1/* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14#include <linux/kernel.h> 15#include <linux/netdevice.h> 16#include <linux/etherdevice.h> 17#include <linux/platform_device.h> 18#include <linux/skbuff.h> 19#include <linux/inetdevice.h> 20#include <linux/mbus.h> 21#include <linux/module.h> 22#include <linux/interrupt.h> 23#include <linux/if_vlan.h> 24#include <net/ip.h> 25#include <net/ipv6.h> 26#include <linux/io.h> 27#include <net/tso.h> 28#include <linux/of.h> 29#include <linux/of_irq.h> 30#include <linux/of_mdio.h> 31#include <linux/of_net.h> 32#include <linux/of_address.h> 33#include <linux/phy.h> 34#include <linux/clk.h> 35#include <linux/cpu.h> 36 37/* Registers */ 38#define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 39#define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 40#define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 41#define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 42#define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 43#define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 44#define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 45#define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 46#define MVNETA_RXQ_BUF_SIZE_SHIFT 19 47#define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 48#define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 49#define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 50#define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 51#define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 52#define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 53#define MVNETA_PORT_RX_RESET 0x1cc0 54#define MVNETA_PORT_RX_DMA_RESET BIT(0) 55#define MVNETA_PHY_ADDR 0x2000 56#define MVNETA_PHY_ADDR_MASK 0x1f 57#define MVNETA_MBUS_RETRY 0x2010 58#define MVNETA_UNIT_INTR_CAUSE 0x2080 59#define MVNETA_UNIT_CONTROL 0x20B0 60#define MVNETA_PHY_POLLING_ENABLE BIT(1) 61#define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 62#define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 63#define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 64#define MVNETA_BASE_ADDR_ENABLE 0x2290 65#define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 66#define MVNETA_PORT_CONFIG 0x2400 67#define MVNETA_UNI_PROMISC_MODE BIT(0) 68#define MVNETA_DEF_RXQ(q) ((q) << 1) 69#define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 70#define MVNETA_TX_UNSET_ERR_SUM BIT(12) 71#define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 72#define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 73#define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 74#define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 75#define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 76 MVNETA_DEF_RXQ_ARP(q) | \ 77 MVNETA_DEF_RXQ_TCP(q) | \ 78 MVNETA_DEF_RXQ_UDP(q) | \ 79 MVNETA_DEF_RXQ_BPDU(q) | \ 80 MVNETA_TX_UNSET_ERR_SUM | \ 81 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 82#define MVNETA_PORT_CONFIG_EXTEND 0x2404 83#define MVNETA_MAC_ADDR_LOW 0x2414 84#define MVNETA_MAC_ADDR_HIGH 0x2418 85#define MVNETA_SDMA_CONFIG 0x241c 86#define MVNETA_SDMA_BRST_SIZE_16 4 87#define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 88#define MVNETA_RX_NO_DATA_SWAP BIT(4) 89#define MVNETA_TX_NO_DATA_SWAP BIT(5) 90#define MVNETA_DESC_SWAP BIT(6) 91#define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 92#define MVNETA_PORT_STATUS 0x2444 93#define MVNETA_TX_IN_PRGRS BIT(1) 94#define MVNETA_TX_FIFO_EMPTY BIT(8) 95#define MVNETA_RX_MIN_FRAME_SIZE 0x247c 96#define MVNETA_SERDES_CFG 0x24A0 97#define MVNETA_SGMII_SERDES_PROTO 0x0cc7 98#define MVNETA_QSGMII_SERDES_PROTO 0x0667 99#define MVNETA_TYPE_PRIO 0x24bc 100#define MVNETA_FORCE_UNI BIT(21) 101#define MVNETA_TXQ_CMD_1 0x24e4 102#define MVNETA_TXQ_CMD 0x2448 103#define MVNETA_TXQ_DISABLE_SHIFT 8 104#define MVNETA_TXQ_ENABLE_MASK 0x000000ff 105#define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 106#define MVNETA_OVERRUN_FRAME_COUNT 0x2488 107#define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 108#define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 109#define MVNETA_ACC_MODE 0x2500 110#define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 111#define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 112#define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 113#define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 114 115/* Exception Interrupt Port/Queue Cause register */ 116 117#define MVNETA_INTR_NEW_CAUSE 0x25a0 118#define MVNETA_INTR_NEW_MASK 0x25a4 119 120/* bits 0..7 = TXQ SENT, one bit per queue. 121 * bits 8..15 = RXQ OCCUP, one bit per queue. 122 * bits 16..23 = RXQ FREE, one bit per queue. 123 * bit 29 = OLD_REG_SUM, see old reg ? 124 * bit 30 = TX_ERR_SUM, one bit for 4 ports 125 * bit 31 = MISC_SUM, one bit for 4 ports 126 */ 127#define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 128#define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 129#define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 130#define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 131#define MVNETA_MISCINTR_INTR_MASK BIT(31) 132 133#define MVNETA_INTR_OLD_CAUSE 0x25a8 134#define MVNETA_INTR_OLD_MASK 0x25ac 135 136/* Data Path Port/Queue Cause Register */ 137#define MVNETA_INTR_MISC_CAUSE 0x25b0 138#define MVNETA_INTR_MISC_MASK 0x25b4 139 140#define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 141#define MVNETA_CAUSE_LINK_CHANGE BIT(1) 142#define MVNETA_CAUSE_PTP BIT(4) 143 144#define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 145#define MVNETA_CAUSE_RX_OVERRUN BIT(8) 146#define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 147#define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 148#define MVNETA_CAUSE_TX_UNDERUN BIT(11) 149#define MVNETA_CAUSE_PRBS_ERR BIT(12) 150#define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 151#define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 152 153#define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 154#define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 155#define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 156 157#define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 158#define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 159#define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 160 161#define MVNETA_INTR_ENABLE 0x25b8 162#define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 163#define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 164 165#define MVNETA_RXQ_CMD 0x2680 166#define MVNETA_RXQ_DISABLE_SHIFT 8 167#define MVNETA_RXQ_ENABLE_MASK 0x000000ff 168#define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 169#define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 170#define MVNETA_GMAC_CTRL_0 0x2c00 171#define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 172#define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 173#define MVNETA_GMAC0_PORT_ENABLE BIT(0) 174#define MVNETA_GMAC_CTRL_2 0x2c08 175#define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 176#define MVNETA_GMAC2_PCS_ENABLE BIT(3) 177#define MVNETA_GMAC2_PORT_RGMII BIT(4) 178#define MVNETA_GMAC2_PORT_RESET BIT(6) 179#define MVNETA_GMAC_STATUS 0x2c10 180#define MVNETA_GMAC_LINK_UP BIT(0) 181#define MVNETA_GMAC_SPEED_1000 BIT(1) 182#define MVNETA_GMAC_SPEED_100 BIT(2) 183#define MVNETA_GMAC_FULL_DUPLEX BIT(3) 184#define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 185#define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 186#define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 187#define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 188#define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 189#define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 190#define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 191#define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 192#define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 193#define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 194#define MVNETA_GMAC_AN_SPEED_EN BIT(7) 195#define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 196#define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 197#define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 198#define MVNETA_MIB_COUNTERS_BASE 0x3000 199#define MVNETA_MIB_LATE_COLLISION 0x7c 200#define MVNETA_DA_FILT_SPEC_MCAST 0x3400 201#define MVNETA_DA_FILT_OTH_MCAST 0x3500 202#define MVNETA_DA_FILT_UCAST_BASE 0x3600 203#define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 204#define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 205#define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 206#define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 207#define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 208#define MVNETA_TXQ_DEC_SENT_SHIFT 16 209#define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 210#define MVNETA_TXQ_SENT_DESC_SHIFT 16 211#define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 212#define MVNETA_PORT_TX_RESET 0x3cf0 213#define MVNETA_PORT_TX_DMA_RESET BIT(0) 214#define MVNETA_TX_MTU 0x3e0c 215#define MVNETA_TX_TOKEN_SIZE 0x3e14 216#define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 217#define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 218#define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 219 220#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 221 222/* Descriptor ring Macros */ 223#define MVNETA_QUEUE_NEXT_DESC(q, index) \ 224 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 225 226/* Various constants */ 227 228/* Coalescing */ 229#define MVNETA_TXDONE_COAL_PKTS 1 230#define MVNETA_RX_COAL_PKTS 32 231#define MVNETA_RX_COAL_USEC 100 232 233/* The two bytes Marvell header. Either contains a special value used 234 * by Marvell switches when a specific hardware mode is enabled (not 235 * supported by this driver) or is filled automatically by zeroes on 236 * the RX side. Those two bytes being at the front of the Ethernet 237 * header, they allow to have the IP header aligned on a 4 bytes 238 * boundary automatically: the hardware skips those two bytes on its 239 * own. 240 */ 241#define MVNETA_MH_SIZE 2 242 243#define MVNETA_VLAN_TAG_LEN 4 244 245#define MVNETA_CPU_D_CACHE_LINE_SIZE 32 246#define MVNETA_TX_CSUM_DEF_SIZE 1600 247#define MVNETA_TX_CSUM_MAX_SIZE 9800 248#define MVNETA_ACC_MODE_EXT 1 249 250/* Timeout constants */ 251#define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 252#define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 253#define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 254 255#define MVNETA_TX_MTU_MAX 0x3ffff 256 257/* TSO header size */ 258#define TSO_HEADER_SIZE 128 259 260/* Max number of Rx descriptors */ 261#define MVNETA_MAX_RXD 128 262 263/* Max number of Tx descriptors */ 264#define MVNETA_MAX_TXD 532 265 266/* Max number of allowed TCP segments for software TSO */ 267#define MVNETA_MAX_TSO_SEGS 100 268 269#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 270 271/* descriptor aligned size */ 272#define MVNETA_DESC_ALIGNED_SIZE 32 273 274#define MVNETA_RX_PKT_SIZE(mtu) \ 275 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 276 ETH_HLEN + ETH_FCS_LEN, \ 277 MVNETA_CPU_D_CACHE_LINE_SIZE) 278 279#define IS_TSO_HEADER(txq, addr) \ 280 ((addr >= txq->tso_hdrs_phys) && \ 281 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 282 283#define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 284 285struct mvneta_statistic { 286 unsigned short offset; 287 unsigned short type; 288 const char name[ETH_GSTRING_LEN]; 289}; 290 291#define T_REG_32 32 292#define T_REG_64 64 293 294static const struct mvneta_statistic mvneta_statistics[] = { 295 { 0x3000, T_REG_64, "good_octets_received", }, 296 { 0x3010, T_REG_32, "good_frames_received", }, 297 { 0x3008, T_REG_32, "bad_octets_received", }, 298 { 0x3014, T_REG_32, "bad_frames_received", }, 299 { 0x3018, T_REG_32, "broadcast_frames_received", }, 300 { 0x301c, T_REG_32, "multicast_frames_received", }, 301 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 302 { 0x3058, T_REG_32, "good_fc_received", }, 303 { 0x305c, T_REG_32, "bad_fc_received", }, 304 { 0x3060, T_REG_32, "undersize_received", }, 305 { 0x3064, T_REG_32, "fragments_received", }, 306 { 0x3068, T_REG_32, "oversize_received", }, 307 { 0x306c, T_REG_32, "jabber_received", }, 308 { 0x3070, T_REG_32, "mac_receive_error", }, 309 { 0x3074, T_REG_32, "bad_crc_event", }, 310 { 0x3078, T_REG_32, "collision", }, 311 { 0x307c, T_REG_32, "late_collision", }, 312 { 0x2484, T_REG_32, "rx_discard", }, 313 { 0x2488, T_REG_32, "rx_overrun", }, 314 { 0x3020, T_REG_32, "frames_64_octets", }, 315 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 316 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 317 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 318 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 319 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 320 { 0x3038, T_REG_64, "good_octets_sent", }, 321 { 0x3040, T_REG_32, "good_frames_sent", }, 322 { 0x3044, T_REG_32, "excessive_collision", }, 323 { 0x3048, T_REG_32, "multicast_frames_sent", }, 324 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 325 { 