1/*******************************************************************************
2
3  Intel PRO/100 Linux driver
4  Copyright(c) 1999 - 2006 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 *	e100.c: Intel(R) PRO/100 ethernet driver
31 *
32 *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
33 *	original e100 driver, but better described as a munging of
34 *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35 *
36 *	References:
37 *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 *		Open Source Software Developers Manual,
39 *		http://sourceforge.net/projects/e1000
40 *
41 *
42 *	                      Theory of Operation
43 *
44 *	I.   General
45 *
46 *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 *	controller family, which includes the 82557, 82558, 82559, 82550,
48 *	82551, and 82562 devices.  82558 and greater controllers
49 *	integrate the Intel 82555 PHY.  The controllers are used in
50 *	server and client network interface cards, as well as in
51 *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 *	configurations.  8255x supports a 32-bit linear addressing
53 *	mode and operates at 33Mhz PCI clock rate.
54 *
55 *	II.  Driver Operation
56 *
57 *	Memory-mapped mode is used exclusively to access the device's
58 *	shared-memory structure, the Control/Status Registers (CSR). All
59 *	setup, configuration, and control of the device, including queuing
60 *	of Tx, Rx, and configuration commands is through the CSR.
61 *	cmd_lock serializes accesses to the CSR command register.  cb_lock
62 *	protects the shared Command Block List (CBL).
63 *
64 *	8255x is highly MII-compliant and all access to the PHY go
65 *	through the Management Data Interface (MDI).  Consequently, the
66 *	driver leverages the mii.c library shared with other MII-compliant
67 *	devices.
68 *
69 *	Big- and Little-Endian byte order as well as 32- and 64-bit
70 *	archs are supported.  Weak-ordered memory and non-cache-coherent
71 *	archs are supported.
72 *
73 *	III. Transmit
74 *
75 *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
76 *	together in a fixed-size ring (CBL) thus forming the flexible mode
77 *	memory structure.  A TCB marked with the suspend-bit indicates
78 *	the end of the ring.  The last TCB processed suspends the
79 *	controller, and the controller can be restarted by issue a CU
80 *	resume command to continue from the suspend point, or a CU start
81 *	command to start at a given position in the ring.
82 *
83 *	Non-Tx commands (config, multicast setup, etc) are linked
84 *	into the CBL ring along with Tx commands.  The common structure
85 *	used for both Tx and non-Tx commands is the Command Block (CB).
86 *
87 *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 *	is the next CB to check for completion; cb_to_send is the first
89 *	CB to start on in case of a previous failure to resume.  CB clean
90 *	up happens in interrupt context in response to a CU interrupt.
91 *	cbs_avail keeps track of number of free CB resources available.
92 *
93 * 	Hardware padding of short packets to minimum packet size is
94 * 	enabled.  82557 pads with 7Eh, while the later controllers pad
95 * 	with 00h.
96 *
97 *	IV.  Receive
98 *
99 *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 *	Descriptors (RFD) + data buffer, thus forming the simplified mode
101 *	memory structure.  Rx skbs are allocated to contain both the RFD
102 *	and the data buffer, but the RFD is pulled off before the skb is
103 *	indicated.  The data buffer is aligned such that encapsulated
104 *	protocol headers are u32-aligned.  Since the RFD is part of the
105 *	mapped shared memory, and completion status is contained within
106 *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 *	view from software and hardware.
108 *
109 *	In order to keep updates to the RFD link field from colliding with
110 *	hardware writes to mark packets complete, we use the feature that
111 *	hardware will not write to a size 0 descriptor and mark the previous
112 *	packet as end-of-list (EL).   After updating the link, we remove EL
113 *	and only then restore the size such that hardware may use the
114 *	previous-to-end RFD.
115 *
116 *	Under typical operation, the  receive unit (RU) is start once,
117 *	and the controller happily fills RFDs as frames arrive.  If
118 *	replacement RFDs cannot be allocated, or the RU goes non-active,
119 *	the RU must be restarted.  Frame arrival generates an interrupt,
120 *	and Rx indication and re-allocation happen in the same context,
121 *	therefore no locking is required.  A software-generated interrupt
122 *	is generated from the watchdog to recover from a failed allocation
123 *	scenario where all Rx resources have been indicated and none re-
124 *	placed.
