1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/interrupt.h>
14#include <linux/pci.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include <linux/crc32.h>
18#include "net_driver.h"
19#include "bitfield.h"
20#include "efx.h"
21#include "nic.h"
22#include "farch_regs.h"
23#include "sriov.h"
24#include "siena_sriov.h"
25#include "io.h"
26#include "workarounds.h"
27
28/* Falcon-architecture (SFC4000 and SFC9000-family) support */
29
30/**************************************************************************
31 *
32 * Configurable values
33 *
34 **************************************************************************
35 */
36
37/* This is set to 16 for a good reason.  In summary, if larger than
38 * 16, the descriptor cache holds more than a default socket
39 * buffer's worth of packets (for UDP we can only have at most one
40 * socket buffer's worth outstanding).  This combined with the fact
41 * that we only get 1 TX event per descriptor cache means the NIC
42 * goes idle.
43 */
44#define TX_DC_ENTRIES 16
45#define TX_DC_ENTRIES_ORDER 1
46
47#define RX_DC_ENTRIES 64
48#define RX_DC_ENTRIES_ORDER 3
49
50/* If EFX_MAX_INT_ERRORS internal errors occur within
51 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
52 * disable it.
53 */
54#define EFX_INT_ERROR_EXPIRE 3600
55#define EFX_MAX_INT_ERRORS 5
56
57/* Depth of RX flush request fifo */
58#define EFX_RX_FLUSH_COUNT 4
59
60/* Driver generated events */
61#define _EFX_CHANNEL_MAGIC_TEST		0x000101
62#define _EFX_CHANNEL_MAGIC_FILL		0x000102
63#define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
64#define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
65
66#define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
67#define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
68
69#define EFX_CHANNEL_MAGIC_TEST(_channel)				\
70	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
71#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
72	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
73			   efx_rx_queue_index(_rx_queue))
74#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
75	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
76			   efx_rx_queue_index(_rx_queue))
77#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
78	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
79			   (_tx_queue)->queue)
80
81static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
82
83/**************************************************************************
84 *
85 * Hardware access
86 *
87 **************************************************************************/
88
89static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
90				     unsigned int index)
91{
92	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
93			value, index);
94}
95
96static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
97				     const efx_oword_t *mask)
98{
99	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
100		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
101}
102
103int efx_farch_test_registers(struct efx_nic *efx,
104			     const struct efx_farch_register_test *regs,
105			     size_t n_regs)
106{
107	unsigned address = 0, i, j;
108	efx_oword_t mask, imask, original, reg, buf;
109
110	for (i = 0; i < n_regs; ++i) {
111		address = regs[i].address;
112		mask = imask = regs[i].mask;
113		EFX_INVERT_OWORD(imask);
114
115		efx_reado(efx, &original, address);
116
117		/* bit sweep on and off */
118		for (j = 0; j < 128; j++) {
119			if (!EFX_EXTRACT_OWORD32(mask, j, j))
120				continue;
121
122			/* Test this testable bit can be set in isolation */
123			EFX_AND_OWORD(reg, original, mask);
124			EFX_SET_OWORD32(reg, j, j, 1);
125
126			efx_writeo(efx, &reg, address);
127			efx_reado(efx, &buf, address);
128
129			if (efx_masked_compare_oword(&reg, &buf, &mask))
130				goto fail;
131
132			/* Test this testable bit can be cleared in isolation */
133			EFX_OR_OWORD(reg, original, mask);
134			EFX_SET_OWORD32(reg, j, j, 0);
135
136			efx_writeo(efx, &reg, address);
137			efx_reado(efx, &buf, address);
138
139			if (efx_masked_compare_oword(&reg, &buf, &mask))
140				goto fail;
141		}
142
143		efx_writeo(efx, &original, address);
144	}
145
146	return 0;
147
148fail:
149	netif_err(efx, hw, efx->net_dev,
150		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
151		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
152		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
153	return -EIO;
154}
155
156/**************************************************************************
157 *
158 * Special buffer handling
159 * Special buffers are used for event queues and the TX and RX
160 * descriptor rings.
161 *
162 *************************************************************************/
163
164/*
165 * Initialise a special buffer
166 *
167 * This will define a buffer (previously allocated via
168 * efx_alloc_special_buffer()) in the buffer table, allowing
169 * it to be used for event queues, descriptor rings etc.
170 */
171static void
172efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
173{
174	efx_qword_t buf_desc;
175	unsigned int index;
176	dma_addr_t dma_addr;
177	int i;
178
179	EFX_BUG_ON_PARANOID(!buffer->buf.addr);
180
181	/* Write buffer descriptors to NIC */
182	for (i = 0; i < buffer->entries; i++) {
183		index = buffer->index + i;
184		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
185		netif_dbg(efx, probe, efx->net_dev,
186			  "mapping special buffer %d at %llx\n",
187			  index, (unsigned long long)dma_addr);
188		EFX_POPULATE_QWORD_3(buf_desc,
189				     FRF_AZ_BUF_ADR_REGION, 0,
190				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
191				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
192		efx_write_buf_tbl(efx, &buf_desc, index);
193	}
194}
195
196/* Unmaps a buffer and clears the buffer table entries */
197static void
198efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
199{
200	efx_oword_t buf_tbl_upd;
201	unsigned int start = buffer->index;
202	unsigned int end = (buffer->index + buffer->entries - 1);
203
204	if (!buffer->entries)
205		return;
206
207	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
208		  buffer->index, buffer->index + buffer->entries - 1);
209
210	EFX_POPULATE_OWORD_4(buf_tbl_upd,
211			     FRF_AZ_BUF_UPD_CMD, 0,
212			     FRF_AZ_BUF_CLR_CMD, 1,
213			     FRF_AZ_BUF_CLR_END_ID, end,
214			     FRF_AZ_BUF_CLR_START_ID, start);
215	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
216}
217
218/*
219 * Allocate a new special buffer
220 *
221 * This allocates memory for a new buffer, clears it and allocates a
222 * new buffer ID range.  It does not write into the buffer table.
223 *
224 * This call will allocate 4KB buffers, since 8KB buffers can't be
225 * used for event queues and descriptor rings.
226 */
227static int efx_alloc_special_buffer(struct efx_nic *efx,
228				    struct efx_special_buffer *buffer,
229				    unsigned int len)
230{
231#ifdef CONFIG_SFC_SRIOV
232	struct siena_nic_data *nic_data = efx->nic_data;
233#endif
234	len = ALIGN(len, EFX_BUF_SIZE);
235
236	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
237		return -ENOMEM;
238	buffer->entries = len / EFX_BUF_SIZE;
239	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
240
241	/* Select new buffer ID */
242	buffer->index = efx->next_buffer_table;
243	efx->next_buffer_table += buffer->entries;
244#ifdef CONFIG_SFC_SRIOV
245	BUG_ON(efx_siena_sriov_enabled(efx) &&
246	       nic_data->vf_buftbl_base < efx->next_buffer_table);
247#endif
248
249	netif_dbg(efx, probe, efx->net_dev,
250		  "allocating special buffers %d-%d at %llx+%x "
251		  "(virt %p phys %llx)\n", buffer->index,
252		  buffer->index + buffer->entries - 1,
253		  (u64)buffer->buf.dma_addr, len,
254		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
255
256	return 0;
257}
258
259static void
260efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
261{
262	if (!buffer->buf.addr)
263		return;
264
265	netif_dbg(efx, hw, efx->net_dev,
266		  "deallocating special buffers %d-%d at %llx+%x "
267		  "(virt %p phys %llx)\n", buffer->index,
268		  buffer->index + buffer->entries - 1,
269		  (u64)buffer->buf.dma_addr, buffer->buf.len,
270		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
271
272	efx_nic_free_buffer(efx, &buffer->buf);
273	buffer->entries = 0;
274}
275
276/**************************************************************************
277 *
278 * TX path
279 *
280 **************************************************************************/
281
282/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
283static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
284{
285	unsigned write_ptr;
286	efx_dword_t reg;
287
288	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
289	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
290	efx_writed_page(tx_queue->efx, &reg,
291			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
292}
293
294/* Write pointer and first descriptor for TX descriptor ring */
295static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
296					  const efx_qword_t *txd)
297{
298	unsigned write_ptr;
299	efx_oword_t reg;
300
301	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
302	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
303
304	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
305	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
306			     FRF_AZ_TX_DESC_WPTR, write_ptr);
307	reg.qword[0] = *txd;
308	efx_writeo_page(tx_queue->efx, &reg,
309			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
310}
311
312
313/* For each entry inserted into the software descriptor ring, create a
314 * descriptor in the hardware TX descriptor ring (in host memory), and
315 * write a doorbell.
