1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer,
15 *    without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 *    redistribution must be conditioned upon including a substantially
19 *    similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 *    of any contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44
45#include <linux/module.h>
46#include <linux/delay.h>
47#include <linux/dma-mapping.h>
48#include <linux/hardirq.h>
49#include <linux/if.h>
50#include <linux/io.h>
51#include <linux/netdevice.h>
52#include <linux/cache.h>
53#include <linux/ethtool.h>
54#include <linux/uaccess.h>
55#include <linux/slab.h>
56#include <linux/etherdevice.h>
57#include <linux/nl80211.h>
58
59#include <net/cfg80211.h>
60#include <net/ieee80211_radiotap.h>
61
62#include <asm/unaligned.h>
63
64#include <net/mac80211.h>
65#include "base.h"
66#include "reg.h"
67#include "debug.h"
68#include "ani.h"
69#include "ath5k.h"
70#include "../regd.h"
71
72#define CREATE_TRACE_POINTS
73#include "trace.h"
74
75bool ath5k_modparam_nohwcrypt;
76module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
77MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
78
79static bool modparam_fastchanswitch;
80module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
81MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82
83static bool ath5k_modparam_no_hw_rfkill_switch;
84module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85								bool, S_IRUGO);
86MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
87
88
89/* Module info */
90MODULE_AUTHOR("Jiri Slaby");
91MODULE_AUTHOR("Nick Kossifidis");
92MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
94MODULE_LICENSE("Dual BSD/GPL");
95
96static int ath5k_init(struct ieee80211_hw *hw);
97static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
98								bool skip_pcu);
99
100/* Known SREVs */
101static const struct ath5k_srev_name srev_names[] = {
102#ifdef CONFIG_ATH5K_AHB
103	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
104	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
105	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
106	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
107	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
108	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
109	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
110#else
111	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
112	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
113	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
114	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
115	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
116	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
117	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
118	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
119	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
120	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
121	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
122	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
123	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
124	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
125	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
126	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
127	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
128	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
129#endif
130	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
131	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
132	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
133	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
134	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
135	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
136	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
137	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
138	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
139	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
140	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
141	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
142	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
143	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
144	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
145#ifdef CONFIG_ATH5K_AHB
146	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
147	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
148#endif
149	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
150};
151
152static const struct ieee80211_rate ath5k_rates[] = {
153	{ .bitrate = 10,
154	  .hw_value = ATH5K_RATE_CODE_1M, },
155	{ .bitrate = 20,
156	  .hw_value = ATH5K_RATE_CODE_2M,
157	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
158	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159	{ .bitrate = 55,
160	  .hw_value = ATH5K_RATE_CODE_5_5M,
161	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
162	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
163	{ .bitrate = 110,
164	  .hw_value = ATH5K_RATE_CODE_11M,
165	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
166	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
167	{ .bitrate = 60,
168	  .hw_value = ATH5K_RATE_CODE_6M,
169	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
170		   IEEE80211_RATE_SUPPORTS_10MHZ },
171	{ .bitrate = 90,
172	  .hw_value = ATH5K_RATE_CODE_9M,
173	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
174		   IEEE80211_RATE_SUPPORTS_10MHZ },
175	{ .bitrate = 120,
176	  .hw_value = ATH5K_RATE_CODE_12M,
177	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
178		   IEEE80211_RATE_SUPPORTS_10MHZ },
179	{ .bitrate = 180,
180	  .hw_value = ATH5K_RATE_CODE_18M,
181	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
182		   IEEE80211_RATE_SUPPORTS_10MHZ },
183	{ .bitrate = 240,
184	  .hw_value = ATH5K_RATE_CODE_24M,
185	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
186		   IEEE80211_RATE_SUPPORTS_10MHZ },
187	{ .bitrate = 360,
188	  .hw_value = ATH5K_RATE_CODE_36M,
189	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
190		   IEEE80211_RATE_SUPPORTS_10MHZ },
191	{ .bitrate = 480,
192	  .hw_value = ATH5K_RATE_CODE_48M,
193	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
194		   IEEE80211_RATE_SUPPORTS_10MHZ },
195	{ .bitrate = 540,
196	  .hw_value = ATH5K_RATE_CODE_54M,
197	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
198		   IEEE80211_RATE_SUPPORTS_10MHZ },
199};
200
201static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
202{
203	u64 tsf = ath5k_hw_get_tsf64(ah);
204
205	if ((tsf & 0x7fff) < rstamp)
206		tsf -= 0x8000;
207
208	return (tsf & ~0x7fff) | rstamp;
209}
210
211const char *
212ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
213{
214	const char *name = "xxxxx";
215	unsigned int i;
216
217	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
218		if (srev_names[i].sr_type != type)
219			continue;
220
221		if ((val & 0xf0) == srev_names[i].sr_val)
222			name = srev_names[i].sr_name;
223
224		if ((val & 0xff) == srev_names[i].sr_val) {
225			name = srev_names[i].sr_name;
226			break;
227		}
228	}
229
230	return name;
231}
232static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
233{
234	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
235	return ath5k_hw_reg_read(ah, reg_offset);
236}
237
238static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
239{
240	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
241	ath5k_hw_reg_write(ah, val, reg_offset);
242}
243
244static const struct ath_ops ath5k_common_ops = {
245	.read = ath5k_ioread32,
246	.write = ath5k_iowrite32,
247};
248
249/***********************\
250* Driver Initialization *
251\***********************/
252
253static void ath5k_reg_notifier(struct wiphy *wiphy,
254			       struct regulatory_request *request)
255{
256	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
257	struct ath5k_hw *ah = hw->priv;
258	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
259
260	ath_reg_notifier_apply(wiphy, request, regulatory);
261}
262
263/********************\
264* Channel/mode setup *
265\********************/
266
267/*
268 * Returns true for the channel numbers used.
269 */
270#ifdef CONFIG_ATH5K_TEST_CHANNELS
271static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
272{
273	return true;
274}
275
276#else
277static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
278{
279	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
280		return true;
281
282	return	/* UNII 1,2 */
283		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
284		/* midband */
285		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
286		/* UNII-3 */
287		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
288		/* 802.11j 5.030-5.080 GHz (20MHz) */
289		(chan == 8 || chan == 12 || chan == 16) ||
290		/* 802.11j 4.9GHz (20MHz) */
291		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
292}
293#endif
294
295static unsigned int
296ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
297		unsigned int mode, unsigned int max)
298{
299	unsigned int count, size, freq, ch;
300	enum ieee80211_band band;
301
302	switch (mode) {
303	case AR5K_MODE_11A:
304		/* 1..220, but 2GHz frequencies are filtered by check_channel */
305		size = 220;
306		band = IEEE80211_BAND_5GHZ;
307		break;
308	case AR5K_MODE_11B:
309	case AR5K_MODE_11G:
310		size = 26;
311		band = IEEE80211_BAND_2GHZ;
312		break;
313	default:
314		ATH5K_WARN(ah, "bad mode, not copying channels\n");
315		return 0;
316	}
317
318	count = 0;
319	for (ch = 1; ch <= size && count < max; ch++) {
320		freq = ieee80211_channel_to_frequency(ch, band);
321
322		if (freq == 0) /* mapping failed - not a standard channel */
323			continue;
324
325		/* Write channel info, needed for ath5k_channel_ok() */
326		channels[count].center_freq = freq;
327		channels[count].band = band;
328		channels[count].hw_value = mode;
329
330		/* Check if channel is supported by the chipset */
331		if (!ath5k_channel_ok(ah, &channels[count]))
332			continue;
333
334		if (!ath5k_is_standard_channel(ch, band))
335			continue;
336
337		count++;
338	}
339
340	return count;
341}
342
343static void
344ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
345{
346	u8 i;
347
348	for (i = 0; i < AR5K_MAX_RATES; i++)
349		ah->rate_idx[b->band][i] = -1;
350
351	for (i = 0; i < b->n_bitrates; i++) {
352		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
353		if (b->bitrates[i].hw_value_short)
354			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
355	}
356}
357
358static int
359ath5k_setup_bands(struct ieee80211_hw *hw)
360{
361	struct ath5k_hw *ah = hw->priv;
362	struct ieee80211_supported_band *sband;
363	int max_c, count_c = 0;
364	int i;
365
366	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
367	max_c = ARRAY_SIZE(ah->channels);
368
369	/* 2GHz band */
370	sband = &ah->sbands[IEEE80211_BAND_2GHZ];
371	sband->band = IEEE80211_BAND_2GHZ;
372	sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
373
374	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
375		/* G mode */
376		memcpy(sband->bitrates, &ath5k_rates[0],
377		       sizeof(struct ieee80211_rate) * 12);
378		sband->n_bitrates = 12;
379
380		sband->channels = ah->channels;
381		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
382					AR5K_MODE_11G, max_c);
383
384		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
385		count_c = sband->n_channels;
386		max_c -= count_c;
387	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
388		/* B mode */
389		memcpy(sband->bitrates, &ath5k_rates[0],
390		       sizeof(struct ieee80211_rate) * 4);
391		sband->n_bitrates = 4;
392
393		/* 5211 only supports B rates and uses 4bit rate codes
394		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
395		 * fix them up here:
396		 */
397		if (ah->ah_version == AR5K_AR5211) {
398			for (i = 0; i < 4; i++) {
399				sband->bitrates[i].hw_value =
400					sband->bitrates[i].hw_value & 0xF;
401				sband->bitrates[i].hw_value_short =
402					sband->bitrates[i].hw_value_short & 0xF;
403			}
404		}
405
406		sband->channels = ah->channels;
407		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
408					AR5K_MODE_11B, max_c);
409
410		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
411		count_c = sband->n_channels;
412		max_c -= count_c;
413	}
414	ath5k_setup_rate_idx(ah, sband);
415
416	/* 5GHz band, A mode */
417	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
418		sband = &ah->sbands[IEEE80211_BAND_5GHZ];
419		sband->band = IEEE80211_BAND_5GHZ;
420		sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
421
422		memcpy(sband->bitrates, &ath5k_rates[4],
423		       sizeof(struct ieee80211_rate) * 8);
424		sband->n_bitrates = 8;
425
426		sband->channels = &ah->channels[count_c];
427		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
428					AR5K_MODE_11A, max_c);
429
430		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
431	}
432	ath5k_setup_rate_idx(ah, sband);
433
434	ath5k_debug_dump_bands(ah);
435
436	return 0;
437}
438
439/*
440 * Set/change channels. We always reset the chip.
441 * To accomplish this we must first cleanup any pending DMA,
442 * then restart stuff after a la  ath5k_init.
443 *
444 * Called with ah->lock.
445 */
446int
447ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
448{
449	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
450		  "channel set, resetting (%u -> %u MHz)\n",
451		  ah->curchan->center_freq, chandef->chan->center_freq);
452
453	switch (chandef->width) {
454	case NL80211_CHAN_WIDTH_20:
455	case NL80211_CHAN_WIDTH_20_NOHT:
456		ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
457		break;
458	case NL80211_CHAN_WIDTH_5:
459		ah->ah_bwmode = AR5K_BWMODE_5MHZ;
460		break;
461	case NL80211_CHAN_WIDTH_10:
462		ah->ah_bwmode = AR5K_BWMODE_10MHZ;
463		break;
464	default:
465		WARN_ON(1);
466		return -EINVAL;
467	}
468
469	/*
470	 * To switch channels clear any pending DMA operations;
471	 * wait long enough for the RX fifo to drain, reset the
472	 * hardware at the new frequency, and then re-enable
473	 * the relevant bits of the h/w.
