1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24#include <linux/if_ether.h>
25#include <linux/delay.h>
26
27#include "e1000_mac.h"
28#include "e1000_phy.h"
29
30static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
31static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
32					     u16 *phy_ctrl);
33static s32  igb_wait_autoneg(struct e1000_hw *hw);
34static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
35
36/* Cable length tables */
37static const u16 e1000_m88_cable_length_table[] = {
38	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
39
40static const u16 e1000_igp_2_cable_length_table[] = {
41	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
42	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
43	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
44	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
45	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
46	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
47	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
48	104, 109, 114, 118, 121, 124};
49
50/**
51 *  igb_check_reset_block - Check if PHY reset is blocked
52 *  @hw: pointer to the HW structure
53 *
54 *  Read the PHY management control register and check whether a PHY reset
55 *  is blocked.  If a reset is not blocked return 0, otherwise
56 *  return E1000_BLK_PHY_RESET (12).
57 **/
58s32 igb_check_reset_block(struct e1000_hw *hw)
59{
60	u32 manc;
61
62	manc = rd32(E1000_MANC);
63
64	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
65}
66
67/**
68 *  igb_get_phy_id - Retrieve the PHY ID and revision
69 *  @hw: pointer to the HW structure
70 *
71 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
72 *  revision in the hardware structure.
73 **/
74s32 igb_get_phy_id(struct e1000_hw *hw)
75{
76	struct e1000_phy_info *phy = &hw->phy;
77	s32 ret_val = 0;
78	u16 phy_id;
79
80	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
81	if (ret_val)
82		goto out;
83
84	phy->id = (u32)(phy_id << 16);
85	udelay(20);
86	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
87	if (ret_val)
88		goto out;
89
90	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
91	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
92
93out:
94	return ret_val;
95}
96
97/**
98 *  igb_phy_reset_dsp - Reset PHY DSP
99 *  @hw: pointer to the HW structure
100 *
101 *  Reset the digital signal processor.
102 **/
103static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
104{
105	s32 ret_val = 0;
106
107	if (!(hw->phy.ops.write_reg))
108		goto out;
109
110	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
111	if (ret_val)
112		goto out;
113
114	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
115
116out:
117	return ret_val;
118}
119
120/**
121 *  igb_read_phy_reg_mdic - Read MDI control register
122 *  @hw: pointer to the HW structure
123 *  @offset: register offset to be read
124 *  @data: pointer to the read data
125 *
126 *  Reads the MDI control regsiter in the PHY at offset and stores the
127 *  information read to data.
128 **/
129s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
130{
131	struct e1000_phy_info *phy = &hw->phy;
132	u32 i, mdic = 0;
133	s32 ret_val = 0;
134
135	if (offset > MAX_PHY_REG_ADDRESS) {
136		hw_dbg("PHY Address %d is out of range\n", offset);
137		ret_val = -E1000_ERR_PARAM;
138		goto out;
139	}
140
141	/* Set up Op-code, Phy Address, and register offset in the MDI
142	 * Control register.  The MAC will take care of interfacing with the
143	 * PHY to retrieve the desired data.
144	 */
145	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
146		(phy->addr << E1000_MDIC_PHY_SHIFT) |
147		(E1000_MDIC_OP_READ));
148
149	wr32(E1000_MDIC, mdic);
150
151	/* Poll the ready bit to see if the MDI read completed
152	 * Increasing the time out as testing showed failures with
153	 * the lower time out
154	 */
155	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
156		udelay(50);
157		mdic = rd32(E1000_MDIC);
158		if (mdic & E1000_MDIC_READY)
159			break;
160	}
161	if (!(mdic & E1000_MDIC_READY)) {
162		hw_dbg("MDI Read did not complete\n");
163		ret_val = -E1000_ERR_PHY;
164		goto out;
165	}
166	if (mdic & E1000_MDIC_ERROR) {
167		hw_dbg("MDI Error\n");
168		ret_val = -E1000_ERR_PHY;
169		goto out;
170	}
171	*data = (u16) mdic;
172
173out:
174	return ret_val;
175}
176
177/**
178 *  igb_write_phy_reg_mdic - Write MDI control register
179 *  @hw: pointer to the HW structure
180 *  @offset: register offset to write to
181 *  @data: data to write to register at offset
182 *
183 *  Writes data to MDI control register in the PHY at offset.
184 **/
185s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
186{
187	struct e1000_phy_info *phy = &hw->phy;
188	u32 i, mdic = 0;
189	s32 ret_val = 0;
190
191	if (offset > MAX_PHY_REG_ADDRESS) {
192		hw_dbg("PHY Address %d is out of range\n", offset);
193		ret_val = -E1000_ERR_PARAM;
194		goto out;
195	}
196
197	/* Set up Op-code, Phy Address, and register offset in the MDI
198	 * Control register.  The MAC will take care of interfacing with the
199	 * PHY to retrieve the desired data.
200	 */
201	mdic = (((u32)data) |
202		(offset << E1000_MDIC_REG_SHIFT) |
203		(phy->addr << E1000_MDIC_PHY_SHIFT) |
204		(E1000_MDIC_OP_WRITE));
205
206	wr32(E1000_MDIC, mdic);
207
208	/* Poll the ready bit to see if the MDI read completed
209	 * Increasing the time out as testing showed failures with
210	 * the lower time out
211	 */
212	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
213		udelay(50);
214		mdic = rd32(E1000_MDIC);
215		if (mdic & E1000_MDIC_READY)
216			break;
217	}
218	if (!(mdic & E1000_MDIC_READY)) {
219		hw_dbg("MDI Write did not complete\n");
220		ret_val = -E1000_ERR_PHY;
221		goto out;
222	}
223	if (mdic & E1000_MDIC_ERROR) {
224		hw_dbg("MDI Error\n");
225		ret_val = -E1000_ERR_PHY;
226		goto out;
227	}
228
229out:
230	return ret_val;
231}
232
233/**
234 *  igb_read_phy_reg_i2c - Read PHY register using i2c
235 *  @hw: pointer to the HW structure
236 *  @offset: register offset to be read
237 *  @data: pointer to the read data
238 *
239 *  Reads the PHY register at offset using the i2c interface and stores the
240 *  retrieved information in data.
241 **/
242s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
243{
244	struct e1000_phy_info *phy = &hw->phy;
245	u32 i, i2ccmd = 0;
246
247	/* Set up Op-code, Phy Address, and register address in the I2CCMD
248	 * register.  The MAC will take care of interfacing with the
249	 * PHY to retrieve the desired data.
250	 */
251	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
252		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
253		  (E1000_I2CCMD_OPCODE_READ));
254
255	wr32(E1000_I2CCMD, i2ccmd);
256
257	/* Poll the ready bit to see if the I2C read completed */
258	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
259		udelay(50);
260		i2ccmd = rd32(E1000_I2CCMD);
261		if (i2ccmd & E1000_I2CCMD_READY)
262			break;
263	}
264	if (!(i2ccmd & E1000_I2CCMD_READY)) {
265		hw_dbg("I2CCMD Read did not complete\n");
266		return -E1000_ERR_PHY;
267	}
268	if (i2ccmd & E1000_I2CCMD_ERROR) {
269		hw_dbg("I2CCMD Error bit set\n");
270		return -E1000_ERR_PHY;
271	}
272
273	/* Need to byte-swap the 16-bit value. */
274	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
275
276	return 0;
277}
278
279/**
280 *  igb_write_phy_reg_i2c - Write PHY register using i2c
281 *  @hw: pointer to the HW structure
282 *  @offset: register offset to write to
283 *  @data: data to write at register offset
284 *
285 *  Writes the data to PHY register at the offset using the i2c interface.
286 **/
287s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
288{
289	struct e1000_phy_info *phy = &hw->phy;
290	u32 i, i2ccmd = 0;
291	u16 phy_data_swapped;
292
293	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
294	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
295		hw_dbg("PHY I2C Address %d is out of range.\n",
296			  hw->phy.addr);
297		return -E1000_ERR_CONFIG;
298	}
299
300	/* Swap the data bytes for the I2C interface */
301	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
302
303	/* Set up Op-code, Phy Address, and register address in the I2CCMD
304	 * register.  The MAC will take care of interfacing with the
305	 * PHY to retrieve the desired data.
