1/* 2 * Intel Wireless WiMAX Connection 2400m 3 * Glue with the networking stack 4 * 5 * 6 * Copyright (C) 2007 Intel Corporation <linux-wimax@intel.com> 7 * Yanir Lubetkin <yanirx.lubetkin@intel.com> 8 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License version 12 * 2 as published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 22 * 02110-1301, USA. 23 * 24 * 25 * This implements an ethernet device for the i2400m. 26 * 27 * We fake being an ethernet device to simplify the support from user 28 * space and from the other side. The world is (sadly) configured to 29 * take in only Ethernet devices... 30 * 31 * Because of this, when using firmwares <= v1.3, there is an 32 * copy-each-rxed-packet overhead on the RX path. Each IP packet has 33 * to be reallocated to add an ethernet header (as there is no space 34 * in what we get from the device). This is a known drawback and 35 * firmwares >= 1.4 add header space that can be used to insert the 36 * ethernet header without having to reallocate and copy. 37 * 38 * TX error handling is tricky; because we have to FIFO/queue the 39 * buffers for transmission (as the hardware likes it aggregated), we 40 * just give the skb to the TX subsystem and by the time it is 41 * transmitted, we have long forgotten about it. So we just don't care 42 * too much about it. 43 * 44 * Note that when the device is in idle mode with the basestation, we 45 * need to negotiate coming back up online. That involves negotiation 46 * and possible user space interaction. Thus, we defer to a workqueue 47 * to do all that. By default, we only queue a single packet and drop 48 * the rest, as potentially the time to go back from idle to normal is 49 * long. 50 * 51 * ROADMAP 52 * 53 * i2400m_open Called on ifconfig up 54 * i2400m_stop Called on ifconfig down 55 * 56 * i2400m_hard_start_xmit Called by the network stack to send a packet 57 * i2400m_net_wake_tx Wake up device from basestation-IDLE & TX 58 * i2400m_wake_tx_work 59 * i2400m_cmd_exit_idle 60 * i2400m_tx 61 * i2400m_net_tx TX a data frame 62 * i2400m_tx 63 * 64 * i2400m_change_mtu Called on ifconfig mtu XXX 65 * 66 * i2400m_tx_timeout Called when the device times out 67 * 68 * i2400m_net_rx Called by the RX code when a data frame is 69 * available (firmware <= 1.3) 70 * i2400m_net_erx Called by the RX code when a data frame is 71 * available (firmware >= 1.4). 72 * i2400m_netdev_setup Called to setup all the netdev stuff from 73 * alloc_netdev. 74 */ 75#include <linux/if_arp.h> 76#include <linux/slab.h> 77#include <linux/netdevice.h> 78#include <linux/ethtool.h> 79#include <linux/export.h> 80#include "i2400m.h" 81 82 83#define D_SUBMODULE netdev 84#include "debug-levels.h" 85 86enum { 87/* netdev interface */ 88 /* 20 secs? yep, this is the maximum timeout that the device 89 * might take to get out of IDLE / negotiate it with the base 90 * station. We add 1sec for good measure. */ 91 I2400M_TX_TIMEOUT = 21 * HZ, 92 /* 93 * Experimentation has determined that, 20 to be a good value 94 * for minimizing the jitter in the throughput. 