1/*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14#include <linux/kernel.h>
15#include <linux/netdevice.h>
16#include <linux/etherdevice.h>
17#include <linux/platform_device.h>
18#include <linux/skbuff.h>
19#include <linux/inetdevice.h>
20#include <linux/mbus.h>
21#include <linux/module.h>
22#include <linux/interrupt.h>
23#include <linux/if_vlan.h>
24#include <net/ip.h>
25#include <net/ipv6.h>
26#include <linux/io.h>
27#include <net/tso.h>
28#include <linux/of.h>
29#include <linux/of_irq.h>
30#include <linux/of_mdio.h>
31#include <linux/of_net.h>
32#include <linux/of_address.h>
33#include <linux/phy.h>
34#include <linux/clk.h>
35#include <linux/cpu.h>
36
37/* Registers */
38#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
39#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
40#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
41#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
42#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
43#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
44#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
45#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
46#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
47#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
48#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
49#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
50#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
51#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
52#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
53#define MVNETA_PORT_RX_RESET                    0x1cc0
54#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
55#define MVNETA_PHY_ADDR                         0x2000
56#define      MVNETA_PHY_ADDR_MASK               0x1f
57#define MVNETA_MBUS_RETRY                       0x2010
58#define MVNETA_UNIT_INTR_CAUSE                  0x2080
59#define MVNETA_UNIT_CONTROL                     0x20B0
60#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
61#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
62#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
63#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
64#define MVNETA_BASE_ADDR_ENABLE                 0x2290
65#define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
66#define MVNETA_PORT_CONFIG                      0x2400
67#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
68#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
69#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
70#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
71#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
72#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
73#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
74#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
75#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
76						 MVNETA_DEF_RXQ_ARP(q)	 | \
77						 MVNETA_DEF_RXQ_TCP(q)	 | \
78						 MVNETA_DEF_RXQ_UDP(q)	 | \
79						 MVNETA_DEF_RXQ_BPDU(q)	 | \
80						 MVNETA_TX_UNSET_ERR_SUM | \
81						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
82#define MVNETA_PORT_CONFIG_EXTEND                0x2404
83#define MVNETA_MAC_ADDR_LOW                      0x2414
84#define MVNETA_MAC_ADDR_HIGH                     0x2418
85#define MVNETA_SDMA_CONFIG                       0x241c
86#define      MVNETA_SDMA_BRST_SIZE_16            4
87#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
88#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
89#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
90#define      MVNETA_DESC_SWAP                    BIT(6)
91#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
92#define MVNETA_PORT_STATUS                       0x2444
93#define      MVNETA_TX_IN_PRGRS                  BIT(1)
94#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
95#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
96#define MVNETA_SERDES_CFG			 0x24A0
97#define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
98#define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
99#define MVNETA_TYPE_PRIO                         0x24bc
100#define      MVNETA_FORCE_UNI                    BIT(21)
101#define MVNETA_TXQ_CMD_1                         0x24e4
102#define MVNETA_TXQ_CMD                           0x2448
103#define      MVNETA_TXQ_DISABLE_SHIFT            8
104#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
105#define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
106#define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
107#define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
108#define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
109#define MVNETA_ACC_MODE                          0x2500
110#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
111#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
112#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
113#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
114
115/* Exception Interrupt Port/Queue Cause register */
116
117#define MVNETA_INTR_NEW_CAUSE                    0x25a0
118#define MVNETA_INTR_NEW_MASK                     0x25a4
119
120/* bits  0..7  = TXQ SENT, one bit per queue.
121 * bits  8..15 = RXQ OCCUP, one bit per queue.
122 * bits 16..23 = RXQ FREE, one bit per queue.
123 * bit  29 = OLD_REG_SUM, see old reg ?
124 * bit  30 = TX_ERR_SUM, one bit for 4 ports
125 * bit  31 = MISC_SUM,   one bit for 4 ports
126 */
127#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
128#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
129#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
130#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
131#define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
132
133#define MVNETA_INTR_OLD_CAUSE                    0x25a8
134#define MVNETA_INTR_OLD_MASK                     0x25ac
135
136/* Data Path Port/Queue Cause Register */
137#define MVNETA_INTR_MISC_CAUSE                   0x25b0
138#define MVNETA_INTR_MISC_MASK                    0x25b4
139
140#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
141#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
142#define      MVNETA_CAUSE_PTP                    BIT(4)
143
144#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
145#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
146#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
147#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
148#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
149#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
150#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
151#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
152
153#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
154#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
155#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
156
157#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
158#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
159#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
160
161#define MVNETA_INTR_ENABLE                       0x25b8
162#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
163#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
164
165#define MVNETA_RXQ_CMD                           0x2680
166#define      MVNETA_RXQ_DISABLE_SHIFT            8
167#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
168#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
169#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
170#define MVNETA_GMAC_CTRL_0                       0x2c00
171#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
172#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
173#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
174#define MVNETA_GMAC_CTRL_2                       0x2c08
175#define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
176#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
177#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
178#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
179#define MVNETA_GMAC_STATUS                       0x2c10
180#define      MVNETA_GMAC_LINK_UP                 BIT(0)
181#define      MVNETA_GMAC_SPEED_1000              BIT(1)
182#define      MVNETA_GMAC_SPEED_100               BIT(2)
183#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
184#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
185#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
186#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
187#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
188#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
189#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
190#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
191#define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
192#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
193#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
194#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
195#define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
196#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
197#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
198#define MVNETA_MIB_COUNTERS_BASE                 0x3000
199#define      MVNETA_MIB_LATE_COLLISION           0x7c
200#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
201#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
202#define MVNETA_DA_FILT_UCAST_BASE                0x3600
203#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
204#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
205#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
206#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
207#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
208#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
209#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
210#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
211#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
212#define MVNETA_PORT_TX_RESET                     0x3cf0
213#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
214#define MVNETA_TX_MTU                            0x3e0c
215#define MVNETA_TX_TOKEN_SIZE                     0x3e14
216#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
217#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
218#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
219
220#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
221
222/* Descriptor ring Macros */
223#define MVNETA_QUEUE_NEXT_DESC(q, index)	\
224	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
225
226/* Various constants */
227
228/* Coalescing */
229#define MVNETA_TXDONE_COAL_PKTS		1
230#define MVNETA_RX_COAL_PKTS		32
231#define MVNETA_RX_COAL_USEC		100
232
233/* The two bytes Marvell header. Either contains a special value used
234 * by Marvell switches when a specific hardware mode is enabled (not
235 * supported by this driver) or is filled automatically by zeroes on
236 * the RX side. Those two bytes being at the front of the Ethernet
237 * header, they allow to have the IP header aligned on a 4 bytes
238 * boundary automatically: the hardware skips those two bytes on its
239 * own.
240 */
241#define MVNETA_MH_SIZE			2
242
243#define MVNETA_VLAN_TAG_LEN             4
244
245#define MVNETA_CPU_D_CACHE_LINE_SIZE    32
246#define MVNETA_TX_CSUM_DEF_SIZE		1600
247#define MVNETA_TX_CSUM_MAX_SIZE		9800
248#define MVNETA_ACC_MODE_EXT		1
249
250/* Timeout constants */
251#define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
252#define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
253#define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
254
255#define MVNETA_TX_MTU_MAX		0x3ffff
256
257/* TSO header size */
258#define TSO_HEADER_SIZE 128
259
260/* Max number of Rx descriptors */
261#define MVNETA_MAX_RXD 128
262
263/* Max number of Tx descriptors */
264#define MVNETA_MAX_TXD 532
265
266/* Max number of allowed TCP segments for software TSO */
267#define MVNETA_MAX_TSO_SEGS 100
268
269#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
270
271/* descriptor aligned size */
272#define MVNETA_DESC_ALIGNED_SIZE	32
273
274#define MVNETA_RX_PKT_SIZE(mtu) \
275	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
276	      ETH_HLEN + ETH_FCS_LEN,			     \
277	      MVNETA_CPU_D_CACHE_LINE_SIZE)
278
279#define IS_TSO_HEADER(txq, addr) \
280	((addr >= txq->tso_hdrs_phys) && \
281	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
282
283#define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
284
285struct mvneta_statistic {
286	unsigned short offset;
287	unsigned short type;
288	const char name[ETH_GSTRING_LEN];
289};
290
291#define T_REG_32	32
292#define T_REG_64	64
293
294static const struct mvneta_statistic mvneta_statistics[] = {
295	{ 0x3000, T_REG_64, "good_octets_received", },
296	{ 0x3010, T_REG_32, "good_frames_received", },
297	{ 0x3008, T_REG_32, "bad_octets_received", },
298	{ 0x3014, T_REG_32, "bad_frames_received", },
299	{ 0x3018, T_REG_32, "broadcast_frames_received", },
300	{ 0x301c, T_REG_32, "multicast_frames_received", },
301	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
302	{ 0x3058, T_REG_32, "good_fc_received", },
303	{ 0x305c, T_REG_32, "bad_fc_received", },
304	{ 0x3060, T_REG_32, "undersize_received", },
305	{ 0x3064, T_REG_32, "fragments_received", },
306	{ 0x3068, T_REG_32, "oversize_received", },
307	{ 0x306c, T_REG_32, "jabber_received", },
308	{ 0x3070, T_REG_32, "mac_receive_error", },
309	{ 0x3074, T_REG_32, "bad_crc_event", },
310	{ 0x3078, T_REG_32, "collision", },
311	{ 0x307c, T_REG_32, "late_collision", },
312	{ 0x2484, T_REG_32, "rx_discard", },
313	{ 0x2488, T_REG_32, "rx_overrun", },
314	{ 0x3020, T_REG_32, "frames_64_octets", },
315	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
316	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
317	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
318	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
319	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
320	{ 0x3038, T_REG_64, "good_octets_sent", },
321	{ 0x3040, T_REG_32, "good_frames_sent", },
322	{ 0x3044, T_REG_32, "excessive_collision", },
323	{ 0x3048, T_REG_32, "multicast_frames_sent", },
324	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
325	{ 0x3054, T_REG_32, "fc_sent", },
326	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
327};
328
329struct mvneta_pcpu_stats {
330	struct	u64_stats_sync syncp;
331	u64	rx_packets;
332	u64	rx_bytes;
333	u64	tx_packets;
334	u64	tx_bytes;
335};
336
337struct mvneta_pcpu_port {
338	/* Pointer to the shared port */
339	struct mvneta_port	*pp;
340
341	/* Pointer to the CPU-local NAPI struct */
342	struct napi_struct	napi;
343
344	/* Cause of the previous interrupt */
345	u32			cause_rx_tx;
346};
347
348struct mvneta_port {
349	struct mvneta_pcpu_port __percpu	*ports;
350	struct mvneta_pcpu_stats __percpu	*stats;
351
352	int pkt_size;
353	unsigned int frag_size;
354	void __iomem *base;
355	struct mvneta_rx_queue *rxqs;
356	struct mvneta_tx_queue *txqs;
357	struct net_device *dev;
358	struct notifier_block cpu_notifier;
359
360	/* Core clock */
361	struct clk *clk;
362	u8 mcast_count[256];
363	u16 tx_ring_size;
364	u16 rx_ring_size;
365
366	struct mii_bus *mii_bus;
367	struct phy_device *phy_dev;
368	phy_interface_t phy_interface;
369	struct device_node *phy_node;
370	unsigned int link;
371	unsigned int duplex;
372	unsigned int speed;
373	unsigned int tx_csum_limit;
374	int use_inband_status:1;
375
376	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
377};
378
379/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
380 * layout of the transmit and reception DMA descriptors, and their
381 * layout is therefore defined by the hardware design
382 */
383
384#define MVNETA_TX_L3_OFF_SHIFT	0
385#define MVNETA_TX_IP_HLEN_SHIFT	8
386#define MVNETA_TX_L4_UDP	BIT(16)
387#define MVNETA_TX_L3_IP6	BIT(17)
388#define MVNETA_TXD_IP_CSUM	BIT(18)
389#define MVNETA_TXD_Z_PAD	BIT(19)
390#define MVNETA_TXD_L_DESC	BIT(20)
391#define MVNETA_TXD_F_DESC	BIT(21)
392#define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
393				 MVNETA_TXD_L_DESC | \
394				 MVNETA_TXD_F_DESC)
395#define MVNETA_TX_L4_CSUM_FULL	BIT(30)
396#define MVNETA_TX_L4_CSUM_NOT	BIT(31)
397
398#define MVNETA_RXD_ERR_CRC		0x0
399#define MVNETA_RXD_ERR_SUMMARY		BIT(16)
400#define MVNETA_RXD_ERR_OVERRUN		BIT(17)
401#define MVNETA_RXD_ERR_LEN		BIT(18)
402#define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
403#define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
404#define MVNETA_RXD_L3_IP4		BIT(25)
405#define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
406#define MVNETA_RXD_L4_CSUM_OK		BIT(30)
407
408#if defined(__LITTLE_ENDIAN)
