1/*
2 * Intel Wireless WiMAX Connection 2400m
3 * Glue with the networking stack
4 *
5 *
6 * Copyright (C) 2007 Intel Corporation <linux-wimax@intel.com>
7 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
8 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License version
12 * 2 as published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22 * 02110-1301, USA.
23 *
24 *
25 * This implements an ethernet device for the i2400m.
26 *
27 * We fake being an ethernet device to simplify the support from user
28 * space and from the other side. The world is (sadly) configured to
29 * take in only Ethernet devices...
30 *
31 * Because of this, when using firmwares <= v1.3, there is an
32 * copy-each-rxed-packet overhead on the RX path. Each IP packet has
33 * to be reallocated to add an ethernet header (as there is no space
34 * in what we get from the device). This is a known drawback and
35 * firmwares >= 1.4 add header space that can be used to insert the
36 * ethernet header without having to reallocate and copy.
37 *
38 * TX error handling is tricky; because we have to FIFO/queue the
39 * buffers for transmission (as the hardware likes it aggregated), we
40 * just give the skb to the TX subsystem and by the time it is
41 * transmitted, we have long forgotten about it. So we just don't care
42 * too much about it.
43 *
44 * Note that when the device is in idle mode with the basestation, we
45 * need to negotiate coming back up online. That involves negotiation
46 * and possible user space interaction. Thus, we defer to a workqueue
47 * to do all that. By default, we only queue a single packet and drop
48 * the rest, as potentially the time to go back from idle to normal is
49 * long.
50 *
51 * ROADMAP
52 *
53 * i2400m_open         Called on ifconfig up
54 * i2400m_stop         Called on ifconfig down
55 *
56 * i2400m_hard_start_xmit Called by the network stack to send a packet
57 *   i2400m_net_wake_tx	  Wake up device from basestation-IDLE & TX
58 *     i2400m_wake_tx_work
59 *       i2400m_cmd_exit_idle
60 *       i2400m_tx
61 *   i2400m_net_tx        TX a data frame
62 *     i2400m_tx
63 *
64 * i2400m_change_mtu      Called on ifconfig mtu XXX
65 *
66 * i2400m_tx_timeout      Called when the device times out
67 *
68 * i2400m_net_rx          Called by the RX code when a data frame is
69 *                        available (firmware <= 1.3)
70 * i2400m_net_erx         Called by the RX code when a data frame is
71 *                        available (firmware >= 1.4).
72 * i2400m_netdev_setup    Called to setup all the netdev stuff from
73 *                        alloc_netdev.
74 */
75#include <linux/if_arp.h>
76#include <linux/slab.h>
77#include <linux/netdevice.h>
78#include <linux/ethtool.h>
79#include <linux/export.h>
80#include "i2400m.h"
81
82
83#define D_SUBMODULE netdev
84#include "debug-levels.h"
85
86enum {
87/* netdev interface */
88	/* 20 secs? yep, this is the maximum timeout that the device
89	 * might take to get out of IDLE / negotiate it with the base
90	 * station. We add 1sec for good measure. */
91	I2400M_TX_TIMEOUT = 21 * HZ,
92	/*
93	 * Experimentation has determined that, 20 to be a good value
94	 * for minimizing the jitter in the throughput.
95	 */
96	I2400M_TX_QLEN = 20,
97};
98
99
100static
101int i2400m_open(struct net_device *net_dev)
102{
103	int result;
104	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
105	struct device *dev = i2400m_dev(i2400m);
106
107	d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
108	/* Make sure we wait until init is complete... */
109	mutex_lock(&i2400m->init_mutex);
110	if (i2400m->updown)
111		result = 0;
112	else
113		result = -EBUSY;
114	mutex_unlock(&i2400m->init_mutex);
115	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
116		net_dev, i2400m, result);
117	return result;
118}
119
120
121static
122int i2400m_stop(struct net_device *net_dev)
123{
124	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
125	struct device *dev = i2400m_dev(i2400m);
126
127	d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
128	i2400m_net_wake_stop(i2400m);
129	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = 0\n", net_dev, i2400m);
130	return 0;
131}
132
133
134/*
135 * Wake up the device and transmit a held SKB, then restart the net queue
136 *
137 * When the device goes into basestation-idle mode, we need to tell it
138 * to exit that mode; it will negotiate with the base station, user
139 * space may have to intervene to rehandshake crypto and then tell us
140 * when it is ready to transmit the packet we have "queued". Still we
141 * need to give it sometime after it reports being ok.
