1/* QLogic qede NIC Driver
2* Copyright (c) 2015 QLogic Corporation
3*
4* This software is available under the terms of the GNU General Public License
5* (GPL) Version 2, available from the file COPYING in the main directory of
6* this source tree.
7*/
8
9#include <linux/module.h>
10#include <linux/pci.h>
11#include <linux/version.h>
12#include <linux/device.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/skbuff.h>
16#include <linux/errno.h>
17#include <linux/list.h>
18#include <linux/string.h>
19#include <linux/dma-mapping.h>
20#include <linux/interrupt.h>
21#include <asm/byteorder.h>
22#include <asm/param.h>
23#include <linux/io.h>
24#include <linux/netdev_features.h>
25#include <linux/udp.h>
26#include <linux/tcp.h>
27#include <net/vxlan.h>
28#include <linux/ip.h>
29#include <net/ipv6.h>
30#include <net/tcp.h>
31#include <linux/if_ether.h>
32#include <linux/if_vlan.h>
33#include <linux/pkt_sched.h>
34#include <linux/ethtool.h>
35#include <linux/in.h>
36#include <linux/random.h>
37#include <net/ip6_checksum.h>
38#include <linux/bitops.h>
39
40#include "qede.h"
41
42static const char version[] = "QLogic QL4xxx 40G/100G Ethernet Driver qede "
43			      DRV_MODULE_VERSION "\n";
44
45MODULE_DESCRIPTION("QLogic 40G/100G Ethernet Driver");
46MODULE_LICENSE("GPL");
47MODULE_VERSION(DRV_MODULE_VERSION);
48
49static uint debug;
50module_param(debug, uint, 0);
51MODULE_PARM_DESC(debug, " Default debug msglevel");
52
53static const struct qed_eth_ops *qed_ops;
54
55#define CHIP_NUM_57980S_40		0x1634
56#define CHIP_NUM_57980S_10		0x1635
57#define CHIP_NUM_57980S_MF		0x1636
58#define CHIP_NUM_57980S_100		0x1644
59#define CHIP_NUM_57980S_50		0x1654
60#define CHIP_NUM_57980S_25		0x1656
61
62#ifndef PCI_DEVICE_ID_NX2_57980E
63#define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
64#define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
65#define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
66#define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
67#define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
68#define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
69#endif
70
71static const struct pci_device_id qede_pci_tbl[] = {
72	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 },
73	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 },
74	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 },
75	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 },
76	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 },
77	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 },
78	{ 0 }
79};
80
81MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
82
83static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
84
85#define TX_TIMEOUT		(5 * HZ)
86
87static void qede_remove(struct pci_dev *pdev);
88static int qede_alloc_rx_buffer(struct qede_dev *edev,
89				struct qede_rx_queue *rxq);
90static void qede_link_update(void *dev, struct qed_link_output *link);
91
92static struct pci_driver qede_pci_driver = {
93	.name = "qede",
94	.id_table = qede_pci_tbl,
95	.probe = qede_probe,
96	.remove = qede_remove,
97};
98
99static struct qed_eth_cb_ops qede_ll_ops = {
100	{
101		.link_update = qede_link_update,
102	},
103};
104
105static int qede_netdev_event(struct notifier_block *this, unsigned long event,
106			     void *ptr)
107{
108	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
109	struct ethtool_drvinfo drvinfo;
110	struct qede_dev *edev;
111
112	/* Currently only support name change */
113	if (event != NETDEV_CHANGENAME)
114		goto done;
115
116	/* Check whether this is a qede device */
117	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
118		goto done;
119
120	memset(&drvinfo, 0, sizeof(drvinfo));
121	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
122	if (strcmp(drvinfo.driver, "qede"))
123		goto done;
124	edev = netdev_priv(ndev);
125
126	/* Notify qed of the name change */
127	if (!edev->ops || !edev->ops->common)
128		goto done;
129	edev->ops->common->set_id(edev->cdev, edev->ndev->name,
130				  "qede");
131
132done:
133	return NOTIFY_DONE;
134}
135
136static struct notifier_block qede_netdev_notifier = {
137	.notifier_call = qede_netdev_event,
138};
139
140static
141int __init qede_init(void)
142{
143	int ret;
144	u32 qed_ver;
145
146	pr_notice("qede_init: %s\n", version);
147
148	qed_ver = qed_get_protocol_version(QED_PROTOCOL_ETH);
149	if (qed_ver !=  QEDE_ETH_INTERFACE_VERSION) {
150		pr_notice("Version mismatch [%08x != %08x]\n",
151			  qed_ver,
152			  QEDE_ETH_INTERFACE_VERSION);
153		return -EINVAL;
154	}
155
156	qed_ops = qed_get_eth_ops(QEDE_ETH_INTERFACE_VERSION);
157	if (!qed_ops) {
158		pr_notice("Failed to get qed ethtool operations\n");
159		return -EINVAL;
160	}
161
162	/* Must register notifier before pci ops, since we might miss
163	 * interface rename after pci probe and netdev registeration.
164	 */
165	ret = register_netdevice_notifier(&qede_netdev_notifier);
166	if (ret) {
167		pr_notice("Failed to register netdevice_notifier\n");
168		qed_put_eth_ops();
169		return -EINVAL;
170	}
171
172	ret = pci_register_driver(&qede_pci_driver);
173	if (ret) {
174		pr_notice("Failed to register driver\n");
175		unregister_netdevice_notifier(&qede_netdev_notifier);
176		qed_put_eth_ops();
177		return -EINVAL;
178	}
179
180	return 0;
181}
182
183static void __exit qede_cleanup(void)
184{
185	pr_notice("qede_cleanup called\n");
186
187	unregister_netdevice_notifier(&qede_netdev_notifier);
188	pci_unregister_driver(&qede_pci_driver);
189	qed_put_eth_ops();
190}
191
192module_init(qede_init);
193module_exit(qede_cleanup);
194
195/* -------------------------------------------------------------------------
196 * START OF FAST-PATH
197 * -------------------------------------------------------------------------
198 */
199
200/* Unmap the data and free skb */
201static int qede_free_tx_pkt(struct qede_dev *edev,
202			    struct qede_tx_queue *txq,
203			    int *len)
204{
205	u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
206	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
207	struct eth_tx_1st_bd *first_bd;
208	struct eth_tx_bd *tx_data_bd;
209	int bds_consumed = 0;
210	int nbds;
211	bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
212	int i, split_bd_len = 0;
213
214	if (unlikely(!skb)) {
215		DP_ERR(edev,
216		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
217		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
218		return -1;
219	}
220
221	*len = skb->len;
222
223	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
224
225	bds_consumed++;
226
227	nbds = first_bd->data.nbds;
228
229	if (data_split) {
230		struct eth_tx_bd *split = (struct eth_tx_bd *)
231			qed_chain_consume(&txq->tx_pbl);
232		split_bd_len = BD_UNMAP_LEN(split);
233		bds_consumed++;
234	}
235	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
236		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
237
238	/* Unmap the data of the skb frags */
239	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
240		tx_data_bd = (struct eth_tx_bd *)
241			qed_chain_consume(&txq->tx_pbl);
242		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
243			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
244	}
245
246	while (bds_consumed++ < nbds)
247		qed_chain_consume(&txq->tx_pbl);
248
249	/* Free skb */
250	dev_kfree_skb_any(skb);
251	txq->sw_tx_ring[idx].skb = NULL;
252	txq->sw_tx_ring[idx].flags = 0;
253
254	return 0;
255}
256
257/* Unmap the data and free skb when mapping failed during start_xmit */
258static void qede_free_failed_tx_pkt(struct qede_dev *edev,
259				    struct qede_tx_queue *txq,
260				    struct eth_tx_1st_bd *first_bd,
261				    int nbd,
262				    bool data_split)
263{
264	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
265	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
266	struct eth_tx_bd *tx_data_bd;
267	int i, split_bd_len = 0;
268
269	/* Return prod to its position before this skb was handled */
270	qed_chain_set_prod(&txq->tx_pbl,
271			   le16_to_cpu(txq->tx_db.data.bd_prod),
272			   first_bd);
273
274	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
275
276	if (data_split) {
277		struct eth_tx_bd *split = (struct eth_tx_bd *)
278					  qed_chain_produce(&txq->tx_pbl);
279		split_bd_len = BD_UNMAP_LEN(split);
280		nbd--;
281	}
282
283	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
284		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
285
286	/* Unmap the data of the skb frags */
287	for (i = 0; i < nbd; i++) {
288		tx_data_bd = (struct eth_tx_bd *)
289			qed_chain_produce(&txq->tx_pbl);
290		if (tx_data_bd->nbytes)
291			dma_unmap_page(&edev->pdev->dev,
292				       BD_UNMAP_ADDR(tx_data_bd),
293				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
294	}
295
296	/* Return again prod to its position before this skb was handled */
297	qed_chain_set_prod(&txq->tx_pbl,
298			   le16_to_cpu(txq->tx_db.data.bd_prod),
299			   first_bd);
300
301	/* Free skb */
302	dev_kfree_skb_any(skb);
303	txq->sw_tx_ring[idx].skb = NULL;
304	txq->sw_tx_ring[idx].flags = 0;
305}
306
307static u32 qede_xmit_type(struct qede_dev *edev,
308			  struct sk_buff *skb,
309			  int *ipv6_ext)
310{
311	u32 rc = XMIT_L4_CSUM;
312	__be16 l3_proto;
313
314	if (skb->ip_summed != CHECKSUM_PARTIAL)
315		return XMIT_PLAIN;
316
317	l3_proto = vlan_get_protocol(skb);
318	if (l3_proto == htons(ETH_P_IPV6) &&
319	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
320		*ipv6_ext = 1;
321
322	if (skb_is_gso(skb))
323		rc |= XMIT_LSO;
324
325	return rc;
326}
327
328static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
329					 struct eth_tx_2nd_bd *second_bd,
330					 struct eth_tx_3rd_bd *third_bd)
331{
332	u8 l4_proto;
333	u16 bd2_bits = 0, bd2_bits2 = 0;
334
335	bd2_bits2 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
336
337	bd2_bits |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
338		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
339		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
340
341	bd2_bits2 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
342		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
343
344	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
345		l4_proto = ipv6_hdr(skb)->nexthdr;
346	else
347		l4_proto = ip_hdr(skb)->protocol;
348
349	if (l4_proto == IPPROTO_UDP)
350		bd2_bits2 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
351
352	if (third_bd) {
353		third_bd->data.bitfields |=
354			((tcp_hdrlen(skb) / 4) &
355			 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
356			ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT;
357	}
358
359	second_bd->data.bitfields = cpu_to_le16(bd2_bits);
360	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
361}
362
363static int map_frag_to_bd(struct qede_dev *edev,
364			  skb_frag_t *frag,
365			  struct eth_tx_bd *bd)
366{
367	dma_addr_t mapping;
368
369	/* Map skb non-linear frag data for DMA */
370	mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
371				   skb_frag_size(frag),
372				   DMA_TO_DEVICE);
373	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
374		DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
375		return -ENOMEM;
376	}
377
378	/* Setup the data pointer of the frag data */
379	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
380
381	return 0;
382}
383
384/* Main transmit function */
385static
386netdev_tx_t qede_start_xmit(struct sk_buff *skb,
387			    struct net_device *ndev)
388{
389	struct qede_dev *edev = netdev_priv(ndev);
390	struct netdev_queue *netdev_txq;
391	struct qede_tx_queue *txq;
392	struct eth_tx_1st_bd *first_bd;
393	struct eth_tx_2nd_bd *second_bd = NULL;
394	struct eth_tx_3rd_bd *third_bd = NULL;
395	struct eth_tx_bd *tx_data_bd = NULL;
396	u16 txq_index;
397	u8 nbd = 0;
398	dma_addr_t mapping;
399	int rc, frag_idx = 0, ipv6_ext = 0;
400	u8 xmit_type;
401	u16 idx;
402	u16 hlen;
403	bool data_split;
404
405	/* Get tx-queue context and netdev index */
406	txq_index = skb_get_queue_mapping(skb);
407	WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
408	txq = QEDE_TX_QUEUE(edev, txq_index);
409	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
410
411	/* Current code doesn't support SKB linearization, since the max number
412	 * of skb frags can be passed in the FW HSI.