316 */
317void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
318{
319	struct efx_tx_buffer *buffer;
320	efx_qword_t *txd;
321	unsigned write_ptr;
322	unsigned old_write_count = tx_queue->write_count;
323
324	tx_queue->xmit_more_available = false;
325	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
326		return;
327
328	do {
329		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
330		buffer = &tx_queue->buffer[write_ptr];
331		txd = efx_tx_desc(tx_queue, write_ptr);
332		++tx_queue->write_count;
333
334		EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
335
336		/* Create TX descriptor ring entry */
337		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
338		EFX_POPULATE_QWORD_4(*txd,
339				     FSF_AZ_TX_KER_CONT,
340				     buffer->flags & EFX_TX_BUF_CONT,
341				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
342				     FSF_AZ_TX_KER_BUF_REGION, 0,
343				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
344	} while (tx_queue->write_count != tx_queue->insert_count);
345
346	wmb(); /* Ensure descriptors are written before they are fetched */
347
348	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
349		txd = efx_tx_desc(tx_queue,
350				  old_write_count & tx_queue->ptr_mask);
351		efx_farch_push_tx_desc(tx_queue, txd);
352		++tx_queue->pushes;
353	} else {
354		efx_farch_notify_tx_desc(tx_queue);
355	}
356}
357
358/* Allocate hardware resources for a TX queue */
359int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
360{
361	struct efx_nic *efx = tx_queue->efx;
362	unsigned entries;
363
364	entries = tx_queue->ptr_mask + 1;
365	return efx_alloc_special_buffer(efx, &tx_queue->txd,
366					entries * sizeof(efx_qword_t));
367}
368
369void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
370{
371	struct efx_nic *efx = tx_queue->efx;
372	efx_oword_t reg;
373
374	/* Pin TX descriptor ring */
375	efx_init_special_buffer(efx, &tx_queue->txd);
376
377	/* Push TX descriptor ring to card */
378	EFX_POPULATE_OWORD_10(reg,
379			      FRF_AZ_TX_DESCQ_EN, 1,
380			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
381			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
382			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
383			      FRF_AZ_TX_DESCQ_EVQ_ID,
384			      tx_queue->channel->channel,
385			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
386			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
387			      FRF_AZ_TX_DESCQ_SIZE,
388			      __ffs(tx_queue->txd.entries),
389			      FRF_AZ_TX_DESCQ_TYPE, 0,
390			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
391
392	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
393		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
394		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
395		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
396				    !csum);
397	}
398
399	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
400			 tx_queue->queue);
401
402	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
403		/* Only 128 bits in this register */
404		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
405
406		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
407		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
408			__clear_bit_le(tx_queue->queue, &reg);
409		else
410			__set_bit_le(tx_queue->queue, &reg);
411		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
412	}
413
414	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
415		EFX_POPULATE_OWORD_1(reg,
416				     FRF_BZ_TX_PACE,
417				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
418				     FFE_BZ_TX_PACE_OFF :
419				     FFE_BZ_TX_PACE_RESERVED);
420		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
421				 tx_queue->queue);
422	}
423}
424
425static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
426{
427	struct efx_nic *efx = tx_queue->efx;
428	efx_oword_t tx_flush_descq;
429
430	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
431	atomic_set(&tx_queue->flush_outstanding, 1);
432
433	EFX_POPULATE_OWORD_2(tx_flush_descq,
434			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
435			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
436	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
437}
438
439void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
440{
441	struct efx_nic *efx = tx_queue->efx;
442	efx_oword_t tx_desc_ptr;
443
444	/* Remove TX descriptor ring from card */
445	EFX_ZERO_OWORD(tx_desc_ptr);
446	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
447			 tx_queue->queue);
448
449	/* Unpin TX descriptor ring */
450	efx_fini_special_buffer(efx, &tx_queue->txd);
451}
452
453/* Free buffers backing TX queue */
454void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
455{
456	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
457}
458
459/**************************************************************************
460 *
461 * RX path
462 *
463 **************************************************************************/
464
465/* This creates an entry in the RX descriptor queue */
466static inline void
467efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
468{
469	struct efx_rx_buffer *rx_buf;
470	efx_qword_t *rxd;
471
472	rxd = efx_rx_desc(rx_queue, index);
473	rx_buf = efx_rx_buffer(rx_queue, index);
474	EFX_POPULATE_QWORD_3(*rxd,
475			     FSF_AZ_RX_KER_BUF_SIZE,
476			     rx_buf->len -
477			     rx_queue->efx->type->rx_buffer_padding,
478			     FSF_AZ_RX_KER_BUF_REGION, 0,
479			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
480}
481
482/* This writes to the RX_DESC_WPTR register for the specified receive
483 * descriptor ring.
484 */
485void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
486{
487	struct efx_nic *efx = rx_queue->efx;
488	efx_dword_t reg;
489	unsigned write_ptr;
490
491	while (rx_queue->notified_count != rx_queue->added_count) {
492		efx_farch_build_rx_desc(
493			rx_queue,
494			rx_queue->notified_count & rx_queue->ptr_mask);
495		++rx_queue->notified_count;
496	}
497
498	wmb();
499	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
500	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
501	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
502			efx_rx_queue_index(rx_queue));
503}
504
505int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
506{
507	struct efx_nic *efx = rx_queue->efx;
508	unsigned entries;
509
510	entries = rx_queue->ptr_mask + 1;
511	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
512					entries * sizeof(efx_qword_t));
513}
514
515void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
516{
517	efx_oword_t rx_desc_ptr;
518	struct efx_nic *efx = rx_queue->efx;
519	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
520	bool iscsi_digest_en = is_b0;
521	bool jumbo_en;
522
523	/* For kernel-mode queues in Falcon A1, the JUMBO flag enables
524	 * DMA to continue after a PCIe page boundary (and scattering
525	 * is not possible).  In Falcon B0 and Siena, it enables
526	 * scatter.
527	 */
528	jumbo_en = !is_b0 || efx->rx_scatter;
529
530	netif_dbg(efx, hw, efx->net_dev,
531		  "RX queue %d ring in special buffers %d-%d\n",
532		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
533		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
534
535	rx_queue->scatter_n = 0;
536
537	/* Pin RX descriptor ring */
538	efx_init_special_buffer(efx, &rx_queue->rxd);
539
540	/* Push RX descriptor ring to card */
541	EFX_POPULATE_OWORD_10(rx_desc_ptr,
542			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
543			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
544			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
545			      FRF_AZ_RX_DESCQ_EVQ_ID,
546			      efx_rx_queue_channel(rx_queue)->channel,
547			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
548			      FRF_AZ_RX_DESCQ_LABEL,
549			      efx_rx_queue_index(rx_queue),
550			      FRF_AZ_RX_DESCQ_SIZE,
551			      __ffs(rx_queue->rxd.entries),
552			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
553			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
554			      FRF_AZ_RX_DESCQ_EN, 1);
555	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
556			 efx_rx_queue_index(rx_queue));
557}
558
559static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
560{
561	struct efx_nic *efx = rx_queue->efx;
562	efx_oword_t rx_flush_descq;
563
564	EFX_POPULATE_OWORD_2(rx_flush_descq,
565			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
566			     FRF_AZ_RX_FLUSH_DESCQ,
567			     efx_rx_queue_index(rx_queue));
568	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
569}
570
571void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
572{
573	efx_oword_t rx_desc_ptr;
574	struct efx_nic *efx = rx_queue->efx;
575
576	/* Remove RX descriptor ring from card */
577	EFX_ZERO_OWORD(rx_desc_ptr);
578	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
579			 efx_rx_queue_index(rx_queue));
580
581	/* Unpin RX descriptor ring */
582	efx_fini_special_buffer(efx, &rx_queue->rxd);
583}
584
585/* Free buffers backing RX queue */
586void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
587{
588	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
589}
590
591/**************************************************************************
592 *
593 * Flush handling
594 *
595 **************************************************************************/
596
597/* efx_farch_flush_queues() must be woken up when all flushes are completed,
598 * or more RX flushes can be kicked off.
599 */
600static bool efx_farch_flush_wake(struct efx_nic *efx)
601{
602	/* Ensure that all updates are visible to efx_farch_flush_queues() */
603	smp_mb();
604
605	return (atomic_read(&efx->active_queues) == 0 ||
606		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
607		 && atomic_read(&efx->rxq_flush_pending) > 0));
608}
609
610static bool efx_check_tx_flush_complete(struct efx_nic *efx)
611{
612	bool i = true;
613	efx_oword_t txd_ptr_tbl;
614	struct efx_channel *channel;
615	struct efx_tx_queue *tx_queue;
616
617	efx_for_each_channel(channel, efx) {
618		efx_for_each_channel_tx_queue(tx_queue, channel) {
619			efx_reado_table(efx, &txd_ptr_tbl,
620					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
621			if (EFX_OWORD_FIELD(txd_ptr_tbl,
622					    FRF_AZ_TX_DESCQ_FLUSH) ||
623			    EFX_OWORD_FIELD(txd_ptr_tbl,
624					    FRF_AZ_TX_DESCQ_EN)) {
625				netif_dbg(efx, hw, efx->net_dev,
626					  "flush did not complete on TXQ %d\n",
627					  tx_queue->queue);
628				i = false;
629			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
630						  1, 0)) {
631				/* The flush is complete, but we didn't
632				 * receive a flush completion event
633				 */
634				netif_dbg(efx, hw, efx->net_dev,
635					  "flush complete on TXQ %d, so drain "
636					  "the queue\n", tx_queue->queue);
637				/* Don't need to increment active_queues as it
638				 * has already been incremented for the queues
639				 * which did not drain
640				 */
641				efx_farch_magic_event(channel,
642						      EFX_CHANNEL_MAGIC_TX_DRAIN(
643							      tx_queue));
644			}
645		}
646	}
647
648	return i;
649}
650
651/* Flush all the transmit queues, and continue flushing receive queues until
652 * they're all flushed. Wait for the DRAIN events to be received so that there
653 * are no more RX and TX events left on any channel. */
654static int efx_farch_do_flush(struct efx_nic *efx)
655{
656	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
657	struct efx_channel *channel;
658	struct efx_rx_queue *rx_queue;
659	struct efx_tx_queue *tx_queue;
660	int rc = 0;
661
662	efx_for_each_channel(channel, efx) {
663		efx_for_each_channel_tx_queue(tx_queue, channel) {
664			efx_farch_flush_tx_queue(tx_queue);
665		}
666		efx_for_each_channel_rx_queue(rx_queue, channel) {
667			rx_queue->flush_pending = true;
668			atomic_inc(&efx->rxq_flush_pending);
669		}
670	}
671
672	while (timeout && atomic_read(&efx->active_queues) > 0) {
673		/* If SRIOV is enabled, then offload receive queue flushing to
674		 * the firmware (though we will still have to poll for
675		 * completion). If that fails, fall back to the old scheme.
676		 */
677		if (efx_siena_sriov_enabled(efx)) {
678			rc = efx_mcdi_flush_rxqs(efx);
679			if (!rc)
680				goto wait;
681		}
682
683		/* The hardware supports four concurrent rx flushes, each of
684		 * which may need to be retried if there is an outstanding
685		 * descriptor fetch
686		 */
687		efx_for_each_channel(channel, efx) {
688			efx_for_each_channel_rx_queue(rx_queue, channel) {
689				if (atomic_read(&efx->rxq_flush_outstanding) >=
690				    EFX_RX_FLUSH_COUNT)
691					break;
692
693				if (rx_queue->flush_pending) {
694					rx_queue->flush_pending = false;
695					atomic_dec(&efx->rxq_flush_pending);
696					atomic_inc(&efx->rxq_flush_outstanding);
697					efx_farch_flush_rx_queue(rx_queue);
698				}
699			}
700		}
701
702	wait:
703		timeout = wait_event_timeout(efx->flush_wq,
704					     efx_farch_flush_wake(efx),
705					     timeout);
706	}
707
708	if (atomic_read(&efx->active_queues) &&
709	    !efx_check_tx_flush_complete(efx)) {
710		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
711			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
712			  atomic_read(&efx->rxq_flush_outstanding),
713			  atomic_read(&efx->rxq_flush_pending));
714		rc = -ETIMEDOUT;
715
716		atomic_set(&efx->active_queues, 0);
717		atomic_set(&efx->rxq_flush_pending, 0);
718		atomic_set(&efx->rxq_flush_outstanding, 0);
719	}
720
721	return rc;
722}
723
724int efx_farch_fini_dmaq(struct efx_nic *efx)
725{
726	struct efx_channel *channel;
727	struct efx_tx_queue *tx_queue;
728	struct efx_rx_queue *rx_queue;
729	int rc = 0;
730
731	/* Do not attempt to write to the NIC during EEH recovery */
732	if (efx->state != STATE_RECOVERY) {
733		/* Only perform flush if DMA is enabled */
734		if (efx->pci_dev->is_busmaster) {
735			efx->type->prepare_flush(efx);
736			rc = efx_farch_do_flush(efx);
737			efx->type->finish_flush(efx);
738		}
739
740		efx_for_each_channel(channel, efx) {
741			efx_for_each_channel_rx_queue(rx_queue, channel)
742				efx_farch_rx_fini(rx_queue);
743			efx_for_each_channel_tx_queue(tx_queue, channel)
744				efx_farch_tx_fini(tx_queue);
745		}
746	}
747
748	return rc;
749}
750
751/* Reset queue and flush accounting after FLR
752 *
753 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
754 * mastering was disabled), in which case we don't receive (RXQ) flush
755 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
756 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
757 * events were received, and we didn't go through efx_check_tx_flush_complete())
758 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
759 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
760 * for batched flush requests; and the efx->active_queues gets messed up because
761 * we keep incrementing for the newly initialised queues, but it never went to
762 * zero previously.  Then we get a timeout every time we try to restart the
763 * queues, as it doesn't go back to zero when we should be flushing the queues.