142 *
143 * On error, there is not much we can do. If the error was on TX, we
144 * still wake the queue up to see if the next packet will be luckier.
145 *
146 * If _cmd_exit_idle() fails...well, it could be many things; most
147 * commonly it is that something else took the device out of IDLE mode
148 * (for example, the base station). In that case we get an -EILSEQ and
149 * we are just going to ignore that one. If the device is back to
150 * connected, then fine -- if it is someother state, the packet will
151 * be dropped anyway.
152 */
153void i2400m_wake_tx_work(struct work_struct *ws)
154{
155	int result;
156	struct i2400m *i2400m = container_of(ws, struct i2400m, wake_tx_ws);
157	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
158	struct device *dev = i2400m_dev(i2400m);
159	struct sk_buff *skb;
160	unsigned long flags;
161
162	spin_lock_irqsave(&i2400m->tx_lock, flags);
163	skb = i2400m->wake_tx_skb;
164	i2400m->wake_tx_skb = NULL;
165	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
166
167	d_fnstart(3, dev, "(ws %p i2400m %p skb %p)\n", ws, i2400m, skb);
168	result = -EINVAL;
169	if (skb == NULL) {
170		dev_err(dev, "WAKE&TX: skb disappeared!\n");
171		goto out_put;
172	}
173	/* If we have, somehow, lost the connection after this was
174	 * queued, don't do anything; this might be the device got
175	 * reset or just disconnected. */
176	if (unlikely(!netif_carrier_ok(net_dev)))
177		goto out_kfree;
178	result = i2400m_cmd_exit_idle(i2400m);
179	if (result == -EILSEQ)
180		result = 0;
181	if (result < 0) {
182		dev_err(dev, "WAKE&TX: device didn't get out of idle: "
183			"%d - resetting\n", result);
184		i2400m_reset(i2400m, I2400M_RT_BUS);
185		goto error;
186	}
187	result = wait_event_timeout(i2400m->state_wq,
188				    i2400m->state != I2400M_SS_IDLE,
189				    net_dev->watchdog_timeo - HZ/2);
190	if (result == 0)
191		result = -ETIMEDOUT;
192	if (result < 0) {
193		dev_err(dev, "WAKE&TX: error waiting for device to exit IDLE: "
194			"%d - resetting\n", result);
195		i2400m_reset(i2400m, I2400M_RT_BUS);
196		goto error;
197	}
198	msleep(20);	/* device still needs some time or it drops it */
199	result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA);
200error:
201	netif_wake_queue(net_dev);
202out_kfree:
203	kfree_skb(skb);	/* refcount transferred by _hard_start_xmit() */
204out_put:
205	i2400m_put(i2400m);
206	d_fnend(3, dev, "(ws %p i2400m %p skb %p) = void [%d]\n",
207		ws, i2400m, skb, result);
208}
209
210
211/*
212 * Prepare the data payload TX header
213 *
214 * The i2400m expects a 4 byte header in front of a data packet.
215 *
216 * Because we pretend to be an ethernet device, this packet comes with
217 * an ethernet header. Pull it and push our header.