474	 */
475	return ath5k_reset(ah, chandef->chan, true);
476}
477
478void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
479{
480	struct ath5k_vif_iter_data *iter_data = data;
481	int i;
482	struct ath5k_vif *avf = (void *)vif->drv_priv;
483
484	if (iter_data->hw_macaddr)
485		for (i = 0; i < ETH_ALEN; i++)
486			iter_data->mask[i] &=
487				~(iter_data->hw_macaddr[i] ^ mac[i]);
488
489	if (!iter_data->found_active) {
490		iter_data->found_active = true;
491		memcpy(iter_data->active_mac, mac, ETH_ALEN);
492	}
493
494	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
495		if (ether_addr_equal(iter_data->hw_macaddr, mac))
496			iter_data->need_set_hw_addr = false;
497
498	if (!iter_data->any_assoc) {
499		if (avf->assoc)
500			iter_data->any_assoc = true;
501	}
502
503	/* Calculate combined mode - when APs are active, operate in AP mode.
504	 * Otherwise use the mode of the new interface. This can currently
505	 * only deal with combinations of APs and STAs. Only one ad-hoc
506	 * interfaces is allowed.
507	 */
508	if (avf->opmode == NL80211_IFTYPE_AP)
509		iter_data->opmode = NL80211_IFTYPE_AP;
510	else {
511		if (avf->opmode == NL80211_IFTYPE_STATION)
512			iter_data->n_stas++;
513		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
514			iter_data->opmode = avf->opmode;
515	}
516}
517
518void
519ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
520				   struct ieee80211_vif *vif)
521{
522	struct ath_common *common = ath5k_hw_common(ah);
523	struct ath5k_vif_iter_data iter_data;
524	u32 rfilt;
525
526	/*
527	 * Use the hardware MAC address as reference, the hardware uses it
528	 * together with the BSSID mask when matching addresses.
529	 */
530	iter_data.hw_macaddr = common->macaddr;
531	eth_broadcast_addr(iter_data.mask);
532	iter_data.found_active = false;
533	iter_data.need_set_hw_addr = true;
534	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
535	iter_data.n_stas = 0;
536
537	if (vif)
538		ath5k_vif_iter(&iter_data, vif->addr, vif);
539
540	/* Get list of all active MAC addresses */
541	ieee80211_iterate_active_interfaces_atomic(
542		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
543		ath5k_vif_iter, &iter_data);
544	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
545
546	ah->opmode = iter_data.opmode;
547	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
548		/* Nothing active, default to station mode */
549		ah->opmode = NL80211_IFTYPE_STATION;
550
551	ath5k_hw_set_opmode(ah, ah->opmode);
552	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
553		  ah->opmode, ath_opmode_to_string(ah->opmode));
554
555	if (iter_data.need_set_hw_addr && iter_data.found_active)
556		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
557
558	if (ath5k_hw_hasbssidmask(ah))
559		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
560
561	/* Set up RX Filter */
562	if (iter_data.n_stas > 1) {
563		/* If you have multiple STA interfaces connected to
564		 * different APs, ARPs are not received (most of the time?)
565		 * Enabling PROMISC appears to fix that problem.
566		 */
567		ah->filter_flags |= AR5K_RX_FILTER_PROM;
568	}
569
570	rfilt = ah->filter_flags;
571	ath5k_hw_set_rx_filter(ah, rfilt);
572	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
573}
574
575static inline int
576ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
577{
578	int rix;
579
580	/* return base rate on errors */
581	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
582			"hw_rix out of bounds: %x\n", hw_rix))
583		return 0;
584
585	rix = ah->rate_idx[ah->curchan->band][hw_rix];
586	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
587		rix = 0;
588
589	return rix;
590}
591
592/***************\
593* Buffers setup *
594\***************/
595
596static
597struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
598{
599	struct ath_common *common = ath5k_hw_common(ah);
600	struct sk_buff *skb;
601
602	/*
603	 * Allocate buffer with headroom_needed space for the
604	 * fake physical layer header at the start.
605	 */
606	skb = ath_rxbuf_alloc(common,
607			      common->rx_bufsize,
608			      GFP_ATOMIC);
609
610	if (!skb) {
611		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
612				common->rx_bufsize);
613		return NULL;
614	}
615
616	*skb_addr = dma_map_single(ah->dev,
617				   skb->data, common->rx_bufsize,
618				   DMA_FROM_DEVICE);
619
620	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
621		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
622		dev_kfree_skb(skb);
623		return NULL;
624	}
625	return skb;
626}
627
628static int
629ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
630{
631	struct sk_buff *skb = bf->skb;
632	struct ath5k_desc *ds;
633	int ret;
634
635	if (!skb) {
636		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
637		if (!skb)
638			return -ENOMEM;
639		bf->skb = skb;
640	}
641
642	/*
643	 * Setup descriptors.  For receive we always terminate
644	 * the descriptor list with a self-linked entry so we'll
645	 * not get overrun under high load (as can happen with a
646	 * 5212 when ANI processing enables PHY error frames).
647	 *
648	 * To ensure the last descriptor is self-linked we create
649	 * each descriptor as self-linked and add it to the end.  As
650	 * each additional descriptor is added the previous self-linked
651	 * entry is "fixed" naturally.  This should be safe even
652	 * if DMA is happening.  When processing RX interrupts we
653	 * never remove/process the last, self-linked, entry on the
654	 * descriptor list.  This ensures the hardware always has
655	 * someplace to write a new frame.
656	 */
657	ds = bf->desc;
658	ds->ds_link = bf->daddr;	/* link to self */
659	ds->ds_data = bf->skbaddr;
660	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
661	if (ret) {
662		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
663		return ret;
664	}
665
666	if (ah->rxlink != NULL)
667		*ah->rxlink = bf->daddr;
668	ah->rxlink = &ds->ds_link;
669	return 0;
670}
671
672static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
673{
674	struct ieee80211_hdr *hdr;
675	enum ath5k_pkt_type htype;
676	__le16 fc;
677
678	hdr = (struct ieee80211_hdr *)skb->data;
679	fc = hdr->frame_control;
680
681	if (ieee80211_is_beacon(fc))
682		htype = AR5K_PKT_TYPE_BEACON;
683	else if (ieee80211_is_probe_resp(fc))
684		htype = AR5K_PKT_TYPE_PROBE_RESP;
685	else if (ieee80211_is_atim(fc))
686		htype = AR5K_PKT_TYPE_ATIM;
687	else if (ieee80211_is_pspoll(fc))
688		htype = AR5K_PKT_TYPE_PSPOLL;
689	else
690		htype = AR5K_PKT_TYPE_NORMAL;
691
692	return htype;
693}
694
695static struct ieee80211_rate *
696ath5k_get_rate(const struct ieee80211_hw *hw,
697	       const struct ieee80211_tx_info *info,
698	       struct ath5k_buf *bf, int idx)
699{
700	/*
701	* convert a ieee80211_tx_rate RC-table entry to
702	* the respective ieee80211_rate struct
703	*/
704	if (bf->rates[idx].idx < 0) {
705		return NULL;
706	}
707
708	return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
709}
710
711static u16
712ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
713			const struct ieee80211_tx_info *info,
714			struct ath5k_buf *bf, int idx)
715{
716	struct ieee80211_rate *rate;
717	u16 hw_rate;
718	u8 rc_flags;
719
720	rate = ath5k_get_rate(hw, info, bf, idx);
721	if (!rate)
722		return 0;
723
724	rc_flags = bf->rates[idx].flags;
725	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
726		   rate->hw_value_short : rate->hw_value;
727
728	return hw_rate;
729}
730
731static int
732ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
733		  struct ath5k_txq *txq, int padsize,
734		  struct ieee80211_tx_control *control)
735{
736	struct ath5k_desc *ds = bf->desc;
737	struct sk_buff *skb = bf->skb;
738	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
739	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
740	struct ieee80211_rate *rate;
741	unsigned int mrr_rate[3], mrr_tries[3];
742	int i, ret;
743	u16 hw_rate;
744	u16 cts_rate = 0;
745	u16 duration = 0;
746	u8 rc_flags;
747
748	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
749
750	/* XXX endianness */
751	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
752			DMA_TO_DEVICE);
753
754	if (dma_mapping_error(ah->dev, bf->skbaddr))
755		return -ENOSPC;
756
757	ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
758			       ARRAY_SIZE(bf->rates));
759
760	rate = ath5k_get_rate(ah->hw, info, bf, 0);
761
762	if (!rate) {
763		ret = -EINVAL;
764		goto err_unmap;
765	}
766
767	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
768		flags |= AR5K_TXDESC_NOACK;
769
770	rc_flags = info->control.rates[0].flags;
771
772	hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
773
774	pktlen = skb->len;
775
776	/* FIXME: If we are in g mode and rate is a CCK rate
777	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
778	 * from tx power (value is in dB units already) */
779	if (info->control.hw_key) {
780		keyidx = info->control.hw_key->hw_key_idx;
781		pktlen += info->control.hw_key->icv_len;
782	}
783	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
784		flags |= AR5K_TXDESC_RTSENA;
785		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
786		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
787			info->control.vif, pktlen, info));
788	}
789	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
790		flags |= AR5K_TXDESC_CTSENA;
791		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
792		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
793			info->control.vif, pktlen, info));
794	}
795
796	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
797		ieee80211_get_hdrlen_from_skb(skb), padsize,
798		get_hw_packet_type(skb),
799		(ah->ah_txpower.txp_requested * 2),
800		hw_rate,
801		bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
802		cts_rate, duration);
803	if (ret)
804		goto err_unmap;
805
806	/* Set up MRR descriptor */
807	if (ah->ah_capabilities.cap_has_mrr_support) {
808		memset(mrr_rate, 0, sizeof(mrr_rate));
809		memset(mrr_tries, 0, sizeof(mrr_tries));
810
811		for (i = 0; i < 3; i++) {
812
813			rate = ath5k_get_rate(ah->hw, info, bf, i);
814			if (!rate)
815				break;
816
817			mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
818			mrr_tries[i] = bf->rates[i].count;
819		}
820
821		ath5k_hw_setup_mrr_tx_desc(ah, ds,
822			mrr_rate[0], mrr_tries[0],
823			mrr_rate[1], mrr_tries[1],
824			mrr_rate[2], mrr_tries[2]);
825	}
826
827	ds->ds_link = 0;
828	ds->ds_data = bf->skbaddr;
829
830	spin_lock_bh(&txq->lock);
831	list_add_tail(&bf->list, &txq->q);
832	txq->txq_len++;
833	if (txq->link == NULL) /* is this first packet? */
834		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
835	else /* no, so only link it */
836		*txq->link = bf->daddr;
837
838	txq->link = &ds->ds_link;
839	ath5k_hw_start_tx_dma(ah, txq->qnum);
840	mmiowb();
841	spin_unlock_bh(&txq->lock);
842
843	return 0;
844err_unmap:
845	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
846	return ret;
847}
848
849/*******************\
850* Descriptors setup *
851\*******************/
852
853static int
854ath5k_desc_alloc(struct ath5k_hw *ah)
855{
856	struct ath5k_desc *ds;
857	struct ath5k_buf *bf;
858	dma_addr_t da;
859	unsigned int i;
860	int ret;
861
862	/* allocate descriptors */
863	ah->desc_len = sizeof(struct ath5k_desc) *
864			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
865
866	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
867				&ah->desc_daddr, GFP_KERNEL);
868	if (ah->desc == NULL) {
869		ATH5K_ERR(ah, "can't allocate descriptors\n");
870		ret = -ENOMEM;
871		goto err;
872	}
873	ds = ah->desc;
874	da = ah->desc_daddr;
875	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
876		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
877
878	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
879			sizeof(struct ath5k_buf), GFP_KERNEL);
880	if (bf == NULL) {
881		ATH5K_ERR(ah, "can't allocate bufptr\n");
882		ret = -ENOMEM;
883		goto err_free;
884	}
885	ah->bufptr = bf;
886
887	INIT_LIST_HEAD(&ah->rxbuf);
888	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
889		bf->desc = ds;
890		bf->daddr = da;
891		list_add_tail(&bf->list, &ah->rxbuf);
892	}
893
894	INIT_LIST_HEAD(&ah->txbuf);
895	ah->txbuf_len = ATH_TXBUF;
896	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
897		bf->desc = ds;
898		bf->daddr = da;
899		list_add_tail(&bf->list, &ah->txbuf);
900	}
901
902	/* beacon buffers */
903	INIT_LIST_HEAD(&ah->bcbuf);
904	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
905		bf->desc = ds;
906		bf->daddr = da;
907		list_add_tail(&bf->list, &ah->bcbuf);
908	}
909
910	return 0;
911err_free:
912	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
913err:
914	ah->desc = NULL;
915	return ret;
916}
917
918void
919ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
920{
921	BUG_ON(!bf);
922	if (!bf->skb)
923		return;
924	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
925			DMA_TO_DEVICE);
926	ieee80211_free_txskb(ah->hw, bf->skb);
927	bf->skb = NULL;
928	bf->skbaddr = 0;
929	bf->desc->ds_data = 0;
930}
931
932void
933ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
934{
935	struct ath_common *common = ath5k_hw_common(ah);
936
937	BUG_ON(!bf);
938	if (!bf->skb)
939		return;
940	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
941			DMA_FROM_DEVICE);
942	dev_kfree_skb_any(bf->skb);
943	bf->skb = NULL;
944	bf->skbaddr = 0;
945	bf->desc->ds_data = 0;
946}
947
948static void
949ath5k_desc_free(struct ath5k_hw *ah)
950{
951	struct ath5k_buf *bf;
952
953	list_for_each_entry(bf, &ah->txbuf, list)
954		ath5k_txbuf_free_skb(ah, bf);
955	list_for_each_entry(bf, &ah->rxbuf, list)
956		ath5k_rxbuf_free_skb(ah, bf);
957	list_for_each_entry(bf, &ah->bcbuf, list)
958		ath5k_txbuf_free_skb(ah, bf);
959
960	/* Free memory associated with all descriptors */
961	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
962	ah->desc = NULL;
963	ah->desc_daddr = 0;
964
965	kfree(ah->bufptr);
966	ah->bufptr = NULL;
967}
968
969
970/**************\
971* Queues setup *
972\**************/
973
974static struct ath5k_txq *
975ath5k_txq_setup(struct ath5k_hw *ah,
976		int qtype, int subtype)
977{
978	struct ath5k_txq *txq;
979	struct ath5k_txq_info qi = {
980		.tqi_subtype = subtype,
981		/* XXX: default values not correct for B and XR channels,
982		 * but who cares? */
983		.tqi_aifs = AR5K_TUNE_AIFS,
984		.tqi_cw_min = AR5K_TUNE_CWMIN,
985		.tqi_cw_max = AR5K_TUNE_CWMAX
986	};
987	int qnum;
988
989	/*
990	 * Enable interrupts only for EOL and DESC conditions.