764 */
765void efx_farch_finish_flr(struct efx_nic *efx)
766{
767	atomic_set(&efx->rxq_flush_pending, 0);
768	atomic_set(&efx->rxq_flush_outstanding, 0);
769	atomic_set(&efx->active_queues, 0);
770}
771
772
773/**************************************************************************
774 *
775 * Event queue processing
776 * Event queues are processed by per-channel tasklets.
777 *
778 **************************************************************************/
779
780/* Update a channel's event queue's read pointer (RPTR) register
781 *
782 * This writes the EVQ_RPTR_REG register for the specified channel's
783 * event queue.
784 */
785void efx_farch_ev_read_ack(struct efx_channel *channel)
786{
787	efx_dword_t reg;
788	struct efx_nic *efx = channel->efx;
789
790	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
791			     channel->eventq_read_ptr & channel->eventq_mask);
792
793	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
794	 * of 4 bytes, but it is really 16 bytes just like later revisions.
795	 */
796	efx_writed(efx, &reg,
797		   efx->type->evq_rptr_tbl_base +
798		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
799}
800
801/* Use HW to insert a SW defined event */
802void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
803			      efx_qword_t *event)
804{
805	efx_oword_t drv_ev_reg;
806
807	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
808		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
809	drv_ev_reg.u32[0] = event->u32[0];
810	drv_ev_reg.u32[1] = event->u32[1];
811	drv_ev_reg.u32[2] = 0;
812	drv_ev_reg.u32[3] = 0;
813	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
814	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
815}
816
817static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
818{
819	efx_qword_t event;
820
821	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
822			     FSE_AZ_EV_CODE_DRV_GEN_EV,
823			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
824	efx_farch_generate_event(channel->efx, channel->channel, &event);
825}
826
827/* Handle a transmit completion event
828 *
829 * The NIC batches TX completion events; the message we receive is of
830 * the form "complete all TX events up to this index".
831 */
832static int
833efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
834{
835	unsigned int tx_ev_desc_ptr;
836	unsigned int tx_ev_q_label;
837	struct efx_tx_queue *tx_queue;
838	struct efx_nic *efx = channel->efx;
839	int tx_packets = 0;
840
841	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
842		return 0;
843
844	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
845		/* Transmit completion */
846		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
847		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
848		tx_queue = efx_channel_get_tx_queue(
849			channel, tx_ev_q_label % EFX_TXQ_TYPES);
850		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
851			      tx_queue->ptr_mask);
852		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
853	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
854		/* Rewrite the FIFO write pointer */
855		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
856		tx_queue = efx_channel_get_tx_queue(
857			channel, tx_ev_q_label % EFX_TXQ_TYPES);
858
859		netif_tx_lock(efx->net_dev);
860		efx_farch_notify_tx_desc(tx_queue);
861		netif_tx_unlock(efx->net_dev);
862	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
863		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
864	} else {
865		netif_err(efx, tx_err, efx->net_dev,
866			  "channel %d unexpected TX event "
867			  EFX_QWORD_FMT"\n", channel->channel,
868			  EFX_QWORD_VAL(*event));
869	}
870
871	return tx_packets;
872}
873
874/* Detect errors included in the rx_evt_pkt_ok bit. */
875static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
876				      const efx_qword_t *event)
877{
878	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
879	struct efx_nic *efx = rx_queue->efx;
880	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
881	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
882	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
883	bool rx_ev_other_err, rx_ev_pause_frm;
884	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
885	unsigned rx_ev_pkt_type;
886
887	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
888	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
889	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
890	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
891	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
892						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
893	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
894						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
895	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
896						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
897	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
898	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
899	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
900			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
901	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
902
903	/* Every error apart from tobe_disc and pause_frm */
904	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
905			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
906			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
907
908	/* Count errors that are not in MAC stats.  Ignore expected
909	 * checksum errors during self-test. */
910	if (rx_ev_frm_trunc)
911		++channel->n_rx_frm_trunc;
912	else if (rx_ev_tobe_disc)
913		++channel->n_rx_tobe_disc;
914	else if (!efx->loopback_selftest) {
915		if (rx_ev_ip_hdr_chksum_err)
916			++channel->n_rx_ip_hdr_chksum_err;
917		else if (rx_ev_tcp_udp_chksum_err)
918			++channel->n_rx_tcp_udp_chksum_err;
919	}
920
921	/* TOBE_DISC is expected on unicast mismatches; don't print out an
922	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
923	 * to a FIFO overflow.
924	 */
925#ifdef DEBUG
926	if (rx_ev_other_err && net_ratelimit()) {
927		netif_dbg(efx, rx_err, efx->net_dev,
928			  " RX queue %d unexpected RX event "
929			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
930			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
931			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
932			  rx_ev_ip_hdr_chksum_err ?
933			  " [IP_HDR_CHKSUM_ERR]" : "",
934			  rx_ev_tcp_udp_chksum_err ?
935			  " [TCP_UDP_CHKSUM_ERR]" : "",
936			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
937			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
938			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
939			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
940			  rx_ev_pause_frm ? " [PAUSE]" : "");
941	}
942#endif
943
944	/* The frame must be discarded if any of these are true. */
945	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
946		rx_ev_tobe_disc | rx_ev_pause_frm) ?
947		EFX_RX_PKT_DISCARD : 0;
948}
949
950/* Handle receive events that are not in-order. Return true if this
951 * can be handled as a partial packet discard, false if it's more
952 * serious.
953 */
954static bool
955efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
956{
957	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
958	struct efx_nic *efx = rx_queue->efx;
959	unsigned expected, dropped;
960
961	if (rx_queue->scatter_n &&
962	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
963		      rx_queue->ptr_mask)) {
964		++channel->n_rx_nodesc_trunc;
965		return true;
966	}
967
968	expected = rx_queue->removed_count & rx_queue->ptr_mask;
969	dropped = (index - expected) & rx_queue->ptr_mask;
970	netif_info(efx, rx_err, efx->net_dev,
971		   "dropped %d events (index=%d expected=%d)\n",
972		   dropped, index, expected);
973
974	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
975			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
976	return false;
977}
978
979/* Handle a packet received event
980 *
981 * The NIC gives a "discard" flag if it's a unicast packet with the
982 * wrong destination address
983 * Also "is multicast" and "matches multicast filter" flags can be used to
984 * discard non-matching multicast packets.
985 */
986static void
987efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
988{
989	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
990	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
991	unsigned expected_ptr;
992	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
993	u16 flags;
994	struct efx_rx_queue *rx_queue;
995	struct efx_nic *efx = channel->efx;
996
997	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
998		return;
999
1000	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1001	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1002	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1003		channel->channel);
1004
1005	rx_queue = efx_channel_get_rx_queue(channel);
1006
1007	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1008	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1009			rx_queue->ptr_mask);
1010
1011	/* Check for partial drops and other errors */
1012	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1013	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1014		if (rx_ev_desc_ptr != expected_ptr &&
1015		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1016			return;
1017
1018		/* Discard all pending fragments */
1019		if (rx_queue->scatter_n) {
1020			efx_rx_packet(
1021				rx_queue,
1022				rx_queue->removed_count & rx_queue->ptr_mask,
1023				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1024			rx_queue->removed_count += rx_queue->scatter_n;
1025			rx_queue->scatter_n = 0;
1026		}
1027
1028		/* Return if there is no new fragment */
1029		if (rx_ev_desc_ptr != expected_ptr)
1030			return;
1031
1032		/* Discard new fragment if not SOP */
1033		if (!rx_ev_sop) {
1034			efx_rx_packet(
1035				rx_queue,
1036				rx_queue->removed_count & rx_queue->ptr_mask,
1037				1, 0, EFX_RX_PKT_DISCARD);
1038			++rx_queue->removed_count;
1039			return;
1040		}
1041	}
1042
1043	++rx_queue->scatter_n;
1044	if (rx_ev_cont)
1045		return;
1046
1047	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1048	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1049	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1050
1051	if (likely(rx_ev_pkt_ok)) {
1052		/* If packet is marked as OK then we can rely on the
1053		 * hardware checksum and classification.
1054		 */
1055		flags = 0;
1056		switch (rx_ev_hdr_type) {
1057		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1058			flags |= EFX_RX_PKT_TCP;
1059			/* fall through */
1060		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1061			flags |= EFX_RX_PKT_CSUMMED;
1062			/* fall through */
1063		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1064		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1065			break;
1066		}
1067	} else {
1068		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1069	}
1070
1071	/* Detect multicast packets that didn't match the filter */
1072	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1073	if (rx_ev_mcast_pkt) {
1074		unsigned int rx_ev_mcast_hash_match =
1075			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1076
1077		if (unlikely(!rx_ev_mcast_hash_match)) {
1078			++channel->n_rx_mcast_mismatch;
1079			flags |= EFX_RX_PKT_DISCARD;
1080		}
1081	}
1082
1083	channel->irq_mod_score += 2;
1084
1085	/* Handle received packet */
1086	efx_rx_packet(rx_queue,
1087		      rx_queue->removed_count & rx_queue->ptr_mask,
1088		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1089	rx_queue->removed_count += rx_queue->scatter_n;
1090	rx_queue->scatter_n = 0;
1091}
1092
1093/* If this flush done event corresponds to a &struct efx_tx_queue, then
1094 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1095 * of all transmit completions.
1096 */
1097static void
1098efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1099{
1100	struct efx_tx_queue *tx_queue;
1101	int qid;
1102
1103	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1104	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1105		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1106					    qid % EFX_TXQ_TYPES);
1107		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1108			efx_farch_magic_event(tx_queue->channel,
1109					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1110		}
1111	}
1112}
1113
1114/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1115 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1116 * the RX queue back to the mask of RX queues in need of flushing.