95 */ 96 I2400M_TX_QLEN = 20, 97}; 98 99 100static 101int i2400m_open(struct net_device *net_dev) 102{ 103 int result; 104 struct i2400m *i2400m = net_dev_to_i2400m(net_dev); 105 struct device *dev = i2400m_dev(i2400m); 106 107 d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m); 108 /* Make sure we wait until init is complete... */ 109 mutex_lock(&i2400m->init_mutex); 110 if (i2400m->updown) 111 result = 0; 112 else 113 result = -EBUSY; 114 mutex_unlock(&i2400m->init_mutex); 115 d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n", 116 net_dev, i2400m, result); 117 return result; 118} 119 120 121static 122int i2400m_stop(struct net_device *net_dev) 123{ 124 struct i2400m *i2400m = net_dev_to_i2400m(net_dev); 125 struct device *dev = i2400m_dev(i2400m); 126 127 d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m); 128 i2400m_net_wake_stop(i2400m); 129 d_fnend(3, dev, "(net_dev %p [i2400m %p]) = 0\n", net_dev, i2400m); 130 return 0; 131} 132 133 134/* 135 * Wake up the device and transmit a held SKB, then restart the net queue 136 * 137 * When the device goes into basestation-idle mode, we need to tell it 138 * to exit that mode; it will negotiate with the base station, user 139 * space may have to intervene to rehandshake crypto and then tell us 140 * when it is ready to transmit the packet we have "queued". Still we 141 * need to give it sometime after it reports being ok. 142 * 143 * On error, there is not much we can do. If the error was on TX, we 144 * still wake the queue up to see if the next packet will be luckier. 145 * 146 * If _cmd_exit_idle() fails...well, it could be many things; most 147 * commonly it is that something else took the device out of IDLE mode 148 * (for example, the base station). In that case we get an -EILSEQ and 149 * we are just going to ignore that one. If the device is back to 150 * connected, then fine -- if it is someother state, the packet will 151 * be dropped anyway. 152 */ 153void i2400m_wake_tx_work(struct work_struct *ws) 154{ 155 int result; 156 struct i2400m *i2400m = container_of(ws, struct i2400m, wake_tx_ws); 157 struct net_device *net_dev = i2400m->wimax_dev.net_dev; 158 struct device *dev = i2400m_dev(i2400m); 159 struct sk_buff *skb; 160 unsigned long flags; 161 162 spin_lock_irqsave(&i2400m->tx_lock, flags); 163 skb = i2400m->wake_tx_skb; 164 i2400m->wake_tx_skb = NULL; 165 spin_unlock_irqrestore(&i2400m->tx_lock, flags); 166 167 d_fnstart(3, dev, "(ws %p i2400m %p skb %p)\n", ws, i2400m, skb); 168 result = -EINVAL; 169 if (skb == NULL) { 170 dev_err(dev, "WAKE&TX: skb disappeared!\n"); 171 goto out_put; 172 } 173 /* If we have, somehow, lost the connection after this was 174 * queued, don't do anything; this might be the device got 175 * reset or just disconnected. */ 176 if (unlikely(!netif_carrier_ok(net_dev))) 177 goto out_kfree; 178 result = i2400m_cmd_exit_idle(i2400m); 179 if (result == -EILSEQ) 180 result = 0; 181 if (result < 0) { 182 dev_err(dev, "WAKE&TX: device didn't get out of idle: " 183 "%d - resetting\n", result); 184 i2400m_reset(i2400m, I2400M_RT_BUS); 185 goto error; 186 } 187 result = wait_event_timeout(i2400m->state_wq, 188 i2400m->state != I2400M_SS_IDLE, 189 net_dev->watchdog_timeo - HZ/2); 190 if (result == 0) 191 result = -ETIMEDOUT; 192 if (result < 0) { 193 dev_err(dev, "WAKE&TX: error waiting for device to exit IDLE: " 194 "%d - resetting\n", result); 195 i2400m_reset(i2400m, I2400M_RT_BUS); 196 goto error; 197 } 198 msleep(20); /* device still needs some time or it drops it */ 199 result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA); 200error: 201 netif_wake_queue(net_dev); 202out_kfree: 203 kfree_skb(skb); /* refcount transferred by _hard_start_xmit() */ 204out_put: 205 i2400m_put(i2400m); 206 d_fnend(3, dev, "(ws %p i2400m %p skb %p) = void [%d]\n", 207 ws, i2400m, skb, result); 208} 209 210 211/* 212 * Prepare the data payload TX header 213 * 214 * The i2400m expects a 4 byte header in front of a data packet. 