991	 * We mark tx descriptors to receive a DESC interrupt
992	 * when a tx queue gets deep; otherwise we wait for the
993	 * EOL to reap descriptors.  Note that this is done to
994	 * reduce interrupt load and this only defers reaping
995	 * descriptors, never transmitting frames.  Aside from
996	 * reducing interrupts this also permits more concurrency.
997	 * The only potential downside is if the tx queue backs
998	 * up in which case the top half of the kernel may backup
999	 * due to a lack of tx descriptors.
1000	 */
1001	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1002				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1003	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1004	if (qnum < 0) {
1005		/*
1006		 * NB: don't print a message, this happens
1007		 * normally on parts with too few tx queues
1008		 */
1009		return ERR_PTR(qnum);
1010	}
1011	txq = &ah->txqs[qnum];
1012	if (!txq->setup) {
1013		txq->qnum = qnum;
1014		txq->link = NULL;
1015		INIT_LIST_HEAD(&txq->q);
1016		spin_lock_init(&txq->lock);
1017		txq->setup = true;
1018		txq->txq_len = 0;
1019		txq->txq_max = ATH5K_TXQ_LEN_MAX;
1020		txq->txq_poll_mark = false;
1021		txq->txq_stuck = 0;
1022	}
1023	return &ah->txqs[qnum];
1024}
1025
1026static int
1027ath5k_beaconq_setup(struct ath5k_hw *ah)
1028{
1029	struct ath5k_txq_info qi = {
1030		/* XXX: default values not correct for B and XR channels,
1031		 * but who cares? */
1032		.tqi_aifs = AR5K_TUNE_AIFS,
1033		.tqi_cw_min = AR5K_TUNE_CWMIN,
1034		.tqi_cw_max = AR5K_TUNE_CWMAX,
1035		/* NB: for dynamic turbo, don't enable any other interrupts */
1036		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1037	};
1038
1039	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1040}
1041
1042static int
1043ath5k_beaconq_config(struct ath5k_hw *ah)
1044{
1045	struct ath5k_txq_info qi;
1046	int ret;
1047
1048	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1049	if (ret)
1050		goto err;
1051
1052	if (ah->opmode == NL80211_IFTYPE_AP ||
1053	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1054		/*
1055		 * Always burst out beacon and CAB traffic
1056		 * (aifs = cwmin = cwmax = 0)
1057		 */
1058		qi.tqi_aifs = 0;
1059		qi.tqi_cw_min = 0;
1060		qi.tqi_cw_max = 0;
1061	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1062		/*
1063		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1064		 */
1065		qi.tqi_aifs = 0;
1066		qi.tqi_cw_min = 0;
1067		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1068	}
1069
1070	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1071		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1072		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1073
1074	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1075	if (ret) {
1076		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1077			"hardware queue!\n", __func__);
1078		goto err;
1079	}
1080	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1081	if (ret)
1082		goto err;
1083
1084	/* reconfigure cabq with ready time to 80% of beacon_interval */
1085	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1086	if (ret)
1087		goto err;
1088
1089	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1090	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1091	if (ret)
1092		goto err;
1093
1094	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1095err:
1096	return ret;
1097}
1098
1099/**
1100 * ath5k_drain_tx_buffs - Empty tx buffers
1101 *
1102 * @ah The &struct ath5k_hw
1103 *
1104 * Empty tx buffers from all queues in preparation
1105 * of a reset or during shutdown.
1106 *
1107 * NB:	this assumes output has been stopped and
1108 *	we do not need to block ath5k_tx_tasklet
1109 */
1110static void
1111ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1112{
1113	struct ath5k_txq *txq;
1114	struct ath5k_buf *bf, *bf0;
1115	int i;
1116
1117	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1118		if (ah->txqs[i].setup) {
1119			txq = &ah->txqs[i];
1120			spin_lock_bh(&txq->lock);
1121			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1122				ath5k_debug_printtxbuf(ah, bf);
1123
1124				ath5k_txbuf_free_skb(ah, bf);
1125
1126				spin_lock(&ah->txbuflock);
1127				list_move_tail(&bf->list, &ah->txbuf);
1128				ah->txbuf_len++;
1129				txq->txq_len--;
1130				spin_unlock(&ah->txbuflock);
1131			}
1132			txq->link = NULL;
1133			txq->txq_poll_mark = false;
1134			spin_unlock_bh(&txq->lock);
1135		}
1136	}
1137}
1138
1139static void
1140ath5k_txq_release(struct ath5k_hw *ah)
1141{
1142	struct ath5k_txq *txq = ah->txqs;
1143	unsigned int i;
1144
1145	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1146		if (txq->setup) {
1147			ath5k_hw_release_tx_queue(ah, txq->qnum);
1148			txq->setup = false;
1149		}
1150}
1151
1152
1153/*************\
1154* RX Handling *
1155\*************/
1156
1157/*
1158 * Enable the receive h/w following a reset.
1159 */
1160static int
1161ath5k_rx_start(struct ath5k_hw *ah)
1162{
1163	struct ath_common *common = ath5k_hw_common(ah);
1164	struct ath5k_buf *bf;
1165	int ret;
1166
1167	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1168
1169	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1170		  common->cachelsz, common->rx_bufsize);
1171
1172	spin_lock_bh(&ah->rxbuflock);
1173	ah->rxlink = NULL;
1174	list_for_each_entry(bf, &ah->rxbuf, list) {
1175		ret = ath5k_rxbuf_setup(ah, bf);
1176		if (ret != 0) {
1177			spin_unlock_bh(&ah->rxbuflock);
1178			goto err;
1179		}
1180	}
1181	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1182	ath5k_hw_set_rxdp(ah, bf->daddr);
1183	spin_unlock_bh(&ah->rxbuflock);
1184
1185	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1186	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1187	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1188
1189	return 0;
1190err:
1191	return ret;
1192}
1193
1194/*
1195 * Disable the receive logic on PCU (DRU)
1196 * In preparation for a shutdown.
1197 *
1198 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1199 * does.
1200 */
1201static void
1202ath5k_rx_stop(struct ath5k_hw *ah)
1203{
1204
1205	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1206	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1207
1208	ath5k_debug_printrxbuffs(ah);
1209}
1210
1211static unsigned int
1212ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1213		   struct ath5k_rx_status *rs)
1214{
1215	struct ath_common *common = ath5k_hw_common(ah);
1216	struct ieee80211_hdr *hdr = (void *)skb->data;
1217	unsigned int keyix, hlen;
1218
1219	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1220			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1221		return RX_FLAG_DECRYPTED;
1222
1223	/* Apparently when a default key is used to decrypt the packet
1224	   the hw does not set the index used to decrypt.  In such cases
1225	   get the index from the packet. */
1226	hlen = ieee80211_hdrlen(hdr->frame_control);
1227	if (ieee80211_has_protected(hdr->frame_control) &&
1228	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1229	    skb->len >= hlen + 4) {
1230		keyix = skb->data[hlen + 3] >> 6;
1231
1232		if (test_bit(keyix, common->keymap))
1233			return RX_FLAG_DECRYPTED;
1234	}
1235
1236	return 0;
1237}
1238
1239
1240static void
1241ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1242		     struct ieee80211_rx_status *rxs)
1243{
1244	u64 tsf, bc_tstamp;
1245	u32 hw_tu;
1246	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1247
1248	if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1249		/*
1250		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1251		 * have updated the local TSF. We have to work around various
1252		 * hardware bugs, though...
1253		 */
1254		tsf = ath5k_hw_get_tsf64(ah);
1255		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1256		hw_tu = TSF_TO_TU(tsf);
1257
1258		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1259			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1260			(unsigned long long)bc_tstamp,
1261			(unsigned long long)rxs->mactime,
1262			(unsigned long long)(rxs->mactime - bc_tstamp),
1263			(unsigned long long)tsf);
1264
1265		/*
1266		 * Sometimes the HW will give us a wrong tstamp in the rx
1267		 * status, causing the timestamp extension to go wrong.
1268		 * (This seems to happen especially with beacon frames bigger
1269		 * than 78 byte (incl. FCS))
1270		 * But we know that the receive timestamp must be later than the
1271		 * timestamp of the beacon since HW must have synced to that.
1272		 *
1273		 * NOTE: here we assume mactime to be after the frame was
1274		 * received, not like mac80211 which defines it at the start.
1275		 */
1276		if (bc_tstamp > rxs->mactime) {
1277			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1278				"fixing mactime from %llx to %llx\n",
1279				(unsigned long long)rxs->mactime,
1280				(unsigned long long)tsf);
1281			rxs->mactime = tsf;
1282		}
1283
1284		/*
1285		 * Local TSF might have moved higher than our beacon timers,
1286		 * in that case we have to update them to continue sending
1287		 * beacons. This also takes care of synchronizing beacon sending
1288		 * times with other stations.