306	 */
307	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
308		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
309		  E1000_I2CCMD_OPCODE_WRITE |
310		  phy_data_swapped);
311
312	wr32(E1000_I2CCMD, i2ccmd);
313
314	/* Poll the ready bit to see if the I2C read completed */
315	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
316		udelay(50);
317		i2ccmd = rd32(E1000_I2CCMD);
318		if (i2ccmd & E1000_I2CCMD_READY)
319			break;
320	}
321	if (!(i2ccmd & E1000_I2CCMD_READY)) {
322		hw_dbg("I2CCMD Write did not complete\n");
323		return -E1000_ERR_PHY;
324	}
325	if (i2ccmd & E1000_I2CCMD_ERROR) {
326		hw_dbg("I2CCMD Error bit set\n");
327		return -E1000_ERR_PHY;
328	}
329
330	return 0;
331}
332
333/**
334 *  igb_read_sfp_data_byte - Reads SFP module data.
335 *  @hw: pointer to the HW structure
336 *  @offset: byte location offset to be read
337 *  @data: read data buffer pointer
338 *
339 *  Reads one byte from SFP module data stored
340 *  in SFP resided EEPROM memory or SFP diagnostic area.
341 *  Function should be called with
342 *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
343 *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
344 *  access
345 **/
346s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
347{
348	u32 i = 0;
349	u32 i2ccmd = 0;
350	u32 data_local = 0;
351
352	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
353		hw_dbg("I2CCMD command address exceeds upper limit\n");
354		return -E1000_ERR_PHY;
355	}
356
357	/* Set up Op-code, EEPROM Address,in the I2CCMD
358	 * register. The MAC will take care of interfacing with the
359	 * EEPROM to retrieve the desired data.
360	 */
361	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
362		  E1000_I2CCMD_OPCODE_READ);
363
364	wr32(E1000_I2CCMD, i2ccmd);
365
366	/* Poll the ready bit to see if the I2C read completed */
367	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
368		udelay(50);
369		data_local = rd32(E1000_I2CCMD);
370		if (data_local & E1000_I2CCMD_READY)
371			break;
372	}
373	if (!(data_local & E1000_I2CCMD_READY)) {
374		hw_dbg("I2CCMD Read did not complete\n");
375		return -E1000_ERR_PHY;
376	}
377	if (data_local & E1000_I2CCMD_ERROR) {
378		hw_dbg("I2CCMD Error bit set\n");
379		return -E1000_ERR_PHY;
380	}
381	*data = (u8) data_local & 0xFF;
382
383	return 0;
384}
385
386/**
387 *  igb_read_phy_reg_igp - Read igp PHY register
388 *  @hw: pointer to the HW structure
389 *  @offset: register offset to be read
390 *  @data: pointer to the read data
391 *
392 *  Acquires semaphore, if necessary, then reads the PHY register at offset
393 *  and storing the retrieved information in data.  Release any acquired
394 *  semaphores before exiting.
395 **/
396s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
397{
398	s32 ret_val = 0;
399
400	if (!(hw->phy.ops.acquire))
401		goto out;
402
403	ret_val = hw->phy.ops.acquire(hw);
404	if (ret_val)
405		goto out;
406
407	if (offset > MAX_PHY_MULTI_PAGE_REG) {
408		ret_val = igb_write_phy_reg_mdic(hw,
409						 IGP01E1000_PHY_PAGE_SELECT,
410						 (u16)offset);
411		if (ret_val) {
412			hw->phy.ops.release(hw);
413			goto out;
414		}
415	}
416
417	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
418					data);
419
420	hw->phy.ops.release(hw);
421
422out:
423	return ret_val;
424}
425
426/**
427 *  igb_write_phy_reg_igp - Write igp PHY register
428 *  @hw: pointer to the HW structure
429 *  @offset: register offset to write to
430 *  @data: data to write at register offset
431 *
432 *  Acquires semaphore, if necessary, then writes the data to PHY register
433 *  at the offset.  Release any acquired semaphores before exiting.
434 **/
435s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
436{
437	s32 ret_val = 0;
438
439	if (!(hw->phy.ops.acquire))
440		goto out;
441
442	ret_val = hw->phy.ops.acquire(hw);
443	if (ret_val)
444		goto out;
445
446	if (offset > MAX_PHY_MULTI_PAGE_REG) {
447		ret_val = igb_write_phy_reg_mdic(hw,
448						 IGP01E1000_PHY_PAGE_SELECT,
449						 (u16)offset);
450		if (ret_val) {
451			hw->phy.ops.release(hw);
452			goto out;
453		}
454	}
455
456	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
457					 data);
458
459	hw->phy.ops.release(hw);
460
461out:
462	return ret_val;
463}
464
465/**
466 *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
467 *  @hw: pointer to the HW structure
468 *
469 *  Sets up Carrier-sense on Transmit and downshift values.
470 **/
471s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
472{
473	struct e1000_phy_info *phy = &hw->phy;
474	s32 ret_val;
475	u16 phy_data;
476
477	if (phy->reset_disable) {
478		ret_val = 0;
479		goto out;
480	}
481
482	if (phy->type == e1000_phy_82580) {
483		ret_val = hw->phy.ops.reset(hw);
484		if (ret_val) {
485			hw_dbg("Error resetting the PHY.\n");
486			goto out;
487		}
488	}
489
490	/* Enable CRS on TX. This must be set for half-duplex operation. */
491	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
492	if (ret_val)
493		goto out;
494
495	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
496
497	/* Enable downshift */
498	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
499
500	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
501	if (ret_val)
502		goto out;
503
504	/* Set MDI/MDIX mode */
505	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
506	if (ret_val)
507		goto out;
508	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
509	/* Options:
510	 *   0 - Auto (default)
511	 *   1 - MDI mode
512	 *   2 - MDI-X mode
513	 */
514	switch (hw->phy.mdix) {
515	case 1:
516		break;
517	case 2:
518		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
519		break;
520	case 0:
521	default:
522		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
523		break;
524	}
525	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
526
527out:
528	return ret_val;
529}
530
531/**
532 *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
533 *  @hw: pointer to the HW structure
534 *
535 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
536 *  and downshift values are set also.
537 **/
538s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
539{
540	struct e1000_phy_info *phy = &hw->phy;
541	s32 ret_val;
542	u16 phy_data;
543
544	if (phy->reset_disable) {
545		ret_val = 0;
546		goto out;
547	}
548
549	/* Enable CRS on TX. This must be set for half-duplex operation. */
550	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
551	if (ret_val)
552		goto out;
553
554	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
555
556	/* Options:
557	 *   MDI/MDI-X = 0 (default)
558	 *   0 - Auto for all speeds
559	 *   1 - MDI mode
560	 *   2 - MDI-X mode
561	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
562	 */
563	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
564
565	switch (phy->mdix) {
566	case 1:
567		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
568		break;
569	case 2:
570		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
571		break;
572	case 3:
573		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
574		break;
575	case 0:
576	default:
577		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
578		break;
579	}
580
581	/* Options:
582	 *   disable_polarity_correction = 0 (default)
583	 *       Automatic Correction for Reversed Cable Polarity
584	 *   0 - Disabled
585	 *   1 - Enabled
586	 */
587	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
588	if (phy->disable_polarity_correction == 1)
589		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
590
591	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
592	if (ret_val)
593		goto out;
594
595	if (phy->revision < E1000_REVISION_4) {
596		/* Force TX_CLK in the Extended PHY Specific Control Register
597		 * to 25MHz clock.
598		 */
599		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
600					    &phy_data);
601		if (ret_val)
602			goto out;
603
604		phy_data |= M88E1000_EPSCR_TX_CLK_25;
605
606		if ((phy->revision == E1000_REVISION_2) &&
607		    (phy->id == M88E1111_I_PHY_ID)) {
608			/* 82573L PHY - set the downshift counter to 5x. */
609			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
610			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
611		} else {
612			/* Configure Master and Slave downshift values */
613			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
614				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
615			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
616				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
617		}
618		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
619					     phy_data);
620		if (ret_val)
621			goto out;
622	}
623
624	/* Commit the changes. */
625	ret_val = igb_phy_sw_reset(hw);
626	if (ret_val) {
627		hw_dbg("Error committing the PHY changes\n");
628		goto out;
629	}
630
631out:
632	return ret_val;
633}
634
635/**
636 *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
637 *  @hw: pointer to the HW structure
638 *
639 *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
640 *  Also enables and sets the downshift parameters.
