1/* 2 * Microchip ENC28J60 ethernet driver (MAC + PHY) 3 * 4 * Copyright (C) 2007 Eurek srl 5 * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com> 6 * based on enc28j60.c written by David Anders for 2.4 kernel version 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $ 14 */ 15 16#include <linux/module.h> 17#include <linux/kernel.h> 18#include <linux/types.h> 19#include <linux/fcntl.h> 20#include <linux/interrupt.h> 21#include <linux/string.h> 22#include <linux/errno.h> 23#include <linux/init.h> 24#include <linux/netdevice.h> 25#include <linux/etherdevice.h> 26#include <linux/ethtool.h> 27#include <linux/tcp.h> 28#include <linux/skbuff.h> 29#include <linux/delay.h> 30#include <linux/spi/spi.h> 31 32#include "enc28j60_hw.h" 33 34#define DRV_NAME "enc28j60" 35#define DRV_VERSION "1.01" 36 37#define SPI_OPLEN 1 38 39#define ENC28J60_MSG_DEFAULT \ 40 (NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK) 41 42/* Buffer size required for the largest SPI transfer (i.e., reading a 43 * frame). */ 44#define SPI_TRANSFER_BUF_LEN (4 + MAX_FRAMELEN) 45 46#define TX_TIMEOUT (4 * HZ) 47 48/* Max TX retries in case of collision as suggested by errata datasheet */ 49#define MAX_TX_RETRYCOUNT 16 50 51enum { 52 RXFILTER_NORMAL, 53 RXFILTER_MULTI, 54 RXFILTER_PROMISC 55}; 56 57/* Driver local data */ 58struct enc28j60_net { 59 struct net_device *netdev; 60 struct spi_device *spi; 61 struct mutex lock; 62 struct sk_buff *tx_skb; 63 struct work_struct tx_work; 64 struct work_struct irq_work; 65 struct work_struct setrx_work; 66 struct work_struct restart_work; 67 u8 bank; /* current register bank selected */ 68 u16 next_pk_ptr; /* next packet pointer within FIFO */ 69 u16 max_pk_counter; /* statistics: max packet counter */ 70 u16 tx_retry_count; 71 bool hw_enable; 72 bool full_duplex; 73 int rxfilter; 74 u32 msg_enable; 75 u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN]; 76}; 77 78/* use ethtool to change the level for any given device */ 79static struct { 80 u32 msg_enable; 81} debug = { -1 }; 82 83/* 84 * SPI read buffer 85 * wait for the SPI transfer and copy received data to destination 86 */ 87static int 88spi_read_buf(struct enc28j60_net *priv, int len, u8 *data) 89{ 90 u8 *rx_buf = priv->spi_transfer_buf + 4; 91 u8 *tx_buf = priv->spi_transfer_buf; 92 struct spi_transfer t = { 93 .tx_buf = tx_buf, 94 .rx_buf = rx_buf, 95 .len = SPI_OPLEN + len, 96 }; 97 struct spi_message msg; 98 int ret; 99 100 tx_buf[0] = ENC28J60_READ_BUF_MEM; 101 tx_buf[1] = tx_buf[2] = tx_buf[3] = 0; /* don't care */ 102 103 spi_message_init(&msg); 104 spi_message_add_tail(&t, &msg); 105 ret = spi_sync(priv->spi, &msg); 106 if (ret == 0) { 107 memcpy(data, &rx_buf[SPI_OPLEN], len); 108 ret = msg.status; 109 } 110 if (ret && netif_msg_drv(priv)) 111 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n", 112 __func__, ret); 113 114 return ret; 115} 116 117/* 118 * SPI write buffer 119 */ 120static int spi_write_buf(struct enc28j60_net *priv, int len, 121 const u8 *data) 122{ 123 int ret; 124 125 if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0) 126 ret = -EINVAL; 127 else { 128 priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM; 129 memcpy(&priv->spi_transfer_buf[1], data, len); 130 ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1); 131 if (ret && netif_msg_drv(priv)) 132 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n", 133 __func__, ret); 134 } 135 return ret; 136} 137 138/* 139 * basic SPI read operation 140 */ 141static u8 spi_read_op(struct enc28j60_net *priv, u8 op, 142 u8 addr) 143{ 144 u8 tx_buf[2]; 145 u8 rx_buf[4]; 146 u8 val = 0; 147 int ret; 148 int slen = SPI_OPLEN; 149 150 /* do dummy read if needed */ 151 if (addr & SPRD_MASK) 152 slen++; 153 154 tx_buf[0] = op | (addr & ADDR_MASK); 155 ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen); 156 if (ret) 157 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n", 158 __func__, ret); 159 else 160 val = rx_buf[slen - 1]; 161 162 return val; 163} 164 165/* 166 * basic SPI write operation 167 */ 168static int spi_write_op(struct enc28j60_net *priv, u8 op, 169 u8 addr, u8 val) 170{ 171 int ret; 172 173 priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK); 174 priv->spi_transfer_buf[1] = val; 175 ret = spi_write(priv->spi, priv->spi_transfer_buf, 2); 176 if (ret && netif_msg_drv(priv)) 177 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n", 178 __func__, ret); 179 return ret; 180} 181 182static void enc28j60_soft_reset(struct enc28j60_net *priv) 183{ 184 if (netif_msg_hw(priv)) 185 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 186 187 spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET); 188 /* Errata workaround #1, CLKRDY check is unreliable, 189 * delay at least 1 mS instead */ 190 udelay(2000); 191} 192 193/* 194 * select the current register bank if necessary 195 */ 196static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr) 197{ 198 u8 b = (addr & BANK_MASK) >> 5; 199 200 /* These registers (EIE, EIR, ESTAT, ECON2, ECON1) 201 * are present in all banks, no need to switch bank 202 */ 203 if (addr >= EIE && addr <= ECON1) 204 return; 205 206 /* Clear or set each bank selection bit as needed */ 207 if ((b & ECON1_BSEL0) != (priv->bank & ECON1_BSEL0)) { 208 if (b & ECON1_BSEL0) 209 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, 210 ECON1_BSEL0); 211 else 212 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1, 213 ECON1_BSEL0); 214 } 215 if ((b & ECON1_BSEL1) != (priv->bank & ECON1_BSEL1)) { 216 if (b & ECON1_BSEL1) 217 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, 218 ECON1_BSEL1); 219 else 220 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1, 221 ECON1_BSEL1); 222 } 223 priv->bank = b; 224} 225 226/* 227 * Register access routines through the SPI bus. 228 * Every register access comes in two flavours: 229 * - nolock_xxx: caller needs to invoke mutex_lock, usually to access 230 * atomically more than one register 231 * - locked_xxx: caller doesn't need to invoke mutex_lock, single access 232 * 233 * Some registers can be accessed through the bit field clear and 234 * bit field set to avoid a read modify write cycle. 