1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/pci.h>
12#include <linux/tcp.h>
13#include <linux/ip.h>
14#include <linux/in.h>
15#include <linux/ipv6.h>
16#include <linux/slab.h>
17#include <net/ipv6.h>
18#include <linux/if_ether.h>
19#include <linux/highmem.h>
20#include <linux/cache.h>
21#include "net_driver.h"
22#include "efx.h"
23#include "io.h"
24#include "nic.h"
25#include "workarounds.h"
26#include "ef10_regs.h"
27
28#ifdef EFX_USE_PIO
29
30#define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33
34#endif /* EFX_USE_PIO */
35
36static inline unsigned int
37efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38{
39	return tx_queue->insert_count & tx_queue->ptr_mask;
40}
41
42static inline struct efx_tx_buffer *
43__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44{
45	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46}
47
48static inline struct efx_tx_buffer *
49efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50{
51	struct efx_tx_buffer *buffer =
52		__efx_tx_queue_get_insert_buffer(tx_queue);
53
54	EFX_BUG_ON_PARANOID(buffer->len);
55	EFX_BUG_ON_PARANOID(buffer->flags);
56	EFX_BUG_ON_PARANOID(buffer->unmap_len);
57
58	return buffer;
59}
60
61static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
62			       struct efx_tx_buffer *buffer,
63			       unsigned int *pkts_compl,
64			       unsigned int *bytes_compl)
65{
66	if (buffer->unmap_len) {
67		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
68		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
69		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
70			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71					 DMA_TO_DEVICE);
72		else
73			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74				       DMA_TO_DEVICE);
75		buffer->unmap_len = 0;
76	}
77
78	if (buffer->flags & EFX_TX_BUF_SKB) {
79		(*pkts_compl)++;
80		(*bytes_compl) += buffer->skb->len;
81		dev_consume_skb_any((struct sk_buff *)buffer->skb);
82		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83			   "TX queue %d transmission id %x complete\n",
84			   tx_queue->queue, tx_queue->read_count);
85	} else if (buffer->flags & EFX_TX_BUF_HEAP) {
86		kfree(buffer->heap_buf);
87	}
88
89	buffer->len = 0;
90	buffer->flags = 0;
91}
92
93static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
94			       struct sk_buff *skb);
95
96static inline unsigned
97efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98{
99	/* Depending on the NIC revision, we can use descriptor
100	 * lengths up to 8K or 8K-1.  However, since PCI Express
101	 * devices must split read requests at 4K boundaries, there is
102	 * little benefit from using descriptors that cross those
103	 * boundaries and we keep things simple by not doing so.
104	 */
105	unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
106
107	/* Work around hardware bug for unaligned buffers. */
108	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110
111	return len;
112}
113
114unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115{
116	/* Header and payload descriptor for each output segment, plus
117	 * one for every input fragment boundary within a segment
118	 */
119	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120
121	/* Possibly one more per segment for the alignment workaround,
122	 * or for option descriptors
123	 */
124	if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
125		max_descs += EFX_TSO_MAX_SEGS;
126
127	/* Possibly more for PCIe page boundaries within input fragments */
128	if (PAGE_SIZE > EFX_PAGE_SIZE)
129		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131
132	return max_descs;
133}
134
135static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
136{
137	/* We need to consider both queues that the net core sees as one */
138	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
139	struct efx_nic *efx = txq1->efx;
140	unsigned int fill_level;
141
142	fill_level = max(txq1->insert_count - txq1->old_read_count,
143			 txq2->insert_count - txq2->old_read_count);
144	if (likely(fill_level < efx->txq_stop_thresh))
145		return;
146
147	/* We used the stale old_read_count above, which gives us a
148	 * pessimistic estimate of the fill level (which may even
149	 * validly be >= efx->txq_entries).  Now try again using
150	 * read_count (more likely to be a cache miss).
151	 *
152	 * If we read read_count and then conditionally stop the
153	 * queue, it is possible for the completion path to race with
154	 * us and complete all outstanding descriptors in the middle,
155	 * after which there will be no more completions to wake it.
156	 * Therefore we stop the queue first, then read read_count
157	 * (with a memory barrier to ensure the ordering), then
158	 * restart the queue if the fill level turns out to be low
159	 * enough.
160	 */
161	netif_tx_stop_queue(txq1->core_txq);
162	smp_mb();
163	txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
164	txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
165
166	fill_level = max(txq1->insert_count - txq1->old_read_count,
167			 txq2->insert_count - txq2->old_read_count);
168	EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
169	if (likely(fill_level < efx->txq_stop_thresh)) {
170		smp_mb();
171		if (likely(!efx->loopback_selftest))
172			netif_tx_start_queue(txq1->core_txq);
173	}
174}
175
176#ifdef EFX_USE_PIO
177
178struct efx_short_copy_buffer {
179	int used;
180	u8 buf[L1_CACHE_BYTES];
181};
182
183/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
184 * Advances piobuf pointer. Leaves additional data in the copy buffer.