1289		 */
1290		if (hw_tu >= ah->nexttbtt)
1291			ath5k_beacon_update_timers(ah, bc_tstamp);
1292
1293		/* Check if the beacon timers are still correct, because a TSF
1294		 * update might have created a window between them - for a
1295		 * longer description see the comment of this function: */
1296		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1297			ath5k_beacon_update_timers(ah, bc_tstamp);
1298			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1299				"fixed beacon timers after beacon receive\n");
1300		}
1301	}
1302}
1303
1304/*
1305 * Compute padding position. skb must contain an IEEE 802.11 frame
1306 */
1307static int ath5k_common_padpos(struct sk_buff *skb)
1308{
1309	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1310	__le16 frame_control = hdr->frame_control;
1311	int padpos = 24;
1312
1313	if (ieee80211_has_a4(frame_control))
1314		padpos += ETH_ALEN;
1315
1316	if (ieee80211_is_data_qos(frame_control))
1317		padpos += IEEE80211_QOS_CTL_LEN;
1318
1319	return padpos;
1320}
1321
1322/*
1323 * This function expects an 802.11 frame and returns the number of
1324 * bytes added, or -1 if we don't have enough header room.
1325 */
1326static int ath5k_add_padding(struct sk_buff *skb)
1327{
1328	int padpos = ath5k_common_padpos(skb);
1329	int padsize = padpos & 3;
1330
1331	if (padsize && skb->len > padpos) {
1332
1333		if (skb_headroom(skb) < padsize)
1334			return -1;
1335
1336		skb_push(skb, padsize);
1337		memmove(skb->data, skb->data + padsize, padpos);
1338		return padsize;
1339	}
1340
1341	return 0;
1342}
1343
1344/*
1345 * The MAC header is padded to have 32-bit boundary if the
1346 * packet payload is non-zero. The general calculation for
1347 * padsize would take into account odd header lengths:
1348 * padsize = 4 - (hdrlen & 3); however, since only
1349 * even-length headers are used, padding can only be 0 or 2
1350 * bytes and we can optimize this a bit.  We must not try to
1351 * remove padding from short control frames that do not have a
1352 * payload.
1353 *
1354 * This function expects an 802.11 frame and returns the number of
1355 * bytes removed.
1356 */
1357static int ath5k_remove_padding(struct sk_buff *skb)
1358{
1359	int padpos = ath5k_common_padpos(skb);
1360	int padsize = padpos & 3;
1361
1362	if (padsize && skb->len >= padpos + padsize) {
1363		memmove(skb->data + padsize, skb->data, padpos);
1364		skb_pull(skb, padsize);
1365		return padsize;
1366	}
1367
1368	return 0;
1369}
1370
1371static void
1372ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1373		    struct ath5k_rx_status *rs)
1374{
1375	struct ieee80211_rx_status *rxs;
1376	struct ath_common *common = ath5k_hw_common(ah);
1377
1378	ath5k_remove_padding(skb);
1379
1380	rxs = IEEE80211_SKB_RXCB(skb);
1381
1382	rxs->flag = 0;
1383	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1384		rxs->flag |= RX_FLAG_MMIC_ERROR;
1385	if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1386		rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1387
1388
1389	/*
1390	 * always extend the mac timestamp, since this information is
1391	 * also needed for proper IBSS merging.
1392	 *
1393	 * XXX: it might be too late to do it here, since rs_tstamp is
1394	 * 15bit only. that means TSF extension has to be done within
1395	 * 32768usec (about 32ms). it might be necessary to move this to
1396	 * the interrupt handler, like it is done in madwifi.
1397	 */
1398	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1399	rxs->flag |= RX_FLAG_MACTIME_END;
1400
1401	rxs->freq = ah->curchan->center_freq;
1402	rxs->band = ah->curchan->band;
1403
1404	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1405
1406	rxs->antenna = rs->rs_antenna;
1407
1408	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1409		ah->stats.antenna_rx[rs->rs_antenna]++;
1410	else
1411		ah->stats.antenna_rx[0]++; /* invalid */
1412
1413	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1414	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1415	switch (ah->ah_bwmode) {
1416	case AR5K_BWMODE_5MHZ:
1417		rxs->flag |= RX_FLAG_5MHZ;
1418		break;
1419	case AR5K_BWMODE_10MHZ:
1420		rxs->flag |= RX_FLAG_10MHZ;
1421		break;
1422	default:
1423		break;
1424	}
1425
1426	if (rs->rs_rate ==
1427	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1428		rxs->flag |= RX_FLAG_SHORTPRE;
1429
1430	trace_ath5k_rx(ah, skb);
1431
1432	if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1433		ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1434
1435		/* check beacons in IBSS mode */
1436		if (ah->opmode == NL80211_IFTYPE_ADHOC)
1437			ath5k_check_ibss_tsf(ah, skb, rxs);
1438	}
1439
1440	ieee80211_rx(ah->hw, skb);
1441}
1442
1443/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1444 *
1445 * Check if we want to further process this frame or not. Also update
1446 * statistics. Return true if we want this frame, false if not.
1447 */
1448static bool
1449ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1450{
1451	ah->stats.rx_all_count++;
1452	ah->stats.rx_bytes_count += rs->rs_datalen;
1453
1454	if (unlikely(rs->rs_status)) {
1455		unsigned int filters;
1456
1457		if (rs->rs_status & AR5K_RXERR_CRC)
1458			ah->stats.rxerr_crc++;
1459		if (rs->rs_status & AR5K_RXERR_FIFO)
1460			ah->stats.rxerr_fifo++;
1461		if (rs->rs_status & AR5K_RXERR_PHY) {
1462			ah->stats.rxerr_phy++;
1463			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1464				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1465
1466			/*
1467			 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1468			 * These restarts happen when the radio resynchronizes to a stronger frame
1469			 * while receiving a weaker frame. Here we receive the prefix of the weak
1470			 * frame. Since these are incomplete packets, mark their CRC as invalid.
1471			 */
1472			if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
1473			    rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
1474				rs->rs_status |= AR5K_RXERR_CRC;
1475				rs->rs_status &= ~AR5K_RXERR_PHY;
1476			} else {
1477				return false;
1478			}
1479		}
1480		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1481			/*
1482			 * Decrypt error.  If the error occurred
1483			 * because there was no hardware key, then
1484			 * let the frame through so the upper layers
1485			 * can process it.  This is necessary for 5210
1486			 * parts which have no way to setup a ``clear''
1487			 * key cache entry.
1488			 *
1489			 * XXX do key cache faulting
1490			 */
1491			ah->stats.rxerr_decrypt++;
1492			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1493			    !(rs->rs_status & AR5K_RXERR_CRC))
1494				return true;
1495		}
1496		if (rs->rs_status & AR5K_RXERR_MIC) {
1497			ah->stats.rxerr_mic++;
1498			return true;
1499		}
1500
1501		/*
1502		 * Reject any frames with non-crypto errors, and take into account the
1503		 * current FIF_* filters.
1504		 */
1505		filters = AR5K_RXERR_DECRYPT;
1506		if (ah->fif_filter_flags & FIF_FCSFAIL)
1507			filters |= AR5K_RXERR_CRC;
1508
1509		if (rs->rs_status & ~filters)
1510			return false;
1511	}
1512
1513	if (unlikely(rs->rs_more)) {
1514		ah->stats.rxerr_jumbo++;
1515		return false;
1516	}
1517	return true;
1518}
1519
1520static void
1521ath5k_set_current_imask(struct ath5k_hw *ah)
1522{
1523	enum ath5k_int imask;
1524	unsigned long flags;
1525
1526	if (test_bit(ATH_STAT_RESET, ah->status))
1527		return;
1528
1529	spin_lock_irqsave(&ah->irqlock, flags);
1530	imask = ah->imask;
1531	if (ah->rx_pending)
1532		imask &= ~AR5K_INT_RX_ALL;
1533	if (ah->tx_pending)
1534		imask &= ~AR5K_INT_TX_ALL;
1535	ath5k_hw_set_imr(ah, imask);
1536	spin_unlock_irqrestore(&ah->irqlock, flags);
1537}
1538
1539static void
1540ath5k_tasklet_rx(unsigned long data)
1541{
1542	struct ath5k_rx_status rs = {};
1543	struct sk_buff *skb, *next_skb;
1544	dma_addr_t next_skb_addr;
1545	struct ath5k_hw *ah = (void *)data;
1546	struct ath_common *common = ath5k_hw_common(ah);
1547	struct ath5k_buf *bf;
1548	struct ath5k_desc *ds;
1549	int ret;
1550
1551	spin_lock(&ah->rxbuflock);
1552	if (list_empty(&ah->rxbuf)) {
1553		ATH5K_WARN(ah, "empty rx buf pool\n");
1554		goto unlock;
1555	}
1556	do {
1557		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1558		BUG_ON(bf->skb == NULL);
1559		skb = bf->skb;
1560		ds = bf->desc;
1561
1562		/* bail if HW is still using self-linked descriptor */
1563		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1564			break;
1565
1566		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1567		if (unlikely(ret == -EINPROGRESS))
1568			break;
1569		else if (unlikely(ret)) {
1570			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1571			ah->stats.rxerr_proc++;
1572			break;
1573		}
1574
1575		if (ath5k_receive_frame_ok(ah, &rs)) {
1576			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1577
1578			/*
1579			 * If we can't replace bf->skb with a new skb under
1580			 * memory pressure, just skip this packet
1581			 */
1582			if (!next_skb)
1583				goto next;
1584
1585			dma_unmap_single(ah->dev, bf->skbaddr,
1586					 common->rx_bufsize,
1587					 DMA_FROM_DEVICE);
1588
1589			skb_put(skb, rs.rs_datalen);
1590
1591			ath5k_receive_frame(ah, skb, &rs);
1592
1593			bf->skb = next_skb;
1594			bf->skbaddr = next_skb_addr;
1595		}
1596next:
1597		list_move_tail(&bf->list, &ah->rxbuf);
1598	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1599unlock:
1600	spin_unlock(&ah->rxbuflock);
1601	ah->rx_pending = false;
1602	ath5k_set_current_imask(ah);
1603}
1604
1605
1606/*************\
1607* TX Handling *
1608\*************/
1609
1610void
1611ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1612	       struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1613{
1614	struct ath5k_hw *ah = hw->priv;
1615	struct ath5k_buf *bf;
1616	unsigned long flags;
1617	int padsize;
1618
1619	trace_ath5k_tx(ah, skb, txq);
1620
1621	/*
1622	 * The hardware expects the header padded to 4 byte boundaries.
1623	 * If this is not the case, we add the padding after the header.