235 */ 236 237/* 238 * Register bit field Set 239 */ 240static void nolock_reg_bfset(struct enc28j60_net *priv, 241 u8 addr, u8 mask) 242{ 243 enc28j60_set_bank(priv, addr); 244 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask); 245} 246 247static void locked_reg_bfset(struct enc28j60_net *priv, 248 u8 addr, u8 mask) 249{ 250 mutex_lock(&priv->lock); 251 nolock_reg_bfset(priv, addr, mask); 252 mutex_unlock(&priv->lock); 253} 254 255/* 256 * Register bit field Clear 257 */ 258static void nolock_reg_bfclr(struct enc28j60_net *priv, 259 u8 addr, u8 mask) 260{ 261 enc28j60_set_bank(priv, addr); 262 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask); 263} 264 265static void locked_reg_bfclr(struct enc28j60_net *priv, 266 u8 addr, u8 mask) 267{ 268 mutex_lock(&priv->lock); 269 nolock_reg_bfclr(priv, addr, mask); 270 mutex_unlock(&priv->lock); 271} 272 273/* 274 * Register byte read 275 */ 276static int nolock_regb_read(struct enc28j60_net *priv, 277 u8 address) 278{ 279 enc28j60_set_bank(priv, address); 280 return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address); 281} 282 283static int locked_regb_read(struct enc28j60_net *priv, 284 u8 address) 285{ 286 int ret; 287 288 mutex_lock(&priv->lock); 289 ret = nolock_regb_read(priv, address); 290 mutex_unlock(&priv->lock); 291 292 return ret; 293} 294 295/* 296 * Register word read 297 */ 298static int nolock_regw_read(struct enc28j60_net *priv, 299 u8 address) 300{ 301 int rl, rh; 302 303 enc28j60_set_bank(priv, address); 304 rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address); 305 rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1); 306 307 return (rh << 8) | rl; 308} 309 310static int locked_regw_read(struct enc28j60_net *priv, 311 u8 address) 312{ 313 int ret; 314 315 mutex_lock(&priv->lock); 316 ret = nolock_regw_read(priv, address); 317 mutex_unlock(&priv->lock); 318 319 return ret; 320} 321 322/* 323 * Register byte write 324 */ 325static void nolock_regb_write(struct enc28j60_net *priv, 326 u8 address, u8 data) 327{ 328 enc28j60_set_bank(priv, address); 329 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data); 330} 331 332static void locked_regb_write(struct enc28j60_net *priv, 333 u8 address, u8 data) 334{ 335 mutex_lock(&priv->lock); 336 nolock_regb_write(priv, address, data); 337 mutex_unlock(&priv->lock); 338} 339 340/* 341 * Register word write 342 */ 343static void nolock_regw_write(struct enc28j60_net *priv, 344 u8 address, u16 data) 345{ 346 enc28j60_set_bank(priv, address); 347 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data); 348 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1, 349 (u8) (data >> 8)); 350} 351 352static void locked_regw_write(struct enc28j60_net *priv, 353 u8 address, u16 data) 354{ 355 mutex_lock(&priv->lock); 356 nolock_regw_write(priv, address, data); 357 mutex_unlock(&priv->lock); 358} 359 360/* 361 * Buffer memory read 362 * Select the starting address and execute a SPI buffer read 363 */ 364static void enc28j60_mem_read(struct enc28j60_net *priv, 365 u16 addr, int len, u8 *data) 366{ 367 mutex_lock(&priv->lock); 368 nolock_regw_write(priv, ERDPTL, addr); 369#ifdef CONFIG_ENC28J60_WRITEVERIFY 370 if (netif_msg_drv(priv)) { 371 u16 reg; 372 reg = nolock_regw_read(priv, ERDPTL); 373 if (reg != addr) 374 printk(KERN_DEBUG DRV_NAME ": %s() error writing ERDPT " 375 "(0x%04x - 0x%04x)\n", __func__, reg, addr); 376 } 377#endif 378 spi_read_buf(priv, len, data); 379 mutex_unlock(&priv->lock); 380} 381 382/* 383 * Write packet to enc28j60 TX buffer memory 384 */ 385static void 386enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data) 387{ 388 mutex_lock(&priv->lock); 389 /* Set the write pointer to start of transmit buffer area */ 390 nolock_regw_write(priv, EWRPTL, TXSTART_INIT); 391#ifdef CONFIG_ENC28J60_WRITEVERIFY 392 if (netif_msg_drv(priv)) { 393 u16 reg; 394 reg = nolock_regw_read(priv, EWRPTL); 395 if (reg != TXSTART_INIT) 396 printk(KERN_DEBUG DRV_NAME 397 ": %s() ERWPT:0x%04x != 0x%04x\n", 398 __func__, reg, TXSTART_INIT); 399 } 400#endif 401 /* Set the TXND pointer to correspond to the packet size given */ 402 nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len); 403 /* write per-packet control byte */ 404 spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00); 405 if (netif_msg_hw(priv)) 406 printk(KERN_DEBUG DRV_NAME 407 ": %s() after control byte ERWPT:0x%04x\n", 408 __func__, nolock_regw_read(priv, EWRPTL)); 409 /* copy the packet into the transmit buffer */ 410 spi_write_buf(priv, len, data); 411 if (netif_msg_hw(priv)) 412 printk(KERN_DEBUG DRV_NAME 413 ": %s() after write packet ERWPT:0x%04x, len=%d\n", 414 __func__, nolock_regw_read(priv, EWRPTL), len); 415 mutex_unlock(&priv->lock); 416} 417 418static unsigned long msec20_to_jiffies; 419 420static int poll_ready(struct enc28j60_net *priv, u8 reg, u8 mask, u8 val) 421{ 422 unsigned long timeout = jiffies + msec20_to_jiffies; 423 424 /* 20 msec timeout read */ 425 while ((nolock_regb_read(priv, reg) & mask) != val) { 426 if (time_after(jiffies, timeout)) { 427 if (netif_msg_drv(priv)) 428 dev_dbg(&priv->spi->dev, 429 "reg %02x ready timeout!\n", reg); 430 return -ETIMEDOUT; 431 } 432 cpu_relax(); 433 } 434 return 0; 435} 436 437/* 438 * Wait until the PHY operation is complete. 439 */ 440static int wait_phy_ready(struct enc28j60_net *priv) 441{ 442 return poll_ready(priv, MISTAT, MISTAT_BUSY, 0) ? 