185 */
186static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
187				    u8 *data, int len,
188				    struct efx_short_copy_buffer *copy_buf)
189{
190	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
191
192	__iowrite64_copy(*piobuf, data, block_len >> 3);
193	*piobuf += block_len;
194	len -= block_len;
195
196	if (len) {
197		data += block_len;
198		BUG_ON(copy_buf->used);
199		BUG_ON(len > sizeof(copy_buf->buf));
200		memcpy(copy_buf->buf, data, len);
201		copy_buf->used = len;
202	}
203}
204
205/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
206 * Advances piobuf pointer. Leaves additional data in the copy buffer.
207 */
208static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
209				       u8 *data, int len,
210				       struct efx_short_copy_buffer *copy_buf)
211{
212	if (copy_buf->used) {
213		/* if the copy buffer is partially full, fill it up and write */
214		int copy_to_buf =
215			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
216
217		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
218		copy_buf->used += copy_to_buf;
219
220		/* if we didn't fill it up then we're done for now */
221		if (copy_buf->used < sizeof(copy_buf->buf))
222			return;
223
224		__iowrite64_copy(*piobuf, copy_buf->buf,
225				 sizeof(copy_buf->buf) >> 3);
226		*piobuf += sizeof(copy_buf->buf);
227		data += copy_to_buf;
228		len -= copy_to_buf;
229		copy_buf->used = 0;
230	}
231
232	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
233}
234
235static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
236				  struct efx_short_copy_buffer *copy_buf)
237{
238	/* if there's anything in it, write the whole buffer, including junk */
239	if (copy_buf->used)
240		__iowrite64_copy(piobuf, copy_buf->buf,
241				 sizeof(copy_buf->buf) >> 3);
242}
243
244/* Traverse skb structure and copy fragments in to PIO buffer.
245 * Advances piobuf pointer.
246 */
247static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
248				     u8 __iomem **piobuf,
249				     struct efx_short_copy_buffer *copy_buf)
250{
251	int i;
252
253	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
254				copy_buf);
255
256	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
257		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
258		u8 *vaddr;
259
260		vaddr = kmap_atomic(skb_frag_page(f));
261
262		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
263					   skb_frag_size(f), copy_buf);
264		kunmap_atomic(vaddr);
265	}
266
267	EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
268}
269
270static struct efx_tx_buffer *
271efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
272{
273	struct efx_tx_buffer *buffer =
274		efx_tx_queue_get_insert_buffer(tx_queue);
275	u8 __iomem *piobuf = tx_queue->piobuf;
276
277	/* Copy to PIO buffer. Ensure the writes are padded to the end
278	 * of a cache line, as this is required for write-combining to be
279	 * effective on at least x86.
280	 */
281
282	if (skb_shinfo(skb)->nr_frags) {
283		/* The size of the copy buffer will ensure all writes
284		 * are the size of a cache line.
285		 */
286		struct efx_short_copy_buffer copy_buf;
287
288		copy_buf.used = 0;
289
290		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
291					 &piobuf, &copy_buf);
292		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
293	} else {
294		/* Pad the write to the size of a cache line.
295		 * We can do this because we know the skb_shared_info sruct is
296		 * after the source, and the destination buffer is big enough.
297		 */
298		BUILD_BUG_ON(L1_CACHE_BYTES >
299			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
300		__iowrite64_copy(tx_queue->piobuf, skb->data,
301				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
302	}
303
304	EFX_POPULATE_QWORD_5(buffer->option,
305			     ESF_DZ_TX_DESC_IS_OPT, 1,
306			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
307			     ESF_DZ_TX_PIO_CONT, 0,
308			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
309			     ESF_DZ_TX_PIO_BUF_ADDR,
310			     tx_queue->piobuf_offset);
311	++tx_queue->pio_packets;
312	++tx_queue->insert_count;
313	return buffer;
314}
315#endif /* EFX_USE_PIO */
316
317/*
318 * Add a socket buffer to a TX queue
319 *
320 * This maps all fragments of a socket buffer for DMA and adds them to
321 * the TX queue.  The queue's insert pointer will be incremented by
322 * the number of fragments in the socket buffer.
323 *
324 * If any DMA mapping fails, any mapped fragments will be unmapped,
325 * the queue's insert pointer will be restored to its original value.
326 *
327 * This function is split out from efx_hard_start_xmit to allow the
328 * loopback test to direct packets via specific TX queues.
329 *
330 * Returns NETDEV_TX_OK.
331 * You must hold netif_tx_lock() to call this function.
332 */
333netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
334{
335	struct efx_nic *efx = tx_queue->efx;
336	struct device *dma_dev = &efx->pci_dev->dev;
337	struct efx_tx_buffer *buffer;
338	unsigned int old_insert_count = tx_queue->insert_count;
339	skb_frag_t *fragment;
340	unsigned int len, unmap_len = 0;
341	dma_addr_t dma_addr, unmap_addr = 0;
342	unsigned int dma_len;
343	unsigned short dma_flags;
344	int i = 0;
345
346	if (skb_shinfo(skb)->gso_size)
347		return efx_enqueue_skb_tso(tx_queue, skb);
348
349	/* Get size of the initial fragment */
350	len = skb_headlen(skb);
351
352	/* Pad if necessary */
353	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
354		EFX_BUG_ON_PARANOID(skb->data_len);
355		len = 32 + 1;
356		if (skb_pad(skb, len - skb->len))
357			return NETDEV_TX_OK;
358	}
359
360	/* Consider using PIO for short packets */
361#ifdef EFX_USE_PIO
362	if (skb->len <= efx_piobuf_size && !skb->xmit_more &&
363	    efx_nic_may_tx_pio(tx_queue)) {
364		buffer = efx_enqueue_skb_pio(tx_queue, skb);
365		dma_flags = EFX_TX_BUF_OPTION;
366		goto finish_packet;
367	}
368#endif
369
370	/* Map for DMA.  Use dma_map_single rather than dma_map_page
371	 * since this is more efficient on machines with sparse
372	 * memory.