1624	 */
1625	padsize = ath5k_add_padding(skb);
1626	if (padsize < 0) {
1627		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1628			  " headroom to pad");
1629		goto drop_packet;
1630	}
1631
1632	if (txq->txq_len >= txq->txq_max &&
1633	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1634		ieee80211_stop_queue(hw, txq->qnum);
1635
1636	spin_lock_irqsave(&ah->txbuflock, flags);
1637	if (list_empty(&ah->txbuf)) {
1638		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1639		spin_unlock_irqrestore(&ah->txbuflock, flags);
1640		ieee80211_stop_queues(hw);
1641		goto drop_packet;
1642	}
1643	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1644	list_del(&bf->list);
1645	ah->txbuf_len--;
1646	if (list_empty(&ah->txbuf))
1647		ieee80211_stop_queues(hw);
1648	spin_unlock_irqrestore(&ah->txbuflock, flags);
1649
1650	bf->skb = skb;
1651
1652	if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1653		bf->skb = NULL;
1654		spin_lock_irqsave(&ah->txbuflock, flags);
1655		list_add_tail(&bf->list, &ah->txbuf);
1656		ah->txbuf_len++;
1657		spin_unlock_irqrestore(&ah->txbuflock, flags);
1658		goto drop_packet;
1659	}
1660	return;
1661
1662drop_packet:
1663	ieee80211_free_txskb(hw, skb);
1664}
1665
1666static void
1667ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1668			 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1669			 struct ath5k_buf *bf)
1670{
1671	struct ieee80211_tx_info *info;
1672	u8 tries[3];
1673	int i;
1674	int size = 0;
1675
1676	ah->stats.tx_all_count++;
1677	ah->stats.tx_bytes_count += skb->len;
1678	info = IEEE80211_SKB_CB(skb);
1679
1680	size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1681	memcpy(info->status.rates, bf->rates, size);
1682
1683	tries[0] = info->status.rates[0].count;
1684	tries[1] = info->status.rates[1].count;
1685	tries[2] = info->status.rates[2].count;
1686
1687	ieee80211_tx_info_clear_status(info);
1688
1689	for (i = 0; i < ts->ts_final_idx; i++) {
1690		struct ieee80211_tx_rate *r =
1691			&info->status.rates[i];
1692
1693		r->count = tries[i];
1694	}
1695
1696	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1697	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1698
1699	if (unlikely(ts->ts_status)) {
1700		ah->stats.ack_fail++;
1701		if (ts->ts_status & AR5K_TXERR_FILT) {
1702			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1703			ah->stats.txerr_filt++;
1704		}
1705		if (ts->ts_status & AR5K_TXERR_XRETRY)
1706			ah->stats.txerr_retry++;
1707		if (ts->ts_status & AR5K_TXERR_FIFO)
1708			ah->stats.txerr_fifo++;
1709	} else {
1710		info->flags |= IEEE80211_TX_STAT_ACK;
1711		info->status.ack_signal = ts->ts_rssi;
1712
1713		/* count the successful attempt as well */
1714		info->status.rates[ts->ts_final_idx].count++;
1715	}
1716
1717	/*
1718	* Remove MAC header padding before giving the frame
1719	* back to mac80211.
1720	*/
1721	ath5k_remove_padding(skb);
1722
1723	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1724		ah->stats.antenna_tx[ts->ts_antenna]++;
1725	else
1726		ah->stats.antenna_tx[0]++; /* invalid */
1727
1728	trace_ath5k_tx_complete(ah, skb, txq, ts);
1729	ieee80211_tx_status(ah->hw, skb);
1730}
1731
1732static void
1733ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1734{
1735	struct ath5k_tx_status ts = {};
1736	struct ath5k_buf *bf, *bf0;
1737	struct ath5k_desc *ds;
1738	struct sk_buff *skb;
1739	int ret;
1740
1741	spin_lock(&txq->lock);
1742	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1743
1744		txq->txq_poll_mark = false;
1745
1746		/* skb might already have been processed last time. */
1747		if (bf->skb != NULL) {
1748			ds = bf->desc;
1749
1750			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1751			if (unlikely(ret == -EINPROGRESS))
1752				break;
1753			else if (unlikely(ret)) {
1754				ATH5K_ERR(ah,
1755					"error %d while processing "
1756					"queue %u\n", ret, txq->qnum);
1757				break;
1758			}
1759
1760			skb = bf->skb;
1761			bf->skb = NULL;
1762
1763			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1764					DMA_TO_DEVICE);
1765			ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1766		}
1767
1768		/*
1769		 * It's possible that the hardware can say the buffer is
1770		 * completed when it hasn't yet loaded the ds_link from
1771		 * host memory and moved on.
1772		 * Always keep the last descriptor to avoid HW races...
1773		 */
1774		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1775			spin_lock(&ah->txbuflock);
1776			list_move_tail(&bf->list, &ah->txbuf);
1777			ah->txbuf_len++;
1778			txq->txq_len--;
1779			spin_unlock(&ah->txbuflock);
1780		}
1781	}
1782	spin_unlock(&txq->lock);
1783	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1784		ieee80211_wake_queue(ah->hw, txq->qnum);
1785}
1786
1787static void
1788ath5k_tasklet_tx(unsigned long data)
1789{
1790	int i;
1791	struct ath5k_hw *ah = (void *)data;
1792
1793	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1794		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1795			ath5k_tx_processq(ah, &ah->txqs[i]);
1796
1797	ah->tx_pending = false;
1798	ath5k_set_current_imask(ah);
1799}
1800
1801
1802/*****************\
1803* Beacon handling *
1804\*****************/
1805
1806/*
1807 * Setup the beacon frame for transmit.
1808 */
1809static int
1810ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1811{
1812	struct sk_buff *skb = bf->skb;
1813	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1814	struct ath5k_desc *ds;
1815	int ret = 0;
1816	u8 antenna;
1817	u32 flags;
1818	const int padsize = 0;
1819
1820	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1821			DMA_TO_DEVICE);
1822	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1823			"skbaddr %llx\n", skb, skb->data, skb->len,
1824			(unsigned long long)bf->skbaddr);
1825
1826	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1827		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1828		dev_kfree_skb_any(skb);
1829		bf->skb = NULL;
1830		return -EIO;
1831	}
1832
1833	ds = bf->desc;
1834	antenna = ah->ah_tx_ant;
1835
1836	flags = AR5K_TXDESC_NOACK;
1837	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1838		ds->ds_link = bf->daddr;	/* self-linked */
1839		flags |= AR5K_TXDESC_VEOL;
1840	} else
1841		ds->ds_link = 0;
1842
1843	/*
1844	 * If we use multiple antennas on AP and use
1845	 * the Sectored AP scenario, switch antenna every
1846	 * 4 beacons to make sure everybody hears our AP.
1847	 * When a client tries to associate, hw will keep
1848	 * track of the tx antenna to be used for this client
1849	 * automatically, based on ACKed packets.
1850	 *
1851	 * Note: AP still listens and transmits RTS on the
1852	 * default antenna which is supposed to be an omni.
1853	 *
1854	 * Note2: On sectored scenarios it's possible to have
1855	 * multiple antennas (1 omni -- the default -- and 14
1856	 * sectors), so if we choose to actually support this
1857	 * mode, we need to allow the user to set how many antennas
1858	 * we have and tweak the code below to send beacons
1859	 * on all of them.
1860	 */
1861	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1862		antenna = ah->bsent & 4 ? 2 : 1;
1863
1864
1865	/* FIXME: If we are in g mode and rate is a CCK rate
1866	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1867	 * from tx power (value is in dB units already) */
1868	ds->ds_data = bf->skbaddr;
1869	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1870			ieee80211_get_hdrlen_from_skb(skb), padsize,
1871			AR5K_PKT_TYPE_BEACON,
1872			(ah->ah_txpower.txp_requested * 2),
1873			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1874			1, AR5K_TXKEYIX_INVALID,
1875			antenna, flags, 0, 0);
1876	if (ret)
1877		goto err_unmap;
1878
1879	return 0;
1880err_unmap:
1881	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1882	return ret;
1883}
1884
1885/*
1886 * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1887 * this is called only once at config_bss time, for AP we do it every
1888 * SWBA interrupt so that the TIM will reflect buffered frames.
1889 *
1890 * Called with the beacon lock.
1891 */
1892int
1893ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1894{
1895	int ret;
1896	struct ath5k_hw *ah = hw->priv;
1897	struct ath5k_vif *avf;
1898	struct sk_buff *skb;
1899
1900	if (WARN_ON(!vif)) {
1901		ret = -EINVAL;
1902		goto out;
1903	}
1904
1905	skb = ieee80211_beacon_get(hw, vif);
1906
1907	if (!skb) {
1908		ret = -ENOMEM;
1909		goto out;
1910	}
1911
1912	avf = (void *)vif->drv_priv;
1913	ath5k_txbuf_free_skb(ah, avf->bbuf);
1914	avf->bbuf->skb = skb;
1915	ret = ath5k_beacon_setup(ah, avf->bbuf);
1916out:
1917	return ret;
1918}
1919
1920/*
1921 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1922 * frame contents are done as needed and the slot time is
1923 * also adjusted based on current state.
1924 *
1925 * This is called from software irq context (beacontq tasklets)
1926 * or user context from ath5k_beacon_config.
1927 */
1928static void
1929ath5k_beacon_send(struct ath5k_hw *ah)
1930{
1931	struct ieee80211_vif *vif;
1932	struct ath5k_vif *avf;
1933	struct ath5k_buf *bf;
1934	struct sk_buff *skb;
1935	int err;
1936
1937	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1938
1939	/*
1940	 * Check if the previous beacon has gone out.  If
1941	 * not, don't don't try to post another: skip this
1942	 * period and wait for the next.  Missed beacons
1943	 * indicate a problem and should not occur.  If we
1944	 * miss too many consecutive beacons reset the device.
1945	 */
1946	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1947		ah->bmisscount++;
1948		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1949			"missed %u consecutive beacons\n", ah->bmisscount);
1950		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1951			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1952				"stuck beacon time (%u missed)\n",
1953				ah->bmisscount);
1954			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1955				  "stuck beacon, resetting\n");
1956			ieee80211_queue_work(ah->hw, &ah->reset_work);
1957		}
1958		return;
1959	}
1960	if (unlikely(ah->bmisscount != 0)) {
1961		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1962			"resume beacon xmit after %u misses\n",
1963			ah->bmisscount);
1964		ah->bmisscount = 0;
1965	}
1966
1967	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1968			ah->num_mesh_vifs > 1) ||
1969			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1970		u64 tsf = ath5k_hw_get_tsf64(ah);
1971		u32 tsftu = TSF_TO_TU(tsf);
1972		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1973		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1974		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1975			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1976			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1977	} else /* only one interface */
1978		vif = ah->bslot[0];
1979
1980	if (!vif)
1981		return;
1982
1983	avf = (void *)vif->drv_priv;
1984	bf = avf->bbuf;
1985
1986	/*
1987	 * Stop any current dma and put the new frame on the queue.
1988	 * This should never fail since we check above that no frames
1989	 * are still pending on the queue.
1990	 */
1991	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1992		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1993		/* NB: hw still stops DMA, so proceed */
1994	}
1995
1996	/* refresh the beacon for AP or MESH mode */
1997	if (ah->opmode == NL80211_IFTYPE_AP ||
1998	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1999		err = ath5k_beacon_update(ah->hw, vif);
2000		if (err)
2001			return;
2002	}
2003
2004	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
2005		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
2006		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
2007		return;
2008	}
2009
2010	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
2011
2012	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
2013	ath5k_hw_start_tx_dma(ah, ah->bhalq);
2014	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2015		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2016
2017	skb = ieee80211_get_buffered_bc(ah->hw, vif);
2018	while (skb) {
2019		ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2020
2021		if (ah->cabq->txq_len >= ah->cabq->txq_max)
2022			break;
2023
2024		skb = ieee80211_get_buffered_bc(ah->hw, vif);
2025	}
2026
2027	ah->bsent++;
2028}
2029
2030/**
2031 * ath5k_beacon_update_timers - update beacon timers
2032 *
2033 * @ah: struct ath5k_hw pointer we are operating on
2034 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2035 *          beacon timer update based on the current HW TSF.
2036 *
2037 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2038 * of a received beacon or the current local hardware TSF and write it to the
2039 * beacon timer registers.
2040 *
2041 * This is called in a variety of situations, e.g. when a beacon is received,
2042 * when a TSF update has been detected, but also when an new IBSS is created or
2043 * when we otherwise know we have to update the timers, but we keep it in this
2044 * function to have it all together in one place.
2045 */
2046void
2047ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2048{
2049	u32 nexttbtt, intval, hw_tu, bc_tu;
2050	u64 hw_tsf;
2051
2052	intval = ah->bintval & AR5K_BEACON_PERIOD;
2053	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2054		+ ah->num_mesh_vifs > 1) {
2055		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
2056		if (intval < 15)
2057			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2058				   intval);
2059	}
2060	if (WARN_ON(!intval))
2061		return;
2062
2063	/* beacon TSF converted to TU */
2064	bc_tu = TSF_TO_TU(bc_tsf);
2065
2066	/* current TSF converted to TU */
2067	hw_tsf = ath5k_hw_get_tsf64(ah);
2068	hw_tu = TSF_TO_TU(hw_tsf);
2069
2070#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2071	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2072	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2073	 * configuration we need to make sure it is bigger than that. */
2074
2075	if (bc_tsf == -1) {
2076		/*
2077		 * no beacons received, called internally.