1117 */
1118static void
1119efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1120{
1121	struct efx_channel *channel;
1122	struct efx_rx_queue *rx_queue;
1123	int qid;
1124	bool failed;
1125
1126	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1127	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1128	if (qid >= efx->n_channels)
1129		return;
1130	channel = efx_get_channel(efx, qid);
1131	if (!efx_channel_has_rx_queue(channel))
1132		return;
1133	rx_queue = efx_channel_get_rx_queue(channel);
1134
1135	if (failed) {
1136		netif_info(efx, hw, efx->net_dev,
1137			   "RXQ %d flush retry\n", qid);
1138		rx_queue->flush_pending = true;
1139		atomic_inc(&efx->rxq_flush_pending);
1140	} else {
1141		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1142				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1143	}
1144	atomic_dec(&efx->rxq_flush_outstanding);
1145	if (efx_farch_flush_wake(efx))
1146		wake_up(&efx->flush_wq);
1147}
1148
1149static void
1150efx_farch_handle_drain_event(struct efx_channel *channel)
1151{
1152	struct efx_nic *efx = channel->efx;
1153
1154	WARN_ON(atomic_read(&efx->active_queues) == 0);
1155	atomic_dec(&efx->active_queues);
1156	if (efx_farch_flush_wake(efx))
1157		wake_up(&efx->flush_wq);
1158}
1159
1160static void efx_farch_handle_generated_event(struct efx_channel *channel,
1161					     efx_qword_t *event)
1162{
1163	struct efx_nic *efx = channel->efx;
1164	struct efx_rx_queue *rx_queue =
1165		efx_channel_has_rx_queue(channel) ?
1166		efx_channel_get_rx_queue(channel) : NULL;
1167	unsigned magic, code;
1168
1169	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1170	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1171
1172	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1173		channel->event_test_cpu = raw_smp_processor_id();
1174	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1175		/* The queue must be empty, so we won't receive any rx
1176		 * events, so efx_process_channel() won't refill the
1177		 * queue. Refill it here */
1178		efx_fast_push_rx_descriptors(rx_queue, true);
1179	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1180		efx_farch_handle_drain_event(channel);
1181	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1182		efx_farch_handle_drain_event(channel);
1183	} else {
1184		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1185			  "generated event "EFX_QWORD_FMT"\n",
1186			  channel->channel, EFX_QWORD_VAL(*event));
1187	}
1188}
1189
1190static void
1191efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1192{
1193	struct efx_nic *efx = channel->efx;
1194	unsigned int ev_sub_code;
1195	unsigned int ev_sub_data;
1196
1197	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1198	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1199
1200	switch (ev_sub_code) {
1201	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1202		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1203			   channel->channel, ev_sub_data);
1204		efx_farch_handle_tx_flush_done(efx, event);
1205#ifdef CONFIG_SFC_SRIOV
1206		efx_siena_sriov_tx_flush_done(efx, event);
1207#endif
1208		break;
1209	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1210		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1211			   channel->channel, ev_sub_data);
1212		efx_farch_handle_rx_flush_done(efx, event);
1213#ifdef CONFIG_SFC_SRIOV
1214		efx_siena_sriov_rx_flush_done(efx, event);
1215#endif
1216		break;
1217	case FSE_AZ_EVQ_INIT_DONE_EV:
1218		netif_dbg(efx, hw, efx->net_dev,
1219			  "channel %d EVQ %d initialised\n",
1220			  channel->channel, ev_sub_data);
1221		break;
1222	case FSE_AZ_SRM_UPD_DONE_EV:
1223		netif_vdbg(efx, hw, efx->net_dev,
1224			   "channel %d SRAM update done\n", channel->channel);
1225		break;
1226	case FSE_AZ_WAKE_UP_EV:
1227		netif_vdbg(efx, hw, efx->net_dev,
1228			   "channel %d RXQ %d wakeup event\n",
1229			   channel->channel, ev_sub_data);
1230		break;
1231	case FSE_AZ_TIMER_EV:
1232		netif_vdbg(efx, hw, efx->net_dev,
1233			   "channel %d RX queue %d timer expired\n",
1234			   channel->channel, ev_sub_data);
1235		break;
1236	case FSE_AA_RX_RECOVER_EV:
1237		netif_err(efx, rx_err, efx->net_dev,
1238			  "channel %d seen DRIVER RX_RESET event. "
1239			"Resetting.\n", channel->channel);
1240		atomic_inc(&efx->rx_reset);
1241		efx_schedule_reset(efx,
1242				   EFX_WORKAROUND_6555(efx) ?
1243				   RESET_TYPE_RX_RECOVERY :
1244				   RESET_TYPE_DISABLE);
1245		break;
1246	case FSE_BZ_RX_DSC_ERROR_EV:
1247		if (ev_sub_data < EFX_VI_BASE) {
1248			netif_err(efx, rx_err, efx->net_dev,
1249				  "RX DMA Q %d reports descriptor fetch error."
1250				  " RX Q %d is disabled.\n", ev_sub_data,
1251				  ev_sub_data);
1252			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1253		}
1254#ifdef CONFIG_SFC_SRIOV
1255		else
1256			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1257#endif
1258		break;
1259	case FSE_BZ_TX_DSC_ERROR_EV:
1260		if (ev_sub_data < EFX_VI_BASE) {
1261			netif_err(efx, tx_err, efx->net_dev,
1262				  "TX DMA Q %d reports descriptor fetch error."
1263				  " TX Q %d is disabled.\n", ev_sub_data,
1264				  ev_sub_data);
1265			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1266		}
1267#ifdef CONFIG_SFC_SRIOV
1268		else
1269			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1270#endif
1271		break;
1272	default:
1273		netif_vdbg(efx, hw, efx->net_dev,
1274			   "channel %d unknown driver event code %d "
1275			   "data %04x\n", channel->channel, ev_sub_code,
1276			   ev_sub_data);
1277		break;
1278	}
1279}
1280
1281int efx_farch_ev_process(struct efx_channel *channel, int budget)
1282{
1283	struct efx_nic *efx = channel->efx;
1284	unsigned int read_ptr;
1285	efx_qword_t event, *p_event;
1286	int ev_code;
1287	int tx_packets = 0;
1288	int spent = 0;
1289
1290	if (budget <= 0)
1291		return spent;
1292
1293	read_ptr = channel->eventq_read_ptr;
1294
1295	for (;;) {
1296		p_event = efx_event(channel, read_ptr);
1297		event = *p_event;
1298
1299		if (!efx_event_present(&event))
1300			/* End of events */
1301			break;
1302
1303		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1304			   "channel %d event is "EFX_QWORD_FMT"\n",
1305			   channel->channel, EFX_QWORD_VAL(event));
1306
1307		/* Clear this event by marking it all ones */
1308		EFX_SET_QWORD(*p_event);
1309
1310		++read_ptr;
1311
1312		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1313
1314		switch (ev_code) {
1315		case FSE_AZ_EV_CODE_RX_EV:
1316			efx_farch_handle_rx_event(channel, &event);
1317			if (++spent == budget)
1318				goto out;
1319			break;
1320		case FSE_AZ_EV_CODE_TX_EV:
1321			tx_packets += efx_farch_handle_tx_event(channel,
1322								&event);
1323			if (tx_packets > efx->txq_entries) {
1324				spent = budget;
1325				goto out;
1326			}
1327			break;
1328		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1329			efx_farch_handle_generated_event(channel, &event);
1330			break;
1331		case FSE_AZ_EV_CODE_DRIVER_EV:
1332			efx_farch_handle_driver_event(channel, &event);
1333			break;
1334#ifdef CONFIG_SFC_SRIOV
1335		case FSE_CZ_EV_CODE_USER_EV:
1336			efx_siena_sriov_event(channel, &event);
1337			break;
1338#endif
1339		case FSE_CZ_EV_CODE_MCDI_EV:
1340			efx_mcdi_process_event(channel, &event);
1341			break;
1342		case FSE_AZ_EV_CODE_GLOBAL_EV:
1343			if (efx->type->handle_global_event &&
1344			    efx->type->handle_global_event(channel, &event))
1345				break;
1346			/* else fall through */
1347		default:
1348			netif_err(channel->efx, hw, channel->efx->net_dev,
1349				  "channel %d unknown event type %d (data "
1350				  EFX_QWORD_FMT ")\n", channel->channel,
1351				  ev_code, EFX_QWORD_VAL(event));
1352		}
1353	}
1354
1355out:
1356	channel->eventq_read_ptr = read_ptr;
1357	return spent;
1358}
1359
1360/* Allocate buffer table entries for event queue */
1361int efx_farch_ev_probe(struct efx_channel *channel)
1362{
1363	struct efx_nic *efx = channel->efx;
1364	unsigned entries;
1365
1366	entries = channel->eventq_mask + 1;
1367	return efx_alloc_special_buffer(efx, &channel->eventq,
1368					entries * sizeof(efx_qword_t));
1369}
1370
1371int efx_farch_ev_init(struct efx_channel *channel)
1372{
1373	efx_oword_t reg;
1374	struct efx_nic *efx = channel->efx;
1375
1376	netif_dbg(efx, hw, efx->net_dev,
1377		  "channel %d event queue in special buffers %d-%d\n",
1378		  channel->channel, channel->eventq.index,
1379		  channel->eventq.index + channel->eventq.entries - 1);
1380
1381	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1382		EFX_POPULATE_OWORD_3(reg,
1383				     FRF_CZ_TIMER_Q_EN, 1,
1384				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1385				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1386		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1387	}
1388
1389	/* Pin event queue buffer */
1390	efx_init_special_buffer(efx, &channel->eventq);
1391
1392	/* Fill event queue with all ones (i.e. empty events) */
1393	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1394
1395	/* Push event queue to card */
1396	EFX_POPULATE_OWORD_3(reg,
1397			     FRF_AZ_EVQ_EN, 1,
1398			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1399			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1400	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1401			 channel->channel);
1402
1403	return 0;
1404}
1405
1406void efx_farch_ev_fini(struct efx_channel *channel)
1407{
1408	efx_oword_t reg;
1409	struct efx_nic *efx = channel->efx;
1410
1411	/* Remove event queue from card */
1412	EFX_ZERO_OWORD(reg);
1413	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1414			 channel->channel);
1415	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1416		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1417
1418	/* Unpin event queue */
1419	efx_fini_special_buffer(efx, &channel->eventq);
1420}
1421
1422/* Free buffers backing event queue */
1423void efx_farch_ev_remove(struct efx_channel *channel)
1424{
1425	efx_free_special_buffer(channel->efx, &channel->eventq);
1426}
1427
1428
1429void efx_farch_ev_test_generate(struct efx_channel *channel)
1430{
1431	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1432}
1433
1434void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1435{
1436	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1437			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1438}
1439
1440/**************************************************************************
1441 *
1442 * Hardware interrupts
1443 * The hardware interrupt handler does very little work; all the event
1444 * queue processing is carried out by per-channel tasklets.