413	 */
414	BUILD_BUG_ON(MAX_SKB_FRAGS > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET);
415
416	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
417			       (MAX_SKB_FRAGS + 1));
418
419	xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
420
421	/* Fill the entry in the SW ring and the BDs in the FW ring */
422	idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
423	txq->sw_tx_ring[idx].skb = skb;
424	first_bd = (struct eth_tx_1st_bd *)
425		   qed_chain_produce(&txq->tx_pbl);
426	memset(first_bd, 0, sizeof(*first_bd));
427	first_bd->data.bd_flags.bitfields =
428		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
429
430	/* Map skb linear data for DMA and set in the first BD */
431	mapping = dma_map_single(&edev->pdev->dev, skb->data,
432				 skb_headlen(skb), DMA_TO_DEVICE);
433	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
434		DP_NOTICE(edev, "SKB mapping failed\n");
435		qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
436		return NETDEV_TX_OK;
437	}
438	nbd++;
439	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
440
441	/* In case there is IPv6 with extension headers or LSO we need 2nd and
442	 * 3rd BDs.
443	 */
444	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
445		second_bd = (struct eth_tx_2nd_bd *)
446			qed_chain_produce(&txq->tx_pbl);
447		memset(second_bd, 0, sizeof(*second_bd));
448
449		nbd++;
450		third_bd = (struct eth_tx_3rd_bd *)
451			qed_chain_produce(&txq->tx_pbl);
452		memset(third_bd, 0, sizeof(*third_bd));
453
454		nbd++;
455		/* We need to fill in additional data in second_bd... */
456		tx_data_bd = (struct eth_tx_bd *)second_bd;
457	}
458
459	if (skb_vlan_tag_present(skb)) {
460		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
461		first_bd->data.bd_flags.bitfields |=
462			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
463	}
464
465	/* Fill the parsing flags & params according to the requested offload */
466	if (xmit_type & XMIT_L4_CSUM) {
467		/* We don't re-calculate IP checksum as it is already done by
468		 * the upper stack
469		 */
470		first_bd->data.bd_flags.bitfields |=
471			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
472
473		/* If the packet is IPv6 with extension header, indicate that
474		 * to FW and pass few params, since the device cracker doesn't
475		 * support parsing IPv6 with extension header/s.
476		 */
477		if (unlikely(ipv6_ext))
478			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
479	}
480
481	if (xmit_type & XMIT_LSO) {
482		first_bd->data.bd_flags.bitfields |=
483			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
484		third_bd->data.lso_mss =
485			cpu_to_le16(skb_shinfo(skb)->gso_size);
486
487		first_bd->data.bd_flags.bitfields |=
488		1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
489		hlen = skb_transport_header(skb) +
490		       tcp_hdrlen(skb) - skb->data;
491
492		/* @@@TBD - if will not be removed need to check */
493		third_bd->data.bitfields |=
494			(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
495
496		/* Make life easier for FW guys who can't deal with header and
497		 * data on same BD. If we need to split, use the second bd...
498		 */
499		if (unlikely(skb_headlen(skb) > hlen)) {
500			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
501				   "TSO split header size is %d (%x:%x)\n",
502				   first_bd->nbytes, first_bd->addr.hi,
503				   first_bd->addr.lo);
504
505			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
506					   le32_to_cpu(first_bd->addr.lo)) +
507					   hlen;
508
509			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
510					      le16_to_cpu(first_bd->nbytes) -
511					      hlen);
512
513			/* this marks the BD as one that has no
514			 * individual mapping
515			 */
516			txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
517
518			first_bd->nbytes = cpu_to_le16(hlen);
519
520			tx_data_bd = (struct eth_tx_bd *)third_bd;
521			data_split = true;
522		}
523	}
524
525	/* Handle fragmented skb */
526	/* special handle for frags inside 2nd and 3rd bds.. */
527	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
528		rc = map_frag_to_bd(edev,
529				    &skb_shinfo(skb)->frags[frag_idx],
530				    tx_data_bd);
531		if (rc) {
532			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
533						data_split);
534			return NETDEV_TX_OK;
535		}
536
537		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
538			tx_data_bd = (struct eth_tx_bd *)third_bd;
539		else
540			tx_data_bd = NULL;
541
542		frag_idx++;
543	}
544
545	/* map last frags into 4th, 5th .... */
546	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
547		tx_data_bd = (struct eth_tx_bd *)
548			     qed_chain_produce(&txq->tx_pbl);
549
550		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
551
552		rc = map_frag_to_bd(edev,
553				    &skb_shinfo(skb)->frags[frag_idx],
554				    tx_data_bd);
555		if (rc) {
556			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
557						data_split);
558			return NETDEV_TX_OK;
559		}
560	}
561
562	/* update the first BD with the actual num BDs */
563	first_bd->data.nbds = nbd;
564
565	netdev_tx_sent_queue(netdev_txq, skb->len);
566
567	skb_tx_timestamp(skb);
568
569	/* Advance packet producer only before sending the packet since mapping
570	 * of pages may fail.
571	 */
572	txq->sw_tx_prod++;
573
574	/* 'next page' entries are counted in the producer value */
575	txq->tx_db.data.bd_prod =
576		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
577
578	/* wmb makes sure that the BDs data is updated before updating the
579	 * producer, otherwise FW may read old data from the BDs.
580	 */
581	wmb();
582	barrier();
583	writel(txq->tx_db.raw, txq->doorbell_addr);
584
585	/* mmiowb is needed to synchronize doorbell writes from more than one
586	 * processor. It guarantees that the write arrives to the device before
587	 * the queue lock is released and another start_xmit is called (possibly
588	 * on another CPU). Without this barrier, the next doorbell can bypass
589	 * this doorbell. This is applicable to IA64/Altix systems.
590	 */
591	mmiowb();
592
593	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
594		      < (MAX_SKB_FRAGS + 1))) {
595		netif_tx_stop_queue(netdev_txq);
596		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
597			   "Stop queue was called\n");
598		/* paired memory barrier is in qede_tx_int(), we have to keep
599		 * ordering of set_bit() in netif_tx_stop_queue() and read of
600		 * fp->bd_tx_cons
601		 */
602		smp_mb();
603
604		if (qed_chain_get_elem_left(&txq->tx_pbl)
605		     >= (MAX_SKB_FRAGS + 1) &&
606		    (edev->state == QEDE_STATE_OPEN)) {
607			netif_tx_wake_queue(netdev_txq);
608			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
609				   "Wake queue was called\n");
610		}
611	}
612
613	return NETDEV_TX_OK;
614}
615
616static int qede_txq_has_work(struct qede_tx_queue *txq)
617{
618	u16 hw_bd_cons;
619
620	/* Tell compiler that consumer and producer can change */
621	barrier();
622	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
623	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
624		return 0;
625
626	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
627}
628
629static int qede_tx_int(struct qede_dev *edev,
630		       struct qede_tx_queue *txq)
631{
632	struct netdev_queue *netdev_txq;
633	u16 hw_bd_cons;
634	unsigned int pkts_compl = 0, bytes_compl = 0;
635	int rc;
636
637	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
638
639	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
640	barrier();
641
642	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
643		int len = 0;
644
645		rc = qede_free_tx_pkt(edev, txq, &len);
646		if (rc) {
647			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
648				  hw_bd_cons,
649				  qed_chain_get_cons_idx(&txq->tx_pbl));
650			break;
651		}
652
653		bytes_compl += len;
654		pkts_compl++;
655		txq->sw_tx_cons++;
656	}
657
658	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
659
660	/* Need to make the tx_bd_cons update visible to start_xmit()
661	 * before checking for netif_tx_queue_stopped().  Without the
662	 * memory barrier, there is a small possibility that
663	 * start_xmit() will miss it and cause the queue to be stopped
664	 * forever.
665	 * On the other hand we need an rmb() here to ensure the proper
666	 * ordering of bit testing in the following
667	 * netif_tx_queue_stopped(txq) call.