218 */
219static
220void i2400m_tx_prep_header(struct sk_buff *skb)
221{
222	struct i2400m_pl_data_hdr *pl_hdr;
223	skb_pull(skb, ETH_HLEN);
224	pl_hdr = (struct i2400m_pl_data_hdr *) skb_push(skb, sizeof(*pl_hdr));
225	pl_hdr->reserved = 0;
226}
227
228
229
230/*
231 * Cleanup resources acquired during i2400m_net_wake_tx()
232 *
233 * This is called by __i2400m_dev_stop and means we have to make sure
234 * the workqueue is flushed from any pending work.
235 */
236void i2400m_net_wake_stop(struct i2400m *i2400m)
237{
238	struct device *dev = i2400m_dev(i2400m);
239	struct sk_buff *wake_tx_skb;
240	unsigned long flags;
241
242	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
243	/*
244	 * See i2400m_hard_start_xmit(), references are taken there and
245	 * here we release them if the packet was still pending.
246	 */
247	cancel_work_sync(&i2400m->wake_tx_ws);
248
249	spin_lock_irqsave(&i2400m->tx_lock, flags);
250	wake_tx_skb = i2400m->wake_tx_skb;
251	i2400m->wake_tx_skb = NULL;
252	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
253
254	if (wake_tx_skb) {
255		i2400m_put(i2400m);
256		kfree_skb(wake_tx_skb);
257	}
258
259	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
260}
261
262
263/*
264 * TX an skb to an idle device
265 *
266 * When the device is in basestation-idle mode, we need to wake it up
267 * and then TX. So we queue a work_struct for doing so.
268 *
269 * We need to get an extra ref for the skb (so it is not dropped), as
270 * well as be careful not to queue more than one request (won't help
271 * at all). If more than one request comes or there are errors, we
272 * just drop the packets (see i2400m_hard_start_xmit()).
273 */
274static
275int i2400m_net_wake_tx(struct i2400m *i2400m, struct net_device *net_dev,
276		       struct sk_buff *skb)
277{
278	int result;
279	struct device *dev = i2400m_dev(i2400m);
280	unsigned long flags;
281
282	d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
283	if (net_ratelimit()) {
284		d_printf(3, dev, "WAKE&NETTX: "
285			 "skb %p sending %d bytes to radio\n",
286			 skb, skb->len);
287		d_dump(4, dev, skb->data, skb->len);
288	}
289	/* We hold a ref count for i2400m and skb, so when
290	 * stopping() the device, we need to cancel that work
291	 * and if pending, release those resources. */
292	result = 0;
293	spin_lock_irqsave(&i2400m->tx_lock, flags);
294	if (!i2400m->wake_tx_skb) {
295		netif_stop_queue(net_dev);
296		i2400m_get(i2400m);
297		i2400m->wake_tx_skb = skb_get(skb);	/* transfer ref count */
298		i2400m_tx_prep_header(skb);
299		result = schedule_work(&i2400m->wake_tx_ws);
300		WARN_ON(result == 0);
301	}
302	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
303	if (result == 0) {
304		/* Yes, this happens even if we stopped the
305		 * queue -- blame the queue disciplines that
306		 * queue without looking -- I guess there is a reason
307		 * for that. */
308		if (net_ratelimit())
309			d_printf(1, dev, "NETTX: device exiting idle, "
310				 "dropping skb %p, queue running %d\n",
311				 skb, netif_queue_stopped(net_dev));
312		result = -EBUSY;
313	}
314	d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
315	return result;
316}
317
318
319/*
320 * Transmit a packet to the base station on behalf of the network stack.
321 *
322 * Returns: 0 if ok, < 0 errno code on error.
323 *
324 * We need to pull the ethernet header and add the hardware header,
325 * which is currently set to all zeroes and reserved.
