR5K_EEPROM_MODE_11B:
275		ee->ee_ob[mode][1]	= (val >> 4) & 0x7;
276		ee->ee_db[mode][1]	= val & 0x7;
277		break;
278	}
279
280	AR5K_EEPROM_READ(o++, val);
281	ee->ee_tx_end2xlna_enable[mode]	= (val >> 8) & 0xff;
282	ee->ee_thr_62[mode]		= val & 0xff;
283
284	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
285		ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
286
287	AR5K_EEPROM_READ(o++, val);
288	ee->ee_tx_end2xpa_disable[mode]	= (val >> 8) & 0xff;
289	ee->ee_tx_frm2xpa_enable[mode]	= val & 0xff;
290
291	AR5K_EEPROM_READ(o++, val);
292	ee->ee_pga_desired_size[mode]	= (val >> 8) & 0xff;
293
294	if ((val & 0xff) & 0x80)
295		ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
296	else
297		ee->ee_noise_floor_thr[mode] = val & 0xff;
298
299	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
300		ee->ee_noise_floor_thr[mode] =
301		    mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
302
303	AR5K_EEPROM_READ(o++, val);
304	ee->ee_xlna_gain[mode]		= (val >> 5) & 0xff;
305	ee->ee_x_gain[mode]		= (val >> 1) & 0xf;
306	ee->ee_xpd[mode]		= val & 0x1;
307
308	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
309	    mode != AR5K_EEPROM_MODE_11B)
310		ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
311
312	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
313		AR5K_EEPROM_READ(o++, val);
314		ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
315
316		if (mode == AR5K_EEPROM_MODE_11A)
317			ee->ee_xr_power[mode] = val & 0x3f;
318		else {
319			/* b_DB_11[bg] and b_OB_11[bg] */
320			ee->ee_ob[mode][0] = val & 0x7;
321			ee->ee_db[mode][0] = (val >> 3) & 0x7;
322		}
323	}
324
325	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
326		ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
327		ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
328	} else {
329		ee->ee_i_gain[mode] = (val >> 13) & 0x7;
330
331		AR5K_EEPROM_READ(o++, val);
332		ee->ee_i_gain[mode] |= (val << 3) & 0x38;
333
334		if (mode == AR5K_EEPROM_MODE_11G) {
335			ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
336			if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
337				ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
338		}
339	}
340
341	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
342			mode == AR5K_EEPROM_MODE_11A) {
343		ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
344		ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
345	}
346
347	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
348		goto done;
349
350	/* Note: >= v5 have bg freq piers on another location
351	 * so these freq piers are ignored for >= v5 (should be 0xff
352	 * anyway) */
353	switch (mode) {
354	case AR5K_EEPROM_MODE_11A:
355		if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
356			break;
357
358		AR5K_EEPROM_READ(o++, val);
359		ee->ee_margin_tx_rx[mode] = val & 0x3f;
360		break;
361	case AR5K_EEPROM_MODE_11B:
362		AR5K_EEPROM_READ(o++, val);
363
364		ee->ee_pwr_cal_b[0].freq =
365			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
366		if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
367			ee->ee_n_piers[mode]++;
368
369		ee->ee_pwr_cal_b[1].freq =
370			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
371		if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
372			ee->ee_n_piers[mode]++;
373
374		AR5K_EEPROM_READ(o++, val);
375		ee->ee_pwr_cal_b[2].freq =
376			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
377		if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
378			ee->ee_n_piers[mode]++;
379
380		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
381			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
382		break;
383	case AR5K_EEPROM_MODE_11G:
384		AR5K_EEPROM_READ(o++, val);
385
386		ee->ee_pwr_cal_g[0].freq =
387			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
388		if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
389			ee->ee_n_piers[mode]++;
390
391		ee->ee_pwr_cal_g[1].freq =
392			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
393		if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
394			ee->ee_n_piers[mode]++;
395
396		AR5K_EEPROM_READ(o++, val);
397		ee->ee_turbo_max_power[mode] = val & 0x7f;
398		ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
399
400		AR5K_EEPROM_READ(o++, val);
401		ee->ee_pwr_cal_g[2].freq =
402			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
403		if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
404			ee->ee_n_piers[mode]++;
405
406		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
407			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
408
409		AR5K_EEPROM_READ(o++, val);
410		ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
411		ee->ee_q_cal[mode] = val & 0x1f;
412
413		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
414			AR5K_EEPROM_READ(o++, val);
415			ee->ee_cck_ofdm_gain_delta = val & 0xff;
416		}
417		break;
418	}
419
420	/*
421	 * Read turbo mode information on newer EEPROM versions
422	 */
423	if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
424		goto done;
425
426	switch (mode) {
427	case AR5K_EEPROM_MODE_11A:
428		ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
429
430		ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
431		AR5K_EEPROM_READ(o++, val);
432		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
433		ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
434
435		ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
436		AR5K_EEPROM_READ(o++, val);
437		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
438		ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
439
440		if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
441			ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
442		break;
443	case AR5K_EEPROM_MODE_11G:
444		ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