641 **/
642s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
643{
644	struct e1000_phy_info *phy = &hw->phy;
645	s32 ret_val;
646	u16 phy_data;
647
648	if (phy->reset_disable)
649		return 0;
650
651	/* Enable CRS on Tx. This must be set for half-duplex operation. */
652	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
653	if (ret_val)
654		return ret_val;
655
656	/* Options:
657	 *   MDI/MDI-X = 0 (default)
658	 *   0 - Auto for all speeds
659	 *   1 - MDI mode
660	 *   2 - MDI-X mode
661	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
662	 */
663	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
664
665	switch (phy->mdix) {
666	case 1:
667		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
668		break;
669	case 2:
670		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
671		break;
672	case 3:
673		/* M88E1112 does not support this mode) */
674		if (phy->id != M88E1112_E_PHY_ID) {
675			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
676			break;
677		}
678	case 0:
679	default:
680		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
681		break;
682	}
683
684	/* Options:
685	 *   disable_polarity_correction = 0 (default)
686	 *       Automatic Correction for Reversed Cable Polarity
687	 *   0 - Disabled
688	 *   1 - Enabled
689	 */
690	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
691	if (phy->disable_polarity_correction == 1)
692		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
693
694	/* Enable downshift and setting it to X6 */
695	if (phy->id == M88E1543_E_PHY_ID) {
696		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
697		ret_val =
698		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
699		if (ret_val)
700			return ret_val;
701
702		ret_val = igb_phy_sw_reset(hw);
703		if (ret_val) {
704			hw_dbg("Error committing the PHY changes\n");
705			return ret_val;
706		}
707	}
708
709	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
710	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
711	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
712
713	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
714	if (ret_val)
715		return ret_val;
716
717	/* Commit the changes. */
718	ret_val = igb_phy_sw_reset(hw);
719	if (ret_val) {
720		hw_dbg("Error committing the PHY changes\n");
721		return ret_val;
722	}
723	ret_val = igb_set_master_slave_mode(hw);
724	if (ret_val)
725		return ret_val;
726
727	return 0;
728}
729
730/**
731 *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
732 *  @hw: pointer to the HW structure
733 *
734 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
735 *  igp PHY's.
736 **/
737s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
738{
739	struct e1000_phy_info *phy = &hw->phy;
740	s32 ret_val;
741	u16 data;
742
743	if (phy->reset_disable) {
744		ret_val = 0;
745		goto out;
746	}
747
748	ret_val = phy->ops.reset(hw);
749	if (ret_val) {
750		hw_dbg("Error resetting the PHY.\n");
751		goto out;
752	}
753
754	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
755	 * timeout issues when LFS is enabled.
756	 */
757	msleep(100);
758
759	/* The NVM settings will configure LPLU in D3 for
760	 * non-IGP1 PHYs.
761	 */
762	if (phy->type == e1000_phy_igp) {
763		/* disable lplu d3 during driver init */
764		if (phy->ops.set_d3_lplu_state)
765			ret_val = phy->ops.set_d3_lplu_state(hw, false);
766		if (ret_val) {
767			hw_dbg("Error Disabling LPLU D3\n");
768			goto out;
769		}
770	}
771
772	/* disable lplu d0 during driver init */
773	ret_val = phy->ops.set_d0_lplu_state(hw, false);
774	if (ret_val) {
775		hw_dbg("Error Disabling LPLU D0\n");
776		goto out;
777	}
778	/* Configure mdi-mdix settings */
779	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
780	if (ret_val)
781		goto out;
782
783	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
784
785	switch (phy->mdix) {
786	case 1:
787		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
788		break;
789	case 2:
790		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
791		break;
792	case 0:
793	default:
794		data |= IGP01E1000_PSCR_AUTO_MDIX;
795		break;
796	}
797	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
798	if (ret_val)
799		goto out;
800
801	/* set auto-master slave resolution settings */
802	if (hw->mac.autoneg) {
803		/* when autonegotiation advertisement is only 1000Mbps then we
804		 * should disable SmartSpeed and enable Auto MasterSlave
805		 * resolution as hardware default.
806		 */
807		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
808			/* Disable SmartSpeed */
809			ret_val = phy->ops.read_reg(hw,
810						    IGP01E1000_PHY_PORT_CONFIG,
811						    &data);
812			if (ret_val)
813				goto out;
814
815			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
816			ret_val = phy->ops.write_reg(hw,
817						     IGP01E1000_PHY_PORT_CONFIG,
818						     data);
819			if (ret_val)
820				goto out;
821
822			/* Set auto Master/Slave resolution process */
823			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
824			if (ret_val)
825				goto out;
826
827			data &= ~CR_1000T_MS_ENABLE;
828			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
829			if (ret_val)
830				goto out;
831		}
832
833		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
834		if (ret_val)
835			goto out;
836
837		/* load defaults for future use */
838		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
839			((data & CR_1000T_MS_VALUE) ?
840			e1000_ms_force_master :
841			e1000_ms_force_slave) :
842			e1000_ms_auto;
843
844		switch (phy->ms_type) {
845		case e1000_ms_force_master:
846			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
847			break;
848		case e1000_ms_force_slave:
849			data |= CR_1000T_MS_ENABLE;
850			data &= ~(CR_1000T_MS_VALUE);
851			break;
852		case e1000_ms_auto:
853			data &= ~CR_1000T_MS_ENABLE;
854		default:
855			break;
856		}
857		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
858		if (ret_val)
859			goto out;
860	}
861
862out:
863	return ret_val;
864}
865
866/**
867 *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
868 *  @hw: pointer to the HW structure
869 *
870 *  Performs initial bounds checking on autoneg advertisement parameter, then
871 *  configure to advertise the full capability.  Setup the PHY to autoneg
872 *  and restart the negotiation process between the link partner.  If
873 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
874 **/
875static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
876{
877	struct e1000_phy_info *phy = &hw->phy;
878	s32 ret_val;
879	u16 phy_ctrl;
880
881	/* Perform some bounds checking on the autoneg advertisement
882	 * parameter.
883	 */
884	phy->autoneg_advertised &= phy->autoneg_mask;
885
886	/* If autoneg_advertised is zero, we assume it was not defaulted
887	 * by the calling code so we set to advertise full capability.
888	 */
889	if (phy->autoneg_advertised == 0)
890		phy->autoneg_advertised = phy->autoneg_mask;
891
892	hw_dbg("Reconfiguring auto-neg advertisement params\n");
893	ret_val = igb_phy_setup_autoneg(hw);
894	if (ret_val) {
895		hw_dbg("Error Setting up Auto-Negotiation\n");
896		goto out;
897	}
898	hw_dbg("Restarting Auto-Neg\n");
899
900	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
901	 * the Auto Neg Restart bit in the PHY control register.
902	 */
903	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
904	if (ret_val)
905		goto out;
906
907	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
908	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
909	if (ret_val)
910		goto out;
911
912	/* Does the user want to wait for Auto-Neg to complete here, or
913	 * check at a later time (for example, callback routine).
914	 */
915	if (phy->autoneg_wait_to_complete) {
916		ret_val = igb_wait_autoneg(hw);
917		if (ret_val) {
918			hw_dbg("Error while waiting for autoneg to complete\n");
919			goto out;
920		}
921	}
922
923	hw->mac.get_link_status = true;
924
925out:
926	return ret_val;
927}
928
929/**
930 *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
931 *  @hw: pointer to the HW structure
932 *
933 *  Reads the MII auto-neg advertisement register and/or the 1000T control
934 *  register and if the PHY is already setup for auto-negotiation, then
935 *  return successful.  Otherwise, setup advertisement and flow control to
936 *  the appropriate values for the wanted auto-negotiation.
937 **/
938static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
939{
940	struct e1000_phy_info *phy = &hw->phy;
941	s32 ret_val;
942	u16 mii_autoneg_adv_reg;
943	u16 mii_1000t_ctrl_reg = 0;
944
945	phy->autoneg_advertised &= phy->autoneg_mask;
946
947	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
948	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
949	if (ret_val)
950		goto out;
951
952	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
953		/* Read the MII 1000Base-T Control Register (Address 9). */
954		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
955					    &mii_1000t_ctrl_reg);
956		if (ret_val)
957			goto out;
958	}
959
960	/* Need to parse both autoneg_advertised and fc and set up
961	 * the appropriate PHY registers.  First we will parse for
962	 * autoneg_advertised software override.  Since we can advertise
963	 * a plethora of combinations, we need to check each bit
964	 * individually.
965	 */
966
967	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
968	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
969	 * the  1000Base-T Control Register (Address 9).
970	 */
971	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
972				 NWAY_AR_100TX_HD_CAPS |
973				 NWAY_AR_10T_FD_CAPS   |
974				 NWAY_AR_10T_HD_CAPS);
975	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
976
977	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
978
979	/* Do we want to advertise 10 Mb Half Duplex? */
980	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
981		hw_dbg("Advertise 10mb Half duplex\n");
982		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
983	}
984
985	/* Do we want to advertise 10 Mb Full Duplex? */
986	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
987		hw_dbg("Advertise 10mb Full duplex\n");
988		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
989	}
990
991	/* Do we want to advertise 100 Mb Half Duplex? */
992	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
993		hw_dbg("Advertise 100mb Half duplex\n");
994		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
995	}
996
997	/* Do we want to advertise 100 Mb Full Duplex? */
998	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
999		hw_dbg("Advertise 100mb Full duplex\n");
1000		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1001	}
1002
1003	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1004	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1005		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1006
1007	/* Do we want to advertise 1000 Mb Full Duplex? */
1008	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1009		hw_dbg("Advertise 1000mb Full duplex\n");
1010		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1011	}
1012
1013	/* Check for a software override of the flow control settings, and
1014	 * setup the PHY advertisement registers accordingly.  If
1015	 * auto-negotiation is enabled, then software will have to set the
1016	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1017	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1018	 * negotiation.