409struct mvneta_tx_desc {
410	u32  command;		/* Options used by HW for packet transmitting.*/
411	u16  reserverd1;	/* csum_l4 (for future use)		*/
412	u16  data_size;		/* Data size of transmitted packet in bytes */
413	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
414	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
415	u32  reserved3[4];	/* Reserved - (for future use)		*/
416};
417
418struct mvneta_rx_desc {
419	u32  status;		/* Info about received packet		*/
420	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
421	u16  data_size;		/* Size of received packet in bytes	*/
422
423	u32  buf_phys_addr;	/* Physical address of the buffer	*/
424	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
425
426	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
427	u16  reserved3;		/* prefetch_cmd, for future use		*/
428	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
429
430	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
431	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
432};
433#else
434struct mvneta_tx_desc {
435	u16  data_size;		/* Data size of transmitted packet in bytes */
436	u16  reserverd1;	/* csum_l4 (for future use)		*/
437	u32  command;		/* Options used by HW for packet transmitting.*/
438	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
439	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
440	u32  reserved3[4];	/* Reserved - (for future use)		*/
441};
442
443struct mvneta_rx_desc {
444	u16  data_size;		/* Size of received packet in bytes	*/
445	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
446	u32  status;		/* Info about received packet		*/
447
448	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
449	u32  buf_phys_addr;	/* Physical address of the buffer	*/
450
451	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
452	u16  reserved3;		/* prefetch_cmd, for future use		*/
453	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
454
455	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
456	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
457};
458#endif
459
460struct mvneta_tx_queue {
461	/* Number of this TX queue, in the range 0-7 */
462	u8 id;
463
464	/* Number of TX DMA descriptors in the descriptor ring */
465	int size;
466
467	/* Number of currently used TX DMA descriptor in the
468	 * descriptor ring
469	 */
470	int count;
471	int tx_stop_threshold;
472	int tx_wake_threshold;
473
474	/* Array of transmitted skb */
475	struct sk_buff **tx_skb;
476
477	/* Index of last TX DMA descriptor that was inserted */
478	int txq_put_index;
479
480	/* Index of the TX DMA descriptor to be cleaned up */
481	int txq_get_index;
482
483	u32 done_pkts_coal;
484
485	/* Virtual address of the TX DMA descriptors array */
486	struct mvneta_tx_desc *descs;
487
488	/* DMA address of the TX DMA descriptors array */
489	dma_addr_t descs_phys;
490
491	/* Index of the last TX DMA descriptor */
492	int last_desc;
493
494	/* Index of the next TX DMA descriptor to process */
495	int next_desc_to_proc;
496
497	/* DMA buffers for TSO headers */
498	char *tso_hdrs;
499
500	/* DMA address of TSO headers */
501	dma_addr_t tso_hdrs_phys;
502};
503
504struct mvneta_rx_queue {
505	/* rx queue number, in the range 0-7 */
506	u8 id;
507
508	/* num of rx descriptors in the rx descriptor ring */
509	int size;
510
511	/* counter of times when mvneta_refill() failed */
512	int missed;
513
514	u32 pkts_coal;
515	u32 time_coal;
516
517	/* Virtual address of the RX DMA descriptors array */
518	struct mvneta_rx_desc *descs;
519
520	/* DMA address of the RX DMA descriptors array */
521	dma_addr_t descs_phys;
522
523	/* Index of the last RX DMA descriptor */
524	int last_desc;
525
526	/* Index of the next RX DMA descriptor to process */
527	int next_desc_to_proc;
528};
529
530/* The hardware supports eight (8) rx queues, but we are only allowing
531 * the first one to be used. Therefore, let's just allocate one queue.
532 */
533static int rxq_number = 8;
534static int txq_number = 8;
535
536static int rxq_def;
537
538static int rx_copybreak __read_mostly = 256;
539
540#define MVNETA_DRIVER_NAME "mvneta"
541#define MVNETA_DRIVER_VERSION "1.0"
542
543/* Utility/helper methods */
544
545/* Write helper method */
546static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
547{
548	writel(data, pp->base + offset);
549}
550
551/* Read helper method */
552static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
553{
554	return readl(pp->base + offset);
555}
556
557/* Increment txq get counter */
558static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
559{
560	txq->txq_get_index++;
561	if (txq->txq_get_index == txq->size)
562		txq->txq_get_index = 0;
563}
564
565/* Increment txq put counter */
566static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
567{
568	txq->txq_put_index++;
569	if (txq->txq_put_index == txq->size)
570		txq->txq_put_index = 0;
571}
572
573
574/* Clear all MIB counters */
575static void mvneta_mib_counters_clear(struct mvneta_port *pp)
576{
577	int i;
578	u32 dummy;
579
580	/* Perform dummy reads from MIB counters */
581	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
582		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
583	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
584	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
585}
586
587/* Get System Network Statistics */
588struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
589					     struct rtnl_link_stats64 *stats)
590{
591	struct mvneta_port *pp = netdev_priv(dev);
592	unsigned int start;
593	int cpu;
594
595	for_each_possible_cpu(cpu) {
596		struct mvneta_pcpu_stats *cpu_stats;
597		u64 rx_packets;
598		u64 rx_bytes;
599		u64 tx_packets;
600		u64 tx_bytes;
601
602		cpu_stats = per_cpu_ptr(pp->stats, cpu);
603		do {
604			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
605			rx_packets = cpu_stats->rx_packets;
606			rx_bytes   = cpu_stats->rx_bytes;
607			tx_packets = cpu_stats->tx_packets;
608			tx_bytes   = cpu_stats->tx_bytes;
609		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
610
611		stats->rx_packets += rx_packets;
612		stats->rx_bytes   += rx_bytes;
613		stats->tx_packets += tx_packets;
614		stats->tx_bytes   += tx_bytes;
615	}
616
617	stats->rx_errors	= dev->stats.rx_errors;
618	stats->rx_dropped	= dev->stats.rx_dropped;
619
620	stats->tx_dropped	= dev->stats.tx_dropped;
621
622	return stats;
623}
624
625/* Rx descriptors helper methods */
626
627/* Checks whether the RX descriptor having this status is both the first
628 * and the last descriptor for the RX packet. Each RX packet is currently
629 * received through a single RX descriptor, so not having each RX
630 * descriptor with its first and last bits set is an error
631 */
632static int mvneta_rxq_desc_is_first_last(u32 status)
633{
634	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
635		MVNETA_RXD_FIRST_LAST_DESC;
636}
637
638/* Add number of descriptors ready to receive new packets */
639static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
640					  struct mvneta_rx_queue *rxq,
641					  int ndescs)
642{
643	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
644	 * be added at once
645	 */
646	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
647		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
648			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
649			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
650		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
651	}
652
653	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
654		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
655}
656
657/* Get number of RX descriptors occupied by received packets */
658static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
659					struct mvneta_rx_queue *rxq)
660{
661	u32 val;
662
663	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
664	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
665}
666
667/* Update num of rx desc called upon return from rx path or
668 * from mvneta_rxq_drop_pkts().
669 */
670static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
671				       struct mvneta_rx_queue *rxq,
672				       int rx_done, int rx_filled)
673{
674	u32 val;
675
676	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
677		val = rx_done |
678		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
679		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
680		return;
681	}
682
683	/* Only 255 descriptors can be added at once */
684	while ((rx_done > 0) || (rx_filled > 0)) {
685		if (rx_done <= 0xff) {
686			val = rx_done;
687			rx_done = 0;
688		} else {
689			val = 0xff;
690			rx_done -= 0xff;
691		}
692		if (rx_filled <= 0xff) {
693			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
694			rx_filled = 0;
695		} else {
696			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
697			rx_filled -= 0xff;
698		}
699		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
700	}
701}
702
703/* Get pointer to next RX descriptor to be processed by SW */
704static struct mvneta_rx_desc *
705mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
706{
707	int rx_desc = rxq->next_desc_to_proc;
708
709	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
710	prefetch(rxq->descs + rxq->next_desc_to_proc);
711	return rxq->descs + rx_desc;
712}
713
714/* Change maximum receive size of the port. */
715static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
716{
717	u32 val;
718
719	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
720	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
721	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
722		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
723	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
724}
725
726
727/* Set rx queue offset */
728static void mvneta_rxq_offset_set(struct mvneta_port *pp,
729				  struct mvneta_rx_queue *rxq,
730				  int offset)
731{
732	u32 val;
733
734	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
735	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
736
737	/* Offset is in */
738	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
739	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
740}
741
742
743/* Tx descriptors helper methods */
744
745/* Update HW with number of TX descriptors to be sent */
746static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
747				     struct mvneta_tx_queue *txq,
748				     int pend_desc)
749{
750	u32 val;
751
752	/* Only 255 descriptors can be added at once ; Assume caller
753	 * process TX desriptors in quanta less than 256
754	 */
755	val = pend_desc;
756	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
757}
758
759/* Get pointer to next TX descriptor to be processed (send) by HW */
760static struct mvneta_tx_desc *
761mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
762{
763	int tx_desc = txq->next_desc_to_proc;
764
765	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
766	return txq->descs + tx_desc;
767}
768
769/* Release the last allocated TX descriptor. Useful to handle DMA
770 * mapping failures in the TX path.
771 */
772static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
773{
774	if (txq->next_desc_to_proc == 0)
775		txq->next_desc_to_proc = txq->last_desc - 1;
776	else
777		txq->next_desc_to_proc--;
778}
779
780/* Set rxq buf size */
781static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
782				    struct mvneta_rx_queue *rxq,
783				    int buf_size)
784{
785	u32 val;
786
787	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
788
789	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
790	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
791
792	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
793}
794
795/* Disable buffer management (BM) */
796static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
797				  struct mvneta_rx_queue *rxq)
798{
799	u32 val;
800
801	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
802	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
803	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
804}
805
806/* Start the Ethernet port RX and TX activity */
807static void mvneta_port_up(struct mvneta_port *pp)
808{
809	int queue;
810	u32 q_map;
811
812	/* Enable all initialized TXs. */
813	q_map = 0;
814	for (queue = 0; queue < txq_number; queue++) {
815		struct mvneta_tx_queue *txq = &pp->txqs[queue];
816		if (txq->descs != NULL)
817			q_map |= (1 << queue);
818	}
819	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
820
821	/* Enable all initialized RXQs. */
822	mvreg_write(pp, MVNETA_RXQ_CMD, BIT(rxq_def));
823}
824
825/* Stop the Ethernet port activity */
826static void mvneta_port_down(struct mvneta_port *pp)
827{
828	u32 val;
829	int count;
830
831	/* Stop Rx port activity. Check port Rx activity. */
832	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
833
834	/* Issue stop command for active channels only */
835	if (val != 0)
836		mvreg_write(pp, MVNETA_RXQ_CMD,
837			    val << MVNETA_RXQ_DISABLE_SHIFT);
838
839	/* Wait for all Rx activity to terminate. */
840	count = 0;
841	do {
842		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
843			netdev_warn(pp->dev,
844				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
845				    val);
846			break;
847		}
848		mdelay(1);
849
850		val = mvreg_read(pp, MVNETA_RXQ_CMD);
851	} while (val & 0xff);
852
853	/* Stop Tx port activity. Check port Tx activity. Issue stop
854	 * command for active channels only
855	 */
856	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
857
858	if (val != 0)
859		mvreg_write(pp, MVNETA_TXQ_CMD,
860			    (val << MVNETA_TXQ_DISABLE_SHIFT));
861
862	/* Wait for all Tx activity to terminate. */
863	count = 0;
864	do {
865		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
866			netdev_warn(pp->dev,
867				    "TIMEOUT for TX stopped status=0x%08x\n",
868				    val);
869			break;
870		}
871		mdelay(1);
872
873		/* Check TX Command reg that all Txqs are stopped */
874		val = mvreg_read(pp, MVNETA_TXQ_CMD);
875
876	} while (val & 0xff);
877
878	/* Double check to verify that TX FIFO is empty */
879	count = 0;
880	do {
881		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
882			netdev_warn(pp->dev,
883				    "TX FIFO empty timeout status=0x08%x\n",
884				    val);
885			break;
886		}
887		mdelay(1);
888
889		val = mvreg_read(pp, MVNETA_PORT_STATUS);
890	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
891		 (val & MVNETA_TX_IN_PRGRS));
892
893	udelay(200);
894}
895
896/* Enable the port by setting the port enable bit of the MAC control register */
897static void mvneta_port_enable(struct mvneta_port *pp)
898{
899	u32 val;
900
901	/* Enable port */
902	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
903	val |= MVNETA_GMAC0_PORT_ENABLE;
904	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
905}
906
907/* Disable the port and wait for about 200 usec before retuning */
908static void mvneta_port_disable(struct mvneta_port *pp)
909{
910	u32 val;
911
912	/* Reset the Enable bit in the Serial Control Register */
913	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
914	val &= ~MVNETA_GMAC0_PORT_ENABLE;
915	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
916
917	udelay(200);
918}
919
920/* Multicast tables methods */
921
922/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
923static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
924{
925	int offset;
926	u32 val;
927
928	if (queue == -1) {
929		val = 0;
930	} else {
931		val = 0x1 | (queue << 1);
932		val |= (val << 24) | (val << 16) | (val << 8);
933	}
934
935	for (offset = 0; offset <= 0xc; offset += 4)
936		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
937}
938
939/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
940static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
941{
942	int offset;
943	u32 val;
944
945	if (queue == -1) {
946		val = 0;
947	} else {
948		val = 0x1 | (queue << 1);
949		val |= (val << 24) | (val << 16) | (val << 8);
950	}
951
952	for (offset = 0; offset <= 0xfc; offset += 4)
953		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
954
955}
956
957/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
958static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
959{
960	int offset;
961	u32 val;
962
963	if (queue == -1) {
964		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
965		val = 0;
966	} else {
967		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
968		val = 0x1 | (queue << 1);
969		val |= (val << 24) | (val << 16) | (val << 8);
970	}
971
972	for (offset = 0; offset <= 0xfc; offset += 4)
973		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
974}
975
976/* This method sets defaults to the NETA port:
977 *	Clears interrupt Cause and Mask registers.