445
446		ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
447		AR5K_EEPROM_READ(o++, val);
448		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
449		ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
450
451		ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
452		AR5K_EEPROM_READ(o++, val);
453		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
454		ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
455		break;
456	}
457
458done:
459	/* return new offset */
460	*offset = o;
461
462	return 0;
463}
464
465/* Read mode-specific data (except power calibration data) */
466static int
467ath5k_eeprom_init_modes(struct ath5k_hw *ah)
468{
469	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
470	u32 mode_offset[3];
471	unsigned int mode;
472	u32 offset;
473	int ret;
474
475	/*
476	 * Get values for all modes
477	 */
478	mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
479	mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
480	mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
481
482	ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
483		AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
484
485	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
486		offset = mode_offset[mode];
487
488		ret = ath5k_eeprom_read_ants(ah, &offset, mode);
489		if (ret)
490			return ret;
491
492		ret = ath5k_eeprom_read_modes(ah, &offset, mode);
493		if (ret)
494			return ret;
495	}
496
497	/* override for older eeprom versions for better performance */
498	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
499		ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
500		ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
501		ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
502	}
503
504	return 0;
505}
506
507/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
508 * frequency mask) */
509static inline int
510ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
511			struct ath5k_chan_pcal_info *pc, unsigned int mode)
512{
513	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
514	int o = *offset;
515	int i = 0;
516	u8 freq1, freq2;
517	u16 val;
518
519	ee->ee_n_piers[mode] = 0;
520	while (i < max) {
521		AR5K_EEPROM_READ(o++, val);
522
523		freq1 = val & 0xff;
524		if (!freq1)
525			break;
526
527		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
528				freq1, mode);
529		ee->ee_n_piers[mode]++;
530
531		freq2 = (val >> 8) & 0xff;
532		if (!freq2)
533			break;
534
535		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
536				freq2, mode);
537		ee->ee_n_piers[mode]++;
538	}
539
540	/* return new offset */
541	*offset = o;
542
543	return 0;
544}
545
546/* Read frequency piers for 802.11a */
547static int
548ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
549{
550	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
551	struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
552	int i;
553	u16 val;
554	u8 mask;
555
556	if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
557		ath5k_eeprom_read_freq_list(ah, &offset,
558			AR5K_EEPROM_N_5GHZ_CHAN, pcal,
559			AR5K_EEPROM_MODE_11A);
560	} else {
561		mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
562
563		AR5K_EEPROM_READ(offset++, val);
564		pcal[0].freq  = (val >> 9) & mask;
565		pcal[1].freq  = (val >> 2) & mask;
566		pcal[2].freq  = (val << 5) & mask;
567
568		AR5K_EEPROM_READ(offset++, val);
569		pcal[2].freq |= (val >> 11) & 0x1f;
570		pcal[3].freq  = (val >> 4) & mask;
571		pcal[4].freq  = (val << 3) & mask;
572
573		AR5K_EEPROM_READ(offset++, val);
574		pcal[4].freq |= (val >> 13) & 0x7;
575		pcal[5].freq  = (val >> 6) & mask;
576		pcal[6].freq  = (val << 1) & mask;
577
578		AR5K_EEPROM_READ(offset++, val);
579		pcal[6].freq |= (val >> 15) & 0x1;
580		pcal[7].freq  = (val >> 8) & mask;
581		pcal[8].freq  = (val >> 1) & mask;
582		pcal[9].freq  = (val << 6) & mask;
583
584		AR5K_EEPROM_READ(offset++, val);
585		pcal[9].freq |= (val >> 10) & 0x3f;
586
587		/* Fixed number of piers */
588		ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
589
590		for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
591			pcal[i].freq = ath5k_eeprom_bin2freq(ee,
592				pcal[i].freq, AR5K_EEPROM_MODE_11A);
593		}
594	}
595
596	return 0;
597}
598
599/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
600static inline int
601ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
602{
603	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
604	struct ath5k_chan_pcal_info *pcal;
605
606	switch (mode) {
607	case AR5K_EEPROM_MODE_11B:
608		pcal = ee->ee_pwr_cal_b;
609		break;
610	case AR5K_EEPROM_MODE_11G:
611		pcal = ee->ee_pwr_cal_g;
612		break;
613	default:
614		return -EINVAL;
615	}
616
617	ath5k_eeprom_read_freq_list(ah, &offset,
618		AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
619		mode);
620
621	return 0;
622}
623
624
625/*
626 * Read power calibration for RF5111 chips
627 *
628 * For RF5111 we have an XPD -eXternal Power Detector- curve
629 * for each calibrated channel. Each curve has 0,5dB Power steps
630 * on x axis and PCDAC steps (offsets) on y axis and looks like an
631 * exponential function. To recreate the curve we read 11 points
632 * here and interpolate later.
633 */
634
635/* Used to match PCDAC steps with power values on RF5111 chips
636 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
637 * steps that match with the power values we read from eeprom. On
638 * older eeprom versions (< 3.2) these steps are equally spaced at
639 * 10% of the pcdac curve -until the curve reaches its maximum-
640 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
641 * these 11 steps are spaced in a different way. This function returns
642 * the pcdac steps based on eeprom version and curve min/max so that we
643 * can have pcdac/pwr points.
