1/*******************************************************************************
2 * Intel PRO/1000 Linux driver
3 * Copyright(c) 1999 - 2006 Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in
15 * the file called "COPYING".
16 *
17 * Contact Information:
18 * Linux NICS <linux.nics@intel.com>
19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21 *
22 ******************************************************************************/
23
24/* ethtool support for e1000 */
25
26#include "e1000.h"
27#include <linux/jiffies.h>
28#include <linux/uaccess.h>
29
30enum {NETDEV_STATS, E1000_STATS};
31
32struct e1000_stats {
33	char stat_string[ETH_GSTRING_LEN];
34	int type;
35	int sizeof_stat;
36	int stat_offset;
37};
38
39#define E1000_STAT(m)		E1000_STATS, \
40				sizeof(((struct e1000_adapter *)0)->m), \
41				offsetof(struct e1000_adapter, m)
42#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
43				sizeof(((struct net_device *)0)->m), \
44				offsetof(struct net_device, m)
45
46static const struct e1000_stats e1000_gstrings_stats[] = {
47	{ "rx_packets", E1000_STAT(stats.gprc) },
48	{ "tx_packets", E1000_STAT(stats.gptc) },
49	{ "rx_bytes", E1000_STAT(stats.gorcl) },
50	{ "tx_bytes", E1000_STAT(stats.gotcl) },
51	{ "rx_broadcast", E1000_STAT(stats.bprc) },
52	{ "tx_broadcast", E1000_STAT(stats.bptc) },
53	{ "rx_multicast", E1000_STAT(stats.mprc) },
54	{ "tx_multicast", E1000_STAT(stats.mptc) },
55	{ "rx_errors", E1000_STAT(stats.rxerrc) },
56	{ "tx_errors", E1000_STAT(stats.txerrc) },
57	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
58	{ "multicast", E1000_STAT(stats.mprc) },
59	{ "collisions", E1000_STAT(stats.colc) },
60	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
61	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
62	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
64	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
66	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
67	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
69	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
70	{ "tx_window_errors", E1000_STAT(stats.latecol) },
71	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
73	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
74	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76	{ "tx_restart_queue", E1000_STAT(restart_queue) },
77	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
78	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
79	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
80	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
90	{ "tx_smbus", E1000_STAT(stats.mgptc) },
91	{ "rx_smbus", E1000_STAT(stats.mgprc) },
92	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
93};
94
95#define E1000_QUEUE_STATS_LEN 0
96#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
97#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
98static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99	"Register test  (offline)", "Eeprom test    (offline)",
100	"Interrupt test (offline)", "Loopback test  (offline)",
101	"Link test   (on/offline)"
102};
103
104#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
105
106static int e1000_get_settings(struct net_device *netdev,
107			      struct ethtool_cmd *ecmd)
108{
109	struct e1000_adapter *adapter = netdev_priv(netdev);
110	struct e1000_hw *hw = &adapter->hw;
111
112	if (hw->media_type == e1000_media_type_copper) {
113		ecmd->supported = (SUPPORTED_10baseT_Half |
114				   SUPPORTED_10baseT_Full |
115				   SUPPORTED_100baseT_Half |
116				   SUPPORTED_100baseT_Full |
117				   SUPPORTED_1000baseT_Full|
118				   SUPPORTED_Autoneg |
119				   SUPPORTED_TP);
120		ecmd->advertising = ADVERTISED_TP;
121
122		if (hw->autoneg == 1) {
123			ecmd->advertising |= ADVERTISED_Autoneg;
124			/* the e1000 autoneg seems to match ethtool nicely */
125			ecmd->advertising |= hw->autoneg_advertised;
126		}
127
128		ecmd->port = PORT_TP;
129		ecmd->phy_address = hw->phy_addr;
130
131		if (hw->mac_type == e1000_82543)
132			ecmd->transceiver = XCVR_EXTERNAL;
133		else
134			ecmd->transceiver = XCVR_INTERNAL;
135
136	} else {
137		ecmd->supported   = (SUPPORTED_1000baseT_Full |
138				     SUPPORTED_FIBRE |
139				     SUPPORTED_Autoneg);
140
141		ecmd->advertising = (ADVERTISED_1000baseT_Full |
142				     ADVERTISED_FIBRE |
143				     ADVERTISED_Autoneg);
144
145		ecmd->port = PORT_FIBRE;
146
147		if (hw->mac_type >= e1000_82545)
148			ecmd->transceiver = XCVR_INTERNAL;
149		else
150			ecmd->transceiver = XCVR_EXTERNAL;
151	}
152
153	if (er32(STATUS) & E1000_STATUS_LU) {
154		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
155					   &adapter->link_duplex);
156		ethtool_cmd_speed_set(ecmd, adapter->link_speed);
157
158		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
159		 * and HALF_DUPLEX != DUPLEX_HALF
160		 */
161		if (adapter->link_duplex == FULL_DUPLEX)
162			ecmd->duplex = DUPLEX_FULL;
163		else
164			ecmd->duplex = DUPLEX_HALF;
165	} else {
166		ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN);
167		ecmd->duplex = DUPLEX_UNKNOWN;
168	}
169
170	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
171			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
172
173	/* MDI-X => 1; MDI => 0 */
174	if ((hw->media_type == e1000_media_type_copper) &&
175	    netif_carrier_ok(netdev))
176		ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
177				     ETH_TP_MDI_X : ETH_TP_MDI);
178	else
179		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
180
181	if (hw->mdix == AUTO_ALL_MODES)
182		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
183	else
184		ecmd->eth_tp_mdix_ctrl = hw->mdix;
185	return 0;
186}
187
188static int e1000_set_settings(struct net_device *netdev,
189			      struct ethtool_cmd *ecmd)
190{
191	struct e1000_adapter *adapter = netdev_priv(netdev);
192	struct e1000_hw *hw = &adapter->hw;
193
194	/* MDI setting is only allowed when autoneg enabled because
195	 * some hardware doesn't allow MDI setting when speed or
196	 * duplex is forced.
197	 */
198	if (ecmd->eth_tp_mdix_ctrl) {
199		if (hw->media_type != e1000_media_type_copper)
200			return -EOPNOTSUPP;
201
202		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
203		    (ecmd->autoneg != AUTONEG_ENABLE)) {
204			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
205			return -EINVAL;
206		}
207	}
208
209	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
210		msleep(1);
211
212	if (ecmd->autoneg == AUTONEG_ENABLE) {
213		hw->autoneg = 1;
214		if (hw->media_type == e1000_media_type_fiber)
215			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
216				     ADVERTISED_FIBRE |
217				     ADVERTISED_Autoneg;
218		else
219			hw->autoneg_advertised = ecmd->advertising |
220						 ADVERTISED_TP |
221						 ADVERTISED_Autoneg;
222		ecmd->advertising = hw->autoneg_advertised;
223	} else {
224		u32 speed = ethtool_cmd_speed(ecmd);
225		/* calling this overrides forced MDI setting */
226		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
227			clear_bit(__E1000_RESETTING, &adapter->flags);
228			return -EINVAL;
229		}
230	}
231
232	/* MDI-X => 2; MDI => 1; Auto => 3 */
233	if (ecmd->eth_tp_mdix_ctrl) {
234		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
235			hw->mdix = AUTO_ALL_MODES;
236		else
237			hw->mdix = ecmd->eth_tp_mdix_ctrl;
238	}
239
240	/* reset the link */
241
242	if (netif_running(adapter->netdev)) {
243		e1000_down(adapter);
244		e1000_up(adapter);
245	} else {
246		e1000_reset(adapter);
247	}
248	clear_bit(__E1000_RESETTING, &adapter->flags);
249	return 0;
250}
251
252static u32 e1000_get_link(struct net_device *netdev)
253{
254	struct e1000_adapter *adapter = netdev_priv(netdev);
255
256	/* If the link is not reported up to netdev, interrupts are disabled,
257	 * and so the physical link state may have changed since we last
258	 * looked. Set get_link_status to make sure that the true link
259	 * state is interrogated, rather than pulling a cached and possibly
260	 * stale link state from the driver.