0 : 1; 443} 444 445/* 446 * PHY register read 447 * PHY registers are not accessed directly, but through the MII 448 */ 449static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address) 450{ 451 u16 ret; 452 453 mutex_lock(&priv->lock); 454 /* set the PHY register address */ 455 nolock_regb_write(priv, MIREGADR, address); 456 /* start the register read operation */ 457 nolock_regb_write(priv, MICMD, MICMD_MIIRD); 458 /* wait until the PHY read completes */ 459 wait_phy_ready(priv); 460 /* quit reading */ 461 nolock_regb_write(priv, MICMD, 0x00); 462 /* return the data */ 463 ret = nolock_regw_read(priv, MIRDL); 464 mutex_unlock(&priv->lock); 465 466 return ret; 467} 468 469static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data) 470{ 471 int ret; 472 473 mutex_lock(&priv->lock); 474 /* set the PHY register address */ 475 nolock_regb_write(priv, MIREGADR, address); 476 /* write the PHY data */ 477 nolock_regw_write(priv, MIWRL, data); 478 /* wait until the PHY write completes and return */ 479 ret = wait_phy_ready(priv); 480 mutex_unlock(&priv->lock); 481 482 return ret; 483} 484 485/* 486 * Program the hardware MAC address from dev->dev_addr. 487 */ 488static int enc28j60_set_hw_macaddr(struct net_device *ndev) 489{ 490 int ret; 491 struct enc28j60_net *priv = netdev_priv(ndev); 492 493 mutex_lock(&priv->lock); 494 if (!priv->hw_enable) { 495 if (netif_msg_drv(priv)) 496 printk(KERN_INFO DRV_NAME 497 ": %s: Setting MAC address to %pM\n", 498 ndev->name, ndev->dev_addr); 499 /* NOTE: MAC address in ENC28J60 is byte-backward */ 500 nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]); 501 nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]); 502 nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]); 503 nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]); 504 nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]); 505 nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]); 506 ret = 0; 507 } else { 508 if (netif_msg_drv(priv)) 509 printk(KERN_DEBUG DRV_NAME 510 ": %s() Hardware must be disabled to set " 511 "Mac address\n", __func__); 512 ret = -EBUSY; 513 } 514 mutex_unlock(&priv->lock); 515 return ret; 516} 517 518/* 519 * Store the new hardware address in dev->dev_addr, and update the MAC. 520 */ 521static int enc28j60_set_mac_address(struct net_device *dev, void *addr) 522{ 523 struct sockaddr *address = addr; 524 525 if (netif_running(dev)) 526 return -EBUSY; 527 if (!is_valid_ether_addr(address->sa_data)) 528 return -EADDRNOTAVAIL; 529 530 memcpy(dev->dev_addr, address->sa_data, dev->addr_len); 531 return enc28j60_set_hw_macaddr(dev); 532} 533 534/* 535 * Debug routine to dump useful register contents 536 */ 537static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg) 538{ 539 mutex_lock(&priv->lock); 540 printk(KERN_DEBUG DRV_NAME " %s\n" 541 "HwRevID: 0x%02x\n" 542 "Cntrl: ECON1 ECON2 ESTAT EIR EIE\n" 543 " 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n" 544 "MAC : MACON1 MACON3 MACON4\n" 545 " 0x%02x 0x%02x 0x%02x\n" 546 "Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n" 547 " 0x%04x 0x%04x 0x%04x 0x%04x " 548 "0x%02x 0x%02x 0x%04x\n" 549 "Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n" 550 " 0x%04x 0x%04x 0x%02x 0x%02x 0x%02x\n", 551 msg, nolock_regb_read(priv, EREVID), 552 nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2), 553 nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR), 554 nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1), 555 nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4), 556 nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL), 557 nolock_regw_read(priv, ERXWRPTL), 558 nolock_regw_read(priv, ERXRDPTL), 559 nolock_regb_read(priv, ERXFCON), 560 nolock_regb_read(priv, EPKTCNT), 561 nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL), 562 nolock_regw_read(priv, ETXNDL), 563 nolock_regb_read(priv, MACLCON1), 564 nolock_regb_read(priv, MACLCON2), 565 nolock_regb_read(priv, MAPHSUP)); 566 mutex_unlock(&priv->lock); 567} 568 569/* 570 * ERXRDPT need to be set always at odd addresses, refer to errata datasheet 571 */ 572static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end) 573{ 574 u16 erxrdpt; 575 576 if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end)) 577 erxrdpt = end; 578 else 579 erxrdpt = next_packet_ptr - 1; 580 581 return erxrdpt; 582} 583 584/* 585 * Calculate wrap around when reading beyond the end of the RX buffer 586 */ 587static u16 rx_packet_start(u16 ptr) 588{ 589 if (ptr + RSV_SIZE > RXEND_INIT) 590 return (ptr + RSV_SIZE) - (RXEND_INIT - RXSTART_INIT + 1); 591 else 592 return ptr + RSV_SIZE; 593} 594 595static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end) 596{ 597 u16 erxrdpt; 598 599 if (start > 0x1FFF || end > 0x1FFF || start > end) { 600 if (netif_msg_drv(priv)) 601 printk(KERN_ERR DRV_NAME ": %s(%d, %d) RXFIFO " 602 "bad parameters!\n", __func__, start, end); 603 return; 604 } 605 /* set receive buffer start + end */ 606 priv->next_pk_ptr = start; 607 nolock_regw_write(priv, ERXSTL, start); 608 erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end); 609 nolock_regw_write(priv, ERXRDPTL, erxrdpt); 610 nolock_regw_write(priv, ERXNDL, end); 611} 612 613static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end) 614{ 615 if (start > 0x1FFF || end > 0x1FFF || start > end) { 616 if (netif_msg_drv(priv)) 617 printk(KERN_ERR DRV_NAME ": %s(%d, %d) TXFIFO " 618 "bad parameters!\n", __func__, start, end); 619 return; 620 } 621 /* set transmit buffer start + end */ 622 nolock_regw_write(priv, ETXSTL, start); 623 nolock_regw_write(priv, ETXNDL, end); 624} 625 626/* 627 * Low power mode shrinks power consumption about 100x, so we'd like 628 * the chip to be in that mode whenever it's inactive. (However, we 629 * can't stay in lowpower mode during suspend with WOL active.) 630 */ 631static void enc28j60_lowpower(struct enc28j60_net *priv, bool is_low) 632{ 633 if (netif_msg_drv(priv)) 634 dev_dbg(&priv->spi->dev, "%s power...\n", 635 is_low ? "low" : "high"); 636 637 mutex_lock(&priv->lock); 638 if (is_low) { 639 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 640 poll_ready(priv, ESTAT, ESTAT_RXBUSY, 0); 641 poll_ready(priv, ECON1, ECON1_TXRTS, 0); 642 /* ECON2_VRPS was set during initialization */ 643 nolock_reg_bfset(priv, ECON2, ECON2_PWRSV); 644 } else { 645 nolock_reg_bfclr(priv, ECON2, ECON2_PWRSV); 646 poll_ready(priv, ESTAT, ESTAT_CLKRDY, ESTAT_CLKRDY); 647 /* caller sets ECON1_RXEN */ 648 } 649 mutex_unlock(&priv->lock); 650} 651 652static int enc28j60_hw_init(struct enc28j60_net *priv) 653{ 654 u8 reg; 655 656 if (netif_msg_drv(priv)) 657 printk(KERN_DEBUG DRV_NAME ": %s() - %s\n", __func__, 658 priv->full_duplex ? "FullDuplex" : "HalfDuplex"); 659 660 mutex_lock(&priv->lock); 661 /* first reset the chip */ 662 enc28j60_soft_reset(priv); 663 /* Clear ECON1 */ 664 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00); 665 priv->bank = 0; 666 priv->hw_enable = false; 667 priv->tx_retry_count = 0; 668 priv->max_pk_counter = 0; 669 priv->rxfilter = RXFILTER_NORMAL; 670 /* enable address auto increment and voltage regulator powersave */ 671 nolock_regb_write(priv, ECON2, ECON2_AUTOINC | ECON2_VRPS); 672 673 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT); 674 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT); 675 mutex_unlock(&priv->lock); 676 677 /* 678 * Check the RevID. 