0x3054, T_REG_32, "fc_sent", }, 326 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 327}; 328 329struct mvneta_pcpu_stats { 330 struct u64_stats_sync syncp; 331 u64 rx_packets; 332 u64 rx_bytes; 333 u64 tx_packets; 334 u64 tx_bytes; 335}; 336 337struct mvneta_pcpu_port { 338 /* Pointer to the shared port */ 339 struct mvneta_port *pp; 340 341 /* Pointer to the CPU-local NAPI struct */ 342 struct napi_struct napi; 343 344 /* Cause of the previous interrupt */ 345 u32 cause_rx_tx; 346}; 347 348struct mvneta_port { 349 struct mvneta_pcpu_port __percpu *ports; 350 struct mvneta_pcpu_stats __percpu *stats; 351 352 int pkt_size; 353 unsigned int frag_size; 354 void __iomem *base; 355 struct mvneta_rx_queue *rxqs; 356 struct mvneta_tx_queue *txqs; 357 struct net_device *dev; 358 struct notifier_block cpu_notifier; 359 360 /* Core clock */ 361 struct clk *clk; 362 u8 mcast_count[256]; 363 u16 tx_ring_size; 364 u16 rx_ring_size; 365 366 struct mii_bus *mii_bus; 367 struct phy_device *phy_dev; 368 phy_interface_t phy_interface; 369 struct device_node *phy_node; 370 unsigned int link; 371 unsigned int duplex; 372 unsigned int speed; 373 unsigned int tx_csum_limit; 374 int use_inband_status:1; 375 376 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 377}; 378 379/* The mvneta_tx_desc and mvneta_rx_desc structures describe the 380 * layout of the transmit and reception DMA descriptors, and their 381 * layout is therefore defined by the hardware design 382 */ 383 384#define MVNETA_TX_L3_OFF_SHIFT 0 385#define MVNETA_TX_IP_HLEN_SHIFT 8 386#define MVNETA_TX_L4_UDP BIT(16) 387#define MVNETA_TX_L3_IP6 BIT(17) 388#define MVNETA_TXD_IP_CSUM BIT(18) 389#define MVNETA_TXD_Z_PAD BIT(19) 390#define MVNETA_TXD_L_DESC BIT(20) 391#define MVNETA_TXD_F_DESC BIT(21) 392#define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 393 MVNETA_TXD_L_DESC | \ 394 MVNETA_TXD_F_DESC) 395#define MVNETA_TX_L4_CSUM_FULL BIT(30) 396#define MVNETA_TX_L4_CSUM_NOT BIT(31) 397 398#define MVNETA_RXD_ERR_CRC 0x0 399#define MVNETA_RXD_ERR_SUMMARY BIT(16) 400#define MVNETA_RXD_ERR_OVERRUN BIT(17) 401#define MVNETA_RXD_ERR_LEN BIT(18) 402#define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 403#define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 404#define MVNETA_RXD_L3_IP4 BIT(25) 405#define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 406#define MVNETA_RXD_L4_CSUM_OK BIT(30) 407 408#if defined(__LITTLE_ENDIAN) 409struct mvneta_tx_desc { 410 u32 command; /* Options used by HW for packet transmitting.*/ 411 u16 reserverd1; /* csum_l4 (for future use) */ 412 u16 data_size; /* Data size of transmitted packet in bytes */ 413 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 414 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 415 u32 reserved3[4]; /* Reserved - (for future use) */ 416}; 417 418struct mvneta_rx_desc { 419 u32 status; /* Info about received packet */ 420 u16 reserved1; /* pnc_info - (for future use, PnC) */ 421 u16 data_size; /* Size of received packet in bytes */ 422 423 u32 buf_phys_addr; /* Physical address of the buffer */ 424 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 425 426 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 427 u16 reserved3; /* prefetch_cmd, for future use */ 428 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 429 430 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 431 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 432}; 433#else 434struct mvneta_tx_desc { 435 u16 data_size; /* Data size of transmitted packet in bytes */ 436 u16 reserverd1; /* csum_l4 (for future use) */ 437 u32 command; /* Options used by HW for packet transmitting.*/ 438 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 439 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 440 u32 reserved3[4]; /* Reserved - (for future use) */ 441}; 442 443struct mvneta_rx_desc { 444 u16 data_size; /* Size of received packet in bytes */ 445 u16 reserved1; /* pnc_info - (for future use, PnC) */ 446 u32 status; /* Info about received packet */ 447 448 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 449 u32 buf_phys_addr; /* Physical address of the buffer */ 450 451 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 452 u16 reserved3; /* prefetch_cmd, for future use */ 453 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 454 455 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 456 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 457}; 458#endif 459 460struct mvneta_tx_queue { 461 /* Number of this TX queue, in the range 0-7 */ 462 u8 id; 463 464 /* Number of TX DMA descriptors in the descriptor ring */ 465 int size; 466 467 /* Number of currently used TX DMA descriptor in the 468 * descriptor ring 469 */ 470 int count; 471 int tx_stop_threshold; 472 int tx_wake_threshold; 473 474 /* Array of transmitted skb */ 475 struct sk_buff **tx_skb; 476 477 /* Index of last TX DMA descriptor that was inserted */ 478 int txq_put_index; 479 480 /* Index of the TX DMA descriptor to be cleaned up */ 481 int txq_get_index; 482 483 u32 done_pkts_coal; 484 485 /* Virtual address of the TX DMA descriptors array */ 486 struct mvneta_tx_desc *descs; 487 488 /* DMA address of the TX DMA descriptors array */ 489 dma_addr_t descs_phys; 490 491 /* Index of the last TX DMA descriptor */ 492 int last_desc; 493 494 /* Index of the next TX DMA descriptor to process */ 495 int next_desc_to_proc; 496 497 /* DMA buffers for TSO headers */ 498 char *tso_hdrs; 499 500 /* DMA address of TSO headers */ 501 dma_addr_t tso_hdrs_phys; 502}; 503 504struct mvneta_rx_queue { 505 /* rx queue number, in the range 0-7 */ 506 u8 id; 507 508 /* num of rx descriptors in the rx descriptor ring */ 509 int size; 510 511 /* counter of times when mvneta_refill() failed */ 512 int missed; 513 514 u32 pkts_coal; 515 u32 time_coal; 516 517 /* Virtual address of the RX DMA descriptors array */ 518 struct mvneta_rx_desc *descs; 519 520 /* DMA address of the RX DMA descriptors array */ 521 dma_addr_t descs_phys; 522 523 /* Index of the last RX DMA descriptor */ 524 int last_desc; 525 526 /* Index of the next RX DMA descriptor to process */ 527 int next_desc_to_proc; 528}; 529 530/* The hardware supports eight (8) rx queues, but we are only allowing 531 * the first one to be used. Therefore, let's just allocate one queue. 532 */ 533static int rxq_number = 8; 534static int txq_number = 8; 535 536static int rxq_def; 537 538static int rx_copybreak __read_mostly = 256; 539 540#define MVNETA_DRIVER_NAME "mvneta" 541#define MVNETA_DRIVER_VERSION "1.0" 542 543/* Utility/helper methods */ 544 545/* Write helper method */ 546static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 547{ 548 writel(data, pp->base + offset); 549} 550 551/* Read helper method */ 552static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 553{ 554 return readl(pp->base + offset); 555} 556 557/* Increment txq get counter */ 558static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 559{ 560 txq->txq_get_index++; 561 if (txq->txq_get_index == txq->size) 562 txq->txq_get_index = 0; 563} 564 565/* Increment txq put counter */ 566static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 567{ 568 txq->txq_put_index++; 569 if (txq->txq_put_index == txq->size) 570 txq->txq_put_index = 0; 571} 572 573 574/* Clear all MIB counters */ 575static void mvneta_mib_counters_clear(struct mvneta_port *pp) 576{ 577 int i; 578 u32 dummy; 579 580 /* Perform dummy reads from MIB counters */ 581 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 582 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 583 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 584 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 585} 586 587/* Get System Network Statistics */ 588struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, 589 struct rtnl_link_stats64 *stats) 590{ 591 struct mvneta_port *pp = netdev_priv(dev); 592 unsigned int start; 593 int cpu; 594 595 for_each_possible_cpu(cpu) { 596 struct mvneta_pcpu_stats *cpu_stats; 597 u64 rx_packets; 598 u64 rx_bytes; 599 u64 tx_packets; 600 u64 tx_bytes; 601 602 cpu_stats = per_cpu_ptr(pp->stats, cpu); 603 do { 604 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 605 rx_packets = cpu_stats->rx_packets; 606 rx_bytes = cpu_stats->rx_bytes; 607 tx_packets = cpu_stats->tx_packets; 608 tx_bytes = cpu_stats->tx_bytes; 609 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 610 611 stats->rx_packets += rx_packets; 612 stats->rx_bytes += rx_bytes; 613 stats->tx_packets += tx_packets; 614 stats->tx_bytes += tx_bytes; 615 } 616 617 stats->rx_errors = dev->stats.rx_errors; 618 stats->rx_dropped = dev->stats.rx_dropped; 619 620 stats->tx_dropped = dev->stats.tx_dropped; 621 622 return stats; 623} 624 625/* Rx descriptors helper methods */ 626 627/* Checks whether the RX descriptor having this status is both the first 628 * and the last descriptor for the RX packet. Each RX packet is currently 629 * received through a single RX descriptor, so not having each RX 630 * descriptor with its first and last bits set is an error 631 */ 632static int mvneta_rxq_desc_is_first_last(u32 status) 633{ 634 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 635 MVNETA_RXD_FIRST_LAST_DESC; 636} 637 638/* Add number of descriptors ready to receive new packets */ 639static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 640 struct mvneta_rx_queue *rxq, 641 int ndescs) 642{ 643 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 644 * be added at once 645 */ 646 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 647 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 648 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 649 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 650 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 651 } 652 653 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 654 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 655} 656 657/* Get number of RX descriptors occupied by received packets */ 658static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 659 struct mvneta_rx_queue *rxq) 660{ 661 u32 val; 662 663 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 664 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 665} 666 667/* Update num of rx desc called upon return from rx path or 668 * from mvneta_rxq_drop_pkts(). 669 */ 670static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 671 struct mvneta_rx_queue *rxq, 672 int rx_done, int rx_filled) 673{ 674 u32 val; 675 676 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 677 val = rx_done | 678 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 679 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 680 return; 681 } 682 683 /* Only 255 descriptors can be added at once */ 684 while ((rx_done > 0) || (rx_filled > 0)) { 685 if (rx_done <= 0xff) { 686 val = rx_done; 687 rx_done = 0; 688 } else { 689 val = 0xff; 690 rx_done -= 0xff; 691 } 692 if (rx_filled <= 0xff) { 693 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 694 rx_filled = 0; 695 } else { 696 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 697 rx_filled -= 0xff; 698 } 699 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 700 } 701} 702 703/* Get pointer to next RX descriptor to be processed by SW */ 704static struct mvneta_rx_desc * 705mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 706{ 707 int rx_desc = rxq->next_desc_to_proc; 708 709 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 710 prefetch(rxq->descs + rxq->next_desc_to_proc); 711 return rxq->descs + rx_desc; 712} 713 714/* Change maximum receive size of the port. */ 715static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 716{ 717 u32 val; 718 719 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 720 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 721 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 722 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 723 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 724} 725 726 727/* Set rx queue offset */ 728static void mvneta_rxq_offset_set(struct mvneta_port *pp, 729 struct mvneta_rx_queue *rxq, 730 int offset) 731{ 732 u32 val; 733 734 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 735 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 736 737 /* Offset is in */ 738 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 739 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 740} 741 742 743/* Tx descriptors helper methods */ 744 745/* Update HW with number of TX descriptors to be sent */ 746static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 747 struct mvneta_tx_queue *txq, 748 int pend_desc) 749{ 750 u32 val; 751 752 /* Only 255 descriptors can be added at once ; Assume caller 753 * process TX desriptors in quanta less than 256 754 */ 755 val = pend_desc; 756 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 757} 758 759/* Get pointer to next TX descriptor to be processed (send) by HW */ 760static struct mvneta_tx_desc * 761mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 762{ 763 int tx_desc = txq->next_desc_to_proc; 764 765 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 766 return txq->descs + tx_desc; 767} 768 769/* Release the last