668	 */
669	smp_mb();
670
671	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
672		/* Taking tx_lock is needed to prevent reenabling the queue
673		 * while it's empty. This could have happen if rx_action() gets
674		 * suspended in qede_tx_int() after the condition before
675		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
676		 *
677		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
678		 * sends some packets consuming the whole queue again->
679		 * stops the queue
680		 */
681
682		__netif_tx_lock(netdev_txq, smp_processor_id());
683
684		if ((netif_tx_queue_stopped(netdev_txq)) &&
685		    (edev->state == QEDE_STATE_OPEN) &&
686		    (qed_chain_get_elem_left(&txq->tx_pbl)
687		      >= (MAX_SKB_FRAGS + 1))) {
688			netif_tx_wake_queue(netdev_txq);
689			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
690				   "Wake queue was called\n");
691		}
692
693		__netif_tx_unlock(netdev_txq);
694	}
695
696	return 0;
697}
698
699static bool qede_has_rx_work(struct qede_rx_queue *rxq)
700{
701	u16 hw_comp_cons, sw_comp_cons;
702
703	/* Tell compiler that status block fields can change */
704	barrier();
705
706	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
707	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
708
709	return hw_comp_cons != sw_comp_cons;
710}
711
712static bool qede_has_tx_work(struct qede_fastpath *fp)
713{
714	u8 tc;
715
716	for (tc = 0; tc < fp->edev->num_tc; tc++)
717		if (qede_txq_has_work(&fp->txqs[tc]))
718			return true;
719	return false;
720}
721
722/* This function copies the Rx buffer from the CONS position to the PROD
723 * position, since we failed to allocate a new Rx buffer.
724 */
725static void qede_reuse_rx_data(struct qede_rx_queue *rxq)
726{
727	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
728	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
729	struct sw_rx_data *sw_rx_data_cons =
730		&rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
731	struct sw_rx_data *sw_rx_data_prod =
732		&rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
733
734	dma_unmap_addr_set(sw_rx_data_prod, mapping,
735			   dma_unmap_addr(sw_rx_data_cons, mapping));
736
737	sw_rx_data_prod->data = sw_rx_data_cons->data;
738	memcpy(rx_bd_prod, rx_bd_cons, sizeof(struct eth_rx_bd));
739
740	rxq->sw_rx_cons++;
741	rxq->sw_rx_prod++;
742}
743
744static inline void qede_update_rx_prod(struct qede_dev *edev,
745				       struct qede_rx_queue *rxq)
746{
747	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
748	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
749	struct eth_rx_prod_data rx_prods = {0};
750
751	/* Update producers */
752	rx_prods.bd_prod = cpu_to_le16(bd_prod);
753	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
754
755	/* Make sure that the BD and SGE data is updated before updating the
756	 * producers since FW might read the BD/SGE right after the producer
757	 * is updated.
758	 */
759	wmb();
760
761	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
762			(u32 *)&rx_prods);
763
764	/* mmiowb is needed to synchronize doorbell writes from more than one
765	 * processor. It guarantees that the write arrives to the device before
766	 * the napi lock is released and another qede_poll is called (possibly
767	 * on another CPU). Without this barrier, the next doorbell can bypass
768	 * this doorbell. This is applicable to IA64/Altix systems.
769	 */
770	mmiowb();
771}
772
773static u32 qede_get_rxhash(struct qede_dev *edev,
774			   u8 bitfields,
775			   __le32 rss_hash,
776			   enum pkt_hash_types *rxhash_type)
777{
778	enum rss_hash_type htype;
779
780	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
781
782	if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
783		*rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
784				(htype == RSS_HASH_TYPE_IPV6)) ?
785				PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
786		return le32_to_cpu(rss_hash);
787	}
788	*rxhash_type = PKT_HASH_TYPE_NONE;
789	return 0;
790}
791
792static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
793{
794	skb_checksum_none_assert(skb);
795
796	if (csum_flag & QEDE_CSUM_UNNECESSARY)
797		skb->ip_summed = CHECKSUM_UNNECESSARY;
798}
799
800static inline void qede_skb_receive(struct qede_dev *edev,
801				    struct qede_fastpath *fp,
802				    struct sk_buff *skb,
803				    u16 vlan_tag)
804{
805	if (vlan_tag)
806		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
807				       vlan_tag);
808
809	napi_gro_receive(&fp->napi, skb);
810}
811
812static u8 qede_check_csum(u16 flag)
813{
814	u16 csum_flag = 0;
815	u8 csum = 0;
816
817	if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
818	     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) {
819		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
820			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
821		csum = QEDE_CSUM_UNNECESSARY;
822	}
823
824	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
825		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
826
827	if (csum_flag & flag)
828		return QEDE_CSUM_ERROR;
829
830	return csum;
831}
832
833static int qede_rx_int(struct qede_fastpath *fp, int budget)
834{
835	struct qede_dev *edev = fp->edev;
836	struct qede_rx_queue *rxq = fp->rxq;
837
838	u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
839	int rx_pkt = 0;
840	u8 csum_flag;
841
842	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
843	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
844
845	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
846	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
847	 * read before it is written by FW, then FW writes CQE and SB, and then
848	 * the CPU reads the hw_comp_cons, it will use an old CQE.
849	 */
850	rmb();
851
852	/* Loop to complete all indicated BDs */
853	while (sw_comp_cons != hw_comp_cons) {
854		struct eth_fast_path_rx_reg_cqe *fp_cqe;
855		enum pkt_hash_types rxhash_type;
856		enum eth_rx_cqe_type cqe_type;
857		struct sw_rx_data *sw_rx_data;
858		union eth_rx_cqe *cqe;
859		struct sk_buff *skb;
860		u16 len, pad;
861		u32 rx_hash;
862		u8 *data;
863
864		/* Get the CQE from the completion ring */
865		cqe = (union eth_rx_cqe *)
866			qed_chain_consume(&rxq->rx_comp_ring);
867		cqe_type = cqe->fast_path_regular.type;
868
869		if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
870			edev->ops->eth_cqe_completion(
871					edev->cdev, fp->rss_id,
872					(struct eth_slow_path_rx_cqe *)cqe);
873			goto next_cqe;
874		}
875
876		/* Get the data from the SW ring */
877		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
878		sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
879		data = sw_rx_data->data;
880
881		fp_cqe = &cqe->fast_path_regular;
882		len =  le16_to_cpu(fp_cqe->pkt_len);
883		pad = fp_cqe->placement_offset;
884
885		/* For every Rx BD consumed, we allocate a new BD so the BD ring
886		 * is always with a fixed size. If allocation fails, we take the
887		 * consumed BD and return it to the ring in the PROD position.
888		 * The packet that was received on that BD will be dropped (and
889		 * not passed to the upper stack).
890		 */
891		if (likely(qede_alloc_rx_buffer(edev, rxq) == 0)) {
892			dma_unmap_single(&edev->pdev->dev,
893					 dma_unmap_addr(sw_rx_data, mapping),
894					 rxq->rx_buf_size, DMA_FROM_DEVICE);
895
896			/* If this is an error packet then drop it */
897			parse_flag =
898			le16_to_cpu(cqe->fast_path_regular.pars_flags.flags);
899			csum_flag = qede_check_csum(parse_flag);
900			if (csum_flag == QEDE_CSUM_ERROR) {
901				DP_NOTICE(edev,
902					  "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
903					  sw_comp_cons, parse_flag);
904				rxq->rx_hw_errors++;
905				kfree(data);
906				goto next_rx;
907			}
908
909			skb = build_skb(data, 0);
910
911			if (unlikely(!skb)) {
912				DP_NOTICE(edev,
913					  "Build_skb failed, dropping incoming packet\n");
914				kfree(data);
915				rxq->rx_alloc_errors++;
916				goto next_rx;
917			}
918
919			skb_reserve(skb, pad);
920
921		} else {
922			DP_NOTICE(edev,
923				  "New buffer allocation failed, dropping incoming packet and reusing its buffer\n");
924			qede_reuse_rx_data(rxq);
925			rxq->rx_alloc_errors++;
926			goto next_cqe;
927		}
928
929		sw_rx_data->data = NULL;
930
931		skb_put(skb, len);
932
933		skb->protocol = eth_type_trans(skb, edev->ndev);
934
935		rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
936					  fp_cqe->rss_hash,
937					  &rxhash_type);
938
939		skb_set_hash(skb, rx_hash, rxhash_type);
940
941		qede_set_skb_csum(skb, csum_flag);
942
943		skb_record_rx_queue(skb, fp->rss_id);
944
945		qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
946
947		qed_chain_consume(&rxq->rx_bd_ring);
948
949next_rx:
950		rxq->sw_rx_cons++;
951		rx_pkt++;
952
953next_cqe: /* don't consume bd rx buffer */
954		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
955		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
956		/* CR TPA - revisit how to handle budget in TPA perhaps
957		 * increase on "end"
958		 */
959		if (rx_pkt == budget)
960			break;
961	} /* repeat while sw_comp_cons != hw_comp_cons... */
962
963	/* Update producers */
964	qede_update_rx_prod(edev, rxq);
965
966	return rx_pkt;
967}
968
969static int qede_poll(struct napi_struct *napi, int budget)
970{
971	int work_done = 0;
972	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
973						 napi);
974	struct qede_dev *edev = fp->edev;
975
976	while (1) {
977		u8 tc;
978
979		for (tc = 0; tc < edev->num_tc; tc++)
980			if (qede_txq_has_work(&fp->txqs[tc]))
981				qede_tx_int(edev, &fp->txqs[tc]);
982
983		if (qede_has_rx_work(fp->rxq)) {
984			work_done += qede_rx_int(fp, budget - work_done);
985
986			/* must not complete if we consumed full budget */
987			if (work_done >= budget)
988				break;
989		}
990
991		/* Fall out from the NAPI loop if needed */
992		if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
993			qed_sb_update_sb_idx(fp->sb_info);
994			/* *_has_*_work() reads the status block,
995			 * thus we need to ensure that status block indices
996			 * have been actually read (qed_sb_update_sb_idx)
997			 * prior to this check (*_has_*_work) so that
998			 * we won't write the "newer" value of the status block
999			 * to HW (if there was a DMA right after
1000			 * qede_has_rx_work and if there is no rmb, the memory
1001			 * reading (qed_sb_update_sb_idx) may be postponed
1002			 * to right before *_ack_sb). In this case there
1003			 * will never be another interrupt until there is
1004			 * another update of the status block, while there
1005			 * is still unhandled work.