373	 */
374	dma_flags = EFX_TX_BUF_MAP_SINGLE;
375	dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
376
377	/* Process all fragments */
378	while (1) {
379		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
380			goto dma_err;
381
382		/* Store fields for marking in the per-fragment final
383		 * descriptor */
384		unmap_len = len;
385		unmap_addr = dma_addr;
386
387		/* Add to TX queue, splitting across DMA boundaries */
388		do {
389			buffer = efx_tx_queue_get_insert_buffer(tx_queue);
390
391			dma_len = efx_max_tx_len(efx, dma_addr);
392			if (likely(dma_len >= len))
393				dma_len = len;
394
395			/* Fill out per descriptor fields */
396			buffer->len = dma_len;
397			buffer->dma_addr = dma_addr;
398			buffer->flags = EFX_TX_BUF_CONT;
399			len -= dma_len;
400			dma_addr += dma_len;
401			++tx_queue->insert_count;
402		} while (len);
403
404		/* Transfer ownership of the unmapping to the final buffer */
405		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
406		buffer->unmap_len = unmap_len;
407		buffer->dma_offset = buffer->dma_addr - unmap_addr;
408		unmap_len = 0;
409
410		/* Get address and size of next fragment */
411		if (i >= skb_shinfo(skb)->nr_frags)
412			break;
413		fragment = &skb_shinfo(skb)->frags[i];
414		len = skb_frag_size(fragment);
415		i++;
416		/* Map for DMA */
417		dma_flags = 0;
418		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
419					    DMA_TO_DEVICE);
420	}
421
422	/* Transfer ownership of the skb to the final buffer */
423#ifdef EFX_USE_PIO
424finish_packet:
425#endif
426	buffer->skb = skb;
427	buffer->flags = EFX_TX_BUF_SKB | dma_flags;
428
429	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
430
431	efx_tx_maybe_stop_queue(tx_queue);
432
433	/* Pass off to hardware */
434	if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
435		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
436
437		/* There could be packets left on the partner queue if those
438		 * SKBs had skb->xmit_more set. If we do not push those they
439		 * could be left for a long time and cause a netdev watchdog.
440		 */
441		if (txq2->xmit_more_available)
442			efx_nic_push_buffers(txq2);
443
444		efx_nic_push_buffers(tx_queue);
445	} else {
446		tx_queue->xmit_more_available = skb->xmit_more;
447	}
448
449	tx_queue->tx_packets++;
450
451	return NETDEV_TX_OK;
452
453 dma_err:
454	netif_err(efx, tx_err, efx->net_dev,
455		  " TX queue %d could not map skb with %d bytes %d "
456		  "fragments for DMA\n", tx_queue->queue, skb->len,
457		  skb_shinfo(skb)->nr_frags + 1);
458
459	/* Mark the packet as transmitted, and free the SKB ourselves */
460	dev_kfree_skb_any(skb);
461
462	/* Work backwards until we hit the original insert pointer value */
463	while (tx_queue->insert_count != old_insert_count) {
464		unsigned int pkts_compl = 0, bytes_compl = 0;
465		--tx_queue->insert_count;
466		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
467		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
468	}
469
470	/* Free the fragment we were mid-way through pushing */
471	if (unmap_len) {
472		if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
473			dma_unmap_single(dma_dev, unmap_addr, unmap_len,
474					 DMA_TO_DEVICE);
475		else
476			dma_unmap_page(dma_dev, unmap_addr, unmap_len,
477				       DMA_TO_DEVICE);
478	}
479
480	return NETDEV_TX_OK;
481}
482
483/* Remove packets from the TX queue
484 *
485 * This removes packets from the TX queue, up to and including the
486 * specified index.
487 */
488static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
489				unsigned int index,
490				unsigned int *pkts_compl,
491				unsigned int *bytes_compl)
492{
493	struct efx_nic *efx = tx_queue->efx;
494	unsigned int stop_index, read_ptr;
495
496	stop_index = (index + 1) & tx_queue->ptr_mask;
497	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
498
499	while (read_ptr != stop_index) {
500		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
501
502		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
503		    unlikely(buffer->len == 0)) {
504			netif_err(efx, tx_err, efx->net_dev,
505				  "TX queue %d spurious TX completion id %x\n",
506				  tx_queue->queue, read_ptr);
507			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
508			return;
509		}
510
511		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
512
513		++tx_queue->read_count;
514		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
515	}
516}
517
518/* Initiate a packet transmission.  We use one channel per CPU
519 * (sharing when we have more CPUs than channels).  On Falcon, the TX
520 * completion events will be directed back to the CPU that transmitted
521 * the packet, which should be cache-efficient.