1019	 *
1020	 * The possible values of the "fc" parameter are:
1021	 *      0:  Flow control is completely disabled
1022	 *      1:  Rx flow control is enabled (we can receive pause frames
1023	 *          but not send pause frames).
1024	 *      2:  Tx flow control is enabled (we can send pause frames
1025	 *          but we do not support receiving pause frames).
1026	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1027	 *  other:  No software override.  The flow control configuration
1028	 *          in the EEPROM is used.
1029	 */
1030	switch (hw->fc.current_mode) {
1031	case e1000_fc_none:
1032		/* Flow control (RX & TX) is completely disabled by a
1033		 * software over-ride.
1034		 */
1035		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1036		break;
1037	case e1000_fc_rx_pause:
1038		/* RX Flow control is enabled, and TX Flow control is
1039		 * disabled, by a software over-ride.
1040		 *
1041		 * Since there really isn't a way to advertise that we are
1042		 * capable of RX Pause ONLY, we will advertise that we
1043		 * support both symmetric and asymmetric RX PAUSE.  Later
1044		 * (in e1000_config_fc_after_link_up) we will disable the
1045		 * hw's ability to send PAUSE frames.
1046		 */
1047		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1048		break;
1049	case e1000_fc_tx_pause:
1050		/* TX Flow control is enabled, and RX Flow control is
1051		 * disabled, by a software over-ride.
1052		 */
1053		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1054		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1055		break;
1056	case e1000_fc_full:
1057		/* Flow control (both RX and TX) is enabled by a software
1058		 * over-ride.
1059		 */
1060		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1061		break;
1062	default:
1063		hw_dbg("Flow control param set incorrectly\n");
1064		ret_val = -E1000_ERR_CONFIG;
1065		goto out;
1066	}
1067
1068	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1069	if (ret_val)
1070		goto out;
1071
1072	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1073
1074	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1075		ret_val = phy->ops.write_reg(hw,
1076					     PHY_1000T_CTRL,
1077					     mii_1000t_ctrl_reg);
1078		if (ret_val)
1079			goto out;
1080	}
1081
1082out:
1083	return ret_val;
1084}
1085
1086/**
1087 *  igb_setup_copper_link - Configure copper link settings
1088 *  @hw: pointer to the HW structure
1089 *
1090 *  Calls the appropriate function to configure the link for auto-neg or forced
1091 *  speed and duplex.  Then we check for link, once link is established calls
1092 *  to configure collision distance and flow control are called.  If link is
1093 *  not established, we return -E1000_ERR_PHY (-2).
1094 **/
1095s32 igb_setup_copper_link(struct e1000_hw *hw)
1096{
1097	s32 ret_val;
1098	bool link;
1099
1100	if (hw->mac.autoneg) {
1101		/* Setup autoneg and flow control advertisement and perform
1102		 * autonegotiation.
1103		 */
1104		ret_val = igb_copper_link_autoneg(hw);
1105		if (ret_val)
1106			goto out;
1107	} else {
1108		/* PHY will be set to 10H, 10F, 100H or 100F
1109		 * depending on user settings.
1110		 */
1111		hw_dbg("Forcing Speed and Duplex\n");
1112		ret_val = hw->phy.ops.force_speed_duplex(hw);
1113		if (ret_val) {
1114			hw_dbg("Error Forcing Speed and Duplex\n");
1115			goto out;
1116		}
1117	}
1118
1119	/* Check link status. Wait up to 100 microseconds for link to become
1120	 * valid.
1121	 */
1122	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1123	if (ret_val)
1124		goto out;
1125
1126	if (link) {
1127		hw_dbg("Valid link established!!!\n");
1128		igb_config_collision_dist(hw);
1129		ret_val = igb_config_fc_after_link_up(hw);
1130	} else {
1131		hw_dbg("Unable to establish link!!!\n");
1132	}
1133
1134out:
1135	return ret_val;
1136}
1137
1138/**
1139 *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1140 *  @hw: pointer to the HW structure
1141 *
1142 *  Calls the PHY setup function to force speed and duplex.  Clears the
1143 *  auto-crossover to force MDI manually.  Waits for link and returns
1144 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1145 **/
1146s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1147{
1148	struct e1000_phy_info *phy = &hw->phy;
1149	s32 ret_val;
1150	u16 phy_data;
1151	bool link;
1152
1153	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1154	if (ret_val)
1155		goto out;
1156
1157	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1158
1159	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1160	if (ret_val)
1161		goto out;
1162
1163	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1164	 * forced whenever speed and duplex are forced.
1165	 */
1166	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1167	if (ret_val)
1168		goto out;
1169
1170	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1171	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1172
1173	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1174	if (ret_val)
1175		goto out;
1176
1177	hw_dbg("IGP PSCR: %X\n", phy_data);
1178
1179	udelay(1);
1180
1181	if (phy->autoneg_wait_to_complete) {
1182		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1183
1184		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1185		if (ret_val)
1186			goto out;
1187
1188		if (!link)
1189			hw_dbg("Link taking longer than expected.\n");
1190
1191		/* Try once more */
1192		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1193		if (ret_val)
1194			goto out;
1195	}
1196
1197out:
1198	return ret_val;
1199}
1200
1201/**
1202 *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1203 *  @hw: pointer to the HW structure
1204 *
1205 *  Calls the PHY setup function to force speed and duplex.  Clears the
1206 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1207 *  changes.  If time expires while waiting for link up, we reset the DSP.
1208 *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1209 *  successful completion, else return corresponding error code.
1210 **/
1211s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1212{
1213	struct e1000_phy_info *phy = &hw->phy;
1214	s32 ret_val;
1215	u16 phy_data;
1216	bool link;
1217
1218	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1219	if (phy->type != e1000_phy_i210) {
1220		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1221		 * requires MDI forced whenever speed and duplex are forced.
1222		 */
1223		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1224					    &phy_data);
1225		if (ret_val)
1226			goto out;
1227
1228		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1229		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1230					     phy_data);
1231		if (ret_val)
1232			goto out;
1233
1234		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1235	}
1236
1237	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1238	if (ret_val)
1239		goto out;
1240
1241	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1242
1243	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1244	if (ret_val)
1245		goto out;
1246
1247	/* Reset the phy to commit changes. */
1248	ret_val = igb_phy_sw_reset(hw);
1249	if (ret_val)
1250		goto out;
1251
1252	if (phy->autoneg_wait_to_complete) {
1253		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1254
1255		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1256		if (ret_val)
1257			goto out;
1258
1259		if (!link) {
1260			bool reset_dsp = true;
1261
1262			switch (hw->phy.id) {
1263			case I347AT4_E_PHY_ID:
1264			case M88E1112_E_PHY_ID:
1265			case M88E1543_E_PHY_ID:
1266			case M88E1512_E_PHY_ID:
1267			case I210_I_PHY_ID:
1268				reset_dsp = false;
1269				break;
1270			default:
1271				if (hw->phy.type != e1000_phy_m88)
1272					reset_dsp = false;
1273				break;
1274			}
1275			if (!reset_dsp) {
1276				hw_dbg("Link taking longer than expected.\n");
1277			} else {
1278				/* We didn't get link.
1279				 * Reset the DSP and cross our fingers.
1280				 */
1281				ret_val = phy->ops.write_reg(hw,
1282						M88E1000_PHY_PAGE_SELECT,
1283						0x001d);
1284				if (ret_val)
1285					goto out;
1286				ret_val = igb_phy_reset_dsp(hw);
1287				if (ret_val)
1288					goto out;
1289			}
1290		}
1291
1292		/* Try once more */
1293		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1294					   100000, &link);
1295		if (ret_val)
1296			goto out;
1297	}
1298
1299	if (hw->phy.type != e1000_phy_m88 ||
1300	    hw->phy.id == I347AT4_E_PHY_ID ||
1301	    hw->phy.id == M88E1112_E_PHY_ID ||
1302	    hw->phy.id == M88E1543_E_PHY_ID ||
1303	    hw->phy.id == M88E1512_E_PHY_ID ||
1304	    hw->phy.id == I210_I_PHY_ID)
1305		goto out;
1306
1307	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1308	if (ret_val)
1309		goto out;
1310
1311	/* Resetting the phy means we need to re-force TX_CLK in the
1312	 * Extended PHY Specific Control Register to 25MHz clock from
1313	 * the reset value of 2.5MHz.