644 */
645static inline void
646ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
647{
648	static const u16 intercepts3[] = {
649		0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
650	};
651	static const u16 intercepts3_2[] = {
652		0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
653	};
654	const u16 *ip;
655	int i;
656
657	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
658		ip = intercepts3_2;
659	else
660		ip = intercepts3;
661
662	for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
663		vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
664}
665
666static int
667ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
668{
669	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
670	struct ath5k_chan_pcal_info *chinfo;
671	u8 pier, pdg;
672
673	switch (mode) {
674	case AR5K_EEPROM_MODE_11A:
675		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
676			return 0;
677		chinfo = ee->ee_pwr_cal_a;
678		break;
679	case AR5K_EEPROM_MODE_11B:
680		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
681			return 0;
682		chinfo = ee->ee_pwr_cal_b;
683		break;
684	case AR5K_EEPROM_MODE_11G:
685		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
686			return 0;
687		chinfo = ee->ee_pwr_cal_g;
688		break;
689	default:
690		return -EINVAL;
691	}
692
693	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
694		if (!chinfo[pier].pd_curves)
695			continue;
696
697		for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
698			struct ath5k_pdgain_info *pd =
699					&chinfo[pier].pd_curves[pdg];
700
701			kfree(pd->pd_step);
702			kfree(pd->pd_pwr);
703		}
704
705		kfree(chinfo[pier].pd_curves);
706	}
707
708	return 0;
709}
710
711/* Convert RF5111 specific data to generic raw data
712 * used by interpolation code */
713static int
714ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
715				struct ath5k_chan_pcal_info *chinfo)
716{
717	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
718	struct ath5k_chan_pcal_info_rf5111 *pcinfo;
719	struct ath5k_pdgain_info *pd;
720	u8 pier, point, idx;
721	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
722
723	/* Fill raw data for each calibration pier */
724	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
725
726		pcinfo = &chinfo[pier].rf5111_info;
727
728		/* Allocate pd_curves for this cal pier */
729		chinfo[pier].pd_curves =
730			kcalloc(AR5K_EEPROM_N_PD_CURVES,
731				sizeof(struct ath5k_pdgain_info),
732				GFP_KERNEL);
733
734		if (!chinfo[pier].pd_curves)
735			goto err_out;
736
737		/* Only one curve for RF5111
738		 * find out which one and place
739		 * in pd_curves.
740		 * Note: ee_x_gain is reversed here */
741		for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
742
743			if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
744				pdgain_idx[0] = idx;
745				break;
746			}
747		}
748
749		ee->ee_pd_gains[mode] = 1;
750
751		pd = &chinfo[pier].pd_curves[idx];
752
753		pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
754
755		/* Allocate pd points for this curve */
756		pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
757					sizeof(u8), GFP_KERNEL);
758		if (!pd->pd_step)
759			goto err_out;
760
761		pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
762					sizeof(s16), GFP_KERNEL);
763		if (!pd->pd_pwr)
764			goto err_out;
765
766		/* Fill raw dataset
767		 * (convert power to 0.25dB units
768		 * for RF5112 compatibility) */
769		for (point = 0; point < pd->pd_points; point++) {
770
771			/* Absolute values */
772			pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
773
774			/* Already sorted */
775			pd->pd_step[point] = pcinfo->pcdac[point];
776		}
777
778		/* Set min/max pwr */
779		chinfo[pier].min_pwr = pd->pd_pwr[0];
780		chinfo[pier].max_pwr = pd->pd_pwr[10];
781
782	}
783
784	return 0;
785
786err_out:
787	ath5k_eeprom_free_pcal_info(ah, mode);
788	return -ENOMEM;
789}
790
791/* Parse EEPROM data */
792static int
793ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
794{
795	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
796	struct ath5k_chan_pcal_info *pcal;
797	int offset, ret;
798	int i;
799	u16 val;
800
801	offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
802	switch (mode) {
803	case AR5K_EEPROM_MODE_11A:
804		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
805			return 0;
806
807		ret = ath5k_eeprom_init_11a_pcal_freq(ah,
808			offset + AR5K_EEPROM_GROUP1_OFFSET);
809		if (ret < 0)
810			return ret;
811
812		offset += AR5K_EEPROM_GROUP2_OFFSET;
813		pcal = ee->ee_pwr_cal_a;
814		break;
815	case AR5K_EEPROM_MODE_11B:
816		if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
817		    !AR5K_EEPROM_HDR_11G(ee->ee_header))
818			return 0;
819
820		pcal = ee->ee_pwr_cal_b;
821		offset += AR5K_EEPROM_GROUP3_OFFSET;
822
823		/* fixed piers */
824		pcal[0].freq = 2412;
825		pcal[1].freq = 2447;
826		pcal[2].freq = 2484;
827		ee->ee_n_piers[mode] = 3;
828		break;
829	case AR5K_EEPROM_MODE_11G:
830		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
831			return 0;
832
833		pcal = ee->ee_pwr_cal_g;
834		offset += AR5K_EEPROM_GROUP4_OFFSET;
835
836		/* fixed piers */
837		pcal[0].freq = 2312;
838		pcal[1].freq = 2412;
839		pcal[2].freq = 2484;
840		ee->ee_n_piers[mode] = 3;
841		break;
842	default:
843		return -EINVAL;
844	}
845
846	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
847		struct ath5k_chan_pcal_info_rf5111 *cdata =
848			&pcal[i].rf5111_info;
849
850		AR5K_EEPROM_READ(offset++, val);
851		cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
852		cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
853		cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
854
855		AR5K_EEPROM_READ(offset++, val);
856		cdata->pwr[0] |= ((val >> 14) & 0x3);
857		cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
858		cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
859		cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
860
861		AR5K_EEPROM_READ(offset++, val);
862		cdata->pwr[3] |= ((val >> 12) & 0xf);
863		cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
864		cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
865
866		AR5K_EEPROM_READ(offset++, val);
867		cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
868		cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
869		cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
870
871		AR5K_EEPROM_READ(offset++, val);
872		cdata->pwr[8] |= ((val >> 14) & 0x3);
873		cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
874		cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
875
876		ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
877			cdata->pcdac_max, cdata->pcdac);
878	}
879
880	return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
881}
882
883
884/*
885 * Read power calibration for RF5112 chips
886 *
887 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
888 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
889 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
890 * power steps on x axis and PCDAC steps on y axis and looks like a
891 * linear function. To recreate the curve and pass the power values
892 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
893 * and 3 points for xpd 3 (higher gain -> lower power) here and
894 * interpolate later.