261	 */
262	if (!netif_carrier_ok(netdev))
263		adapter->hw.get_link_status = 1;
264
265	return e1000_has_link(adapter);
266}
267
268static void e1000_get_pauseparam(struct net_device *netdev,
269				 struct ethtool_pauseparam *pause)
270{
271	struct e1000_adapter *adapter = netdev_priv(netdev);
272	struct e1000_hw *hw = &adapter->hw;
273
274	pause->autoneg =
275		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
276
277	if (hw->fc == E1000_FC_RX_PAUSE) {
278		pause->rx_pause = 1;
279	} else if (hw->fc == E1000_FC_TX_PAUSE) {
280		pause->tx_pause = 1;
281	} else if (hw->fc == E1000_FC_FULL) {
282		pause->rx_pause = 1;
283		pause->tx_pause = 1;
284	}
285}
286
287static int e1000_set_pauseparam(struct net_device *netdev,
288				struct ethtool_pauseparam *pause)
289{
290	struct e1000_adapter *adapter = netdev_priv(netdev);
291	struct e1000_hw *hw = &adapter->hw;
292	int retval = 0;
293
294	adapter->fc_autoneg = pause->autoneg;
295
296	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
297		msleep(1);
298
299	if (pause->rx_pause && pause->tx_pause)
300		hw->fc = E1000_FC_FULL;
301	else if (pause->rx_pause && !pause->tx_pause)
302		hw->fc = E1000_FC_RX_PAUSE;
303	else if (!pause->rx_pause && pause->tx_pause)
304		hw->fc = E1000_FC_TX_PAUSE;
305	else if (!pause->rx_pause && !pause->tx_pause)
306		hw->fc = E1000_FC_NONE;
307
308	hw->original_fc = hw->fc;
309
310	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
311		if (netif_running(adapter->netdev)) {
312			e1000_down(adapter);
313			e1000_up(adapter);
314		} else {
315			e1000_reset(adapter);
316		}
317	} else
318		retval = ((hw->media_type == e1000_media_type_fiber) ?
319			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
320
321	clear_bit(__E1000_RESETTING, &adapter->flags);
322	return retval;
323}
324
325static u32 e1000_get_msglevel(struct net_device *netdev)
326{
327	struct e1000_adapter *adapter = netdev_priv(netdev);
328
329	return adapter->msg_enable;
330}
331
332static void e1000_set_msglevel(struct net_device *netdev, u32 data)
333{
334	struct e1000_adapter *adapter = netdev_priv(netdev);
335
336	adapter->msg_enable = data;
337}
338
339static int e1000_get_regs_len(struct net_device *netdev)
340{
341#define E1000_REGS_LEN 32
342	return E1000_REGS_LEN * sizeof(u32);
343}
344
345static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
346			   void *p)
347{
348	struct e1000_adapter *adapter = netdev_priv(netdev);
349	struct e1000_hw *hw = &adapter->hw;
350	u32 *regs_buff = p;
351	u16 phy_data;
352
353	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
354
355	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
356
357	regs_buff[0]  = er32(CTRL);
358	regs_buff[1]  = er32(STATUS);
359
360	regs_buff[2]  = er32(RCTL);
361	regs_buff[3]  = er32(RDLEN);
362	regs_buff[4]  = er32(RDH);
363	regs_buff[5]  = er32(RDT);
364	regs_buff[6]  = er32(RDTR);
365
366	regs_buff[7]  = er32(TCTL);
367	regs_buff[8]  = er32(TDLEN);
368	regs_buff[9]  = er32(TDH);
369	regs_buff[10] = er32(TDT);
370	regs_buff[11] = er32(TIDV);
371
372	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
373	if (hw->phy_type == e1000_phy_igp) {
374		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
375				    IGP01E1000_PHY_AGC_A);
376		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
377				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
378		regs_buff[13] = (u32)phy_data; /* cable length */
379		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
380				    IGP01E1000_PHY_AGC_B);
381		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
382				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
383		regs_buff[14] = (u32)phy_data; /* cable length */
384		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
385				    IGP01E1000_PHY_AGC_C);
386		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
387				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
388		regs_buff[15] = (u32)phy_data; /* cable length */
389		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
390				    IGP01E1000_PHY_AGC_D);
391		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
392				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
393		regs_buff[16] = (u32)phy_data; /* cable length */
394		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
395		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
396		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
397				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
398		regs_buff[18] = (u32)phy_data; /* cable polarity */
399		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400				    IGP01E1000_PHY_PCS_INIT_REG);
401		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
402				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403		regs_buff[19] = (u32)phy_data; /* cable polarity */
404		regs_buff[20] = 0; /* polarity correction enabled (always) */
405		regs_buff[22] = 0; /* phy receive errors (unavailable) */
406		regs_buff[23] = regs_buff[18]; /* mdix mode */
407		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
408	} else {
409		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
410		regs_buff[13] = (u32)phy_data; /* cable length */
411		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
412		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
413		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
414		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
415		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
416		regs_buff[18] = regs_buff[13]; /* cable polarity */
417		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
418		regs_buff[20] = regs_buff[17]; /* polarity correction */
419		/* phy receive errors */
420		regs_buff[22] = adapter->phy_stats.receive_errors;
421		regs_buff[23] = regs_buff[13]; /* mdix mode */
422	}
423	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
424	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
425	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
426	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
427	if (hw->mac_type >= e1000_82540 &&
428	    hw->media_type == e1000_media_type_copper) {
429		regs_buff[26] = er32(MANC);
430	}
431}
432
433static int e1000_get_eeprom_len(struct net_device *netdev)
434{
435	struct e1000_adapter *adapter = netdev_priv(netdev);
436	struct e1000_hw *hw = &adapter->hw;
437
438	return hw->eeprom.word_size * 2;
439}
440
441static int e1000_get_eeprom(struct net_device *netdev,
442			    struct ethtool_eeprom *eeprom, u8 *bytes)
443{
444	struct e1000_adapter *adapter = netdev_priv(netdev);
445	struct e1000_hw *hw = &adapter->hw;
446	u16 *eeprom_buff;
447	int first_word, last_word;
448	int ret_val = 0;
449	u16 i;
450
451	if (eeprom->len == 0)
452		return -EINVAL;
453
454	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
455
456	first_word = eeprom->offset >> 1;
457	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
458
459	eeprom_buff = kmalloc(sizeof(u16) *
460			(last_word - first_word + 1), GFP_KERNEL);
461	if (!eeprom_buff)
462		return -ENOMEM;
463
464	if (hw->eeprom.type == e1000_eeprom_spi)
465		ret_val = e1000_read_eeprom(hw, first_word,
466					    last_word - first_word + 1,
467					    eeprom_buff);
468	else {
469		for (i = 0; i < last_word - first_word + 1; i++) {
470			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
471						    &eeprom_buff[i]);
472			if (ret_val)
473				break;
474		}
475	}
476
477	/* Device's eeprom is always little-endian, word addressable */
478	for (i = 0; i < last_word - first_word + 1; i++)
479		le16_to_cpus(&eeprom_buff[i]);
480
481	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
482	       eeprom->len);
483	kfree(eeprom_buff);
484
485	return ret_val;
486}
487
488static int e1000_set_eeprom(struct net_device *netdev,