2078		 * just need to refresh timers based on HW TSF.
2079		 */
2080		nexttbtt = roundup(hw_tu + FUDGE, intval);
2081	} else if (bc_tsf == 0) {
2082		/*
2083		 * no beacon received, probably called by ath5k_reset_tsf().
2084		 * reset TSF to start with 0.
2085		 */
2086		nexttbtt = intval;
2087		intval |= AR5K_BEACON_RESET_TSF;
2088	} else if (bc_tsf > hw_tsf) {
2089		/*
2090		 * beacon received, SW merge happened but HW TSF not yet updated.
2091		 * not possible to reconfigure timers yet, but next time we
2092		 * receive a beacon with the same BSSID, the hardware will
2093		 * automatically update the TSF and then we need to reconfigure
2094		 * the timers.
2095		 */
2096		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2097			"need to wait for HW TSF sync\n");
2098		return;
2099	} else {
2100		/*
2101		 * most important case for beacon synchronization between STA.
2102		 *
2103		 * beacon received and HW TSF has been already updated by HW.
2104		 * update next TBTT based on the TSF of the beacon, but make
2105		 * sure it is ahead of our local TSF timer.
2106		 */
2107		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2108	}
2109#undef FUDGE
2110
2111	ah->nexttbtt = nexttbtt;
2112
2113	intval |= AR5K_BEACON_ENA;
2114	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2115
2116	/*
2117	 * debugging output last in order to preserve the time critical aspect
2118	 * of this function
2119	 */
2120	if (bc_tsf == -1)
2121		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2122			"reconfigured timers based on HW TSF\n");
2123	else if (bc_tsf == 0)
2124		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2125			"reset HW TSF and timers\n");
2126	else
2127		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2128			"updated timers based on beacon TSF\n");
2129
2130	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2131			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2132			  (unsigned long long) bc_tsf,
2133			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2134	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2135		intval & AR5K_BEACON_PERIOD,
2136		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2137		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2138}
2139
2140/**
2141 * ath5k_beacon_config - Configure the beacon queues and interrupts
2142 *
2143 * @ah: struct ath5k_hw pointer we are operating on
2144 *
2145 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2146 * interrupts to detect TSF updates only.
2147 */
2148void
2149ath5k_beacon_config(struct ath5k_hw *ah)
2150{
2151	spin_lock_bh(&ah->block);
2152	ah->bmisscount = 0;
2153	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2154
2155	if (ah->enable_beacon) {
2156		/*
2157		 * In IBSS mode we use a self-linked tx descriptor and let the
2158		 * hardware send the beacons automatically. We have to load it
2159		 * only once here.
2160		 * We use the SWBA interrupt only to keep track of the beacon
2161		 * timers in order to detect automatic TSF updates.
2162		 */
2163		ath5k_beaconq_config(ah);
2164
2165		ah->imask |= AR5K_INT_SWBA;
2166
2167		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2168			if (ath5k_hw_hasveol(ah))
2169				ath5k_beacon_send(ah);
2170		} else
2171			ath5k_beacon_update_timers(ah, -1);
2172	} else {
2173		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2174	}
2175
2176	ath5k_hw_set_imr(ah, ah->imask);
2177	mmiowb();
2178	spin_unlock_bh(&ah->block);
2179}
2180
2181static void ath5k_tasklet_beacon(unsigned long data)
2182{
2183	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2184
2185	/*
2186	 * Software beacon alert--time to send a beacon.
2187	 *
2188	 * In IBSS mode we use this interrupt just to
2189	 * keep track of the next TBTT (target beacon
2190	 * transmission time) in order to detect whether
2191	 * automatic TSF updates happened.
2192	 */
2193	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2194		/* XXX: only if VEOL supported */
2195		u64 tsf = ath5k_hw_get_tsf64(ah);
2196		ah->nexttbtt += ah->bintval;
2197		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2198				"SWBA nexttbtt: %x hw_tu: %x "
2199				"TSF: %llx\n",
2200				ah->nexttbtt,
2201				TSF_TO_TU(tsf),
2202				(unsigned long long) tsf);
2203	} else {
2204		spin_lock(&ah->block);
2205		ath5k_beacon_send(ah);
2206		spin_unlock(&ah->block);
2207	}
2208}
2209
2210
2211/********************\
2212* Interrupt handling *
2213\********************/
2214
2215static void
2216ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2217{
2218	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2219	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2220	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2221
2222		/* Run ANI only when calibration is not active */
2223
2224		ah->ah_cal_next_ani = jiffies +
2225			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2226		tasklet_schedule(&ah->ani_tasklet);
2227
2228	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2229		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2230		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2231
2232		/* Run calibration only when another calibration
2233		 * is not running.
2234		 *
2235		 * Note: This is for both full/short calibration,
2236		 * if it's time for a full one, ath5k_calibrate_work will deal
2237		 * with it. */
2238
2239		ah->ah_cal_next_short = jiffies +
2240			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2241		ieee80211_queue_work(ah->hw, &ah->calib_work);
2242	}
2243	/* we could use SWI to generate enough interrupts to meet our
2244	 * calibration interval requirements, if necessary:
2245	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2246}
2247
2248static void
2249ath5k_schedule_rx(struct ath5k_hw *ah)
2250{
2251	ah->rx_pending = true;
2252	tasklet_schedule(&ah->rxtq);
2253}
2254
2255static void
2256ath5k_schedule_tx(struct ath5k_hw *ah)
2257{
2258	ah->tx_pending = true;
2259	tasklet_schedule(&ah->txtq);
2260}
2261
2262static irqreturn_t
2263ath5k_intr(int irq, void *dev_id)
2264{
2265	struct ath5k_hw *ah = dev_id;
2266	enum ath5k_int status;
2267	unsigned int counter = 1000;
2268
2269
2270	/*
2271	 * If hw is not ready (or detached) and we get an
2272	 * interrupt, or if we have no interrupts pending
2273	 * (that means it's not for us) skip it.
2274	 *
2275	 * NOTE: Group 0/1 PCI interface registers are not
2276	 * supported on WiSOCs, so we can't check for pending
2277	 * interrupts (ISR belongs to another register group
2278	 * so we are ok).
2279	 */
2280	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2281			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2282			!ath5k_hw_is_intr_pending(ah))))
2283		return IRQ_NONE;
2284
2285	/** Main loop **/
2286	do {
2287		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2288
2289		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2290				status, ah->imask);
2291
2292		/*
2293		 * Fatal hw error -> Log and reset
2294		 *
2295		 * Fatal errors are unrecoverable so we have to
2296		 * reset the card. These errors include bus and
2297		 * dma errors.
2298		 */
2299		if (unlikely(status & AR5K_INT_FATAL)) {
2300
2301			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2302				  "fatal int, resetting\n");
2303			ieee80211_queue_work(ah->hw, &ah->reset_work);
2304
2305		/*
2306		 * RX Overrun -> Count and reset if needed
2307		 *
2308		 * Receive buffers are full. Either the bus is busy or
2309		 * the CPU is not fast enough to process all received
2310		 * frames.
2311		 */
2312		} else if (unlikely(status & AR5K_INT_RXORN)) {
2313
2314			/*
2315			 * Older chipsets need a reset to come out of this
2316			 * condition, but we treat it as RX for newer chips.
2317			 * We don't know exactly which versions need a reset
2318			 * this guess is copied from the HAL.
2319			 */
2320			ah->stats.rxorn_intr++;
2321
2322			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2323				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2324					  "rx overrun, resetting\n");
2325				ieee80211_queue_work(ah->hw, &ah->reset_work);
2326			} else
2327				ath5k_schedule_rx(ah);
2328
2329		} else {
2330
2331			/* Software Beacon Alert -> Schedule beacon tasklet */
2332			if (status & AR5K_INT_SWBA)
2333				tasklet_hi_schedule(&ah->beacontq);
2334
2335			/*
2336			 * No more RX descriptors -> Just count
2337			 *
2338			 * NB: the hardware should re-read the link when
2339			 *     RXE bit is written, but it doesn't work at
2340			 *     least on older hardware revs.
2341			 */
2342			if (status & AR5K_INT_RXEOL)
2343				ah->stats.rxeol_intr++;
2344
2345
2346			/* TX Underrun -> Bump tx trigger level */
2347			if (status & AR5K_INT_TXURN)
2348				ath5k_hw_update_tx_triglevel(ah, true);
2349
2350			/* RX -> Schedule rx tasklet */
2351			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2352				ath5k_schedule_rx(ah);
2353
2354			/* TX -> Schedule tx tasklet */
2355			if (status & (AR5K_INT_TXOK
2356					| AR5K_INT_TXDESC
2357					| AR5K_INT_TXERR
2358					| AR5K_INT_TXEOL))
2359				ath5k_schedule_tx(ah);
2360
2361			/* Missed beacon -> TODO
2362			if (status & AR5K_INT_BMISS)
2363			*/
2364
2365			/* MIB event -> Update counters and notify ANI */
2366			if (status & AR5K_INT_MIB) {
2367				ah->stats.mib_intr++;
2368				ath5k_hw_update_mib_counters(ah);
2369				ath5k_ani_mib_intr(ah);
2370			}
2371
2372			/* GPIO -> Notify RFKill layer */
2373			if (status & AR5K_INT_GPIO)
2374				tasklet_schedule(&ah->rf_kill.toggleq);
2375
2376		}
2377
2378		if (ath5k_get_bus_type(ah) == ATH_AHB)
2379			break;
2380
2381	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2382
2383	/*
2384	 * Until we handle rx/tx interrupts mask them on IMR
2385	 *
2386	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2387	 * and unset after we 've handled the interrupts.
2388	 */
2389	if (ah->rx_pending || ah->tx_pending)
2390		ath5k_set_current_imask(ah);
2391
2392	if (unlikely(!counter))
2393		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2394
2395	/* Fire up calibration poll */
2396	ath5k_intr_calibration_poll(ah);
2397
2398	return IRQ_HANDLED;
2399}
2400
2401/*
2402 * Periodically recalibrate the PHY to account
2403 * for temperature/environment changes.
2404 */
2405static void
2406ath5k_calibrate_work(struct work_struct *work)
2407{
2408	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2409		calib_work);
2410
2411	/* Should we run a full calibration ? */
2412	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2413
2414		ah->ah_cal_next_full = jiffies +
2415			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2416		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2417
2418		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2419				"running full calibration\n");
2420
2421		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2422			/*
2423			 * Rfgain is out of bounds, reset the chip
2424			 * to load new gain values.