895 *
896 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
897 */
898
899/* Convert RF5112 specific data to generic raw data
900 * used by interpolation code */
901static int
902ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
903				struct ath5k_chan_pcal_info *chinfo)
904{
905	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
906	struct ath5k_chan_pcal_info_rf5112 *pcinfo;
907	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
908	unsigned int pier, pdg, point;
909
910	/* Fill raw data for each calibration pier */
911	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
912
913		pcinfo = &chinfo[pier].rf5112_info;
914
915		/* Allocate pd_curves for this cal pier */
916		chinfo[pier].pd_curves =
917				kcalloc(AR5K_EEPROM_N_PD_CURVES,
918					sizeof(struct ath5k_pdgain_info),
919					GFP_KERNEL);
920
921		if (!chinfo[pier].pd_curves)
922			goto err_out;
923
924		/* Fill pd_curves */
925		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
926
927			u8 idx = pdgain_idx[pdg];
928			struct ath5k_pdgain_info *pd =
929					&chinfo[pier].pd_curves[idx];
930
931			/* Lowest gain curve (max power) */
932			if (pdg == 0) {
933				/* One more point for better accuracy */
934				pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
935
936				/* Allocate pd points for this curve */
937				pd->pd_step = kcalloc(pd->pd_points,
938						sizeof(u8), GFP_KERNEL);
939
940				if (!pd->pd_step)
941					goto err_out;
942
943				pd->pd_pwr = kcalloc(pd->pd_points,
944						sizeof(s16), GFP_KERNEL);
945
946				if (!pd->pd_pwr)
947					goto err_out;
948
949				/* Fill raw dataset
950				 * (all power levels are in 0.25dB units) */
951				pd->pd_step[0] = pcinfo->pcdac_x0[0];
952				pd->pd_pwr[0] = pcinfo->pwr_x0[0];
953
954				for (point = 1; point < pd->pd_points;
955				point++) {
956					/* Absolute values */
957					pd->pd_pwr[point] =
958						pcinfo->pwr_x0[point];
959
960					/* Deltas */
961					pd->pd_step[point] =
962						pd->pd_step[point - 1] +
963						pcinfo->pcdac_x0[point];
964				}
965
966				/* Set min power for this frequency */
967				chinfo[pier].min_pwr = pd->pd_pwr[0];
968
969			/* Highest gain curve (min power) */
970			} else if (pdg == 1) {
971
972				pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
973
974				/* Allocate pd points for this curve */
975				pd->pd_step = kcalloc(pd->pd_points,
976						sizeof(u8), GFP_KERNEL);
977
978				if (!pd->pd_step)
979					goto err_out;
980
981				pd->pd_pwr = kcalloc(pd->pd_points,
982						sizeof(s16), GFP_KERNEL);
983
984				if (!pd->pd_pwr)
985					goto err_out;
986
987				/* Fill raw dataset
988				 * (all power levels are in 0.25dB units) */
989				for (point = 0; point < pd->pd_points;
990				point++) {
991					/* Absolute values */
992					pd->pd_pwr[point] =
993						pcinfo->pwr_x3[point];
994
995					/* Fixed points */
996					pd->pd_step[point] =
997						pcinfo->pcdac_x3[point];
998				}
999
1000				/* Since we have a higher gain curve
1001				 * override min power */
1002				chinfo[pier].min_pwr = pd->pd_pwr[0];
1003			}
1004		}
1005	}
1006
1007	return 0;
1008
1009err_out:
1010	ath5k_eeprom_free_pcal_info(ah, mode);
1011	return -ENOMEM;
1012}
1013
1014/* Parse EEPROM data */
1015static int
1016ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1017{
1018	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1019	struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1020	struct ath5k_chan_pcal_info *gen_chan_info;
1021	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1022	u32 offset;
1023	u8 i, c;
1024	u16 val;
1025	u8 pd_gains = 0;
1026
1027	/* Count how many curves we have and
1028	 * identify them (which one of the 4
1029	 * available curves we have on each count).