1445 *
1446 **************************************************************************/
1447
1448/* Enable/disable/generate interrupts */
1449static inline void efx_farch_interrupts(struct efx_nic *efx,
1450				      bool enabled, bool force)
1451{
1452	efx_oword_t int_en_reg_ker;
1453
1454	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1455			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1456			     FRF_AZ_KER_INT_KER, force,
1457			     FRF_AZ_DRV_INT_EN_KER, enabled);
1458	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1459}
1460
1461void efx_farch_irq_enable_master(struct efx_nic *efx)
1462{
1463	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1464	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1465
1466	efx_farch_interrupts(efx, true, false);
1467}
1468
1469void efx_farch_irq_disable_master(struct efx_nic *efx)
1470{
1471	/* Disable interrupts */
1472	efx_farch_interrupts(efx, false, false);
1473}
1474
1475/* Generate a test interrupt
1476 * Interrupt must already have been enabled, otherwise nasty things
1477 * may happen.
1478 */
1479void efx_farch_irq_test_generate(struct efx_nic *efx)
1480{
1481	efx_farch_interrupts(efx, true, true);
1482}
1483
1484/* Process a fatal interrupt
1485 * Disable bus mastering ASAP and schedule a reset
1486 */
1487irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1488{
1489	struct falcon_nic_data *nic_data = efx->nic_data;
1490	efx_oword_t *int_ker = efx->irq_status.addr;
1491	efx_oword_t fatal_intr;
1492	int error, mem_perr;
1493
1494	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1495	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1496
1497	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1498		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1499		  EFX_OWORD_VAL(fatal_intr),
1500		  error ? "disabling bus mastering" : "no recognised error");
1501
1502	/* If this is a memory parity error dump which blocks are offending */
1503	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1504		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1505	if (mem_perr) {
1506		efx_oword_t reg;
1507		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1508		netif_err(efx, hw, efx->net_dev,
1509			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1510			  EFX_OWORD_VAL(reg));
1511	}
1512
1513	/* Disable both devices */
1514	pci_clear_master(efx->pci_dev);
1515	if (efx_nic_is_dual_func(efx))
1516		pci_clear_master(nic_data->pci_dev2);
1517	efx_farch_irq_disable_master(efx);
1518
1519	/* Count errors and reset or disable the NIC accordingly */
1520	if (efx->int_error_count == 0 ||
1521	    time_after(jiffies, efx->int_error_expire)) {
1522		efx->int_error_count = 0;
1523		efx->int_error_expire =
1524			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1525	}
1526	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1527		netif_err(efx, hw, efx->net_dev,
1528			  "SYSTEM ERROR - reset scheduled\n");
1529		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1530	} else {
1531		netif_err(efx, hw, efx->net_dev,
1532			  "SYSTEM ERROR - max number of errors seen."
1533			  "NIC will be disabled\n");
1534		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1535	}
1536
1537	return IRQ_HANDLED;
1538}
1539
1540/* Handle a legacy interrupt
1541 * Acknowledges the interrupt and schedule event queue processing.
1542 */
1543irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1544{
1545	struct efx_nic *efx = dev_id;
1546	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1547	efx_oword_t *int_ker = efx->irq_status.addr;
1548	irqreturn_t result = IRQ_NONE;
1549	struct efx_channel *channel;
1550	efx_dword_t reg;
1551	u32 queues;
1552	int syserr;
1553
1554	/* Read the ISR which also ACKs the interrupts */
1555	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1556	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1557
1558	/* Legacy interrupts are disabled too late by the EEH kernel
1559	 * code. Disable them earlier.
1560	 * If an EEH error occurred, the read will have returned all ones.
1561	 */
1562	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1563	    !efx->eeh_disabled_legacy_irq) {
1564		disable_irq_nosync(efx->legacy_irq);
1565		efx->eeh_disabled_legacy_irq = true;
1566	}
1567
1568	/* Handle non-event-queue sources */
1569	if (queues & (1U << efx->irq_level) && soft_enabled) {
1570		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1571		if (unlikely(syserr))
1572			return efx_farch_fatal_interrupt(efx);
1573		efx->last_irq_cpu = raw_smp_processor_id();
1574	}
1575
1576	if (queues != 0) {
1577		efx->irq_zero_count = 0;
1578
1579		/* Schedule processing of any interrupting queues */
1580		if (likely(soft_enabled)) {
1581			efx_for_each_channel(channel, efx) {
1582				if (queues & 1)
1583					efx_schedule_channel_irq(channel);
1584				queues >>= 1;
1585			}
1586		}
1587		result = IRQ_HANDLED;
1588
1589	} else {
1590		efx_qword_t *event;
1591
1592		/* Legacy ISR read can return zero once (SF bug 15783) */
1593
1594		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1595		 * because this might be a shared interrupt. */
1596		if (efx->irq_zero_count++ == 0)
1597			result = IRQ_HANDLED;
1598
1599		/* Ensure we schedule or rearm all event queues */
1600		if (likely(soft_enabled)) {
1601			efx_for_each_channel(channel, efx) {
1602				event = efx_event(channel,
1603						  channel->eventq_read_ptr);
1604				if (efx_event_present(event))
1605					efx_schedule_channel_irq(channel);
1606				else
1607					efx_farch_ev_read_ack(channel);
1608			}
1609		}
1610	}
1611
1612	if (result == IRQ_HANDLED)
1613		netif_vdbg(efx, intr, efx->net_dev,
1614			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1615			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1616
1617	return result;
1618}
1619
1620/* Handle an MSI interrupt
1621 *
1622 * Handle an MSI hardware interrupt.  This routine schedules event
1623 * queue processing.  No interrupt acknowledgement cycle is necessary.
1624 * Also, we never need to check that the interrupt is for us, since
1625 * MSI interrupts cannot be shared.
1626 */
1627irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1628{
1629	struct efx_msi_context *context = dev_id;
1630	struct efx_nic *efx = context->efx;
1631	efx_oword_t *int_ker = efx->irq_status.addr;
1632	int syserr;
1633
1634	netif_vdbg(efx, intr, efx->net_dev,
1635		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1636		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1637
1638	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1639		return IRQ_HANDLED;
1640
1641	/* Handle non-event-queue sources */
1642	if (context->index == efx->irq_level) {
1643		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1644		if (unlikely(syserr))
1645			return efx_farch_fatal_interrupt(efx);
1646		efx->last_irq_cpu = raw_smp_processor_id();
1647	}
1648
1649	/* Schedule processing of the channel */
1650	efx_schedule_channel_irq(efx->channel[context->index]);
1651
1652	return IRQ_HANDLED;
1653}
1654
1655/* Setup RSS indirection table.
1656 * This maps from the hash value of the packet to RXQ
1657 */
1658void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1659{
1660	size_t i = 0;
1661	efx_dword_t dword;
1662
1663	BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1664
1665	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1666		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1667
1668	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1669		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1670				     efx->rx_indir_table[i]);
1671		efx_writed(efx, &dword,
1672			   FR_BZ_RX_INDIRECTION_TBL +
1673			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1674	}
1675}
1676
1677/* Looks at available SRAM resources and works out how many queues we
1678 * can support, and where things like descriptor caches should live.
1679 *
1680 * SRAM is split up as follows:
1681 * 0                          buftbl entries for channels
1682 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1683 * efx->rx_dc_base            RX descriptor caches
1684 * efx->tx_dc_base            TX descriptor caches
1685 */
1686void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1687{
1688	unsigned vi_count, buftbl_min;
1689
1690#ifdef CONFIG_SFC_SRIOV
1691	struct siena_nic_data *nic_data = efx->nic_data;
1692#endif
1693
1694	/* Account for the buffer table entries backing the datapath channels
1695	 * and the descriptor caches for those channels.
1696	 */
1697	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1698		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1699		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1700		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1701	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1702
1703#ifdef CONFIG_SFC_SRIOV
1704	if (efx->type->sriov_wanted) {
1705		if (efx->type->sriov_wanted(efx)) {
1706			unsigned vi_dc_entries, buftbl_free;
1707			unsigned entries_per_vf, vf_limit;
1708
1709			nic_data->vf_buftbl_base = buftbl_min;
1710
1711			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1712			vi_count = max(vi_count, EFX_VI_BASE);
1713			buftbl_free = (sram_lim_qw - buftbl_min -
1714				       vi_count * vi_dc_entries);
1715
1716			entries_per_vf = ((vi_dc_entries +
1717					   EFX_VF_BUFTBL_PER_VI) *
1718					  efx_vf_size(efx));
1719			vf_limit = min(buftbl_free / entries_per_vf,
1720				       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1721
1722			if (efx->vf_count > vf_limit) {
1723				netif_err(efx, probe, efx->net_dev,
1724					  "Reducing VF count from from %d to %d\n",
1725					  efx->vf_count, vf_limit);
1726				efx->vf_count = vf_limit;
1727			}
1728			vi_count += efx->vf_count * efx_vf_size(efx);
1729		}
1730	}
1731#endif
1732
1733	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1734	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1735}
1736
1737u32 efx_farch_fpga_ver(struct efx_nic *efx)
1738{
1739	efx_oword_t altera_build;
1740	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1741	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1742}
1743
1744void efx_farch_init_common(struct efx_nic *efx)
1745{
1746	efx_oword_t temp;
1747
1748	/* Set positions of descriptor caches in SRAM. */
1749	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1750	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1751	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1752	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1753
1754	/* Set TX descriptor cache size. */
1755	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1756	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1757	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1758
1759	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1760	 * this allows most efficient prefetching.
1761	 */
1762	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1763	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1764	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1765	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1766	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1767
1768	/* Program INT_KER address */
1769	EFX_POPULATE_OWORD_2(temp,
1770			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1771			     EFX_INT_MODE_USE_MSI(efx),
1772			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1773	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1774
1775	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1776		/* Use an interrupt level unused by event queues */
1777		efx->irq_level = 0x1f;
1778	else
1779		/* Use a valid MSI-X vector */
1780		efx->irq_level = 0;
1781
1782	/* Enable all the genuinely fatal interrupts.  (They are still
1783	 * masked by the overall interrupt mask, controlled by
1784	 * falcon_interrupts()).
1785	 *
1786	 * Note: All other fatal interrupts are enabled
1787	 */
1788	EFX_POPULATE_OWORD_3(temp,
1789			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1790			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1791			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1792	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1793		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1794	EFX_INVERT_OWORD(temp);
1795	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1796
1797	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1798	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1799	 */
1800	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1801	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1802	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1803	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1804	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1805	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1806	/* Enable SW_EV to inherit in char driver - assume harmless here */
1807	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1808	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1809	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1810	/* Disable hardware watchdog which can misfire */
1811	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1812	/* Squash TX of packets of 16 bytes or less */
1813	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1814		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1815	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1816
1817	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1818		EFX_POPULATE_OWORD_4(temp,
1819				     /* Default values */
1820				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1821				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1822				     FRF_BZ_TX_PACE_FB_BASE, 0,
1823				     /* Allow large pace values in the
1824				      * fast bin. */
1825				     FRF_BZ_TX_PACE_BIN_TH,
1826				     FFE_BZ_TX_PACE_RESERVED);
1827		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1828	}
1829}
1830
1831/**************************************************************************
1832 *
1833 * Filter tables
1834 *
1835 **************************************************************************
1836 */
1837
1838/* "Fudge factors" - difference between programmed value and actual depth.