489			    struct ethtool_eeprom *eeprom, u8 *bytes)
490{
491	struct e1000_adapter *adapter = netdev_priv(netdev);
492	struct e1000_hw *hw = &adapter->hw;
493	u16 *eeprom_buff;
494	void *ptr;
495	int max_len, first_word, last_word, ret_val = 0;
496	u16 i;
497
498	if (eeprom->len == 0)
499		return -EOPNOTSUPP;
500
501	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
502		return -EFAULT;
503
504	max_len = hw->eeprom.word_size * 2;
505
506	first_word = eeprom->offset >> 1;
507	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
508	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
509	if (!eeprom_buff)
510		return -ENOMEM;
511
512	ptr = (void *)eeprom_buff;
513
514	if (eeprom->offset & 1) {
515		/* need read/modify/write of first changed EEPROM word
516		 * only the second byte of the word is being modified
517		 */
518		ret_val = e1000_read_eeprom(hw, first_word, 1,
519					    &eeprom_buff[0]);
520		ptr++;
521	}
522	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
523		/* need read/modify/write of last changed EEPROM word
524		 * only the first byte of the word is being modified
525		 */
526		ret_val = e1000_read_eeprom(hw, last_word, 1,
527					    &eeprom_buff[last_word - first_word]);
528	}
529
530	/* Device's eeprom is always little-endian, word addressable */
531	for (i = 0; i < last_word - first_word + 1; i++)
532		le16_to_cpus(&eeprom_buff[i]);
533
534	memcpy(ptr, bytes, eeprom->len);
535
536	for (i = 0; i < last_word - first_word + 1; i++)
537		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
538
539	ret_val = e1000_write_eeprom(hw, first_word,
540				     last_word - first_word + 1, eeprom_buff);
541
542	/* Update the checksum over the first part of the EEPROM if needed */
543	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
544		e1000_update_eeprom_checksum(hw);
545
546	kfree(eeprom_buff);
547	return ret_val;
548}
549
550static void e1000_get_drvinfo(struct net_device *netdev,
551			      struct ethtool_drvinfo *drvinfo)
552{
553	struct e1000_adapter *adapter = netdev_priv(netdev);
554
555	strlcpy(drvinfo->driver,  e1000_driver_name,
556		sizeof(drvinfo->driver));
557	strlcpy(drvinfo->version, e1000_driver_version,
558		sizeof(drvinfo->version));
559
560	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
561		sizeof(drvinfo->bus_info));
562}
563
564static void e1000_get_ringparam(struct net_device *netdev,
565				struct ethtool_ringparam *ring)
566{
567	struct e1000_adapter *adapter = netdev_priv(netdev);
568	struct e1000_hw *hw = &adapter->hw;
569	e1000_mac_type mac_type = hw->mac_type;
570	struct e1000_tx_ring *txdr = adapter->tx_ring;
571	struct e1000_rx_ring *rxdr = adapter->rx_ring;
572
573	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
574		E1000_MAX_82544_RXD;
575	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
576		E1000_MAX_82544_TXD;
577	ring->rx_pending = rxdr->count;
578	ring->tx_pending = txdr->count;
579}
580
581static int e1000_set_ringparam(struct net_device *netdev,
582			       struct ethtool_ringparam *ring)
583{
584	struct e1000_adapter *adapter = netdev_priv(netdev);
585	struct e1000_hw *hw = &adapter->hw;
586	e1000_mac_type mac_type = hw->mac_type;
587	struct e1000_tx_ring *txdr, *tx_old;
588	struct e1000_rx_ring *rxdr, *rx_old;
589	int i, err;
590
591	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
592		return -EINVAL;
593
594	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
595		msleep(1);
596
597	if (netif_running(adapter->netdev))
598		e1000_down(adapter);
599
600	tx_old = adapter->tx_ring;
601	rx_old = adapter->rx_ring;
602
603	err = -ENOMEM;
604	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
605		       GFP_KERNEL);
606	if (!txdr)
607		goto err_alloc_tx;
608
609	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
610		       GFP_KERNEL);
611	if (!rxdr)
612		goto err_alloc_rx;
613
614	adapter->tx_ring = txdr;
615	adapter->rx_ring = rxdr;
616
617	rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
618	rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
619			  E1000_MAX_RXD : E1000_MAX_82544_RXD));
620	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
621	txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
622	txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
623			  E1000_MAX_TXD : E1000_MAX_82544_TXD));
624	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
625
626	for (i = 0; i < adapter->num_tx_queues; i++)
627		txdr[i].count = txdr->count;
628	for (i = 0; i < adapter->num_rx_queues; i++)
629		rxdr[i].count = rxdr->count;
630
631	if (netif_running(adapter->netdev)) {
632		/* Try to get new resources before deleting old */
633		err = e1000_setup_all_rx_resources(adapter);
634		if (err)
635			goto err_setup_rx;
636		err = e1000_setup_all_tx_resources(adapter);
637		if (err)
638			goto err_setup_tx;
639
640		/* save the new, restore the old in order to free it,
641		 * then restore the new back again
642		 */
643
644		adapter->rx_ring = rx_old;
645		adapter->tx_ring = tx_old;
646		e1000_free_all_rx_resources(adapter);
647		e1000_free_all_tx_resources(adapter);
648		kfree(tx_old);
649		kfree(rx_old);
650		adapter->rx_ring = rxdr;
651		adapter->tx_ring = txdr;
652		err = e1000_up(adapter);
653		if (err)
654			goto err_setup;
655	}
656
657	clear_bit(__E1000_RESETTING, &adapter->flags);
658	return 0;
659err_setup_tx:
660	e1000_free_all_rx_resources(adapter);
661err_setup_rx:
662	adapter->rx_ring = rx_old;
663	adapter->tx_ring = tx_old;
664	kfree(rxdr);
665err_alloc_rx:
666	kfree(txdr);
667err_alloc_tx:
668	e1000_up(adapter);
669err_setup:
670	clear_bit(__E1000_RESETTING, &adapter->flags);
671	return err;
672}
673
674static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
675			     u32 mask, u32 write)
676{
677	struct e1000_hw *hw = &adapter->hw;
678	static const u32 test[] = {
679		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
680	};
681	u8 __iomem *address = hw->hw_addr + reg;
682	u32 read;
683	int i;
684
685	for (i = 0; i < ARRAY_SIZE(test); i++) {
686		writel(write & test[i], address);
687		read = readl(address);
688		if (read != (write & test[i] & mask)) {
689			e_err(drv, "pattern test reg %04X failed: "
690			      "got 0x%08X expected 0x%08X\n",
691			      reg, read, (write & test[i] & mask));
692			*data = reg;
693			return true;
694		}
695	}
696	return false;
697}
698
699static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
700			      u32 mask, u32 write)
701{
702	struct e1000_hw *hw = &adapter->hw;
703	u8 __iomem *address = hw->hw_addr + reg;
704	u32 read;
705
706	writel(write & mask, address);
707	read = readl(address);
708	if ((read & mask) != (write & mask)) {
709		e_err(drv, "set/check reg %04X test failed: "
710		      "got 0x%08X expected 0x%08X\n",
711		      reg, (read & mask), (write & mask));
712		*data = reg;
713		return true;
714	}
715	return false;
716}
717
718#define REG_PATTERN_TEST(reg, mask, write)			     \
719	do {							     \
720		if (reg_pattern_test(adapter, data,		     \
721			     (hw->mac_type >= e1000_82543)   \
722			     ? E1000_##reg : E1000_82542_##reg,	     \
723			     mask, write))			     \
724			return 1;				     \
725	} while (0)
726
727#define REG_SET_AND_CHECK(reg, mask, write)			     \
728	do {							     \
729		if (reg_set_and_check(adapter, data,		     \
730			      (hw->mac_type >= e1000_82543)  \
731			      ? E1000_##reg : E1000_82542_##reg,     \
732			      mask, write))			     \
733			return 1;				     \
734	} while (0)
735
736static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
737{
738	u32 value, before, after;
739	u32 i, toggle;
740	struct e1000_hw *hw = &adapter->hw;
741
742	/* The status register is Read Only, so a write should fail.