215 * 216 * Because we pretend to be an ethernet device, this packet comes with 217 * an ethernet header. Pull it and push our header. 218 */ 219static 220void i2400m_tx_prep_header(struct sk_buff *skb) 221{ 222 struct i2400m_pl_data_hdr *pl_hdr; 223 skb_pull(skb, ETH_HLEN); 224 pl_hdr = (struct i2400m_pl_data_hdr *) skb_push(skb, sizeof(*pl_hdr)); 225 pl_hdr->reserved = 0; 226} 227 228 229 230/* 231 * Cleanup resources acquired during i2400m_net_wake_tx() 232 * 233 * This is called by __i2400m_dev_stop and means we have to make sure 234 * the workqueue is flushed from any pending work. 235 */ 236void i2400m_net_wake_stop(struct i2400m *i2400m) 237{ 238 struct device *dev = i2400m_dev(i2400m); 239 struct sk_buff *wake_tx_skb; 240 unsigned long flags; 241 242 d_fnstart(3, dev, "(i2400m %p)\n", i2400m); 243 /* 244 * See i2400m_hard_start_xmit(), references are taken there and 245 * here we release them if the packet was still pending. 246 */ 247 cancel_work_sync(&i2400m->wake_tx_ws); 248 249 spin_lock_irqsave(&i2400m->tx_lock, flags); 250 wake_tx_skb = i2400m->wake_tx_skb; 251 i2400m->wake_tx_skb = NULL; 252 spin_unlock_irqrestore(&i2400m->tx_lock, flags); 253 254 if (wake_tx_skb) { 255 i2400m_put(i2400m); 256 kfree_skb(wake_tx_skb); 257 } 258 259 d_fnend(3, dev, "(i2400m %p) = void\n", i2400m); 260} 261 262 263/* 264 * TX an skb to an idle device 265 * 266 * When the device is in basestation-idle mode, we need to wake it up 267 * and then TX. So we queue a work_struct for doing so. 268 * 269 * We need to get an extra ref for the skb (so it is not dropped), as 270 * well as be careful not to queue more than one request (won't help 271 * at all). If more than one request comes or there are errors, we 272 * just drop the packets (see i2400m_hard_start_xmit()). 273 */ 274static 275int i2400m_net_wake_tx(struct i2400m *i2400m, struct net_device *net_dev, 276 struct sk_buff *skb) 277{ 278 int result; 279 struct device *dev = i2400m_dev(i2400m); 280 unsigned long flags; 281 282 d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev); 283 if (net_ratelimit()) { 284 d_printf(3, dev, "WAKE&NETTX: " 285 "skb %p sending %d bytes to radio\n", 286 skb, skb->len); 287 d_dump(4, dev, skb->data, skb->len); 288 } 289 /* We hold a ref count for i2400m and skb, so when 290 * stopping() the device, we need to cancel that work 291 * and if pending, release those resources. */ 292 result = 0; 293 spin_lock_irqsave(&i2400m->tx_lock, flags); 294 if (!i2400m->wake_tx_skb) { 295 netif_stop_queue(net_dev); 296 i2400m_get(i2400m); 297 i2400m->wake_tx_skb = skb_get(skb); /* transfer ref count */ 298 i2400m_tx_prep_header(skb); 299 result = schedule_work(&i2400m->wake_tx_ws); 300 WARN_ON(result == 0); 301 } 302 spin_unlock_irqrestore(&i2400m->tx_lock, flags); 303 if (result == 0) { 304 /* Yes, this happens even if we stopped the 305 * queue -- blame the queue disciplines that 306 * queue without looking -- I guess there is a reason 307 * for that. */ 308 if (net_ratelimit()) 309 d_printf(1, dev, "NETTX: device exiting idle, " 310 "dropping skb %p, queue running %d\n", 311 skb, netif_queue_stopped(net_dev)); 312 result = -EBUSY; 313 } 314 d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result); 315 return result; 316} 317 318 319/* 320 * Transmit a packet to the base station on behalf of the network stack. 321 * 322 * Returns: 0 if ok, < 0 errno code on error. 