allocated TX descriptor. Useful to handle DMA 770 * mapping failures in the TX path. 771 */ 772static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 773{ 774 if (txq->next_desc_to_proc == 0) 775 txq->next_desc_to_proc = txq->last_desc - 1; 776 else 777 txq->next_desc_to_proc--; 778} 779 780/* Set rxq buf size */ 781static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 782 struct mvneta_rx_queue *rxq, 783 int buf_size) 784{ 785 u32 val; 786 787 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 788 789 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 790 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 791 792 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 793} 794 795/* Disable buffer management (BM) */ 796static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 797 struct mvneta_rx_queue *rxq) 798{ 799 u32 val; 800 801 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 802 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 803 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 804} 805 806/* Start the Ethernet port RX and TX activity */ 807static void mvneta_port_up(struct mvneta_port *pp) 808{ 809 int queue; 810 u32 q_map; 811 812 /* Enable all initialized TXs. */ 813 q_map = 0; 814 for (queue = 0; queue < txq_number; queue++) { 815 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 816 if (txq->descs != NULL) 817 q_map |= (1 << queue); 818 } 819 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 820 821 /* Enable all initialized RXQs. */ 822 mvreg_write(pp, MVNETA_RXQ_CMD, BIT(rxq_def)); 823} 824 825/* Stop the Ethernet port activity */ 826static void mvneta_port_down(struct mvneta_port *pp) 827{ 828 u32 val; 829 int count; 830 831 /* Stop Rx port activity. Check port Rx activity. */ 832 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 833 834 /* Issue stop command for active channels only */ 835 if (val != 0) 836 mvreg_write(pp, MVNETA_RXQ_CMD, 837 val << MVNETA_RXQ_DISABLE_SHIFT); 838 839 /* Wait for all Rx activity to terminate. */ 840 count = 0; 841 do { 842 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 843 netdev_warn(pp->dev, 844 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", 845 val); 846 break; 847 } 848 mdelay(1); 849 850 val = mvreg_read(pp, MVNETA_RXQ_CMD); 851 } while (val & 0xff); 852 853 /* Stop Tx port activity. Check port Tx activity. Issue stop 854 * command for active channels only 855 */ 856 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 857 858 if (val != 0) 859 mvreg_write(pp, MVNETA_TXQ_CMD, 860 (val << MVNETA_TXQ_DISABLE_SHIFT)); 861 862 /* Wait for all Tx activity to terminate. */ 863 count = 0; 864 do { 865 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 866 netdev_warn(pp->dev, 867 "TIMEOUT for TX stopped status=0x%08x\n", 868 val); 869 break; 870 } 871 mdelay(1); 872 873 /* Check TX Command reg that all Txqs are stopped */ 874 val = mvreg_read(pp, MVNETA_TXQ_CMD); 875 876 } while (val & 0xff); 877 878 /* Double check to verify that TX FIFO is empty */ 879 count = 0; 880 do { 881 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 882 netdev_warn(pp->dev, 883 "TX FIFO empty timeout status=0x08%x\n", 884 val); 885 break; 886 } 887 mdelay(1); 888 889 val = mvreg_read(pp, MVNETA_PORT_STATUS); 890 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 891 (val & MVNETA_TX_IN_PRGRS)); 892 893 udelay(200); 894} 895 896/* Enable the port by setting the port enable bit of the MAC control register */ 897static void mvneta_port_enable(struct mvneta_port *pp) 898{ 899 u32 val; 900 901 /* Enable port */ 902 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 903 val |= MVNETA_GMAC0_PORT_ENABLE; 904 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 905} 906 907/* Disable the port and wait for about 200 usec before retuning */ 908static void mvneta_port_disable(struct mvneta_port *pp) 909{ 910 u32 val; 911 912 /* Reset the Enable bit in the Serial Control Register */ 913 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 914 val &= ~MVNETA_GMAC0_PORT_ENABLE; 915 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 916 917 udelay(200); 918} 919 920/* Multicast tables methods */ 921 922/* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 923static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 924{ 925 int offset; 926 u32 val; 927 928 if (queue == -1) { 929 val = 0; 930 } else { 931 val = 0x1 | (queue << 1); 932 val |= (val << 24) | (val << 16) | (val << 8); 933 } 934 935 for (offset = 0; offset <= 0xc; offset += 4) 936 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 937} 938 939/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 940static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 941{ 942 int offset; 943 u32 val; 944 945 if (queue == -1) { 946 val = 0; 947 } else { 948 val = 0x1 | (queue << 1); 949 val |= (val << 24) | (val << 16) | (val << 8); 950 } 951 952 for (offset = 0; offset <= 0xfc; offset += 4) 953 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 954 955} 956 957/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 958static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 959{ 960 int offset; 961 u32 val; 962 963 if (queue == -1) { 964 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 965 val = 0; 966 } else { 967 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 968 val = 0x1 | (queue << 1); 969 val |= (val << 24) | (val << 16) | (val << 8); 970 } 971 972 for (offset = 0; offset <= 0xfc; offset += 4) 973 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 974} 975 976/* This method sets defaults to the NETA port: 977 * Clears interrupt Cause and Mask registers. 978 * Clears all MAC tables. 979 * Sets defaults to all registers. 980 * Resets RX and TX descriptor rings. 981 * Resets PHY. 982 * This method can be called after mvneta_port_down() to return the port 983 * settings to defaults. 984 */ 985static void mvneta_defaults_set(struct mvneta_port *pp) 986{ 987 int cpu; 988 int queue; 989 u32 val; 990 991 /* Clear all Cause registers */ 992 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 993 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 994 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 995 996 /* Mask all interrupts */ 997 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 998 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 999 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1000 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1001 1002 /* Enable MBUS Retry bit16 */ 1003 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1004 1005 /* Set CPU queue access map - all CPUs have access to all RX 1006 * queues and to all TX queues 1007 */ 1008 for_each_present_cpu(cpu) 1009 mvreg_write(pp, MVNETA_CPU_MAP(cpu), 1010 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK | 1011 MVNETA_CPU_TXQ_ACCESS_ALL_MASK)); 1012 1013 /* Reset RX and TX DMAs */ 1014 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1015 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1016 1017 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1018 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1019 for (queue = 0; queue < txq_number; queue++) { 1020 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1021 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1022 } 1023 1024 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1025 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1026 1027 /* Set Port Acceleration Mode */ 1028 val = MVNETA_ACC_MODE_EXT; 1029 mvreg_write(pp, MVNETA_ACC_MODE, val); 1030 1031 /* Update val of portCfg register accordingly with all RxQueue types */ 1032 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def); 1033 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1034 1035 val = 0; 1036 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1037 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1038 1039 /* Build PORT_SDMA_CONFIG_REG */ 1040 val = 0; 1041 1042 /* Default burst size */ 1043 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1044 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1045 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1046 1047#if defined(__BIG_ENDIAN) 1048 val |= MVNETA_DESC_SWAP; 1049#endif 1050 1051 /* Assign port SDMA configuration */ 1052 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1053 1054 /* Disable PHY polling in hardware, since we're using the 1055 * kernel phylib to do this. 1056 */ 1057 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1058 val &= ~MVNETA_PHY_POLLING_ENABLE; 1059 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1060 1061 if (pp->use_inband_status) { 1062 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1063 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1064 MVNETA_GMAC_FORCE_LINK_DOWN | 1065 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1066 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1067 MVNETA_GMAC_AN_SPEED_EN | 1068 MVNETA_GMAC_AN_DUPLEX_EN; 1069 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1070 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1071 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1072 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1073 } else { 1074 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1075 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | 1076 MVNETA_GMAC_AN_SPEED_EN | 1077 MVNETA_GMAC_AN_DUPLEX_EN); 1078 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1079 } 1080 1081 mvneta_set_ucast_table(pp, -1); 1082 mvneta_set_special_mcast_table(pp, -1); 1083 mvneta_set_other_mcast_table(pp, -1); 1084 1085 /* Set port interrupt enable register - default enable all */ 1086 mvreg_write(pp, MVNETA_INTR_ENABLE, 1087 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1088 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1089 1090 mvneta_mib_counters_clear(pp); 1091} 1092 1093/* Set max sizes for tx queues */ 1094static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1095 1096{ 1097 u32 val, size, mtu; 1098 int queue; 1099 1100 mtu = max_tx_size * 8; 1101 if (mtu > MVNETA_TX_MTU_MAX) 1102 mtu = MVNETA_TX_MTU_MAX; 1103 1104 /* Set MTU */ 1105 val = mvreg_read(pp, MVNETA_TX_MTU); 1106 val &= ~MVNETA_TX_MTU_MAX; 1107 val |= mtu; 1108 mvreg_write(pp, MVNETA_TX_MTU, val); 1109 1110 /* TX token size and all TXQs token size must be larger that MTU */ 1111 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1112 1113 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1114 if (size < mtu) { 1115 size = mtu; 1116 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1117 val |= size; 1118 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1119 } 1120 for (queue = 0; queue < txq_number; queue++) { 1121 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1122 1123 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1124 if (size < mtu) { 1125 size = mtu; 1126 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1127 val |= size; 1128 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1129 } 1130 } 1131} 1132 1133/* Set unicast address */ 1134static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1135 int queue) 1136{ 1137 unsigned int unicast_reg; 1138 unsigned int tbl_offset; 1139 unsigned int reg_offset; 1140 1141 /* Locate the Unicast table entry */ 1142 last_nibble = (0xf & last_nibble); 1143 1144 /* offset from unicast tbl base */ 1145 tbl_offset = (last_nibble / 4) * 4; 1146 1147 /* offset within the above reg */ 1148 reg_offset = last_nibble % 4; 1149 1150 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1151 1152 if (queue == -1) { 1153 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1154 unicast_reg &= ~(0xff << (8 * reg_offset)); 1155 } else { 1156 unicast_reg &= ~(0xff << (8 * reg_offset)); 1157 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1158 } 1159 1160 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1161} 1162 1163/* Set mac address */ 1164static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1165 int queue) 1166{ 1167 unsigned int mac_h; 1168 unsigned int mac_l; 1169 1170 if (queue != -1) { 1171 mac_l = (addr[4] << 8) | (addr[5]); 1172 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1173 (addr[2] << 8) | (addr[3] << 0); 1174 1175 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1176 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1177 } 1178 1179 /* Accept frames of this address */ 1180 mvneta_set_ucast_addr(pp, addr[5], queue); 1181} 1182 1183/* Set the number of packets that will be received before RX interrupt 1184 * will be generated by HW. 1185 */ 1186static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1187 struct mvneta_rx_queue *rxq, u32 value) 1188{ 1189 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1190 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1191 rxq->pkts_coal = value; 1192} 1193 1194/* Set the time delay in usec before RX interrupt will be generated by 1195 * HW. 1196 */ 1197static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1198 struct mvneta_rx_queue *rxq, u32 value) 1199{ 1200 u32 val; 1201 unsigned long clk_rate; 1202 1203 clk_rate = clk_get_rate(pp->clk); 1204 val = (clk_rate / 1000000) * value; 1205 1206 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1207 rxq->time_coal = value; 1208} 1209 1210/* Set threshold for TX_DONE pkts coalescing */ 1211static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1212 struct mvneta_tx_queue *txq, u32 value) 1213{ 1214 u32 val; 1215 1216 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1217 1218 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1219 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1220 1221 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1222 1223 txq->done_pkts_coal = value; 1224} 1225 1226/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1227static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1228 u32 phys_addr, u32 cookie) 1229{ 1230 rx_desc->buf_cookie = cookie; 1231 rx_desc->buf_phys_addr = phys_addr; 1232} 1233 1234/* Decrement sent descriptors counter */ 1235static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1236 struct mvneta_tx_queue *txq, 1237 int sent_desc) 1238{ 1239 u32 val; 1240 1241 /* Only 255 TX descriptors can be updated at once */ 1242 while (sent_desc > 0xff) { 1243 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1244 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1245 sent_desc = sent_desc - 0xff; 1246 } 1247 1248 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1249 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1250} 1251 1252/* Get number of TX descriptors already sent by HW */ 1253static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1254 struct mvneta_tx_queue *txq) 1255{ 1256 u32 val; 1257 int sent_desc; 1258 1259 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1260 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1261 MVNETA_TXQ_SENT_DESC_SHIFT; 1262 1263 return sent_desc; 1264} 1265 1266/* Get number of sent descriptors and decrement counter. 