1/* 2 * Driver for high-speed SCC boards (those with DMA support) 3 * Copyright (C) 1997-2000 Klaus Kudielka 4 * 5 * S5SCC/DMA support by Janko Koleznik S52HI 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 23#include <linux/module.h> 24#include <linux/bitops.h> 25#include <linux/delay.h> 26#include <linux/errno.h> 27#include <linux/if_arp.h> 28#include <linux/in.h> 29#include <linux/init.h> 30#include <linux/interrupt.h> 31#include <linux/ioport.h> 32#include <linux/kernel.h> 33#include <linux/mm.h> 34#include <linux/netdevice.h> 35#include <linux/slab.h> 36#include <linux/rtnetlink.h> 37#include <linux/sockios.h> 38#include <linux/workqueue.h> 39#include <linux/atomic.h> 40#include <asm/dma.h> 41#include <asm/io.h> 42#include <asm/irq.h> 43#include <asm/uaccess.h> 44#include <net/ax25.h> 45#include "z8530.h" 46 47 48/* Number of buffers per channel */ 49 50#define NUM_TX_BUF 2 /* NUM_TX_BUF >= 1 (min. 2 recommended) */ 51#define NUM_RX_BUF 6 /* NUM_RX_BUF >= 1 (min. 2 recommended) */ 52#define BUF_SIZE 1576 /* BUF_SIZE >= mtu + hard_header_len */ 53 54 55/* Cards supported */ 56 57#define HW_PI { "Ottawa PI", 0x300, 0x20, 0x10, 8, \ 58 0, 8, 1843200, 3686400 } 59#define HW_PI2 { "Ottawa PI2", 0x300, 0x20, 0x10, 8, \ 60 0, 8, 3686400, 7372800 } 61#define HW_TWIN { "Gracilis PackeTwin", 0x200, 0x10, 0x10, 32, \ 62 0, 4, 6144000, 6144000 } 63#define HW_S5 { "S5SCC/DMA", 0x200, 0x10, 0x10, 32, \ 64 0, 8, 4915200, 9830400 } 65 66#define HARDWARE { HW_PI, HW_PI2, HW_TWIN, HW_S5 } 67 68#define TMR_0_HZ 25600 /* Frequency of timer 0 */ 69 70#define TYPE_PI 0 71#define TYPE_PI2 1 72#define TYPE_TWIN 2 73#define TYPE_S5 3 74#define NUM_TYPES 4 75 76#define MAX_NUM_DEVS 32 77 78 79/* SCC chips supported */ 80 81#define Z8530 0 82#define Z85C30 1 83#define Z85230 2 84 85#define CHIPNAMES { "Z8530", "Z85C30", "Z85230" } 86 87 88/* I/O registers */ 89 90/* 8530 registers relative to card base */ 91#define SCCB_CMD 0x00 92#define SCCB_DATA 0x01 93#define SCCA_CMD 0x02 94#define SCCA_DATA 0x03 95 96/* 8253/8254 registers relative to card base */ 97#define TMR_CNT0 0x00 98#define TMR_CNT1 0x01 99#define TMR_CNT2 0x02 100#define TMR_CTRL 0x03 101 102/* Additional PI/PI2 registers relative to card base */ 103#define PI_DREQ_MASK 0x04 104 105/* Additional PackeTwin registers relative to card base */ 106#define TWIN_INT_REG 0x08 107#define TWIN_CLR_TMR1 0x09 108#define TWIN_CLR_TMR2 0x0a 109#define TWIN_SPARE_1 0x0b 110#define TWIN_DMA_CFG 0x08 111#define TWIN_SERIAL_CFG 0x09 112#define TWIN_DMA_CLR_FF 0x0a 113#define TWIN_SPARE_2 0x0b 114 115 116/* PackeTwin I/O register values */ 117 118/* INT_REG */ 119#define TWIN_SCC_MSK 0x01 120#define TWIN_TMR1_MSK 0x02 121#define TWIN_TMR2_MSK 0x04 122#define TWIN_INT_MSK 0x07 123 124/* SERIAL_CFG */ 125#define TWIN_DTRA_ON 0x01 126#define TWIN_DTRB_ON 0x02 127#define TWIN_EXTCLKA 0x04 128#define TWIN_EXTCLKB 0x08 129#define TWIN_LOOPA_ON 0x10 130#define TWIN_LOOPB_ON 0x20 131#define TWIN_EI 0x80 132 133/* DMA_CFG */ 134#define TWIN_DMA_HDX_T1 0x08 135#define TWIN_DMA_HDX_R1 0x0a 136#define TWIN_DMA_HDX_T3 0x14 137#define TWIN_DMA_HDX_R3 0x16 138#define TWIN_DMA_FDX_T3R1 0x1b 139#define TWIN_DMA_FDX_T1R3 0x1d 140 141 142/* Status values */ 143 144#define IDLE 0 145#define TX_HEAD 1 146#define TX_DATA 2 147#define TX_PAUSE 3 148#define TX_TAIL 4 149#define RTS_OFF 5 150#define WAIT 6 151#define DCD_ON 7 152#define RX_ON 8 153#define DCD_OFF 9 154 155 156/* Ioctls */ 157 158#define SIOCGSCCPARAM SIOCDEVPRIVATE 159#define SIOCSSCCPARAM (SIOCDEVPRIVATE+1) 160 161 162/* Data types */ 163 164struct scc_param { 165 int pclk_hz; /* frequency of BRG input (don't change) */ 166 int brg_tc; /* BRG terminal count; BRG disabled if < 0 */ 167 int nrzi; /* 0 (nrz), 1 (nrzi) */ 168 int clocks; /* see dmascc_cfg documentation */ 169 int txdelay; /* [1/TMR_0_HZ] */ 170 int txtimeout; /* [1/HZ] */ 171 int txtail; /* [1/TMR_0_HZ] */ 172 int waittime; /* [1/TMR_0_HZ] */ 173 int slottime; /* [1/TMR_0_HZ] */ 174 int persist; /* 1 ... 256 */ 175 int dma; /* -1 (disable), 0, 1, 3 */ 176 int txpause; /* [1/TMR_0_HZ] */ 177 int rtsoff; /* [1/TMR_0_HZ] */ 178 int dcdon; /* [1/TMR_0_HZ] */ 179 int dcdoff; /* [1/TMR_0_HZ] */ 180}; 181 182struct scc_hardware { 183 char *name; 184 int io_region; 185 int io_delta; 186 int io_size; 187 int num_devs; 188 int scc_offset; 189 int tmr_offset; 190 int tmr_hz; 191 int pclk_hz; 192}; 193 194struct scc_priv { 195 int type; 196 int chip; 197 struct net_device *dev; 198 struct scc_info *info; 199 200 int channel; 201 int card_base, scc_cmd, scc_data; 202 int tmr_cnt, tmr_ctrl, tmr_mode; 203 struct scc_param param; 204 char rx_buf[NUM_RX_BUF][BUF_SIZE]; 205 int rx_len[NUM_RX_BUF]; 206 int rx_ptr; 207 struct work_struct rx_work; 208 int rx_head, rx_tail, rx_count; 209 int rx_over; 210 char tx_buf[NUM_TX_BUF][BUF_SIZE]; 211 int tx_len[NUM_TX_BUF]; 212 int tx_ptr; 213 int tx_head, tx_tail, tx_count; 214 int state; 215 unsigned long tx_start; 216 int rr0; 217 spinlock_t *register_lock; /* Per scc_info */ 218 spinlock_t ring_lock; 219}; 220 221struct scc_info { 222 int irq_used; 223 int twin_serial_cfg; 224 struct net_device *dev[2]; 225 struct scc_priv priv[2]; 226 struct scc_info *next; 227 spinlock_t register_lock; /* Per device register lock */ 228}; 229 230 231/* Function declarations */ 232static int setup_adapter(int card_base, int type, int n) __init; 233 234static void write_scc(struct scc_priv *priv, int reg, int val); 235static void write_scc_data(struct scc_priv *priv, int val, int fast); 236static int read_scc(struct scc_priv *priv, int reg); 237static int read_scc_data(struct scc_priv *priv); 238 239static int scc_open(struct net_device *dev); 240static int scc_close(struct net_device *dev); 241static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd); 242static int scc_send_packet(struct sk_buff *skb, struct net_device *dev); 243static int scc_set_mac_address(struct net_device *dev, void *sa); 244 245static inline void tx_on(struct scc_priv *priv); 246static inline void rx_on(struct scc_priv *priv); 247static inline void rx_off(struct scc_priv *priv); 248static void start_timer(struct scc_priv *priv, int t, int r15); 249static inline unsigned char random(void); 250 251static inline void z8530_isr(struct scc_info *info); 252static irqreturn_t scc_isr(int irq, void *dev_id); 253static void rx_isr(struct scc_priv *priv); 254static void special_condition(struct scc_priv *priv, int rc); 255static void rx_bh(struct work_struct *); 256static void tx_isr(struct scc_priv *priv); 257static void es_isr(struct scc_priv *priv); 258static void tm_isr(struct scc_priv *priv); 259 260 261/* Initialization variables */ 262 263static int io[MAX_NUM_DEVS] __initdata = { 0, }; 264 265/* Beware! hw[] is also used in dmascc_exit(). */ 266static struct scc_hardware hw[NUM_TYPES] = HARDWARE; 267 268 269/* Global variables */ 270 271static struct scc_info *first; 272static unsigned long rand; 273 274 275MODULE_AUTHOR("Klaus Kudielka"); 276MODULE_DESCRIPTION("Driver for high-speed SCC boards"); 277module_param_array(io, int, NULL, 0); 278MODULE_LICENSE("GPL"); 279 280static void __exit dmascc_exit(void) 281{ 282 int i; 283 struct scc_info *info; 284 285 while (first) { 286 info = first; 287 288 /* Unregister devices */ 289 for (i = 0; i < 2; i++) 290 unregister_netdev(info->dev[i]); 291 292 /* Reset board */ 293 if (info->priv[0].type == TYPE_TWIN) 294 outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG); 295 write_scc(&info->priv[0], R9, FHWRES); 296 release_region(info->dev[0]->base_addr, 297 hw[info->priv[0].type].io_size); 298 299 for (i = 0; i < 2; i++) 300 free_netdev(info->dev[i]); 301 302 /* Free memory */ 303 first = info->next; 304 kfree(info); 305 } 306} 307 308static int __init dmascc_init(void) 309{ 310 int h, i, j, n; 311 int base[MAX_NUM_DEVS], tcmd[MAX_NUM_DEVS], t0[MAX_NUM_DEVS], 312 t1[MAX_NUM_DEVS]; 313 unsigned t_val; 314 unsigned long time, start[MAX_NUM_DEVS], delay[MAX_NUM_DEVS], 315 counting[MAX_NUM_DEVS]; 316 317 /* Initialize random number generator */ 318 rand = jiffies; 319 /* Cards found = 0 */ 320 n = 0; 321 /* Warning message */ 322 if (!io[0]) 323 printk(KERN_INFO "dmascc: autoprobing (dangerous)\n"); 324 325 /* Run autodetection for each card type */ 326 for (h = 0; h < NUM_TYPES; h++) { 327 328 if (io[0]) { 329 /* User-specified I/O address regions */ 330 for (i = 0; i < hw[h].num_devs; i++) 331 base[i] = 0; 332 for (i = 0; i < MAX_NUM_DEVS && io[i]; i++) { 333 j = (io[i] - 334 hw[h].io_region) / hw[h].io_delta; 335 if (j >= 0 && j < hw[h].num_devs && 336 hw[h].io_region + 337 j * hw[h].io_delta == io[i]) { 338 base[j] = io[i]; 339 } 340 } 341 } else { 342 /* Default I/O address regions */ 343 for (i = 0; i < hw[h].num_devs; i++) { 344 base[i] = 345 hw[h].io_region + i * hw[h].io_delta; 346 } 347 } 348 349 /* Check valid I/O address regions */ 350 for (i = 0; i < hw[h].num_devs; i++) 351 if (base[i]) { 352 if (!request_region 353 (base[i], hw[h].io_size, "dmascc")) 354 base[i] = 0; 355 else { 356 tcmd[i] = 357 base[i] + hw[h].tmr_offset + 358 TMR_CTRL; 359 t0[i] = 360 base[i] + hw[h].tmr_offset + 361 TMR_CNT0; 362 t1[i] = 363 base[i] + hw[h].tmr_offset + 364 TMR_CNT1; 365 } 366 } 367 368 /* Start timers */ 369 for (i = 0; i < hw[h].num_devs; i++) 370 if (base[i]) { 371 /* Timer 0: LSB+MSB, Mode 3, TMR_0_HZ */ 372 outb(0x36, tcmd[i]); 373 outb((hw[h].tmr_hz / TMR_0_HZ) & 0xFF, 374 t0[i]); 375 outb((hw[h].tmr_hz / TMR_0_HZ) >> 8, 376 t0[i]); 377 /* Timer 1: LSB+MSB, Mode 0, HZ/10 */ 378 outb(0x70, tcmd[i]); 379 outb((TMR_0_HZ / HZ * 10) & 0xFF, t1[i]); 380 outb((TMR_0_HZ / HZ * 10) >> 8, t1[i]); 381 start[i] = jiffies; 382 delay[i] = 0; 383 counting[i] = 1; 384 /* Timer 2: LSB+MSB, Mode 0 */ 385 outb(0xb0, tcmd[i]); 386 } 387 time = jiffies; 388 /* Wait until counter registers are loaded */ 389 udelay(2000000 / TMR_0_HZ); 390 391 /* Timing loop */ 392 while (jiffies - time < 13) { 393 for (i = 0; i < hw[h].num_devs; i++) 394 if (base[i] && counting[i]) { 395 /* Read back Timer 1: latch; read LSB; read MSB */ 396 outb(0x40, tcmd[i]); 397 t_val = 398 inb(t1[i]) + (inb(t1[i]) << 8); 399 /* Also check whether counter did wrap */ 400 if (t_val == 0 || 401 t_val > TMR_0_HZ / HZ * 10) 402 counting[i] = 0; 403 delay[i] = jiffies - start[i]; 404 } 405 } 406 407 /* Evaluate measurements */ 408 for (i = 0; i < hw[h].num_devs; i++) 409 if (base[i]) { 410 if ((delay[i] >= 9 && delay[i] <= 11) && 411 /* Ok, we have found an adapter */ 412 (setup_adapter(base[i], h, n) == 0)) 413 n++; 414 else 415 release_region(base[i], 416 hw[h].io_size); 417 } 418 419 } /* NUM_TYPES */ 420 421 /* If any adapter was successfully initialized, return ok */ 422 if (n) 423 return 0; 424 425 /* If no adapter found, return error */ 426 printk(KERN_INFO "dmascc: no adapters found\n"); 427 return -EIO; 428} 429 430module_init(dmascc_init); 431module_exit(dmascc_exit); 432 433static void __init dev_setup(struct net_device *dev) 434{ 435 dev->type = ARPHRD_AX25; 436 dev->hard_header_len = AX25_MAX_HEADER_LEN; 437 dev->mtu = 1500; 438 dev->addr_len = AX25_ADDR_LEN; 439 dev->tx_queue_len = 64; 440 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN); 441 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN); 442} 443 444static const struct net_device_ops scc_netdev_ops = { 445 .ndo_open = scc_open, 446 .ndo_stop = scc_close, 447 .ndo_start_xmit = scc_send_packet, 448 .ndo_do_ioctl = scc_ioctl, 449 .ndo_set_mac_address = scc_set_mac_address, 450}; 451 452static int __init setup_adapter(int card_base, int type, int n) 453{ 454 int i, irq, chip; 455 struct scc_info *info; 456 struct net_device *dev; 457 struct scc_priv *priv; 458 unsigned long time; 459 unsigned int irqs; 460 int tmr_base = card_base + hw[type].tmr_offset; 461 int scc_base = card_base + hw[type].scc_offset; 462 char *chipnames[] = CHIPNAMES; 463 464 /* Initialize what is necessary for write_scc and write_scc_data */ 465 info = kzalloc(sizeof(struct scc_info), GFP_KERNEL | GFP_DMA); 466 if (!info) 467 goto out; 468 469 info->dev[0] = alloc_netdev(0, "", NET_NAME_UNKNOWN, dev_setup); 470 if (!info->dev[0]) { 471 printk(KERN_ERR "dmascc: " 472 "could not allocate memory for %s at %#3x\n", 473 hw[type].name, card_base); 474 goto out1; 475 } 476 477 info->dev[1] = alloc_netdev(0, "", NET_NAME_UNKNOWN, dev_setup); 478 if (!info->dev[1]) { 479 printk(KERN_ERR "dmascc: " 480 "could not allocate memory for %s at %#3x\n", 481 hw[type].name, card_base); 482 goto out2; 483 } 484 spin_lock_init(&info->register_lock); 485 486 priv = &info->priv[0]; 487 priv->type = type; 488 priv->card_base = card_base; 489 priv->scc_cmd = scc_base + SCCA_CMD; 490 priv->scc_data = scc_base + SCCA_DATA; 491 priv->register_lock = &info->register_lock; 492 493 /* Reset SCC */ 494 write_scc(priv, R9, FHWRES | MIE | NV); 495 496 /* Determine type of chip by enabling SDLC/HDLC enhancements */ 497 write_scc(priv, R15, SHDLCE); 498 if (!read_scc(priv, R15)) { 499 /* WR7' not present. This is an ordinary Z8530 SCC. */ 500 chip = Z8530; 501 } else { 502 /* Put one character in TX FIFO */ 503 write_scc_data(priv, 0, 0); 504 if (read_scc(priv, R0) & Tx_BUF_EMP) { 505 /* TX FIFO not full. This is a Z85230 ESCC with a 4-byte FIFO. */ 506 chip = Z85230; 507 } else { 508 /* TX FIFO full. This is a Z85C30 SCC with a 1-byte FIFO. */ 509 chip = Z85C30; 510 } 511 } 512 write_scc(priv, R15, 0); 513 514 /* Start IRQ auto-detection */ 515 irqs = probe_irq_on(); 516 517 /* Enable interrupts */ 518 if (type == TYPE_TWIN) { 519 outb(0, card_base + TWIN_DMA_CFG); 520 inb(card_base + TWIN_CLR_TMR1); 521 inb(card_base + TWIN_CLR_TMR2); 522 info->twin_serial_cfg = TWIN_EI; 523 outb(info->twin_serial_cfg, card_base + TWIN_SERIAL_CFG); 524 } else { 525 write_scc(priv, R15, CTSIE); 526 write_scc(priv, R0, RES_EXT_INT); 527 write_scc(priv, R1, EXT_INT_ENAB); 528 } 529 530 /* Start timer */ 531 outb(1, tmr_base + TMR_CNT1); 532 outb(0, tmr_base + TMR_CNT1); 533 534 /* Wait and detect IRQ */ 535 time = jiffies; 536 while (jiffies - time < 2 + HZ / TMR_0_HZ); 537 irq = probe_irq_off(irqs); 538 539 /* Clear pending interrupt, disable interrupts */ 540 if (type == TYPE_TWIN) { 541 inb(card_base + TWIN_CLR_TMR1); 542 } else { 543 write_scc(priv, R1, 0); 544 write_scc(priv, R15, 0); 545 write_scc(priv, R0, RES_EXT_INT); 546 } 547 548 if (irq <= 0) { 549 printk(KERN_ERR 550 "dmascc: could not find irq of %s at %#3x (irq=%d)\n", 551 hw[type].name, card_base, irq); 552 goto out3; 553 } 554 555 /* Set up data structures */ 556 for (i = 0; i < 2; i++) { 557 dev = info->dev[i]; 558 priv = &info->priv[i]; 559 priv->type = type; 560 priv->chip = chip; 561 priv->dev = dev; 562 priv->info = info; 563 priv->channel = i; 564 spin_lock_init(&priv->ring_lock); 565 priv->register_lock = &info->register_lock; 566 priv->card_base = card_base; 567 priv->scc_cmd = scc_base + (i ? SCCB_CMD : SCCA_CMD); 568 priv->scc_data = scc_base + (i ? SCCB_DATA : SCCA_DATA); 569 priv->tmr_cnt = tmr_base + (i ? TMR_CNT2 : TMR_CNT1); 570 priv->tmr_ctrl = tmr_base + TMR_CTRL; 571 priv->tmr_mode = i ? 