323 * 324 * We need to pull the ethernet header and add the hardware header, 325 * which is currently set to all zeroes and reserved. 326 */ 327static 328int i2400m_net_tx(struct i2400m *i2400m, struct net_device *net_dev, 329 struct sk_buff *skb) 330{ 331 int result; 332 struct device *dev = i2400m_dev(i2400m); 333 334 d_fnstart(3, dev, "(i2400m %p net_dev %p skb %p)\n", 335 i2400m, net_dev, skb); 336 /* FIXME: check eth hdr, only IPv4 is routed by the device as of now */ 337 net_dev->trans_start = jiffies; 338 i2400m_tx_prep_header(skb); 339 d_printf(3, dev, "NETTX: skb %p sending %d bytes to radio\n", 340 skb, skb->len); 341 d_dump(4, dev, skb->data, skb->len); 342 result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA); 343 d_fnend(3, dev, "(i2400m %p net_dev %p skb %p) = %d\n", 344 i2400m, net_dev, skb, result); 345 return result; 346} 347 348 349/* 350 * Transmit a packet to the base station on behalf of the network stack 351 * 352 * 353 * Returns: NETDEV_TX_OK (always, even in case of error) 354 * 355 * In case of error, we just drop it. Reasons: 356 * 357 * - we add a hw header to each skb, and if the network stack 358 * retries, we have no way to know if that skb has it or not. 359 * 360 * - network protocols have their own drop-recovery mechanisms 361 * 362 * - there is not much else we can do 363 * 364 * If the device is idle, we need to wake it up; that is an operation 365 * that will sleep. See i2400m_net_wake_tx() for details. 366 */ 367static 368netdev_tx_t i2400m_hard_start_xmit(struct sk_buff *skb, 369 struct net_device *net_dev) 370{ 371 struct i2400m *i2400m = net_dev_to_i2400m(net_dev); 372 struct device *dev = i2400m_dev(i2400m); 373 int result = -1; 374 375 d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev); 376 377 if (skb_cow_head(skb, 0)) 378 goto drop; 379 380 if (i2400m->state == I2400M_SS_IDLE) 381 result = i2400m_net_wake_tx(i2400m, net_dev, skb); 382 else 383 result = i2400m_net_tx(i2400m, net_dev, skb); 384 if (result < 0) { 385drop: 386 net_dev->stats.tx_dropped++; 387 } else { 388 net_dev->stats.tx_packets++; 389 net_dev->stats.tx_bytes += skb->len; 390 } 391 dev_kfree_skb(skb); 392 d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result); 393 return NETDEV_TX_OK; 394} 395 396 397static 398int i2400m_change_mtu(struct net_device *net_dev, int new_mtu) 399{ 400 int result; 401 struct i2400m *i2400m = net_dev_to_i2400m(net_dev); 402 struct device *dev = i2400m_dev(i2400m); 403 404 if (new_mtu >= I2400M_MAX_MTU) { 405 dev_err(dev, "Cannot change MTU to %d (max is %d)\n", 406 new_mtu, I2400M_MAX_MTU); 407 result = -EINVAL; 408 } else { 409 net_dev->mtu = new_mtu; 410 result = 0; 411 } 412 return result; 413} 414 415 416static 417void i2400m_tx_timeout(struct net_device *net_dev) 418{ 419 /* 420 * We might want to kick the device 421 * 422 * There is not much we can do though, as the device requires 423 * that we send the data aggregated. By the time we receive 424 * this, there might be data pending to be sent or not... 425 */ 426 net_dev->stats.tx_errors++; 427} 428 429 430/* 431 * Create a fake ethernet header 432 * 433 * For emulating an ethernet device, every received IP header has to 434 * be prefixed with an ethernet header. Fake it with the given 435 * protocol. 