679 * If it's 0x00 or 0xFF probably the enc28j60 is not mounted or 680 * damaged 681 */ 682 reg = locked_regb_read(priv, EREVID); 683 if (netif_msg_drv(priv)) 684 printk(KERN_INFO DRV_NAME ": chip RevID: 0x%02x\n", reg); 685 if (reg == 0x00 || reg == 0xff) { 686 if (netif_msg_drv(priv)) 687 printk(KERN_DEBUG DRV_NAME ": %s() Invalid RevId %d\n", 688 __func__, reg); 689 return 0; 690 } 691 692 /* default filter mode: (unicast OR broadcast) AND crc valid */ 693 locked_regb_write(priv, ERXFCON, 694 ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN); 695 696 /* enable MAC receive */ 697 locked_regb_write(priv, MACON1, 698 MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS); 699 /* enable automatic padding and CRC operations */ 700 if (priv->full_duplex) { 701 locked_regb_write(priv, MACON3, 702 MACON3_PADCFG0 | MACON3_TXCRCEN | 703 MACON3_FRMLNEN | MACON3_FULDPX); 704 /* set inter-frame gap (non-back-to-back) */ 705 locked_regb_write(priv, MAIPGL, 0x12); 706 /* set inter-frame gap (back-to-back) */ 707 locked_regb_write(priv, MABBIPG, 0x15); 708 } else { 709 locked_regb_write(priv, MACON3, 710 MACON3_PADCFG0 | MACON3_TXCRCEN | 711 MACON3_FRMLNEN); 712 locked_regb_write(priv, MACON4, 1 << 6); /* DEFER bit */ 713 /* set inter-frame gap (non-back-to-back) */ 714 locked_regw_write(priv, MAIPGL, 0x0C12); 715 /* set inter-frame gap (back-to-back) */ 716 locked_regb_write(priv, MABBIPG, 0x12); 717 } 718 /* 719 * MACLCON1 (default) 720 * MACLCON2 (default) 721 * Set the maximum packet size which the controller will accept 722 */ 723 locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN); 724 725 /* Configure LEDs */ 726 if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE)) 727 return 0; 728 729 if (priv->full_duplex) { 730 if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD)) 731 return 0; 732 if (!enc28j60_phy_write(priv, PHCON2, 0x00)) 733 return 0; 734 } else { 735 if (!enc28j60_phy_write(priv, PHCON1, 0x00)) 736 return 0; 737 if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS)) 738 return 0; 739 } 740 if (netif_msg_hw(priv)) 741 enc28j60_dump_regs(priv, "Hw initialized."); 742 743 return 1; 744} 745 746static void enc28j60_hw_enable(struct enc28j60_net *priv) 747{ 748 /* enable interrupts */ 749 if (netif_msg_hw(priv)) 750 printk(KERN_DEBUG DRV_NAME ": %s() enabling interrupts.\n", 751 __func__); 752 753 enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE); 754 755 mutex_lock(&priv->lock); 756 nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF | 757 EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF); 758 nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE | 759 EIE_TXIE | EIE_TXERIE | EIE_RXERIE); 760 761 /* enable receive logic */ 762 nolock_reg_bfset(priv, ECON1, ECON1_RXEN); 763 priv->hw_enable = true; 764 mutex_unlock(&priv->lock); 765} 766 767static void enc28j60_hw_disable(struct enc28j60_net *priv) 768{ 769 mutex_lock(&priv->lock); 770 /* disable interrutps and packet reception */ 771 nolock_regb_write(priv, EIE, 0x00); 772 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 773 priv->hw_enable = false; 774 mutex_unlock(&priv->lock); 775} 776 777static int 778enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex) 779{ 780 struct enc28j60_net *priv = netdev_priv(ndev); 781 int ret = 0; 782 783 if (!priv->hw_enable) { 784 /* link is in low power mode now; duplex setting 785 * will take effect on next enc28j60_hw_init(). 786 */ 787 if (autoneg == AUTONEG_DISABLE && speed == SPEED_10) 788 priv->full_duplex = (duplex == DUPLEX_FULL); 789 else { 790 if (netif_msg_link(priv)) 791 dev_warn(&ndev->dev, 792 "unsupported link setting\n"); 793 ret = -EOPNOTSUPP; 794 } 795 } else { 796 if (netif_msg_link(priv)) 797 dev_warn(&ndev->dev, "Warning: hw must be disabled " 798 "to set link mode\n"); 799 ret = -EBUSY; 800 } 801 return ret; 802} 803 804/* 805 * Read the Transmit Status Vector 806 */ 807static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE]) 808{ 809 int endptr; 810 811 endptr = locked_regw_read(priv, ETXNDL); 812 if (netif_msg_hw(priv)) 813 printk(KERN_DEBUG DRV_NAME ": reading TSV at addr:0x%04x\n", 814 endptr + 1); 815 enc28j60_mem_read(priv, endptr + 1, TSV_SIZE, tsv); 816} 817 818static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg, 819 u8 tsv[TSV_SIZE]) 820{ 821 u16 tmp1, tmp2; 822 823 printk(KERN_DEBUG DRV_NAME ": %s - TSV:\n", msg); 824 tmp1 = tsv[1]; 825 tmp1 <<= 8; 826 tmp1 |= tsv[0]; 827 828 tmp2 = tsv[5]; 829 tmp2 <<= 8; 830 tmp2 |= tsv[4]; 831 832 printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, CollisionCount: %d," 833 " TotByteOnWire: %d\n", tmp1, tsv[2] & 0x0f, tmp2); 834 printk(KERN_DEBUG DRV_NAME ": TxDone: %d, CRCErr:%d, LenChkErr: %d," 835 " LenOutOfRange: %d\n", TSV_GETBIT(tsv, TSV_TXDONE), 836 TSV_GETBIT(tsv, TSV_TXCRCERROR), 837 TSV_GETBIT(tsv, TSV_TXLENCHKERROR), 838 TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE)); 839 printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, " 840 "PacketDefer: %d, ExDefer: %d\n", 841 TSV_GETBIT(tsv, TSV_TXMULTICAST), 842 TSV_GETBIT(tsv, TSV_TXBROADCAST), 843 TSV_GETBIT(tsv, TSV_TXPACKETDEFER), 844 TSV_GETBIT(tsv, TSV_TXEXDEFER)); 845 printk(KERN_DEBUG DRV_NAME ": ExCollision: %d, LateCollision: %d, " 846 "Giant: %d, Underrun: %d\n", 847 TSV_GETBIT(tsv, TSV_TXEXCOLLISION), 848 TSV_GETBIT(tsv, TSV_TXLATECOLLISION), 849 TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN)); 850 printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d, " 851 "BackPressApp: %d, VLanTagFrame: %d\n", 852 TSV_GETBIT(tsv, TSV_TXCONTROLFRAME), 853 TSV_GETBIT(tsv, TSV_TXPAUSEFRAME), 854 TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP), 855 TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME)); 856} 857 858/* 859 * Receive Status vector 860 */ 861static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg, 