326 */
327static
328int i2400m_net_tx(struct i2400m *i2400m, struct net_device *net_dev,
329		  struct sk_buff *skb)
330{
331	int result;
332	struct device *dev = i2400m_dev(i2400m);
333
334	d_fnstart(3, dev, "(i2400m %p net_dev %p skb %p)\n",
335		  i2400m, net_dev, skb);
336	/* FIXME: check eth hdr, only IPv4 is routed by the device as of now */
337	net_dev->trans_start = jiffies;
338	i2400m_tx_prep_header(skb);
339	d_printf(3, dev, "NETTX: skb %p sending %d bytes to radio\n",
340		 skb, skb->len);
341	d_dump(4, dev, skb->data, skb->len);
342	result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA);
343	d_fnend(3, dev, "(i2400m %p net_dev %p skb %p) = %d\n",
344		i2400m, net_dev, skb, result);
345	return result;
346}
347
348
349/*
350 * Transmit a packet to the base station on behalf of the network stack
351 *
352 *
353 * Returns: NETDEV_TX_OK (always, even in case of error)
354 *
355 * In case of error, we just drop it. Reasons:
356 *
357 *  - we add a hw header to each skb, and if the network stack
358 *    retries, we have no way to know if that skb has it or not.
359 *
360 *  - network protocols have their own drop-recovery mechanisms
361 *
362 *  - there is not much else we can do
363 *
364 * If the device is idle, we need to wake it up; that is an operation
365 * that will sleep. See i2400m_net_wake_tx() for details.
366 */
367static
368netdev_tx_t i2400m_hard_start_xmit(struct sk_buff *skb,
369					 struct net_device *net_dev)
370{
371	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
372	struct device *dev = i2400m_dev(i2400m);
373	int result = -1;
374
375	d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
376
377	if (skb_cow_head(skb, 0))
378		goto drop;
379
380	if (i2400m->state == I2400M_SS_IDLE)
381		result = i2400m_net_wake_tx(i2400m, net_dev, skb);
382	else
383		result = i2400m_net_tx(i2400m, net_dev, skb);
384	if (result <  0) {
385drop:
386		net_dev->stats.tx_dropped++;
387	} else {
388		net_dev->stats.tx_packets++;
389		net_dev->stats.tx_bytes += skb->len;
390	}
391	dev_kfree_skb(skb);
392	d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
393	return NETDEV_TX_OK;
394}
395
396
397static
398int i2400m_change_mtu(struct net_device *net_dev, int new_mtu)
399{
400	int result;
401	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
402	struct device *dev = i2400m_dev(i2400m);
403
404	if (new_mtu >= I2400M_MAX_MTU) {
405		dev_err(dev, "Cannot change MTU to %d (max is %d)\n",
406			new_mtu, I2400M_MAX_MTU);
407		result = -EINVAL;
408	} else {
409		net_dev->mtu = new_mtu;
410		result = 0;
411	}
412	return result;
413}
414
415
416static
417void i2400m_tx_timeout(struct net_device *net_dev)
418{
419	/*
420	 * We might want to kick the device
421	 *
422	 * There is not much we can do though, as the device requires
423	 * that we send the data aggregated. By the time we receive
424	 * this, there might be data pending to be sent or not...
425	 */
426	net_dev->stats.tx_errors++;
427}
428
429
430/*
431 * Create a fake ethernet header
432 *
433 * For emulating an ethernet device, every received IP header has to
434 * be prefixed with an ethernet header. Fake it with the given
435 * protocol.
436 */
437static
438void i2400m_rx_fake_eth_header(struct net_device *net_dev,
439			       void *_eth_hdr, __be16 protocol)
440{
441	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
442	struct ethhdr *eth_hdr = _eth_hdr;
443
444	memcpy(eth_hdr->h_dest, net_dev->dev_addr, sizeof(eth_hdr->h_dest));
445	memcpy(eth_hdr->h_source, i2400m->src_mac_addr,
446	       sizeof(eth_hdr->h_source));
447	eth_hdr->h_proto = protocol;
448}
449
450
451/*
452 * i2400m_net_rx - pass a network packet to the stack
453 *
454 * @i2400m: device instance
455 * @skb_rx: the skb where the buffer pointed to by @buf is
456 * @i: 1 if payload is the only one
457 * @buf: pointer to the buffer containing the data
458 * @len: buffer's length
459 *
460 * This is only used now for the v1.3 firmware. It will be deprecated
461 * in >= 2.6.31.