1030	 * Curves are stored from lower (x0) to
1031	 * higher (x3) gain */
1032	for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1033		/* ee_x_gain[mode] is x gain mask */
1034		if ((ee->ee_x_gain[mode] >> i) & 0x1)
1035			pdgain_idx[pd_gains++] = i;
1036	}
1037	ee->ee_pd_gains[mode] = pd_gains;
1038
1039	if (pd_gains == 0 || pd_gains > 2)
1040		return -EINVAL;
1041
1042	switch (mode) {
1043	case AR5K_EEPROM_MODE_11A:
1044		/*
1045		 * Read 5GHz EEPROM channels
1046		 */
1047		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1048		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1049
1050		offset += AR5K_EEPROM_GROUP2_OFFSET;
1051		gen_chan_info = ee->ee_pwr_cal_a;
1052		break;
1053	case AR5K_EEPROM_MODE_11B:
1054		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1055		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1056			offset += AR5K_EEPROM_GROUP3_OFFSET;
1057
1058		/* NB: frequency piers parsed during mode init */
1059		gen_chan_info = ee->ee_pwr_cal_b;
1060		break;
1061	case AR5K_EEPROM_MODE_11G:
1062		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1063		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1064			offset += AR5K_EEPROM_GROUP4_OFFSET;
1065		else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1066			offset += AR5K_EEPROM_GROUP2_OFFSET;
1067
1068		/* NB: frequency piers parsed during mode init */
1069		gen_chan_info = ee->ee_pwr_cal_g;
1070		break;
1071	default:
1072		return -EINVAL;
1073	}
1074
1075	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1076		chan_pcal_info = &gen_chan_info[i].rf5112_info;
1077
1078		/* Power values in quarter dB
1079		 * for the lower xpd gain curve
1080		 * (0 dBm -> higher output power) */
1081		for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1082			AR5K_EEPROM_READ(offset++, val);
1083			chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1084			chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1085		}
1086
1087		/* PCDAC steps
1088		 * corresponding to the above power
1089		 * measurements */
1090		AR5K_EEPROM_READ(offset++, val);
1091		chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1092		chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1093		chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1094
1095		/* Power values in quarter dB
1096		 * for the higher xpd gain curve
1097		 * (18 dBm -> lower output power) */
1098		AR5K_EEPROM_READ(offset++, val);
1099		chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1100		chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1101
1102		AR5K_EEPROM_READ(offset++, val);
1103		chan_pcal_info->pwr_x3[2] = (val & 0xff);
1104
1105		/* PCDAC steps
1106		 * corresponding to the above power
1107		 * measurements (fixed) */
1108		chan_pcal_info->pcdac_x3[0] = 20;
1109		chan_pcal_info->pcdac_x3[1] = 35;
1110		chan_pcal_info->pcdac_x3[2] = 63;
1111
1112		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1113			chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1114
1115			/* Last xpd0 power level is also channel maximum */
1116			gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1117		} else {
1118			chan_pcal_info->pcdac_x0[0] = 1;
1119			gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1120		}
1121
1122	}
1123
1124	return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1125}
1126
1127
1128/*
1129 * Read power calibration for RF2413 chips
1130 *
1131 * For RF2413 we have a Power to PDDAC table (Power Detector)
1132 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1133 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1134 * axis and looks like an exponential function like the RF5111 curve.
1135 *
1136 * To recreate the curves we read here the points and interpolate
1137 * later. Note that in most cases only 2 (higher and lower) curves are
1138 * used (like RF5112) but vendors have the opportunity to include all
1139 * 4 curves on eeprom. The final curve (higher power) has an extra
1140 * point for better accuracy like RF5112.
1141 */
1142
1143/* For RF2413 power calibration data doesn't start on a fixed location and
1144 * if a mode is not supported, its section is missing -not zeroed-.
1145 * So we need to calculate the starting offset for each section by using
1146 * these two functions */
1147
1148/* Return the size of each section based on the mode and the number of pd
1149 * gains available (maximum 4). */
1150static inline unsigned int
1151ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1152{
1153	static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1154	unsigned int sz;
1155
1156	sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1157	sz *= ee->ee_n_piers[mode];
1158
1159	return sz;
1160}
1161
1162/* Return the starting offset for a section based on the modes supported
1163 * and each section's size. */
1164static unsigned int
1165ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1166{
1167	u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1168
1169	switch (mode) {
1170	case AR5K_EEPROM_MODE_11G:
1171		if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1172			offset += ath5k_pdgains_size_2413(ee,
1173					AR5K_EEPROM_MODE_11B) +
1174					AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1175		/* fall through */
1176	case AR5K_EEPROM_MODE_11B:
1177		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1178			offset += ath5k_pdgains_size_2413(ee,
1179					AR5K_EEPROM_MODE_11A) +
1180					AR5K_EEPROM_N_5GHZ_CHAN / 2;
1181		/* fall through */
1182	case AR5K_EEPROM_MODE_11A:
1183		break;
1184	default:
1185		break;
1186	}
1187
1188	return offset;
1189}
1190
1191/* Convert RF2413 specific data to generic raw data
1192 * used by interpolation code */
1193static int
1194ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1195				struct ath5k_chan_pcal_info *chinfo)
1196{
1197	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1198	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1199	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1200	unsigned int pier, pdg, point;
1201
1202	/* Fill raw data for each calibration pier */
1203	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1204