862 u16 pk_ptr, int len, u16 sts) 863{ 864 printk(KERN_DEBUG DRV_NAME ": %s - NextPk: 0x%04x - RSV:\n", 865 msg, pk_ptr); 866 printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, DribbleNibble: %d\n", len, 867 RSV_GETBIT(sts, RSV_DRIBBLENIBBLE)); 868 printk(KERN_DEBUG DRV_NAME ": RxOK: %d, CRCErr:%d, LenChkErr: %d," 869 " LenOutOfRange: %d\n", RSV_GETBIT(sts, RSV_RXOK), 870 RSV_GETBIT(sts, RSV_CRCERROR), 871 RSV_GETBIT(sts, RSV_LENCHECKERR), 872 RSV_GETBIT(sts, RSV_LENOUTOFRANGE)); 873 printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, " 874 "LongDropEvent: %d, CarrierEvent: %d\n", 875 RSV_GETBIT(sts, RSV_RXMULTICAST), 876 RSV_GETBIT(sts, RSV_RXBROADCAST), 877 RSV_GETBIT(sts, RSV_RXLONGEVDROPEV), 878 RSV_GETBIT(sts, RSV_CARRIEREV)); 879 printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d," 880 " UnknownOp: %d, VLanTagFrame: %d\n", 881 RSV_GETBIT(sts, RSV_RXCONTROLFRAME), 882 RSV_GETBIT(sts, RSV_RXPAUSEFRAME), 883 RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE), 884 RSV_GETBIT(sts, RSV_RXTYPEVLAN)); 885} 886 887static void dump_packet(const char *msg, int len, const char *data) 888{ 889 printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len); 890 print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1, 891 data, len, true); 892} 893 894/* 895 * Hardware receive function. 896 * Read the buffer memory, update the FIFO pointer to free the buffer, 897 * check the status vector and decrement the packet counter. 898 */ 899static void enc28j60_hw_rx(struct net_device *ndev) 900{ 901 struct enc28j60_net *priv = netdev_priv(ndev); 902 struct sk_buff *skb = NULL; 903 u16 erxrdpt, next_packet, rxstat; 904 u8 rsv[RSV_SIZE]; 905 int len; 906 907 if (netif_msg_rx_status(priv)) 908 printk(KERN_DEBUG DRV_NAME ": RX pk_addr:0x%04x\n", 909 priv->next_pk_ptr); 910 911 if (unlikely(priv->next_pk_ptr > RXEND_INIT)) { 912 if (netif_msg_rx_err(priv)) 913 dev_err(&ndev->dev, 914 "%s() Invalid packet address!! 0x%04x\n", 915 __func__, priv->next_pk_ptr); 916 /* packet address corrupted: reset RX logic */ 917 mutex_lock(&priv->lock); 918 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 919 nolock_reg_bfset(priv, ECON1, ECON1_RXRST); 920 nolock_reg_bfclr(priv, ECON1, ECON1_RXRST); 921 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT); 922 nolock_reg_bfclr(priv, EIR, EIR_RXERIF); 923 nolock_reg_bfset(priv, ECON1, ECON1_RXEN); 924 mutex_unlock(&priv->lock); 925 ndev->stats.rx_errors++; 926 return; 927 } 928 /* Read next packet pointer and rx status vector */ 929 enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv); 930 931 next_packet = rsv[1]; 932 next_packet <<= 8; 933 next_packet |= rsv[0]; 934 935 len = rsv[3]; 936 len <<= 8; 937 len |= rsv[2]; 938 939 rxstat = rsv[5]; 940 rxstat <<= 8; 941 rxstat |= rsv[4]; 942 943 if (netif_msg_rx_status(priv)) 944 enc28j60_dump_rsv(priv, __func__, next_packet, len, rxstat); 945 946 if (!RSV_GETBIT(rxstat, RSV_RXOK) || len > MAX_FRAMELEN) { 947 if (netif_msg_rx_err(priv)) 948 dev_err(&ndev->dev, "Rx Error (%04x)\n", rxstat); 949 ndev->stats.rx_errors++; 950 if (RSV_GETBIT(rxstat, RSV_CRCERROR)) 951 ndev->stats.rx_crc_errors++; 952 if (RSV_GETBIT(rxstat, RSV_LENCHECKERR)) 953 ndev->stats.rx_frame_errors++; 954 if (len > MAX_FRAMELEN) 955 ndev->stats.rx_over_errors++; 956 } else { 957 skb = netdev_alloc_skb(ndev, len + NET_IP_ALIGN); 958 if (!skb) { 959 if (netif_msg_rx_err(priv)) 960 dev_err(&ndev->dev, 961 "out of memory for Rx'd frame\n"); 962 ndev->stats.rx_dropped++; 963 } else { 964 skb_reserve(skb, NET_IP_ALIGN); 965 /* copy the packet from the receive buffer */ 966 enc28j60_mem_read(priv, 967 rx_packet_start(priv->next_pk_ptr), 968 len, skb_put(skb, len)); 969 if (netif_msg_pktdata(priv)) 970 dump_packet(__func__, skb->len, skb->data); 971 skb->protocol = eth_type_trans(skb, ndev); 972 /* update statistics */ 973 ndev->stats.rx_packets++; 974 ndev->stats.rx_bytes += len; 975 netif_rx_ni(skb); 976 } 977 } 978 /* 979 * Move the RX read pointer to the start of the next 980 * received packet. 981 * This frees the memory we just read out 982 */ 983 erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT); 984 if (netif_msg_hw(priv)) 985 printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT:0x%04x\n", 986 __func__, erxrdpt); 987 988 mutex_lock(&priv->lock); 989 nolock_regw_write(priv, ERXRDPTL, erxrdpt); 990#ifdef CONFIG_ENC28J60_WRITEVERIFY 991 if (netif_msg_drv(priv)) { 992 u16 reg; 993 reg = nolock_regw_read(priv, ERXRDPTL); 994 if (reg != erxrdpt) 995 printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT verify " 996 "error (0x%04x - 0x%04x)\n", __func__, 997 reg, erxrdpt); 998 } 999#endif 1000 priv->next_pk_ptr = next_packet; 1001 /* we are done with this packet, decrement the packet counter */ 1002 nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC); 1003 mutex_unlock(&priv->lock); 1004} 1005 1006/* 1007 * Calculate free space in RxFIFO 1008 */ 1009static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv) 1010{ 1011 int epkcnt, erxst, erxnd, erxwr, erxrd; 1012 int free_space; 1013 1014 mutex_lock(&priv->lock); 1015 epkcnt = nolock_regb_read(priv, EPKTCNT); 1016 if (epkcnt >= 255) 1017 free_space = -1; 1018 else { 1019 erxst = nolock_regw_read(priv, ERXSTL); 1020 erxnd = nolock_regw_read(priv, ERXNDL); 1021 erxwr = nolock_regw_read(priv, ERXWRPTL); 1022 erxrd = nolock_regw_read(priv, ERXRDPTL); 1023 1024 if (erxwr > erxrd) 1025 free_space = (erxnd - erxst) - (erxwr - erxrd); 1026 else if (erxwr == erxrd) 1027 free_space = (erxnd - erxst); 1028 else 1029 free_space = erxrd - erxwr - 1; 1030 } 1031 mutex_unlock(&priv->lock); 1032 if (netif_msg_rx_status(priv)) 1033 printk(KERN_DEBUG DRV_NAME ": %s() free_space = %d\n", 1034 __func__, free_space); 1035 return free_space; 1036} 1037 1038/* 1039 * Access the PHY to determine link status 1040 */ 1041static void enc28j60_check_link_status(struct net_device *ndev) 1042{ 1043 struct enc28j60_net *priv = netdev_priv(ndev); 1044 u16 reg; 1045 int duplex; 1046 1047 reg = enc28j60_phy_read(priv, PHSTAT2); 1048 if (netif_msg_hw(priv)) 1049 printk(KERN_DEBUG DRV_NAME ": %s() PHSTAT1: %04x, " 1050 "PHSTAT2: %04x\n", __func__, 1051 