1314	 */
1315	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1316	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1317	if (ret_val)
1318		goto out;
1319
1320	/* In addition, we must re-enable CRS on Tx for both half and full
1321	 * duplex.
1322	 */
1323	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1324	if (ret_val)
1325		goto out;
1326
1327	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1328	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1329
1330out:
1331	return ret_val;
1332}
1333
1334/**
1335 *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1336 *  @hw: pointer to the HW structure
1337 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1338 *
1339 *  Forces speed and duplex on the PHY by doing the following: disable flow
1340 *  control, force speed/duplex on the MAC, disable auto speed detection,
1341 *  disable auto-negotiation, configure duplex, configure speed, configure
1342 *  the collision distance, write configuration to CTRL register.  The
1343 *  caller must write to the PHY_CONTROL register for these settings to
1344 *  take affect.
1345 **/
1346static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1347					     u16 *phy_ctrl)
1348{
1349	struct e1000_mac_info *mac = &hw->mac;
1350	u32 ctrl;
1351
1352	/* Turn off flow control when forcing speed/duplex */
1353	hw->fc.current_mode = e1000_fc_none;
1354
1355	/* Force speed/duplex on the mac */
1356	ctrl = rd32(E1000_CTRL);
1357	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1358	ctrl &= ~E1000_CTRL_SPD_SEL;
1359
1360	/* Disable Auto Speed Detection */
1361	ctrl &= ~E1000_CTRL_ASDE;
1362
1363	/* Disable autoneg on the phy */
1364	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1365
1366	/* Forcing Full or Half Duplex? */
1367	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1368		ctrl &= ~E1000_CTRL_FD;
1369		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1370		hw_dbg("Half Duplex\n");
1371	} else {
1372		ctrl |= E1000_CTRL_FD;
1373		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1374		hw_dbg("Full Duplex\n");
1375	}
1376
1377	/* Forcing 10mb or 100mb? */
1378	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1379		ctrl |= E1000_CTRL_SPD_100;
1380		*phy_ctrl |= MII_CR_SPEED_100;
1381		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1382		hw_dbg("Forcing 100mb\n");
1383	} else {
1384		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1385		*phy_ctrl |= MII_CR_SPEED_10;
1386		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1387		hw_dbg("Forcing 10mb\n");
1388	}
1389
1390	igb_config_collision_dist(hw);
1391
1392	wr32(E1000_CTRL, ctrl);
1393}
1394
1395/**
1396 *  igb_set_d3_lplu_state - Sets low power link up state for D3
1397 *  @hw: pointer to the HW structure
1398 *  @active: boolean used to enable/disable lplu
1399 *
1400 *  Success returns 0, Failure returns 1
1401 *
1402 *  The low power link up (lplu) state is set to the power management level D3
1403 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1404 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1405 *  is used during Dx states where the power conservation is most important.
1406 *  During driver activity, SmartSpeed should be enabled so performance is
1407 *  maintained.
1408 **/
1409s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1410{
1411	struct e1000_phy_info *phy = &hw->phy;
1412	s32 ret_val = 0;
1413	u16 data;
1414
1415	if (!(hw->phy.ops.read_reg))
1416		goto out;
1417
1418	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1419	if (ret_val)
1420		goto out;
1421
1422	if (!active) {
1423		data &= ~IGP02E1000_PM_D3_LPLU;
1424		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1425					     data);
1426		if (ret_val)
1427			goto out;
1428		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1429		 * during Dx states where the power conservation is most
1430		 * important.  During driver activity we should enable
1431		 * SmartSpeed, so performance is maintained.
1432		 */
1433		if (phy->smart_speed == e1000_smart_speed_on) {
1434			ret_val = phy->ops.read_reg(hw,
1435						    IGP01E1000_PHY_PORT_CONFIG,
1436						    &data);
1437			if (ret_val)
1438				goto out;
1439
1440			data |= IGP01E1000_PSCFR_SMART_SPEED;
1441			ret_val = phy->ops.write_reg(hw,
1442						     IGP01E1000_PHY_PORT_CONFIG,
1443						     data);
1444			if (ret_val)
1445				goto out;
1446		} else if (phy->smart_speed == e1000_smart_speed_off) {
1447			ret_val = phy->ops.read_reg(hw,
1448						     IGP01E1000_PHY_PORT_CONFIG,
1449						     &data);
1450			if (ret_val)
1451				goto out;
1452
1453			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1454			ret_val = phy->ops.write_reg(hw,
1455						     IGP01E1000_PHY_PORT_CONFIG,
1456						     data);
1457			if (ret_val)
1458				goto out;
1459		}
1460	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1461		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1462		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1463		data |= IGP02E1000_PM_D3_LPLU;
1464		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1465					      data);
1466		if (ret_val)
1467			goto out;
1468
1469		/* When LPLU is enabled, we should disable SmartSpeed */
1470		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1471					    &data);
1472		if (ret_val)
1473			goto out;
1474
1475		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1476		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1477					     data);
1478	}
1479
1480out:
1481	return ret_val;
1482}
1483
1484/**
1485 *  igb_check_downshift - Checks whether a downshift in speed occurred
1486 *  @hw: pointer to the HW structure
1487 *
1488 *  Success returns 0, Failure returns 1
1489 *
1490 *  A downshift is detected by querying the PHY link health.
1491 **/
1492s32 igb_check_downshift(struct e1000_hw *hw)
1493{
1494	struct e1000_phy_info *phy = &hw->phy;
1495	s32 ret_val;
1496	u16 phy_data, offset, mask;
1497
1498	switch (phy->type) {
1499	case e1000_phy_i210:
1500	case e1000_phy_m88:
1501	case e1000_phy_gg82563:
1502		offset	= M88E1000_PHY_SPEC_STATUS;
1503		mask	= M88E1000_PSSR_DOWNSHIFT;
1504		break;
1505	case e1000_phy_igp_2:
1506	case e1000_phy_igp:
1507	case e1000_phy_igp_3:
1508		offset	= IGP01E1000_PHY_LINK_HEALTH;
1509		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1510		break;
1511	default:
1512		/* speed downshift not supported */
1513		phy->speed_downgraded = false;
1514		ret_val = 0;
1515		goto out;
1516	}
1517
1518	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1519
1520	if (!ret_val)
1521		phy->speed_downgraded = (phy_data & mask) ? true : false;
1522
1523out:
1524	return ret_val;
1525}
1526
1527/**
1528 *  igb_check_polarity_m88 - Checks the polarity.
1529 *  @hw: pointer to the HW structure
1530 *
1531 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1532 *
1533 *  Polarity is determined based on the PHY specific status register.
1534 **/
1535s32 igb_check_polarity_m88(struct e1000_hw *hw)
1536{
1537	struct e1000_phy_info *phy = &hw->phy;
1538	s32 ret_val;
1539	u16 data;
1540
1541	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1542
1543	if (!ret_val)
1544		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1545				      ? e1000_rev_polarity_reversed
1546				      : e1000_rev_polarity_normal;
1547
1548	return ret_val;
1549}
1550
1551/**
1552 *  igb_check_polarity_igp - Checks the polarity.
1553 *  @hw: pointer to the HW structure
1554 *
1555 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1556 *
1557 *  Polarity is determined based on the PHY port status register, and the
1558 *  current speed (since there is no polarity at 100Mbps).
1559 **/
1560static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1561{
1562	struct e1000_phy_info *phy = &hw->phy;
1563	s32 ret_val;
1564	u16 data, offset, mask;
1565
1566	/* Polarity is determined based on the speed of
1567	 * our connection.
1568	 */
1569	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1570	if (ret_val)
1571		goto out;
1572
1573	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1574	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1575		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1576		mask	= IGP01E1000_PHY_POLARITY_MASK;
1577	} else {
1578		/* This really only applies to 10Mbps since
1579		 * there is no polarity for 100Mbps (always 0).
1580		 */
1581		offset	= IGP01E1000_PHY_PORT_STATUS;
1582		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1583	}
1584
1585	ret_val = phy->ops.read_reg(hw, offset, &data);
1586
1587	if (!ret_val)
1588		phy->cable_polarity = (data & mask)
1589				      ? e1000_rev_polarity_reversed
1590				      : e1000_rev_polarity_normal;
1591
1592out:
1593	return ret_val;
1594}
1595
1596/**
1597 *  igb_wait_autoneg - Wait for auto-neg completion
1598 *  @hw: pointer to the HW structure
1599 *
1600 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1601 *  limit to expire, which ever happens first.