1205		pcinfo = &chinfo[pier].rf2413_info;
1206
1207		/* Allocate pd_curves for this cal pier */
1208		chinfo[pier].pd_curves =
1209				kcalloc(AR5K_EEPROM_N_PD_CURVES,
1210					sizeof(struct ath5k_pdgain_info),
1211					GFP_KERNEL);
1212
1213		if (!chinfo[pier].pd_curves)
1214			goto err_out;
1215
1216		/* Fill pd_curves */
1217		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1218
1219			u8 idx = pdgain_idx[pdg];
1220			struct ath5k_pdgain_info *pd =
1221					&chinfo[pier].pd_curves[idx];
1222
1223			/* One more point for the highest power
1224			 * curve (lowest gain) */
1225			if (pdg == ee->ee_pd_gains[mode] - 1)
1226				pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1227			else
1228				pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1229
1230			/* Allocate pd points for this curve */
1231			pd->pd_step = kcalloc(pd->pd_points,
1232					sizeof(u8), GFP_KERNEL);
1233
1234			if (!pd->pd_step)
1235				goto err_out;
1236
1237			pd->pd_pwr = kcalloc(pd->pd_points,
1238					sizeof(s16), GFP_KERNEL);
1239
1240			if (!pd->pd_pwr)
1241				goto err_out;
1242
1243			/* Fill raw dataset
1244			 * convert all pwr levels to
1245			 * quarter dB for RF5112 compatibility */
1246			pd->pd_step[0] = pcinfo->pddac_i[pdg];
1247			pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1248
1249			for (point = 1; point < pd->pd_points; point++) {
1250
1251				pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1252					2 * pcinfo->pwr[pdg][point - 1];
1253
1254				pd->pd_step[point] = pd->pd_step[point - 1] +
1255						pcinfo->pddac[pdg][point - 1];
1256
1257			}
1258
1259			/* Highest gain curve -> min power */
1260			if (pdg == 0)
1261				chinfo[pier].min_pwr = pd->pd_pwr[0];
1262
1263			/* Lowest gain curve -> max power */
1264			if (pdg == ee->ee_pd_gains[mode] - 1)
1265				chinfo[pier].max_pwr =
1266					pd->pd_pwr[pd->pd_points - 1];
1267		}
1268	}
1269
1270	return 0;
1271
1272err_out:
1273	ath5k_eeprom_free_pcal_info(ah, mode);
1274	return -ENOMEM;
1275}
1276
1277/* Parse EEPROM data */
1278static int
1279ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1280{
1281	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1282	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1283	struct ath5k_chan_pcal_info *chinfo;
1284	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1285	u32 offset;
1286	int idx, i;
1287	u16 val;
1288	u8 pd_gains = 0;
1289
1290	/* Count how many curves we have and
1291	 * identify them (which one of the 4
1292	 * available curves we have on each count).
1293	 * Curves are stored from higher to
1294	 * lower gain so we go backwards */
1295	for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1296		/* ee_x_gain[mode] is x gain mask */
1297		if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1298			pdgain_idx[pd_gains++] = idx;
1299
1300	}
1301	ee->ee_pd_gains[mode] = pd_gains;
1302
1303	if (pd_gains == 0)
1304		return -EINVAL;
1305
1306	offset = ath5k_cal_data_offset_2413(ee, mode);
1307	switch (mode) {
1308	case AR5K_EEPROM_MODE_11A:
1309		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1310			return 0;
1311
1312		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1313		offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1314		chinfo = ee->ee_pwr_cal_a;
1315		break;
1316	case AR5K_EEPROM_MODE_11B:
1317		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1318			return 0;
1319
1320		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1321		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1322		chinfo = ee->ee_pwr_cal_b;
1323		break;
1324	case AR5K_EEPROM_MODE_11G:
1325		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1326			return 0;
1327
1328		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1329		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1330		chinfo = ee->ee_pwr_cal_g;
1331		break;
1332	default:
1333		return -EINVAL;
1334	}
1335
1336	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1337		pcinfo = &chinfo[i].rf2413_info;
1338
1339		/*
1340		 * Read pwr_i, pddac_i and the first
1341		 * 2 pd points (pwr, pddac)
1342		 */
1343		AR5K_EEPROM_READ(offset++, val);
1344		pcinfo->pwr_i[0] = val & 0x1f;
1345		pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1346		pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1347
1348		AR5K_EEPROM_READ(offset++, val);
1349		pcinfo->pddac[0][0] = val & 0x3f;
1350		pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1351		pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1352
1353		AR5K_EEPROM_READ(offset++, val);
1354		pcinfo->pwr[0][2] = val & 0xf;
1355		pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1356
1357		pcinfo->pwr[0][3] = 0;
1358		pcinfo->pddac[0][3] = 0;
1359
1360		if (pd_gains > 1) {
1361			/*
1362			 * Pd gain 0 is not the last pd gain
1363			 * so it only has 2 pd points.
1364			 * Continue with pd gain 1.
1365			 */
1366			pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1367
1368			pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1369			AR5K_EEPROM_READ(offset++, val);
1370			pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1371
1372			pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1373			pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1374
1375			AR5K_EEPROM_READ(offset++, val);
1376			pcinfo->pwr[1][1] = val & 0xf;
1377			pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1378			pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1379
1380			pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1381			AR5K_EEPROM_READ(offset++, val);
1382			pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1383
1384			pcinfo->pwr[1][3] = 0;
1385			pcinfo->pddac[1][3] = 0;
1386		} else if (pd_gains == 1) {
1387			/*
1388			 * Pd gain 0 is the last one so
1389			 * read the extra point.
1390			 */
1391			pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1392
1393			pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1394			AR5K_EEPROM_READ(offset++, val);
1395			pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1396		}
1397
1398		/*
1399		 * Proceed with the other pd_gains
1400		 * as above.