0xb0 : 0x70; 572 priv->param.pclk_hz = hw[type].pclk_hz; 573 priv->param.brg_tc = -1; 574 priv->param.clocks = TCTRxCP | RCRTxCP; 575 priv->param.persist = 256; 576 priv->param.dma = -1; 577 INIT_WORK(&priv->rx_work, rx_bh); 578 dev->ml_priv = priv; 579 sprintf(dev->name, "dmascc%i", 2 * n + i); 580 dev->base_addr = card_base; 581 dev->irq = irq; 582 dev->netdev_ops = &scc_netdev_ops; 583 dev->header_ops = &ax25_header_ops; 584 } 585 if (register_netdev(info->dev[0])) { 586 printk(KERN_ERR "dmascc: could not register %s\n", 587 info->dev[0]->name); 588 goto out3; 589 } 590 if (register_netdev(info->dev[1])) { 591 printk(KERN_ERR "dmascc: could not register %s\n", 592 info->dev[1]->name); 593 goto out4; 594 } 595 596 597 info->next = first; 598 first = info; 599 printk(KERN_INFO "dmascc: found %s (%s) at %#3x, irq %d\n", 600 hw[type].name, chipnames[chip], card_base, irq); 601 return 0; 602 603 out4: 604 unregister_netdev(info->dev[0]); 605 out3: 606 if (info->priv[0].type == TYPE_TWIN) 607 outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG); 608 write_scc(&info->priv[0], R9, FHWRES); 609 free_netdev(info->dev[1]); 610 out2: 611 free_netdev(info->dev[0]); 612 out1: 613 kfree(info); 614 out: 615 return -1; 616} 617 618 619/* Driver functions */ 620 621static void write_scc(struct scc_priv *priv, int reg, int val) 622{ 623 unsigned long flags; 624 switch (priv->type) { 625 case TYPE_S5: 626 if (reg) 627 outb(reg, priv->scc_cmd); 628 outb(val, priv->scc_cmd); 629 return; 630 case TYPE_TWIN: 631 if (reg) 632 outb_p(reg, priv->scc_cmd); 633 outb_p(val, priv->scc_cmd); 634 return; 635 default: 636 spin_lock_irqsave(priv->register_lock, flags); 637 outb_p(0, priv->card_base + PI_DREQ_MASK); 638 if (reg) 639 outb_p(reg, priv->scc_cmd); 640 outb_p(val, priv->scc_cmd); 641 outb(1, priv->card_base + PI_DREQ_MASK); 642 spin_unlock_irqrestore(priv->register_lock, flags); 643 return; 644 } 645} 646 647 648static void write_scc_data(struct scc_priv *priv, int val, int fast) 649{ 650 unsigned long flags; 651 switch (priv->type) { 652 case TYPE_S5: 653 outb(val, priv->scc_data); 654 return; 655 case TYPE_TWIN: 656 outb_p(val, priv->scc_data); 657 return; 658 default: 659 if (fast) 660 outb_p(val, priv->scc_data); 661 else { 662 spin_lock_irqsave(priv->register_lock, flags); 663 outb_p(0, priv->card_base + PI_DREQ_MASK); 664 outb_p(val, priv->scc_data); 665 outb(1, priv->card_base + PI_DREQ_MASK); 666 spin_unlock_irqrestore(priv->register_lock, flags); 667 } 668 return; 669 } 670} 671 672 673static int read_scc(struct scc_priv *priv, int reg) 674{ 675 int rc; 676 unsigned long flags; 677 switch (priv->type) { 678 case TYPE_S5: 679 if (reg) 680 outb(reg, priv->scc_cmd); 681 return inb(priv->scc_cmd); 682 case TYPE_TWIN: 683 if (reg) 684 outb_p(reg, priv->scc_cmd); 685 return inb_p(priv->scc_cmd); 686 default: 687 spin_lock_irqsave(priv->register_lock, flags); 688 outb_p(0, priv->card_base + PI_DREQ_MASK); 689 if (reg) 690 outb_p(reg, priv->scc_cmd); 691 rc = inb_p(priv->scc_cmd); 692 outb(1, priv->card_base + PI_DREQ_MASK); 693 spin_unlock_irqrestore(priv->register_lock, flags); 694 return rc; 695 } 696} 697 698 699static int read_scc_data(struct scc_priv *priv) 700{ 701 int rc; 702 unsigned long flags; 703 switch (priv->type) { 704 case TYPE_S5: 705 return inb(priv->scc_data); 706 case TYPE_TWIN: 707 return inb_p(priv->scc_data); 708 default: 709 spin_lock_irqsave(priv->register_lock, flags); 710 outb_p(0, priv->card_base + PI_DREQ_MASK); 711 rc = inb_p(priv->scc_data); 712 outb(1, priv->card_base + PI_DREQ_MASK); 713 spin_unlock_irqrestore(priv->register_lock, flags); 714 return rc; 715 } 716} 717 718 719static int scc_open(struct net_device *dev) 720{ 721 struct scc_priv *priv = dev->ml_priv; 722 struct scc_info *info = priv->info; 723 int card_base = priv->card_base; 724 725 /* Request IRQ if not already used by other channel */ 726 if (!info->irq_used) { 727 if (request_irq(dev->irq, scc_isr, 0, "dmascc", info)) { 728 return -EAGAIN; 729 } 730 } 731 info->irq_used++; 732 733 /* Request DMA if required */ 734 if (priv->param.dma >= 0) { 735 if (request_dma(priv->param.dma, "dmascc")) { 736 if (--info->irq_used == 0) 737 free_irq(dev->irq, info); 738 return -EAGAIN; 739 } else { 740 unsigned long flags = claim_dma_lock(); 741 clear_dma_ff(priv->param.dma); 742 release_dma_lock(flags); 743 } 744 } 745 746 /* Initialize local variables */ 747 priv->rx_ptr = 0; 748 priv->rx_over = 0; 749 priv->rx_head = priv->rx_tail = priv->rx_count = 0; 750 priv->state = IDLE; 751 priv->tx_head = priv->tx_tail = priv->tx_count = 0; 752 priv->tx_ptr = 0; 753 754 /* Reset channel */ 755 write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV); 756 /* X1 clock, SDLC mode */ 757 write_scc(priv, R4, SDLC | X1CLK); 758 /* DMA */ 759 write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN); 760 /* 8 bit RX char, RX disable */ 761 write_scc(priv, R3, Rx8); 