1602 **/
1603static s32 igb_wait_autoneg(struct e1000_hw *hw)
1604{
1605	s32 ret_val = 0;
1606	u16 i, phy_status;
1607
1608	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1609	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1610		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1611		if (ret_val)
1612			break;
1613		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1614		if (ret_val)
1615			break;
1616		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1617			break;
1618		msleep(100);
1619	}
1620
1621	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1622	 * has completed.
1623	 */
1624	return ret_val;
1625}
1626
1627/**
1628 *  igb_phy_has_link - Polls PHY for link
1629 *  @hw: pointer to the HW structure
1630 *  @iterations: number of times to poll for link
1631 *  @usec_interval: delay between polling attempts
1632 *  @success: pointer to whether polling was successful or not
1633 *
1634 *  Polls the PHY status register for link, 'iterations' number of times.
1635 **/
1636s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1637		     u32 usec_interval, bool *success)
1638{
1639	s32 ret_val = 0;
1640	u16 i, phy_status;
1641
1642	for (i = 0; i < iterations; i++) {
1643		/* Some PHYs require the PHY_STATUS register to be read
1644		 * twice due to the link bit being sticky.  No harm doing
1645		 * it across the board.
1646		 */
1647		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1648		if (ret_val && usec_interval > 0) {
1649			/* If the first read fails, another entity may have
1650			 * ownership of the resources, wait and try again to
1651			 * see if they have relinquished the resources yet.
1652			 */
1653			if (usec_interval >= 1000)
1654				mdelay(usec_interval/1000);
1655			else
1656				udelay(usec_interval);
1657		}
1658		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1659		if (ret_val)
1660			break;
1661		if (phy_status & MII_SR_LINK_STATUS)
1662			break;
1663		if (usec_interval >= 1000)
1664			mdelay(usec_interval/1000);
1665		else
1666			udelay(usec_interval);
1667	}
1668
1669	*success = (i < iterations) ? true : false;
1670
1671	return ret_val;
1672}
1673
1674/**
1675 *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1676 *  @hw: pointer to the HW structure
1677 *
1678 *  Reads the PHY specific status register to retrieve the cable length
1679 *  information.  The cable length is determined by averaging the minimum and
1680 *  maximum values to get the "average" cable length.  The m88 PHY has four
1681 *  possible cable length values, which are:
1682 *	Register Value		Cable Length
1683 *	0			< 50 meters
1684 *	1			50 - 80 meters
1685 *	2			80 - 110 meters
1686 *	3			110 - 140 meters
1687 *	4			> 140 meters
1688 **/
1689s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1690{
1691	struct e1000_phy_info *phy = &hw->phy;
1692	s32 ret_val;
1693	u16 phy_data, index;
1694
1695	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1696	if (ret_val)
1697		goto out;
1698
1699	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1700		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1701	if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1702		ret_val = -E1000_ERR_PHY;
1703		goto out;
1704	}
1705
1706	phy->min_cable_length = e1000_m88_cable_length_table[index];
1707	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1708
1709	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1710
1711out:
1712	return ret_val;
1713}
1714
1715s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1716{
1717	struct e1000_phy_info *phy = &hw->phy;
1718	s32 ret_val;
1719	u16 phy_data, phy_data2, index, default_page, is_cm;
1720
1721	switch (hw->phy.id) {
1722	case I210_I_PHY_ID:
1723		/* Get cable length from PHY Cable Diagnostics Control Reg */
1724		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1725					    (I347AT4_PCDL + phy->addr),
1726					    &phy_data);
1727		if (ret_val)
1728			return ret_val;
1729
1730		/* Check if the unit of cable length is meters or cm */
1731		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1732					    I347AT4_PCDC, &phy_data2);
1733		if (ret_val)
1734			return ret_val;
1735
1736		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1737
1738		/* Populate the phy structure with cable length in meters */
1739		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1740		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1741		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1742		break;
1743	case M88E1543_E_PHY_ID:
1744	case M88E1512_E_PHY_ID:
1745	case I347AT4_E_PHY_ID:
1746		/* Remember the original page select and set it to 7 */
1747		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1748					    &default_page);
1749		if (ret_val)
1750			goto out;
1751
1752		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1753		if (ret_val)
1754			goto out;
1755
1756		/* Get cable length from PHY Cable Diagnostics Control Reg */
1757		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1758					    &phy_data);
1759		if (ret_val)
1760			goto out;
1761
1762		/* Check if the unit of cable length is meters or cm */
1763		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1764		if (ret_val)
1765			goto out;
1766
1767		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1768
1769		/* Populate the phy structure with cable length in meters */
1770		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1771		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1772		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1773
1774		/* Reset the page selec to its original value */
1775		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1776					     default_page);
1777		if (ret_val)
1778			goto out;
1779		break;
1780	case M88E1112_E_PHY_ID:
1781		/* Remember the original page select and set it to 5 */
1782		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1783					    &default_page);
1784		if (ret_val)
1785			goto out;
1786
1787		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1788		if (ret_val)
1789			goto out;
1790
1791		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1792					    &phy_data);
1793		if (ret_val)
1794			goto out;
1795
1796		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1797			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1798		if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1799			ret_val = -E1000_ERR_PHY;
1800			goto out;
1801		}
1802
1803		phy->min_cable_length = e1000_m88_cable_length_table[index];
1804		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1805
1806		phy->cable_length = (phy->min_cable_length +
1807				     phy->max_cable_length) / 2;
1808
1809		/* Reset the page select to its original value */
1810		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1811					     default_page);
1812		if (ret_val)
1813			goto out;
1814
1815		break;
1816	default:
1817		ret_val = -E1000_ERR_PHY;
1818		goto out;
1819	}
1820
1821out:
1822	return ret_val;
1823}
1824
1825/**
1826 *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1827 *  @hw: pointer to the HW structure
1828 *
1829 *  The automatic gain control (agc) normalizes the amplitude of the
1830 *  received signal, adjusting for the attenuation produced by the
1831 *  cable.  By reading the AGC registers, which represent the
1832 *  combination of coarse and fine gain value, the value can be put
1833 *  into a lookup table to obtain the approximate cable length
1834 *  for each channel.
1835 **/
1836s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1837{
1838	struct e1000_phy_info *phy = &hw->phy;
1839	s32 ret_val = 0;
1840	u16 phy_data, i, agc_value = 0;
1841	u16 cur_agc_index, max_agc_index = 0;
1842	u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
1843	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1844		IGP02E1000_PHY_AGC_A,
1845		IGP02E1000_PHY_AGC_B,
1846		IGP02E1000_PHY_AGC_C,
1847		IGP02E1000_PHY_AGC_D
1848	};
1849
1850	/* Read the AGC registers for all channels */
1851	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1852		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1853		if (ret_val)
1854			goto out;
1855
1856		/* Getting bits 15:9, which represent the combination of
1857		 * coarse and fine gain values.  The result is a number
1858		 * that can be put into the lookup table to obtain the
1859		 * approximate cable length.
1860		 */
1861		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1862				IGP02E1000_AGC_LENGTH_MASK;
1863
1864		/* Array index bound check. */
1865		if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
1866		    (cur_agc_index == 0)) {
1867			ret_val = -E1000_ERR_PHY;
1868			goto out;
1869		}
1870
1871		/* Remove min & max AGC values from calculation. */
1872		if (e1000_igp_2_cable_length_table[min_agc_index] >
1873		    e1000_igp_2_cable_length_table[cur_agc_index])
1874			min_agc_index = cur_agc_index;
1875		if (e1000_igp_2_cable_length_table[max_agc_index] <
1876		    e1000_igp_2_cable_length_table[cur_agc_index])
1877			max_agc_index = cur_agc_index;
1878
1879		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1880	}
1881
1882	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1883		      e1000_igp_2_cable_length_table[max_agc_index]);
1884	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1885
1886	/* Calculate cable length with the error range of +/- 10 meters. */
1887	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1888				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1889	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1890
1891	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1892
1893out:
1894	return ret_val;
1895}
1896
1897/**
1898 *  igb_get_phy_info_m88 - Retrieve PHY information
1899 *  @hw: pointer to the HW structure
1900 *
1901 *  Valid for only copper links.  Read the PHY status register (sticky read)
1902 *  to verify that link is up.  Read the PHY special control register to
1903 *  determine the polarity and 10base-T extended distance.  Read the PHY
1904 *  special status register to determine MDI/MDIx and current speed.  If
1905 *  speed is 1000, then determine cable length, local and remote receiver.