1401		 */
1402		if (pd_gains > 2) {
1403			pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1404			pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1405
1406			AR5K_EEPROM_READ(offset++, val);
1407			pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1408			pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1409			pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1410
1411			pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1412			AR5K_EEPROM_READ(offset++, val);
1413			pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1414
1415			pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1416			pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1417
1418			pcinfo->pwr[2][3] = 0;
1419			pcinfo->pddac[2][3] = 0;
1420		} else if (pd_gains == 2) {
1421			pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1422			pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1423		}
1424
1425		if (pd_gains > 3) {
1426			pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1427			AR5K_EEPROM_READ(offset++, val);
1428			pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1429
1430			pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1431			pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1432			pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1433
1434			AR5K_EEPROM_READ(offset++, val);
1435			pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1436			pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1437			pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1438
1439			pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1440			AR5K_EEPROM_READ(offset++, val);
1441			pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1442
1443			pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1444			pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1445
1446			pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1447			AR5K_EEPROM_READ(offset++, val);
1448			pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1449		} else if (pd_gains == 3) {
1450			pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1451			AR5K_EEPROM_READ(offset++, val);
1452			pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1453
1454			pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1455		}
1456	}
1457
1458	return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1459}
1460
1461
1462/*
1463 * Read per rate target power (this is the maximum tx power
1464 * supported by the card). This info is used when setting
1465 * tx power, no matter the channel.
1466 *
1467 * This also works for v5 EEPROMs.
1468 */
1469static int
1470ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1471{
1472	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1473	struct ath5k_rate_pcal_info *rate_pcal_info;
1474	u8 *rate_target_pwr_num;
1475	u32 offset;
1476	u16 val;
1477	int i;
1478
1479	offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1480	rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1481	switch (mode) {
1482	case AR5K_EEPROM_MODE_11A:
1483		offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1484		rate_pcal_info = ee->ee_rate_tpwr_a;
1485		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_RATE_CHAN;
1486		break;
1487	case AR5K_EEPROM_MODE_11B:
1488		offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1489		rate_pcal_info = ee->ee_rate_tpwr_b;
1490		ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1491		break;
1492	case AR5K_EEPROM_MODE_11G:
1493		offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1494		rate_pcal_info = ee->ee_rate_tpwr_g;
1495		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1496		break;
1497	default:
1498		return -EINVAL;
1499	}
1500
1501	/* Different freq mask for older eeproms (<= v3.2) */
1502	if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1503		for (i = 0; i < (*rate_target_pwr_num); i++) {
1504			AR5K_EEPROM_READ(offset++, val);
1505			rate_pcal_info[i].freq =
1506			    ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1507
1508			rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1509			rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1510
1511			AR5K_EEPROM_READ(offset++, val);
1512
1513			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1514			    val == 0) {
1515				(*rate_target_pwr_num) = i;
1516				break;
1517			}
1518
1519			rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1520			rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1521			rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1522		}
1523	} else {
1524		for (i = 0; i < (*rate_target_pwr_num); i++) {
1525			AR5K_EEPROM_READ(offset++, val);
1526			rate_pcal_info[i].freq =
1527			    ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1528
1529			rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1530			rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1531
1532			AR5K_EEPROM_READ(offset++, val);
1533
1534			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1535			    val == 0) {
1536				(*rate_target_pwr_num) = i;
1537				break;
1538			}
1539
1540			rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1541			rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1542			rate_pcal_info[i].target_power_54 = (val & 0x3f);
1543		}
1544	}
1545
1546	return 0;
1547}
1548
1549
1550/*
1551 * Read per channel calibration info from EEPROM
1552 *
1553 * This info is used to calibrate the baseband power table. Imagine
1554 * that for each channel there is a power curve that's hw specific
1555 * (depends on amplifier etc) and we try to "correct" this curve using
1556 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1557 * it can use accurate power values when setting tx power (takes amplifier's
1558 * performance on each channel into account).
1559 *
1560 * EEPROM provides us with the offsets for some pre-calibrated channels
1561 * and we have to interpolate to create the full table for these channels and
1562 * also the table for any channel.
1563 */
1564static int
1565ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1566{
1567	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1568	int (*read_pcal)(struct ath5k_hw *hw, int mode);
1569	int mode;
1570	int err;
1571
1572	if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1573			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1574		read_pcal = ath5k_eeprom_read_pcal_info_5112;