522 *
523 * Context: non-blocking.
524 * Note that returning anything other than NETDEV_TX_OK will cause the
525 * OS to free the skb.
526 */
527netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
528				struct net_device *net_dev)
529{
530	struct efx_nic *efx = netdev_priv(net_dev);
531	struct efx_tx_queue *tx_queue;
532	unsigned index, type;
533
534	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
535
536	/* PTP "event" packet */
537	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
538	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
539		return efx_ptp_tx(efx, skb);
540	}
541
542	index = skb_get_queue_mapping(skb);
543	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
544	if (index >= efx->n_tx_channels) {
545		index -= efx->n_tx_channels;
546		type |= EFX_TXQ_TYPE_HIGHPRI;
547	}
548	tx_queue = efx_get_tx_queue(efx, index, type);
549
550	return efx_enqueue_skb(tx_queue, skb);
551}
552
553void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
554{
555	struct efx_nic *efx = tx_queue->efx;
556
557	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
558	tx_queue->core_txq =
559		netdev_get_tx_queue(efx->net_dev,
560				    tx_queue->queue / EFX_TXQ_TYPES +
561				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
562				     efx->n_tx_channels : 0));
563}
564
565int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
566{
567	struct efx_nic *efx = netdev_priv(net_dev);
568	struct efx_channel *channel;
569	struct efx_tx_queue *tx_queue;
570	unsigned tc;
571	int rc;
572
573	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
574		return -EINVAL;
575
576	if (num_tc == net_dev->num_tc)
577		return 0;
578
579	for (tc = 0; tc < num_tc; tc++) {
580		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
581		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
582	}
583
584	if (num_tc > net_dev->num_tc) {
585		/* Initialise high-priority queues as necessary */
586		efx_for_each_channel(channel, efx) {
587			efx_for_each_possible_channel_tx_queue(tx_queue,
588							       channel) {
589				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
590					continue;
591				if (!tx_queue->buffer) {
592					rc = efx_probe_tx_queue(tx_queue);
593					if (rc)
594						return rc;
595				}
596				if (!tx_queue->initialised)
597					efx_init_tx_queue(tx_queue);
598				efx_init_tx_queue_core_txq(tx_queue);
599			}
600		}
601	} else {
602		/* Reduce number of classes before number of queues */
603		net_dev->num_tc = num_tc;
604	}
605
606	rc = netif_set_real_num_tx_queues(net_dev,
607					  max_t(int, num_tc, 1) *
608					  efx->n_tx_channels);
609	if (rc)
610		return rc;
611
612	/* Do not destroy high-priority queues when they become
613	 * unused.  We would have to flush them first, and it is
614	 * fairly difficult to flush a subset of TX queues.  Leave
615	 * it to efx_fini_channels().
616	 */
617
618	net_dev->num_tc = num_tc;
619	return 0;
620}
621
622void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
623{
624	unsigned fill_level;
625	struct efx_nic *efx = tx_queue->efx;
626	struct efx_tx_queue *txq2;
627	unsigned int pkts_compl = 0, bytes_compl = 0;
628
629	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
630
631	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
632	tx_queue->pkts_compl += pkts_compl;
633	tx_queue->bytes_compl += bytes_compl;
634
635	if (pkts_compl > 1)
636		++tx_queue->merge_events;
637
638	/* See if we need to restart the netif queue.  This memory
639	 * barrier ensures that we write read_count (inside
640	 * efx_dequeue_buffers()) before reading the queue status.
641	 */
642	smp_mb();
643	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
644	    likely(efx->port_enabled) &&
645	    likely(netif_device_present(efx->net_dev))) {
646		txq2 = efx_tx_queue_partner(tx_queue);
647		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
648				 txq2->insert_count - txq2->read_count);
649		if (fill_level <= efx->txq_wake_thresh)
650			netif_tx_wake_queue(tx_queue->core_txq);
651	}
652
653	/* Check whether the hardware queue is now empty */
654	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
655		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
656		if (tx_queue->read_count == tx_queue->old_write_count) {
657			smp_mb();
658			tx_queue->empty_read_count =
659				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
660		}
661	}
662}
663
664/* Size of page-based TSO header buffers.  Larger blocks must be
665 * allocated from the heap.
666 */
667#define TSOH_STD_SIZE	128
668#define TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)
669
670/* At most half the descriptors in the queue at any time will refer to
671 * a TSO header buffer, since they must always be followed by a
672 * payload descriptor referring to an skb.