978 *	Clears all MAC tables.
979 *	Sets defaults to all registers.
980 *	Resets RX and TX descriptor rings.
981 *	Resets PHY.
982 * This method can be called after mvneta_port_down() to return the port
983 *	settings to defaults.
984 */
985static void mvneta_defaults_set(struct mvneta_port *pp)
986{
987	int cpu;
988	int queue;
989	u32 val;
990
991	/* Clear all Cause registers */
992	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
993	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
994	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
995
996	/* Mask all interrupts */
997	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
998	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
999	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1000	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1001
1002	/* Enable MBUS Retry bit16 */
1003	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1004
1005	/* Set CPU queue access map - all CPUs have access to all RX
1006	 * queues and to all TX queues
1007	 */
1008	for_each_present_cpu(cpu)
1009		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
1010			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
1011			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
1012
1013	/* Reset RX and TX DMAs */
1014	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1015	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1016
1017	/* Disable Legacy WRR, Disable EJP, Release from reset */
1018	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1019	for (queue = 0; queue < txq_number; queue++) {
1020		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1021		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1022	}
1023
1024	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1025	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1026
1027	/* Set Port Acceleration Mode */
1028	val = MVNETA_ACC_MODE_EXT;
1029	mvreg_write(pp, MVNETA_ACC_MODE, val);
1030
1031	/* Update val of portCfg register accordingly with all RxQueue types */
1032	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
1033	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1034
1035	val = 0;
1036	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1037	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1038
1039	/* Build PORT_SDMA_CONFIG_REG */
1040	val = 0;
1041
1042	/* Default burst size */
1043	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1044	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1045	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1046
1047#if defined(__BIG_ENDIAN)
1048	val |= MVNETA_DESC_SWAP;
1049#endif
1050
1051	/* Assign port SDMA configuration */
1052	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1053
1054	/* Disable PHY polling in hardware, since we're using the
1055	 * kernel phylib to do this.
1056	 */
1057	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1058	val &= ~MVNETA_PHY_POLLING_ENABLE;
1059	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1060
1061	if (pp->use_inband_status) {
1062		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1063		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1064			 MVNETA_GMAC_FORCE_LINK_DOWN |
1065			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1066		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1067		       MVNETA_GMAC_AN_SPEED_EN |
1068		       MVNETA_GMAC_AN_DUPLEX_EN;
1069		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1070		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1071		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1072		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1073	} else {
1074		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1075		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1076		       MVNETA_GMAC_AN_SPEED_EN |
1077		       MVNETA_GMAC_AN_DUPLEX_EN);
1078		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1079	}
1080
1081	mvneta_set_ucast_table(pp, -1);
1082	mvneta_set_special_mcast_table(pp, -1);
1083	mvneta_set_other_mcast_table(pp, -1);
1084
1085	/* Set port interrupt enable register - default enable all */
1086	mvreg_write(pp, MVNETA_INTR_ENABLE,
1087		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1088		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1089
1090	mvneta_mib_counters_clear(pp);
1091}
1092
1093/* Set max sizes for tx queues */
1094static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1095
1096{
1097	u32 val, size, mtu;
1098	int queue;
1099
1100	mtu = max_tx_size * 8;
1101	if (mtu > MVNETA_TX_MTU_MAX)
1102		mtu = MVNETA_TX_MTU_MAX;
1103
1104	/* Set MTU */
1105	val = mvreg_read(pp, MVNETA_TX_MTU);
1106	val &= ~MVNETA_TX_MTU_MAX;
1107	val |= mtu;
1108	mvreg_write(pp, MVNETA_TX_MTU, val);
1109
1110	/* TX token size and all TXQs token size must be larger that MTU */
1111	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1112
1113	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1114	if (size < mtu) {
1115		size = mtu;
1116		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1117		val |= size;
1118		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1119	}
1120	for (queue = 0; queue < txq_number; queue++) {
1121		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1122
1123		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1124		if (size < mtu) {
1125			size = mtu;
1126			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1127			val |= size;
1128			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1129		}
1130	}
1131}
1132
1133/* Set unicast address */
1134static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1135				  int queue)
1136{
1137	unsigned int unicast_reg;
1138	unsigned int tbl_offset;
1139	unsigned int reg_offset;
1140
1141	/* Locate the Unicast table entry */
1142	last_nibble = (0xf & last_nibble);
1143
1144	/* offset from unicast tbl base */
1145	tbl_offset = (last_nibble / 4) * 4;
1146
1147	/* offset within the above reg  */
1148	reg_offset = last_nibble % 4;
1149
1150	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1151
1152	if (queue == -1) {
1153		/* Clear accepts frame bit at specified unicast DA tbl entry */
1154		unicast_reg &= ~(0xff << (8 * reg_offset));
1155	} else {
1156		unicast_reg &= ~(0xff << (8 * reg_offset));
1157		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1158	}
1159
1160	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1161}
1162
1163/* Set mac address */
1164static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1165				int queue)
1166{
1167	unsigned int mac_h;
1168	unsigned int mac_l;
1169
1170	if (queue != -1) {
1171		mac_l = (addr[4] << 8) | (addr[5]);
1172		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1173			(addr[2] << 8) | (addr[3] << 0);
1174
1175		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1176		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1177	}
1178
1179	/* Accept frames of this address */
1180	mvneta_set_ucast_addr(pp, addr[5], queue);
1181}
1182
1183/* Set the number of packets that will be received before RX interrupt
1184 * will be generated by HW.
1185 */
1186static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1187				    struct mvneta_rx_queue *rxq, u32 value)
1188{
1189	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1190		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1191	rxq->pkts_coal = value;
1192}
1193
1194/* Set the time delay in usec before RX interrupt will be generated by
1195 * HW.
1196 */
1197static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1198				    struct mvneta_rx_queue *rxq, u32 value)
1199{
1200	u32 val;
1201	unsigned long clk_rate;
1202
1203	clk_rate = clk_get_rate(pp->clk);
1204	val = (clk_rate / 1000000) * value;
1205
1206	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1207	rxq->time_coal = value;
1208}
1209
1210/* Set threshold for TX_DONE pkts coalescing */
1211static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1212					 struct mvneta_tx_queue *txq, u32 value)
1213{
1214	u32 val;
1215
1216	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1217
1218	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1219	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1220
1221	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1222
1223	txq->done_pkts_coal = value;
1224}
1225
1226/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1227static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1228				u32 phys_addr, u32 cookie)
1229{
1230	rx_desc->buf_cookie = cookie;
1231	rx_desc->buf_phys_addr = phys_addr;
1232}
1233
1234/* Decrement sent descriptors counter */
1235static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1236				     struct mvneta_tx_queue *txq,
1237				     int sent_desc)
1238{
1239	u32 val;
1240
1241	/* Only 255 TX descriptors can be updated at once */
1242	while (sent_desc > 0xff) {
1243		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1244		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1245		sent_desc = sent_desc - 0xff;
1246	}
1247
1248	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1249	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1250}
1251
1252/* Get number of TX descriptors already sent by HW */
1253static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1254					struct mvneta_tx_queue *txq)
1255{
1256	u32 val;
1257	int sent_desc;
1258
1259	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1260	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1261		MVNETA_TXQ_SENT_DESC_SHIFT;
1262
1263	return sent_desc;
1264}
1265
1266/* Get number of sent descriptors and decrement counter.
1267 *  The number of sent descriptors is returned.
1268 */
1269static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1270				     struct mvneta_tx_queue *txq)
1271{
1272	int sent_desc;
1273
1274	/* Get number of sent descriptors */
1275	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1276
1277	/* Decrement sent descriptors counter */
1278	if (sent_desc)
1279		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1280
1281	return sent_desc;
1282}
1283
1284/* Set TXQ descriptors fields relevant for CSUM calculation */
1285static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1286				int ip_hdr_len, int l4_proto)
1287{
1288	u32 command;
1289
1290	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1291	 * G_L4_chk, L4_type; required only for checksum
1292	 * calculation
1293	 */
1294	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1295	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1296
1297	if (l3_proto == htons(ETH_P_IP))
1298		command |= MVNETA_TXD_IP_CSUM;
1299	else
1300		command |= MVNETA_TX_L3_IP6;
1301
1302	if (l4_proto == IPPROTO_TCP)
1303		command |=  MVNETA_TX_L4_CSUM_FULL;
1304	else if (l4_proto == IPPROTO_UDP)
1305		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1306	else
1307		command |= MVNETA_TX_L4_CSUM_NOT;
1308
1309	return command;
1310}
1311
1312
1313/* Display more error info */
1314static void mvneta_rx_error(struct mvneta_port *pp,
1315			    struct mvneta_rx_desc *rx_desc)
1316{
1317	u32 status = rx_desc->status;
1318
1319	if (!mvneta_rxq_desc_is_first_last(status)) {
1320		netdev_err(pp->dev,
1321			   "bad rx status %08x (buffer oversize), size=%d\n",
1322			   status, rx_desc->data_size);
1323		return;
1324	}
1325
1326	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1327	case MVNETA_RXD_ERR_CRC:
1328		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1329			   status, rx_desc->data_size);
1330		break;
1331	case MVNETA_RXD_ERR_OVERRUN:
1332		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1333			   status, rx_desc->data_size);
1334		break;
1335	case MVNETA_RXD_ERR_LEN:
1336		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1337			   status, rx_desc->data_size);
1338		break;
1339	case MVNETA_RXD_ERR_RESOURCE:
1340		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1341			   status, rx_desc->data_size);
1342		break;
1343	}
1344}
1345
1346/* Handle RX checksum offload based on the descriptor's status */
1347static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1348			   struct sk_buff *skb)
1349{
1350	if ((status & MVNETA_RXD_L3_IP4) &&
1351	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1352		skb->csum = 0;
1353		skb->ip_summed = CHECKSUM_UNNECESSARY;
1354		return;
1355	}
1356
1357	skb->ip_summed = CHECKSUM_NONE;
1358}
1359
1360/* Return tx queue pointer (find last set bit) according to <cause> returned
1361 * form tx_done reg. <cause> must not be null. The return value is always a
1362 * valid queue for matching the first one found in <cause>.