enc28j60_phy_read(priv, PHSTAT1), reg); 1052 duplex = reg & PHSTAT2_DPXSTAT; 1053 1054 if (reg & PHSTAT2_LSTAT) { 1055 netif_carrier_on(ndev); 1056 if (netif_msg_ifup(priv)) 1057 dev_info(&ndev->dev, "link up - %s\n", 1058 duplex ? "Full duplex" : "Half duplex"); 1059 } else { 1060 if (netif_msg_ifdown(priv)) 1061 dev_info(&ndev->dev, "link down\n"); 1062 netif_carrier_off(ndev); 1063 } 1064} 1065 1066static void enc28j60_tx_clear(struct net_device *ndev, bool err) 1067{ 1068 struct enc28j60_net *priv = netdev_priv(ndev); 1069 1070 if (err) 1071 ndev->stats.tx_errors++; 1072 else 1073 ndev->stats.tx_packets++; 1074 1075 if (priv->tx_skb) { 1076 if (!err) 1077 ndev->stats.tx_bytes += priv->tx_skb->len; 1078 dev_kfree_skb(priv->tx_skb); 1079 priv->tx_skb = NULL; 1080 } 1081 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS); 1082 netif_wake_queue(ndev); 1083} 1084 1085/* 1086 * RX handler 1087 * ignore PKTIF because is unreliable! (look at the errata datasheet) 1088 * check EPKTCNT is the suggested workaround. 1089 * We don't need to clear interrupt flag, automatically done when 1090 * enc28j60_hw_rx() decrements the packet counter. 1091 * Returns how many packet processed. 1092 */ 1093static int enc28j60_rx_interrupt(struct net_device *ndev) 1094{ 1095 struct enc28j60_net *priv = netdev_priv(ndev); 1096 int pk_counter, ret; 1097 1098 pk_counter = locked_regb_read(priv, EPKTCNT); 1099 if (pk_counter && netif_msg_intr(priv)) 1100 printk(KERN_DEBUG DRV_NAME ": intRX, pk_cnt: %d\n", pk_counter); 1101 if (pk_counter > priv->max_pk_counter) { 1102 /* update statistics */ 1103 priv->max_pk_counter = pk_counter; 1104 if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1) 1105 printk(KERN_DEBUG DRV_NAME ": RX max_pk_cnt: %d\n", 1106 priv->max_pk_counter); 1107 } 1108 ret = pk_counter; 1109 while (pk_counter-- > 0) 1110 enc28j60_hw_rx(ndev); 1111 1112 return ret; 1113} 1114 1115static void enc28j60_irq_work_handler(struct work_struct *work) 1116{ 1117 struct enc28j60_net *priv = 1118 container_of(work, struct enc28j60_net, irq_work); 1119 struct net_device *ndev = priv->netdev; 1120 int intflags, loop; 1121 1122 if (netif_msg_intr(priv)) 1123 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 1124 /* disable further interrupts */ 1125 locked_reg_bfclr(priv, EIE, EIE_INTIE); 1126 1127 do { 1128 loop = 0; 1129 intflags = locked_regb_read(priv, EIR); 1130 /* DMA interrupt handler (not currently used) */ 1131 if ((intflags & EIR_DMAIF) != 0) { 1132 loop++; 1133 if (netif_msg_intr(priv)) 1134 printk(KERN_DEBUG DRV_NAME 1135 ": intDMA(%d)\n", loop); 1136 locked_reg_bfclr(priv, EIR, EIR_DMAIF); 1137 } 1138 /* LINK changed handler */ 1139 if ((intflags & EIR_LINKIF) != 0) { 1140 loop++; 1141 if (netif_msg_intr(priv)) 1142 printk(KERN_DEBUG DRV_NAME 1143 ": intLINK(%d)\n", loop); 1144 enc28j60_check_link_status(ndev); 1145 /* read PHIR to clear the flag */ 1146 enc28j60_phy_read(priv, PHIR); 1147 } 1148 /* TX complete handler */ 1149 if ((intflags & EIR_TXIF) != 0) { 1150 bool err = false; 1151 loop++; 1152 if (netif_msg_intr(priv)) 1153 printk(KERN_DEBUG DRV_NAME 1154 ": intTX(%d)\n", loop); 1155 priv->tx_retry_count = 0; 1156 if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) { 1157 if (netif_msg_tx_err(priv)) 1158 dev_err(&ndev->dev, 1159 "Tx Error (aborted)\n"); 1160 err = true; 1161 } 1162 if (netif_msg_tx_done(priv)) { 1163 u8 tsv[TSV_SIZE]; 1164 enc28j60_read_tsv(priv, tsv); 1165 enc28j60_dump_tsv(priv, "Tx Done", tsv); 1166 } 1167 enc28j60_tx_clear(ndev, err); 1168 locked_reg_bfclr(priv, EIR, EIR_TXIF); 1169 } 1170 /* TX Error handler */ 1171 if ((intflags & EIR_TXERIF) != 0) { 1172 u8 tsv[TSV_SIZE]; 1173 1174 loop++; 1175 if (netif_msg_intr(priv)) 1176 printk(KERN_DEBUG DRV_NAME 1177 ": intTXErr(%d)\n", loop); 1178 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS); 1179 enc28j60_read_tsv(priv, tsv); 1180 if (netif_msg_tx_err(priv)) 1181 enc28j60_dump_tsv(priv, "Tx Error", tsv); 1182 /* Reset TX logic */ 1183 mutex_lock(&priv->lock); 1184 nolock_reg_bfset(priv, ECON1, ECON1_TXRST); 1185 nolock_reg_bfclr(priv, ECON1, ECON1_TXRST); 1186 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT); 1187 mutex_unlock(&priv->lock); 1188 /* Transmit Late collision check for retransmit */ 1189 if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) { 1190 if (netif_msg_tx_err(priv)) 1191 printk(KERN_DEBUG DRV_NAME 1192 ": LateCollision TXErr (%d)\n", 1193 priv->tx_retry_count); 1194 if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT) 1195 locked_reg_bfset(priv, ECON1, 1196 ECON1_TXRTS); 1197 else 1198 enc28j60_tx_clear(ndev, true); 1199 } else 1200 enc28j60_tx_clear(ndev, true); 1201 locked_reg_bfclr(priv, EIR, EIR_TXERIF); 1202 } 1203 /* RX Error handler */ 1204 if ((intflags & EIR_RXERIF) != 0) { 1205 loop++; 1206 if (netif_msg_intr(priv)) 1207 printk(KERN_DEBUG DRV_NAME 1208 ": intRXErr(%d)\n", loop); 1209 /* Check free FIFO space to flag RX overrun */ 1210 if (enc28j60_get_free_rxfifo(priv) <= 0) { 1211 if (netif_msg_rx_err(priv)) 1212 printk(KERN_DEBUG DRV_NAME 1213 ": RX Overrun\n"); 1214 ndev->stats.rx_dropped++; 1215 } 1216 locked_reg_bfclr(priv, EIR, EIR_RXERIF); 1217 } 1218 /* RX handler */ 1219 if (enc28j60_rx_interrupt(ndev)) 1220 loop++; 1221 } while (loop); 1222 1223 /* re-enable interrupts */ 1224 locked_reg_bfset(priv, EIE, EIE_INTIE); 1225 if (netif_msg_intr(priv)) 1226 printk(KERN_DEBUG DRV_NAME ": %s() exit\n", __func__); 1227} 1228 1229/* 1230 * Hardware transmit function. 1231 * Fill the buffer memory and send the contents of the transmit buffer 1232 * onto the network 1233 */ 1234static void enc28j60_hw_tx(struct enc28j60_net *priv) 1235{ 1236 if (netif_msg_tx_queued(priv)) 1237 printk(KERN_DEBUG DRV_NAME 1238 ": Tx Packet Len:%d\n", priv->tx_skb->len); 1239 1240 if (netif_msg_pktdata(priv)) 1241 dump_packet(__func__, 1242 priv->tx_skb->len, priv->tx_skb->data); 1243 enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data); 1244 1245#ifdef CONFIG_ENC28J60_WRITEVERIFY 1246 /* readback and verify written data */ 1247 if (netif_msg_drv(priv)) { 1248 int test_len, k; 1249 u8 test_buf[64]; /* limit the test to the first 64 bytes */ 1250 int okflag; 1251 1252 test_len = priv->tx_skb->len; 1253 if (test_len > sizeof(test_buf)) 1254 test_len = sizeof(test_buf); 1255 1256 /* + 1 to skip control byte */ 1257 enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf); 1258 okflag = 1; 1259 for (k = 0; k < test_len; k++) { 1260 if (priv->tx_skb->data[k] != test_buf[k]) { 1261 printk(KERN_DEBUG DRV_NAME 1262 ": Error, %d location differ: " 1263 "0x%02x-0x%02x\n", k, 1264 priv->tx_skb->data[k], test_buf[k]); 1265 okflag = 0; 1266 } 1267 } 1268 if (!okflag) 1269 printk(KERN_DEBUG DRV_NAME ": Tx write buffer, " 1270 "verify ERROR!