673 */
674static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
675{
676	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
677}
678
679int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
680{
681	struct efx_nic *efx = tx_queue->efx;
682	unsigned int entries;
683	int rc;
684
685	/* Create the smallest power-of-two aligned ring */
686	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
687	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
688	tx_queue->ptr_mask = entries - 1;
689
690	netif_dbg(efx, probe, efx->net_dev,
691		  "creating TX queue %d size %#x mask %#x\n",
692		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
693
694	/* Allocate software ring */
695	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
696				   GFP_KERNEL);
697	if (!tx_queue->buffer)
698		return -ENOMEM;
699
700	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
701		tx_queue->tsoh_page =
702			kcalloc(efx_tsoh_page_count(tx_queue),
703				sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
704		if (!tx_queue->tsoh_page) {
705			rc = -ENOMEM;
706			goto fail1;
707		}
708	}
709
710	/* Allocate hardware ring */
711	rc = efx_nic_probe_tx(tx_queue);
712	if (rc)
713		goto fail2;
714
715	return 0;
716
717fail2:
718	kfree(tx_queue->tsoh_page);
719	tx_queue->tsoh_page = NULL;
720fail1:
721	kfree(tx_queue->buffer);
722	tx_queue->buffer = NULL;
723	return rc;
724}
725
726void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
727{
728	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
729		  "initialising TX queue %d\n", tx_queue->queue);
730
731	tx_queue->insert_count = 0;
732	tx_queue->write_count = 0;
733	tx_queue->old_write_count = 0;
734	tx_queue->read_count = 0;
735	tx_queue->old_read_count = 0;
736	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
737	tx_queue->xmit_more_available = false;
738
739	/* Set up TX descriptor ring */
740	efx_nic_init_tx(tx_queue);
741
742	tx_queue->initialised = true;
743}
744
745void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
746{
747	struct efx_tx_buffer *buffer;
748
749	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
750		  "shutting down TX queue %d\n", tx_queue->queue);
751
752	if (!tx_queue->buffer)
753		return;
754
755	/* Free any buffers left in the ring */
756	while (tx_queue->read_count != tx_queue->write_count) {
757		unsigned int pkts_compl = 0, bytes_compl = 0;
758		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
759		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
760
761		++tx_queue->read_count;
762	}
763	tx_queue->xmit_more_available = false;
764	netdev_tx_reset_queue(tx_queue->core_txq);
765}
766
767void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
768{
769	int i;
770
771	if (!tx_queue->buffer)
772		return;
773
774	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
775		  "destroying TX queue %d\n", tx_queue->queue);
776	efx_nic_remove_tx(tx_queue);
777
778	if (tx_queue->tsoh_page) {
779		for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
780			efx_nic_free_buffer(tx_queue->efx,
781					    &tx_queue->tsoh_page[i]);
782		kfree(tx_queue->tsoh_page);
783		tx_queue->tsoh_page = NULL;
784	}
785
786	kfree(tx_queue->buffer);
787	tx_queue->buffer = NULL;
788}
789
790
791/* Efx TCP segmentation acceleration.
792 *
793 * Why?  Because by doing it here in the driver we can go significantly
794 * faster than the GSO.
795 *
796 * Requires TX checksum offload support.
797 */
798
799#define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
800
801/**
802 * struct tso_state - TSO state for an SKB
803 * @out_len: Remaining length in current segment
804 * @seqnum: Current sequence number
805 * @ipv4_id: Current IPv4 ID, host endian
806 * @packet_space: Remaining space in current packet
807 * @dma_addr: DMA address of current position
808 * @in_len: Remaining length in current SKB fragment
809 * @unmap_len: Length of SKB fragment
810 * @unmap_addr: DMA address of SKB fragment
811 * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
812 * @protocol: Network protocol (after any VLAN header)
813 * @ip_off: Offset of IP header
814 * @tcp_off: Offset of TCP header
815 * @header_len: Number of bytes of header
816 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
817 * @header_dma_addr: Header DMA address, when using option descriptors
818 * @header_unmap_len: Header DMA mapped length, or 0 if not using option
819 *	descriptors
820 *
821 * The state used during segmentation.  It is put into this data structure
822 * just to make it easy to pass into inline functions.
823 */
824struct tso_state {
825	/* Output position */
826	unsigned out_len;
827	unsigned seqnum;
828	u16 ipv4_id;
829	unsigned packet_space;
830
831	/* Input position */
832	dma_addr_t dma_addr;
833	unsigned in_len;
834	unsigned unmap_len;
835	dma_addr_t unmap_addr;
836	unsigned short dma_flags;
837
838	__be16 protocol;
839	unsigned int ip_off;
840	unsigned int tcp_off;
841	unsigned header_len;
842	unsigned int ip_base_len;
843	dma_addr_t header_dma_addr;
844	unsigned int header_unmap_len;
845};
846
847
848/*
849 * Verify that our various assumptions about sk_buffs and the conditions
850 * under which TSO will be attempted hold true.  Return the protocol number.