1363 */
1364static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1365						     u32 cause)
1366{
1367	int queue = fls(cause) - 1;
1368
1369	return &pp->txqs[queue];
1370}
1371
1372/* Free tx queue skbuffs */
1373static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1374				 struct mvneta_tx_queue *txq, int num)
1375{
1376	int i;
1377
1378	for (i = 0; i < num; i++) {
1379		struct mvneta_tx_desc *tx_desc = txq->descs +
1380			txq->txq_get_index;
1381		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1382
1383		mvneta_txq_inc_get(txq);
1384
1385		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1386			dma_unmap_single(pp->dev->dev.parent,
1387					 tx_desc->buf_phys_addr,
1388					 tx_desc->data_size, DMA_TO_DEVICE);
1389		if (!skb)
1390			continue;
1391		dev_kfree_skb_any(skb);
1392	}
1393}
1394
1395/* Handle end of transmission */
1396static void mvneta_txq_done(struct mvneta_port *pp,
1397			   struct mvneta_tx_queue *txq)
1398{
1399	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1400	int tx_done;
1401
1402	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1403	if (!tx_done)
1404		return;
1405
1406	mvneta_txq_bufs_free(pp, txq, tx_done);
1407
1408	txq->count -= tx_done;
1409
1410	if (netif_tx_queue_stopped(nq)) {
1411		if (txq->count <= txq->tx_wake_threshold)
1412			netif_tx_wake_queue(nq);
1413	}
1414}
1415
1416static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1417{
1418	if (likely(pp->frag_size <= PAGE_SIZE))
1419		return netdev_alloc_frag(pp->frag_size);
1420	else
1421		return kmalloc(pp->frag_size, GFP_ATOMIC);
1422}
1423
1424static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1425{
1426	if (likely(pp->frag_size <= PAGE_SIZE))
1427		skb_free_frag(data);
1428	else
1429		kfree(data);
1430}
1431
1432/* Refill processing */
1433static int mvneta_rx_refill(struct mvneta_port *pp,
1434			    struct mvneta_rx_desc *rx_desc)
1435
1436{
1437	dma_addr_t phys_addr;
1438	void *data;
1439
1440	data = mvneta_frag_alloc(pp);
1441	if (!data)
1442		return -ENOMEM;
1443
1444	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1445				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1446				   DMA_FROM_DEVICE);
1447	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1448		mvneta_frag_free(pp, data);
1449		return -ENOMEM;
1450	}
1451
1452	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1453	return 0;
1454}
1455
1456/* Handle tx checksum */
1457static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1458{
1459	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1460		int ip_hdr_len = 0;
1461		__be16 l3_proto = vlan_get_protocol(skb);
1462		u8 l4_proto;
1463
1464		if (l3_proto == htons(ETH_P_IP)) {
1465			struct iphdr *ip4h = ip_hdr(skb);
1466
1467			/* Calculate IPv4 checksum and L4 checksum */
1468			ip_hdr_len = ip4h->ihl;
1469			l4_proto = ip4h->protocol;
1470		} else if (l3_proto == htons(ETH_P_IPV6)) {
1471			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1472
1473			/* Read l4_protocol from one of IPv6 extra headers */
1474			if (skb_network_header_len(skb) > 0)
1475				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1476			l4_proto = ip6h->nexthdr;
1477		} else
1478			return MVNETA_TX_L4_CSUM_NOT;
1479
1480		return mvneta_txq_desc_csum(skb_network_offset(skb),
1481					    l3_proto, ip_hdr_len, l4_proto);
1482	}
1483
1484	return MVNETA_TX_L4_CSUM_NOT;
1485}
1486
1487/* Drop packets received by the RXQ and free buffers */
1488static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1489				 struct mvneta_rx_queue *rxq)
1490{
1491	int rx_done, i;
1492
1493	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1494	for (i = 0; i < rxq->size; i++) {
1495		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1496		void *data = (void *)rx_desc->buf_cookie;
1497
1498		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1499				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1500		mvneta_frag_free(pp, data);
1501	}
1502
1503	if (rx_done)
1504		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1505}
1506
1507/* Main rx processing */
1508static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1509		     struct mvneta_rx_queue *rxq)
1510{
1511	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1512	struct net_device *dev = pp->dev;
1513	int rx_done;
1514	u32 rcvd_pkts = 0;
1515	u32 rcvd_bytes = 0;
1516
1517	/* Get number of received packets */
1518	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1519
1520	if (rx_todo > rx_done)
1521		rx_todo = rx_done;
1522
1523	rx_done = 0;
1524
1525	/* Fairness NAPI loop */
1526	while (rx_done < rx_todo) {
1527		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1528		struct sk_buff *skb;
1529		unsigned char *data;
1530		dma_addr_t phys_addr;
1531		u32 rx_status;
1532		int rx_bytes, err;
1533
1534		rx_done++;
1535		rx_status = rx_desc->status;
1536		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1537		data = (unsigned char *)rx_desc->buf_cookie;
1538		phys_addr = rx_desc->buf_phys_addr;
1539
1540		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1541		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1542		err_drop_frame:
1543			dev->stats.rx_errors++;
1544			mvneta_rx_error(pp, rx_desc);
1545			/* leave the descriptor untouched */
1546			continue;
1547		}
1548
1549		if (rx_bytes <= rx_copybreak) {
1550			/* better copy a small frame and not unmap the DMA region */
1551			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1552			if (unlikely(!skb))
1553				goto err_drop_frame;
1554
1555			dma_sync_single_range_for_cpu(dev->dev.parent,
1556			                              rx_desc->buf_phys_addr,
1557			                              MVNETA_MH_SIZE + NET_SKB_PAD,
1558			                              rx_bytes,
1559			                              DMA_FROM_DEVICE);
1560			memcpy(skb_put(skb, rx_bytes),
1561			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
1562			       rx_bytes);
1563
1564			skb->protocol = eth_type_trans(skb, dev);
1565			mvneta_rx_csum(pp, rx_status, skb);
1566			napi_gro_receive(&port->napi, skb);
1567
1568			rcvd_pkts++;
1569			rcvd_bytes += rx_bytes;
1570
1571			/* leave the descriptor and buffer untouched */
1572			continue;
1573		}
1574
1575		/* Refill processing */
1576		err = mvneta_rx_refill(pp, rx_desc);
1577		if (err) {
1578			netdev_err(dev, "Linux processing - Can't refill\n");
1579			rxq->missed++;
1580			goto err_drop_frame;
1581		}
1582
1583		skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1584
1585		/* After refill old buffer has to be unmapped regardless
1586		 * the skb is successfully built or not.
1587		 */
1588		dma_unmap_single(dev->dev.parent, phys_addr,
1589				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1590
1591		if (!skb)
1592			goto err_drop_frame;
1593
1594		rcvd_pkts++;
1595		rcvd_bytes += rx_bytes;
1596
1597		/* Linux processing */
1598		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1599		skb_put(skb, rx_bytes);
1600
1601		skb->protocol = eth_type_trans(skb, dev);
1602
1603		mvneta_rx_csum(pp, rx_status, skb);
1604
1605		napi_gro_receive(&port->napi, skb);
1606	}
1607
1608	if (rcvd_pkts) {
1609		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1610
1611		u64_stats_update_begin(&stats->syncp);
1612		stats->rx_packets += rcvd_pkts;
1613		stats->rx_bytes   += rcvd_bytes;
1614		u64_stats_update_end(&stats->syncp);
1615	}
1616
1617	/* Update rxq management counters */
1618	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1619
1620	return rx_done;
1621}
1622
1623static inline void
1624mvneta_tso_put_hdr(struct sk_buff *skb,
1625		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
1626{
1627	struct mvneta_tx_desc *tx_desc;
1628	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1629
1630	txq->tx_skb[txq->txq_put_index] = NULL;
1631	tx_desc = mvneta_txq_next_desc_get(txq);
1632	tx_desc->data_size = hdr_len;
1633	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
1634	tx_desc->command |= MVNETA_TXD_F_DESC;
1635	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
1636				 txq->txq_put_index * TSO_HEADER_SIZE;
1637	mvneta_txq_inc_put(txq);
1638}
1639
1640static inline int
1641mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
1642		    struct sk_buff *skb, char *data, int size,
1643		    bool last_tcp, bool is_last)
1644{
1645	struct mvneta_tx_desc *tx_desc;
1646
1647	tx_desc = mvneta_txq_next_desc_get(txq);
1648	tx_desc->data_size = size;
1649	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
1650						size, DMA_TO_DEVICE);
1651	if (unlikely(dma_mapping_error(dev->dev.parent,
1652		     tx_desc->buf_phys_addr))) {
1653		mvneta_txq_desc_put(txq);
1654		return -ENOMEM;
1655	}
1656
1657	tx_desc->command = 0;
1658	txq->tx_skb[txq->txq_put_index] = NULL;
1659
1660	if (last_tcp) {
1661		/* last descriptor in the TCP packet */
1662		tx_desc->command = MVNETA_TXD_L_DESC;
1663
1664		/* last descriptor in SKB */
1665		if (is_last)
1666			txq->tx_skb[txq->txq_put_index] = skb;
1667	}
1668	mvneta_txq_inc_put(txq);
1669	return 0;
1670}
1671
1672static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
1673			 struct mvneta_tx_queue *txq)
1674{
1675	int total_len, data_left;
1676	int desc_count = 0;
1677	struct mvneta_port *pp = netdev_priv(dev);
1678	struct tso_t tso;
1679	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1680	int i;
1681
1682	/* Count needed descriptors */
1683	if ((txq->count + tso_count_descs(skb)) >= txq->size)
1684		return 0;
1685
1686	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
1687		pr_info("*** Is this even  possible???!?!?\n");
1688		return 0;
1689	}
1690
1691	/* Initialize the TSO handler, and prepare the first payload */
1692	tso_start(skb, &tso);
1693
1694	total_len = skb->len - hdr_len;
1695	while (total_len > 0) {
1696		char *hdr;
1697
1698		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1699		total_len -= data_left;
1700		desc_count++;
1701
1702		/* prepare packet headers: MAC + IP + TCP */
1703		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
1704		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1705
1706		mvneta_tso_put_hdr(skb, pp, txq);
1707
1708		while (data_left > 0) {
1709			int size;
1710			desc_count++;
1711
1712			size = min_t(int, tso.size, data_left);
1713
1714			if (mvneta_tso_put_data(dev, txq, skb,
1715						 tso.data, size,
1716						 size == data_left,
1717						 total_len == 0))
1718				goto err_release;
1719			data_left -= size;
1720
1721			tso_build_data(skb, &tso, size);
1722		}
1723	}
1724
1725	return desc_count;
1726
1727err_release:
1728	/* Release all used data descriptors; header descriptors must not
1729	 * be DMA-unmapped.