\n"); 1271 } 1272#endif 1273 /* set TX request flag */ 1274 locked_reg_bfset(priv, ECON1, ECON1_TXRTS); 1275} 1276 1277static netdev_tx_t enc28j60_send_packet(struct sk_buff *skb, 1278 struct net_device *dev) 1279{ 1280 struct enc28j60_net *priv = netdev_priv(dev); 1281 1282 if (netif_msg_tx_queued(priv)) 1283 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 1284 1285 /* If some error occurs while trying to transmit this 1286 * packet, you should return '1' from this function. 1287 * In such a case you _may not_ do anything to the 1288 * SKB, it is still owned by the network queueing 1289 * layer when an error is returned. This means you 1290 * may not modify any SKB fields, you may not free 1291 * the SKB, etc. 1292 */ 1293 netif_stop_queue(dev); 1294 1295 /* Remember the skb for deferred processing */ 1296 priv->tx_skb = skb; 1297 schedule_work(&priv->tx_work); 1298 1299 return NETDEV_TX_OK; 1300} 1301 1302static void enc28j60_tx_work_handler(struct work_struct *work) 1303{ 1304 struct enc28j60_net *priv = 1305 container_of(work, struct enc28j60_net, tx_work); 1306 1307 /* actual delivery of data */ 1308 enc28j60_hw_tx(priv); 1309} 1310 1311static irqreturn_t enc28j60_irq(int irq, void *dev_id) 1312{ 1313 struct enc28j60_net *priv = dev_id; 1314 1315 /* 1316 * Can't do anything in interrupt context because we need to 1317 * block (spi_sync() is blocking) so fire of the interrupt 1318 * handling workqueue. 1319 * Remember that we access enc28j60 registers through SPI bus 1320 * via spi_sync() call. 1321 */ 1322 schedule_work(&priv->irq_work); 1323 1324 return IRQ_HANDLED; 1325} 1326 1327static void enc28j60_tx_timeout(struct net_device *ndev) 1328{ 1329 struct enc28j60_net *priv = netdev_priv(ndev); 1330 1331 if (netif_msg_timer(priv)) 1332 dev_err(&ndev->dev, DRV_NAME " tx timeout\n"); 1333 1334 ndev->stats.tx_errors++; 1335 /* can't restart safely under softirq */ 1336 schedule_work(&priv->restart_work); 1337} 1338 1339/* 1340 * Open/initialize the board. This is called (in the current kernel) 1341 * sometime after booting when the 'ifconfig' program is run. 1342 * 1343 * This routine should set everything up anew at each open, even 1344 * registers that "should" only need to be set once at boot, so that 1345 * there is non-reboot way to recover if something goes wrong. 1346 */ 1347static int enc28j60_net_open(struct net_device *dev) 1348{ 1349 struct enc28j60_net *priv = netdev_priv(dev); 1350 1351 if (netif_msg_drv(priv)) 1352 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 1353 1354 if (!is_valid_ether_addr(dev->dev_addr)) { 1355 if (netif_msg_ifup(priv)) 1356 dev_err(&dev->dev, "invalid MAC address %pM\n", 1357 dev->dev_addr); 1358 return -EADDRNOTAVAIL; 1359 } 1360 /* Reset the hardware here (and take it out of low power mode) */ 1361 enc28j60_lowpower(priv, false); 1362 enc28j60_hw_disable(priv); 1363 if (!enc28j60_hw_init(priv)) { 1364 if (netif_msg_ifup(priv)) 1365 dev_err(&dev->dev, "hw_reset() failed\n"); 1366 return -EINVAL; 1367 } 1368 /* Update the MAC address (in case user has changed it) */ 1369 enc28j60_set_hw_macaddr(dev); 1370 /* Enable interrupts */ 1371 enc28j60_hw_enable(priv); 1372 /* check link status */ 1373 enc28j60_check_link_status(dev); 1374 /* We are now ready to accept transmit requests from 1375 * the queueing layer of the networking. 1376 */ 1377 netif_start_queue(dev); 1378 1379 return 0; 1380} 1381 1382/* The inverse routine to net_open(). */ 1383static int enc28j60_net_close(struct net_device *dev) 1384{ 1385 struct enc28j60_net *priv = netdev_priv(dev); 1386 1387 if (netif_msg_drv(priv)) 1388 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 1389 1390 enc28j60_hw_disable(priv); 1391 enc28j60_lowpower(priv, true); 1392 netif_stop_queue(dev); 1393 1394 return 0; 1395} 1396 1397/* 1398 * Set or clear the multicast filter for this adapter 1399 * num_addrs == -1 Promiscuous mode, receive all packets 1400 * num_addrs == 0 Normal mode, filter out multicast packets 1401 * num_addrs > 0 Multicast mode, receive normal and MC packets 1402 */ 1403static void enc28j60_set_multicast_list(struct net_device *dev) 1404{ 1405 struct enc28j60_net *priv = netdev_priv(dev); 1406 int oldfilter = priv->rxfilter; 1407 1408 if (dev->flags & IFF_PROMISC) { 1409 if (netif_msg_link(priv)) 1410 dev_info(&dev->dev, "promiscuous mode\n"); 1411 priv->rxfilter = RXFILTER_PROMISC; 1412 } else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev)) { 1413 if (netif_msg_link(priv)) 1414 dev_info(&dev->dev, "%smulticast mode\n", 1415 (dev->flags & IFF_ALLMULTI) ? "all-" : ""); 1416 priv->rxfilter = RXFILTER_MULTI; 1417 } else { 1418 if (netif_msg_link(priv)) 1419 dev_info(&dev->dev, "normal mode\n"); 1420 priv->rxfilter = RXFILTER_NORMAL; 1421 } 1422 1423 if (oldfilter != priv->rxfilter) 1424 schedule_work(&priv->setrx_work); 1425} 1426 1427static void enc28j60_setrx_work_handler(struct work_struct *work) 1428{ 1429 struct enc28j60_net *priv = 1430 container_of(work, struct enc28j60_net, setrx_work); 1431 1432 if (priv->rxfilter == RXFILTER_PROMISC) { 1433 if (netif_msg_drv(priv)) 1434 printk(KERN_DEBUG DRV_NAME ": promiscuous mode\n"); 1435 locked_regb_write(priv, ERXFCON, 0x00); 1436 } else if (priv->rxfilter == RXFILTER_MULTI) { 1437 if (netif_msg_drv(priv)) 1438 printk(KERN_DEBUG DRV_NAME ": multicast mode\n"); 1439 locked_regb_write(priv, ERXFCON, 1440 ERXFCON_UCEN | ERXFCON_CRCEN | 1441 ERXFCON_BCEN | ERXFCON_MCEN); 1442 } else { 1443 if (netif_msg_drv(priv)) 1444 printk(KERN_DEBUG DRV_NAME ": normal mode\n"); 1445 locked_regb_write(priv, ERXFCON, 1446 ERXFCON_UCEN | ERXFCON_CRCEN | 1447 ERXFCON_BCEN); 1448 } 1449} 1450 