1575	else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1576			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1577		read_pcal = ath5k_eeprom_read_pcal_info_2413;
1578	else
1579		read_pcal = ath5k_eeprom_read_pcal_info_5111;
1580
1581
1582	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1583	mode++) {
1584		err = read_pcal(ah, mode);
1585		if (err)
1586			return err;
1587
1588		err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1589		if (err < 0)
1590			return err;
1591	}
1592
1593	return 0;
1594}
1595
1596/* Read conformance test limits used for regulatory control */
1597static int
1598ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1599{
1600	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601	struct ath5k_edge_power *rep;
1602	unsigned int fmask, pmask;
1603	unsigned int ctl_mode;
1604	int i, j;
1605	u32 offset;
1606	u16 val;
1607
1608	pmask = AR5K_EEPROM_POWER_M;
1609	fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1610	offset = AR5K_EEPROM_CTL(ee->ee_version);
1611	ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1612	for (i = 0; i < ee->ee_ctls; i += 2) {
1613		AR5K_EEPROM_READ(offset++, val);
1614		ee->ee_ctl[i] = (val >> 8) & 0xff;
1615		ee->ee_ctl[i + 1] = val & 0xff;
1616	}
1617
1618	offset = AR5K_EEPROM_GROUP8_OFFSET;
1619	if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1620		offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1621			AR5K_EEPROM_GROUP5_OFFSET;
1622	else
1623		offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1624
1625	rep = ee->ee_ctl_pwr;
1626	for (i = 0; i < ee->ee_ctls; i++) {
1627		switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1628		case AR5K_CTL_11A:
1629		case AR5K_CTL_TURBO:
1630			ctl_mode = AR5K_EEPROM_MODE_11A;
1631			break;
1632		default:
1633			ctl_mode = AR5K_EEPROM_MODE_11G;
1634			break;
1635		}
1636		if (ee->ee_ctl[i] == 0) {
1637			if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1638				offset += 8;
1639			else
1640				offset += 7;
1641			rep += AR5K_EEPROM_N_EDGES;
1642			continue;
1643		}
1644		if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1645			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1646				AR5K_EEPROM_READ(offset++, val);
1647				rep[j].freq = (val >> 8) & fmask;
1648				rep[j + 1].freq = val & fmask;
1649			}
1650			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1651				AR5K_EEPROM_READ(offset++, val);
1652				rep[j].edge = (val >> 8) & pmask;
1653				rep[j].flag = (val >> 14) & 1;
1654				rep[j + 1].edge = val & pmask;
1655				rep[j + 1].flag = (val >> 6) & 1;
1656			}
1657		} else {
1658			AR5K_EEPROM_READ(offset++, val);
1659			rep[0].freq = (val >> 9) & fmask;
1660			rep[1].freq = (val >> 2) & fmask;
1661			rep[2].freq = (val << 5) & fmask;
1662
1663			AR5K_EEPROM_READ(offset++, val);
1664			rep[2].freq |= (val >> 11) & 0x1f;
1665			rep[3].freq = (val >> 4) & fmask;
1666			rep[4].freq = (val << 3) & fmask;
1667
1668			AR5K_EEPROM_READ(offset++, val);
1669			rep[4].freq |= (val >> 13) & 0x7;
1670			rep[5].freq = (val >> 6) & fmask;
1671			rep[6].freq = (val << 1) & fmask;
1672
1673			AR5K_EEPROM_READ(offset++, val);
1674			rep[6].freq |= (val >> 15) & 0x1;
1675			rep[7].freq = (val >> 8) & fmask;
1676
1677			rep[0].edge = (val >> 2) & pmask;
1678			rep[1].edge = (val << 4) & pmask;
1679
1680			AR5K_EEPROM_READ(offset++, val);
1681			rep[1].edge |= (val >> 12) & 0xf;
1682			rep[2].edge = (val >> 6) & pmask;
1683			rep[3].edge = val & pmask;
1684
1685			AR5K_EEPROM_READ(offset++, val);
1686			rep[4].edge = (val >> 10) & pmask;
1687			rep[5].edge = (val >> 4) & pmask;
1688			rep[6].edge = (val << 2) & pmask;
1689
1690			AR5K_EEPROM_READ(offset++, val);
1691			rep[6].edge |= (val >> 14) & 0x3;
1692			rep[7].edge = (val >> 8) & pmask;
1693		}
1694		for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1695			rep[j].freq = ath5k_eeprom_bin2freq(ee,
1696				rep[j].freq, ctl_mode);
1697		}
1698		rep += AR5K_EEPROM_N_EDGES;
1699	}
1700
1701	return 0;
1702}
1703
1704static int
1705ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1706{
1707	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1708	u32 offset;
1709	u16 val;
1710	int ret = 0, i;
1711
1712	offset = AR5K_EEPROM_CTL(ee->ee_version) +
1713				AR5K_EEPROM_N_CTLS(ee->ee_version);
1714
1715	if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1716		/* No spur info for 5GHz */
1717		ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1718		/* 2 channels for 2GHz (2464/2420) */
1719		ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1720		ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1721		ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1722	} else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1723		for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1724			AR5K_EEPROM_READ(offset, val);
1725			ee->ee_spur_chans[i][0] = val;
1726			AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1727									val);
1728			ee->ee_spur_chans[i][1] = val;
1729			offset++;
1730		}
1731	}
1732
1733	return ret;
1734}
1735
1736
1737/***********************\
1738* Init/Detach functions *
1739\***********************/
1740
1741/*
1742 * Initialize eeprom data structure
1743 */
1744int
1745ath5k_eeprom_init(struct ath5k_hw *ah)
1746{
1747	int err;
1748
1749	err = ath5k_eeprom_init_header(ah);
1750	if (err < 0)
1751		return err;
1752
1753	err = ath5k_eeprom_init_modes(ah);
1754	if (err < 0)
1755		return err;
1756
1757	err = ath5k_eeprom_read_pcal_info(ah);
1758	if (err < 0)
1759		return err;
1760
1761	err = ath5k_eeprom_read_ctl_info(ah);
1762	if (err < 0)
1763		return err;
1764
1765	err = ath5k_eeprom_read_spur_chans(ah);
1766	if (err < 0)
1767		return err;
1768
1769	return 0;
1770}
1771
1772void
1773ath5k_eeprom_detach(struct ath5k_hw *ah)
1774{
1775	u8 mode;
1776
1777	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1778		ath5k_eeprom_free_pcal_info(ah, mode);
1779}
1780
1781int
1782ath5k_eeprom_mode_from_channel(struct ath5k_hw *ah,
1783		struct ieee80211_channel *channel)
1784{
1785	switch (channel->hw_value) {
1786	case AR5K_MODE_11A:
1787		return AR5K_EEPROM_MODE_11A;
1788	case AR5K_MODE_11G:
1789		return AR5K_EEPROM_MODE_11G;
1790	case AR5K_MODE_11B:
1791		return AR5K_EEPROM_MODE_11B;
1792	default:
1793		ATH5K_WARN(ah, "channel is not A/B/G!");
1794		return AR5K_EEPROM_MODE_11A;
1795	}
1796}
1797