2425			 */
2426			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2427					"got new rfgain, resetting\n");
2428			ieee80211_queue_work(ah->hw, &ah->reset_work);
2429		}
2430	} else
2431		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2432
2433
2434	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2435		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2436		ah->curchan->hw_value);
2437
2438	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2439		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2440			ieee80211_frequency_to_channel(
2441				ah->curchan->center_freq));
2442
2443	/* Clear calibration flags */
2444	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2445		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2446	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2447		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2448}
2449
2450
2451static void
2452ath5k_tasklet_ani(unsigned long data)
2453{
2454	struct ath5k_hw *ah = (void *)data;
2455
2456	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2457	ath5k_ani_calibration(ah);
2458	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2459}
2460
2461
2462static void
2463ath5k_tx_complete_poll_work(struct work_struct *work)
2464{
2465	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2466			tx_complete_work.work);
2467	struct ath5k_txq *txq;
2468	int i;
2469	bool needreset = false;
2470
2471	if (!test_bit(ATH_STAT_STARTED, ah->status))
2472		return;
2473
2474	mutex_lock(&ah->lock);
2475
2476	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2477		if (ah->txqs[i].setup) {
2478			txq = &ah->txqs[i];
2479			spin_lock_bh(&txq->lock);
2480			if (txq->txq_len > 1) {
2481				if (txq->txq_poll_mark) {
2482					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2483						  "TX queue stuck %d\n",
2484						  txq->qnum);
2485					needreset = true;
2486					txq->txq_stuck++;
2487					spin_unlock_bh(&txq->lock);
2488					break;
2489				} else {
2490					txq->txq_poll_mark = true;
2491				}
2492			}
2493			spin_unlock_bh(&txq->lock);
2494		}
2495	}
2496
2497	if (needreset) {
2498		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2499			  "TX queues stuck, resetting\n");
2500		ath5k_reset(ah, NULL, true);
2501	}
2502
2503	mutex_unlock(&ah->lock);
2504
2505	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2506		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2507}
2508
2509
2510/*************************\
2511* Initialization routines *
2512\*************************/
2513
2514static const struct ieee80211_iface_limit if_limits[] = {
2515	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2516	{ .max = 4,	.types =
2517#ifdef CONFIG_MAC80211_MESH
2518				 BIT(NL80211_IFTYPE_MESH_POINT) |
2519#endif
2520				 BIT(NL80211_IFTYPE_AP) },
2521};
2522
2523static const struct ieee80211_iface_combination if_comb = {
2524	.limits = if_limits,
2525	.n_limits = ARRAY_SIZE(if_limits),
2526	.max_interfaces = 2048,
2527	.num_different_channels = 1,
2528};
2529
2530int
2531ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2532{
2533	struct ieee80211_hw *hw = ah->hw;
2534	struct ath_common *common;
2535	int ret;
2536	int csz;
2537
2538	/* Initialize driver private data */
2539	SET_IEEE80211_DEV(hw, ah->dev);
2540	ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
2541	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2542	ieee80211_hw_set(hw, MFP_CAPABLE);
2543	ieee80211_hw_set(hw, SIGNAL_DBM);
2544	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2545	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
2546
2547	hw->wiphy->interface_modes =
2548		BIT(NL80211_IFTYPE_AP) |
2549		BIT(NL80211_IFTYPE_STATION) |
2550		BIT(NL80211_IFTYPE_ADHOC) |
2551		BIT(NL80211_IFTYPE_MESH_POINT);
2552
2553	hw->wiphy->iface_combinations = &if_comb;
2554	hw->wiphy->n_iface_combinations = 1;
2555
2556	/* SW support for IBSS_RSN is provided by mac80211 */
2557	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2558
2559	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2560
2561	/* both antennas can be configured as RX or TX */
2562	hw->wiphy->available_antennas_tx = 0x3;
2563	hw->wiphy->available_antennas_rx = 0x3;
2564
2565	hw->extra_tx_headroom = 2;
2566
2567	/*
2568	 * Mark the device as detached to avoid processing
2569	 * interrupts until setup is complete.
2570	 */
2571	__set_bit(ATH_STAT_INVALID, ah->status);
2572
2573	ah->opmode = NL80211_IFTYPE_STATION;
2574	ah->bintval = 1000;
2575	mutex_init(&ah->lock);
2576	spin_lock_init(&ah->rxbuflock);
2577	spin_lock_init(&ah->txbuflock);
2578	spin_lock_init(&ah->block);
2579	spin_lock_init(&ah->irqlock);
2580
2581	/* Setup interrupt handler */
2582	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2583	if (ret) {
2584		ATH5K_ERR(ah, "request_irq failed\n");
2585		goto err;
2586	}
2587
2588	common = ath5k_hw_common(ah);
2589	common->ops = &ath5k_common_ops;
2590	common->bus_ops = bus_ops;
2591	common->ah = ah;
2592	common->hw = hw;
2593	common->priv = ah;
2594	common->clockrate = 40;
2595
2596	/*
2597	 * Cache line size is used to size and align various
2598	 * structures used to communicate with the hardware.
2599	 */
2600	ath5k_read_cachesize(common, &csz);
2601	common->cachelsz = csz << 2; /* convert to bytes */
2602
2603	spin_lock_init(&common->cc_lock);
2604
2605	/* Initialize device */
2606	ret = ath5k_hw_init(ah);
2607	if (ret)
2608		goto err_irq;
2609
2610	/* Set up multi-rate retry capabilities */
2611	if (ah->ah_capabilities.cap_has_mrr_support) {
2612		hw->max_rates = 4;
2613		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2614					 AR5K_INIT_RETRY_LONG);
2615	}
2616
2617	hw->vif_data_size = sizeof(struct ath5k_vif);
2618
2619	/* Finish private driver data initialization */
2620	ret = ath5k_init(hw);
2621	if (ret)
2622		goto err_ah;
2623
2624	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2625			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2626					ah->ah_mac_srev,
2627					ah->ah_phy_revision);
2628
2629	if (!ah->ah_single_chip) {
2630		/* Single chip radio (!RF5111) */
2631		if (ah->ah_radio_5ghz_revision &&
2632			!ah->ah_radio_2ghz_revision) {
2633			/* No 5GHz support -> report 2GHz radio */
2634			if (!test_bit(AR5K_MODE_11A,
2635				ah->ah_capabilities.cap_mode)) {
2636				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2637					ath5k_chip_name(AR5K_VERSION_RAD,
2638						ah->ah_radio_5ghz_revision),
2639						ah->ah_radio_5ghz_revision);
2640			/* No 2GHz support (5110 and some
2641			 * 5GHz only cards) -> report 5GHz radio */
2642			} else if (!test_bit(AR5K_MODE_11B,
2643				ah->ah_capabilities.cap_mode)) {
2644				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2645					ath5k_chip_name(AR5K_VERSION_RAD,
2646						ah->ah_radio_5ghz_revision),
2647						ah->ah_radio_5ghz_revision);
2648			/* Multiband radio */
2649			} else {
2650				ATH5K_INFO(ah, "RF%s multiband radio found"
2651					" (0x%x)\n",
2652					ath5k_chip_name(AR5K_VERSION_RAD,
2653						ah->ah_radio_5ghz_revision),
2654						ah->ah_radio_5ghz_revision);
2655			}
2656		}
2657		/* Multi chip radio (RF5111 - RF2111) ->
2658		 * report both 2GHz/5GHz radios */
2659		else if (ah->ah_radio_5ghz_revision &&
2660				ah->ah_radio_2ghz_revision) {
2661			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2662				ath5k_chip_name(AR5K_VERSION_RAD,
2663					ah->ah_radio_5ghz_revision),
2664					ah->ah_radio_5ghz_revision);
2665			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2666				ath5k_chip_name(AR5K_VERSION_RAD,
2667					ah->ah_radio_2ghz_revision),
2668					ah->ah_radio_2ghz_revision);
2669		}
2670	}
2671
2672	ath5k_debug_init_device(ah);
2673
2674	/* ready to process interrupts */
2675	__clear_bit(ATH_STAT_INVALID, ah->status);
2676
2677	return 0;
2678err_ah:
2679	ath5k_hw_deinit(ah);
2680err_irq:
2681	free_irq(ah->irq, ah);
2682err:
2683	return ret;
2684}
2685
2686static int
2687ath5k_stop_locked(struct ath5k_hw *ah)
2688{
2689
2690	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2691			test_bit(ATH_STAT_INVALID, ah->status));
2692
2693	/*
2694	 * Shutdown the hardware and driver:
2695	 *    stop output from above
2696	 *    disable interrupts
2697	 *    turn off timers
2698	 *    turn off the radio
2699	 *    clear transmit machinery
2700	 *    clear receive machinery
2701	 *    drain and release tx queues
2702	 *    reclaim beacon resources
2703	 *    power down hardware
2704	 *
2705	 * Note that some of this work is not possible if the
2706	 * hardware is gone (invalid).
2707	 */
2708	ieee80211_stop_queues(ah->hw);
2709
2710	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2711		ath5k_led_off(ah);
2712		ath5k_hw_set_imr(ah, 0);
2713		synchronize_irq(ah->irq);
2714		ath5k_rx_stop(ah);
2715		ath5k_hw_dma_stop(ah);
2716		ath5k_drain_tx_buffs(ah);
2717		ath5k_hw_phy_disable(ah);
2718	}
2719
2720	return 0;
2721}
2722
2723int ath5k_start(struct ieee80211_hw *hw)
2724{
2725	struct ath5k_hw *ah = hw->priv;
2726	struct ath_common *common = ath5k_hw_common(ah);
2727	int ret, i;
2728
2729	mutex_lock(&ah->lock);
2730
2731	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2732
2733	/*
2734	 * Stop anything previously setup.  This is safe
2735	 * no matter this is the first time through or not.
2736	 */
2737	ath5k_stop_locked(ah);
2738
2739	/*
2740	 * The basic interface to setting the hardware in a good
2741	 * state is ``reset''.  On return the hardware is known to
2742	 * be powered up and with interrupts disabled.  This must
2743	 * be followed by initialization of the appropriate bits
2744	 * and then setup of the interrupt mask.
2745	 */
2746	ah->curchan = ah->hw->conf.chandef.chan;
2747	ah->imask = AR5K_INT_RXOK
2748		| AR5K_INT_RXERR
2749		| AR5K_INT_RXEOL
2750		| AR5K_INT_RXORN
2751		| AR5K_INT_TXDESC
2752		| AR5K_INT_TXEOL
2753		| AR5K_INT_FATAL
2754		| AR5K_INT_GLOBAL
2755		| AR5K_INT_MIB;
2756
2757	ret = ath5k_reset(ah, NULL, false);
2758	if (ret)
2759		goto done;
2760
2761	if (!ath5k_modparam_no_hw_rfkill_switch)
2762		ath5k_rfkill_hw_start(ah);
2763
2764	/*
2765	 * Reset the key cache since some parts do not reset the
2766	 * contents on initial power up or resume from suspend.
2767	 */
2768	for (i = 0; i < common->keymax; i++)
2769		ath_hw_keyreset(common, (u16) i);
2770
2771	/* Use higher rates for acks instead of base
2772	 * rate */
2773	ah->ah_ack_bitrate_high = true;
2774
2775	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2776		ah->bslot[i] = NULL;
2777
2778	ret = 0;
2779done:
2780	mmiowb();
2781	mutex_unlock(&ah->lock);
2782
2783	set_bit(ATH_STAT_STARTED, ah->status);
2784	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2785			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2786
2787	return ret;
2788}
2789
2790static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2791{
2792	ah->rx_pending = false;
2793	ah->tx_pending = false;
2794	tasklet_kill(&ah->rxtq);
2795	tasklet_kill(&ah->txtq);
2796	tasklet_kill(&ah->beacontq);
2797	tasklet_kill(&ah->ani_tasklet);
2798}
2799
2800/*
2801 * Stop the device, grabbing the top-level lock to protect
2802 * against concurrent entry through ath5k_init (which can happen
2803 * if another thread does a system call and the thread doing the
2804 * stop is preempted).
2805 */
2806void ath5k_stop(struct ieee80211_hw *hw)
2807{
2808	struct ath5k_hw *ah = hw->priv;
2809	int ret;
2810
2811	mutex_lock(&ah->lock);
2812	ret = ath5k_stop_locked(ah);
2813	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2814		/*
2815		 * Don't set the card in full sleep mode!
2816		 *
2817		 * a) When the device is in this state it must be carefully
2818		 * woken up or references to registers in the PCI clock
2819		 * domain may freeze the bus (and system).  This varies
2820		 * by chip and is mostly an issue with newer parts
2821		 * (madwifi sources mentioned srev >= 0x78) that go to
2822		 * sleep more quickly.
2823		 *
2824		 * b) On older chips full sleep results a weird behaviour
2825		 * during wakeup. I tested various cards with srev < 0x78
2826		 * and they don't wake up after module reload, a second
2827		 * module reload is needed to bring the card up again.