743	 * Some bits that get toggled are ignored.
744	 */
745
746	/* there are several bits on newer hardware that are r/w */
747	toggle = 0xFFFFF833;
748
749	before = er32(STATUS);
750	value = (er32(STATUS) & toggle);
751	ew32(STATUS, toggle);
752	after = er32(STATUS) & toggle;
753	if (value != after) {
754		e_err(drv, "failed STATUS register test got: "
755		      "0x%08X expected: 0x%08X\n", after, value);
756		*data = 1;
757		return 1;
758	}
759	/* restore previous status */
760	ew32(STATUS, before);
761
762	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
763	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
764	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
765	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
766
767	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
768	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
769	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
770	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
771	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
772	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
773	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
774	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
775	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
776	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
777
778	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
779
780	before = 0x06DFB3FE;
781	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
782	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
783
784	if (hw->mac_type >= e1000_82543) {
785		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
786		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
787		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
788		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
789		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
790		value = E1000_RAR_ENTRIES;
791		for (i = 0; i < value; i++) {
792			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
793					 0x8003FFFF, 0xFFFFFFFF);
794		}
795	} else {
796		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
797		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
798		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
799		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
800	}
801
802	value = E1000_MC_TBL_SIZE;
803	for (i = 0; i < value; i++)
804		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
805
806	*data = 0;
807	return 0;
808}
809
810static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
811{
812	struct e1000_hw *hw = &adapter->hw;
813	u16 temp;
814	u16 checksum = 0;
815	u16 i;
816
817	*data = 0;
818	/* Read and add up the contents of the EEPROM */
819	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
820		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
821			*data = 1;
822			break;
823		}
824		checksum += temp;
825	}
826
827	/* If Checksum is not Correct return error else test passed */
828	if ((checksum != (u16)EEPROM_SUM) && !(*data))
829		*data = 2;
830
831	return *data;
832}
833
834static irqreturn_t e1000_test_intr(int irq, void *data)
835{
836	struct net_device *netdev = (struct net_device *)data;
837	struct e1000_adapter *adapter = netdev_priv(netdev);
838	struct e1000_hw *hw = &adapter->hw;
839
840	adapter->test_icr |= er32(ICR);
841
842	return IRQ_HANDLED;
843}
844
845static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
846{
847	struct net_device *netdev = adapter->netdev;
848	u32 mask, i = 0;
849	bool shared_int = true;
850	u32 irq = adapter->pdev->irq;
851	struct e1000_hw *hw = &adapter->hw;
852
853	*data = 0;
854
855	/* NOTE: we don't test MSI interrupts here, yet
856	 * Hook up test interrupt handler just for this test
857	 */
858	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
859			 netdev))
860		shared_int = false;
861	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
862			     netdev->name, netdev)) {
863		*data = 1;
864		return -1;
865	}
866	e_info(hw, "testing %s interrupt\n", (shared_int ?
867	       "shared" : "unshared"));
868
869	/* Disable all the interrupts */
870	ew32(IMC, 0xFFFFFFFF);
871	E1000_WRITE_FLUSH();
872	msleep(10);
873
874	/* Test each interrupt */
875	for (; i < 10; i++) {
876		/* Interrupt to test */
877		mask = 1 << i;
878
879		if (!shared_int) {
880			/* Disable the interrupt to be reported in
881			 * the cause register and then force the same
882			 * interrupt and see if one gets posted.  If
883			 * an interrupt was posted to the bus, the
884			 * test failed.
885			 */
886			adapter->test_icr = 0;
887			ew32(IMC, mask);
888			ew32(ICS, mask);
889			E1000_WRITE_FLUSH();
890			msleep(10);
891
892			if (adapter->test_icr & mask) {
893				*data = 3;
894				break;
895			}
896		}
897
898		/* Enable the interrupt to be reported in
899		 * the cause register and then force the same
900		 * interrupt and see if one gets posted.  If
901		 * an interrupt was not posted to the bus, the
902		 * test failed.
903		 */
904		adapter->test_icr = 0;
905		ew32(IMS, mask);
906		ew32(ICS, mask);
907		E1000_WRITE_FLUSH();
908		msleep(10);
909
910		if (!(adapter->test_icr & mask)) {
911			*data = 4;
912			break;
913		}
914
915		if (!shared_int) {
916			/* Disable the other interrupts to be reported in
917			 * the cause register and then force the other
918			 * interrupts and see if any get posted.  If
919			 * an interrupt was posted to the bus, the
920			 * test failed.