1730	 */
1731	for (i = desc_count - 1; i >= 0; i--) {
1732		struct mvneta_tx_desc *tx_desc = txq->descs + i;
1733		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1734			dma_unmap_single(pp->dev->dev.parent,
1735					 tx_desc->buf_phys_addr,
1736					 tx_desc->data_size,
1737					 DMA_TO_DEVICE);
1738		mvneta_txq_desc_put(txq);
1739	}
1740	return 0;
1741}
1742
1743/* Handle tx fragmentation processing */
1744static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1745				  struct mvneta_tx_queue *txq)
1746{
1747	struct mvneta_tx_desc *tx_desc;
1748	int i, nr_frags = skb_shinfo(skb)->nr_frags;
1749
1750	for (i = 0; i < nr_frags; i++) {
1751		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1752		void *addr = page_address(frag->page.p) + frag->page_offset;
1753
1754		tx_desc = mvneta_txq_next_desc_get(txq);
1755		tx_desc->data_size = frag->size;
1756
1757		tx_desc->buf_phys_addr =
1758			dma_map_single(pp->dev->dev.parent, addr,
1759				       tx_desc->data_size, DMA_TO_DEVICE);
1760
1761		if (dma_mapping_error(pp->dev->dev.parent,
1762				      tx_desc->buf_phys_addr)) {
1763			mvneta_txq_desc_put(txq);
1764			goto error;
1765		}
1766
1767		if (i == nr_frags - 1) {
1768			/* Last descriptor */
1769			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1770			txq->tx_skb[txq->txq_put_index] = skb;
1771		} else {
1772			/* Descriptor in the middle: Not First, Not Last */
1773			tx_desc->command = 0;
1774			txq->tx_skb[txq->txq_put_index] = NULL;
1775		}
1776		mvneta_txq_inc_put(txq);
1777	}
1778
1779	return 0;
1780
1781error:
1782	/* Release all descriptors that were used to map fragments of
1783	 * this packet, as well as the corresponding DMA mappings
1784	 */
1785	for (i = i - 1; i >= 0; i--) {
1786		tx_desc = txq->descs + i;
1787		dma_unmap_single(pp->dev->dev.parent,
1788				 tx_desc->buf_phys_addr,
1789				 tx_desc->data_size,
1790				 DMA_TO_DEVICE);
1791		mvneta_txq_desc_put(txq);
1792	}
1793
1794	return -ENOMEM;
1795}
1796
1797/* Main tx processing */
1798static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1799{
1800	struct mvneta_port *pp = netdev_priv(dev);
1801	u16 txq_id = skb_get_queue_mapping(skb);
1802	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1803	struct mvneta_tx_desc *tx_desc;
1804	int len = skb->len;
1805	int frags = 0;
1806	u32 tx_cmd;
1807
1808	if (!netif_running(dev))
1809		goto out;
1810
1811	if (skb_is_gso(skb)) {
1812		frags = mvneta_tx_tso(skb, dev, txq);
1813		goto out;
1814	}
1815
1816	frags = skb_shinfo(skb)->nr_frags + 1;
1817
1818	/* Get a descriptor for the first part of the packet */
1819	tx_desc = mvneta_txq_next_desc_get(txq);
1820
1821	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1822
1823	tx_desc->data_size = skb_headlen(skb);
1824
1825	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1826						tx_desc->data_size,
1827						DMA_TO_DEVICE);
1828	if (unlikely(dma_mapping_error(dev->dev.parent,
1829				       tx_desc->buf_phys_addr))) {
1830		mvneta_txq_desc_put(txq);
1831		frags = 0;
1832		goto out;
1833	}
1834
1835	if (frags == 1) {
1836		/* First and Last descriptor */
1837		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1838		tx_desc->command = tx_cmd;
1839		txq->tx_skb[txq->txq_put_index] = skb;
1840		mvneta_txq_inc_put(txq);
1841	} else {
1842		/* First but not Last */
1843		tx_cmd |= MVNETA_TXD_F_DESC;
1844		txq->tx_skb[txq->txq_put_index] = NULL;
1845		mvneta_txq_inc_put(txq);
1846		tx_desc->command = tx_cmd;
1847		/* Continue with other skb fragments */
1848		if (mvneta_tx_frag_process(pp, skb, txq)) {
1849			dma_unmap_single(dev->dev.parent,
1850					 tx_desc->buf_phys_addr,
1851					 tx_desc->data_size,
1852					 DMA_TO_DEVICE);
1853			mvneta_txq_desc_put(txq);
1854			frags = 0;
1855			goto out;
1856		}
1857	}
1858
1859out:
1860	if (frags > 0) {
1861		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1862		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
1863
1864		txq->count += frags;
1865		mvneta_txq_pend_desc_add(pp, txq, frags);
1866
1867		if (txq->count >= txq->tx_stop_threshold)
1868			netif_tx_stop_queue(nq);
1869
1870		u64_stats_update_begin(&stats->syncp);
1871		stats->tx_packets++;
1872		stats->tx_bytes  += len;
1873		u64_stats_update_end(&stats->syncp);
1874	} else {
1875		dev->stats.tx_dropped++;
1876		dev_kfree_skb_any(skb);
1877	}
1878
1879	return NETDEV_TX_OK;
1880}
1881
1882
1883/* Free tx resources, when resetting a port */
1884static void mvneta_txq_done_force(struct mvneta_port *pp,
1885				  struct mvneta_tx_queue *txq)
1886
1887{
1888	int tx_done = txq->count;
1889
1890	mvneta_txq_bufs_free(pp, txq, tx_done);
1891
1892	/* reset txq */
1893	txq->count = 0;
1894	txq->txq_put_index = 0;
1895	txq->txq_get_index = 0;
1896}
1897
1898/* Handle tx done - called in softirq context. The <cause_tx_done> argument
1899 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1900 */
1901static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1902{
1903	struct mvneta_tx_queue *txq;
1904	struct netdev_queue *nq;
1905
1906	while (cause_tx_done) {
1907		txq = mvneta_tx_done_policy(pp, cause_tx_done);
1908
1909		nq = netdev_get_tx_queue(pp->dev, txq->id);
1910		__netif_tx_lock(nq, smp_processor_id());
1911
1912		if (txq->count)
1913			mvneta_txq_done(pp, txq);
1914
1915		__netif_tx_unlock(nq);
1916		cause_tx_done &= ~((1 << txq->id));
1917	}
1918}
1919
1920/* Compute crc8 of the specified address, using a unique algorithm ,
1921 * according to hw spec, different than generic crc8 algorithm
1922 */
1923static int mvneta_addr_crc(unsigned char *addr)
1924{
1925	int crc = 0;
1926	int i;
1927
1928	for (i = 0; i < ETH_ALEN; i++) {
1929		int j;
1930
1931		crc = (crc ^ addr[i]) << 8;
1932		for (j = 7; j >= 0; j--) {
1933			if (crc & (0x100 << j))
1934				crc ^= 0x107 << j;
1935		}
1936	}
1937
1938	return crc;
1939}
1940
1941/* This method controls the net device special MAC multicast support.
1942 * The Special Multicast Table for MAC addresses supports MAC of the form
1943 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1944 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1945 * Table entries in the DA-Filter table. This method set the Special
1946 * Multicast Table appropriate entry.
1947 */
1948static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1949					  unsigned char last_byte,
1950					  int queue)
1951{
1952	unsigned int smc_table_reg;
1953	unsigned int tbl_offset;
1954	unsigned int reg_offset;
1955
1956	/* Register offset from SMC table base    */
1957	tbl_offset = (last_byte / 4);
1958	/* Entry offset within the above reg */
1959	reg_offset = last_byte % 4;
1960
1961	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1962					+ tbl_offset * 4));
1963
1964	if (queue == -1)
1965		smc_table_reg &= ~(0xff << (8 * reg_offset));
1966	else {
1967		smc_table_reg &= ~(0xff << (8 * reg_offset));
1968		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1969	}
1970
1971	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1972		    smc_table_reg);
1973}
1974
1975/* This method controls the network device Other MAC multicast support.
1976 * The Other Multicast Table is used for multicast of another type.
1977 * A CRC-8 is used as an index to the Other Multicast Table entries
1978 * in the DA-Filter table.
1979 * The method gets the CRC-8 value from the calling routine and
1980 * sets the Other Multicast Table appropriate entry according to the
1981 * specified CRC-8 .
1982 */
1983static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1984					unsigned char crc8,
1985					int queue)
1986{
1987	unsigned int omc_table_reg;
1988	unsigned int tbl_offset;
1989	unsigned int reg_offset;
1990
1991	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1992	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
1993
1994	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1995
1996	if (queue == -1) {
1997		/* Clear accepts frame bit at specified Other DA table entry */
1998		omc_table_reg &= ~(0xff << (8 * reg_offset));
1999	} else {
2000		omc_table_reg &= ~(0xff << (8 * reg_offset));
2001		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2002	}
2003
2004	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2005}
2006
2007/* The network device supports multicast using two tables:
2008 *    1) Special Multicast Table for MAC addresses of the form
2009 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2010 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2011 *       Table entries in the DA-Filter table.
2012 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2013 *       is used as an index to the Other Multicast Table entries in the
2014 *       DA-Filter table.
2015 */
2016static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2017				 int queue)
2018{
2019	unsigned char crc_result = 0;
2020
2021	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2022		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2023		return 0;
2024	}
2025
2026	crc_result = mvneta_addr_crc(p_addr);
2027	if (queue == -1) {
2028		if (pp->mcast_count[crc_result] == 0) {
2029			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2030				    crc_result);
2031			return -EINVAL;
2032		}
2033
2034		pp->mcast_count[crc_result]--;
2035		if (pp->mcast_count[crc_result] != 0) {
2036			netdev_info(pp->dev,
2037				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2038				    pp->mcast_count[crc_result], crc_result);
2039			return -EINVAL;
2040		}
2041	} else
2042		pp->mcast_count[crc_result]++;
2043
2044	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2045
2046	return 0;
2047}
2048
2049/* Configure Fitering mode of Ethernet port */
2050static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2051					  int is_promisc)
2052{
2053	u32 port_cfg_reg, val;
2054
2055	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2056
2057	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2058
2059	/* Set / Clear UPM bit in port configuration register */
2060	if (is_promisc) {
2061		/* Accept all Unicast addresses */
2062		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2063		val |= MVNETA_FORCE_UNI;
2064		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2065		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2066	} else {
2067		/* Reject all Unicast addresses */
2068		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2069		val &= ~MVNETA_FORCE_UNI;
2070	}
2071
2072	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2073	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2074}
2075
2076/* register unicast and multicast addresses */
2077static void mvneta_set_rx_mode(struct net_device *dev)
2078{
2079	struct mvneta_port *pp = netdev_priv(dev);
2080	struct netdev_hw_addr *ha;
2081
2082	if (dev->flags & IFF_PROMISC) {
2083		/* Accept all: Multicast + Unicast */
2084		mvneta_rx_unicast_promisc_set(pp, 1);
2085		mvneta_set_ucast_table(pp, rxq_def);
2086		mvneta_set_special_mcast_table(pp, rxq_def);
2087		mvneta_set_other_mcast_table(pp, rxq_def);
2088	} else {
2089		/* Accept single Unicast */
2090		mvneta_rx_unicast_promisc_set(pp, 0);
2091		mvneta_set_ucast_table(pp, -1);
2092		mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2093
2094		if (dev->flags & IFF_ALLMULTI) {
2095			/* Accept all multicast */
2096			mvneta_set_special_mcast_table(pp, rxq_def);
2097			mvneta_set_other_mcast_table(pp, rxq_def);
2098		} else {
2099			/* Accept only initialized multicast */
2100			mvneta_set_special_mcast_table(pp, -1);
2101			mvneta_set_other_mcast_table(pp, -1);
2102
2103			if (!netdev_mc_empty(dev)) {
2104				netdev_for_each_mc_addr(ha, dev) {
2105					mvneta_mcast_addr_set(pp, ha->addr,
2106							      rxq_def);
2107				}
2108			}
2109		}
2110	}
2111}
2112
2113/* Interrupt handling - the callback for request_irq() */
2114static irqreturn_t mvneta_isr(int irq, void *dev_id)
2115{
2116	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2117
2118	disable_percpu_irq(port->pp->dev->irq);
2119	napi_schedule(&port->napi);
2120
2121	return IRQ_HANDLED;
2122}
2123
2124static int mvneta_fixed_link_update(struct mvneta_port *pp,
2125				    struct phy_device *phy)
2126{
2127	struct fixed_phy_status status;
2128	struct fixed_phy_status changed = {};
2129	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2130
2131	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2132	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2133		status.speed = SPEED_1000;
2134	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2135		status.speed = SPEED_100;
2136	else
2137		status.speed = SPEED_10;
2138	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2139	changed.link = 1;
2140	changed.speed = 1;
2141	changed.duplex = 1;
2142	fixed_phy_update_state(phy, &status, &changed);
2143	return 0;
2144}
2145
2146/* NAPI handler
2147 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2148 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2149 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2150 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2151 * Each CPU has its own causeRxTx register
2152 */
2153static int mvneta_poll(struct napi_struct *napi, int budget)
2154{
2155	int rx_done = 0;
2156	u32 cause_rx_tx;
2157	struct mvneta_port *pp = netdev_priv(napi->dev);
2158	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2159
2160	if (!netif_running(pp->dev)) {
2161		napi_complete(&port->napi);
2162		return rx_done;
2163	}
2164
2165	/* Read cause register */
2166	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2167	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2168		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2169
2170		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2171		if (pp->use_inband_status && (cause_misc &
2172				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
2173				 MVNETA_CAUSE_LINK_CHANGE |
2174				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2175			mvneta_fixed_link_update(pp, pp->phy_dev);
2176		}
2177	}
2178
2179	/* Release Tx descriptors */
2180	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2181		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2182		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2183	}
2184
2185	/* For the case where the last mvneta_poll did not process all
2186	 * RX packets
2187	 */
2188	cause_rx_tx |= port->cause_rx_tx;
2189	rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
2190	budget -= rx_done;
2191
2192	if (budget > 0) {
2193		cause_rx_tx = 0;
2194		napi_complete(&port->napi);
2195		enable_percpu_irq(pp->dev->irq, 0);
2196	}
2197
2198	port->cause_rx_tx = cause_rx_tx;
2199	return rx_done;
2200}
2201
2202/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2203static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2204			   int num)
2205{
2206	int i;
2207
2208	for (i = 0; i < num; i++) {
2209		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2210		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2211			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2212				__func__, rxq->id, i, num);
2213			break;
2214		}
2215	}
2216
2217	/* Add this number of RX descriptors as non occupied (ready to
2218	 * get packets)
2219	 */
2220	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2221
2222	return i;
2223}
2224
2225/* Free all packets pending transmit from all TXQs and reset TX port */
2226static void mvneta_tx_reset(struct mvneta_port *pp)
2227{
2228	int queue;
2229
2230	/* free the skb's in the tx ring */
2231	for (queue = 0; queue < txq_number; queue++)
2232		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2233
2234	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2235	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2236}
2237
2238static void mvneta_rx_reset(struct mvneta_port *pp)
2239{
2240	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2241	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2242}
2243
2244/* Rx/Tx queue initialization/cleanup methods */
2245
2246/* Create a specified RX queue */
2247static int mvneta_rxq_init(struct mvneta_port *pp,
2248			   struct mvneta_rx_queue *rxq)
2249
2250{
2251	rxq->size = pp->rx_ring_size;
2252
2253	/* Allocate memory for RX descriptors */
2254	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2255					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2256					&rxq->descs_phys, GFP_KERNEL);
2257	if (rxq->descs == NULL)
2258		return -ENOMEM;
2259
2260	BUG_ON(rxq->descs !=
2261	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2262
2263	rxq->last_desc = rxq->size - 1;
2264
2265	/* Set Rx descriptors queue starting address */
2266	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2267	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2268
2269	/* Set Offset */
2270	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2271
2272	/* Set coalescing pkts and time */
2273	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2274	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2275
2276	/* Fill RXQ with buffers from RX pool */
2277	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2278	mvneta_rxq_bm_disable(pp, rxq);
2279	mvneta_rxq_fill(pp, rxq, rxq->size);
2280
2281	return 0;
2282}
2283
2284/* Cleanup Rx queue */
2285static void mvneta_rxq_deinit(struct mvneta_port *pp,
2286			      struct mvneta_rx_queue *rxq)
2287{
2288	mvneta_rxq_drop_pkts(pp, rxq);
2289
2290	if (rxq->descs)
2291		dma_free_coherent(pp->dev->dev.parent,
2292				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2293				  rxq->descs,
2294				  rxq->descs_phys);
2295
2296	rxq->descs             = NULL;
2297	rxq->last_desc         = 0;
2298	rxq->next_desc_to_proc = 0;
2299	rxq->descs_phys        = 0;
2300}
2301
2302/* Create and initialize a tx queue */
2303static int mvneta_txq_init(struct mvneta_port *pp,
2304			   struct mvneta_tx_queue *txq)
2305{
2306	txq->size = pp->tx_ring_size;
2307
2308	/* A queue must always have room for at least one skb.