762 /* 8 bit TX char, TX disable */ 763 write_scc(priv, R5, Tx8); 764 /* SDLC address field */ 765 write_scc(priv, R6, 0); 766 /* SDLC flag */ 767 write_scc(priv, R7, FLAG); 768 switch (priv->chip) { 769 case Z85C30: 770 /* Select WR7' */ 771 write_scc(priv, R15, SHDLCE); 772 /* Auto EOM reset */ 773 write_scc(priv, R7, AUTOEOM); 774 write_scc(priv, R15, 0); 775 break; 776 case Z85230: 777 /* Select WR7' */ 778 write_scc(priv, R15, SHDLCE); 779 /* The following bits are set (see 2.5.2.1): 780 - Automatic EOM reset 781 - Interrupt request if RX FIFO is half full 782 This bit should be ignored in DMA mode (according to the 783 documentation), but actually isn't. The receiver doesn't work if 784 it is set. Thus, we have to clear it in DMA mode. 785 - Interrupt/DMA request if TX FIFO is completely empty 786 a) If set, the ESCC behaves as if it had no TX FIFO (Z85C30 787 compatibility). 788 b) If cleared, DMA requests may follow each other very quickly, 789 filling up the TX FIFO. 790 Advantage: TX works even in case of high bus latency. 791 Disadvantage: Edge-triggered DMA request circuitry may miss 792 a request. No more data is delivered, resulting 793 in a TX FIFO underrun. 794 Both PI2 and S5SCC/DMA seem to work fine with TXFIFOE cleared. 795 The PackeTwin doesn't. I don't know about the PI, but let's 796 assume it behaves like the PI2. 797 */ 798 if (priv->param.dma >= 0) { 799 if (priv->type == TYPE_TWIN) 800 write_scc(priv, R7, AUTOEOM | TXFIFOE); 801 else 802 write_scc(priv, R7, AUTOEOM); 803 } else { 804 write_scc(priv, R7, AUTOEOM | RXFIFOH); 805 } 806 write_scc(priv, R15, 0); 807 break; 808 } 809 /* Preset CRC, NRZ(I) encoding */ 810 write_scc(priv, R10, CRCPS | (priv->param.nrzi ? NRZI : NRZ)); 811 812 /* Configure baud rate generator */ 813 if (priv->param.brg_tc >= 0) { 814 /* Program BR generator */ 815 write_scc(priv, R12, priv->param.brg_tc & 0xFF); 816 write_scc(priv, R13, (priv->param.brg_tc >> 8) & 0xFF); 817 /* BRG source = SYS CLK; enable BRG; DTR REQ function (required by 818 PackeTwin, not connected on the PI2); set DPLL source to BRG */ 819 write_scc(priv, R14, SSBR | DTRREQ | BRSRC | BRENABL); 820 /* Enable DPLL */ 821 write_scc(priv, R14, SEARCH | DTRREQ | BRSRC | BRENABL); 822 } else { 823 /* Disable BR generator */ 824 write_scc(priv, R14, DTRREQ | BRSRC); 825 } 826 827 /* Configure clocks */ 828 if (priv->type == TYPE_TWIN) { 829 /* Disable external TX clock receiver */ 830 outb((info->twin_serial_cfg &= 831 ~(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)), 832 card_base + TWIN_SERIAL_CFG); 833 } 834 write_scc(priv, R11, priv->param.clocks); 835 if ((priv->type == TYPE_TWIN) && !(priv->param.clocks & TRxCOI)) { 836 /* Enable external TX clock receiver */ 837 outb((info->twin_serial_cfg |= 838 (priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)), 839 card_base + TWIN_SERIAL_CFG); 840 } 841 842 /* Configure PackeTwin */ 843 if (priv->type == TYPE_TWIN) { 844 /* Assert DTR, enable interrupts */ 845 outb((info->twin_serial_cfg |= TWIN_EI | 846 (priv->channel ? TWIN_DTRB_ON : TWIN_DTRA_ON)), 847 card_base + TWIN_SERIAL_CFG); 848 } 849 850 /* Read current status */ 851 priv->rr0 = read_scc(priv, R0); 852 /* Enable DCD interrupt */ 853 write_scc(priv, R15, DCDIE); 854 855 netif_start_queue(dev); 856 857 return 0; 858} 859 860 861static int scc_close(struct net_device *dev) 862{ 863 struct scc_priv *priv = dev->ml_priv; 864 struct scc_info *info = priv->info; 865 int card_base = priv->card_base; 866 867 netif_stop_queue(dev); 868 869 if (priv->type == TYPE_TWIN) { 870 /* Drop DTR */ 871 outb((info->twin_serial_cfg &= 872 (priv->channel ? ~TWIN_DTRB_ON : ~TWIN_DTRA_ON)), 873 card_base + TWIN_SERIAL_CFG); 874 } 875 876 /* Reset channel, free DMA and IRQ */ 877 write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV); 878 if (priv->param.dma >= 0) { 879 if (priv->type == TYPE_TWIN) 880 outb(0, card_base + TWIN_DMA_CFG); 881 free_dma(priv->param.dma); 882 } 883 if (--info->irq_used == 0) 884 free_irq(dev->irq, info); 885 886 return 0; 887} 888 889 890static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 891{ 892 struct scc_priv *priv = dev->ml_priv; 893 894 switch (cmd) { 895 case SIOCGSCCPARAM: 896 if (copy_to_user 897 (ifr->ifr_data, &priv->param, 898 sizeof(struct scc_param))) 899 return -EFAULT; 900 return 0; 901 case SIOCSSCCPARAM: 902 if (!capable(CAP_NET_ADMIN)) 903 return -EPERM; 904 if (netif_running(dev)) 905 return -EAGAIN; 906 if (copy_from_user 907 (&priv->param, ifr->ifr_data, 908 sizeof(struct scc_param))) 909 return -EFAULT; 910 return 0; 911 default: 912 return -EINVAL; 913 } 914} 915 916 917static int scc_send_packet(struct sk_buff *skb, struct net_device *dev) 918{ 919 struct scc_priv *priv = dev->ml_priv; 920 unsigned long flags; 921 int i; 922 923 if (skb->protocol == htons(ETH_P_IP)) 924 return ax25_ip_xmit(skb); 925 926 /* Temporarily stop the scheduler feeding us packets */ 927 netif_stop_queue(dev); 928 929 /* Transfer data to DMA buffer */ 930 i = priv->tx_head; 931 skb_copy_from_linear_data_offset(skb, 1, priv->tx_buf[i], skb->len - 1); 932 priv->tx_len[i] = skb->len - 1; 933 934 /* Clear interrupts while we touch our circular buffers */ 935 936 spin_lock_irqsave(&priv->ring_lock, flags); 937 /* Move the ring buffer's head */ 938 priv->tx_head = (i + 1) % NUM_TX_BUF; 939 priv->tx_count++; 940 941 /* If we just filled up the last buffer, leave queue stopped. 