921			 */
922			adapter->test_icr = 0;
923			ew32(IMC, ~mask & 0x00007FFF);
924			ew32(ICS, ~mask & 0x00007FFF);
925			E1000_WRITE_FLUSH();
926			msleep(10);
927
928			if (adapter->test_icr) {
929				*data = 5;
930				break;
931			}
932		}
933	}
934
935	/* Disable all the interrupts */
936	ew32(IMC, 0xFFFFFFFF);
937	E1000_WRITE_FLUSH();
938	msleep(10);
939
940	/* Unhook test interrupt handler */
941	free_irq(irq, netdev);
942
943	return *data;
944}
945
946static void e1000_free_desc_rings(struct e1000_adapter *adapter)
947{
948	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
949	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
950	struct pci_dev *pdev = adapter->pdev;
951	int i;
952
953	if (txdr->desc && txdr->buffer_info) {
954		for (i = 0; i < txdr->count; i++) {
955			if (txdr->buffer_info[i].dma)
956				dma_unmap_single(&pdev->dev,
957						 txdr->buffer_info[i].dma,
958						 txdr->buffer_info[i].length,
959						 DMA_TO_DEVICE);
960			if (txdr->buffer_info[i].skb)
961				dev_kfree_skb(txdr->buffer_info[i].skb);
962		}
963	}
964
965	if (rxdr->desc && rxdr->buffer_info) {
966		for (i = 0; i < rxdr->count; i++) {
967			if (rxdr->buffer_info[i].dma)
968				dma_unmap_single(&pdev->dev,
969						 rxdr->buffer_info[i].dma,
970						 E1000_RXBUFFER_2048,
971						 DMA_FROM_DEVICE);
972			kfree(rxdr->buffer_info[i].rxbuf.data);
973		}
974	}
975
976	if (txdr->desc) {
977		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
978				  txdr->dma);
979		txdr->desc = NULL;
980	}
981	if (rxdr->desc) {
982		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
983				  rxdr->dma);
984		rxdr->desc = NULL;
985	}
986
987	kfree(txdr->buffer_info);
988	txdr->buffer_info = NULL;
989	kfree(rxdr->buffer_info);
990	rxdr->buffer_info = NULL;
991}
992
993static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
994{
995	struct e1000_hw *hw = &adapter->hw;
996	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
997	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
998	struct pci_dev *pdev = adapter->pdev;
999	u32 rctl;
1000	int i, ret_val;
1001
1002	/* Setup Tx descriptor ring and Tx buffers */
1003
1004	if (!txdr->count)
1005		txdr->count = E1000_DEFAULT_TXD;
1006
1007	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
1008				    GFP_KERNEL);
1009	if (!txdr->buffer_info) {
1010		ret_val = 1;
1011		goto err_nomem;
1012	}
1013
1014	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1015	txdr->size = ALIGN(txdr->size, 4096);
1016	txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1017					 GFP_KERNEL);
1018	if (!txdr->desc) {
1019		ret_val = 2;
1020		goto err_nomem;
1021	}
1022	txdr->next_to_use = txdr->next_to_clean = 0;
1023
1024	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1025	ew32(TDBAH, ((u64)txdr->dma >> 32));
1026	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1027	ew32(TDH, 0);
1028	ew32(TDT, 0);
1029	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1030	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1031	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1032
1033	for (i = 0; i < txdr->count; i++) {
1034		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1035		struct sk_buff *skb;
1036		unsigned int size = 1024;
1037
1038		skb = alloc_skb(size, GFP_KERNEL);
1039		if (!skb) {
1040			ret_val = 3;
1041			goto err_nomem;
1042		}
1043		skb_put(skb, size);
1044		txdr->buffer_info[i].skb = skb;
1045		txdr->buffer_info[i].length = skb->len;
1046		txdr->buffer_info[i].dma =
1047			dma_map_single(&pdev->dev, skb->data, skb->len,
1048				       DMA_TO_DEVICE);
1049		if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1050			ret_val = 4;
1051			goto err_nomem;
1052		}
1053		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1054		tx_desc->lower.data = cpu_to_le32(skb->len);
1055		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1056						   E1000_TXD_CMD_IFCS |
1057						   E1000_TXD_CMD_RPS);
1058		tx_desc->upper.data = 0;
1059	}
1060
1061	/* Setup Rx descriptor ring and Rx buffers */
1062
1063	if (!rxdr->count)
1064		rxdr->count = E1000_DEFAULT_RXD;
1065
1066	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1067				    GFP_KERNEL);
1068	if (!rxdr->buffer_info) {
1069		ret_val = 5;
1070		goto err_nomem;
1071	}
1072
1073	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1074	rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1075					 GFP_KERNEL);
1076	if (!rxdr->desc) {
1077		ret_val = 6;
1078		goto err_nomem;
1079	}
1080	rxdr->next_to_use = rxdr->next_to_clean = 0;
1081
1082	rctl = er32(RCTL);
1083	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1084	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1085	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1086	ew32(RDLEN, rxdr->size);
1087	ew32(RDH, 0);
1088	ew32(RDT, 0);
1089	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1090		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1091		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1092	ew32(RCTL, rctl);
1093
1094	for (i = 0; i < rxdr->count; i++) {
1095		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1096		u8 *buf;
1097
1098		buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1099			      GFP_KERNEL);
1100		if (!buf) {
1101			ret_val = 7;
1102			goto err_nomem;
1103		}
1104		rxdr->buffer_info[i].rxbuf.data = buf;
1105
1106		rxdr->buffer_info[i].dma =
1107			dma_map_single(&pdev->dev,
1108				       buf + NET_SKB_PAD + NET_IP_ALIGN,
1109				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1110		if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1111			ret_val = 8;
1112			goto err_nomem;
1113		}
1114		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1115	}
1116
1117	return 0;
1118
1119err_nomem:
1120	e1000_free_desc_rings(adapter);
1121	return ret_val;
1122}
1123
1124static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1125{
1126	struct e1000_hw *hw = &adapter->hw;
1127
1128	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1129	e1000_write_phy_reg(hw, 29, 0x001F);
1130	e1000_write_phy_reg(hw, 30, 0x8FFC);
1131	e1000_write_phy_reg(hw, 29, 0x001A);
1132	e1000_write_phy_reg(hw, 30, 0x8FF0);
1133}
1134
1135static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1136{
1137	struct e1000_hw *hw = &adapter->hw;
1138	u16 phy_reg;
1139
1140	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1141	 * Extended PHY Specific Control Register to 25MHz clock.  This
1142	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1143	 */
1144	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1145	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1146	e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1147
1148	/* In addition, because of the s/w reset above, we need to enable
1149	 * CRS on TX.  This must be set for both full and half duplex
1150	 * operation.
1151	 */
1152	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1153	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1154	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1155}
1156
1157static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1158{
1159	struct e1000_hw *hw = &adapter->hw;
1160	u32 ctrl_reg;
1161	u16 phy_reg;
1162
1163	/* Setup the Device Control Register for PHY loopback test. */
1164
1165	ctrl_reg = er32(CTRL);
1166	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1167		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1168		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1169		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1170		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1171
1172	ew32(CTRL, ctrl_reg);
1173
1174	/* Read the PHY Specific Control Register (0x10) */
1175	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1176
1177	/* Clear Auto-Crossover bits in PHY Specific Control Register
1178	 * (bits 6:5).
1179	 */
1180	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1181	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1182
1183	/* Perform software reset on the PHY */
1184	e1000_phy_reset(hw);
1185
1186	/* Have to setup TX_CLK and TX_CRS after software reset */
1187	e1000_phy_reset_clk_and_crs(adapter);
1188
1189	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1190
1191	/* Wait for reset to complete. */
1192	udelay(500);
1193
1194	/* Have to setup TX_CLK and TX_CRS after software reset */
1195	e1000_phy_reset_clk_and_crs(adapter);
1196
1197	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1198	e1000_phy_disable_receiver(adapter);
1199
1200	/* Set the loopback bit in the PHY control register. */
1201	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1202	phy_reg |= MII_CR_LOOPBACK;
1203	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1204
1205	/* Setup TX_CLK and TX_CRS one more time. */
1206	e1000_phy_reset_clk_and_crs(adapter);
1207
1208	/* Check Phy Configuration */
1209	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1210	if (phy_reg != 0x4100)
1211		return 9;
1212
1213	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1214	if (phy_reg != 0x0070)
1215		return 10;
1216
1217	e1000_read_phy_reg(hw, 29, &phy_reg);
1218	if (phy_reg != 0x001A)
1219		return 11;
1220
1221	return 0;
1222}
1223
1224static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1225{
1226	struct e1000_hw *hw = &adapter->hw;
1227	u32 ctrl_reg = 0;
1228	u32 stat_reg = 0;
1229
1230	hw->autoneg = false;
1231
1232	if (hw->phy_type == e1000_phy_m88) {
1233		/* Auto-MDI/MDIX Off */
1234		e1000_write_phy_reg(hw,
1235				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1236		/* reset to update Auto-MDI/MDIX */
1237		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1238		/* autoneg off */
1239		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1240	}
1241
1242	ctrl_reg = er32(CTRL);
1243
1244	/* force 1000, set loopback */
1245	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1246
1247	/* Now set up the MAC to the same speed/duplex as the PHY. */
1248	ctrl_reg = er32(CTRL);
1249	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1250	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1251			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1252			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1253			E1000_CTRL_FD); /* Force Duplex to FULL */
1254
1255	if (hw->media_type == e1000_media_type_copper &&
1256	    hw->phy_type == e1000_phy_m88)
1257		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1258	else {
1259		/* Set the ILOS bit on the fiber Nic is half
1260		 * duplex link is detected.