1006			 */
1007			rmb();
1008
1009			if (!(qede_has_rx_work(fp->rxq) ||
1010			      qede_has_tx_work(fp))) {
1011				napi_complete(napi);
1012				/* Update and reenable interrupts */
1013				qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1014					   1 /*update*/);
1015				break;
1016			}
1017		}
1018	}
1019
1020	return work_done;
1021}
1022
1023static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1024{
1025	struct qede_fastpath *fp = fp_cookie;
1026
1027	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1028
1029	napi_schedule_irqoff(&fp->napi);
1030	return IRQ_HANDLED;
1031}
1032
1033/* -------------------------------------------------------------------------
1034 * END OF FAST-PATH
1035 * -------------------------------------------------------------------------
1036 */
1037
1038static int qede_open(struct net_device *ndev);
1039static int qede_close(struct net_device *ndev);
1040static int qede_set_mac_addr(struct net_device *ndev, void *p);
1041static void qede_set_rx_mode(struct net_device *ndev);
1042static void qede_config_rx_mode(struct net_device *ndev);
1043
1044static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1045				 enum qed_filter_xcast_params_type opcode,
1046				 unsigned char mac[ETH_ALEN])
1047{
1048	struct qed_filter_params filter_cmd;
1049
1050	memset(&filter_cmd, 0, sizeof(filter_cmd));
1051	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1052	filter_cmd.filter.ucast.type = opcode;
1053	filter_cmd.filter.ucast.mac_valid = 1;
1054	ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1055
1056	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1057}
1058
1059void qede_fill_by_demand_stats(struct qede_dev *edev)
1060{
1061	struct qed_eth_stats stats;
1062
1063	edev->ops->get_vport_stats(edev->cdev, &stats);
1064	edev->stats.no_buff_discards = stats.no_buff_discards;
1065	edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1066	edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1067	edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1068	edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1069	edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1070	edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1071	edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1072	edev->stats.mac_filter_discards = stats.mac_filter_discards;
1073
1074	edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1075	edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1076	edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1077	edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1078	edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1079	edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1080	edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1081	edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1082	edev->stats.coalesced_events = stats.tpa_coalesced_events;
1083	edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1084	edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1085	edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1086
1087	edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1088	edev->stats.rx_127_byte_packets = stats.rx_127_byte_packets;
1089	edev->stats.rx_255_byte_packets = stats.rx_255_byte_packets;
1090	edev->stats.rx_511_byte_packets = stats.rx_511_byte_packets;
1091	edev->stats.rx_1023_byte_packets = stats.rx_1023_byte_packets;
1092	edev->stats.rx_1518_byte_packets = stats.rx_1518_byte_packets;
1093	edev->stats.rx_1522_byte_packets = stats.rx_1522_byte_packets;
1094	edev->stats.rx_2047_byte_packets = stats.rx_2047_byte_packets;
1095	edev->stats.rx_4095_byte_packets = stats.rx_4095_byte_packets;
1096	edev->stats.rx_9216_byte_packets = stats.rx_9216_byte_packets;
1097	edev->stats.rx_16383_byte_packets = stats.rx_16383_byte_packets;
1098	edev->stats.rx_crc_errors = stats.rx_crc_errors;
1099	edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1100	edev->stats.rx_pause_frames = stats.rx_pause_frames;
1101	edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1102	edev->stats.rx_align_errors = stats.rx_align_errors;
1103	edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1104	edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1105	edev->stats.rx_jabbers = stats.rx_jabbers;
1106	edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1107	edev->stats.rx_fragments = stats.rx_fragments;
1108	edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1109	edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1110	edev->stats.tx_128_to_255_byte_packets =
1111				stats.tx_128_to_255_byte_packets;
1112	edev->stats.tx_256_to_511_byte_packets =
1113				stats.tx_256_to_511_byte_packets;
1114	edev->stats.tx_512_to_1023_byte_packets =
1115				stats.tx_512_to_1023_byte_packets;
1116	edev->stats.tx_1024_to_1518_byte_packets =
1117				stats.tx_1024_to_1518_byte_packets;
1118	edev->stats.tx_1519_to_2047_byte_packets =
1119				stats.tx_1519_to_2047_byte_packets;
1120	edev->stats.tx_2048_to_4095_byte_packets =
1121				stats.tx_2048_to_4095_byte_packets;
1122	edev->stats.tx_4096_to_9216_byte_packets =
1123				stats.tx_4096_to_9216_byte_packets;
1124	edev->stats.tx_9217_to_16383_byte_packets =
1125				stats.tx_9217_to_16383_byte_packets;
1126	edev->stats.tx_pause_frames = stats.tx_pause_frames;
1127	edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1128	edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1129	edev->stats.tx_total_collisions = stats.tx_total_collisions;
1130	edev->stats.brb_truncates = stats.brb_truncates;
1131	edev->stats.brb_discards = stats.brb_discards;
1132	edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1133}
1134
1135static struct rtnl_link_stats64 *qede_get_stats64(
1136			    struct net_device *dev,
1137			    struct rtnl_link_stats64 *stats)
1138{
1139	struct qede_dev *edev = netdev_priv(dev);
1140
1141	qede_fill_by_demand_stats(edev);
1142
1143	stats->rx_packets = edev->stats.rx_ucast_pkts +
1144			    edev->stats.rx_mcast_pkts +
1145			    edev->stats.rx_bcast_pkts;
1146	stats->tx_packets = edev->stats.tx_ucast_pkts +
1147			    edev->stats.tx_mcast_pkts +
1148			    edev->stats.tx_bcast_pkts;
1149
1150	stats->rx_bytes = edev->stats.rx_ucast_bytes +
1151			  edev->stats.rx_mcast_bytes +
1152			  edev->stats.rx_bcast_bytes;
1153
1154	stats->tx_bytes = edev->stats.tx_ucast_bytes +
1155			  edev->stats.tx_mcast_bytes +
1156			  edev->stats.tx_bcast_bytes;
1157
1158	stats->tx_errors = edev->stats.tx_err_drop_pkts;
1159	stats->multicast = edev->stats.rx_mcast_pkts +
1160			   edev->stats.rx_bcast_pkts;
1161
1162	stats->rx_fifo_errors = edev->stats.no_buff_discards;
1163
1164	stats->collisions = edev->stats.tx_total_collisions;
1165	stats->rx_crc_errors = edev->stats.rx_crc_errors;
1166	stats->rx_frame_errors = edev->stats.rx_align_errors;
1167
1168	return stats;
1169}
1170
1171static const struct net_device_ops qede_netdev_ops = {
1172	.ndo_open = qede_open,
1173	.ndo_stop = qede_close,
1174	.ndo_start_xmit = qede_start_xmit,
1175	.ndo_set_rx_mode = qede_set_rx_mode,
1176	.ndo_set_mac_address = qede_set_mac_addr,
1177	.ndo_validate_addr = eth_validate_addr,
1178	.ndo_change_mtu = qede_change_mtu,
1179	.ndo_get_stats64 = qede_get_stats64,
1180};
1181
1182/* -------------------------------------------------------------------------
1183 * START OF PROBE / REMOVE
1184 * -------------------------------------------------------------------------
1185 */
1186
1187static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
1188					    struct pci_dev *pdev,
1189					    struct qed_dev_eth_info *info,
1190					    u32 dp_module,
1191					    u8 dp_level)
1192{
1193	struct net_device *ndev;
1194	struct qede_dev *edev;
1195
1196	ndev = alloc_etherdev_mqs(sizeof(*edev),
1197				  info->num_queues,
1198				  info->num_queues);
1199	if (!ndev) {
1200		pr_err("etherdev allocation failed\n");
1201		return NULL;
1202	}
1203
1204	edev = netdev_priv(ndev);
1205	edev->ndev = ndev;
1206	edev->cdev = cdev;
1207	edev->pdev = pdev;
1208	edev->dp_module = dp_module;
1209	edev->dp_level = dp_level;
1210	edev->ops = qed_ops;
1211	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
1212	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
1213
1214	DP_INFO(edev, "Allocated netdev with 64 tx queues and 64 rx queues\n");
1215
1216	SET_NETDEV_DEV(ndev, &pdev->dev);
1217
1218	memset(&edev->stats, 0, sizeof(edev->stats));
1219	memcpy(&edev->dev_info, info, sizeof(*info));
1220
1221	edev->num_tc = edev->dev_info.num_tc;
1222
1223	return edev;
1224}
1225
1226static void qede_init_ndev(struct qede_dev *edev)
1227{
1228	struct net_device *ndev = edev->ndev;
1229	struct pci_dev *pdev = edev->pdev;
1230	u32 hw_features;
1231
1232	pci_set_drvdata(pdev, ndev);
1233
1234	ndev->mem_start = edev->dev_info.common.pci_mem_start;
1235	ndev->base_addr = ndev->mem_start;
1236	ndev->mem_end = edev->dev_info.common.pci_mem_end;
1237	ndev->irq = edev->dev_info.common.pci_irq;
1238
1239	ndev->watchdog_timeo = TX_TIMEOUT;
1240
1241	ndev->netdev_ops = &qede_netdev_ops;
1242
1243	qede_set_ethtool_ops(ndev);
1244
1245	/* user-changeble features */
1246	hw_features = NETIF_F_GRO | NETIF_F_SG |
1247		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1248		      NETIF_F_TSO | NETIF_F_TSO6;
1249
1250	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1251			      NETIF_F_HIGHDMA;
1252	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1253			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
1254			 NETIF_F_HW_VLAN_CTAG_TX;
1255
1256	ndev->hw_features = hw_features;
1257
1258	/* Set network device HW mac */
1259	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
1260}
1261
1262/* This function converts from 32b param to two params of level and module
1263 * Input 32b decoding:
1264 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
1265 * 'happy' flow, e.g. memory allocation failed.
1266 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
1267 * and provide important parameters.
1268 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
1269 * module. VERBOSE prints are for tracking the specific flow in low level.
1270 *
1271 * Notice that the level should be that of the lowest required logs.