1267 * The number of sent descriptors is returned. 1268 */ 1269static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1270 struct mvneta_tx_queue *txq) 1271{ 1272 int sent_desc; 1273 1274 /* Get number of sent descriptors */ 1275 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1276 1277 /* Decrement sent descriptors counter */ 1278 if (sent_desc) 1279 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1280 1281 return sent_desc; 1282} 1283 1284/* Set TXQ descriptors fields relevant for CSUM calculation */ 1285static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1286 int ip_hdr_len, int l4_proto) 1287{ 1288 u32 command; 1289 1290 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1291 * G_L4_chk, L4_type; required only for checksum 1292 * calculation 1293 */ 1294 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1295 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1296 1297 if (l3_proto == htons(ETH_P_IP)) 1298 command |= MVNETA_TXD_IP_CSUM; 1299 else 1300 command |= MVNETA_TX_L3_IP6; 1301 1302 if (l4_proto == IPPROTO_TCP) 1303 command |= MVNETA_TX_L4_CSUM_FULL; 1304 else if (l4_proto == IPPROTO_UDP) 1305 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1306 else 1307 command |= MVNETA_TX_L4_CSUM_NOT; 1308 1309 return command; 1310} 1311 1312 1313/* Display more error info */ 1314static void mvneta_rx_error(struct mvneta_port *pp, 1315 struct mvneta_rx_desc *rx_desc) 1316{ 1317 u32 status = rx_desc->status; 1318 1319 if (!mvneta_rxq_desc_is_first_last(status)) { 1320 netdev_err(pp->dev, 1321 "bad rx status %08x (buffer oversize), size=%d\n", 1322 status, rx_desc->data_size); 1323 return; 1324 } 1325 1326 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1327 case MVNETA_RXD_ERR_CRC: 1328 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1329 status, rx_desc->data_size); 1330 break; 1331 case MVNETA_RXD_ERR_OVERRUN: 1332 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1333 status, rx_desc->data_size); 1334 break; 1335 case MVNETA_RXD_ERR_LEN: 1336 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1337 status, rx_desc->data_size); 1338 break; 1339 case MVNETA_RXD_ERR_RESOURCE: 1340 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1341 status, rx_desc->data_size); 1342 break; 1343 } 1344} 1345 1346/* Handle RX checksum offload based on the descriptor's status */ 1347static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1348 struct sk_buff *skb) 1349{ 1350 if ((status & MVNETA_RXD_L3_IP4) && 1351 (status & MVNETA_RXD_L4_CSUM_OK)) { 1352 skb->csum = 0; 1353 skb->ip_summed = CHECKSUM_UNNECESSARY; 1354 return; 1355 } 1356 1357 skb->ip_summed = CHECKSUM_NONE; 1358} 1359 1360/* Return tx queue pointer (find last set bit) according to <cause> returned 1361 * form tx_done reg. <cause> must not be null. The return value is always a 1362 * valid queue for matching the first one found in <cause>. 1363 */ 1364static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1365 u32 cause) 1366{ 1367 int queue = fls(cause) - 1; 1368 1369 return &pp->txqs[queue]; 1370} 1371 1372/* Free tx queue skbuffs */ 1373static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1374 struct mvneta_tx_queue *txq, int num) 1375{ 1376 int i; 1377 1378 for (i = 0; i < num; i++) { 1379 struct mvneta_tx_desc *tx_desc = txq->descs + 1380 txq->txq_get_index; 1381 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1382 1383 mvneta_txq_inc_get(txq); 1384 1385 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1386 dma_unmap_single(pp->dev->dev.parent, 1387 tx_desc->buf_phys_addr, 1388 tx_desc->data_size, DMA_TO_DEVICE); 1389 if (!skb) 1390 continue; 1391 dev_kfree_skb_any(skb); 1392 } 1393} 1394 1395/* Handle end of transmission */ 1396static void mvneta_txq_done(struct mvneta_port *pp, 1397 struct mvneta_tx_queue *txq) 1398{ 1399 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1400 int tx_done; 1401 1402 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1403 if (!tx_done) 1404 return; 1405 1406 mvneta_txq_bufs_free(pp, txq, tx_done); 1407 1408 txq->count -= tx_done; 1409 1410 if (netif_tx_queue_stopped(nq)) { 1411 if (txq->count <= txq->tx_wake_threshold) 1412 netif_tx_wake_queue(nq); 1413 } 1414} 1415 1416static void *mvneta_frag_alloc(const struct mvneta_port *pp) 1417{ 1418 if (likely(pp->frag_size <= PAGE_SIZE)) 1419 return netdev_alloc_frag(pp->frag_size); 1420 else 1421 return kmalloc(pp->frag_size, GFP_ATOMIC); 1422} 1423 1424static void mvneta_frag_free(const struct mvneta_port *pp, void *data) 1425{ 1426 if (likely(pp->frag_size <= PAGE_SIZE)) 1427 skb_free_frag(data); 1428 else 1429 kfree(data); 1430} 1431 1432/* Refill processing */ 1433static int mvneta_rx_refill(struct mvneta_port *pp, 1434 struct mvneta_rx_desc *rx_desc) 1435 1436{ 1437 dma_addr_t phys_addr; 1438 void *data; 1439 1440 data = mvneta_frag_alloc(pp); 1441 if (!data) 1442 return -ENOMEM; 1443 1444 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1445 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1446 DMA_FROM_DEVICE); 1447 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1448 mvneta_frag_free(pp, data); 1449 return -ENOMEM; 1450 } 1451 1452 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data); 1453 return 0; 1454} 1455 1456/* Handle tx checksum */ 1457static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1458{ 1459 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1460 int ip_hdr_len = 0; 1461 __be16 l3_proto = vlan_get_protocol(skb); 1462 u8 l4_proto; 1463 1464 if (l3_proto == htons(ETH_P_IP)) { 1465 struct iphdr *ip4h = ip_hdr(skb); 1466 1467 /* Calculate IPv4 checksum and L4 checksum */ 1468 ip_hdr_len = ip4h->ihl; 1469 l4_proto = ip4h->protocol; 1470 } else if (l3_proto == htons(ETH_P_IPV6)) { 1471 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1472 1473 /* Read l4_protocol from one of IPv6 extra headers */ 1474 if (skb_network_header_len(skb) > 0) 1475 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1476 l4_proto = ip6h->nexthdr; 1477 } else 1478 return MVNETA_TX_L4_CSUM_NOT; 1479 1480 return mvneta_txq_desc_csum(skb_network_offset(skb), 1481 l3_proto, ip_hdr_len, l4_proto); 1482 } 1483 1484 return MVNETA_TX_L4_CSUM_NOT; 1485} 1486 1487/* Drop packets received by the RXQ and free buffers */ 1488static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1489 struct mvneta_rx_queue *rxq) 1490{ 1491 int rx_done, i; 1492 1493 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1494 for (i = 0; i < rxq->size; i++) { 1495 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1496 void *data = (void *)rx_desc->buf_cookie; 1497 1498 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1499 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1500 mvneta_frag_free(pp, data); 1501 } 1502 1503 if (rx_done) 1504 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1505} 1506 1507/* Main rx processing */ 1508static int mvneta_rx(struct mvneta_port *pp, int rx_todo, 1509 struct mvneta_rx_queue *rxq) 1510{ 1511 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1512 struct net_device *dev = pp->dev; 1513 int rx_done; 1514 u32 rcvd_pkts = 0; 1515 u32 rcvd_bytes = 0; 1516 1517 /* Get number of received packets */ 1518 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1519 1520 if (rx_todo > rx_done) 1521 rx_todo = rx_done; 1522 1523 rx_done = 0; 1524 1525 /* Fairness NAPI loop */ 1526 while (rx_done < rx_todo) { 1527 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1528 struct sk_buff *skb; 1529 unsigned char *data; 1530 dma_addr_t phys_addr; 1531 u32 rx_status; 1532 int rx_bytes, err; 1533 1534 rx_done++; 1535 rx_status = rx_desc->status; 1536 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1537 data = (unsigned char *)rx_desc->buf_cookie; 1538 phys_addr = rx_desc->buf_phys_addr; 1539 1540 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1541 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1542 err_drop_frame: 1543 dev->stats.rx_errors++; 1544 mvneta_rx_error(pp, rx_desc); 1545 /* leave the descriptor untouched */ 1546 continue; 1547 } 1548 1549 if (rx_bytes <= rx_copybreak) { 1550 /* better copy a small frame and not unmap the DMA region */ 1551 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1552 if (unlikely(!skb)) 1553 goto err_drop_frame; 1554 1555 dma_sync_single_range_for_cpu(dev->dev.parent, 1556 rx_desc->buf_phys_addr, 1557 MVNETA_MH_SIZE + NET_SKB_PAD, 1558 rx_bytes, 1559 DMA_FROM_DEVICE); 1560 memcpy(skb_put(skb, rx_bytes), 1561 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1562 rx_bytes); 1563 1564 skb->protocol = eth_type_trans(skb, dev); 1565 mvneta_rx_csum(pp, rx_status, skb); 1566 napi_gro_receive(&port->napi, skb); 1567 1568 rcvd_pkts++; 1569 rcvd_bytes += rx_bytes; 1570 1571 /* leave the descriptor and buffer untouched */ 1572 continue; 1573 } 1574 1575 /* Refill processing */ 1576 err = mvneta_rx_refill(pp, rx_desc); 1577 if (err) { 1578 netdev_err(dev, "Linux processing - Can't refill\n"); 1579 rxq->missed++; 1580 goto err_drop_frame; 1581 } 1582 1583 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size); 1584 1585 /* After refill old buffer has to be unmapped regardless 1586 * the skb is successfully built or not. 1587 */ 1588 dma_unmap_single(dev->dev.parent, phys_addr, 1589 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1590 1591 if (!skb) 1592 goto err_drop_frame; 1593 1594 rcvd_pkts++; 1595 rcvd_bytes += rx_bytes; 1596 1597 /* Linux processing */ 1598 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 1599 skb_put(skb, rx_bytes); 1600 1601 skb->protocol = eth_type_trans(skb, dev); 1602 1603 mvneta_rx_csum(pp, rx_status, skb); 1604 1605 napi_gro_receive(&port->napi, skb); 1606 } 1607 1608 if (rcvd_pkts) { 1609 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1610 1611 u64_stats_update_begin(&stats->syncp); 1612 stats->rx_packets += rcvd_pkts; 1613 stats->rx_bytes += rcvd_bytes; 1614 u64_stats_update_end(&stats->syncp); 1615 } 1616 1617 /* Update rxq management counters */ 1618 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1619 1620 return rx_done; 1621} 1622 1623static inline void 1624mvneta_tso_put_hdr(struct sk_buff *skb, 1625 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 1626{ 1627 struct mvneta_tx_desc *tx_desc; 1628 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1629 1630 txq->tx_skb[txq->txq_put_index] = NULL; 1631 tx_desc = mvneta_txq_next_desc_get(txq); 1632 tx_desc->data_size = hdr_len; 1633 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 1634 tx_desc->command |= MVNETA_TXD_F_DESC; 1635 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 1636 txq->txq_put_index * TSO_HEADER_SIZE; 1637 mvneta_txq_inc_put(txq); 1638} 1639 1640static inline int 1641mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 1642 struct sk_buff *skb, char *data, int size, 1643 bool last_tcp, bool is_last) 1644{ 1645 struct mvneta_tx_desc *tx_desc; 1646 1647 tx_desc = mvneta_txq_next_desc_get(txq); 1648 tx_desc->data_size = size; 1649 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 1650 size, DMA_TO_DEVICE); 1651 if (unlikely(dma_mapping_error(dev->dev.parent, 1652 tx_desc->buf_phys_addr))) { 1653 mvneta_txq_desc_put(txq); 1654 return -ENOMEM; 1655 } 1656 1657 tx_desc->command = 0; 1658 txq->tx_skb[txq->txq_put_index] = NULL; 1659 1660 if (last_tcp) { 1661 /* last descriptor in the TCP packet */ 1662 tx_desc->command = MVNETA_TXD_L_DESC; 1663 1664 /* last descriptor in SKB */ 1665 if (is_last) 1666 txq->tx_skb[txq->txq_put_index] = skb; 1667 } 1668 mvneta_txq_inc_put(txq); 1669 return 0; 1670} 1671 1672static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 1673 struct mvneta_tx_queue *txq) 1674{ 1675 int total_len, data_left; 1676 int desc_count = 0; 1677 struct mvneta_port *pp = netdev_priv(dev); 1678 struct tso_t tso; 1679 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1680 int i; 1681 1682 /* Count needed descriptors */ 1683 if ((txq->count + tso_count_descs(skb)) >= txq->size) 1684 return 0; 1685 1686 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 1687 pr_info("*** Is this even possible???!?!?