462 *
463 * Note that due to firmware limitations, we don't have space to add
464 * an ethernet header, so we need to copy each packet. Firmware
465 * versions >= v1.4 fix this [see i2400m_net_erx()].
466 *
467 * We just clone the skb and set it up so that it's skb->data pointer
468 * points to "buf" and it's length.
469 *
470 * Note that if the payload is the last (or the only one) in a
471 * multi-payload message, we don't clone the SKB but just reuse it.
472 *
473 * This function is normally run from a thread context. However, we
474 * still use netif_rx() instead of netif_receive_skb() as was
475 * recommended in the mailing list. Reason is in some stress tests
476 * when sending/receiving a lot of data we seem to hit a softlock in
477 * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using
478 * netif_rx() took care of the issue.
479 *
480 * This is, of course, still open to do more research on why running
481 * with netif_receive_skb() hits this softlock. FIXME.
482 *
483 * FIXME: currently we don't do any efforts at distinguishing if what
484 * we got was an IPv4 or IPv6 header, to setup the protocol field
485 * correctly.
486 */
487void i2400m_net_rx(struct i2400m *i2400m, struct sk_buff *skb_rx,
488		   unsigned i, const void *buf, int buf_len)
489{
490	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
491	struct device *dev = i2400m_dev(i2400m);
492	struct sk_buff *skb;
493
494	d_fnstart(2, dev, "(i2400m %p buf %p buf_len %d)\n",
495		  i2400m, buf, buf_len);
496	if (i) {
497		skb = skb_get(skb_rx);
498		d_printf(2, dev, "RX: reusing first payload skb %p\n", skb);
499		skb_pull(skb, buf - (void *) skb->data);
500		skb_trim(skb, (void *) skb_end_pointer(skb) - buf);
501	} else {
502		/* Yes, this is bad -- a lot of overhead -- see
503		 * comments at the top of the file */
504		skb = __netdev_alloc_skb(net_dev, buf_len, GFP_KERNEL);
505		if (skb == NULL) {
506			dev_err(dev, "NETRX: no memory to realloc skb\n");
507			net_dev->stats.rx_dropped++;
508			goto error_skb_realloc;
509		}
510		memcpy(skb_put(skb, buf_len), buf, buf_len);
511	}
512	i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev,
513				  skb->data - ETH_HLEN,
514				  cpu_to_be16(ETH_P_IP));
515	skb_set_mac_header(skb, -ETH_HLEN);
516	skb->dev = i2400m->wimax_dev.net_dev;
517	skb->protocol = htons(ETH_P_IP);
518	net_dev->stats.rx_packets++;
519	net_dev->stats.rx_bytes += buf_len;
520	d_printf(3, dev, "NETRX: receiving %d bytes to network stack\n",
521		buf_len);
522	d_dump(4, dev, buf, buf_len);
523	netif_rx_ni(skb);	/* see notes in function header */
524error_skb_realloc:
525	d_fnend(2, dev, "(i2400m %p buf %p buf_len %d) = void\n",
526		i2400m, buf, buf_len);
527}
528
529
530/*
531 * i2400m_net_erx - pass a network packet to the stack (extended version)
532 *
533 * @i2400m: device descriptor
534 * @skb: the skb where the packet is - the skb should be set to point
535 *     at the IP packet; this function will add ethernet headers if
536 *     needed.
537 * @cs: packet type
538 *
539 * This is only used now for firmware >= v1.4. Note it is quite
540 * similar to i2400m_net_rx() (used only for v1.3 firmware).
541 *
542 * This function is normally run from a thread context. However, we
543 * still use netif_rx() instead of netif_receive_skb() as was
544 * recommended in the mailing list. Reason is in some stress tests
545 * when sending/receiving a lot of data we seem to hit a softlock in
546 * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using
547 * netif_rx() took care of the issue.