1272 */
1273void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
1274{
1275	*p_dp_level = QED_LEVEL_NOTICE;
1276	*p_dp_module = 0;
1277
1278	if (debug & QED_LOG_VERBOSE_MASK) {
1279		*p_dp_level = QED_LEVEL_VERBOSE;
1280		*p_dp_module = (debug & 0x3FFFFFFF);
1281	} else if (debug & QED_LOG_INFO_MASK) {
1282		*p_dp_level = QED_LEVEL_INFO;
1283	} else if (debug & QED_LOG_NOTICE_MASK) {
1284		*p_dp_level = QED_LEVEL_NOTICE;
1285	}
1286}
1287
1288static void qede_free_fp_array(struct qede_dev *edev)
1289{
1290	if (edev->fp_array) {
1291		struct qede_fastpath *fp;
1292		int i;
1293
1294		for_each_rss(i) {
1295			fp = &edev->fp_array[i];
1296
1297			kfree(fp->sb_info);
1298			kfree(fp->rxq);
1299			kfree(fp->txqs);
1300		}
1301		kfree(edev->fp_array);
1302	}
1303	edev->num_rss = 0;
1304}
1305
1306static int qede_alloc_fp_array(struct qede_dev *edev)
1307{
1308	struct qede_fastpath *fp;
1309	int i;
1310
1311	edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
1312				 sizeof(*edev->fp_array), GFP_KERNEL);
1313	if (!edev->fp_array) {
1314		DP_NOTICE(edev, "fp array allocation failed\n");
1315		goto err;
1316	}
1317
1318	for_each_rss(i) {
1319		fp = &edev->fp_array[i];
1320
1321		fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
1322		if (!fp->sb_info) {
1323			DP_NOTICE(edev, "sb info struct allocation failed\n");
1324			goto err;
1325		}
1326
1327		fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
1328		if (!fp->rxq) {
1329			DP_NOTICE(edev, "RXQ struct allocation failed\n");
1330			goto err;
1331		}
1332
1333		fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
1334		if (!fp->txqs) {
1335			DP_NOTICE(edev, "TXQ array allocation failed\n");
1336			goto err;
1337		}
1338	}
1339
1340	return 0;
1341err:
1342	qede_free_fp_array(edev);
1343	return -ENOMEM;
1344}
1345
1346static void qede_sp_task(struct work_struct *work)
1347{
1348	struct qede_dev *edev = container_of(work, struct qede_dev,
1349					     sp_task.work);
1350	mutex_lock(&edev->qede_lock);
1351
1352	if (edev->state == QEDE_STATE_OPEN) {
1353		if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1354			qede_config_rx_mode(edev->ndev);
1355	}
1356
1357	mutex_unlock(&edev->qede_lock);
1358}
1359
1360static void qede_update_pf_params(struct qed_dev *cdev)
1361{
1362	struct qed_pf_params pf_params;
1363
1364	/* 16 rx + 16 tx */
1365	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1366	pf_params.eth_pf_params.num_cons = 32;
1367	qed_ops->common->update_pf_params(cdev, &pf_params);
1368}
1369
1370enum qede_probe_mode {
1371	QEDE_PROBE_NORMAL,
1372};
1373
1374static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1375			enum qede_probe_mode mode)
1376{
1377	struct qed_slowpath_params params;
1378	struct qed_dev_eth_info dev_info;
1379	struct qede_dev *edev;
1380	struct qed_dev *cdev;
1381	int rc;
1382
1383	if (unlikely(dp_level & QED_LEVEL_INFO))
1384		pr_notice("Starting qede probe\n");
1385
1386	cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH,
1387				      dp_module, dp_level);
1388	if (!cdev) {
1389		rc = -ENODEV;
1390		goto err0;
1391	}
1392
1393	qede_update_pf_params(cdev);
1394
1395	/* Start the Slowpath-process */
1396	memset(&params, 0, sizeof(struct qed_slowpath_params));
1397	params.int_mode = QED_INT_MODE_MSIX;
1398	params.drv_major = QEDE_MAJOR_VERSION;
1399	params.drv_minor = QEDE_MINOR_VERSION;
1400	params.drv_rev = QEDE_REVISION_VERSION;
1401	params.drv_eng = QEDE_ENGINEERING_VERSION;
1402	strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1403	rc = qed_ops->common->slowpath_start(cdev, &params);
1404	if (rc) {
1405		pr_notice("Cannot start slowpath\n");
1406		goto err1;
1407	}
1408
1409	/* Learn information crucial for qede to progress */
1410	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1411	if (rc)
1412		goto err2;
1413
1414	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1415				   dp_level);
1416	if (!edev) {
1417		rc = -ENOMEM;
1418		goto err2;
1419	}
1420
1421	qede_init_ndev(edev);
1422
1423	rc = register_netdev(edev->ndev);
1424	if (rc) {
1425		DP_NOTICE(edev, "Cannot register net-device\n");
1426		goto err3;
1427	}
1428
1429	edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
1430
1431	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1432
1433	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1434	mutex_init(&edev->qede_lock);
1435
1436	DP_INFO(edev, "Ending successfully qede probe\n");
1437
1438	return 0;
1439
1440err3:
1441	free_netdev(edev->ndev);
1442err2:
1443	qed_ops->common->slowpath_stop(cdev);
1444err1:
1445	qed_ops->common->remove(cdev);
1446err0:
1447	return rc;
1448}
1449
1450static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1451{
1452	u32 dp_module = 0;
1453	u8 dp_level = 0;
1454
1455	qede_config_debug(debug, &dp_module, &dp_level);
1456
1457	return __qede_probe(pdev, dp_module, dp_level,
1458			    QEDE_PROBE_NORMAL);
1459}
1460
1461enum qede_remove_mode {
1462	QEDE_REMOVE_NORMAL,
1463};
1464
1465static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1466{
1467	struct net_device *ndev = pci_get_drvdata(pdev);
1468	struct qede_dev *edev = netdev_priv(ndev);
1469	struct qed_dev *cdev = edev->cdev;
1470
1471	DP_INFO(edev, "Starting qede_remove\n");
1472
1473	cancel_delayed_work_sync(&edev->sp_task);
1474	unregister_netdev(ndev);
1475
1476	edev->ops->common->set_power_state(cdev, PCI_D0);
1477
1478	pci_set_drvdata(pdev, NULL);
1479
1480	free_netdev(ndev);
1481
1482	/* Use global ops since we've freed edev */
1483	qed_ops->common->slowpath_stop(cdev);
1484	qed_ops->common->remove(cdev);
1485
1486	pr_notice("Ending successfully qede_remove\n");
1487}
1488
1489static void qede_remove(struct pci_dev *pdev)
1490{
1491	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1492}
1493
1494/* -------------------------------------------------------------------------
1495 * START OF LOAD / UNLOAD
1496 * -------------------------------------------------------------------------
1497 */
1498
1499static int qede_set_num_queues(struct qede_dev *edev)
1500{
1501	int rc;
1502	u16 rss_num;
1503
1504	/* Setup queues according to possible resources*/
1505	rss_num = netif_get_num_default_rss_queues() *
1506		  edev->dev_info.common.num_hwfns;
1507
1508	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1509
1510	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1511	if (rc > 0) {
1512		/* Managed to request interrupts for our queues */
1513		edev->num_rss = rc;
1514		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1515			QEDE_RSS_CNT(edev), rss_num);
1516		rc = 0;
1517	}
1518	return rc;
1519}
1520
1521static void qede_free_mem_sb(struct qede_dev *edev,
1522			     struct qed_sb_info *sb_info)
1523{
1524	if (sb_info->sb_virt)
1525		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1526				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1527}
1528
1529/* This function allocates fast-path status block memory */
1530static int qede_alloc_mem_sb(struct qede_dev *edev,
1531			     struct qed_sb_info *sb_info,
1532			     u16 sb_id)
1533{
1534	struct status_block *sb_virt;
1535	dma_addr_t sb_phys;
1536	int rc;
1537
1538	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1539				     sizeof(*sb_virt),
1540				     &sb_phys, GFP_KERNEL);
1541	if (!sb_virt) {
1542		DP_ERR(edev, "Status block allocation failed\n");
1543		return -ENOMEM;
1544	}
1545
1546	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1547					sb_virt, sb_phys, sb_id,
1548					QED_SB_TYPE_L2_QUEUE);
1549	if (rc) {
1550		DP_ERR(edev, "Status block initialization failed\n");
1551		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1552				  sb_virt, sb_phys);
1553		return rc;
1554	}
1555
1556	return 0;
1557}
1558
1559static void qede_free_rx_buffers(struct qede_dev *edev,
1560				 struct qede_rx_queue *rxq)
1561{
1562	u16 i;
1563
1564	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1565		struct sw_rx_data *rx_buf;
1566		u8 *data;
1567
1568		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1569		data = rx_buf->data;
1570
1571		dma_unmap_single(&edev->pdev->dev,
1572				 dma_unmap_addr(rx_buf, mapping),
1573				 rxq->rx_buf_size, DMA_FROM_DEVICE);
1574
1575		rx_buf->data = NULL;
1576		kfree(data);
1577	}
1578}
1579
1580static void qede_free_mem_rxq(struct qede_dev *edev,
1581			      struct qede_rx_queue *rxq)
1582{
1583	/* Free rx buffers */
1584	qede_free_rx_buffers(edev, rxq);
1585
1586	/* Free the parallel SW ring */
1587	kfree(rxq->sw_rx_ring);
1588
1589	/* Free the real RQ ring used by FW */
1590	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1591	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1592}
1593
1594static int qede_alloc_rx_buffer(struct qede_dev *edev,
1595				struct qede_rx_queue *rxq)
1596{
1597	struct sw_rx_data *sw_rx_data;
1598	struct eth_rx_bd *rx_bd;
1599	dma_addr_t mapping;
1600	u16 rx_buf_size;
1601	u8 *data;
1602
1603	rx_buf_size = rxq->rx_buf_size;
1604
1605	data = kmalloc(rx_buf_size, GFP_ATOMIC);
1606	if (unlikely(!data)) {
1607		DP_NOTICE(edev, "Failed to allocate Rx data\n");
1608		return -ENOMEM;
1609	}
1610
1611	mapping = dma_map_single(&edev->pdev->dev, data,
1612				 rx_buf_size, DMA_FROM_DEVICE);
1613	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1614		kfree(data);
1615		DP_NOTICE(edev, "Failed to map Rx buffer\n");
1616		return -ENOMEM;
1617	}
1618
1619	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1620	sw_rx_data->data = data;
1621
1622	dma_unmap_addr_set(sw_rx_data, mapping, mapping);
1623
1624	/* Advance PROD and get BD pointer */
1625	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
1626	WARN_ON(!rx_bd);
1627	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1628	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1629
1630	rxq->sw_rx_prod++;
1631
1632	return 0;
1633}
1634
1635/* This function allocates all memory needed per Rx queue */
1636static int qede_alloc_mem_rxq(struct qede_dev *edev,
1637			      struct qede_rx_queue *rxq)
1638{
1639	int i, rc, size, num_allocated;
1640
1641	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1642