1261		 */
1262		stat_reg = er32(STATUS);
1263		if ((stat_reg & E1000_STATUS_FD) == 0)
1264			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1265	}
1266
1267	ew32(CTRL, ctrl_reg);
1268
1269	/* Disable the receiver on the PHY so when a cable is plugged in, the
1270	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1271	 */
1272	if (hw->phy_type == e1000_phy_m88)
1273		e1000_phy_disable_receiver(adapter);
1274
1275	udelay(500);
1276
1277	return 0;
1278}
1279
1280static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1281{
1282	struct e1000_hw *hw = &adapter->hw;
1283	u16 phy_reg = 0;
1284	u16 count = 0;
1285
1286	switch (hw->mac_type) {
1287	case e1000_82543:
1288		if (hw->media_type == e1000_media_type_copper) {
1289			/* Attempt to setup Loopback mode on Non-integrated PHY.
1290			 * Some PHY registers get corrupted at random, so
1291			 * attempt this 10 times.
1292			 */
1293			while (e1000_nonintegrated_phy_loopback(adapter) &&
1294			       count++ < 10);
1295			if (count < 11)
1296				return 0;
1297		}
1298		break;
1299
1300	case e1000_82544:
1301	case e1000_82540:
1302	case e1000_82545:
1303	case e1000_82545_rev_3:
1304	case e1000_82546:
1305	case e1000_82546_rev_3:
1306	case e1000_82541:
1307	case e1000_82541_rev_2:
1308	case e1000_82547:
1309	case e1000_82547_rev_2:
1310		return e1000_integrated_phy_loopback(adapter);
1311	default:
1312		/* Default PHY loopback work is to read the MII
1313		 * control register and assert bit 14 (loopback mode).
1314		 */
1315		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1316		phy_reg |= MII_CR_LOOPBACK;
1317		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1318		return 0;
1319	}
1320
1321	return 8;
1322}
1323
1324static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1325{
1326	struct e1000_hw *hw = &adapter->hw;
1327	u32 rctl;
1328
1329	if (hw->media_type == e1000_media_type_fiber ||
1330	    hw->media_type == e1000_media_type_internal_serdes) {
1331		switch (hw->mac_type) {
1332		case e1000_82545:
1333		case e1000_82546:
1334		case e1000_82545_rev_3:
1335		case e1000_82546_rev_3:
1336			return e1000_set_phy_loopback(adapter);
1337		default:
1338			rctl = er32(RCTL);
1339			rctl |= E1000_RCTL_LBM_TCVR;
1340			ew32(RCTL, rctl);
1341			return 0;
1342		}
1343	} else if (hw->media_type == e1000_media_type_copper) {
1344		return e1000_set_phy_loopback(adapter);
1345	}
1346
1347	return 7;
1348}
1349
1350static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1351{
1352	struct e1000_hw *hw = &adapter->hw;
1353	u32 rctl;
1354	u16 phy_reg;
1355
1356	rctl = er32(RCTL);
1357	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1358	ew32(RCTL, rctl);
1359
1360	switch (hw->mac_type) {
1361	case e1000_82545:
1362	case e1000_82546:
1363	case e1000_82545_rev_3:
1364	case e1000_82546_rev_3:
1365	default:
1366		hw->autoneg = true;
1367		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1368		if (phy_reg & MII_CR_LOOPBACK) {
1369			phy_reg &= ~MII_CR_LOOPBACK;
1370			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1371			e1000_phy_reset(hw);
1372		}
1373		break;
1374	}
1375}
1376
1377static void e1000_create_lbtest_frame(struct sk_buff *skb,
1378				      unsigned int frame_size)
1379{
1380	memset(skb->data, 0xFF, frame_size);
1381	frame_size &= ~1;
1382	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1383	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1384	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1385}
1386
1387static int e1000_check_lbtest_frame(const unsigned char *data,
1388				    unsigned int frame_size)
1389{
1390	frame_size &= ~1;
1391	if (*(data + 3) == 0xFF) {
1392		if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1393		    (*(data + frame_size / 2 + 12) == 0xAF)) {
1394			return 0;
1395		}
1396	}
1397	return 13;
1398}
1399
1400static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1401{
1402	struct e1000_hw *hw = &adapter->hw;
1403	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1404	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1405	struct pci_dev *pdev = adapter->pdev;
1406	int i, j, k, l, lc, good_cnt, ret_val = 0;
1407	unsigned long time;
1408
1409	ew32(RDT, rxdr->count - 1);
1410
1411	/* Calculate the loop count based on the largest descriptor ring
1412	 * The idea is to wrap the largest ring a number of times using 64
1413	 * send/receive pairs during each loop
1414	 */
1415
1416	if (rxdr->count <= txdr->count)
1417		lc = ((txdr->count / 64) * 2) + 1;
1418	else
1419		lc = ((rxdr->count / 64) * 2) + 1;
1420
1421	k = l = 0;
1422	for (j = 0; j <= lc; j++) { /* loop count loop */
1423		for (i = 0; i < 64; i++) { /* send the packets */
1424			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1425						  1024);
1426			dma_sync_single_for_device(&pdev->dev,
1427						   txdr->buffer_info[k].dma,
1428						   txdr->buffer_info[k].length,
1429						   DMA_TO_DEVICE);
1430			if (unlikely(++k == txdr->count))
1431				k = 0;
1432		}
1433		ew32(TDT, k);
1434		E1000_WRITE_FLUSH();
1435		msleep(200);
1436		time = jiffies; /* set the start time for the receive */
1437		good_cnt = 0;
1438		do { /* receive the sent packets */
1439			dma_sync_single_for_cpu(&pdev->dev,
1440						rxdr->buffer_info[l].dma,
1441						E1000_RXBUFFER_2048,
1442						DMA_FROM_DEVICE);
1443
1444			ret_val = e1000_check_lbtest_frame(
1445					rxdr->buffer_info[l].rxbuf.data +
1446					NET_SKB_PAD + NET_IP_ALIGN,
1447					1024);
1448			if (!ret_val)
1449				good_cnt++;
1450			if (unlikely(++l == rxdr->count))
1451				l = 0;
1452			/* time + 20 msecs (200 msecs on 2.4) is more than
1453			 * enough time to complete the receives, if it's
1454			 * exceeded, break and error off
1455			 */
1456		} while (good_cnt < 64 && time_after(time + 20, jiffies));
1457
1458		if (good_cnt != 64) {
1459			ret_val = 13; /* ret_val is the same as mis-compare */
1460			break;
1461		}
1462		if (time_after_eq(jiffies, time + 2)) {
1463			ret_val = 14; /* error code for time out error */
1464			break;
1465		}
1466	} /* end loop count loop */
1467	return ret_val;
1468}
1469
1470static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1471{
1472	*data = e1000_setup_desc_rings(adapter);
1473	if (*data)
1474		goto out;
1475	*data = e1000_setup_loopback_test(adapter);
1476	if (*data)
1477		goto err_loopback;