2309	 * Therefore, stop the queue when the free entries reaches
2310	 * the maximum number of descriptors per skb.
2311	 */
2312	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2313	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2314
2315
2316	/* Allocate memory for TX descriptors */
2317	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2318					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2319					&txq->descs_phys, GFP_KERNEL);
2320	if (txq->descs == NULL)
2321		return -ENOMEM;
2322
2323	/* Make sure descriptor address is cache line size aligned  */
2324	BUG_ON(txq->descs !=
2325	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2326
2327	txq->last_desc = txq->size - 1;
2328
2329	/* Set maximum bandwidth for enabled TXQs */
2330	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2331	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2332
2333	/* Set Tx descriptors queue starting address */
2334	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2335	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2336
2337	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2338	if (txq->tx_skb == NULL) {
2339		dma_free_coherent(pp->dev->dev.parent,
2340				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2341				  txq->descs, txq->descs_phys);
2342		return -ENOMEM;
2343	}
2344
2345	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2346	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2347					   txq->size * TSO_HEADER_SIZE,
2348					   &txq->tso_hdrs_phys, GFP_KERNEL);
2349	if (txq->tso_hdrs == NULL) {
2350		kfree(txq->tx_skb);
2351		dma_free_coherent(pp->dev->dev.parent,
2352				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2353				  txq->descs, txq->descs_phys);
2354		return -ENOMEM;
2355	}
2356	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2357
2358	return 0;
2359}
2360
2361/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2362static void mvneta_txq_deinit(struct mvneta_port *pp,
2363			      struct mvneta_tx_queue *txq)
2364{
2365	kfree(txq->tx_skb);
2366
2367	if (txq->tso_hdrs)
2368		dma_free_coherent(pp->dev->dev.parent,
2369				  txq->size * TSO_HEADER_SIZE,
2370				  txq->tso_hdrs, txq->tso_hdrs_phys);
2371	if (txq->descs)
2372		dma_free_coherent(pp->dev->dev.parent,
2373				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2374				  txq->descs, txq->descs_phys);
2375
2376	txq->descs             = NULL;
2377	txq->last_desc         = 0;
2378	txq->next_desc_to_proc = 0;
2379	txq->descs_phys        = 0;
2380
2381	/* Set minimum bandwidth for disabled TXQs */
2382	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2383	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2384
2385	/* Set Tx descriptors queue starting address and size */
2386	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2387	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2388}
2389
2390/* Cleanup all Tx queues */
2391static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2392{
2393	int queue;
2394
2395	for (queue = 0; queue < txq_number; queue++)
2396		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2397}
2398
2399/* Cleanup all Rx queues */
2400static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2401{
2402	mvneta_rxq_deinit(pp, &pp->rxqs[rxq_def]);
2403}
2404
2405
2406/* Init all Rx queues */
2407static int mvneta_setup_rxqs(struct mvneta_port *pp)
2408{
2409	int err = mvneta_rxq_init(pp, &pp->rxqs[rxq_def]);
2410	if (err) {
2411		netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2412			   __func__, rxq_def);
2413		mvneta_cleanup_rxqs(pp);
2414		return err;
2415	}
2416
2417	return 0;
2418}
2419
2420/* Init all tx queues */
2421static int mvneta_setup_txqs(struct mvneta_port *pp)
2422{
2423	int queue;
2424
2425	for (queue = 0; queue < txq_number; queue++) {
2426		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2427		if (err) {
2428			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2429				   __func__, queue);
2430			mvneta_cleanup_txqs(pp);
2431			return err;
2432		}
2433	}
2434
2435	return 0;
2436}
2437
2438static void mvneta_start_dev(struct mvneta_port *pp)
2439{
2440	unsigned int cpu;
2441
2442	mvneta_max_rx_size_set(pp, pp->pkt_size);
2443	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2444
2445	/* start the Rx/Tx activity */
2446	mvneta_port_enable(pp);
2447
2448	/* Enable polling on the port */
2449	for_each_present_cpu(cpu) {
2450		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2451
2452		napi_enable(&port->napi);
2453	}
2454
2455	/* Unmask interrupts */
2456	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2457		    MVNETA_RX_INTR_MASK(rxq_number) |
2458		    MVNETA_TX_INTR_MASK(txq_number) |
2459		    MVNETA_MISCINTR_INTR_MASK);
2460	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2461		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
2462		    MVNETA_CAUSE_LINK_CHANGE |
2463		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
2464
2465	phy_start(pp->phy_dev);
2466	netif_tx_start_all_queues(pp->dev);
2467}
2468
2469static void mvneta_stop_dev(struct mvneta_port *pp)
2470{
2471	unsigned int cpu;
2472
2473	phy_stop(pp->phy_dev);
2474
2475	for_each_present_cpu(cpu) {
2476		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2477
2478		napi_disable(&port->napi);
2479	}
2480
2481	netif_carrier_off(pp->dev);
2482
2483	mvneta_port_down(pp);
2484	netif_tx_stop_all_queues(pp->dev);
2485
2486	/* Stop the port activity */
2487	mvneta_port_disable(pp);
2488
2489	/* Clear all ethernet port interrupts */
2490	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2491	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2492
2493	/* Mask all ethernet port interrupts */
2494	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2495	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2496	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2497
2498	mvneta_tx_reset(pp);
2499	mvneta_rx_reset(pp);
2500}
2501
2502/* Return positive if MTU is valid */
2503static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2504{
2505	if (mtu < 68) {
2506		netdev_err(dev, "cannot change mtu to less than 68\n");
2507		return -EINVAL;
2508	}
2509
2510	/* 9676 == 9700 - 20 and rounding to 8 */
2511	if (mtu > 9676) {
2512		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2513		mtu = 9676;
2514	}
2515
2516	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2517		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2518			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2519		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2520	}
2521
2522	return mtu;
2523}
2524
2525/* Change the device mtu */
2526static int mvneta_change_mtu(struct net_device *dev, int mtu)
2527{
2528	struct mvneta_port *pp = netdev_priv(dev);
2529	int ret;
2530
2531	mtu = mvneta_check_mtu_valid(dev, mtu);
2532	if (mtu < 0)
2533		return -EINVAL;
2534
2535	dev->mtu = mtu;
2536
2537	if (!netif_running(dev)) {
2538		netdev_update_features(dev);
2539		return 0;
2540	}
2541
2542	/* The interface is running, so we have to force a
2543	 * reallocation of the queues
2544	 */
2545	mvneta_stop_dev(pp);
2546
2547	mvneta_cleanup_txqs(pp);
2548	mvneta_cleanup_rxqs(pp);
2549
2550	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
2551	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2552	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2553
2554	ret = mvneta_setup_rxqs(pp);
2555	if (ret) {
2556		netdev_err(dev, "unable to setup rxqs after MTU change\n");
2557		return ret;
2558	}
2559
2560	ret = mvneta_setup_txqs(pp);
2561	if (ret) {
2562		netdev_err(dev, "unable to setup txqs after MTU change\n");
2563		return ret;
2564	}
2565
2566	mvneta_start_dev(pp);
2567	mvneta_port_up(pp);
2568
2569	netdev_update_features(dev);
2570
2571	return 0;
2572}
2573
2574static netdev_features_t mvneta_fix_features(struct net_device *dev,
2575					     netdev_features_t features)
2576{
2577	struct mvneta_port *pp = netdev_priv(dev);
2578
2579	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
2580		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
2581		netdev_info(dev,
2582			    "Disable IP checksum for MTU greater than %dB\n",
2583			    pp->tx_csum_limit);
2584	}
2585
2586	return features;
2587}
2588
2589/* Get mac address */
2590static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2591{
2592	u32 mac_addr_l, mac_addr_h;
2593
2594	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2595	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2596	addr[0] = (mac_addr_h >> 24) & 0xFF;
2597	addr[1] = (mac_addr_h >> 16) & 0xFF;
2598	addr[2] = (mac_addr_h >> 8) & 0xFF;
2599	addr[3] = mac_addr_h & 0xFF;
2600	addr[4] = (mac_addr_l >> 8) & 0xFF;
2601	addr[5] = mac_addr_l & 0xFF;
2602}
2603
2604/* Handle setting mac address */
2605static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2606{
2607	struct mvneta_port *pp = netdev_priv(dev);
2608	struct sockaddr *sockaddr = addr;
2609	int ret;
2610
2611	ret = eth_prepare_mac_addr_change(dev, addr);
2612	if (ret < 0)
2613		return ret;
2614	/* Remove previous address table entry */
2615	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2616
2617	/* Set new addr in hw */
2618	mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
2619
2620	eth_commit_mac_addr_change(dev, addr);
2621	return 0;
2622}
2623
2624static void mvneta_adjust_link(struct net_device *ndev)
2625{
2626	struct mvneta_port *pp = netdev_priv(ndev);
2627	struct phy_device *phydev = pp->phy_dev;
2628	int status_change = 0;
2629
2630	if (phydev->link) {
2631		if ((pp->speed != phydev->speed) ||
2632		    (pp->duplex != phydev->duplex)) {
2633			u32 val;
2634
2635			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2636			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2637				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2638				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2639
2640			if (phydev->duplex)
2641				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2642
2643			if (phydev->speed == SPEED_1000)
2644				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2645			else if (phydev->speed == SPEED_100)
2646				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2647
2648			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2649
2650			pp->duplex = phydev->duplex;
2651			pp->speed  = phydev->speed;
2652		}
2653	}
2654
2655	if (phydev->link != pp->link) {
2656		if (!phydev->link) {
2657			pp->duplex = -1;
2658			pp->speed = 0;
2659		}
2660
2661		pp->link = phydev->link;
2662		status_change = 1;
2663	}
2664
2665	if (status_change) {
2666		if (phydev->link) {
2667			if (!pp->use_inband_status) {
2668				u32 val = mvreg_read(pp,
2669						  MVNETA_GMAC_AUTONEG_CONFIG);
2670				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
2671				val |= MVNETA_GMAC_FORCE_LINK_PASS;
2672				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2673					    val);
2674			}
2675			mvneta_port_up(pp);
2676		} else {
2677			if (!pp->use_inband_status) {
2678				u32 val = mvreg_read(pp,
2679						  MVNETA_GMAC_AUTONEG_CONFIG);
2680				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
2681				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
2682				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2683					    val);
2684			}
2685			mvneta_port_down(pp);
2686		}
2687		phy_print_status(phydev);
2688	}
2689}
2690
2691static int mvneta_mdio_probe(struct mvneta_port *pp)
2692{
2693	struct phy_device *phy_dev;
2694
2695	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2696				 pp->phy_interface);
2697	if (!phy_dev) {
2698		netdev_err(pp->dev, "could not find the PHY\n");
2699		return -ENODEV;
2700	}
2701
2702	phy_dev->supported &= PHY_GBIT_FEATURES;
2703	phy_dev->advertising = phy_dev->supported;
2704
2705	pp->phy_dev = phy_dev;
2706	pp->link    = 0;
2707	pp->duplex  = 0;
2708	pp->speed   = 0;
2709
2710	return 0;
2711}
2712
2713static void mvneta_mdio_remove(struct mvneta_port *pp)
2714{
2715	phy_disconnect(pp->phy_dev);
2716	pp->phy_dev = NULL;
2717}
2718
2719static void mvneta_percpu_enable(void *arg)
2720{
2721	struct mvneta_port *pp = arg;
2722
2723	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
2724}
2725
2726static void mvneta_percpu_disable(void *arg)
2727{
2728	struct mvneta_port *pp = arg;
2729
2730	disable_percpu_irq(pp->dev->irq);
2731}
2732
2733static void mvneta_percpu_elect(struct mvneta_port *pp)
2734{
2735	int online_cpu_idx, cpu, i = 0;
2736
2737	online_cpu_idx = rxq_def % num_online_cpus();
2738
2739	for_each_online_cpu(cpu) {
2740		if (i == online_cpu_idx)
2741			/* Enable per-CPU interrupt on the one CPU we
2742			 * just elected
2743			 */
2744			smp_call_function_single(cpu, mvneta_percpu_enable,
2745						pp, true);
2746		else
2747			/* Disable per-CPU interrupt on all the other CPU */
2748			smp_call_function_single(cpu, mvneta_percpu_disable,
2749						pp, true);
2750		i++;
2751	}
2752};
2753
2754static int mvneta_percpu_notifier(struct notifier_block *nfb,
2755				  unsigned long action, void *hcpu)
2756{
2757	struct mvneta_port *pp = container_of(nfb, struct mvneta_port,
2758					      cpu_notifier);
2759	int cpu = (unsigned long)hcpu, other_cpu;
2760	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2761
2762	switch (action) {
2763	case CPU_ONLINE:
2764	case CPU_ONLINE_FROZEN:
2765		netif_tx_stop_all_queues(pp->dev);
2766
2767		/* We have to synchronise on tha napi of each CPU
2768		 * except the one just being waked up
2769		 */
2770		for_each_online_cpu(other_cpu) {
2771			if (other_cpu != cpu) {
2772				struct mvneta_pcpu_port *other_port =
2773					per_cpu_ptr(pp->ports, other_cpu);
2774
2775				napi_synchronize(&other_port->napi);
2776			}
2777		}
2778
2779		/* Mask all ethernet port interrupts */
2780		mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2781		mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2782		mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2783		napi_enable(&port->napi);
2784
2785		/* Enable per-CPU interrupt on the one CPU we care
2786		 * about.