1643	rxq->rx_buf_size = NET_IP_ALIGN +
1644			   ETH_OVERHEAD +
1645			   edev->ndev->mtu +
1646			   QEDE_FW_RX_ALIGN_END;
1647
1648	/* Allocate the parallel driver ring for Rx buffers */
1649	size = sizeof(*rxq->sw_rx_ring) * NUM_RX_BDS_MAX;
1650	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1651	if (!rxq->sw_rx_ring) {
1652		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1653		goto err;
1654	}
1655
1656	/* Allocate FW Rx ring  */
1657	rc = edev->ops->common->chain_alloc(edev->cdev,
1658					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1659					    QED_CHAIN_MODE_NEXT_PTR,
1660					    NUM_RX_BDS_MAX,
1661					    sizeof(struct eth_rx_bd),
1662					    &rxq->rx_bd_ring);
1663
1664	if (rc)
1665		goto err;
1666
1667	/* Allocate FW completion ring */
1668	rc = edev->ops->common->chain_alloc(edev->cdev,
1669					    QED_CHAIN_USE_TO_CONSUME,
1670					    QED_CHAIN_MODE_PBL,
1671					    NUM_RX_BDS_MAX,
1672					    sizeof(union eth_rx_cqe),
1673					    &rxq->rx_comp_ring);
1674	if (rc)
1675		goto err;
1676
1677	/* Allocate buffers for the Rx ring */
1678	for (i = 0; i < rxq->num_rx_buffers; i++) {
1679		rc = qede_alloc_rx_buffer(edev, rxq);
1680		if (rc)
1681			break;
1682	}
1683	num_allocated = i;
1684	if (!num_allocated) {
1685		DP_ERR(edev, "Rx buffers allocation failed\n");
1686		goto err;
1687	} else if (num_allocated < rxq->num_rx_buffers) {
1688		DP_NOTICE(edev,
1689			  "Allocated less buffers than desired (%d allocated)\n",
1690			  num_allocated);
1691	}
1692
1693	return 0;
1694
1695err:
1696	qede_free_mem_rxq(edev, rxq);
1697	return -ENOMEM;
1698}
1699
1700static void qede_free_mem_txq(struct qede_dev *edev,
1701			      struct qede_tx_queue *txq)
1702{
1703	/* Free the parallel SW ring */
1704	kfree(txq->sw_tx_ring);
1705
1706	/* Free the real RQ ring used by FW */
1707	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1708}
1709
1710/* This function allocates all memory needed per Tx queue */
1711static int qede_alloc_mem_txq(struct qede_dev *edev,
1712			      struct qede_tx_queue *txq)
1713{
1714	int size, rc;
1715	union eth_tx_bd_types *p_virt;
1716
1717	txq->num_tx_buffers = edev->q_num_tx_buffers;
1718
1719	/* Allocate the parallel driver ring for Tx buffers */
1720	size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
1721	txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
1722	if (!txq->sw_tx_ring) {
1723		DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
1724		goto err;
1725	}
1726
1727	rc = edev->ops->common->chain_alloc(edev->cdev,
1728					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1729					    QED_CHAIN_MODE_PBL,
1730					    NUM_TX_BDS_MAX,
1731					    sizeof(*p_virt),
1732					    &txq->tx_pbl);
1733	if (rc)
1734		goto err;
1735
1736	return 0;
1737
1738err:
1739	qede_free_mem_txq(edev, txq);
1740	return -ENOMEM;
1741}
1742
1743/* This function frees all memory of a single fp */
1744static void qede_free_mem_fp(struct qede_dev *edev,
1745			     struct qede_fastpath *fp)
1746{
1747	int tc;
1748
1749	qede_free_mem_sb(edev, fp->sb_info);
1750
1751	qede_free_mem_rxq(edev, fp->rxq);
1752
1753	for (tc = 0; tc < edev->num_tc; tc++)
1754		qede_free_mem_txq(edev, &fp->txqs[tc]);
1755}
1756
1757/* This function allocates all memory needed for a single fp (i.e. an entity
1758 * which contains status block, one rx queue and multiple per-TC tx queues.
1759 */
1760static int qede_alloc_mem_fp(struct qede_dev *edev,
1761			     struct qede_fastpath *fp)
1762{
1763	int rc, tc;
1764
1765	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
1766	if (rc)
1767		goto err;
1768
1769	rc = qede_alloc_mem_rxq(edev, fp->rxq);
1770	if (rc)
1771		goto err;
1772
1773	for (tc = 0; tc < edev->num_tc; tc++) {
1774		rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
1775		if (rc)
1776			goto err;
1777	}
1778
1779	return 0;
1780
1781err:
1782	qede_free_mem_fp(edev, fp);
1783	return -ENOMEM;
1784}
1785
1786static void qede_free_mem_load(struct qede_dev *edev)
1787{
1788	int i;
1789
1790	for_each_rss(i) {
1791		struct qede_fastpath *fp = &edev->fp_array[i];
1792
1793		qede_free_mem_fp(edev, fp);
1794	}
1795}
1796
1797/* This function allocates all qede memory at NIC load. */
1798static int qede_alloc_mem_load(struct qede_dev *edev)
1799{
1800	int rc = 0, rss_id;
1801
1802	for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
1803		struct qede_fastpath *fp = &edev->fp_array[rss_id];
1804
1805		rc = qede_alloc_mem_fp(edev, fp);
1806		if (rc)
1807			break;
1808	}
1809
1810	if (rss_id != QEDE_RSS_CNT(edev)) {
1811		/* Failed allocating memory for all the queues */
1812		if (!rss_id) {
1813			DP_ERR(edev,
1814			       "Failed to allocate memory for the leading queue\n");
1815			rc = -ENOMEM;
1816		} else {
1817			DP_NOTICE(edev,
1818				  "Failed to allocate memory for all of RSS queues\n Desired: %d queues, allocated: %d queues\n",
1819				  QEDE_RSS_CNT(edev), rss_id);
1820		}
1821		edev->num_rss = rss_id;
1822	}
1823
1824	return 0;
1825}
1826
1827/* This function inits fp content and resets the SB, RXQ and TXQ structures */
1828static void qede_init_fp(struct qede_dev *edev)
1829{
1830	int rss_id, txq_index, tc;
1831	struct qede_fastpath *fp;
1832
1833	for_each_rss(rss_id) {
1834		fp = &edev->fp_array[rss_id];
1835
1836		fp->edev = edev;
1837		fp->rss_id = rss_id;
1838
1839		memset((void *)&fp->napi, 0, sizeof(fp->napi));
1840
1841		memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
1842
1843		memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
1844		fp->rxq->rxq_id = rss_id;
1845
1846		memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
1847		for (tc = 0; tc < edev->num_tc; tc++) {
1848			txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
1849			fp->txqs[tc].index = txq_index;
1850		}
1851
1852		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1853			 edev->ndev->name, rss_id);
1854	}
1855}
1856
1857static int qede_set_real_num_queues(struct qede_dev *edev)
1858{
1859	int rc = 0;
1860
1861	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
1862	if (rc) {
1863		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1864		return rc;
1865	}
1866	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
1867	if (rc) {
1868		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1869		return rc;
1870	}
1871
1872	return 0;
1873}
1874
1875static void qede_napi_disable_remove(struct qede_dev *edev)
1876{
1877	int i;
1878
1879	for_each_rss(i) {
1880		napi_disable(&edev->fp_array[i].napi);
1881
1882		netif_napi_del(&edev->fp_array[i].napi);
1883	}
1884}
1885
1886static void qede_napi_add_enable(struct qede_dev *edev)
1887{
1888	int i;
1889
1890	/* Add NAPI objects */
1891	for_each_rss(i) {
1892		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1893			       qede_poll, NAPI_POLL_WEIGHT);
1894		napi_enable(&edev->fp_array[i].napi);
1895	}
1896}
1897
1898static void qede_sync_free_irqs(struct qede_dev *edev)
1899{
1900	int i;
1901
1902	for (i = 0; i < edev->int_info.used_cnt; i++) {
1903		if (edev->int_info.msix_cnt) {
1904			synchronize_irq(edev->int_info.msix[i].vector);
1905			free_irq(edev->int_info.msix[i].vector,
1906				 &edev->fp_array[i]);
1907		} else {
1908			edev->ops->common->simd_handler_clean(edev->cdev, i);
1909		}
1910	}
1911
1912	edev->int_info.used_cnt = 0;
1913}
1914
1915static int qede_req_msix_irqs(struct qede_dev *edev)
1916{
1917	int i, rc;
1918
1919	/* Sanitize number of interrupts == number of prepared RSS queues */
1920	if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
1921		DP_ERR(edev,
1922		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1923		       QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
1924		return -EINVAL;
1925	}
1926
1927	for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
1928		rc = request_irq(edev->int_info.msix[i].vector,
1929				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1930				 &edev->fp_array[i]);
1931		if (rc) {
1932			DP_ERR(edev, "Request fp %d irq failed\n", i);
1933			qede_sync_free_irqs(edev);
1934			return rc;
1935		}
1936		DP_VERBOSE(edev, NETIF_MSG_INTR,
1937			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1938			   edev->fp_array[i].name, i,
1939			   &edev->fp_array[i]);
1940		edev->int_info.used_cnt++;
1941	}
1942
1943	return 0;
1944}
1945
1946static void qede_simd_fp_handler(void *cookie)
1947{
1948	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1949
1950	napi_schedule_irqoff(&fp->napi);
1951}
1952
1953static int qede_setup_irqs(struct qede_dev *edev)
1954{
1955	int i, rc = 0;
1956
1957	/* Learn Interrupt configuration */
1958	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1959	if (rc)
1960		return rc;
1961
1962	if (edev->int_info.msix_cnt) {
1963		rc = qede_req_msix_irqs(edev);
1964		if (rc)
1965			return rc;
1966		edev->ndev->irq = edev->int_info.msix[0].vector;
1967	} else {
1968		const struct qed_common_ops *ops;
1969
1970		/* qed should learn receive the RSS ids and callbacks */
1971		ops = edev->ops->common;
1972		for (i = 0; i < QEDE_RSS_CNT(edev); i++)
1973			ops->simd_handler_config(edev->cdev,
1974						 &edev->fp_array[i], i,
1975						 qede_simd_fp_handler);
1976		edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
1977	}
1978	return 0;
1979}
1980
1981static int qede_drain_txq(struct qede_dev *edev,
1982			  struct qede_tx_queue *txq,
1983			  bool allow_drain)
1984{
1985	int rc, cnt = 1000;
1986
1987	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1988		if (!cnt) {
1989			if (allow_drain) {
1990				DP_NOTICE(edev,
1991					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1992					  txq->index);
1993				rc = edev->ops->common->drain(edev->cdev);
1994				if (rc)
1995					return rc;
1996				return qede_drain_txq(edev, txq, false);
1997			}
1998			DP_NOTICE(edev,
1999				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2000				  txq->index, txq->sw_tx_prod,
2001				  txq->sw_tx_cons);
2002			return -ENODEV;
2003		}
2004		cnt--;
2005		usleep_range(1000, 2000);
2006		barrier();
2007	}
2008
2009	/* FW finished processing, wait for HW to transmit all tx packets */