1478	*data = e1000_run_loopback_test(adapter);
1479	e1000_loopback_cleanup(adapter);
1480
1481err_loopback:
1482	e1000_free_desc_rings(adapter);
1483out:
1484	return *data;
1485}
1486
1487static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1488{
1489	struct e1000_hw *hw = &adapter->hw;
1490	*data = 0;
1491	if (hw->media_type == e1000_media_type_internal_serdes) {
1492		int i = 0;
1493
1494		hw->serdes_has_link = false;
1495
1496		/* On some blade server designs, link establishment
1497		 * could take as long as 2-3 minutes
1498		 */
1499		do {
1500			e1000_check_for_link(hw);
1501			if (hw->serdes_has_link)
1502				return *data;
1503			msleep(20);
1504		} while (i++ < 3750);
1505
1506		*data = 1;
1507	} else {
1508		e1000_check_for_link(hw);
1509		if (hw->autoneg)  /* if auto_neg is set wait for it */
1510			msleep(4000);
1511
1512		if (!(er32(STATUS) & E1000_STATUS_LU))
1513			*data = 1;
1514	}
1515	return *data;
1516}
1517
1518static int e1000_get_sset_count(struct net_device *netdev, int sset)
1519{
1520	switch (sset) {
1521	case ETH_SS_TEST:
1522		return E1000_TEST_LEN;
1523	case ETH_SS_STATS:
1524		return E1000_STATS_LEN;
1525	default:
1526		return -EOPNOTSUPP;
1527	}
1528}
1529
1530static void e1000_diag_test(struct net_device *netdev,
1531			    struct ethtool_test *eth_test, u64 *data)
1532{
1533	struct e1000_adapter *adapter = netdev_priv(netdev);
1534	struct e1000_hw *hw = &adapter->hw;
1535	bool if_running = netif_running(netdev);
1536
1537	set_bit(__E1000_TESTING, &adapter->flags);
1538	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1539		/* Offline tests */
1540
1541		/* save speed, duplex, autoneg settings */
1542		u16 autoneg_advertised = hw->autoneg_advertised;
1543		u8 forced_speed_duplex = hw->forced_speed_duplex;
1544		u8 autoneg = hw->autoneg;
1545
1546		e_info(hw, "offline testing starting\n");
1547
1548		/* Link test performed before hardware reset so autoneg doesn't
1549		 * interfere with test result
1550		 */
1551		if (e1000_link_test(adapter, &data[4]))
1552			eth_test->flags |= ETH_TEST_FL_FAILED;
1553
1554		if (if_running)
1555			/* indicate we're in test mode */
1556			dev_close(netdev);
1557		else
1558			e1000_reset(adapter);
1559
1560		if (e1000_reg_test(adapter, &data[0]))
1561			eth_test->flags |= ETH_TEST_FL_FAILED;
1562
1563		e1000_reset(adapter);
1564		if (e1000_eeprom_test(adapter, &data[1]))
1565			eth_test->flags |= ETH_TEST_FL_FAILED;
1566
1567		e1000_reset(adapter);
1568		if (e1000_intr_test(adapter, &data[2]))
1569			eth_test->flags |= ETH_TEST_FL_FAILED;
1570
1571		e1000_reset(adapter);
1572		/* make sure the phy is powered up */
1573		e1000_power_up_phy(adapter);
1574		if (e1000_loopback_test(adapter, &data[3]))
1575			eth_test->flags |= ETH_TEST_FL_FAILED;
1576
1577		/* restore speed, duplex, autoneg settings */
1578		hw->autoneg_advertised = autoneg_advertised;
1579		hw->forced_speed_duplex = forced_speed_duplex;
1580		hw->autoneg = autoneg;
1581
1582		e1000_reset(adapter);
1583		clear_bit(__E1000_TESTING, &adapter->flags);
1584		if (if_running)
1585			dev_open(netdev);
1586	} else {
1587		e_info(hw, "online testing starting\n");
1588		/* Online tests */
1589		if (e1000_link_test(adapter, &data[4]))
1590			eth_test->flags |= ETH_TEST_FL_FAILED;
1591
1592		/* Online tests aren't run; pass by default */
1593		data[0] = 0;
1594		data[1] = 0;
1595		data[2] = 0;
1596		data[3] = 0;
1597
1598		clear_bit(__E1000_TESTING, &adapter->flags);
1599	}
1600	msleep_interruptible(4 * 1000);
1601}
1602
1603static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1604			       struct ethtool_wolinfo *wol)
1605{
1606	struct e1000_hw *hw = &adapter->hw;
1607	int retval = 1; /* fail by default */
1608
1609	switch (hw->device_id) {
1610	case E1000_DEV_ID_82542:
1611	case E1000_DEV_ID_82543GC_FIBER:
1612	case E1000_DEV_ID_82543GC_COPPER:
1613	case E1000_DEV_ID_82544EI_FIBER:
1614	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1615	case E1000_DEV_ID_82545EM_FIBER:
1616	case E1000_DEV_ID_82545EM_COPPER:
1617	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1618	case E1000_DEV_ID_82546GB_PCIE:
1619		/* these don't support WoL at all */
1620		wol->supported = 0;
1621		break;
1622	case E1000_DEV_ID_82546EB_FIBER:
1623	case E1000_DEV_ID_82546GB_FIBER:
1624		/* Wake events not supported on port B */
1625		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1626			wol->supported = 0;
1627			break;
1628		}
1629		/* return success for non excluded adapter ports */
1630		retval = 0;
1631		break;
1632	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1633		/* quad port adapters only support WoL on port A */
1634		if (!adapter->quad_port_a) {
1635			wol->supported = 0;
1636			break;
1637		}
1638		/* return success for non excluded adapter ports */
1639		retval = 0;
1640		break;
1641	default:
1642		/* dual port cards only support WoL on port A from now on
1643		 * unless it was enabled in the eeprom for port B
1644		 * so exclude FUNC_1 ports from having WoL enabled
1645		 */
1646		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1647		    !adapter->eeprom_wol) {
1648			wol->supported = 0;
1649			break;
1650		}
1651
1652		retval = 0;
1653	}
1654
1655	return retval;
1656}
1657
1658static void e1000_get_wol(struct net_device *netdev,
1659			  struct ethtool_wolinfo *wol)
1660{
1661	struct e1000_adapter *adapter = netdev_priv(netdev);
1662	struct e1000_hw *hw = &adapter->hw;
1663
1664	wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1665	wol->wolopts = 0;
1666
1667	/* this function will set ->supported = 0 and return 1 if wol is not
1668	 * supported by this hardware
1669	 */
1670	if (e1000_wol_exclusion(adapter, wol) ||
1671	    !device_can_wakeup(&adapter->pdev->dev))
1672		return;
1673
1674	/* apply any specific unsupported masks here */
1675	switch (hw->device_id) {
1676	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1677		/* KSP3 does not support UCAST wake-ups */
1678		wol->supported &= ~WAKE_UCAST;
1679
1680		if (adapter->wol & E1000_WUFC_EX)
1681			e_err(drv, "Interface does not support directed "
1682			      "(unicast) frame wake-up packets\n");
1683		break;
1684	default:
1685		break;
1686	}
1687
1688	if (adapter->wol & E1000_WUFC_EX)
1689		wol->wolopts |= WAKE_UCAST;
1690	if (adapter->wol & E1000_WUFC_MC)