942 The higher layers must wait until we have a DMA buffer 943 to accept the data. */ 944 if (priv->tx_count < NUM_TX_BUF) 945 netif_wake_queue(dev); 946 947 /* Set new TX state */ 948 if (priv->state == IDLE) { 949 /* Assert RTS, start timer */ 950 priv->state = TX_HEAD; 951 priv->tx_start = jiffies; 952 write_scc(priv, R5, TxCRC_ENAB | RTS | TxENAB | Tx8); 953 write_scc(priv, R15, 0); 954 start_timer(priv, priv->param.txdelay, 0); 955 } 956 957 /* Turn interrupts back on and free buffer */ 958 spin_unlock_irqrestore(&priv->ring_lock, flags); 959 dev_kfree_skb(skb); 960 961 return NETDEV_TX_OK; 962} 963 964 965static int scc_set_mac_address(struct net_device *dev, void *sa) 966{ 967 memcpy(dev->dev_addr, ((struct sockaddr *) sa)->sa_data, 968 dev->addr_len); 969 return 0; 970} 971 972 973static inline void tx_on(struct scc_priv *priv) 974{ 975 int i, n; 976 unsigned long flags; 977 978 if (priv->param.dma >= 0) { 979 n = (priv->chip == Z85230) ? 3 : 1; 980 /* Program DMA controller */ 981 flags = claim_dma_lock(); 982 set_dma_mode(priv->param.dma, DMA_MODE_WRITE); 983 set_dma_addr(priv->param.dma, 984 (int) priv->tx_buf[priv->tx_tail] + n); 985 set_dma_count(priv->param.dma, 986 priv->tx_len[priv->tx_tail] - n); 987 release_dma_lock(flags); 988 /* Enable TX underrun interrupt */ 989 write_scc(priv, R15, TxUIE); 990 /* Configure DREQ */ 991 if (priv->type == TYPE_TWIN) 992 outb((priv->param.dma == 993 1) ? TWIN_DMA_HDX_T1 : TWIN_DMA_HDX_T3, 994 priv->card_base + TWIN_DMA_CFG); 995 else 996 write_scc(priv, R1, 997 EXT_INT_ENAB | WT_FN_RDYFN | 998 WT_RDY_ENAB); 999 /* Write first byte(s) */ 1000 spin_lock_irqsave(priv->register_lock, flags); 1001 for (i = 0; i < n; i++) 1002 write_scc_data(priv, 1003 priv->tx_buf[priv->tx_tail][i], 1); 1004 enable_dma(priv->param.dma); 1005 spin_unlock_irqrestore(priv->register_lock, flags); 1006 } else { 1007 write_scc(priv, R15, TxUIE); 1008 write_scc(priv, R1, 1009 EXT_INT_ENAB | WT_FN_RDYFN | TxINT_ENAB); 1010 tx_isr(priv); 1011 } 1012 /* Reset EOM latch if we do not have the AUTOEOM feature */ 1013 if (priv->chip == Z8530) 1014 write_scc(priv, R0, RES_EOM_L); 1015} 1016 1017 1018static inline void rx_on(struct scc_priv *priv) 1019{ 1020 unsigned long flags; 1021 1022 /* Clear RX FIFO */ 1023 while (read_scc(priv, R0) & Rx_CH_AV) 1024 read_scc_data(priv); 1025 priv->rx_over = 0; 1026 if (priv->param.dma >= 0) { 1027 /* Program DMA controller */ 1028 flags = claim_dma_lock(); 1029 set_dma_mode(priv->param.dma, DMA_MODE_READ); 1030 set_dma_addr(priv->param.dma, 1031 (int) priv->rx_buf[priv->rx_head]); 1032 set_dma_count(priv->param.dma, BUF_SIZE); 1033 release_dma_lock(flags); 1034 enable_dma(priv->param.dma); 1035 /* Configure PackeTwin DMA */ 1036 if (priv->type == TYPE_TWIN) { 1037 outb((priv->param.dma == 1038 1) ? TWIN_DMA_HDX_R1 : TWIN_DMA_HDX_R3, 1039 priv->card_base + TWIN_DMA_CFG); 1040 } 1041 /* Sp. cond. intr. only, ext int enable, RX DMA enable */ 1042 write_scc(priv, R1, EXT_INT_ENAB | INT_ERR_Rx | 1043 WT_RDY_RT | WT_FN_RDYFN | WT_RDY_ENAB); 1044 } else { 1045 /* Reset current frame */ 1046 priv->rx_ptr = 0; 1047 /* Intr. on all Rx characters and Sp. cond., ext int enable */ 1048 write_scc(priv, R1, EXT_INT_ENAB | INT_ALL_Rx | WT_RDY_RT | 1049 WT_FN_RDYFN); 1050 } 1051 write_scc(priv, R0, ERR_RES); 1052 write_scc(priv, R3, RxENABLE | Rx8 | RxCRC_ENAB); 1053} 1054 1055 1056static inline void rx_off(struct scc_priv *priv) 1057{ 1058 /* Disable receiver */ 1059 write_scc(priv, R3, Rx8); 1060 /* Disable DREQ / RX interrupt */ 1061 if (priv->param.dma >= 0 && priv->type == TYPE_TWIN) 1062 outb(0, priv->card_base + TWIN_DMA_CFG); 1063 else 1064 write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN); 1065 /* Disable DMA */ 1066 if (priv->param.dma >= 0) 1067 disable_dma(priv->param.dma); 1068} 1069 1070 1071static void start_timer(struct scc_priv *priv, int t, int r15) 1072{ 1073 outb(priv->tmr_mode, priv->tmr_ctrl); 1074 if (t == 0) { 1075 tm_isr(priv); 1076 } else if (t > 0) { 1077 outb(t & 0xFF, priv->tmr_cnt); 1078 outb((t >> 8) & 0xFF, priv->tmr_cnt); 1079 if (priv->type != TYPE_TWIN) { 1080 write_scc(priv, R15, r15 | CTSIE); 1081 priv->rr0 |= CTS; 1082 } 1083 } 1084} 1085 1086 1087static inline unsigned char random(void) 1088{ 1089 /* See "Numerical Recipes in C", second edition, p. 284 */ 1090 rand = rand * 1664525L + 1013904223L; 1091 return (unsigned char) (rand >> 24); 1092} 1093 1094static inline void z8530_isr(struct scc_info *info) 1095{ 1096 int is, i = 100; 1097 1098 while ((is = read_scc(&info->priv[0], R3)) && i--) { 1099 if (is & CHARxIP) { 1100 rx_isr(&info->priv[0]); 1101 } else if (is & CHATxIP) { 1102 tx_isr(&info->priv[0]); 1103 } else if (is & CHAEXT) { 1104 es_isr(&info->priv[0]); 1105 } else if (is & CHBRxIP) { 1106 rx_isr(&info->priv[1]); 1107 } else if (is & CHBTxIP) { 1108 tx_isr(&info->priv[1]); 1109 } else { 1110 es_isr(&info->priv[1]); 1111 } 1112 write_scc(&info->priv[0], R0, RES_H_IUS); 1113 i++; 1114 } 1115 if (i < 0) { 1116 printk(KERN_ERR "dmascc: stuck in ISR with RR3=0x%02x.