2010	usleep_range(1000, 2000);
2011
2012	return 0;
2013}
2014
2015static int qede_stop_queues(struct qede_dev *edev)
2016{
2017	struct qed_update_vport_params vport_update_params;
2018	struct qed_dev *cdev = edev->cdev;
2019	int rc, tc, i;
2020
2021	/* Disable the vport */
2022	memset(&vport_update_params, 0, sizeof(vport_update_params));
2023	vport_update_params.vport_id = 0;
2024	vport_update_params.update_vport_active_flg = 1;
2025	vport_update_params.vport_active_flg = 0;
2026	vport_update_params.update_rss_flg = 0;
2027
2028	rc = edev->ops->vport_update(cdev, &vport_update_params);
2029	if (rc) {
2030		DP_ERR(edev, "Failed to update vport\n");
2031		return rc;
2032	}
2033
2034	/* Flush Tx queues. If needed, request drain from MCP */
2035	for_each_rss(i) {
2036		struct qede_fastpath *fp = &edev->fp_array[i];
2037
2038		for (tc = 0; tc < edev->num_tc; tc++) {
2039			struct qede_tx_queue *txq = &fp->txqs[tc];
2040
2041			rc = qede_drain_txq(edev, txq, true);
2042			if (rc)
2043				return rc;
2044		}
2045	}
2046
2047	/* Stop all Queues in reverse order*/
2048	for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
2049		struct qed_stop_rxq_params rx_params;
2050
2051		/* Stop the Tx Queue(s)*/
2052		for (tc = 0; tc < edev->num_tc; tc++) {
2053			struct qed_stop_txq_params tx_params;
2054
2055			tx_params.rss_id = i;
2056			tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
2057			rc = edev->ops->q_tx_stop(cdev, &tx_params);
2058			if (rc) {
2059				DP_ERR(edev, "Failed to stop TXQ #%d\n",
2060				       tx_params.tx_queue_id);
2061				return rc;
2062			}
2063		}
2064
2065		/* Stop the Rx Queue*/
2066		memset(&rx_params, 0, sizeof(rx_params));
2067		rx_params.rss_id = i;
2068		rx_params.rx_queue_id = i;
2069
2070		rc = edev->ops->q_rx_stop(cdev, &rx_params);
2071		if (rc) {
2072			DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2073			return rc;
2074		}
2075	}
2076
2077	/* Stop the vport */
2078	rc = edev->ops->vport_stop(cdev, 0);
2079	if (rc)
2080		DP_ERR(edev, "Failed to stop VPORT\n");
2081
2082	return rc;
2083}
2084
2085static int qede_start_queues(struct qede_dev *edev)
2086{
2087	int rc, tc, i;
2088	int vport_id = 0, drop_ttl0_flg = 1, vlan_removal_en = 1;
2089	struct qed_dev *cdev = edev->cdev;
2090	struct qed_update_vport_rss_params *rss_params = &edev->rss_params;
2091	struct qed_update_vport_params vport_update_params;
2092	struct qed_queue_start_common_params q_params;
2093
2094	if (!edev->num_rss) {
2095		DP_ERR(edev,
2096		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2097		return -EINVAL;
2098	}
2099
2100	rc = edev->ops->vport_start(cdev, vport_id,
2101				    edev->ndev->mtu,
2102				    drop_ttl0_flg,
2103				    vlan_removal_en);
2104
2105	if (rc) {
2106		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2107		return rc;
2108	}
2109
2110	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2111		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2112		   vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2113
2114	for_each_rss(i) {
2115		struct qede_fastpath *fp = &edev->fp_array[i];
2116		dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
2117
2118		memset(&q_params, 0, sizeof(q_params));
2119		q_params.rss_id = i;
2120		q_params.queue_id = i;
2121		q_params.vport_id = 0;
2122		q_params.sb = fp->sb_info->igu_sb_id;
2123		q_params.sb_idx = RX_PI;
2124
2125		rc = edev->ops->q_rx_start(cdev, &q_params,
2126					   fp->rxq->rx_buf_size,
2127					   fp->rxq->rx_bd_ring.p_phys_addr,
2128					   phys_table,
2129					   fp->rxq->rx_comp_ring.page_cnt,
2130					   &fp->rxq->hw_rxq_prod_addr);
2131		if (rc) {
2132			DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
2133			return rc;
2134		}
2135
2136		fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
2137
2138		qede_update_rx_prod(edev, fp->rxq);
2139
2140		for (tc = 0; tc < edev->num_tc; tc++) {
2141			struct qede_tx_queue *txq = &fp->txqs[tc];
2142			int txq_index = tc * QEDE_RSS_CNT(edev) + i;
2143
2144			memset(&q_params, 0, sizeof(q_params));
2145			q_params.rss_id = i;
2146			q_params.queue_id = txq_index;
2147			q_params.vport_id = 0;
2148			q_params.sb = fp->sb_info->igu_sb_id;
2149			q_params.sb_idx = TX_PI(tc);
2150
2151			rc = edev->ops->q_tx_start(cdev, &q_params,
2152						   txq->tx_pbl.pbl.p_phys_table,
2153						   txq->tx_pbl.page_cnt,
2154						   &txq->doorbell_addr);
2155			if (rc) {
2156				DP_ERR(edev, "Start TXQ #%d failed %d\n",
2157				       txq_index, rc);
2158				return rc;
2159			}
2160
2161			txq->hw_cons_ptr =
2162				&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
2163			SET_FIELD(txq->tx_db.data.params,
2164				  ETH_DB_DATA_DEST, DB_DEST_XCM);
2165			SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
2166				  DB_AGG_CMD_SET);
2167			SET_FIELD(txq->tx_db.data.params,
2168				  ETH_DB_DATA_AGG_VAL_SEL,
2169				  DQ_XCM_ETH_TX_BD_PROD_CMD);
2170
2171			txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2172		}
2173	}
2174
2175	/* Prepare and send the vport enable */
2176	memset(&vport_update_params, 0, sizeof(vport_update_params));
2177	vport_update_params.vport_id = vport_id;
2178	vport_update_params.update_vport_active_flg = 1;
2179	vport_update_params.vport_active_flg = 1;
2180
2181	/* Fill struct with RSS params */
2182	if (QEDE_RSS_CNT(edev) > 1) {
2183		vport_update_params.update_rss_flg = 1;
2184		for (i = 0; i < 128; i++)
2185			rss_params->rss_ind_table[i] =
2186			ethtool_rxfh_indir_default(i, QEDE_RSS_CNT(edev));
2187		netdev_rss_key_fill(rss_params->rss_key,
2188				    sizeof(rss_params->rss_key));
2189	} else {
2190		memset(rss_params, 0, sizeof(*rss_params));
2191	}
2192	memcpy(&vport_update_params.rss_params, rss_params,
2193	       sizeof(*rss_params));
2194
2195	rc = edev->ops->vport_update(cdev, &vport_update_params);
2196	if (rc) {
2197		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2198		return rc;
2199	}
2200
2201	return 0;
2202}
2203
2204static int qede_set_mcast_rx_mac(struct qede_dev *edev,
2205				 enum qed_filter_xcast_params_type opcode,
2206				 unsigned char *mac, int num_macs)
2207{
2208	struct qed_filter_params filter_cmd;
2209	int i;
2210
2211	memset(&filter_cmd, 0, sizeof(filter_cmd));
2212	filter_cmd.type = QED_FILTER_TYPE_MCAST;
2213	filter_cmd.filter.mcast.type = opcode;
2214	filter_cmd.filter.mcast.num = num_macs;
2215
2216	for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
2217		ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
2218
2219	return edev->ops->filter_config(edev->cdev, &filter_cmd);
2220}
2221
2222enum qede_unload_mode {
2223	QEDE_UNLOAD_NORMAL,
2224};
2225
2226static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
2227{
2228	struct qed_link_params link_params;
2229	int rc;
2230
2231	DP_INFO(edev, "Starting qede unload\n");
2232
2233	mutex_lock(&edev->qede_lock);
2234	edev->state = QEDE_STATE_CLOSED;
2235
2236	/* Close OS Tx */
2237	netif_tx_disable(edev->ndev);
2238	netif_carrier_off(edev->ndev);
2239
2240	/* Reset the link */
2241	memset(&link_params, 0, sizeof(link_params));
2242	link_params.link_up = false;
2243	edev->ops->common->set_link(edev->cdev, &link_params);
2244	rc = qede_stop_queues(edev);
2245	if (rc) {
2246		qede_sync_free_irqs(edev);
2247		goto out;
2248	}
2249
2250	DP_INFO(edev, "Stopped Queues\n");
2251
2252	edev->ops->fastpath_stop(edev->cdev);
2253
2254	/* Release the interrupts */
2255	qede_sync_free_irqs(edev);
2256	edev->ops->common->set_fp_int(edev->cdev, 0);
2257
2258	qede_napi_disable_remove(edev);
2259
2260	qede_free_mem_load(edev);
2261	qede_free_fp_array(edev);
2262
2263out:
2264	mutex_unlock(&edev->qede_lock);
2265	DP_INFO(edev, "Ending qede unload\n");
2266}
2267
2268enum qede_load_mode {
2269	QEDE_LOAD_NORMAL,
2270};
2271
2272static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
2273{
2274	struct qed_link_params link_params;
2275	struct qed_link_output link_output;
2276	int rc;
2277
2278	DP_INFO(edev, "Starting qede load\n");
2279
2280	rc = qede_set_num_queues(edev);
2281	if (rc)
2282		goto err0;
2283
2284	rc = qede_alloc_fp_array(edev);
2285	if (rc)
2286		goto err0;
2287
2288	qede_init_fp(edev);
2289
2290	rc = qede_alloc_mem_load(edev);
2291	if (rc)
2292		goto err1;
2293	DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
2294		QEDE_RSS_CNT(edev), edev->num_tc);
2295
2296	rc = qede_set_real_num_queues(edev);
2297	if (rc)
2298		goto err2;
2299
2300	qede_napi_add_enable(edev);
2301	DP_INFO(edev, "Napi added and enabled\n");
2302
2303	rc = qede_setup_irqs(edev);
2304	if (rc)
2305		goto err3;
2306	DP_INFO(edev, "Setup IRQs succeeded\n");
2307
2308	rc = qede_start_queues(edev);
2309	if (rc)
2310		goto err4;
2311	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2312
2313	/* Add primary mac and set Rx filters */
2314	ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
2315
2316	mutex_lock(&edev->qede_lock);
2317	edev->state = QEDE_STATE_OPEN;
2318	mutex_unlock(&edev->qede_lock);
2319
2320	/* Ask for link-up using current configuration */
2321	memset(&link_params, 0, sizeof(link_params));
2322	link_params.link_up = true;
2323	edev->ops->common->set_link(edev->cdev, &link_params);
2324
2325	/* Query whether link is already-up */
2326	memset(&link_output, 0, sizeof(link_output));
2327	edev->ops->common->get_link(edev->cdev, &link_output);
2328	qede_link_update(edev, &link_output);
2329
2330	DP_INFO(edev, "Ending successfully qede load\n");
2331
2332	return 0;
2333
2334err4:
2335	qede_sync_free_irqs(edev);
2336	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2337err3:
2338	qede_napi_disable_remove(edev);
2339err2:
2340	qede_free_mem_load(edev);
2341err1:
2342	edev->ops->common->set_fp_int(edev->cdev, 0);
2343	qede_free_fp_array(edev);
2344	edev->num_rss = 0;
2345err0:
2346	return rc;
2347}
2348
2349void qede_reload(struct qede_dev *edev,
2350		 void (*func)(struct qede_dev *, union qede_reload_args *),
2351		 union qede_reload_args *args)
2352{
2353	qede_unload(edev, QEDE_UNLOAD_NORMAL);
2354	/* Call function handler to update parameters
2355	 * needed for function load.