851 */
852static __be16 efx_tso_check_protocol(struct sk_buff *skb)
853{
854	__be16 protocol = skb->protocol;
855
856	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
857			    protocol);
858	if (protocol == htons(ETH_P_8021Q)) {
859		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
860		protocol = veh->h_vlan_encapsulated_proto;
861	}
862
863	if (protocol == htons(ETH_P_IP)) {
864		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
865	} else {
866		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
867		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
868	}
869	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
870			     + (tcp_hdr(skb)->doff << 2u)) >
871			    skb_headlen(skb));
872
873	return protocol;
874}
875
876static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
877			       struct efx_tx_buffer *buffer, unsigned int len)
878{
879	u8 *result;
880
881	EFX_BUG_ON_PARANOID(buffer->len);
882	EFX_BUG_ON_PARANOID(buffer->flags);
883	EFX_BUG_ON_PARANOID(buffer->unmap_len);
884
885	if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
886		unsigned index =
887			(tx_queue->insert_count & tx_queue->ptr_mask) / 2;
888		struct efx_buffer *page_buf =
889			&tx_queue->tsoh_page[index / TSOH_PER_PAGE];
890		unsigned offset =
891			TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
892
893		if (unlikely(!page_buf->addr) &&
894		    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
895					 GFP_ATOMIC))
896			return NULL;
897
898		result = (u8 *)page_buf->addr + offset;
899		buffer->dma_addr = page_buf->dma_addr + offset;
900		buffer->flags = EFX_TX_BUF_CONT;
901	} else {
902		tx_queue->tso_long_headers++;
903
904		buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
905		if (unlikely(!buffer->heap_buf))
906			return NULL;
907		result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
908		buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
909	}
910
911	buffer->len = len;
912
913	return result;
914}
915
916/**
917 * efx_tx_queue_insert - push descriptors onto the TX queue
918 * @tx_queue:		Efx TX queue
919 * @dma_addr:		DMA address of fragment
920 * @len:		Length of fragment
921 * @final_buffer:	The final buffer inserted into the queue
922 *
923 * Push descriptors onto the TX queue.
924 */
925static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
926				dma_addr_t dma_addr, unsigned len,
927				struct efx_tx_buffer **final_buffer)
928{
929	struct efx_tx_buffer *buffer;
930	struct efx_nic *efx = tx_queue->efx;
931	unsigned dma_len;
932
933	EFX_BUG_ON_PARANOID(len <= 0);
934
935	while (1) {
936		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
937		++tx_queue->insert_count;
938
939		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
940				    tx_queue->read_count >=
941				    efx->txq_entries);
942
943		buffer->dma_addr = dma_addr;
944
945		dma_len = efx_max_tx_len(efx, dma_addr);
946
947		/* If there is enough space to send then do so */
948		if (dma_len >= len)
949			break;
950
951		buffer->len = dma_len;
952		buffer->flags = EFX_TX_BUF_CONT;
953		dma_addr += dma_len;
954		len -= dma_len;
955	}
956
957	EFX_BUG_ON_PARANOID(!len);
958	buffer->len = len;
959	*final_buffer = buffer;
960}
961
962
963/*
964 * Put a TSO header into the TX queue.
965 *
966 * This is special-cased because we know that it is small enough to fit in
967 * a single fragment, and we know it doesn't cross a page boundary.  It
968 * also allows us to not worry about end-of-packet etc.
969 */
970static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
971			      struct efx_tx_buffer *buffer, u8 *header)
972{
973	if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
974		buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
975						  header, buffer->len,
976						  DMA_TO_DEVICE);
977		if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
978					       buffer->dma_addr))) {
979			kfree(buffer->heap_buf);
980			buffer->len = 0;
981			buffer->flags = 0;
982			return -ENOMEM;
983		}
984		buffer->unmap_len = buffer->len;
985		buffer->dma_offset = 0;
986		buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
987	}
988
989	++tx_queue->insert_count;
990	return 0;
991}
992
993
994/* Remove buffers put into a tx_queue.  None of the buffers must have
995 * an skb attached.
996 */
997static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
998			       unsigned int insert_count)
999{
1000	struct efx_tx_buffer *buffer;
1001
1002	/* Work backwards until we hit the original insert pointer value */
1003	while (tx_queue->insert_count != insert_count) {
1004		--tx_queue->insert_count;
1005		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
1006		efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
1007	}
1008}
1009
1010
1011/* Parse the SKB header and initialise state. */
1012static int tso_start(struct tso_state *st, struct efx_nic *efx,
1013		     const struct sk_buff *skb)
1014{
1015	bool use_opt_desc = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1016	struct device *dma_dev = &efx->pci_dev->dev;
1017	unsigned int header_len, in_len;
1018	dma_addr_t dma_addr;
1019
1020	st->ip_off = skb_network_header(skb) - skb->data;
1021	st->tcp_off = skb_transport_header(skb) - skb->data;
1022	header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1023	in_len = skb_headlen(skb) - header_len;
1024	st->header_len = header_len;
1025	st->in_len = in_len;
1026	if (st->protocol == htons(ETH_P_IP)) {
1027		st->ip_base_len = st->header_len - st->ip_off;
1028		st->ipv4_id = ntohs(ip_hdr(skb)->id);
1029	} else {
1030		st->ip_base_len = st->header_len - st->tcp_off;
1031		st->ipv4_id = 0;
1032	}