2787		 */
2788		mvneta_percpu_elect(pp);
2789
2790		/* Unmask all ethernet port interrupts */
2791		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2792			MVNETA_RX_INTR_MASK(rxq_number) |
2793			MVNETA_TX_INTR_MASK(txq_number) |
2794			MVNETA_MISCINTR_INTR_MASK);
2795		mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2796			MVNETA_CAUSE_PHY_STATUS_CHANGE |
2797			MVNETA_CAUSE_LINK_CHANGE |
2798			MVNETA_CAUSE_PSC_SYNC_CHANGE);
2799		netif_tx_start_all_queues(pp->dev);
2800		break;
2801	case CPU_DOWN_PREPARE:
2802	case CPU_DOWN_PREPARE_FROZEN:
2803		netif_tx_stop_all_queues(pp->dev);
2804		/* Mask all ethernet port interrupts */
2805		mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2806		mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2807		mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2808
2809		napi_synchronize(&port->napi);
2810		napi_disable(&port->napi);
2811		/* Disable per-CPU interrupts on the CPU that is
2812		 * brought down.
2813		 */
2814		smp_call_function_single(cpu, mvneta_percpu_disable,
2815					 pp, true);
2816
2817		break;
2818	case CPU_DEAD:
2819	case CPU_DEAD_FROZEN:
2820		/* Check if a new CPU must be elected now this on is down */
2821		mvneta_percpu_elect(pp);
2822		/* Unmask all ethernet port interrupts */
2823		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2824			MVNETA_RX_INTR_MASK(rxq_number) |
2825			MVNETA_TX_INTR_MASK(txq_number) |
2826			MVNETA_MISCINTR_INTR_MASK);
2827		mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2828			MVNETA_CAUSE_PHY_STATUS_CHANGE |
2829			MVNETA_CAUSE_LINK_CHANGE |
2830			MVNETA_CAUSE_PSC_SYNC_CHANGE);
2831		netif_tx_start_all_queues(pp->dev);
2832		break;
2833	}
2834
2835	return NOTIFY_OK;
2836}
2837
2838static int mvneta_open(struct net_device *dev)
2839{
2840	struct mvneta_port *pp = netdev_priv(dev);
2841	int ret;
2842
2843	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2844	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2845	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2846
2847	ret = mvneta_setup_rxqs(pp);
2848	if (ret)
2849		return ret;
2850
2851	ret = mvneta_setup_txqs(pp);
2852	if (ret)
2853		goto err_cleanup_rxqs;
2854
2855	/* Connect to port interrupt line */
2856	ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
2857				 MVNETA_DRIVER_NAME, pp->ports);
2858	if (ret) {
2859		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2860		goto err_cleanup_txqs;
2861	}
2862
2863	/* Even though the documentation says that request_percpu_irq
2864	 * doesn't enable the interrupts automatically, it actually
2865	 * does so on the local CPU.
2866	 *
2867	 * Make sure it's disabled.
2868	 */
2869	mvneta_percpu_disable(pp);
2870
2871	/* Elect a CPU to handle our RX queue interrupt */
2872	mvneta_percpu_elect(pp);
2873
2874	/* Register a CPU notifier to handle the case where our CPU
2875	 * might be taken offline.
2876	 */
2877	register_cpu_notifier(&pp->cpu_notifier);
2878
2879	/* In default link is down */
2880	netif_carrier_off(pp->dev);
2881
2882	ret = mvneta_mdio_probe(pp);
2883	if (ret < 0) {
2884		netdev_err(dev, "cannot probe MDIO bus\n");
2885		goto err_free_irq;
2886	}
2887
2888	mvneta_start_dev(pp);
2889
2890	return 0;
2891
2892err_free_irq:
2893	free_percpu_irq(pp->dev->irq, pp->ports);
2894err_cleanup_txqs:
2895	mvneta_cleanup_txqs(pp);
2896err_cleanup_rxqs:
2897	mvneta_cleanup_rxqs(pp);
2898	return ret;
2899}
2900
2901/* Stop the port, free port interrupt line */
2902static int mvneta_stop(struct net_device *dev)
2903{
2904	struct mvneta_port *pp = netdev_priv(dev);
2905	int cpu;
2906
2907	mvneta_stop_dev(pp);
2908	mvneta_mdio_remove(pp);
2909	unregister_cpu_notifier(&pp->cpu_notifier);
2910	for_each_present_cpu(cpu)
2911		smp_call_function_single(cpu, mvneta_percpu_disable, pp, true);
2912	free_percpu_irq(dev->irq, pp->ports);
2913	mvneta_cleanup_rxqs(pp);
2914	mvneta_cleanup_txqs(pp);
2915
2916	return 0;
2917}
2918
2919static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2920{
2921	struct mvneta_port *pp = netdev_priv(dev);
2922
2923	if (!pp->phy_dev)
2924		return -ENOTSUPP;
2925
2926	return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2927}
2928
2929/* Ethtool methods */
2930
2931/* Get settings (phy address, speed) for ethtools */
2932int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2933{
2934	struct mvneta_port *pp = netdev_priv(dev);
2935
2936	if (!pp->phy_dev)
2937		return -ENODEV;
2938
2939	return phy_ethtool_gset(pp->phy_dev, cmd);
2940}
2941
2942/* Set settings (phy address, speed) for ethtools */
2943int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2944{
2945	struct mvneta_port *pp = netdev_priv(dev);
2946
2947	if (!pp->phy_dev)
2948		return -ENODEV;
2949
2950	return phy_ethtool_sset(pp->phy_dev, cmd);
2951}
2952
2953/* Set interrupt coalescing for ethtools */
2954static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2955				       struct ethtool_coalesce *c)
2956{
2957	struct mvneta_port *pp = netdev_priv(dev);
2958	int queue;
2959
2960	for (queue = 0; queue < rxq_number; queue++) {
2961		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2962		rxq->time_coal = c->rx_coalesce_usecs;
2963		rxq->pkts_coal = c->rx_max_coalesced_frames;
2964		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2965		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2966	}
2967
2968	for (queue = 0; queue < txq_number; queue++) {
2969		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2970		txq->done_pkts_coal = c->tx_max_coalesced_frames;
2971		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2972	}
2973
2974	return 0;
2975}
2976
2977/* get coalescing for ethtools */
2978static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2979				       struct ethtool_coalesce *c)
2980{
2981	struct mvneta_port *pp = netdev_priv(dev);
2982
2983	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
2984	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
2985
2986	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
2987	return 0;
2988}
2989
2990
2991static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2992				    struct ethtool_drvinfo *drvinfo)
2993{
2994	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2995		sizeof(drvinfo->driver));
2996	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2997		sizeof(drvinfo->version));
2998	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2999		sizeof(drvinfo->bus_info));
3000}
3001
3002
3003static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3004					 struct ethtool_ringparam *ring)
3005{
3006	struct mvneta_port *pp = netdev_priv(netdev);
3007
3008	ring->rx_max_pending = MVNETA_MAX_RXD;
3009	ring->tx_max_pending = MVNETA_MAX_TXD;
3010	ring->rx_pending = pp->rx_ring_size;
3011	ring->tx_pending = pp->tx_ring_size;
3012}
3013
3014static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3015					struct ethtool_ringparam *ring)
3016{
3017	struct mvneta_port *pp = netdev_priv(dev);
3018
3019	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3020		return -EINVAL;
3021	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3022		ring->rx_pending : MVNETA_MAX_RXD;
3023
3024	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3025				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3026	if (pp->tx_ring_size != ring->tx_pending)
3027		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3028			    pp->tx_ring_size, ring->tx_pending);
3029
3030	if (netif_running(dev)) {
3031		mvneta_stop(dev);
3032		if (mvneta_open(dev)) {
3033			netdev_err(dev,
3034				   "error on opening device after ring param change\n");
3035			return -ENOMEM;
3036		}
3037	}
3038
3039	return 0;
3040}
3041
3042static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3043				       u8 *data)
3044{
3045	if (sset == ETH_SS_STATS) {
3046		int i;
3047
3048		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3049			memcpy(data + i * ETH_GSTRING_LEN,
3050			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
3051	}
3052}
3053
3054static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3055{
3056	const struct mvneta_statistic *s;
3057	void __iomem *base = pp->base;
3058	u32 high, low, val;
3059	int i;
3060
3061	for (i = 0, s = mvneta_statistics;
3062	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3063	     s++, i++) {
3064		val = 0;
3065
3066		switch (s->type) {
3067		case T_REG_32:
3068			val = readl_relaxed(base + s->offset);
3069			break;
3070		case T_REG_64:
3071			/* Docs say to read low 32-bit then high */
3072			low = readl_relaxed(base + s->offset);
3073			high = readl_relaxed(base + s->offset + 4);
3074			val = (u64)high << 32 | low;
3075			break;
3076		}
3077
3078		pp->ethtool_stats[i] += val;
3079	}
3080}
3081
3082static void mvneta_ethtool_get_stats(struct net_device *dev,
3083				     struct ethtool_stats *stats, u64 *data)
3084{
3085	struct mvneta_port *pp = netdev_priv(dev);
3086	int i;
3087
3088	mvneta_ethtool_update_stats(pp);
3089
3090	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3091		*data++ = pp->ethtool_stats[i];
3092}
3093
3094static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3095{
3096	if (sset == ETH_SS_STATS)
3097		return ARRAY_SIZE(mvneta_statistics);
3098	return -EOPNOTSUPP;
3099}
3100
3101static const struct net_device_ops mvneta_netdev_ops = {
3102	.ndo_open            = mvneta_open,
3103	.ndo_stop            = mvneta_stop,
3104	.ndo_start_xmit      = mvneta_tx,
3105	.ndo_set_rx_mode     = mvneta_set_rx_mode,
3106	.ndo_set_mac_address = mvneta_set_mac_addr,
3107	.ndo_change_mtu      = mvneta_change_mtu,
3108	.ndo_fix_features    = mvneta_fix_features,
3109	.ndo_get_stats64     = mvneta_get_stats64,
3110	.ndo_do_ioctl        = mvneta_ioctl,
3111};
3112
3113const struct ethtool_ops mvneta_eth_tool_ops = {
3114	.get_link       = ethtool_op_get_link,
3115	.get_settings   = mvneta_ethtool_get_settings,
3116	.set_settings   = mvneta_ethtool_set_settings,
3117	.set_coalesce   = mvneta_ethtool_set_coalesce,
3118	.get_coalesce   = mvneta_ethtool_get_coalesce,
3119	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
3120	.get_ringparam  = mvneta_ethtool_get_ringparam,
3121	.set_ringparam	= mvneta_ethtool_set_ringparam,
3122	.get_strings	= mvneta_ethtool_get_strings,
3123	.get_ethtool_stats = mvneta_ethtool_get_stats,
3124	.get_sset_count	= mvneta_ethtool_get_sset_count,
3125};
3126
3127/* Initialize hw */