2356	 */
2357	if (func)
2358		func(edev, args);
2359
2360	qede_load(edev, QEDE_LOAD_NORMAL);
2361
2362	mutex_lock(&edev->qede_lock);
2363	qede_config_rx_mode(edev->ndev);
2364	mutex_unlock(&edev->qede_lock);
2365}
2366
2367/* called with rtnl_lock */
2368static int qede_open(struct net_device *ndev)
2369{
2370	struct qede_dev *edev = netdev_priv(ndev);
2371
2372	netif_carrier_off(ndev);
2373
2374	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2375
2376	return qede_load(edev, QEDE_LOAD_NORMAL);
2377}
2378
2379static int qede_close(struct net_device *ndev)
2380{
2381	struct qede_dev *edev = netdev_priv(ndev);
2382
2383	qede_unload(edev, QEDE_UNLOAD_NORMAL);
2384
2385	return 0;
2386}
2387
2388static void qede_link_update(void *dev, struct qed_link_output *link)
2389{
2390	struct qede_dev *edev = dev;
2391
2392	if (!netif_running(edev->ndev)) {
2393		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2394		return;
2395	}
2396
2397	if (link->link_up) {
2398		DP_NOTICE(edev, "Link is up\n");
2399		netif_tx_start_all_queues(edev->ndev);
2400		netif_carrier_on(edev->ndev);
2401	} else {
2402		DP_NOTICE(edev, "Link is down\n");
2403		netif_tx_disable(edev->ndev);
2404		netif_carrier_off(edev->ndev);
2405	}
2406}
2407
2408static int qede_set_mac_addr(struct net_device *ndev, void *p)
2409{
2410	struct qede_dev *edev = netdev_priv(ndev);
2411	struct sockaddr *addr = p;
2412	int rc;
2413
2414	ASSERT_RTNL(); /* @@@TBD To be removed */
2415
2416	DP_INFO(edev, "Set_mac_addr called\n");
2417
2418	if (!is_valid_ether_addr(addr->sa_data)) {
2419		DP_NOTICE(edev, "The MAC address is not valid\n");
2420		return -EFAULT;
2421	}
2422
2423	ether_addr_copy(ndev->dev_addr, addr->sa_data);
2424
2425	if (!netif_running(ndev))  {
2426		DP_NOTICE(edev, "The device is currently down\n");
2427		return 0;
2428	}
2429
2430	/* Remove the previous primary mac */
2431	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
2432				   edev->primary_mac);
2433	if (rc)
2434		return rc;
2435
2436	/* Add MAC filter according to the new unicast HW MAC address */
2437	ether_addr_copy(edev->primary_mac, ndev->dev_addr);
2438	return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
2439				      edev->primary_mac);
2440}
2441
2442static int
2443qede_configure_mcast_filtering(struct net_device *ndev,
2444			       enum qed_filter_rx_mode_type *accept_flags)
2445{
2446	struct qede_dev *edev = netdev_priv(ndev);
2447	unsigned char *mc_macs, *temp;
2448	struct netdev_hw_addr *ha;
2449	int rc = 0, mc_count;
2450	size_t size;
2451
2452	size = 64 * ETH_ALEN;
2453
2454	mc_macs = kzalloc(size, GFP_KERNEL);
2455	if (!mc_macs) {
2456		DP_NOTICE(edev,
2457			  "Failed to allocate memory for multicast MACs\n");
2458		rc = -ENOMEM;
2459		goto exit;
2460	}
2461
2462	temp = mc_macs;
2463
2464	/* Remove all previously configured MAC filters */
2465	rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
2466				   mc_macs, 1);
2467	if (rc)
2468		goto exit;
2469
2470	netif_addr_lock_bh(ndev);
2471
2472	mc_count = netdev_mc_count(ndev);
2473	if (mc_count < 64) {
2474		netdev_for_each_mc_addr(ha, ndev) {
2475			ether_addr_copy(temp, ha->addr);
2476			temp += ETH_ALEN;
2477		}
2478	}
2479
2480	netif_addr_unlock_bh(ndev);
2481
2482	/* Check for all multicast @@@TBD resource allocation */
2483	if ((ndev->flags & IFF_ALLMULTI) ||
2484	    (mc_count > 64)) {
2485		if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
2486			*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
2487	} else {
2488		/* Add all multicast MAC filters */
2489		rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
2490					   mc_macs, mc_count);
2491	}
2492
2493exit:
2494	kfree(mc_macs);
2495	return rc;
2496}
2497
2498static void qede_set_rx_mode(struct net_device *ndev)
2499{
2500	struct qede_dev *edev = netdev_priv(ndev);
2501
2502	DP_INFO(edev, "qede_set_rx_mode called\n");
2503
2504	if (edev->state != QEDE_STATE_OPEN) {
2505		DP_INFO(edev,
2506			"qede_set_rx_mode called while interface is down\n");
2507	} else {
2508		set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
2509		schedule_delayed_work(&edev->sp_task, 0);
2510	}
2511}
2512
2513/* Must be called with qede_lock held */
2514static void qede_config_rx_mode(struct net_device *ndev)
2515{
2516	enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
2517	struct qede_dev *edev = netdev_priv(ndev);
2518	struct qed_filter_params rx_mode;
2519	unsigned char *uc_macs, *temp;
2520	struct netdev_hw_addr *ha;
2521	int rc, uc_count;
2522	size_t size;
2523
2524	netif_addr_lock_bh(ndev);
2525
2526	uc_count = netdev_uc_count(ndev);
2527	size = uc_count * ETH_ALEN;
2528
2529	uc_macs = kzalloc(size, GFP_ATOMIC);
2530	if (!uc_macs) {
2531		DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
2532		netif_addr_unlock_bh(ndev);
2533		return;
2534	}
2535
2536	temp = uc_macs;
2537	netdev_for_each_uc_addr(ha, ndev) {
2538		ether_addr_copy(temp, ha->addr);
2539		temp += ETH_ALEN;
2540	}
2541
2542	netif_addr_unlock_bh(ndev);
2543
2544	/* Configure the struct for the Rx mode */
2545	memset(&rx_mode, 0, sizeof(struct qed_filter_params));
2546	rx_mode.type = QED_FILTER_TYPE_RX_MODE;
2547
2548	/* Remove all previous unicast secondary macs and multicast macs
2549	 * (configrue / leave the primary mac)
2550	 */
2551	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
2552				   edev->primary_mac);
2553	if (rc)
2554		goto out;
2555
2556	/* Check for promiscuous */
2557	if ((ndev->flags & IFF_PROMISC) ||
2558	    (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
2559		accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
2560	} else {
2561		/* Add MAC filters according to the unicast secondary macs */
2562		int i;
2563
2564		temp = uc_macs;
2565		for (i = 0; i < uc_count; i++) {
2566			rc = qede_set_ucast_rx_mac(edev,
2567						   QED_FILTER_XCAST_TYPE_ADD,
2568						   temp);
2569			if (rc)
2570				goto out;
2571
2572			temp += ETH_ALEN;
2573		}
2574
2575		rc = qede_configure_mcast_filtering(ndev, &accept_flags);
2576		if (rc)
2577			goto out;
2578	}
2579
2580	rx_mode.filter.accept_flags = accept_flags;
2581	edev->ops->filter_config(edev->cdev, &rx_mode);
2582out:
2583	kfree(uc_macs);
2584}
2585