1033	st->seqnum = ntohl(tcp_hdr(skb)->seq);
1034
1035	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1036	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1037	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1038
1039	st->out_len = skb->len - header_len;
1040
1041	if (!use_opt_desc) {
1042		st->header_unmap_len = 0;
1043
1044		if (likely(in_len == 0)) {
1045			st->dma_flags = 0;
1046			st->unmap_len = 0;
1047			return 0;
1048		}
1049
1050		dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1051					  in_len, DMA_TO_DEVICE);
1052		st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1053		st->dma_addr = dma_addr;
1054		st->unmap_addr = dma_addr;
1055		st->unmap_len = in_len;
1056	} else {
1057		dma_addr = dma_map_single(dma_dev, skb->data,
1058					  skb_headlen(skb), DMA_TO_DEVICE);
1059		st->header_dma_addr = dma_addr;
1060		st->header_unmap_len = skb_headlen(skb);
1061		st->dma_flags = 0;
1062		st->dma_addr = dma_addr + header_len;
1063		st->unmap_len = 0;
1064	}
1065
1066	return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1067}
1068
1069static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1070			    skb_frag_t *frag)
1071{
1072	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1073					  skb_frag_size(frag), DMA_TO_DEVICE);
1074	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1075		st->dma_flags = 0;
1076		st->unmap_len = skb_frag_size(frag);
1077		st->in_len = skb_frag_size(frag);
1078		st->dma_addr = st->unmap_addr;
1079		return 0;
1080	}
1081	return -ENOMEM;
1082}
1083
1084
1085/**
1086 * tso_fill_packet_with_fragment - form descriptors for the current fragment
1087 * @tx_queue:		Efx TX queue
1088 * @skb:		Socket buffer
1089 * @st:			TSO state
1090 *
1091 * Form descriptors for the current fragment, until we reach the end
1092 * of fragment or end-of-packet.
1093 */
1094static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1095					  const struct sk_buff *skb,
1096					  struct tso_state *st)
1097{
1098	struct efx_tx_buffer *buffer;
1099	int n;
1100
1101	if (st->in_len == 0)
1102		return;
1103	if (st->packet_space == 0)
1104		return;
1105
1106	EFX_BUG_ON_PARANOID(st->in_len <= 0);
1107	EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1108
1109	n = min(st->in_len, st->packet_space);
1110
1111	st->packet_space -= n;
1112	st->out_len -= n;
1113	st->in_len -= n;
1114
1115	efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1116
1117	if (st->out_len == 0) {
1118		/* Transfer ownership of the skb */
1119		buffer->skb = skb;
1120		buffer->flags = EFX_TX_BUF_SKB;
1121	} else if (st->packet_space != 0) {
1122		buffer->flags = EFX_TX_BUF_CONT;
1123	}
1124
1125	if (st->in_len == 0) {
1126		/* Transfer ownership of the DMA mapping */
1127		buffer->unmap_len = st->unmap_len;
1128		buffer->dma_offset = buffer->unmap_len - buffer->len;
1129		buffer->flags |= st->dma_flags;
1130		st->unmap_len = 0;
1131	}
1132
1133	st->dma_addr += n;
1134}
1135
1136
1137/**
1138 * tso_start_new_packet - generate a new header and prepare for the new packet
1139 * @tx_queue:		Efx TX queue
1140 * @skb:		Socket buffer
1141 * @st:			TSO state
1142 *
1143 * Generate a new header and prepare for the new packet.  Return 0 on
1144 * success, or -%ENOMEM if failed to alloc header.
1145 */
1146static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1147				const struct sk_buff *skb,
1148				struct tso_state *st)
1149{
1150	struct efx_tx_buffer *buffer =
1151		efx_tx_queue_get_insert_buffer(tx_queue);
1152	bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1153	u8 tcp_flags_clear;
1154
1155	if (!is_last) {
1156		st->packet_space = skb_shinfo(skb)->gso_size;
1157		tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1158	} else {
1159		st->packet_space = st->out_len;
1160		tcp_flags_clear = 0x00;
1161	}
1162
1163	if (!st->header_unmap_len) {
1164		/* Allocate and insert a DMA-mapped header buffer. */
1165		struct tcphdr *tsoh_th;
1166		unsigned ip_length;
1167		u8 *header;
1168		int rc;
1169
1170		header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1171		if (!header)
1172			return -ENOMEM;
1173
1174		tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1175
1176		/* Copy and update the headers. */
1177		memcpy(header, skb->data, st->header_len);
1178
1179		tsoh_th->seq = htonl(st->seqnum);
1180		((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1181
1182		ip_length = st->ip_base_len + st->packet_space;
1183
1184		if (st->protocol == htons(ETH_P_IP)) {
1185			struct iphdr *tsoh_iph =
1186				(struct iphdr *)(header + st->ip_off);
1187
1188			tsoh_iph->tot_len = htons(ip_length);
1189			tsoh_iph->id = htons(st->ipv4_id);
1190		} else {
1191			struct ipv6hdr *tsoh_iph =
1192				(struct ipv6hdr *)(header + st->ip_off);
1193
1194			tsoh_iph->payload_len = htons(ip_length);
1195		}
1196
1197		rc = efx_tso_put_header(tx_queue, buffer, header);
1198		if (unlikely(rc))
1199			return rc;
1200	} else {
1201		/* Send the original headers with a TSO option descriptor
1202		 * in front
1203		 */
1204		u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1205
1206		buffer->flags = EFX_TX_BUF_OPTION;
1207		buffer->len = 0;
1208		buffer->unmap_len = 0;
1209		EFX_POPULATE_QWORD_5(buffer->option,
1210				     ESF_DZ_TX_DESC_IS_OPT, 1,
1211				     ESF_DZ_TX_OPTION_TYPE,
1212				     ESE_DZ_TX_OPTION_DESC_TSO,
1213				     ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1214				     ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1215				     ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1216		++tx_queue->insert_count;
1217
1218		/* We mapped the headers in tso_start().  Unmap them
1219		 * when the last segment is completed.