\n", 1117 is); 1118 } 1119 /* Ok, no interrupts pending from this 8530. The INT line should 1120 be inactive now. */ 1121} 1122 1123 1124static irqreturn_t scc_isr(int irq, void *dev_id) 1125{ 1126 struct scc_info *info = dev_id; 1127 1128 spin_lock(info->priv[0].register_lock); 1129 /* At this point interrupts are enabled, and the interrupt under service 1130 is already acknowledged, but masked off. 1131 1132 Interrupt processing: We loop until we know that the IRQ line is 1133 low. If another positive edge occurs afterwards during the ISR, 1134 another interrupt will be triggered by the interrupt controller 1135 as soon as the IRQ level is enabled again (see asm/irq.h). 1136 1137 Bottom-half handlers will be processed after scc_isr(). This is 1138 important, since we only have small ringbuffers and want new data 1139 to be fetched/delivered immediately. */ 1140 1141 if (info->priv[0].type == TYPE_TWIN) { 1142 int is, card_base = info->priv[0].card_base; 1143 while ((is = ~inb(card_base + TWIN_INT_REG)) & 1144 TWIN_INT_MSK) { 1145 if (is & TWIN_SCC_MSK) { 1146 z8530_isr(info); 1147 } else if (is & TWIN_TMR1_MSK) { 1148 inb(card_base + TWIN_CLR_TMR1); 1149 tm_isr(&info->priv[0]); 1150 } else { 1151 inb(card_base + TWIN_CLR_TMR2); 1152 tm_isr(&info->priv[1]); 1153 } 1154 } 1155 } else 1156 z8530_isr(info); 1157 spin_unlock(info->priv[0].register_lock); 1158 return IRQ_HANDLED; 1159} 1160 1161 1162static void rx_isr(struct scc_priv *priv) 1163{ 1164 if (priv->param.dma >= 0) { 1165 /* Check special condition and perform error reset. See 2.4.7.5. */ 1166 special_condition(priv, read_scc(priv, R1)); 1167 write_scc(priv, R0, ERR_RES); 1168 } else { 1169 /* Check special condition for each character. Error reset not necessary. 1170 Same algorithm for SCC and ESCC. See 2.4.7.1 and 2.4.7.4. */ 1171 int rc; 1172 while (read_scc(priv, R0) & Rx_CH_AV) { 1173 rc = read_scc(priv, R1); 1174 if (priv->rx_ptr < BUF_SIZE) 1175 priv->rx_buf[priv->rx_head][priv-> 1176 rx_ptr++] = 1177 read_scc_data(priv); 1178 else { 1179 priv->rx_over = 2; 1180 read_scc_data(priv); 1181 } 1182 special_condition(priv, rc); 1183 } 1184 } 1185} 1186 1187 1188static void special_condition(struct scc_priv *priv, int rc) 1189{ 1190 int cb; 1191 unsigned long flags; 1192 1193 /* See Figure 2-15. Only overrun and EOF need to be checked. */ 1194 1195 if (rc & Rx_OVR) { 1196 /* Receiver overrun */ 1197 priv->rx_over = 1; 1198 if (priv->param.dma < 0) 1199 write_scc(priv, R0, ERR_RES); 1200 } else if (rc & END_FR) { 1201 /* End of frame. Get byte count */ 1202 if (priv->param.dma >= 0) { 1203 flags = claim_dma_lock(); 1204 cb = BUF_SIZE - get_dma_residue(priv->param.dma) - 1205 2; 1206 release_dma_lock(flags); 1207 } else { 1208 cb = priv->rx_ptr - 2; 1209 } 1210 if (priv->rx_over) { 1211 /* We had an overrun */ 1212 priv->dev->stats.rx_errors++; 1213 if (priv->rx_over == 2) 1214 priv->dev->stats.rx_length_errors++; 1215 else 1216 priv->dev->stats.rx_fifo_errors++; 1217 priv->rx_over = 0; 1218 } else if (rc & CRC_ERR) { 1219 /* Count invalid CRC only if packet length >= minimum */ 1220 if (cb >= 15) { 1221 priv->dev->stats.rx_errors++; 1222 priv->dev->stats.rx_crc_errors++; 1223 } 1224 } else { 1225 if (cb >= 15) { 1226 if (priv->rx_count < NUM_RX_BUF - 1) { 1227 /* Put good frame in FIFO */ 1228 priv->rx_len[priv->rx_head] = cb; 1229 priv->rx_head = 1230 (priv->rx_head + 1231 1) % NUM_RX_BUF; 1232 priv->rx_count++; 1233 schedule_work(&priv->rx_work); 1234 } else { 1235 priv->dev->stats.rx_errors++; 1236 priv->dev->stats.rx_over_errors++; 1237 } 1238 } 1239 } 1240 /* Get ready for new frame */ 1241 if (priv->param.dma >= 0) { 1242 flags = claim_dma_lock(); 1243 set_dma_addr(priv->param.dma, 1244 (int) priv->rx_buf[priv->rx_head]); 1245 set_dma_count(priv->param.dma, BUF_SIZE); 1246 release_dma_lock(flags); 1247 } else { 1248 priv->rx_ptr = 0; 1249 } 1250 } 1251} 1252 1253 1254static void rx_bh(struct work_struct *ugli_api) 1255{ 1256 struct scc_priv *priv = container_of(ugli_api, struct scc_priv, rx_work); 1257 int i = priv->rx_tail; 1258 int cb; 1259 unsigned long flags; 1260 struct sk_buff *skb; 1261 unsigned char *data; 1262 1263 spin_lock_irqsave(&priv->ring_lock, flags); 1264 while (priv->rx_count) { 1265 spin_unlock_irqrestore(&priv->ring_lock, flags); 1266 cb = priv->rx_len[i]; 1267 /* Allocate buffer */ 1268 skb = dev_alloc_skb(cb + 1); 1269 if (skb == NULL) { 1270 /* Drop packet */ 1271 priv->dev->stats.rx_dropped++; 1272 } else { 1273 /* Fill buffer */ 1274 data = skb_put(skb, cb + 1); 1275 data[0] = 0; 1276 memcpy(&data[1], priv->rx_buf[i], cb); 1277 skb->protocol = ax25_type_trans(skb, priv->dev); 1278 netif_rx(skb); 1279 priv->dev->stats.rx_packets++; 1280 priv->dev->stats.rx_bytes += cb; 1281 } 1282 spin_lock_irqsave(&priv->ring_lock, flags); 1283 /* Move tail */ 1284 priv->rx_tail = i = (i + 1) % NUM_RX_BUF; 1285 priv->rx_count--; 1286 } 1287 spin_unlock_irqrestore(&priv->ring_lock, flags); 1288} 1289 1290 1291static void tx_isr(struct scc_priv *priv) 1292{ 1293 int i = priv->tx_tail, p = priv->tx_ptr; 1294 1295 /* Suspend TX interrupts if we don't want to send anything. 