548 *
549 * This is, of course, still open to do more research on why running
550 * with netif_receive_skb() hits this softlock. FIXME.
551 */
552void i2400m_net_erx(struct i2400m *i2400m, struct sk_buff *skb,
553		    enum i2400m_cs cs)
554{
555	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
556	struct device *dev = i2400m_dev(i2400m);
557	int protocol;
558
559	d_fnstart(2, dev, "(i2400m %p skb %p [%u] cs %d)\n",
560		  i2400m, skb, skb->len, cs);
561	switch(cs) {
562	case I2400M_CS_IPV4_0:
563	case I2400M_CS_IPV4:
564		protocol = ETH_P_IP;
565		i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev,
566					  skb->data - ETH_HLEN,
567					  cpu_to_be16(ETH_P_IP));
568		skb_set_mac_header(skb, -ETH_HLEN);
569		skb->dev = i2400m->wimax_dev.net_dev;
570		skb->protocol = htons(ETH_P_IP);
571		net_dev->stats.rx_packets++;
572		net_dev->stats.rx_bytes += skb->len;
573		break;
574	default:
575		dev_err(dev, "ERX: BUG? CS type %u unsupported\n", cs);
576		goto error;
577
578	}
579	d_printf(3, dev, "ERX: receiving %d bytes to the network stack\n",
580		 skb->len);
581	d_dump(4, dev, skb->data, skb->len);
582	netif_rx_ni(skb);	/* see notes in function header */
583error:
584	d_fnend(2, dev, "(i2400m %p skb %p [%u] cs %d) = void\n",
585		i2400m, skb, skb->len, cs);
586}
587
588static const struct net_device_ops i2400m_netdev_ops = {
589	.ndo_open = i2400m_open,
590	.ndo_stop = i2400m_stop,
591	.ndo_start_xmit = i2400m_hard_start_xmit,
592	.ndo_tx_timeout = i2400m_tx_timeout,
593	.ndo_change_mtu = i2400m_change_mtu,
594};
595
596static void i2400m_get_drvinfo(struct net_device *net_dev,
597			       struct ethtool_drvinfo *info)
598{
599	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
600
601	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
602	strlcpy(info->fw_version, i2400m->fw_name ? : "",
603		sizeof(info->fw_version));
604	if (net_dev->dev.parent)
605		strlcpy(info->bus_info, dev_name(net_dev->dev.parent),
606			sizeof(info->bus_info));
607}
608
609static const struct ethtool_ops i2400m_ethtool_ops = {
610	.get_drvinfo = i2400m_get_drvinfo,
611	.get_link = ethtool_op_get_link,
612};
613
614/**
615 * i2400m_netdev_setup - Setup setup @net_dev's i2400m private data
616 *
617 * Called by alloc_netdev()
618 */
619void i2400m_netdev_setup(struct net_device *net_dev)
620{
621	d_fnstart(3, NULL, "(net_dev %p)\n", net_dev);
622	ether_setup(net_dev);
623	net_dev->mtu = I2400M_MAX_MTU;
624	net_dev->tx_queue_len = I2400M_TX_QLEN;
625	net_dev->features =
626		  NETIF_F_VLAN_CHALLENGED
627		| NETIF_F_HIGHDMA;
628	net_dev->flags =
629		IFF_NOARP		/* i2400m is apure IP device */
630		& (~IFF_BROADCAST	/* i2400m is P2P */
631		   & ~IFF_MULTICAST);
632	net_dev->watchdog_timeo = I2400M_TX_TIMEOUT;
633	net_dev->netdev_ops = &i2400m_netdev_ops;
634	net_dev->ethtool_ops = &i2400m_ethtool_ops;
635	d_fnend(3, NULL, "(net_dev %p) = void\n", net_dev);
636}
637EXPORT_SYMBOL_GPL(i2400m_netdev_setup);
638
639