1220		 */
1221		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1222		buffer->dma_addr = st->header_dma_addr;
1223		buffer->len = st->header_len;
1224		if (is_last) {
1225			buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1226			buffer->unmap_len = st->header_unmap_len;
1227			buffer->dma_offset = 0;
1228			/* Ensure we only unmap them once in case of a
1229			 * later DMA mapping error and rollback
1230			 */
1231			st->header_unmap_len = 0;
1232		} else {
1233			buffer->flags = EFX_TX_BUF_CONT;
1234			buffer->unmap_len = 0;
1235		}
1236		++tx_queue->insert_count;
1237	}
1238
1239	st->seqnum += skb_shinfo(skb)->gso_size;
1240
1241	/* Linux leaves suitable gaps in the IP ID space for us to fill. */
1242	++st->ipv4_id;
1243
1244	++tx_queue->tso_packets;
1245
1246	++tx_queue->tx_packets;
1247
1248	return 0;
1249}
1250
1251
1252/**
1253 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1254 * @tx_queue:		Efx TX queue
1255 * @skb:		Socket buffer
1256 *
1257 * Context: You must hold netif_tx_lock() to call this function.
1258 *
1259 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1260 * @skb was not enqueued.  In all cases @skb is consumed.  Return
1261 * %NETDEV_TX_OK.
1262 */
1263static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1264			       struct sk_buff *skb)
1265{
1266	struct efx_nic *efx = tx_queue->efx;
1267	unsigned int old_insert_count = tx_queue->insert_count;
1268	int frag_i, rc;
1269	struct tso_state state;
1270
1271	/* Find the packet protocol and sanity-check it */
1272	state.protocol = efx_tso_check_protocol(skb);
1273
1274	rc = tso_start(&state, efx, skb);
1275	if (rc)
1276		goto mem_err;
1277
1278	if (likely(state.in_len == 0)) {
1279		/* Grab the first payload fragment. */
1280		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1281		frag_i = 0;
1282		rc = tso_get_fragment(&state, efx,
1283				      skb_shinfo(skb)->frags + frag_i);
1284		if (rc)
1285			goto mem_err;
1286	} else {
1287		/* Payload starts in the header area. */
1288		frag_i = -1;
1289	}
1290
1291	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1292		goto mem_err;
1293
1294	while (1) {
1295		tso_fill_packet_with_fragment(tx_queue, skb, &state);
1296
1297		/* Move onto the next fragment? */
1298		if (state.in_len == 0) {
1299			if (++frag_i >= skb_shinfo(skb)->nr_frags)
1300				/* End of payload reached. */
1301				break;
1302			rc = tso_get_fragment(&state, efx,
1303					      skb_shinfo(skb)->frags + frag_i);
1304			if (rc)
1305				goto mem_err;
1306		}
1307
1308		/* Start at new packet? */
1309		if (state.packet_space == 0 &&
1310		    tso_start_new_packet(tx_queue, skb, &state) < 0)
1311			goto mem_err;
1312	}
1313
1314	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1315
1316	efx_tx_maybe_stop_queue(tx_queue);
1317
1318	/* Pass off to hardware */
1319	if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
1320		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
1321
1322		/* There could be packets left on the partner queue if those
1323		 * SKBs had skb->xmit_more set. If we do not push those they
1324		 * could be left for a long time and cause a netdev watchdog.
1325		 */
1326		if (txq2->xmit_more_available)
1327			efx_nic_push_buffers(txq2);
1328
1329		efx_nic_push_buffers(tx_queue);
1330	} else {
1331		tx_queue->xmit_more_available = skb->xmit_more;
1332	}
1333
1334	tx_queue->tso_bursts++;
1335	return NETDEV_TX_OK;
1336
1337 mem_err:
1338	netif_err(efx, tx_err, efx->net_dev,
1339		  "Out of memory for TSO headers, or DMA mapping error\n");
1340	dev_kfree_skb_any(skb);
1341
1342	/* Free the DMA mapping we were in the process of writing out */
1343	if (state.unmap_len) {
1344		if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1345			dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1346					 state.unmap_len, DMA_TO_DEVICE);
1347		else
1348			dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1349				       state.unmap_len, DMA_TO_DEVICE);
1350	}
1351
1352	/* Free the header DMA mapping, if using option descriptors */
1353	if (state.header_unmap_len)
1354		dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1355				 state.header_unmap_len, DMA_TO_DEVICE);
1356
1357	efx_enqueue_unwind(tx_queue, old_insert_count);
1358	return NETDEV_TX_OK;
1359}
1360