1296 See Figure 2-22. */ 1297 if (p == priv->tx_len[i]) { 1298 write_scc(priv, R0, RES_Tx_P); 1299 return; 1300 } 1301 1302 /* Write characters */ 1303 while ((read_scc(priv, R0) & Tx_BUF_EMP) && p < priv->tx_len[i]) { 1304 write_scc_data(priv, priv->tx_buf[i][p++], 0); 1305 } 1306 1307 /* Reset EOM latch of Z8530 */ 1308 if (!priv->tx_ptr && p && priv->chip == Z8530) 1309 write_scc(priv, R0, RES_EOM_L); 1310 1311 priv->tx_ptr = p; 1312} 1313 1314 1315static void es_isr(struct scc_priv *priv) 1316{ 1317 int i, rr0, drr0, res; 1318 unsigned long flags; 1319 1320 /* Read status, reset interrupt bit (open latches) */ 1321 rr0 = read_scc(priv, R0); 1322 write_scc(priv, R0, RES_EXT_INT); 1323 drr0 = priv->rr0 ^ rr0; 1324 priv->rr0 = rr0; 1325 1326 /* Transmit underrun (2.4.9.6). We can't check the TxEOM flag, since 1327 it might have already been cleared again by AUTOEOM. */ 1328 if (priv->state == TX_DATA) { 1329 /* Get remaining bytes */ 1330 i = priv->tx_tail; 1331 if (priv->param.dma >= 0) { 1332 disable_dma(priv->param.dma); 1333 flags = claim_dma_lock(); 1334 res = get_dma_residue(priv->param.dma); 1335 release_dma_lock(flags); 1336 } else { 1337 res = priv->tx_len[i] - priv->tx_ptr; 1338 priv->tx_ptr = 0; 1339 } 1340 /* Disable DREQ / TX interrupt */ 1341 if (priv->param.dma >= 0 && priv->type == TYPE_TWIN) 1342 outb(0, priv->card_base + TWIN_DMA_CFG); 1343 else 1344 write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN); 1345 if (res) { 1346 /* Update packet statistics */ 1347 priv->dev->stats.tx_errors++; 1348 priv->dev->stats.tx_fifo_errors++; 1349 /* Other underrun interrupts may already be waiting */ 1350 write_scc(priv, R0, RES_EXT_INT); 1351 write_scc(priv, R0, RES_EXT_INT); 1352 } else { 1353 /* Update packet statistics */ 1354 priv->dev->stats.tx_packets++; 1355 priv->dev->stats.tx_bytes += priv->tx_len[i]; 1356 /* Remove frame from FIFO */ 1357 priv->tx_tail = (i + 1) % NUM_TX_BUF; 1358 priv->tx_count--; 1359 /* Inform upper layers */ 1360 netif_wake_queue(priv->dev); 1361 } 1362 /* Switch state */ 1363 write_scc(priv, R15, 0); 1364 if (priv->tx_count && 1365 (jiffies - priv->tx_start) < priv->param.txtimeout) { 1366 priv->state = TX_PAUSE; 1367 start_timer(priv, priv->param.txpause, 0); 1368 } else { 1369 priv->state = TX_TAIL; 1370 start_timer(priv, priv->param.txtail, 0); 1371 } 1372 } 1373 1374 /* DCD transition */ 1375 if (drr0 & DCD) { 1376 if (rr0 & DCD) { 1377 switch (priv->state) { 1378 case IDLE: 1379 case WAIT: 1380 priv->state = DCD_ON; 1381 write_scc(priv, R15, 0); 1382 start_timer(priv, priv->param.dcdon, 0); 1383 } 1384 } else { 1385 switch (priv->state) { 1386 case RX_ON: 1387 rx_off(priv); 1388 priv->state = DCD_OFF; 1389 write_scc(priv, R15, 0); 1390 start_timer(priv, priv->param.dcdoff, 0); 1391 } 1392 } 1393 } 1394 1395 /* CTS transition */ 1396 if ((drr0 & CTS) && (~rr0 & CTS) && priv->type != TYPE_TWIN) 1397 tm_isr(priv); 1398 1399} 1400 1401 1402static void tm_isr(struct scc_priv *priv) 1403{ 1404 switch (priv->state) { 1405 case TX_HEAD: 1406 case TX_PAUSE: 1407 tx_on(priv); 1408 priv->state = TX_DATA; 1409 break; 1410 case TX_TAIL: 1411 write_scc(priv, R5, TxCRC_ENAB | Tx8); 1412 priv->state = RTS_OFF; 1413 if (priv->type != TYPE_TWIN) 1414 write_scc(priv, R15, 0); 1415 start_timer(priv, priv->param.rtsoff, 0); 1416 break; 1417 case RTS_OFF: 1418 write_scc(priv, R15, DCDIE); 1419 priv->rr0 = read_scc(priv, R0); 1420 if (priv->rr0 & DCD) { 1421 priv->dev->stats.collisions++; 1422 rx_on(priv); 1423 priv->state = RX_ON; 1424 } else { 1425 priv->state = WAIT; 1426 start_timer(priv, priv->param.waittime, DCDIE); 1427 } 1428 break; 1429 case WAIT: 1430 if (priv->tx_count) { 1431 priv->state = TX_HEAD; 1432 priv->tx_start = jiffies; 1433 write_scc(priv, R5, 1434 TxCRC_ENAB | RTS | TxENAB | Tx8); 1435 write_scc(priv, R15, 0); 1436 start_timer(priv, priv->param.txdelay, 0); 1437 } else { 1438 priv->state = IDLE; 1439 if (priv->type != TYPE_TWIN) 1440 write_scc(priv, R15, DCDIE); 1441 } 1442 break; 1443 case DCD_ON: 1444 case DCD_OFF: 1445 write_scc(priv, R15, DCDIE); 1446 priv->rr0 = read_scc(priv, R0); 1447 if (priv->rr0 & DCD) { 1448 rx_on(priv); 1449 priv->state = RX_ON; 1450 } else { 1451 priv->state = WAIT; 1452 start_timer(priv, 1453 random() / priv->param.persist * 1454 priv->param.slottime, DCDIE); 1455 } 1456 break; 1457 } 1458} 1459