1906 **/
1907s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1908{
1909	struct e1000_phy_info *phy = &hw->phy;
1910	s32  ret_val;
1911	u16 phy_data;
1912	bool link;
1913
1914	if (phy->media_type != e1000_media_type_copper) {
1915		hw_dbg("Phy info is only valid for copper media\n");
1916		ret_val = -E1000_ERR_CONFIG;
1917		goto out;
1918	}
1919
1920	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1921	if (ret_val)
1922		goto out;
1923
1924	if (!link) {
1925		hw_dbg("Phy info is only valid if link is up\n");
1926		ret_val = -E1000_ERR_CONFIG;
1927		goto out;
1928	}
1929
1930	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1931	if (ret_val)
1932		goto out;
1933
1934	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1935				   ? true : false;
1936
1937	ret_val = igb_check_polarity_m88(hw);
1938	if (ret_val)
1939		goto out;
1940
1941	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1942	if (ret_val)
1943		goto out;
1944
1945	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1946
1947	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1948		ret_val = phy->ops.get_cable_length(hw);
1949		if (ret_val)
1950			goto out;
1951
1952		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1953		if (ret_val)
1954			goto out;
1955
1956		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1957				? e1000_1000t_rx_status_ok
1958				: e1000_1000t_rx_status_not_ok;
1959
1960		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1961				 ? e1000_1000t_rx_status_ok
1962				 : e1000_1000t_rx_status_not_ok;
1963	} else {
1964		/* Set values to "undefined" */
1965		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1966		phy->local_rx = e1000_1000t_rx_status_undefined;
1967		phy->remote_rx = e1000_1000t_rx_status_undefined;
1968	}
1969
1970out:
1971	return ret_val;
1972}
1973
1974/**
1975 *  igb_get_phy_info_igp - Retrieve igp PHY information
1976 *  @hw: pointer to the HW structure
1977 *
1978 *  Read PHY status to determine if link is up.  If link is up, then
1979 *  set/determine 10base-T extended distance and polarity correction.  Read
1980 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1981 *  determine on the cable length, local and remote receiver.
1982 **/
1983s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1984{
1985	struct e1000_phy_info *phy = &hw->phy;
1986	s32 ret_val;
1987	u16 data;
1988	bool link;
1989
1990	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1991	if (ret_val)
1992		goto out;
1993
1994	if (!link) {
1995		hw_dbg("Phy info is only valid if link is up\n");
1996		ret_val = -E1000_ERR_CONFIG;
1997		goto out;
1998	}
1999
2000	phy->polarity_correction = true;
2001
2002	ret_val = igb_check_polarity_igp(hw);
2003	if (ret_val)
2004		goto out;
2005
2006	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2007	if (ret_val)
2008		goto out;
2009
2010	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2011
2012	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2013	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2014		ret_val = phy->ops.get_cable_length(hw);
2015		if (ret_val)
2016			goto out;
2017
2018		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2019		if (ret_val)
2020			goto out;
2021
2022		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2023				? e1000_1000t_rx_status_ok
2024				: e1000_1000t_rx_status_not_ok;
2025
2026		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2027				 ? e1000_1000t_rx_status_ok
2028				 : e1000_1000t_rx_status_not_ok;
2029	} else {
2030		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2031		phy->local_rx = e1000_1000t_rx_status_undefined;
2032		phy->remote_rx = e1000_1000t_rx_status_undefined;
2033	}
2034
2035out:
2036	return ret_val;
2037}
2038
2039/**
2040 *  igb_phy_sw_reset - PHY software reset
2041 *  @hw: pointer to the HW structure
2042 *
2043 *  Does a software reset of the PHY by reading the PHY control register and
2044 *  setting/write the control register reset bit to the PHY.
2045 **/
2046s32 igb_phy_sw_reset(struct e1000_hw *hw)
2047{
2048	s32 ret_val = 0;
2049	u16 phy_ctrl;
2050
2051	if (!(hw->phy.ops.read_reg))
2052		goto out;
2053
2054	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2055	if (ret_val)
2056		goto out;
2057
2058	phy_ctrl |= MII_CR_RESET;
2059	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2060	if (ret_val)
2061		goto out;
2062
2063	udelay(1);
2064
2065out:
2066	return ret_val;
2067}
2068
2069/**
2070 *  igb_phy_hw_reset - PHY hardware reset
2071 *  @hw: pointer to the HW structure
2072 *
2073 *  Verify the reset block is not blocking us from resetting.  Acquire
2074 *  semaphore (if necessary) and read/set/write the device control reset
2075 *  bit in the PHY.  Wait the appropriate delay time for the device to
2076 *  reset and release the semaphore (if necessary).
2077 **/
2078s32 igb_phy_hw_reset(struct e1000_hw *hw)
2079{
2080	struct e1000_phy_info *phy = &hw->phy;
2081	s32  ret_val;
2082	u32 ctrl;
2083
2084	ret_val = igb_check_reset_block(hw);
2085	if (ret_val) {
2086		ret_val = 0;
2087		goto out;
2088	}
2089
2090	ret_val = phy->ops.acquire(hw);
2091	if (ret_val)
2092		goto out;
2093
2094	ctrl = rd32(E1000_CTRL);
2095	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2096	wrfl();
2097
2098	udelay(phy->reset_delay_us);
2099
2100	wr32(E1000_CTRL, ctrl);
2101	wrfl();
2102
2103	udelay(150);
2104
2105	phy->ops.release(hw);
2106
2107	ret_val = phy->ops.get_cfg_done(hw);
2108
2109out:
2110	return ret_val;
2111}
2112
2113/**
2114 *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2115 *  @hw: pointer to the HW structure
2116 *
2117 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2118 **/
2119s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2120{
2121	hw_dbg("Running IGP 3 PHY init script\n");
2122
2123	/* PHY init IGP 3 */
2124	/* Enable rise/fall, 10-mode work in class-A */
2125	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2126	/* Remove all caps from Replica path filter */
2127	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2128	/* Bias trimming for ADC, AFE and Driver (Default) */
2129	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2130	/* Increase Hybrid poly bias */
2131	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2132	/* Add 4% to TX amplitude in Giga mode */
2133	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2134	/* Disable trimming (TTT) */
2135	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2136	/* Poly DC correction to 94.6% + 2% for all channels */
2137	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2138	/* ABS DC correction to 95.9% */
2139	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2140	/* BG temp curve trim */
2141	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2142	/* Increasing ADC OPAMP stage 1 currents to max */
2143	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2144	/* Force 1000 ( required for enabling PHY regs configuration) */
2145	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2146	/* Set upd_freq to 6 */
2147	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2148	/* Disable NPDFE */
2149	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2150	/* Disable adaptive fixed FFE (Default) */
2151	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2152	/* Enable FFE hysteresis */
2153	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2154	/* Fixed FFE for short cable lengths */
2155	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2156	/* Fixed FFE for medium cable lengths */
2157	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2158	/* Fixed FFE for long cable lengths */
2159	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2160	/* Enable Adaptive Clip Threshold */
2161	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2162	/* AHT reset limit to 1 */
2163	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2164	/* Set AHT master delay to 127 msec */
2165	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2166	/* Set scan bits for AHT */
2167	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2168	/* Set AHT Preset bits */
2169	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2170	/* Change integ_factor of channel A to 3 */
2171	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2172	/* Change prop_factor of channels BCD to 8 */
2173	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2174	/* Change cg_icount + enable integbp for channels BCD */
2175	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2176	/* Change cg_icount + enable integbp + change prop_factor_master
2177	 * to 8 for channel A
2178	 */
2179	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2180	/* Disable AHT in Slave mode on channel A */
2181	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2182	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2183	 * Enable SPD+B2B
2184	 */
2185	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2186	/* Enable restart AN on an1000_dis change */
2187	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2188	/* Enable wh_fifo read clock in 10/100 modes */
2189	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2190	/* Restart AN, Speed selection is 1000 */
2191	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2192
2193	return 0;
2194}
2195
2196/**
2197 *  igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2198 *  @hw: pointer to the HW structure
2199 *
2200 *  Initialize Marvel 1512 to work correctly with Avoton.
2201 **/
2202s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
2203{
2204	struct e1000_phy_info *phy = &hw->phy;
2205	s32 ret_val = 0;
2206
2207	/* Switch to PHY page 0xFF. */
2208	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2209	if (ret_val)
2210		goto out;
2211
2212	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2213	if (ret_val)
2214		goto out;
2215
2216	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2217	if (ret_val)
2218		goto out;
2219
2220	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2221	if (ret_val)
2222		goto out;
2223
2224	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2225	if (ret_val)
2226		goto out;
2227
2228	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2229	if (ret_val)
2230		goto out;
2231
2232	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2233	if (ret_val)
2234		goto out;
2235
2236	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2237	if (ret_val)
2238		goto out;
2239
2240	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2241	if (ret_val)
2242		goto out;
2243
2244	/* Switch to PHY page 0xFB. */
2245	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2246	if (ret_val)
2247		goto out;
2248
2249	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2250	if (ret_val)
2251		goto out;
2252
2253	/* Switch to PHY page 0x12. */
2254	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2255	if (ret_val)
2256		goto out;
2257
2258	/* Change mode to SGMII-to-Copper */
2259	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2260	if (ret_val)
2261		goto out;
2262
2263	/* Return the PHY to page 0. */
2264	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2265	if (ret_val)
2266		goto out;
2267
2268	ret_val = igb_phy_sw_reset(hw);
2269	if (ret_val) {
2270		hw_dbg("Error committing the PHY changes\n");
2271		return ret_val;
2272	}
2273
2274	/* msec_delay(1000); */
2275	usleep_range(1000, 2000);
2276out:
2277	return ret_val;
2278}
2279
2280/**
2281 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2282 * @hw: pointer to the HW structure
2283 *
2284 * In the case of a PHY power down to save power, or to turn off link during a
2285 * driver unload, restore the link to previous settings.