1839 * Due to pipelined implementation we need to program H/W with a value that
1840 * is larger than the hop limit we want.
1841 */
1842#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1843#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1844
1845/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1846 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1847 * table is full.
1848 */
1849#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1850
1851/* Don't try very hard to find space for performance hints, as this is
1852 * counter-productive. */
1853#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1854
1855enum efx_farch_filter_type {
1856	EFX_FARCH_FILTER_TCP_FULL = 0,
1857	EFX_FARCH_FILTER_TCP_WILD,
1858	EFX_FARCH_FILTER_UDP_FULL,
1859	EFX_FARCH_FILTER_UDP_WILD,
1860	EFX_FARCH_FILTER_MAC_FULL = 4,
1861	EFX_FARCH_FILTER_MAC_WILD,
1862	EFX_FARCH_FILTER_UC_DEF = 8,
1863	EFX_FARCH_FILTER_MC_DEF,
1864	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1865};
1866
1867enum efx_farch_filter_table_id {
1868	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1869	EFX_FARCH_FILTER_TABLE_RX_MAC,
1870	EFX_FARCH_FILTER_TABLE_RX_DEF,
1871	EFX_FARCH_FILTER_TABLE_TX_MAC,
1872	EFX_FARCH_FILTER_TABLE_COUNT,
1873};
1874
1875enum efx_farch_filter_index {
1876	EFX_FARCH_FILTER_INDEX_UC_DEF,
1877	EFX_FARCH_FILTER_INDEX_MC_DEF,
1878	EFX_FARCH_FILTER_SIZE_RX_DEF,
1879};
1880
1881struct efx_farch_filter_spec {
1882	u8	type:4;
1883	u8	priority:4;
1884	u8	flags;
1885	u16	dmaq_id;
1886	u32	data[3];
1887};
1888
1889struct efx_farch_filter_table {
1890	enum efx_farch_filter_table_id id;
1891	u32		offset;		/* address of table relative to BAR */
1892	unsigned	size;		/* number of entries */
1893	unsigned	step;		/* step between entries */
1894	unsigned	used;		/* number currently used */
1895	unsigned long	*used_bitmap;
1896	struct efx_farch_filter_spec *spec;
1897	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1898};
1899
1900struct efx_farch_filter_state {
1901	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1902};
1903
1904static void
1905efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1906				   struct efx_farch_filter_table *table,
1907				   unsigned int filter_idx);
1908
1909/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1910 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1911static u16 efx_farch_filter_hash(u32 key)
1912{
1913	u16 tmp;
1914
1915	/* First 16 rounds */
1916	tmp = 0x1fff ^ key >> 16;
1917	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1918	tmp = tmp ^ tmp >> 9;
1919	/* Last 16 rounds */
1920	tmp = tmp ^ tmp << 13 ^ key;
1921	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1922	return tmp ^ tmp >> 9;
1923}
1924
1925/* To allow for hash collisions, filter search continues at these
1926 * increments from the first possible entry selected by the hash. */
1927static u16 efx_farch_filter_increment(u32 key)
1928{
1929	return key * 2 - 1;
1930}
1931
1932static enum efx_farch_filter_table_id
1933efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1934{
1935	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1936		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1937	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1938		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1939	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1940		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1941	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1942		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1943	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1944		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1945	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1946		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1947	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1948		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1949	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1950}
1951
1952static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1953{
1954	struct efx_farch_filter_state *state = efx->filter_state;
1955	struct efx_farch_filter_table *table;
1956	efx_oword_t filter_ctl;
1957
1958	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1959
1960	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1961	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1962			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1963			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1964	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1965			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1966			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1967	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1968			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1969			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1970	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1971			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1972			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1973
1974	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1975	if (table->size) {
1976		EFX_SET_OWORD_FIELD(
1977			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1978			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1979			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1980		EFX_SET_OWORD_FIELD(
1981			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1982			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1983			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1984	}
1985
1986	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1987	if (table->size) {
1988		EFX_SET_OWORD_FIELD(
1989			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1990			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1991		EFX_SET_OWORD_FIELD(
1992			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1993			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1994			   EFX_FILTER_FLAG_RX_RSS));
1995		EFX_SET_OWORD_FIELD(
1996			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1997			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1998		EFX_SET_OWORD_FIELD(
1999			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
2000			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2001			   EFX_FILTER_FLAG_RX_RSS));
2002
2003		/* There is a single bit to enable RX scatter for all
2004		 * unmatched packets.  Only set it if scatter is
2005		 * enabled in both filter specs.
2006		 */
2007		EFX_SET_OWORD_FIELD(
2008			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2009			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
2010			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2011			   EFX_FILTER_FLAG_RX_SCATTER));
2012	} else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2013		/* We don't expose 'default' filters because unmatched
2014		 * packets always go to the queue number found in the
2015		 * RSS table.  But we still need to set the RX scatter
2016		 * bit here.
2017		 */
2018		EFX_SET_OWORD_FIELD(
2019			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2020			efx->rx_scatter);
2021	}
2022
2023	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2024}
2025
2026static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2027{
2028	struct efx_farch_filter_state *state = efx->filter_state;
2029	struct efx_farch_filter_table *table;
2030	efx_oword_t tx_cfg;
2031
2032	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2033
2034	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2035	if (table->size) {
2036		EFX_SET_OWORD_FIELD(
2037			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2038			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2039			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2040		EFX_SET_OWORD_FIELD(
2041			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2042			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2043			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2044	}
2045
2046	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2047}
2048
2049static int
2050efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2051			       const struct efx_filter_spec *gen_spec)
2052{
2053	bool is_full = false;
2054
2055	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2056	    gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2057		return -EINVAL;
2058
2059	spec->priority = gen_spec->priority;
2060	spec->flags = gen_spec->flags;
2061	spec->dmaq_id = gen_spec->dmaq_id;
2062
2063	switch (gen_spec->match_flags) {
2064	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2065	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2066	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2067		is_full = true;
2068		/* fall through */
2069	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2070	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2071		__be32 rhost, host1, host2;
2072		__be16 rport, port1, port2;
2073
2074		EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2075
2076		if (gen_spec->ether_type != htons(ETH_P_IP))
2077			return -EPROTONOSUPPORT;
2078		if (gen_spec->loc_port == 0 ||
2079		    (is_full && gen_spec->rem_port == 0))
2080			return -EADDRNOTAVAIL;
2081		switch (gen_spec->ip_proto) {
2082		case IPPROTO_TCP:
2083			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2084				      EFX_FARCH_FILTER_TCP_WILD);
2085			break;
2086		case IPPROTO_UDP:
2087			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2088				      EFX_FARCH_FILTER_UDP_WILD);
2089			break;
2090		default:
2091			return -EPROTONOSUPPORT;
2092		}
2093
2094		/* Filter is constructed in terms of source and destination,
2095		 * with the odd wrinkle that the ports are swapped in a UDP
2096		 * wildcard filter.  We need to convert from local and remote
2097		 * (= zero for wildcard) addresses.
2098		 */
2099		rhost = is_full ? gen_spec->rem_host[0] : 0;
2100		rport = is_full ? gen_spec->rem_port : 0;
2101		host1 = rhost;
2102		host2 = gen_spec->loc_host[0];
2103		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2104			port1 = gen_spec->loc_port;
2105			port2 = rport;
2106		} else {
2107			port1 = rport;
2108			port2 = gen_spec->loc_port;
2109		}
2110		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2111		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2112		spec->data[2] = ntohl(host2);
2113
2114		break;
2115	}
2116
2117	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2118		is_full = true;
2119		/* fall through */
2120	case EFX_FILTER_MATCH_LOC_MAC:
2121		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2122			      EFX_FARCH_FILTER_MAC_WILD);
2123		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2124		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2125				 gen_spec->loc_mac[3] << 16 |
2126				 gen_spec->loc_mac[4] << 8 |
2127				 gen_spec->loc_mac[5]);
2128		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2129				 gen_spec->loc_mac[1]);
2130		break;
2131
2132	case EFX_FILTER_MATCH_LOC_MAC_IG:
2133		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2134			      EFX_FARCH_FILTER_MC_DEF :
2135			      EFX_FARCH_FILTER_UC_DEF);
2136		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2137		break;
2138
2139	default:
2140		return -EPROTONOSUPPORT;
2141	}
2142
2143	return 0;
2144}
2145
2146static void
2147efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2148			     const struct efx_farch_filter_spec *spec)
2149{
2150	bool is_full = false;
2151
2152	/* *gen_spec should be completely initialised, to be consistent
2153	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2154	 * it back to userland.