\n"); 1688 return 0; 1689 } 1690 1691 /* Initialize the TSO handler, and prepare the first payload */ 1692 tso_start(skb, &tso); 1693 1694 total_len = skb->len - hdr_len; 1695 while (total_len > 0) { 1696 char *hdr; 1697 1698 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 1699 total_len -= data_left; 1700 desc_count++; 1701 1702 /* prepare packet headers: MAC + IP + TCP */ 1703 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 1704 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 1705 1706 mvneta_tso_put_hdr(skb, pp, txq); 1707 1708 while (data_left > 0) { 1709 int size; 1710 desc_count++; 1711 1712 size = min_t(int, tso.size, data_left); 1713 1714 if (mvneta_tso_put_data(dev, txq, skb, 1715 tso.data, size, 1716 size == data_left, 1717 total_len == 0)) 1718 goto err_release; 1719 data_left -= size; 1720 1721 tso_build_data(skb, &tso, size); 1722 } 1723 } 1724 1725 return desc_count; 1726 1727err_release: 1728 /* Release all used data descriptors; header descriptors must not 1729 * be DMA-unmapped. 1730 */ 1731 for (i = desc_count - 1; i >= 0; i--) { 1732 struct mvneta_tx_desc *tx_desc = txq->descs + i; 1733 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1734 dma_unmap_single(pp->dev->dev.parent, 1735 tx_desc->buf_phys_addr, 1736 tx_desc->data_size, 1737 DMA_TO_DEVICE); 1738 mvneta_txq_desc_put(txq); 1739 } 1740 return 0; 1741} 1742 1743/* Handle tx fragmentation processing */ 1744static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 1745 struct mvneta_tx_queue *txq) 1746{ 1747 struct mvneta_tx_desc *tx_desc; 1748 int i, nr_frags = skb_shinfo(skb)->nr_frags; 1749 1750 for (i = 0; i < nr_frags; i++) { 1751 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1752 void *addr = page_address(frag->page.p) + frag->page_offset; 1753 1754 tx_desc = mvneta_txq_next_desc_get(txq); 1755 tx_desc->data_size = frag->size; 1756 1757 tx_desc->buf_phys_addr = 1758 dma_map_single(pp->dev->dev.parent, addr, 1759 tx_desc->data_size, DMA_TO_DEVICE); 1760 1761 if (dma_mapping_error(pp->dev->dev.parent, 1762 tx_desc->buf_phys_addr)) { 1763 mvneta_txq_desc_put(txq); 1764 goto error; 1765 } 1766 1767 if (i == nr_frags - 1) { 1768 /* Last descriptor */ 1769 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 1770 txq->tx_skb[txq->txq_put_index] = skb; 1771 } else { 1772 /* Descriptor in the middle: Not First, Not Last */ 1773 tx_desc->command = 0; 1774 txq->tx_skb[txq->txq_put_index] = NULL; 1775 } 1776 mvneta_txq_inc_put(txq); 1777 } 1778 1779 return 0; 1780 1781error: 1782 /* Release all descriptors that were used to map fragments of 1783 * this packet, as well as the corresponding DMA mappings 1784 */ 1785 for (i = i - 1; i >= 0; i--) { 1786 tx_desc = txq->descs + i; 1787 dma_unmap_single(pp->dev->dev.parent, 1788 tx_desc->buf_phys_addr, 1789 tx_desc->data_size, 1790 DMA_TO_DEVICE); 1791 mvneta_txq_desc_put(txq); 1792 } 1793 1794 return -ENOMEM; 1795} 1796 1797/* Main tx processing */ 1798static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 1799{ 1800 struct mvneta_port *pp = netdev_priv(dev); 1801 u16 txq_id = skb_get_queue_mapping(skb); 1802 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 1803 struct mvneta_tx_desc *tx_desc; 1804 int len = skb->len; 1805 int frags = 0; 1806 u32 tx_cmd; 1807 1808 if (!netif_running(dev)) 1809 goto out; 1810 1811 if (skb_is_gso(skb)) { 1812 frags = mvneta_tx_tso(skb, dev, txq); 1813 goto out; 1814 } 1815 1816 frags = skb_shinfo(skb)->nr_frags + 1; 1817 1818 /* Get a descriptor for the first part of the packet */ 1819 tx_desc = mvneta_txq_next_desc_get(txq); 1820 1821 tx_cmd = mvneta_skb_tx_csum(pp, skb); 1822 1823 tx_desc->data_size = skb_headlen(skb); 1824 1825 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 1826 tx_desc->data_size, 1827 DMA_TO_DEVICE); 1828 if (unlikely(dma_mapping_error(dev->dev.parent, 1829 tx_desc->buf_phys_addr))) { 1830 mvneta_txq_desc_put(txq); 1831 frags = 0; 1832 goto out; 1833 } 1834 1835 if (frags == 1) { 1836 /* First and Last descriptor */ 1837 tx_cmd |= MVNETA_TXD_FLZ_DESC; 1838 tx_desc->command = tx_cmd; 1839 txq->tx_skb[txq->txq_put_index] = skb; 1840 mvneta_txq_inc_put(txq); 1841 } else { 1842 /* First but not Last */ 1843 tx_cmd |= MVNETA_TXD_F_DESC; 1844 txq->tx_skb[txq->txq_put_index] = NULL; 1845 mvneta_txq_inc_put(txq); 1846 tx_desc->command = tx_cmd; 1847 /* Continue with other skb fragments */ 1848 if (mvneta_tx_frag_process(pp, skb, txq)) { 1849 dma_unmap_single(dev->dev.parent, 1850 tx_desc->buf_phys_addr, 1851 tx_desc->data_size, 1852 DMA_TO_DEVICE); 1853 mvneta_txq_desc_put(txq); 1854 frags = 0; 1855 goto out; 1856 } 1857 } 1858 1859out: 1860 if (frags > 0) { 1861 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1862 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 1863 1864 txq->count += frags; 1865 mvneta_txq_pend_desc_add(pp, txq, frags); 1866 1867 if (txq->count >= txq->tx_stop_threshold) 1868 netif_tx_stop_queue(nq); 1869 1870 u64_stats_update_begin(&stats->syncp); 1871 stats->tx_packets++; 1872 stats->tx_bytes += len; 1873 u64_stats_update_end(&stats->syncp); 1874 } else { 1875 dev->stats.tx_dropped++; 1876 dev_kfree_skb_any(skb); 1877 } 1878 1879 return NETDEV_TX_OK; 1880} 1881 1882 1883/* Free tx resources, when resetting a port */ 1884static void mvneta_txq_done_force(struct mvneta_port *pp, 1885 struct mvneta_tx_queue *txq) 1886 1887{ 1888 int tx_done = txq->count; 1889 1890 mvneta_txq_bufs_free(pp, txq, tx_done); 1891 1892 /* reset txq */ 1893 txq->count = 0; 1894 txq->txq_put_index = 0; 1895 txq->txq_get_index = 0; 1896} 1897 1898/* Handle tx done - called in softirq context. The <cause_tx_done> argument 1899 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 1900 */ 1901static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 1902{ 1903 struct mvneta_tx_queue *txq; 1904 struct netdev_queue *nq; 1905 1906 while (cause_tx_done) { 1907 txq = mvneta_tx_done_policy(pp, cause_tx_done); 1908 1909 nq = netdev_get_tx_queue(pp->dev, txq->id); 1910 __netif_tx_lock(nq, smp_processor_id()); 1911 1912 if (txq->count) 1913 mvneta_txq_done(pp, txq); 1914 1915 __netif_tx_unlock(nq); 1916 cause_tx_done &= ~((1 << txq->id)); 1917 } 1918} 1919 1920/* Compute crc8 of the specified address, using a unique algorithm , 1921 * according to hw spec, different than generic crc8 algorithm 1922 */ 1923static int mvneta_addr_crc(unsigned char *addr) 1924{ 1925 int crc = 0; 1926 int i; 1927 1928 for (i = 0; i < ETH_ALEN; i++) { 1929 int j; 1930 1931 crc = (crc ^ addr[i]) << 8; 1932 for (j = 7; j >= 0; j--) { 1933 if (crc & (0x100 << j)) 1934 crc ^= 0x107 << j; 1935 } 1936 } 1937 1938 return crc; 1939} 1940 1941/* This method controls the net device special MAC multicast support. 1942 * The Special Multicast Table for MAC addresses supports MAC of the form 1943 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1944 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1945 * Table entries in the DA-Filter table. This method set the Special 1946 * Multicast Table appropriate entry. 1947 */ 1948static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 1949 unsigned char last_byte, 1950 int queue) 1951{ 1952 unsigned int smc_table_reg; 1953 unsigned int tbl_offset; 1954 unsigned int reg_offset; 1955 1956 /* Register offset from SMC table base */ 1957 tbl_offset = (last_byte / 4); 1958 /* Entry offset within the above reg */ 1959 reg_offset = last_byte % 4; 1960 1961 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 1962 + tbl_offset * 4)); 1963 1964 if (queue == -1) 1965 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1966 else { 1967 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1968 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1969 } 1970 1971 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 1972 smc_table_reg); 1973} 1974 1975/* This method controls the network device Other MAC multicast support. 1976 * The Other Multicast Table is used for multicast of another type. 1977 * A CRC-8 is used as an index to the Other Multicast Table entries 1978 * in the DA-Filter table. 1979 * The method gets the CRC-8 value from the calling routine and 1980 * sets the Other Multicast Table appropriate entry according to the 1981 * specified CRC-8 . 1982 */ 1983static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 1984 unsigned char crc8, 1985 int queue) 1986{ 1987 unsigned int omc_table_reg; 1988 unsigned int tbl_offset; 1989 unsigned int reg_offset; 1990 1991 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 1992 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 1993 1994 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 1995 1996 if (queue == -1) { 1997 /* Clear accepts frame bit at specified Other DA table entry */ 1998 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1999 } else { 2000 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2001 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2002 } 2003 2004 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2005} 2006 2007/* The network device supports multicast using two tables: 2008 * 1) Special Multicast Table for MAC addresses of the form 2009 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2010 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2011 * Table entries in the DA-Filter table. 2012 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2013 * is used as an index to the Other Multicast Table entries in the 2014 * DA-Filter table. 2015 */ 2016static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2017 int queue) 2018{ 2019 unsigned char crc_result = 0; 2020 2021 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2022 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2023 return 0; 2024 } 2025 2026 crc_result = mvneta_addr_crc(p_addr); 2027 if (queue == -1) { 2028 if (pp->mcast_count[crc_result] == 0) { 2029 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2030 crc_result); 2031 return -EINVAL; 2032 } 2033 2034 pp->mcast_count[crc_result]--; 2035 if (pp->mcast_count[crc_result] != 0) { 2036 netdev_info(pp->dev, 2037 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2038 pp->mcast_count[crc_result], crc_result); 2039 return -EINVAL; 2040 } 2041 } else 2042 pp->mcast_count[crc_result]++; 2043 2044 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2045 2046 return 0; 2047} 2048 2049/* Configure Fitering mode of Ethernet port */ 2050static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2051 int is_promisc) 2052{ 2053 u32 port_cfg_reg, val; 2054 2055 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2056 2057 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2058 2059 /* Set / Clear UPM bit in port configuration register */ 2060 if (is_promisc) { 2061 /* Accept all Unicast addresses */ 2062 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2063 val |= MVNETA_FORCE_UNI; 2064 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2065 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2066 } else { 2067 /* Reject all Unicast addresses */ 2068 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2069 val &= ~MVNETA_FORCE_UNI; 2070 } 2071 2072 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2073 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2074} 2075 2076/* register unicast and multicast addresses */ 2077static void mvneta_set_rx_mode(struct net_device *dev) 2078{ 2079 struct mvneta_port *pp = netdev_priv(dev); 2080 struct netdev_hw_addr *ha; 2081 2082 if (dev->flags & IFF_PROMISC) { 2083 /* Accept all: Multicast + Unicast */ 2084 mvneta_rx_unicast_promisc_set(pp, 1); 2085 mvneta_set_ucast_table(pp, rxq_def); 2086 mvneta_set_special_mcast_table(pp, rxq_def); 2087 mvneta_set_other_mcast_table(pp, rxq_def); 2088 } else { 2089 /* Accept single Unicast */ 2090 mvneta_rx_unicast_promisc_set(pp, 0); 2091 mvneta_set_ucast_table(pp, -1); 2092 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def); 2093 2094 if (dev->flags & IFF_ALLMULTI) { 2095 /* Accept all multicast */ 2096 mvneta_set_special_mcast_table(pp, rxq_def); 2097 mvneta_set_other_mcast_table(pp, rxq_def); 2098 } else { 2099 /* Accept only initialized multicast */ 2100 mvneta_set_special_mcast_table(pp, -1); 2101 mvneta_set_other_mcast_table(pp, -1); 2102 2103 if (!netdev_mc_empty(dev)) { 2104 netdev_for_each_mc_addr(ha, dev) { 2105 mvneta_mcast_addr_set(pp, ha->addr, 2106 rxq_def); 2107 } 2108 } 2109 } 2110 } 2111} 2112 2113/* Interrupt handling - the callback for request_irq() */ 2114static irqreturn_t mvneta_isr(int irq, void *dev_id) 2115{ 2116 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2117 2118 disable_percpu_irq(port->pp->dev->irq); 2119 napi_schedule(&port->napi); 