2828		 *
2829		 * Until we figure out what's going on don't enable
2830		 * full chip reset on any chip (this is what Legacy HAL
2831		 * and Sam's HAL do anyway). Instead Perform a full reset
2832		 * on the device (same as initial state after attach) and
2833		 * leave it idle (keep MAC/BB on warm reset) */
2834		ret = ath5k_hw_on_hold(ah);
2835
2836		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2837				"putting device to sleep\n");
2838	}
2839
2840	mmiowb();
2841	mutex_unlock(&ah->lock);
2842
2843	ath5k_stop_tasklets(ah);
2844
2845	clear_bit(ATH_STAT_STARTED, ah->status);
2846	cancel_delayed_work_sync(&ah->tx_complete_work);
2847
2848	if (!ath5k_modparam_no_hw_rfkill_switch)
2849		ath5k_rfkill_hw_stop(ah);
2850}
2851
2852/*
2853 * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2854 * and change to the given channel.
2855 *
2856 * This should be called with ah->lock.
2857 */
2858static int
2859ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2860							bool skip_pcu)
2861{
2862	struct ath_common *common = ath5k_hw_common(ah);
2863	int ret, ani_mode;
2864	bool fast = chan && modparam_fastchanswitch ? 1 : 0;
2865
2866	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2867
2868	__set_bit(ATH_STAT_RESET, ah->status);
2869
2870	ath5k_hw_set_imr(ah, 0);
2871	synchronize_irq(ah->irq);
2872	ath5k_stop_tasklets(ah);
2873
2874	/* Save ani mode and disable ANI during
2875	 * reset. If we don't we might get false
2876	 * PHY error interrupts. */
2877	ani_mode = ah->ani_state.ani_mode;
2878	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2879
2880	/* We are going to empty hw queues
2881	 * so we should also free any remaining
2882	 * tx buffers */
2883	ath5k_drain_tx_buffs(ah);
2884
2885	/* Stop PCU */
2886	ath5k_hw_stop_rx_pcu(ah);
2887
2888	/* Stop DMA
2889	 *
2890	 * Note: If DMA didn't stop continue
2891	 * since only a reset will fix it.
2892	 */
2893	ret = ath5k_hw_dma_stop(ah);
2894
2895	/* RF Bus grant won't work if we have pending
2896	 * frames
2897	 */
2898	if (ret && fast) {
2899		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2900			  "DMA didn't stop, falling back to normal reset\n");
2901		fast = false;
2902	}
2903
2904	if (chan)
2905		ah->curchan = chan;
2906
2907	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2908	if (ret) {
2909		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2910		goto err;
2911	}
2912
2913	ret = ath5k_rx_start(ah);
2914	if (ret) {
2915		ATH5K_ERR(ah, "can't start recv logic\n");
2916		goto err;
2917	}
2918
2919	ath5k_ani_init(ah, ani_mode);
2920
2921	/*
2922	 * Set calibration intervals
2923	 *
2924	 * Note: We don't need to run calibration imediately
2925	 * since some initial calibration is done on reset
2926	 * even for fast channel switching. Also on scanning
2927	 * this will get set again and again and it won't get
2928	 * executed unless we connect somewhere and spend some
2929	 * time on the channel (that's what calibration needs
2930	 * anyway to be accurate).
2931	 */
2932	ah->ah_cal_next_full = jiffies +
2933		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2934	ah->ah_cal_next_ani = jiffies +
2935		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2936	ah->ah_cal_next_short = jiffies +
2937		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2938
2939	ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
2940
2941	/* clear survey data and cycle counters */
2942	memset(&ah->survey, 0, sizeof(ah->survey));
2943	spin_lock_bh(&common->cc_lock);
2944	ath_hw_cycle_counters_update(common);
2945	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2946	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2947	spin_unlock_bh(&common->cc_lock);
2948
2949	/*
2950	 * Change channels and update the h/w rate map if we're switching;
2951	 * e.g. 11a to 11b/g.
2952	 *
2953	 * We may be doing a reset in response to an ioctl that changes the
2954	 * channel so update any state that might change as a result.
2955	 *
2956	 * XXX needed?
2957	 */
2958/*	ath5k_chan_change(ah, c); */
2959
2960	__clear_bit(ATH_STAT_RESET, ah->status);
2961
2962	ath5k_beacon_config(ah);
2963	/* intrs are enabled by ath5k_beacon_config */
2964
2965	ieee80211_wake_queues(ah->hw);
2966
2967	return 0;
2968err:
2969	return ret;
2970}
2971
2972static void ath5k_reset_work(struct work_struct *work)
2973{
2974	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2975		reset_work);
2976
2977	mutex_lock(&ah->lock);
2978	ath5k_reset(ah, NULL, true);
2979	mutex_unlock(&ah->lock);
2980}
2981
2982static int
2983ath5k_init(struct ieee80211_hw *hw)
2984{
2985
2986	struct ath5k_hw *ah = hw->priv;
2987	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2988	struct ath5k_txq *txq;
2989	u8 mac[ETH_ALEN] = {};
2990	int ret;
2991
2992
2993	/*
2994	 * Collect the channel list.  The 802.11 layer
2995	 * is responsible for filtering this list based
2996	 * on settings like the phy mode and regulatory
2997	 * domain restrictions.
2998	 */
2999	ret = ath5k_setup_bands(hw);
3000	if (ret) {
3001		ATH5K_ERR(ah, "can't get channels\n");
3002		goto err;
3003	}
3004
3005	/*
3006	 * Allocate tx+rx descriptors and populate the lists.
3007	 */
3008	ret = ath5k_desc_alloc(ah);
3009	if (ret) {
3010		ATH5K_ERR(ah, "can't allocate descriptors\n");
3011		goto err;
3012	}
3013
3014	/*
3015	 * Allocate hardware transmit queues: one queue for
3016	 * beacon frames and one data queue for each QoS
3017	 * priority.  Note that hw functions handle resetting
3018	 * these queues at the needed time.
3019	 */
3020	ret = ath5k_beaconq_setup(ah);
3021	if (ret < 0) {
3022		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
3023		goto err_desc;
3024	}
3025	ah->bhalq = ret;
3026	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
3027	if (IS_ERR(ah->cabq)) {
3028		ATH5K_ERR(ah, "can't setup cab queue\n");
3029		ret = PTR_ERR(ah->cabq);
3030		goto err_bhal;
3031	}
3032
3033	/* 5211 and 5212 usually support 10 queues but we better rely on the
3034	 * capability information */
3035	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3036		/* This order matches mac80211's queue priority, so we can
3037		* directly use the mac80211 queue number without any mapping */
3038		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3039		if (IS_ERR(txq)) {
3040			ATH5K_ERR(ah, "can't setup xmit queue\n");
3041			ret = PTR_ERR(txq);
3042			goto err_queues;
3043		}
3044		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3045		if (IS_ERR(txq)) {
3046			ATH5K_ERR(ah, "can't setup xmit queue\n");
3047			ret = PTR_ERR(txq);
3048			goto err_queues;
3049		}
3050		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3051		if (IS_ERR(txq)) {
3052			ATH5K_ERR(ah, "can't setup xmit queue\n");
3053			ret = PTR_ERR(txq);
3054			goto err_queues;
3055		}
3056		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3057		if (IS_ERR(txq)) {
3058			ATH5K_ERR(ah, "can't setup xmit queue\n");
3059			ret = PTR_ERR(txq);
3060			goto err_queues;
3061		}
3062		hw->queues = 4;
3063	} else {
3064		/* older hardware (5210) can only support one data queue */
3065		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3066		if (IS_ERR(txq)) {
3067			ATH5K_ERR(ah, "can't setup xmit queue\n");
3068			ret = PTR_ERR(txq);
3069			goto err_queues;
3070		}
3071		hw->queues = 1;
3072	}
3073
3074	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3075	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
3076	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3077	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3078
3079	INIT_WORK(&ah->reset_work, ath5k_reset_work);
3080	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3081	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3082
3083	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3084	if (ret) {
3085		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3086		goto err_queues;
3087	}
3088
3089	SET_IEEE80211_PERM_ADDR(hw, mac);
3090	/* All MAC address bits matter for ACKs */
3091	ath5k_update_bssid_mask_and_opmode(ah, NULL);
3092
3093	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3094	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3095	if (ret) {
3096		ATH5K_ERR(ah, "can't initialize regulatory system\n");
3097		goto err_queues;
3098	}
3099
3100	ret = ieee80211_register_hw(hw);
3101	if (ret) {
3102		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3103		goto err_queues;
3104	}
3105
3106	if (!ath_is_world_regd(regulatory))
3107		regulatory_hint(hw->wiphy, regulatory->alpha2);
3108
3109	ath5k_init_leds(ah);
3110
3111	ath5k_sysfs_register(ah);
3112
3113	return 0;
3114err_queues:
3115	ath5k_txq_release(ah);
3116err_bhal:
3117	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3118err_desc:
3119	ath5k_desc_free(ah);
3120err:
3121	return ret;
3122}
3123
3124void
3125ath5k_deinit_ah(struct ath5k_hw *ah)
3126{
3127	struct ieee80211_hw *hw = ah->hw;
3128
3129	/*
3130	 * NB: the order of these is important:
3131	 * o call the 802.11 layer before detaching ath5k_hw to
3132	 *   ensure callbacks into the driver to delete global
3133	 *   key cache entries can be handled
3134	 * o reclaim the tx queue data structures after calling
3135	 *   the 802.11 layer as we'll get called back to reclaim
3136	 *   node state and potentially want to use them
3137	 * o to cleanup the tx queues the hal is called, so detach
3138	 *   it last
3139	 * XXX: ??? detach ath5k_hw ???
3140	 * Other than that, it's straightforward...
3141	 */
3142	ieee80211_unregister_hw(hw);
3143	ath5k_desc_free(ah);
3144	ath5k_txq_release(ah);
3145	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3146	ath5k_unregister_leds(ah);
3147
3148	ath5k_sysfs_unregister(ah);
3149	/*
3150	 * NB: can't reclaim these until after ieee80211_ifdetach
3151	 * returns because we'll get called back to reclaim node
3152	 * state and potentially want to use them.
3153	 */
3154	ath5k_hw_deinit(ah);
3155	free_irq(ah->irq, ah);
3156}
3157
3158bool
3159ath5k_any_vif_assoc(struct ath5k_hw *ah)
3160{
3161	struct ath5k_vif_iter_data iter_data;
3162	iter_data.hw_macaddr = NULL;
3163	iter_data.any_assoc = false;
3164	iter_data.need_set_hw_addr = false;
3165	iter_data.found_active = true;
3166
3167	ieee80211_iterate_active_interfaces_atomic(
3168		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3169		ath5k_vif_iter, &iter_data);
3170	return iter_data.any_assoc;
3171}
3172
3173void
3174ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3175{
3176	struct ath5k_hw *ah = hw->priv;
3177	u32 rfilt;
3178	rfilt = ath5k_hw_get_rx_filter(ah);
3179	if (enable)
3180		rfilt |= AR5K_RX_FILTER_BEACON;
3181	else
3182		rfilt &= ~AR5K_RX_FILTER_BEACON;
3183	ath5k_hw_set_rx_filter(ah, rfilt);
3184	ah->filter_flags = rfilt;
3185}
3186
3187void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3188		   const char *fmt, ...)
3189{
3190	struct va_format vaf;
3191	va_list args;
3192
3193	va_start(args, fmt);
3194
3195	vaf.fmt = fmt;
3196	vaf.va = &args;
3197
3198	if (ah && ah->hw)
3199		printk("%s" pr_fmt("%s: %pV"),
3200		       level, wiphy_name(ah->hw->wiphy), &vaf);
3201	else
3202		printk("%s" pr_fmt("%pV"), level, &vaf);
3203
3204	va_end(args);
3205}
3206