1691		wol->wolopts |= WAKE_MCAST;
1692	if (adapter->wol & E1000_WUFC_BC)
1693		wol->wolopts |= WAKE_BCAST;
1694	if (adapter->wol & E1000_WUFC_MAG)
1695		wol->wolopts |= WAKE_MAGIC;
1696}
1697
1698static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1699{
1700	struct e1000_adapter *adapter = netdev_priv(netdev);
1701	struct e1000_hw *hw = &adapter->hw;
1702
1703	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1704		return -EOPNOTSUPP;
1705
1706	if (e1000_wol_exclusion(adapter, wol) ||
1707	    !device_can_wakeup(&adapter->pdev->dev))
1708		return wol->wolopts ? -EOPNOTSUPP : 0;
1709
1710	switch (hw->device_id) {
1711	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1712		if (wol->wolopts & WAKE_UCAST) {
1713			e_err(drv, "Interface does not support directed "
1714			      "(unicast) frame wake-up packets\n");
1715			return -EOPNOTSUPP;
1716		}
1717		break;
1718	default:
1719		break;
1720	}
1721
1722	/* these settings will always override what we currently have */
1723	adapter->wol = 0;
1724
1725	if (wol->wolopts & WAKE_UCAST)
1726		adapter->wol |= E1000_WUFC_EX;
1727	if (wol->wolopts & WAKE_MCAST)
1728		adapter->wol |= E1000_WUFC_MC;
1729	if (wol->wolopts & WAKE_BCAST)
1730		adapter->wol |= E1000_WUFC_BC;
1731	if (wol->wolopts & WAKE_MAGIC)
1732		adapter->wol |= E1000_WUFC_MAG;
1733
1734	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1735
1736	return 0;
1737}
1738
1739static int e1000_set_phys_id(struct net_device *netdev,
1740			     enum ethtool_phys_id_state state)
1741{
1742	struct e1000_adapter *adapter = netdev_priv(netdev);
1743	struct e1000_hw *hw = &adapter->hw;
1744
1745	switch (state) {
1746	case ETHTOOL_ID_ACTIVE:
1747		e1000_setup_led(hw);
1748		return 2;
1749
1750	case ETHTOOL_ID_ON:
1751		e1000_led_on(hw);
1752		break;
1753
1754	case ETHTOOL_ID_OFF:
1755		e1000_led_off(hw);
1756		break;
1757
1758	case ETHTOOL_ID_INACTIVE:
1759		e1000_cleanup_led(hw);
1760	}
1761
1762	return 0;
1763}
1764
1765static int e1000_get_coalesce(struct net_device *netdev,
1766			      struct ethtool_coalesce *ec)
1767{
1768	struct e1000_adapter *adapter = netdev_priv(netdev);
1769
1770	if (adapter->hw.mac_type < e1000_82545)
1771		return -EOPNOTSUPP;
1772
1773	if (adapter->itr_setting <= 4)
1774		ec->rx_coalesce_usecs = adapter->itr_setting;
1775	else
1776		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1777
1778	return 0;
1779}
1780
1781static int e1000_set_coalesce(struct net_device *netdev,
1782			      struct ethtool_coalesce *ec)
1783{
1784	struct e1000_adapter *adapter = netdev_priv(netdev);
1785	struct e1000_hw *hw = &adapter->hw;
1786
1787	if (hw->mac_type < e1000_82545)
1788		return -EOPNOTSUPP;
1789
1790	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1791	    ((ec->rx_coalesce_usecs > 4) &&
1792	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1793	    (ec->rx_coalesce_usecs == 2))
1794		return -EINVAL;
1795
1796	if (ec->rx_coalesce_usecs == 4) {
1797		adapter->itr = adapter->itr_setting = 4;
1798	} else if (ec->rx_coalesce_usecs <= 3) {
1799		adapter->itr = 20000;
1800		adapter->itr_setting = ec->rx_coalesce_usecs;
1801	} else {
1802		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1803		adapter->itr_setting = adapter->itr & ~3;
1804	}
1805
1806	if (adapter->itr_setting != 0)
1807		ew32(ITR, 1000000000 / (adapter->itr * 256));
1808	else
1809		ew32(ITR, 0);
1810
1811	return 0;
1812}
1813
1814static int e1000_nway_reset(struct net_device *netdev)
1815{
1816	struct e1000_adapter *adapter = netdev_priv(netdev);
1817
1818	if (netif_running(netdev))
1819		e1000_reinit_locked(adapter);
1820	return 0;
1821}
1822
1823static void e1000_get_ethtool_stats(struct net_device *netdev,
1824				    struct ethtool_stats *stats, u64 *data)
1825{
1826	struct e1000_adapter *adapter = netdev_priv(netdev);
1827	int i;
1828	char *p = NULL;
1829	const struct e1000_stats *stat = e1000_gstrings_stats;
1830
1831	e1000_update_stats(adapter);
1832	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1833		switch (stat->type) {
1834		case NETDEV_STATS:
1835			p = (char *)netdev + stat->stat_offset;
1836			break;
1837		case E1000_STATS:
1838			p = (char *)adapter + stat->stat_offset;
1839			break;
1840		default:
1841			WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n",
1842				  stat->type, i);
1843			break;
1844		}
1845
1846		if (stat->sizeof_stat == sizeof(u64))
1847			data[i] = *(u64 *)p;
1848		else
1849			data[i] = *(u32 *)p;
1850
1851		stat++;
1852	}
1853/* BUG_ON(i != E1000_STATS_LEN); */
1854}
1855
1856static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1857			      u8 *data)
1858{
1859	u8 *p = data;
1860	int i;
1861
1862	switch (stringset) {
1863	case ETH_SS_TEST:
1864		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1865		break;
1866	case ETH_SS_STATS:
1867		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1868			memcpy(p, e1000_gstrings_stats[i].stat_string,
1869			       ETH_GSTRING_LEN);
1870			p += ETH_GSTRING_LEN;
1871		}
1872		/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1873		break;
1874	}
1875}
1876
1877static const struct ethtool_ops e1000_ethtool_ops = {
1878	.get_settings		= e1000_get_settings,
1879	.set_settings		= e1000_set_settings,
1880	.get_drvinfo		= e1000_get_drvinfo,
1881	.get_regs_len		= e1000_get_regs_len,
1882	.get_regs		= e1000_get_regs,
1883	.get_wol		= e1000_get_wol,
1884	.set_wol		= e1000_set_wol,
1885	.get_msglevel		= e1000_get_msglevel,
1886	.set_msglevel		= e1000_set_msglevel,
1887	.nway_reset		= e1000_nway_reset,
1888	.get_link		= e1000_get_link,
1889	.get_eeprom_len		= e1000_get_eeprom_len,
1890	.get_eeprom		= e1000_get_eeprom,
1891	.set_eeprom		= e1000_set_eeprom,
1892	.get_ringparam		= e1000_get_ringparam,
1893	.set_ringparam		= e1000_set_ringparam,
1894	.get_pauseparam		= e1000_get_pauseparam,
1895	.set_pauseparam		= e1000_set_pauseparam,
1896	.self_test		= e1000_diag_test,
1897	.get_strings		= e1000_get_strings,
1898	.set_phys_id		= e1000_set_phys_id,
1899	.get_ethtool_stats	= e1000_get_ethtool_stats,
1900	.get_sset_count		= e1000_get_sset_count,
1901	.get_coalesce		= e1000_get_coalesce,
1902	.set_coalesce		= e1000_set_coalesce,
1903	.get_ts_info		= ethtool_op_get_ts_info,
1904};
1905
1906void e1000_set_ethtool_ops(struct net_device *netdev)
1907{
1908	netdev->ethtool_ops = &e1000_ethtool_ops;
1909}
1910