2155	 */
2156	memset(gen_spec, 0, sizeof(*gen_spec));
2157
2158	gen_spec->priority = spec->priority;
2159	gen_spec->flags = spec->flags;
2160	gen_spec->dmaq_id = spec->dmaq_id;
2161
2162	switch (spec->type) {
2163	case EFX_FARCH_FILTER_TCP_FULL:
2164	case EFX_FARCH_FILTER_UDP_FULL:
2165		is_full = true;
2166		/* fall through */
2167	case EFX_FARCH_FILTER_TCP_WILD:
2168	case EFX_FARCH_FILTER_UDP_WILD: {
2169		__be32 host1, host2;
2170		__be16 port1, port2;
2171
2172		gen_spec->match_flags =
2173			EFX_FILTER_MATCH_ETHER_TYPE |
2174			EFX_FILTER_MATCH_IP_PROTO |
2175			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2176		if (is_full)
2177			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2178						  EFX_FILTER_MATCH_REM_PORT);
2179		gen_spec->ether_type = htons(ETH_P_IP);
2180		gen_spec->ip_proto =
2181			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2182			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2183			IPPROTO_TCP : IPPROTO_UDP;
2184
2185		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2186		port1 = htons(spec->data[0]);
2187		host2 = htonl(spec->data[2]);
2188		port2 = htons(spec->data[1] >> 16);
2189		if (spec->flags & EFX_FILTER_FLAG_TX) {
2190			gen_spec->loc_host[0] = host1;
2191			gen_spec->rem_host[0] = host2;
2192		} else {
2193			gen_spec->loc_host[0] = host2;
2194			gen_spec->rem_host[0] = host1;
2195		}
2196		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2197		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2198			gen_spec->loc_port = port1;
2199			gen_spec->rem_port = port2;
2200		} else {
2201			gen_spec->loc_port = port2;
2202			gen_spec->rem_port = port1;
2203		}
2204
2205		break;
2206	}
2207
2208	case EFX_FARCH_FILTER_MAC_FULL:
2209		is_full = true;
2210		/* fall through */
2211	case EFX_FARCH_FILTER_MAC_WILD:
2212		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2213		if (is_full)
2214			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2215		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2216		gen_spec->loc_mac[1] = spec->data[2];
2217		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2218		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2219		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2220		gen_spec->loc_mac[5] = spec->data[1];
2221		gen_spec->outer_vid = htons(spec->data[0]);
2222		break;
2223
2224	case EFX_FARCH_FILTER_UC_DEF:
2225	case EFX_FARCH_FILTER_MC_DEF:
2226		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2227		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2228		break;
2229
2230	default:
2231		WARN_ON(1);
2232		break;
2233	}
2234}
2235
2236static void
2237efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2238			      struct efx_farch_filter_spec *spec)
2239{
2240	/* If there's only one channel then disable RSS for non VF
2241	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2242	 */
2243	spec->priority = EFX_FILTER_PRI_AUTO;
2244	spec->flags = (EFX_FILTER_FLAG_RX |
2245		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2246		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2247	spec->dmaq_id = 0;
2248}
2249
2250/* Build a filter entry and return its n-tuple key. */
2251static u32 efx_farch_filter_build(efx_oword_t *filter,
2252				  struct efx_farch_filter_spec *spec)
2253{
2254	u32 data3;
2255
2256	switch (efx_farch_filter_spec_table_id(spec)) {
2257	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2258		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2259			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2260		EFX_POPULATE_OWORD_7(
2261			*filter,
2262			FRF_BZ_RSS_EN,
2263			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2264			FRF_BZ_SCATTER_EN,
2265			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2266			FRF_BZ_TCP_UDP, is_udp,
2267			FRF_BZ_RXQ_ID, spec->dmaq_id,
2268			EFX_DWORD_2, spec->data[2],
2269			EFX_DWORD_1, spec->data[1],
2270			EFX_DWORD_0, spec->data[0]);
2271		data3 = is_udp;
2272		break;
2273	}
2274
2275	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2276		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2277		EFX_POPULATE_OWORD_7(
2278			*filter,
2279			FRF_CZ_RMFT_RSS_EN,
2280			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2281			FRF_CZ_RMFT_SCATTER_EN,
2282			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2283			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2284			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2285			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2286			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2287			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2288		data3 = is_wild;
2289		break;
2290	}
2291
2292	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2293		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2294		EFX_POPULATE_OWORD_5(*filter,
2295				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2296				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2297				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2298				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2299				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2300		data3 = is_wild | spec->dmaq_id << 1;
2301		break;
2302	}
2303
2304	default:
2305		BUG();
2306	}
2307
2308	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2309}
2310
2311static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2312				   const struct efx_farch_filter_spec *right)
2313{
2314	if (left->type != right->type ||
2315	    memcmp(left->data, right->data, sizeof(left->data)))
2316		return false;
2317
2318	if (left->flags & EFX_FILTER_FLAG_TX &&
2319	    left->dmaq_id != right->dmaq_id)
2320		return false;
2321
2322	return true;
2323}
2324
2325/*
2326 * Construct/deconstruct external filter IDs.  At least the RX filter
2327 * IDs must be ordered by matching priority, for RX NFC semantics.
2328 *
2329 * Deconstruction needs to be robust against invalid IDs so that
2330 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2331 * accept user-provided IDs.
2332 */
2333
2334#define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2335
2336static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2337	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2338	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2339	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2340	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2341	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2342	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2343	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2344	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2345};
2346
2347static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2348	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2349	EFX_FARCH_FILTER_TABLE_RX_IP,
2350	EFX_FARCH_FILTER_TABLE_RX_MAC,
2351	EFX_FARCH_FILTER_TABLE_RX_MAC,
2352	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2353	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2354	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2355};
2356
2357#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2358#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2359
2360static inline u32
2361efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2362			 unsigned int index)
2363{
2364	unsigned int range;
2365
2366	range = efx_farch_filter_type_match_pri[spec->type];
2367	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2368		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2369
2370	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2371}
2372
2373static inline enum efx_farch_filter_table_id
2374efx_farch_filter_id_table_id(u32 id)
2375{
2376	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2377
2378	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2379		return efx_farch_filter_range_table[range];
2380	else
2381		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2382}
2383
2384static inline unsigned int efx_farch_filter_id_index(u32 id)
2385{
2386	return id & EFX_FARCH_FILTER_INDEX_MASK;
2387}
2388
2389u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2390{
2391	struct efx_farch_filter_state *state = efx->filter_state;
2392	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2393	enum efx_farch_filter_table_id table_id;
2394
2395	do {
2396		table_id = efx_farch_filter_range_table[range];
2397		if (state->table[table_id].size != 0)
2398			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2399				state->table[table_id].size;
2400	} while (range--);
2401
2402	return 0;
2403}
2404
2405s32 efx_farch_filter_insert(struct efx_nic *efx,
2406			    struct efx_filter_spec *gen_spec,
2407			    bool replace_equal)
2408{
2409	struct efx_farch_filter_state *state = efx->filter_state;
2410	struct efx_farch_filter_table *table;
2411	struct efx_farch_filter_spec spec;
2412	efx_oword_t filter;
2413	int rep_index, ins_index;
2414	unsigned int depth = 0;
2415	int rc;
2416
2417	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2418	if (rc)
2419		return rc;
2420
2421	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2422	if (table->size == 0)
2423		return -EINVAL;
2424
2425	netif_vdbg(efx, hw, efx->net_dev,
2426		   "%s: type %d search_limit=%d", __func__, spec.type,
2427		   table->search_limit[spec.type]);
2428
2429	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2430		/* One filter spec per type */
2431		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2432		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2433			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2434		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2435		ins_index = rep_index;
2436
2437		spin_lock_bh(&efx->filter_lock);
2438	} else {
2439		/* Search concurrently for
2440		 * (1) a filter to be replaced (rep_index): any filter
2441		 *     with the same match values, up to the current
2442		 *     search depth for this type, and
2443		 * (2) the insertion point (ins_index): (1) or any
2444		 *     free slot before it or up to the maximum search
2445		 *     depth for this priority
2446		 * We fail if we cannot find (2).
2447		 *
2448		 * We can stop once either
2449		 * (a) we find (1), in which case we have definitely
2450		 *     found (2) as well; or
2451		 * (b) we have searched exhaustively for (1), and have
2452		 *     either found (2) or searched exhaustively for it
2453		 */
2454		u32 key = efx_farch_filter_build(&filter, &spec);
2455		unsigned int hash = efx_farch_filter_hash(key);
2456		unsigned int incr = efx_farch_filter_increment(key);
2457		unsigned int max_rep_depth = table->search_limit[spec.type];
2458		unsigned int max_ins_depth =
2459			spec.priority <= EFX_FILTER_PRI_HINT ?
2460			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2461			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2462		unsigned int i = hash & (table->size - 1);
2463
2464		ins_index = -1;
2465		depth = 1;
2466
2467		spin_lock_bh(&efx->filter_lock);
2468
2469		for (;;) {
2470			if (!test_bit(i, table->used_bitmap)) {
2471				if (ins_index < 0)
2472					ins_index = i;
2473			} else if (efx_farch_filter_equal(&spec,
2474							  &table->spec[i])) {
2475				/* Case (a) */
2476				if (ins_index < 0)
2477					ins_index = i;
2478				rep_index = i;
2479				break;
2480			}
2481
2482			if (depth >= max_rep_depth &&
2483			    (ins_index >= 0 || depth >= max_ins_depth)) {
2484				/* Case (b) */
2485				if (ins_index < 0) {
2486					rc = -EBUSY;
2487					goto out;
2488				}
2489				rep_index = -1;
2490				break;
2491			}
2492
2493			i = (i + incr) & (table->size - 1);
2494			++depth;
2495		}
2496	}
2497
2498	/* If we found a filter to be replaced, check whether we
2499	 * should do so
2500	 */
2501	if (rep_index >= 0) {
2502		struct efx_farch_filter_spec *saved_spec =
2503			&table->spec[rep_index];
2504
2505		if (spec.priority == saved_spec->priority && !replace_equal) {
2506			rc = -EEXIST;
2507			goto out;
2508		}
2509		if (spec.priority < saved_spec->priority) {
2510			rc = -EPERM;
2511			goto out;
2512		}
2513		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2514		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2515			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2516	}
2517
2518	/* Insert the filter */
2519	if (ins_index != rep_index) {
2520		__set_bit(ins_index, table->used_bitmap);
2521		++table->used;
2522	}
2523	table->spec[ins_index] = spec;
2524
2525	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2526		efx_farch_filter_push_rx_config(efx);
2527	} else {
2528		if (table->search_limit[spec.type] < depth) {
2529			table->search_limit[spec.type] = depth;
2530			if (spec.flags & EFX_FILTER_FLAG_TX)
2531				efx_farch_filter_push_tx_limits(efx);
2532			else
2533				efx_farch_filter_push_rx_config(efx);
2534		}
2535
2536		efx_writeo(efx, &filter,
2537			   table->offset + table->step * ins_index);
2538
2539		/* If we were able to replace a filter by inserting
2540		 * at a lower depth, clear the replaced filter
2541		 */
2542		if (ins_index != rep_index && rep_index >= 0)
2543			efx_farch_filter_table_clear_entry(efx, table,
2544							   rep_index);
2545	}
2546
2547	netif_vdbg(efx, hw, efx->net_dev,
2548		   "%s: filter type %d index %d rxq %u set",
2549		   __func__, spec.type, ins_index, spec.dmaq_id);
2550	rc = efx_farch_filter_make_id(&spec, ins_index);
2551
2552out:
2553	spin_unlock_bh(&efx->filter_lock);
2554	return rc;
2555}
2556
2557static void
2558efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2559				   struct efx_farch_filter_table *table,
2560				   unsigned int filter_idx)
2561{
2562	static efx_oword_t filter;
2563
2564	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2565	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2566
2567	__clear_bit(filter_idx, table->used_bitmap);
2568	--table->used;
2569	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2570
2571	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2572
2573	/* If this filter required a greater search depth than
2574	 * any other, the search limit for its type can now be
2575	 * decreased.  However, it is hard to determine that
2576	 * unless the table has become completely empty - in
2577	 * which case, all its search limits can be set to 0.