1451static void enc28j60_restart_work_handler(struct work_struct *work) 1452{ 1453 struct enc28j60_net *priv = 1454 container_of(work, struct enc28j60_net, restart_work); 1455 struct net_device *ndev = priv->netdev; 1456 int ret; 1457 1458 rtnl_lock(); 1459 if (netif_running(ndev)) { 1460 enc28j60_net_close(ndev); 1461 ret = enc28j60_net_open(ndev); 1462 if (unlikely(ret)) { 1463 dev_info(&ndev->dev, " could not restart %d\n", ret); 1464 dev_close(ndev); 1465 } 1466 } 1467 rtnl_unlock(); 1468} 1469 1470/* ......................... ETHTOOL SUPPORT ........................... */ 1471 1472static void 1473enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1474{ 1475 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1476 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1477 strlcpy(info->bus_info, 1478 dev_name(dev->dev.parent), sizeof(info->bus_info)); 1479} 1480 1481static int 1482enc28j60_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1483{ 1484 struct enc28j60_net *priv = netdev_priv(dev); 1485 1486 cmd->transceiver = XCVR_INTERNAL; 1487 cmd->supported = SUPPORTED_10baseT_Half 1488 | SUPPORTED_10baseT_Full 1489 | SUPPORTED_TP; 1490 ethtool_cmd_speed_set(cmd, SPEED_10); 1491 cmd->duplex = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 1492 cmd->port = PORT_TP; 1493 cmd->autoneg = AUTONEG_DISABLE; 1494 1495 return 0; 1496} 1497 1498static int 1499enc28j60_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1500{ 1501 return enc28j60_setlink(dev, cmd->autoneg, 1502 ethtool_cmd_speed(cmd), cmd->duplex); 1503} 1504 1505static u32 enc28j60_get_msglevel(struct net_device *dev) 1506{ 1507 struct enc28j60_net *priv = netdev_priv(dev); 1508 return priv->msg_enable; 1509} 1510 1511static void enc28j60_set_msglevel(struct net_device *dev, u32 val) 1512{ 1513 struct enc28j60_net *priv = netdev_priv(dev); 1514 priv->msg_enable = val; 1515} 1516 1517static const struct ethtool_ops enc28j60_ethtool_ops = { 1518 .get_settings = enc28j60_get_settings, 1519 .set_settings = enc28j60_set_settings, 1520 .get_drvinfo = enc28j60_get_drvinfo, 1521 .get_msglevel = enc28j60_get_msglevel, 1522 .set_msglevel = enc28j60_set_msglevel, 1523}; 1524 1525static int enc28j60_chipset_init(struct net_device *dev) 1526{ 1527 struct enc28j60_net *priv = netdev_priv(dev); 1528 1529 return enc28j60_hw_init(priv); 1530} 1531 1532static const struct net_device_ops enc28j60_netdev_ops = { 1533 .ndo_open = enc28j60_net_open, 1534 .ndo_stop = enc28j60_net_close, 1535 .ndo_start_xmit = enc28j60_send_packet, 1536 .ndo_set_rx_mode = enc28j60_set_multicast_list, 1537 .ndo_set_mac_address = enc28j60_set_mac_address, 1538 .ndo_tx_timeout = enc28j60_tx_timeout, 1539 .ndo_change_mtu = eth_change_mtu, 1540 .ndo_validate_addr = eth_validate_addr, 1541}; 1542 1543static int enc28j60_probe(struct spi_device *spi) 1544{ 1545 struct net_device *dev; 1546 struct enc28j60_net *priv; 1547 int ret = 0; 1548 1549 if (netif_msg_drv(&debug)) 1550 dev_info(&spi->dev, DRV_NAME " Ethernet driver %s loaded\n", 1551 DRV_VERSION); 1552 1553 dev = alloc_etherdev(sizeof(struct enc28j60_net)); 1554 if (!dev) { 1555 ret = -ENOMEM; 1556 goto error_alloc; 1557 } 1558 priv = netdev_priv(dev); 1559 1560 priv->netdev = dev; /* priv to netdev reference */ 1561 priv->spi = spi; /* priv to spi reference */ 1562 priv->msg_enable = netif_msg_init(debug.msg_enable, 1563 ENC28J60_MSG_DEFAULT); 1564 mutex_init(&priv->lock); 1565 INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler); 1566 INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler); 1567 INIT_WORK(&priv->irq_work, enc28j60_irq_work_handler); 1568 INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler); 1569 spi_set_drvdata(spi, priv); /* spi to priv reference */ 1570 SET_NETDEV_DEV(dev, &spi->dev); 1571 1572 if (!enc28j60_chipset_init(dev)) { 1573 if (netif_msg_probe(priv)) 1574 dev_info(&spi->dev, DRV_NAME " chip not found\n"); 1575 ret = -EIO; 1576 goto error_irq; 1577 } 1578 eth_hw_addr_random(dev); 1579 enc28j60_set_hw_macaddr(dev); 1580 1581 /* Board setup must set the relevant edge trigger type; 1582 * level triggers won't currently work. 1583 */ 1584 ret = request_irq(spi->irq, enc28j60_irq, 0, DRV_NAME, priv); 1585 if (ret < 0) { 1586 if (netif_msg_probe(priv)) 1587 dev_err(&spi->dev, DRV_NAME ": request irq %d failed " 1588 "(ret = %d)\n", spi->irq, ret); 1589 goto error_irq; 1590 } 1591 1592 dev->if_port = IF_PORT_10BASET; 1593 dev->irq = spi->irq; 1594 dev->netdev_ops = &enc28j60_netdev_ops; 1595 dev->watchdog_timeo = TX_TIMEOUT; 1596 dev->ethtool_ops = &enc28j60_ethtool_ops; 1597 1598 enc28j60_lowpower(priv, true); 1599 1600 ret = register_netdev(dev); 1601 if (ret) { 1602 if (netif_msg_probe(priv)) 1603 dev_err(&spi->dev, "register netdev " DRV_NAME 1604 " failed (ret = %d)\n", ret); 1605 goto error_register; 1606 } 1607 dev_info(&dev->dev, DRV_NAME " driver registered\n"); 1608 1609 return 0; 1610 1611error_register: 1612 free_irq(spi->irq, priv); 1613error_irq: 1614 free_netdev(dev); 1615error_alloc: 1616 return ret; 1617} 1618 1619static int enc28j60_remove(struct spi_device *spi) 1620{ 1621 struct enc28j60_net *priv = spi_get_drvdata(spi); 1622 1623 if (netif_msg_drv(priv)) 1624 printk(KERN_DEBUG DRV_NAME ": remove\n"); 1625 1626 unregister_netdev(priv->netdev); 1627 free_irq(spi->irq, priv); 1628 free_netdev(priv->netdev); 1629 1630 return 0; 1631} 1632 1633static struct spi_driver enc28j60_driver = { 1634 .driver = { 1635 .name = DRV_NAME, 1636 }, 1637 .probe = enc28j60_probe, 1638 .remove = enc28j60_remove, 1639}; 1640 1641static int __init enc28j60_init(void) 1642{ 1643 msec20_to_jiffies = msecs_to_jiffies(20); 1644 1645 return spi_register_driver(&enc28j60_driver); 1646} 1647 1648module_init(enc28j60_init); 1649 1650static void __exit enc28j60_exit(void) 1651{ 1652 spi_unregister_driver(&enc28j60_driver); 1653} 1654 1655module_exit(enc28j60_exit); 1656 1657MODULE_DESCRIPTION(DRV_NAME " ethernet driver"); 1658MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>"); 1659MODULE_LICENSE("GPL"); 1660module_param_named(debug, debug.msg_enable, int, 0); 1661MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., ffff=all)"); 1662MODULE_ALIAS("spi:" DRV_NAME); 1663