2120 2121 return IRQ_HANDLED; 2122} 2123 2124static int mvneta_fixed_link_update(struct mvneta_port *pp, 2125 struct phy_device *phy) 2126{ 2127 struct fixed_phy_status status; 2128 struct fixed_phy_status changed = {}; 2129 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2130 2131 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2132 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2133 status.speed = SPEED_1000; 2134 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2135 status.speed = SPEED_100; 2136 else 2137 status.speed = SPEED_10; 2138 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2139 changed.link = 1; 2140 changed.speed = 1; 2141 changed.duplex = 1; 2142 fixed_phy_update_state(phy, &status, &changed); 2143 return 0; 2144} 2145 2146/* NAPI handler 2147 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2148 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2149 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2150 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2151 * Each CPU has its own causeRxTx register 2152 */ 2153static int mvneta_poll(struct napi_struct *napi, int budget) 2154{ 2155 int rx_done = 0; 2156 u32 cause_rx_tx; 2157 struct mvneta_port *pp = netdev_priv(napi->dev); 2158 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2159 2160 if (!netif_running(pp->dev)) { 2161 napi_complete(&port->napi); 2162 return rx_done; 2163 } 2164 2165 /* Read cause register */ 2166 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2167 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2168 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2169 2170 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2171 if (pp->use_inband_status && (cause_misc & 2172 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2173 MVNETA_CAUSE_LINK_CHANGE | 2174 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2175 mvneta_fixed_link_update(pp, pp->phy_dev); 2176 } 2177 } 2178 2179 /* Release Tx descriptors */ 2180 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2181 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2182 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2183 } 2184 2185 /* For the case where the last mvneta_poll did not process all 2186 * RX packets 2187 */ 2188 cause_rx_tx |= port->cause_rx_tx; 2189 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]); 2190 budget -= rx_done; 2191 2192 if (budget > 0) { 2193 cause_rx_tx = 0; 2194 napi_complete(&port->napi); 2195 enable_percpu_irq(pp->dev->irq, 0); 2196 } 2197 2198 port->cause_rx_tx = cause_rx_tx; 2199 return rx_done; 2200} 2201 2202/* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2203static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2204 int num) 2205{ 2206 int i; 2207 2208 for (i = 0; i < num; i++) { 2209 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2210 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) { 2211 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2212 __func__, rxq->id, i, num); 2213 break; 2214 } 2215 } 2216 2217 /* Add this number of RX descriptors as non occupied (ready to 2218 * get packets) 2219 */ 2220 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2221 2222 return i; 2223} 2224 2225/* Free all packets pending transmit from all TXQs and reset TX port */ 2226static void mvneta_tx_reset(struct mvneta_port *pp) 2227{ 2228 int queue; 2229 2230 /* free the skb's in the tx ring */ 2231 for (queue = 0; queue < txq_number; queue++) 2232 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2233 2234 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2235 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2236} 2237 2238static void mvneta_rx_reset(struct mvneta_port *pp) 2239{ 2240 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2241 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2242} 2243 2244/* Rx/Tx queue initialization/cleanup methods */ 2245 2246/* Create a specified RX queue */ 2247static int mvneta_rxq_init(struct mvneta_port *pp, 2248 struct mvneta_rx_queue *rxq) 2249 2250{ 2251 rxq->size = pp->rx_ring_size; 2252 2253 /* Allocate memory for RX descriptors */ 2254 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2255 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2256 &rxq->descs_phys, GFP_KERNEL); 2257 if (rxq->descs == NULL) 2258 return -ENOMEM; 2259 2260 BUG_ON(rxq->descs != 2261 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2262 2263 rxq->last_desc = rxq->size - 1; 2264 2265 /* Set Rx descriptors queue starting address */ 2266 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2267 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2268 2269 /* Set Offset */ 2270 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 2271 2272 /* Set coalescing pkts and time */ 2273 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2274 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2275 2276 /* Fill RXQ with buffers from RX pool */ 2277 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2278 mvneta_rxq_bm_disable(pp, rxq); 2279 mvneta_rxq_fill(pp, rxq, rxq->size); 2280 2281 return 0; 2282} 2283 2284/* Cleanup Rx queue */ 2285static void mvneta_rxq_deinit(struct mvneta_port *pp, 2286 struct mvneta_rx_queue *rxq) 2287{ 2288 mvneta_rxq_drop_pkts(pp, rxq); 2289 2290 if (rxq->descs) 2291 dma_free_coherent(pp->dev->dev.parent, 2292 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2293 rxq->descs, 2294 rxq->descs_phys); 2295 2296 rxq->descs = NULL; 2297 rxq->last_desc = 0; 2298 rxq->next_desc_to_proc = 0; 2299 rxq->descs_phys = 0; 2300} 2301 2302/* Create and initialize a tx queue */ 2303static int mvneta_txq_init(struct mvneta_port *pp, 2304 struct mvneta_tx_queue *txq) 2305{ 2306 txq->size = pp->tx_ring_size; 2307 2308 /* A queue must always have room for at least one skb. 2309 * Therefore, stop the queue when the free entries reaches 2310 * the maximum number of descriptors per skb. 2311 */ 2312 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2313 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2314 2315 2316 /* Allocate memory for TX descriptors */ 2317 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2318 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2319 &txq->descs_phys, GFP_KERNEL); 2320 if (txq->descs == NULL) 2321 return -ENOMEM; 2322 2323 /* Make sure descriptor address is cache line size aligned */ 2324 BUG_ON(txq->descs != 2325 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2326 2327 txq->last_desc = txq->size - 1; 2328 2329 /* Set maximum bandwidth for enabled TXQs */ 2330 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2331 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2332 2333 /* Set Tx descriptors queue starting address */ 2334 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2335 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2336 2337 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2338 if (txq->tx_skb == NULL) { 2339 dma_free_coherent(pp->dev->dev.parent, 2340 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2341 txq->descs, txq->descs_phys); 2342 return -ENOMEM; 2343 } 2344 2345 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2346 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2347 txq->size * TSO_HEADER_SIZE, 2348 &txq->tso_hdrs_phys, GFP_KERNEL); 2349 if (txq->tso_hdrs == NULL) { 2350 kfree(txq->tx_skb); 2351 dma_free_coherent(pp->dev->dev.parent, 2352 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2353 txq->descs, txq->descs_phys); 2354 return -ENOMEM; 2355 } 2356 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2357 2358 return 0; 2359} 2360 2361/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2362static void mvneta_txq_deinit(struct mvneta_port *pp, 2363 struct mvneta_tx_queue *txq) 2364{ 2365 kfree(txq->tx_skb); 2366 2367 if (txq->tso_hdrs) 2368 dma_free_coherent(pp->dev->dev.parent, 2369 txq->size * TSO_HEADER_SIZE, 2370 txq->tso_hdrs, txq->tso_hdrs_phys); 2371 if (txq->descs) 2372 dma_free_coherent(pp->dev->dev.parent, 2373 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2374 txq->descs, txq->descs_phys); 2375 2376 txq->descs = NULL; 2377 txq->last_desc = 0; 2378 txq->next_desc_to_proc = 0; 2379 txq->descs_phys = 0; 2380 2381 /* Set minimum bandwidth for disabled TXQs */ 2382 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2383 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2384 2385 /* Set Tx descriptors queue starting address and size */ 2386 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2387 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2388} 2389 2390/* Cleanup all Tx queues */ 2391static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2392{ 2393 int queue; 2394 2395 for (queue = 0; queue < txq_number; queue++) 2396 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2397} 2398 2399/* Cleanup all Rx queues */ 2400static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2401{ 2402 mvneta_rxq_deinit(pp, &pp->rxqs[rxq_def]); 2403} 2404 2405 2406/* Init all Rx queues */ 2407static int mvneta_setup_rxqs(struct mvneta_port *pp) 2408{ 2409 int err = mvneta_rxq_init(pp, &pp->rxqs[rxq_def]); 2410 if (err) { 2411 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2412 __func__, rxq_def); 2413 mvneta_cleanup_rxqs(pp); 2414 return err; 2415 } 2416 2417 return 0; 2418} 2419 2420/* Init all tx queues */ 2421static int mvneta_setup_txqs(struct mvneta_port *pp) 2422{ 2423 int queue; 2424 2425 for (queue = 0; queue < txq_number; queue++) { 2426 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2427 if (err) { 2428 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2429 __func__, queue); 2430 mvneta_cleanup_txqs(pp); 2431 return err; 2432 } 2433 } 2434 2435 return 0; 2436} 2437 2438static void mvneta_start_dev(struct mvneta_port *pp) 2439{ 2440 unsigned int cpu; 2441 2442 mvneta_max_rx_size_set(pp, pp->pkt_size); 2443 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2444 2445 /* start the Rx/Tx activity */ 2446 mvneta_port_enable(pp); 2447 2448 /* Enable polling on the port */ 2449 for_each_present_cpu(cpu) { 2450 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2451 2452 napi_enable(&port->napi); 2453 } 2454 2455 /* Unmask interrupts */ 2456 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2457 MVNETA_RX_INTR_MASK(rxq_number) | 2458 MVNETA_TX_INTR_MASK(txq_number) | 2459 MVNETA_MISCINTR_INTR_MASK); 2460 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2461 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2462 MVNETA_CAUSE_LINK_CHANGE | 2463 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2464 2465 phy_start(pp->phy_dev); 2466 netif_tx_start_all_queues(pp->dev); 2467} 2468 2469static void mvneta_stop_dev(struct mvneta_port *pp) 2470{ 2471 unsigned int cpu; 2472 2473 phy_stop(pp->phy_dev); 2474 2475 for_each_present_cpu(cpu) { 2476 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2477 2478 napi_disable(&port->napi); 2479 } 2480 2481 netif_carrier_off(pp->dev); 2482 2483 mvneta_port_down(pp); 2484 netif_tx_stop_all_queues(pp->dev); 2485 2486 /* Stop the port activity */ 2487 mvneta_port_disable(pp); 2488 2489 /* Clear all ethernet port interrupts */ 2490 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2491 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 2492 2493 /* Mask all ethernet port interrupts */ 2494 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2495 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2496 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2497 2498 mvneta_tx_reset(pp); 2499 mvneta_rx_reset(pp); 2500} 2501 2502/* Return positive if MTU is valid */ 2503static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 2504{ 2505 if (mtu < 68) { 2506 netdev_err(dev, "cannot change mtu to less than 68\n"); 2507 return -EINVAL; 2508 } 2509 2510 /* 9676 == 9700 - 20 and rounding to 8 */ 2511 if (mtu > 9676) { 2512 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 2513 mtu = 9676; 2514 } 2515 2516 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 2517 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 2518 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 2519 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 2520 } 2521 2522 return mtu; 2523} 2524 2525/* Change the device mtu */ 2526static int mvneta_change_mtu(struct net_device *dev, int mtu) 2527{ 2528 struct mvneta_port *pp = netdev_priv(dev); 2529 int ret; 2530 2531 mtu = mvneta_check_mtu_valid(dev, mtu); 2532 if (mtu < 0) 2533 return -EINVAL; 2534 2535 dev->mtu = mtu; 2536 2537 if (!netif_running(dev)) { 2538 netdev_update_features(dev); 2539 return 0; 2540 } 2541 2542 /* The interface is running, so we have to force a 2543 * reallocation of the queues 2544 */ 2545 mvneta_stop_dev(pp); 2546 2547 mvneta_cleanup_txqs(pp); 2548 mvneta_cleanup_rxqs(pp); 2549 2550 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 2551 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2552 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2553 2554 ret = mvneta_setup_rxqs(pp); 2555 if (ret) { 2556 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 2557 return ret; 2558 } 2559 2560 ret = mvneta_setup_txqs(pp); 2561 if (ret) { 2562 netdev_err(dev, "unable to setup txqs after MTU change\n"); 2563 return ret; 2564 } 