436 */ 437static 438void i2400m_rx_fake_eth_header(struct net_device *net_dev, 439 void *_eth_hdr, __be16 protocol) 440{ 441 struct i2400m *i2400m = net_dev_to_i2400m(net_dev); 442 struct ethhdr *eth_hdr = _eth_hdr; 443 444 memcpy(eth_hdr->h_dest, net_dev->dev_addr, sizeof(eth_hdr->h_dest)); 445 memcpy(eth_hdr->h_source, i2400m->src_mac_addr, 446 sizeof(eth_hdr->h_source)); 447 eth_hdr->h_proto = protocol; 448} 449 450 451/* 452 * i2400m_net_rx - pass a network packet to the stack 453 * 454 * @i2400m: device instance 455 * @skb_rx: the skb where the buffer pointed to by @buf is 456 * @i: 1 if payload is the only one 457 * @buf: pointer to the buffer containing the data 458 * @len: buffer's length 459 * 460 * This is only used now for the v1.3 firmware. It will be deprecated 461 * in >= 2.6.31. 462 * 463 * Note that due to firmware limitations, we don't have space to add 464 * an ethernet header, so we need to copy each packet. Firmware 465 * versions >= v1.4 fix this [see i2400m_net_erx()]. 466 * 467 * We just clone the skb and set it up so that it's skb->data pointer 468 * points to "buf" and it's length. 469 * 470 * Note that if the payload is the last (or the only one) in a 471 * multi-payload message, we don't clone the SKB but just reuse it. 472 * 473 * This function is normally run from a thread context. However, we 474 * still use netif_rx() instead of netif_receive_skb() as was 475 * recommended in the mailing list. Reason is in some stress tests 476 * when sending/receiving a lot of data we seem to hit a softlock in 477 * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using 478 * netif_rx() took care of the issue. 479 * 480 * This is, of course, still open to do more research on why running 481 * with netif_receive_skb() hits this softlock. FIXME. 482 * 483 * FIXME: currently we don't do any efforts at distinguishing if what 484 * we got was an IPv4 or IPv6 header, to setup the protocol field 485 * correctly. 486 */ 487void i2400m_net_rx(struct i2400m *i2400m, struct sk_buff *skb_rx, 488 unsigned i, const void *buf, int buf_len) 489{ 490 struct net_device *net_dev = i2400m->wimax_dev.net_dev; 491 struct device *dev = i2400m_dev(i2400m); 492 struct sk_buff *skb; 493 494 d_fnstart(2, dev, "(i2400m %p buf %p buf_len %d)\n", 495 i2400m, buf, buf_len); 496 if (i) { 497 skb = skb_get(skb_rx); 498 d_printf(2, dev, "RX: reusing first payload skb %p\n", skb); 499 skb_pull(skb, buf - (void *) skb->data); 500 skb_trim(skb, (void *) skb_end_pointer(skb) - buf); 501 } else { 502 /* Yes, this is bad -- a lot of overhead -- see 503 * comments at the top of the file */ 504 skb = __netdev_alloc_skb(net_dev, buf_len, GFP_KERNEL); 505 if (skb == NULL) { 506 dev_err(dev, "NETRX: no memory to realloc skb\n"); 507 net_dev->stats.rx_dropped++; 508 goto error_skb_realloc; 509 } 510 memcpy(skb_put(skb, buf_len), buf, buf_len); 511 } 512 i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev, 513 skb->data - ETH_HLEN, 514 cpu_to_be16(ETH_P_IP)); 515 skb_set_mac_header(skb, -ETH_HLEN); 516 skb->dev = i2400m->wimax_dev.net_dev; 517 skb->protocol = htons(ETH_P_IP); 518 net_dev->stats.rx_packets++; 519 net_dev->stats.rx_bytes += buf_len; 520 d_printf(3, dev, "NETRX: receiving %d bytes to network stack\n", 521 buf_len); 522 d_dump(4, dev, buf, buf_len); 523 netif_rx_ni(skb); /* see notes in function header */ 524error_skb_realloc: 525 d_fnend(2, dev, "(i2400m %p buf %p buf_len %d) = void\n", 526 i2400m, buf, buf_len); 527} 528 529 530/* 531 * i2400m_net_erx - pass a network packet to the stack (extended version) 532 * 533 * @i2400m: device descriptor 534 * @skb: the skb where the packet is - the skb should be set to point 535 * at the IP packet; this function will add ethernet headers if 536 * needed. 