3128static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3129{
3130	int queue;
3131
3132	/* Disable port */
3133	mvneta_port_disable(pp);
3134
3135	/* Set port default values */
3136	mvneta_defaults_set(pp);
3137
3138	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3139				GFP_KERNEL);
3140	if (!pp->txqs)
3141		return -ENOMEM;
3142
3143	/* Initialize TX descriptor rings */
3144	for (queue = 0; queue < txq_number; queue++) {
3145		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3146		txq->id = queue;
3147		txq->size = pp->tx_ring_size;
3148		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3149	}
3150
3151	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3152				GFP_KERNEL);
3153	if (!pp->rxqs)
3154		return -ENOMEM;
3155
3156	/* Create Rx descriptor rings */
3157	for (queue = 0; queue < rxq_number; queue++) {
3158		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3159		rxq->id = queue;
3160		rxq->size = pp->rx_ring_size;
3161		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3162		rxq->time_coal = MVNETA_RX_COAL_USEC;
3163	}
3164
3165	return 0;
3166}
3167
3168/* platform glue : initialize decoding windows */
3169static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3170				     const struct mbus_dram_target_info *dram)
3171{
3172	u32 win_enable;
3173	u32 win_protect;
3174	int i;
3175
3176	for (i = 0; i < 6; i++) {
3177		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3178		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3179
3180		if (i < 4)
3181			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3182	}
3183
3184	win_enable = 0x3f;
3185	win_protect = 0;
3186
3187	for (i = 0; i < dram->num_cs; i++) {
3188		const struct mbus_dram_window *cs = dram->cs + i;
3189		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3190			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3191
3192		mvreg_write(pp, MVNETA_WIN_SIZE(i),
3193			    (cs->size - 1) & 0xffff0000);
3194
3195		win_enable &= ~(1 << i);
3196		win_protect |= 3 << (2 * i);
3197	}
3198
3199	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3200	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3201}
3202
3203/* Power up the port */
3204static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3205{
3206	u32 ctrl;
3207
3208	/* MAC Cause register should be cleared */
3209	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3210
3211	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3212
3213	/* Even though it might look weird, when we're configured in
3214	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3215	 */
3216	switch(phy_mode) {
3217	case PHY_INTERFACE_MODE_QSGMII:
3218		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3219		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3220		break;
3221	case PHY_INTERFACE_MODE_SGMII:
3222		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3223		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3224		break;
3225	case PHY_INTERFACE_MODE_RGMII:
3226	case PHY_INTERFACE_MODE_RGMII_ID:
3227		ctrl |= MVNETA_GMAC2_PORT_RGMII;
3228		break;
3229	default:
3230		return -EINVAL;
3231	}
3232
3233	if (pp->use_inband_status)
3234		ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3235
3236	/* Cancel Port Reset */
3237	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3238	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3239
3240	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3241		MVNETA_GMAC2_PORT_RESET) != 0)
3242		continue;
3243
3244	return 0;
3245}
3246
3247/* Device initialization routine */
3248static int mvneta_probe(struct platform_device *pdev)
3249{
3250	const struct mbus_dram_target_info *dram_target_info;
3251	struct resource *res;
3252	struct device_node *dn = pdev->dev.of_node;
3253	struct device_node *phy_node;
3254	struct mvneta_port *pp;
3255	struct net_device *dev;
3256	const char *dt_mac_addr;
3257	char hw_mac_addr[ETH_ALEN];
3258	const char *mac_from;
3259	const char *managed;
3260	int tx_csum_limit;
3261	int phy_mode;
3262	int err;
3263	int cpu;
3264
3265	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3266	if (!dev)
3267		return -ENOMEM;
3268
3269	dev->irq = irq_of_parse_and_map(dn, 0);
3270	if (dev->irq == 0) {
3271		err = -EINVAL;
3272		goto err_free_netdev;
3273	}
3274
3275	phy_node = of_parse_phandle(dn, "phy", 0);
3276	if (!phy_node) {
3277		if (!of_phy_is_fixed_link(dn)) {
3278			dev_err(&pdev->dev, "no PHY specified\n");
3279			err = -ENODEV;
3280			goto err_free_irq;
3281		}
3282
3283		err = of_phy_register_fixed_link(dn);
3284		if (err < 0) {
3285			dev_err(&pdev->dev, "cannot register fixed PHY\n");
3286			goto err_free_irq;
3287		}
3288
3289		/* In the case of a fixed PHY, the DT node associated
3290		 * to the PHY is the Ethernet MAC DT node.
3291		 */
3292		phy_node = of_node_get(dn);
3293	}
3294
3295	phy_mode = of_get_phy_mode(dn);
3296	if (phy_mode < 0) {
3297		dev_err(&pdev->dev, "incorrect phy-mode\n");
3298		err = -EINVAL;
3299		goto err_put_phy_node;
3300	}
3301
3302	dev->tx_queue_len = MVNETA_MAX_TXD;
3303	dev->watchdog_timeo = 5 * HZ;
3304	dev->netdev_ops = &mvneta_netdev_ops;
3305
3306	dev->ethtool_ops = &mvneta_eth_tool_ops;
3307
3308	pp = netdev_priv(dev);
3309	pp->phy_node = phy_node;
3310	pp->phy_interface = phy_mode;
3311
3312	err = of_property_read_string(dn, "managed", &managed);
3313	pp->use_inband_status = (err == 0 &&
3314				 strcmp(managed, "in-band-status") == 0);
3315	pp->cpu_notifier.notifier_call = mvneta_percpu_notifier;
3316
3317	pp->clk = devm_clk_get(&pdev->dev, NULL);
3318	if (IS_ERR(pp->clk)) {
3319		err = PTR_ERR(pp->clk);
3320		goto err_put_phy_node;
3321	}
3322
3323	clk_prepare_enable(pp->clk);
3324
3325	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3326	pp->base = devm_ioremap_resource(&pdev->dev, res);
3327	if (IS_ERR(pp->base)) {
3328		err = PTR_ERR(pp->base);
3329		goto err_clk;
3330	}
3331
3332	/* Alloc per-cpu port structure */
3333	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
3334	if (!pp->ports) {
3335		err = -ENOMEM;
3336		goto err_clk;
3337	}
3338
3339	/* Alloc per-cpu stats */
3340	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
3341	if (!pp->stats) {
3342		err = -ENOMEM;
3343		goto err_free_ports;
3344	}
3345
3346	dt_mac_addr = of_get_mac_address(dn);
3347	if (dt_mac_addr) {
3348		mac_from = "device tree";
3349		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
3350	} else {
3351		mvneta_get_mac_addr(pp, hw_mac_addr);
3352		if (is_valid_ether_addr(hw_mac_addr)) {
3353			mac_from = "hardware";
3354			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
3355		} else {
3356			mac_from = "random";
3357			eth_hw_addr_random(dev);
3358		}
3359	}
3360
3361	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
3362		if (tx_csum_limit < 0 ||
3363		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
3364			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
3365			dev_info(&pdev->dev,
3366				 "Wrong TX csum limit in DT, set to %dB\n",
3367				 MVNETA_TX_CSUM_DEF_SIZE);
3368		}
3369	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
3370		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
3371	} else {
3372		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
3373	}
3374
3375	pp->tx_csum_limit = tx_csum_limit;
3376
3377	pp->tx_ring_size = MVNETA_MAX_TXD;
3378	pp->rx_ring_size = MVNETA_MAX_RXD;
3379
3380	pp->dev = dev;
3381	SET_NETDEV_DEV(dev, &pdev->dev);
3382
3383	err = mvneta_init(&pdev->dev, pp);
3384	if (err < 0)
3385		goto err_free_stats;
3386
3387	err = mvneta_port_power_up(pp, phy_mode);
3388	if (err < 0) {
3389		dev_err(&pdev->dev, "can't power up port\n");
3390		goto err_free_stats;
3391	}
3392
3393	dram_target_info = mv_mbus_dram_info();
3394	if (dram_target_info)
3395		mvneta_conf_mbus_windows(pp, dram_target_info);
3396
3397	for_each_present_cpu(cpu) {
3398		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3399
3400		netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
3401		port->pp = pp;
3402	}
3403
3404	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3405	dev->hw_features |= dev->features;
3406	dev->vlan_features |= dev->features;
3407	dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE;
3408	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
3409
3410	err = register_netdev(dev);
3411	if (err < 0) {
3412		dev_err(&pdev->dev, "failed to register\n");
3413		goto err_free_stats;
3414	}
3415
3416	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
3417		    dev->dev_addr);
3418
3419	platform_set_drvdata(pdev, pp->dev);
3420
3421	if (pp->use_inband_status) {
3422		struct phy_device *phy = of_phy_find_device(dn);
3423
3424		mvneta_fixed_link_update(pp, phy);
3425
3426		put_device(&phy->dev);
3427	}
3428
3429	return 0;
3430
3431err_free_stats:
3432	free_percpu(pp->stats);
3433err_free_ports:
3434	free_percpu(pp->ports);
3435err_clk:
3436	clk_disable_unprepare(pp->clk);
3437err_put_phy_node:
3438	of_node_put(phy_node);
3439err_free_irq:
3440	irq_dispose_mapping(dev->irq);
3441err_free_netdev:
3442	free_netdev(dev);
3443	return err;
3444}
3445
3446/* Device removal routine */
3447static int mvneta_remove(struct platform_device *pdev)
3448{
3449	struct net_device  *dev = platform_get_drvdata(pdev);
3450	struct mvneta_port *pp = netdev_priv(dev);
3451
3452	unregister_netdev(dev);
3453	clk_disable_unprepare(pp->clk);
3454	free_percpu(pp->ports);
3455	free_percpu(pp->stats);
3456	irq_dispose_mapping(dev->irq);
3457	of_node_put(pp->phy_node);
3458	free_netdev(dev);
3459
3460	return 0;
3461}
3462
3463static const struct of_device_id mvneta_match[] = {
3464	{ .compatible = "marvell,armada-370-neta" },
3465	{ .compatible = "marvell,armada-xp-neta" },
3466	{ }
3467};
3468MODULE_DEVICE_TABLE(of, mvneta_match);
3469
3470static struct platform_driver mvneta_driver = {
3471	.probe = mvneta_probe,
3472	.remove = mvneta_remove,
3473	.driver = {
3474		.name = MVNETA_DRIVER_NAME,
3475		.of_match_table = mvneta_match,
3476	},
3477};
3478
3479module_platform_driver(mvneta_driver);
3480
3481MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3482MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3483MODULE_LICENSE("GPL");
3484
3485module_param(rxq_number, int, S_IRUGO);
3486module_param(txq_number, int, S_IRUGO);
3487
3488module_param(rxq_def, int, S_IRUGO);
3489module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
3490