2565 2566 mvneta_start_dev(pp); 2567 mvneta_port_up(pp); 2568 2569 netdev_update_features(dev); 2570 2571 return 0; 2572} 2573 2574static netdev_features_t mvneta_fix_features(struct net_device *dev, 2575 netdev_features_t features) 2576{ 2577 struct mvneta_port *pp = netdev_priv(dev); 2578 2579 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 2580 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 2581 netdev_info(dev, 2582 "Disable IP checksum for MTU greater than %dB\n", 2583 pp->tx_csum_limit); 2584 } 2585 2586 return features; 2587} 2588 2589/* Get mac address */ 2590static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 2591{ 2592 u32 mac_addr_l, mac_addr_h; 2593 2594 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 2595 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 2596 addr[0] = (mac_addr_h >> 24) & 0xFF; 2597 addr[1] = (mac_addr_h >> 16) & 0xFF; 2598 addr[2] = (mac_addr_h >> 8) & 0xFF; 2599 addr[3] = mac_addr_h & 0xFF; 2600 addr[4] = (mac_addr_l >> 8) & 0xFF; 2601 addr[5] = mac_addr_l & 0xFF; 2602} 2603 2604/* Handle setting mac address */ 2605static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 2606{ 2607 struct mvneta_port *pp = netdev_priv(dev); 2608 struct sockaddr *sockaddr = addr; 2609 int ret; 2610 2611 ret = eth_prepare_mac_addr_change(dev, addr); 2612 if (ret < 0) 2613 return ret; 2614 /* Remove previous address table entry */ 2615 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 2616 2617 /* Set new addr in hw */ 2618 mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def); 2619 2620 eth_commit_mac_addr_change(dev, addr); 2621 return 0; 2622} 2623 2624static void mvneta_adjust_link(struct net_device *ndev) 2625{ 2626 struct mvneta_port *pp = netdev_priv(ndev); 2627 struct phy_device *phydev = pp->phy_dev; 2628 int status_change = 0; 2629 2630 if (phydev->link) { 2631 if ((pp->speed != phydev->speed) || 2632 (pp->duplex != phydev->duplex)) { 2633 u32 val; 2634 2635 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2636 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 2637 MVNETA_GMAC_CONFIG_GMII_SPEED | 2638 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 2639 2640 if (phydev->duplex) 2641 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 2642 2643 if (phydev->speed == SPEED_1000) 2644 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 2645 else if (phydev->speed == SPEED_100) 2646 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 2647 2648 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2649 2650 pp->duplex = phydev->duplex; 2651 pp->speed = phydev->speed; 2652 } 2653 } 2654 2655 if (phydev->link != pp->link) { 2656 if (!phydev->link) { 2657 pp->duplex = -1; 2658 pp->speed = 0; 2659 } 2660 2661 pp->link = phydev->link; 2662 status_change = 1; 2663 } 2664 2665 if (status_change) { 2666 if (phydev->link) { 2667 if (!pp->use_inband_status) { 2668 u32 val = mvreg_read(pp, 2669 MVNETA_GMAC_AUTONEG_CONFIG); 2670 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 2671 val |= MVNETA_GMAC_FORCE_LINK_PASS; 2672 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2673 val); 2674 } 2675 mvneta_port_up(pp); 2676 } else { 2677 if (!pp->use_inband_status) { 2678 u32 val = mvreg_read(pp, 2679 MVNETA_GMAC_AUTONEG_CONFIG); 2680 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 2681 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 2682 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2683 val); 2684 } 2685 mvneta_port_down(pp); 2686 } 2687 phy_print_status(phydev); 2688 } 2689} 2690 2691static int mvneta_mdio_probe(struct mvneta_port *pp) 2692{ 2693 struct phy_device *phy_dev; 2694 2695 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 2696 pp->phy_interface); 2697 if (!phy_dev) { 2698 netdev_err(pp->dev, "could not find the PHY\n"); 2699 return -ENODEV; 2700 } 2701 2702 phy_dev->supported &= PHY_GBIT_FEATURES; 2703 phy_dev->advertising = phy_dev->supported; 2704 2705 pp->phy_dev = phy_dev; 2706 pp->link = 0; 2707 pp->duplex = 0; 2708 pp->speed = 0; 2709 2710 return 0; 2711} 2712 2713static void mvneta_mdio_remove(struct mvneta_port *pp) 2714{ 2715 phy_disconnect(pp->phy_dev); 2716 pp->phy_dev = NULL; 2717} 2718 2719static void mvneta_percpu_enable(void *arg) 2720{ 2721 struct mvneta_port *pp = arg; 2722 2723 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 2724} 2725 2726static void mvneta_percpu_disable(void *arg) 2727{ 2728 struct mvneta_port *pp = arg; 2729 2730 disable_percpu_irq(pp->dev->irq); 2731} 2732 2733static void mvneta_percpu_elect(struct mvneta_port *pp) 2734{ 2735 int online_cpu_idx, cpu, i = 0; 2736 2737 online_cpu_idx = rxq_def % num_online_cpus(); 2738 2739 for_each_online_cpu(cpu) { 2740 if (i == online_cpu_idx) 2741 /* Enable per-CPU interrupt on the one CPU we 2742 * just elected 2743 */ 2744 smp_call_function_single(cpu, mvneta_percpu_enable, 2745 pp, true); 2746 else 2747 /* Disable per-CPU interrupt on all the other CPU */ 2748 smp_call_function_single(cpu, mvneta_percpu_disable, 2749 pp, true); 2750 i++; 2751 } 2752}; 2753 2754static int mvneta_percpu_notifier(struct notifier_block *nfb, 2755 unsigned long action, void *hcpu) 2756{ 2757 struct mvneta_port *pp = container_of(nfb, struct mvneta_port, 2758 cpu_notifier); 2759 int cpu = (unsigned long)hcpu, other_cpu; 2760 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2761 2762 switch (action) { 2763 case CPU_ONLINE: 2764 case CPU_ONLINE_FROZEN: 2765 netif_tx_stop_all_queues(pp->dev); 2766 2767 /* We have to synchronise on tha napi of each CPU 2768 * except the one just being waked up 2769 */ 2770 for_each_online_cpu(other_cpu) { 2771 if (other_cpu != cpu) { 2772 struct mvneta_pcpu_port *other_port = 2773 per_cpu_ptr(pp->ports, other_cpu); 2774 2775 napi_synchronize(&other_port->napi); 2776 } 2777 } 2778 2779 /* Mask all ethernet port interrupts */ 2780 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2781 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2782 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2783 napi_enable(&port->napi); 2784 2785 /* Enable per-CPU interrupt on the one CPU we care 2786 * about. 2787 */ 2788 mvneta_percpu_elect(pp); 2789 2790 /* Unmask all ethernet port interrupts */ 2791 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2792 MVNETA_RX_INTR_MASK(rxq_number) | 2793 MVNETA_TX_INTR_MASK(txq_number) | 2794 MVNETA_MISCINTR_INTR_MASK); 2795 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2796 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2797 MVNETA_CAUSE_LINK_CHANGE | 2798 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2799 netif_tx_start_all_queues(pp->dev); 2800 break; 2801 case CPU_DOWN_PREPARE: 2802 case CPU_DOWN_PREPARE_FROZEN: 2803 netif_tx_stop_all_queues(pp->dev); 2804 /* Mask all ethernet port interrupts */ 2805 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2806 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2807 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2808 2809 napi_synchronize(&port->napi); 2810 napi_disable(&port->napi); 2811 /* Disable per-CPU interrupts on the CPU that is 2812 * brought down. 2813 */ 2814 smp_call_function_single(cpu, mvneta_percpu_disable, 2815 pp, true); 2816 2817 break; 2818 case CPU_DEAD: 2819 case CPU_DEAD_FROZEN: 2820 /* Check if a new CPU must be elected now this on is down */ 2821 mvneta_percpu_elect(pp); 2822 /* Unmask all ethernet port interrupts */ 2823 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2824 MVNETA_RX_INTR_MASK(rxq_number) | 2825 MVNETA_TX_INTR_MASK(txq_number) | 2826 MVNETA_MISCINTR_INTR_MASK); 2827 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2828 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2829 MVNETA_CAUSE_LINK_CHANGE | 2830 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2831 netif_tx_start_all_queues(pp->dev); 2832 break; 2833 } 2834 2835 return NOTIFY_OK; 2836} 2837 2838static int mvneta_open(struct net_device *dev) 2839{ 2840 struct mvneta_port *pp = netdev_priv(dev); 2841 int ret; 2842 2843 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2844 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2845 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2846 2847 ret = mvneta_setup_rxqs(pp); 2848 if (ret) 2849 return ret; 2850 2851 ret = mvneta_setup_txqs(pp); 2852 if (ret) 2853 goto err_cleanup_rxqs; 2854 2855 /* Connect to port interrupt line */ 2856 ret = request_percpu_irq(pp->dev->irq, mvneta_isr, 2857 MVNETA_DRIVER_NAME, pp->ports); 2858 if (ret) { 2859 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 2860 goto err_cleanup_txqs; 2861 } 2862 2863 /* Even though the documentation says that request_percpu_irq 2864 * doesn't enable the interrupts automatically, it actually 2865 * does so on the local CPU. 2866 * 2867 * Make sure it's disabled. 2868 */ 2869 mvneta_percpu_disable(pp); 2870 2871 /* Elect a CPU to handle our RX queue interrupt */ 2872 mvneta_percpu_elect(pp); 2873 2874 /* Register a CPU notifier to handle the case where our CPU 2875 * might be taken offline. 2876 */ 2877 register_cpu_notifier(&pp->cpu_notifier); 2878 2879 /* In default link is down */ 2880 netif_carrier_off(pp->dev); 2881 2882 ret = mvneta_mdio_probe(pp); 2883 if (ret < 0) { 2884 netdev_err(dev, "cannot probe MDIO bus\n"); 2885 goto err_free_irq; 2886 } 2887 2888 mvneta_start_dev(pp); 2889 2890 return 0; 2891 2892err_free_irq: 2893 free_percpu_irq(pp->dev->irq, pp->ports); 2894err_cleanup_txqs: 2895 mvneta_cleanup_txqs(pp); 2896err_cleanup_rxqs: 2897 mvneta_cleanup_rxqs(pp); 2898 return ret; 2899} 2900 2901/* Stop the port, free port interrupt line */ 2902static int mvneta_stop(struct net_device *dev) 2903{ 2904 struct mvneta_port *pp = netdev_priv(dev); 2905 int cpu; 2906 2907 mvneta_stop_dev(pp); 2908 mvneta_mdio_remove(pp); 2909 unregister_cpu_notifier(&pp->cpu_notifier); 2910 for_each_present_cpu(cpu) 2911 smp_call_function_single(cpu, mvneta_percpu_disable, pp, true); 2912 free_percpu_irq(dev->irq, pp->ports); 2913 mvneta_cleanup_rxqs(pp); 2914 mvneta_cleanup_txqs(pp); 2915 2916 return 0; 2917} 2918 2919static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2920{ 2921 struct mvneta_port *pp = netdev_priv(dev); 2922 2923 if (!pp->phy_dev) 2924 return -ENOTSUPP; 2925 2926 return phy_mii_ioctl(pp->phy_dev, ifr, cmd); 2927} 2928 2929/* Ethtool methods */ 2930 2931/* Get settings (phy address, speed) for ethtools */ 2932int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2933{ 2934 struct mvneta_port *pp = netdev_priv(dev); 2935 2936 if (!pp->phy_dev) 2937 return -ENODEV; 2938 2939 return phy_ethtool_gset(pp->phy_dev, cmd); 2940} 2941 2942/* Set settings (phy address, speed) for ethtools */ 2943int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2944{ 2945 struct mvneta_port *pp = netdev_priv(dev); 2946 2947 if (!pp->phy_dev) 2948 return -ENODEV; 2949 2950 return phy_ethtool_sset(pp->phy_dev, cmd); 2951} 2952 2953/* Set interrupt coalescing for ethtools */ 2954static int mvneta_ethtool_set_coalesce(struct net_device *dev, 2955 struct ethtool_coalesce *c) 2956{ 2957 struct mvneta_port *pp = netdev_priv(dev); 2958 int queue; 2959 2960 for (queue = 0; queue < rxq_number; queue++) { 2961 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2962 rxq->time_coal = c->rx_coalesce_usecs; 2963 rxq->pkts_coal = c->rx_max_coalesced_frames; 2964 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2965 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2966 } 2967 2968 for (queue = 0; queue < txq_number; queue++) { 2969 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2970 txq->done_pkts_coal = c->tx_max_coalesced_frames; 2971 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2972 } 2973 2974 return 0; 2975} 2976 2977/* get coalescing for ethtools */ 2978static int mvneta_ethtool_get_coalesce(struct net_device *dev, 2979 struct ethtool_coalesce *c) 2980{ 2981 struct mvneta_port *pp = netdev_priv(dev); 2982 2983 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 2984 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 2985 2986 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 2987 return 0; 2988} 2989 2990 2991static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 2992 struct ethtool_drvinfo *drvinfo) 2993{ 2994 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 2995 sizeof(drvinfo->driver)); 2996 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 2997 sizeof(drvinfo->version)); 2998 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 2999 sizeof(drvinfo->bus_info)); 3000} 3001 3002 3003static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3004 struct ethtool_ringparam *ring) 3005{ 3006 struct mvneta_port *pp = netdev_priv(netdev); 3007 3008 ring->rx_max_pending = MVNETA_MAX_RXD; 3009 ring->tx_max_pending = MVNETA_MAX_TXD; 3010 ring->rx_pending = pp->rx_ring_size; 3011 ring->tx_pending = pp->tx_ring_size; 3012} 3013 3014static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3015 struct ethtool_ringparam *ring) 3016{ 3017 struct mvneta_port *pp = netdev_priv(dev); 3018 3019 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3020 return -EINVAL; 3021 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3022 ring->rx_pending : MVNETA_MAX_RXD; 3023 3024 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3025 