2286 **/
2287void igb_power_up_phy_copper(struct e1000_hw *hw)
2288{
2289	u16 mii_reg = 0;
2290
2291	/* The PHY will retain its settings across a power down/up cycle */
2292	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2293	mii_reg &= ~MII_CR_POWER_DOWN;
2294	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2295}
2296
2297/**
2298 * igb_power_down_phy_copper - Power down copper PHY
2299 * @hw: pointer to the HW structure
2300 *
2301 * Power down PHY to save power when interface is down and wake on lan
2302 * is not enabled.
2303 **/
2304void igb_power_down_phy_copper(struct e1000_hw *hw)
2305{
2306	u16 mii_reg = 0;
2307
2308	/* The PHY will retain its settings across a power down/up cycle */
2309	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2310	mii_reg |= MII_CR_POWER_DOWN;
2311	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2312	usleep_range(1000, 2000);
2313}
2314
2315/**
2316 *  igb_check_polarity_82580 - Checks the polarity.
2317 *  @hw: pointer to the HW structure
2318 *
2319 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2320 *
2321 *  Polarity is determined based on the PHY specific status register.
2322 **/
2323static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2324{
2325	struct e1000_phy_info *phy = &hw->phy;
2326	s32 ret_val;
2327	u16 data;
2328
2329
2330	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2331
2332	if (!ret_val)
2333		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2334				      ? e1000_rev_polarity_reversed
2335				      : e1000_rev_polarity_normal;
2336
2337	return ret_val;
2338}
2339
2340/**
2341 *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2342 *  @hw: pointer to the HW structure
2343 *
2344 *  Calls the PHY setup function to force speed and duplex.  Clears the
2345 *  auto-crossover to force MDI manually.  Waits for link and returns
2346 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2347 **/
2348s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2349{
2350	struct e1000_phy_info *phy = &hw->phy;
2351	s32 ret_val;
2352	u16 phy_data;
2353	bool link;
2354
2355	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2356	if (ret_val)
2357		goto out;
2358
2359	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2360
2361	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2362	if (ret_val)
2363		goto out;
2364
2365	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2366	 * forced whenever speed and duplex are forced.
2367	 */
2368	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2369	if (ret_val)
2370		goto out;
2371
2372	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2373
2374	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2375	if (ret_val)
2376		goto out;
2377
2378	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2379
2380	udelay(1);
2381
2382	if (phy->autoneg_wait_to_complete) {
2383		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2384
2385		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2386		if (ret_val)
2387			goto out;
2388
2389		if (!link)
2390			hw_dbg("Link taking longer than expected.\n");
2391
2392		/* Try once more */
2393		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2394		if (ret_val)
2395			goto out;
2396	}
2397
2398out:
2399	return ret_val;
2400}
2401
2402/**
2403 *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2404 *  @hw: pointer to the HW structure
2405 *
2406 *  Read PHY status to determine if link is up.  If link is up, then
2407 *  set/determine 10base-T extended distance and polarity correction.  Read
2408 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2409 *  determine on the cable length, local and remote receiver.
2410 **/
2411s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2412{
2413	struct e1000_phy_info *phy = &hw->phy;
2414	s32 ret_val;
2415	u16 data;
2416	bool link;
2417
2418	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2419	if (ret_val)
2420		goto out;
2421
2422	if (!link) {
2423		hw_dbg("Phy info is only valid if link is up\n");
2424		ret_val = -E1000_ERR_CONFIG;
2425		goto out;
2426	}
2427
2428	phy->polarity_correction = true;
2429
2430	ret_val = igb_check_polarity_82580(hw);
2431	if (ret_val)
2432		goto out;
2433
2434	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2435	if (ret_val)
2436		goto out;
2437
2438	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2439
2440	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2441	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2442		ret_val = hw->phy.ops.get_cable_length(hw);
2443		if (ret_val)
2444			goto out;
2445
2446		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2447		if (ret_val)
2448			goto out;
2449
2450		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2451				? e1000_1000t_rx_status_ok
2452				: e1000_1000t_rx_status_not_ok;
2453
2454		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2455				 ? e1000_1000t_rx_status_ok
2456				 : e1000_1000t_rx_status_not_ok;
2457	} else {
2458		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2459		phy->local_rx = e1000_1000t_rx_status_undefined;
2460		phy->remote_rx = e1000_1000t_rx_status_undefined;
2461	}
2462
2463out:
2464	return ret_val;
2465}
2466
2467/**
2468 *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2469 *  @hw: pointer to the HW structure
2470 *
2471 * Reads the diagnostic status register and verifies result is valid before
2472 * placing it in the phy_cable_length field.
2473 **/
2474s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2475{
2476	struct e1000_phy_info *phy = &hw->phy;
2477	s32 ret_val;
2478	u16 phy_data, length;
2479
2480	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2481	if (ret_val)
2482		goto out;
2483
2484	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2485		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2486
2487	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2488		ret_val = -E1000_ERR_PHY;
2489
2490	phy->cable_length = length;
2491
2492out:
2493	return ret_val;
2494}
2495
2496/**
2497 *  igb_write_phy_reg_gs40g - Write GS40G PHY register
2498 *  @hw: pointer to the HW structure
2499 *  @offset: lower half is register offset to write to
2500 *     upper half is page to use.
2501 *  @data: data to write at register offset
2502 *
2503 *  Acquires semaphore, if necessary, then writes the data to PHY register
2504 *  at the offset.  Release any acquired semaphores before exiting.
2505 **/
2506s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2507{
2508	s32 ret_val;
2509	u16 page = offset >> GS40G_PAGE_SHIFT;
2510
2511	offset = offset & GS40G_OFFSET_MASK;
2512	ret_val = hw->phy.ops.acquire(hw);
2513	if (ret_val)
2514		return ret_val;
2515
2516	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2517	if (ret_val)
2518		goto release;
2519	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2520
2521release:
2522	hw->phy.ops.release(hw);
2523	return ret_val;
2524}
2525
2526/**
2527 *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
2528 *  @hw: pointer to the HW structure
2529 *  @offset: lower half is register offset to read to
2530 *     upper half is page to use.
2531 *  @data: data to read at register offset
2532 *
2533 *  Acquires semaphore, if necessary, then reads the data in the PHY register
2534 *  at the offset.  Release any acquired semaphores before exiting.
2535 **/
2536s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2537{
2538	s32 ret_val;
2539	u16 page = offset >> GS40G_PAGE_SHIFT;
2540
2541	offset = offset & GS40G_OFFSET_MASK;
2542	ret_val = hw->phy.ops.acquire(hw);
2543	if (ret_val)
2544		return ret_val;
2545
2546	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2547	if (ret_val)
2548		goto release;
2549	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2550
2551release:
2552	hw->phy.ops.release(hw);
2553	return ret_val;
2554}
2555
2556/**
2557 *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2558 *  @hw: pointer to the HW structure
2559 *
2560 *  Sets up Master/slave mode
2561 **/
2562static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2563{
2564	s32 ret_val;
2565	u16 phy_data;
2566
2567	/* Resolve Master/Slave mode */
2568	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2569	if (ret_val)
2570		return ret_val;
2571
2572	/* load defaults for future use */
2573	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2574				   ((phy_data & CR_1000T_MS_VALUE) ?
2575				    e1000_ms_force_master :
2576				    e1000_ms_force_slave) : e1000_ms_auto;
2577
2578	switch (hw->phy.ms_type) {
2579	case e1000_ms_force_master:
2580		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2581		break;
2582	case e1000_ms_force_slave:
2583		phy_data |= CR_1000T_MS_ENABLE;
2584		phy_data &= ~(CR_1000T_MS_VALUE);
2585		break;
2586	case e1000_ms_auto:
2587		phy_data &= ~CR_1000T_MS_ENABLE;
2588		/* fall-through */
2589	default:
2590		break;
2591	}
2592
2593	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2594}
2595