2578	 */
2579	if (unlikely(table->used == 0)) {
2580		memset(table->search_limit, 0, sizeof(table->search_limit));
2581		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2582			efx_farch_filter_push_tx_limits(efx);
2583		else
2584			efx_farch_filter_push_rx_config(efx);
2585	}
2586}
2587
2588static int efx_farch_filter_remove(struct efx_nic *efx,
2589				   struct efx_farch_filter_table *table,
2590				   unsigned int filter_idx,
2591				   enum efx_filter_priority priority)
2592{
2593	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2594
2595	if (!test_bit(filter_idx, table->used_bitmap) ||
2596	    spec->priority != priority)
2597		return -ENOENT;
2598
2599	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2600		efx_farch_filter_init_rx_auto(efx, spec);
2601		efx_farch_filter_push_rx_config(efx);
2602	} else {
2603		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2604	}
2605
2606	return 0;
2607}
2608
2609int efx_farch_filter_remove_safe(struct efx_nic *efx,
2610				 enum efx_filter_priority priority,
2611				 u32 filter_id)
2612{
2613	struct efx_farch_filter_state *state = efx->filter_state;
2614	enum efx_farch_filter_table_id table_id;
2615	struct efx_farch_filter_table *table;
2616	unsigned int filter_idx;
2617	struct efx_farch_filter_spec *spec;
2618	int rc;
2619
2620	table_id = efx_farch_filter_id_table_id(filter_id);
2621	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2622		return -ENOENT;
2623	table = &state->table[table_id];
2624
2625	filter_idx = efx_farch_filter_id_index(filter_id);
2626	if (filter_idx >= table->size)
2627		return -ENOENT;
2628	spec = &table->spec[filter_idx];
2629
2630	spin_lock_bh(&efx->filter_lock);
2631	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2632	spin_unlock_bh(&efx->filter_lock);
2633
2634	return rc;
2635}
2636
2637int efx_farch_filter_get_safe(struct efx_nic *efx,
2638			      enum efx_filter_priority priority,
2639			      u32 filter_id, struct efx_filter_spec *spec_buf)
2640{
2641	struct efx_farch_filter_state *state = efx->filter_state;
2642	enum efx_farch_filter_table_id table_id;
2643	struct efx_farch_filter_table *table;
2644	struct efx_farch_filter_spec *spec;
2645	unsigned int filter_idx;
2646	int rc;
2647
2648	table_id = efx_farch_filter_id_table_id(filter_id);
2649	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2650		return -ENOENT;
2651	table = &state->table[table_id];
2652
2653	filter_idx = efx_farch_filter_id_index(filter_id);
2654	if (filter_idx >= table->size)
2655		return -ENOENT;
2656	spec = &table->spec[filter_idx];
2657
2658	spin_lock_bh(&efx->filter_lock);
2659
2660	if (test_bit(filter_idx, table->used_bitmap) &&
2661	    spec->priority == priority) {
2662		efx_farch_filter_to_gen_spec(spec_buf, spec);
2663		rc = 0;
2664	} else {
2665		rc = -ENOENT;
2666	}
2667
2668	spin_unlock_bh(&efx->filter_lock);
2669
2670	return rc;
2671}
2672
2673static void
2674efx_farch_filter_table_clear(struct efx_nic *efx,
2675			     enum efx_farch_filter_table_id table_id,
2676			     enum efx_filter_priority priority)
2677{
2678	struct efx_farch_filter_state *state = efx->filter_state;
2679	struct efx_farch_filter_table *table = &state->table[table_id];
2680	unsigned int filter_idx;
2681
2682	spin_lock_bh(&efx->filter_lock);
2683	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2684		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2685			efx_farch_filter_remove(efx, table,
2686						filter_idx, priority);
2687	}
2688	spin_unlock_bh(&efx->filter_lock);
2689}
2690
2691int efx_farch_filter_clear_rx(struct efx_nic *efx,
2692			       enum efx_filter_priority priority)
2693{
2694	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2695				     priority);
2696	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2697				     priority);
2698	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2699				     priority);
2700	return 0;
2701}
2702
2703u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2704				   enum efx_filter_priority priority)
2705{
2706	struct efx_farch_filter_state *state = efx->filter_state;
2707	enum efx_farch_filter_table_id table_id;
2708	struct efx_farch_filter_table *table;
2709	unsigned int filter_idx;
2710	u32 count = 0;
2711
2712	spin_lock_bh(&efx->filter_lock);
2713
2714	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2715	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2716	     table_id++) {
2717		table = &state->table[table_id];
2718		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2719			if (test_bit(filter_idx, table->used_bitmap) &&
2720			    table->spec[filter_idx].priority == priority)
2721				++count;
2722		}
2723	}
2724
2725	spin_unlock_bh(&efx->filter_lock);
2726
2727	return count;
2728}
2729
2730s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2731				enum efx_filter_priority priority,
2732				u32 *buf, u32 size)
2733{
2734	struct efx_farch_filter_state *state = efx->filter_state;
2735	enum efx_farch_filter_table_id table_id;
2736	struct efx_farch_filter_table *table;
2737	unsigned int filter_idx;
2738	s32 count = 0;
2739
2740	spin_lock_bh(&efx->filter_lock);
2741
2742	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2743	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2744	     table_id++) {
2745		table = &state->table[table_id];
2746		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2747			if (test_bit(filter_idx, table->used_bitmap) &&
2748			    table->spec[filter_idx].priority == priority) {
2749				if (count == size) {
2750					count = -EMSGSIZE;
2751					goto out;
2752				}
2753				buf[count++] = efx_farch_filter_make_id(
2754					&table->spec[filter_idx], filter_idx);
2755			}
2756		}
2757	}
2758out:
2759	spin_unlock_bh(&efx->filter_lock);
2760
2761	return count;
2762}
2763
2764/* Restore filter stater after reset */
2765void efx_farch_filter_table_restore(struct efx_nic *efx)
2766{
2767	struct efx_farch_filter_state *state = efx->filter_state;
2768	enum efx_farch_filter_table_id table_id;
2769	struct efx_farch_filter_table *table;
2770	efx_oword_t filter;
2771	unsigned int filter_idx;
2772
2773	spin_lock_bh(&efx->filter_lock);
2774
2775	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2776		table = &state->table[table_id];
2777
2778		/* Check whether this is a regular register table */
2779		if (table->step == 0)
2780			continue;
2781
2782		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2783			if (!test_bit(filter_idx, table->used_bitmap))
2784				continue;
2785			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2786			efx_writeo(efx, &filter,
2787				   table->offset + table->step * filter_idx);
2788		}
2789	}
2790
2791	efx_farch_filter_push_rx_config(efx);
2792	efx_farch_filter_push_tx_limits(efx);
2793
2794	spin_unlock_bh(&efx->filter_lock);
2795}
2796
2797void efx_farch_filter_table_remove(struct efx_nic *efx)
2798{
2799	struct efx_farch_filter_state *state = efx->filter_state;
2800	enum efx_farch_filter_table_id table_id;
2801
2802	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2803		kfree(state->table[table_id].used_bitmap);
2804		vfree(state->table[table_id].spec);
2805	}
2806	kfree(state);
2807}
2808
2809int efx_farch_filter_table_probe(struct efx_nic *efx)
2810{
2811	struct efx_farch_filter_state *state;
2812	struct efx_farch_filter_table *table;
2813	unsigned table_id;
2814
2815	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2816	if (!state)
2817		return -ENOMEM;
2818	efx->filter_state = state;
2819
2820	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2821		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2822		table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2823		table->offset = FR_BZ_RX_FILTER_TBL0;
2824		table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2825		table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2826	}
2827
2828	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2829		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2830		table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2831		table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2832		table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2833		table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2834
2835		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2836		table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2837		table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2838
2839		table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2840		table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2841		table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2842		table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2843		table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2844	}
2845
2846	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2847		table = &state->table[table_id];
2848		if (table->size == 0)
2849			continue;
2850		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2851					     sizeof(unsigned long),
2852					     GFP_KERNEL);
2853		if (!table->used_bitmap)
2854			goto fail;
2855		table->spec = vzalloc(table->size * sizeof(*table->spec));
2856		if (!table->spec)
2857			goto fail;
2858	}
2859
2860	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2861	if (table->size) {
2862		/* RX default filters must always exist */
2863		struct efx_farch_filter_spec *spec;
2864		unsigned i;
2865
2866		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2867			spec = &table->spec[i];
2868			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2869			efx_farch_filter_init_rx_auto(efx, spec);
2870			__set_bit(i, table->used_bitmap);
2871		}
2872	}
2873
2874	efx_farch_filter_push_rx_config(efx);
2875
2876	return 0;
2877
2878fail:
2879	efx_farch_filter_table_remove(efx);
2880	return -ENOMEM;
2881}
2882
2883/* Update scatter enable flags for filters pointing to our own RX queues */
2884void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2885{
2886	struct efx_farch_filter_state *state = efx->filter_state;
2887	enum efx_farch_filter_table_id table_id;
2888	struct efx_farch_filter_table *table;
2889	efx_oword_t filter;
2890	unsigned int filter_idx;
2891
2892	spin_lock_bh(&efx->filter_lock);
2893
2894	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2895	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2896	     table_id++) {
2897		table = &state->table[table_id];
2898
2899		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2900			if (!test_bit(filter_idx, table->used_bitmap) ||
2901			    table->spec[filter_idx].dmaq_id >=
2902			    efx->n_rx_channels)
2903				continue;
2904
2905			if (efx->rx_scatter)
2906				table->spec[filter_idx].flags |=
2907					EFX_FILTER_FLAG_RX_SCATTER;
2908			else
2909				table->spec[filter_idx].flags &=
2910					~EFX_FILTER_FLAG_RX_SCATTER;
2911
2912			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2913				/* Pushed by efx_farch_filter_push_rx_config() */
2914				continue;
2915
2916			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2917			efx_writeo(efx, &filter,
2918				   table->offset + table->step * filter_idx);
2919		}
2920	}
2921
2922	efx_farch_filter_push_rx_config(efx);
2923
2924	spin_unlock_bh(&efx->filter_lock);
2925}
2926
2927#ifdef CONFIG_RFS_ACCEL
2928
2929s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2930				struct efx_filter_spec *gen_spec)
2931{
2932	return efx_farch_filter_insert(efx, gen_spec, true);
2933}
2934
2935bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2936				     unsigned int index)
2937{
2938	struct efx_farch_filter_state *state = efx->filter_state;
2939	struct efx_farch_filter_table *table =
2940		&state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2941
2942	if (test_bit(index, table->used_bitmap) &&
2943	    table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2944	    rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2945				flow_id, index)) {
2946		efx_farch_filter_table_clear_entry(efx, table, index);
2947		return true;
2948	}
2949
2950	return false;
2951}
2952
2953#endif /* CONFIG_RFS_ACCEL */
2954
2955void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2956{
2957	struct net_device *net_dev = efx->net_dev;
2958	struct netdev_hw_addr *ha;
2959	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2960	u32 crc;
2961	int bit;
2962
2963	if (!efx_dev_registered(efx))
2964		return;
2965
2966	netif_addr_lock_bh(net_dev);
2967
2968	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2969
2970	/* Build multicast hash table */
2971	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2972		memset(mc_hash, 0xff, sizeof(*mc_hash));
2973	} else {
2974		memset(mc_hash, 0x00, sizeof(*mc_hash));
2975		netdev_for_each_mc_addr(ha, net_dev) {
2976			crc = ether_crc_le(ETH_ALEN, ha->addr);
2977			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2978			__set_bit_le(bit, mc_hash);
2979		}
2980
2981		/* Broadcast packets go through the multicast hash filter.
2982		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2983		 * so we always add bit 0xff to the mask.
2984		 */
2985		__set_bit_le(0xff, mc_hash);
2986	}
2987
2988	netif_addr_unlock_bh(net_dev);
2989}
2990