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3026 if (pp->tx_ring_size != ring->tx_pending) 3027 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3028 pp->tx_ring_size, ring->tx_pending); 3029 3030 if (netif_running(dev)) { 3031 mvneta_stop(dev); 3032 if (mvneta_open(dev)) { 3033 netdev_err(dev, 3034 "error on opening device after ring param change\n"); 3035 return -ENOMEM; 3036 } 3037 } 3038 3039 return 0; 3040} 3041 3042static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 3043 u8 *data) 3044{ 3045 if (sset == ETH_SS_STATS) { 3046 int i; 3047 3048 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3049 memcpy(data + i * ETH_GSTRING_LEN, 3050 mvneta_statistics[i].name, ETH_GSTRING_LEN); 3051 } 3052} 3053 3054static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 3055{ 3056 const struct mvneta_statistic *s; 3057 void __iomem *base = pp->base; 3058 u32 high, low, val; 3059 int i; 3060 3061 for (i = 0, s = mvneta_statistics; 3062 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 3063 s++, i++) { 3064 val = 0; 3065 3066 switch (s->type) { 3067 case T_REG_32: 3068 val = readl_relaxed(base + s->offset); 3069 break; 3070 case T_REG_64: 3071 /* Docs say to read low 32-bit then high */ 3072 low = readl_relaxed(base + s->offset); 3073 high = readl_relaxed(base + s->offset + 4); 3074 val = (u64)high << 32 | low; 3075 break; 3076 } 3077 3078 pp->ethtool_stats[i] += val; 3079 } 3080} 3081 3082static void mvneta_ethtool_get_stats(struct net_device *dev, 3083 struct ethtool_stats *stats, u64 *data) 3084{ 3085 struct mvneta_port *pp = netdev_priv(dev); 3086 int i; 3087 3088 mvneta_ethtool_update_stats(pp); 3089 3090 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3091 *data++ = pp->ethtool_stats[i]; 3092} 3093 3094static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 3095{ 3096 if (sset == ETH_SS_STATS) 3097 return ARRAY_SIZE(mvneta_statistics); 3098 return -EOPNOTSUPP; 3099} 3100 3101static const struct net_device_ops mvneta_netdev_ops = { 3102 .ndo_open = mvneta_open, 3103 .ndo_stop = mvneta_stop, 3104 .ndo_start_xmit = mvneta_tx, 3105 .ndo_set_rx_mode = mvneta_set_rx_mode, 3106 .ndo_set_mac_address = mvneta_set_mac_addr, 3107 .ndo_change_mtu = mvneta_change_mtu, 3108 .ndo_fix_features = mvneta_fix_features, 3109 .ndo_get_stats64 = mvneta_get_stats64, 3110 .ndo_do_ioctl = mvneta_ioctl, 3111}; 3112 3113const struct ethtool_ops mvneta_eth_tool_ops = { 3114 .get_link = ethtool_op_get_link, 3115 .get_settings = mvneta_ethtool_get_settings, 3116 .set_settings = mvneta_ethtool_set_settings, 3117 .set_coalesce = mvneta_ethtool_set_coalesce, 3118 .get_coalesce = mvneta_ethtool_get_coalesce, 3119 .get_drvinfo = mvneta_ethtool_get_drvinfo, 3120 .get_ringparam = mvneta_ethtool_get_ringparam, 3121 .set_ringparam = mvneta_ethtool_set_ringparam, 3122 .get_strings = mvneta_ethtool_get_strings, 3123 .get_ethtool_stats = mvneta_ethtool_get_stats, 3124 .get_sset_count = mvneta_ethtool_get_sset_count, 3125}; 3126 3127/* Initialize hw */ 3128static int mvneta_init(struct device *dev, struct mvneta_port *pp) 3129{ 3130 int queue; 3131 3132 /* Disable port */ 3133 mvneta_port_disable(pp); 3134 3135 /* Set port default values */ 3136 mvneta_defaults_set(pp); 3137 3138 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue), 3139 GFP_KERNEL); 3140 if (!pp->txqs) 3141 return -ENOMEM; 3142 3143 /* Initialize TX descriptor rings */ 3144 for (queue = 0; queue < txq_number; queue++) { 3145 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3146 txq->id = queue; 3147 txq->size = pp->tx_ring_size; 3148 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 3149 } 3150 3151 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue), 3152 GFP_KERNEL); 3153 if (!pp->rxqs) 3154 return -ENOMEM; 3155 3156 /* Create Rx descriptor rings */ 3157 for (queue = 0; queue < rxq_number; queue++) { 3158 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3159 rxq->id = queue; 3160 rxq->size = pp->rx_ring_size; 3161 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 3162 rxq->time_coal = MVNETA_RX_COAL_USEC; 3163 } 3164 3165 return 0; 3166} 3167 3168/* platform glue : initialize decoding windows */ 3169static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 3170 const struct mbus_dram_target_info *dram) 3171{ 3172 u32 win_enable; 3173 u32 win_protect; 3174 int i; 3175 3176 for (i = 0; i < 6; i++) { 3177 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 3178 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 3179 3180 if (i < 4) 3181 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 3182 } 3183 3184 win_enable = 0x3f; 3185 win_protect = 0; 3186 3187 for (i = 0; i < dram->num_cs; i++) { 3188 const struct mbus_dram_window *cs = dram->cs + i; 3189 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 3190 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 3191 3192 mvreg_write(pp, MVNETA_WIN_SIZE(i), 3193 (cs->size - 1) & 0xffff0000); 3194 3195 win_enable &= ~(1 << i); 3196 win_protect |= 3 << (2 * i); 3197 } 3198 3199 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 3200 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 3201} 3202 3203/* Power up the port */ 3204static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 3205{ 3206 u32 ctrl; 3207 3208 /* MAC Cause register should be cleared */ 3209 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 3210 3211 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3212 3213 /* Even though it might look weird, when we're configured in 3214 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3215 */ 3216 switch(phy_mode) { 3217 case PHY_INTERFACE_MODE_QSGMII: 3218 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 3219 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 3220 break; 3221 case PHY_INTERFACE_MODE_SGMII: 3222 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 3223 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 3224 break; 3225 case PHY_INTERFACE_MODE_RGMII: 3226 case PHY_INTERFACE_MODE_RGMII_ID: 3227 ctrl |= MVNETA_GMAC2_PORT_RGMII; 3228 break; 3229 default: 3230 return -EINVAL; 3231 } 3232 3233 if (pp->use_inband_status) 3234 ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3235 3236 /* Cancel Port Reset */ 3237 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 3238 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 3239 3240 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3241 MVNETA_GMAC2_PORT_RESET) != 0) 3242 continue; 3243 3244 return 0; 3245} 3246 3247/* Device initialization routine */ 3248static int mvneta_probe(struct platform_device *pdev) 3249{ 3250 const struct mbus_dram_target_info *dram_target_info; 3251 struct resource *res; 3252 struct device_node *dn = pdev->dev.of_node; 3253 struct device_node *phy_node; 3254 struct mvneta_port *pp; 3255 struct net_device *dev; 3256 const char *dt_mac_addr; 3257 char hw_mac_addr[ETH_ALEN]; 3258 const char *mac_from; 3259 const char *managed; 3260 int tx_csum_limit; 3261 int phy_mode; 3262 int err; 3263 int cpu; 3264 3265 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 3266 if (!dev) 3267 return -ENOMEM; 3268 3269 dev->irq = irq_of_parse_and_map(dn, 0); 3270 if (dev->irq == 0) { 3271 err = -EINVAL; 3272 goto err_free_netdev; 3273 } 3274 3275 phy_node = of_parse_phandle(dn, "phy", 0); 3276 if (!phy_node) { 3277 if (!of_phy_is_fixed_link(dn)) { 3278 dev_err(&pdev->dev, "no PHY specified\n"); 3279 err = -ENODEV; 3280 goto err_free_irq; 3281 } 3282 3283 err = of_phy_register_fixed_link(dn); 3284 if (err < 0) { 3285 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 3286 goto err_free_irq; 3287 } 3288 3289 /* In the case of a fixed PHY, the DT node associated 3290 * to the PHY is the Ethernet MAC DT node. 3291 */ 3292 phy_node = of_node_get(dn); 3293 } 3294 3295 phy_mode = of_get_phy_mode(dn); 3296 if (phy_mode < 0) { 3297 dev_err(&pdev->dev, "incorrect phy-mode\n"); 3298 err = -EINVAL; 3299 goto err_put_phy_node; 3300 } 3301 3302 dev->tx_queue_len = MVNETA_MAX_TXD; 3303 dev->watchdog_timeo = 5 * HZ; 3304 dev->netdev_ops = &mvneta_netdev_ops; 3305 3306 dev->ethtool_ops = &mvneta_eth_tool_ops; 3307 3308 pp = netdev_priv(dev); 3309 pp->phy_node = phy_node; 3310 pp->phy_interface = phy_mode; 3311 3312 err = of_property_read_string(dn, "managed", &managed); 3313 pp->use_inband_status = (err == 0 && 3314 strcmp(managed, "in-band-status") == 0); 3315 pp->cpu_notifier.notifier_call = mvneta_percpu_notifier; 3316 3317 pp->clk = devm_clk_get(&pdev->dev, NULL); 3318 if (IS_ERR(pp->clk)) { 3319 err = PTR_ERR(pp->clk); 3320 goto err_put_phy_node; 3321 } 3322 3323 clk_prepare_enable(pp->clk); 3324 3325 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3326 pp->base = devm_ioremap_resource(&pdev->dev, res); 3327 if (IS_ERR(pp->base)) { 3328 err = PTR_ERR(pp->base); 3329 goto err_clk; 3330 } 3331 3332 /* Alloc per-cpu port structure */ 3333 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 3334 if (!pp->ports) { 3335 err = -ENOMEM; 3336 goto err_clk; 3337 } 3338 3339 /* Alloc per-cpu stats */ 3340 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 3341 if (!pp->stats) { 3342 err = -ENOMEM; 3343 goto err_free_ports; 3344 } 3345 3346 dt_mac_addr = of_get_mac_address(dn); 3347 if (dt_mac_addr) { 3348 mac_from = "device tree"; 3349 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 3350 } else { 3351 mvneta_get_mac_addr(pp, hw_mac_addr); 3352 if (is_valid_ether_addr(hw_mac_addr)) { 3353 mac_from = "hardware"; 3354 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 3355 } else { 3356 mac_from = "random"; 3357 eth_hw_addr_random(dev); 3358 } 3359 } 3360 3361 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 3362 if (tx_csum_limit < 0 || 3363 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 3364 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 3365 dev_info(&pdev->dev, 3366 "Wrong TX csum limit in DT, set to %dB\n", 3367 MVNETA_TX_CSUM_DEF_SIZE); 3368 } 3369 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 3370 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 3371 } else { 3372 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 3373 } 3374 3375 pp->tx_csum_limit = tx_csum_limit; 3376 3377 pp->tx_ring_size = MVNETA_MAX_TXD; 3378 pp->rx_ring_size = MVNETA_MAX_RXD; 3379 3380 pp->dev = dev; 3381 SET_NETDEV_DEV(dev, &pdev->dev); 3382 3383 err = mvneta_init(&pdev->dev, pp); 3384 if (err < 0) 3385 goto err_free_stats; 3386 3387 err = mvneta_port_power_up(pp, phy_mode); 3388 if (err < 0) { 3389 dev_err(&pdev->dev, "can't power up port\n"); 3390 goto err_free_stats; 3391 } 3392 3393 dram_target_info = mv_mbus_dram_info(); 3394 if (dram_target_info) 3395 mvneta_conf_mbus_windows(pp, dram_target_info); 3396 3397 for_each_present_cpu(cpu) { 3398 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3399 3400 netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT); 3401 port->pp = pp; 3402 } 3403 3404 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 3405 dev->hw_features |= dev->features; 3406 dev->vlan_features |= dev->features; 3407 dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE; 3408 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 3409 3410 err = register_netdev(dev); 3411 if (err < 0) { 3412 dev_err(&pdev->dev, "failed to register\n"); 3413 goto err_free_stats; 3414 } 3415 3416 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 3417 dev->dev_addr); 3418 3419 platform_set_drvdata(pdev, pp->dev); 3420 3421 if (pp->use_inband_status) { 3422 struct phy_device *phy = of_phy_find_device(dn); 3423 3424 mvneta_fixed_link_update(pp, phy); 3425 3426 put_device(&phy->dev); 3427 } 3428 3429 return 0; 3430 3431err_free_stats: 3432 free_percpu(pp->stats); 3433err_free_ports: 3434 free_percpu(pp->ports); 3435err_clk: 3436 clk_disable_unprepare(pp->clk); 3437err_put_phy_node: 3438 of_node_put(phy_node); 3439err_free_irq: 3440 irq_dispose_mapping(dev->irq); 3441err_free_netdev: 3442 free_netdev(dev); 3443 return err; 3444} 3445 3446/* Device removal routine */ 3447static int mvneta_remove(struct platform_device *pdev) 3448{ 3449 struct net_device *dev = platform_get_drvdata(pdev); 3450 struct mvneta_port *pp = netdev_priv(dev); 3451 3452 unregister_netdev(dev); 3453 clk_disable_unprepare(pp->clk); 3454 free_percpu(pp->ports); 3455 free_percpu(pp->stats); 3456 irq_dispose_mapping(dev->irq); 3457 of_node_put(pp->phy_node); 3458 free_netdev(dev); 3459 3460 return 0; 3461} 3462 3463static const struct of_device_id mvneta_match[] = { 3464 { .compatible = "marvell,armada-370-neta" }, 3465 { .compatible = "marvell,armada-xp-neta" }, 3466 { } 3467}; 3468MODULE_DEVICE_TABLE(of, mvneta_match); 3469 3470static struct platform_driver mvneta_driver = { 3471 .probe = mvneta_probe, 3472 .remove = mvneta_remove, 3473 .driver = { 3474 .name = MVNETA_DRIVER_NAME, 3475 .of_match_table = mvneta_match, 3476 }, 3477}; 3478 3479module_platform_driver(mvneta_driver); 3480 3481MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 3482MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 3483MODULE_LICENSE("GPL"); 3484 3485module_param(rxq_number, int, S_IRUGO); 3486module_param(txq_number, int, S_IRUGO); 3487 3488module_param(rxq_def, int, S_IRUGO); 3489module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 3490