537 * @cs: packet type 538 * 539 * This is only used now for firmware >= v1.4. Note it is quite 540 * similar to i2400m_net_rx() (used only for v1.3 firmware). 541 * 542 * This function is normally run from a thread context. However, we 543 * still use netif_rx() instead of netif_receive_skb() as was 544 * recommended in the mailing list. Reason is in some stress tests 545 * when sending/receiving a lot of data we seem to hit a softlock in 546 * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using 547 * netif_rx() took care of the issue. 548 * 549 * This is, of course, still open to do more research on why running 550 * with netif_receive_skb() hits this softlock. FIXME. 551 */ 552void i2400m_net_erx(struct i2400m *i2400m, struct sk_buff *skb, 553 enum i2400m_cs cs) 554{ 555 struct net_device *net_dev = i2400m->wimax_dev.net_dev; 556 struct device *dev = i2400m_dev(i2400m); 557 int protocol; 558 559 d_fnstart(2, dev, "(i2400m %p skb %p [%u] cs %d)\n", 560 i2400m, skb, skb->len, cs); 561 switch(cs) { 562 case I2400M_CS_IPV4_0: 563 case I2400M_CS_IPV4: 564 protocol = ETH_P_IP; 565 i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev, 566 skb->data - ETH_HLEN, 567 cpu_to_be16(ETH_P_IP)); 568 skb_set_mac_header(skb, -ETH_HLEN); 569 skb->dev = i2400m->wimax_dev.net_dev; 570 skb->protocol = htons(ETH_P_IP); 571 net_dev->stats.rx_packets++; 572 net_dev->stats.rx_bytes += skb->len; 573 break; 574 default: 575 dev_err(dev, "ERX: BUG? CS type %u unsupported\n", cs); 576 goto error; 577 578 } 579 d_printf(3, dev, "ERX: receiving %d bytes to the network stack\n", 580 skb->len); 581 d_dump(4, dev, skb->data, skb->len); 582 netif_rx_ni(skb); /* see notes in function header */ 583error: 584 d_fnend(2, dev, "(i2400m %p skb %p [%u] cs %d) = void\n", 585 i2400m, skb, skb->len, cs); 586} 587 588static const struct net_device_ops i2400m_netdev_ops = { 589 .ndo_open = i2400m_open, 590 .ndo_stop = i2400m_stop, 591 .ndo_start_xmit = i2400m_hard_start_xmit, 592 .ndo_tx_timeout = i2400m_tx_timeout, 593 .ndo_change_mtu = i2400m_change_mtu, 594}; 595 596static void i2400m_get_drvinfo(struct net_device *net_dev, 597 struct ethtool_drvinfo *info) 598{ 599 struct i2400m *i2400m = net_dev_to_i2400m(net_dev); 600 601 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 602 strlcpy(info->fw_version, i2400m->fw_name ? : "", 603 sizeof(info->fw_version)); 604 if (net_dev->dev.parent) 605 strlcpy(info->bus_info, dev_name(net_dev->dev.parent), 606 sizeof(info->bus_info)); 607} 608 609static const struct ethtool_ops i2400m_ethtool_ops = { 610 .get_drvinfo = i2400m_get_drvinfo, 611 .get_link = ethtool_op_get_link, 612}; 613 614/** 615 * i2400m_netdev_setup - Setup setup @net_dev's i2400m private data 616 * 617 * Called by alloc_netdev() 618 */ 619void i2400m_netdev_setup(struct net_device *net_dev) 620{ 621 d_fnstart(3, NULL, "(net_dev %p)\n", net_dev); 622 ether_setup(net_dev); 623 net_dev->mtu = I2400M_MAX_MTU; 624 net_dev->tx_queue_len = I2400M_TX_QLEN; 625 net_dev->features = 626 NETIF_F_VLAN_CHALLENGED 627 | NETIF_F_HIGHDMA; 628 net_dev->flags = 629 IFF_NOARP /* i2400m is apure IP device */ 630 & (~IFF_BROADCAST /* i2400m is P2P */ 631 & ~IFF_MULTICAST); 632 net_dev->watchdog_timeo = I2400M_TX_TIMEOUT; 633 net_dev->netdev_ops = &i2400m_netdev_ops; 634 net_dev->ethtool_ops = &i2400m_ethtool_ops; 635 d_fnend(3, NULL, "(net_dev %p) = void\n", net_dev); 636} 637EXPORT_SYMBOL_GPL(i2400m_netdev_setup); 638 639