125 *
126 *	V.   Miscellaneous
127 *
128 * 	VLAN offloading of tagging, stripping and filtering is not
129 * 	supported, but driver will accommodate the extra 4-byte VLAN tag
130 * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
131 * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
132 * 	not supported (hardware limitation).
133 *
134 * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
135 *
136 * 	Thanks to JC (jchapman@katalix.com) for helping with
137 * 	testing/troubleshooting the development driver.
138 *
139 * 	TODO:
140 * 	o several entry points race with dev->close
141 * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
142 *
143 *	FIXES:
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 *	- Stratus87247: protect MDI control register manipulations
146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
147 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
148 */
149
150#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
151
152#include <linux/hardirq.h>
153#include <linux/interrupt.h>
154#include <linux/module.h>
155#include <linux/moduleparam.h>
156#include <linux/kernel.h>
157#include <linux/types.h>
158#include <linux/sched.h>
159#include <linux/slab.h>
160#include <linux/delay.h>
161#include <linux/init.h>
162#include <linux/pci.h>
163#include <linux/dma-mapping.h>
164#include <linux/dmapool.h>
165#include <linux/netdevice.h>
166#include <linux/etherdevice.h>
167#include <linux/mii.h>
168#include <linux/if_vlan.h>
169#include <linux/skbuff.h>
170#include <linux/ethtool.h>
171#include <linux/string.h>
172#include <linux/firmware.h>
173#include <linux/rtnetlink.h>
174#include <asm/unaligned.h>
175
176
177#define DRV_NAME		"e100"
178#define DRV_EXT			"-NAPI"
179#define DRV_VERSION		"3.5.24-k2"DRV_EXT
180#define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
181#define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
182
183#define E100_WATCHDOG_PERIOD	(2 * HZ)
184#define E100_NAPI_WEIGHT	16
185
186#define FIRMWARE_D101M		"e100/d101m_ucode.bin"
187#define FIRMWARE_D101S		"e100/d101s_ucode.bin"
188#define FIRMWARE_D102E		"e100/d102e_ucode.bin"
189
190MODULE_DESCRIPTION(DRV_DESCRIPTION);
191MODULE_AUTHOR(DRV_COPYRIGHT);
192MODULE_LICENSE("GPL");
193MODULE_VERSION(DRV_VERSION);
194MODULE_FIRMWARE(FIRMWARE_D101M);
195MODULE_FIRMWARE(FIRMWARE_D101S);
196MODULE_FIRMWARE(FIRMWARE_D102E);
197
198static int debug = 3;
199static int eeprom_bad_csum_allow = 0;
200static int use_io = 0;
201module_param(debug, int, 0);
202module_param(eeprom_bad_csum_allow, int, 0);
203module_param(use_io, int, 0);
204MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
205MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
206MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
207
208#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
209	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
210	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
211static const struct pci_device_id e100_id_table[] = {
212	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
213	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
214	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
215	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
216	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
217	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
218	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
219	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
220	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
221	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
222	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
223	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
224	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
225	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
226	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
227	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
228	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
229	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
230	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
231	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
232	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
233	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
234	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
235	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
236	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
237	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
238	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
239	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
240	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
241	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
242	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
243	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
244	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
245	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
246	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
247	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
248	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
249	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
250	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
251	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
252	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
253	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
254	{ 0, }
255};
256MODULE_DEVICE_TABLE(pci, e100_id_table);
257
258enum mac {
259	mac_82557_D100_A  = 0,
260	mac_82557_D100_B  = 1,
261	mac_82557_D100_C  = 2,
262	mac_82558_D101_A4 = 4,
263	mac_82558_D101_B0 = 5,
264	mac_82559_D101M   = 8,
265	mac_82559_D101S   = 9,
266	mac_82550_D102    = 12,
267	mac_82550_D102_C  = 13,
268	mac_82551_E       = 14,
269	mac_82551_F       = 15,
270	mac_82551_10      = 16,
271	mac_unknown       = 0xFF,
272};
273
274enum phy {
275	phy_100a     = 0x000003E0,
276	phy_100c     = 0x035002A8,
277	phy_82555_tx = 0x015002A8,
278	phy_nsc_tx   = 0x5C002000,
279	phy_82562_et = 0x033002A8,
280	phy_82562_em = 0x032002A8,
281	phy_82562_ek = 0x031002A8,
282	phy_82562_eh = 0x017002A8,
283	phy_82552_v  = 0xd061004d,
284	phy_unknown  = 0xFFFFFFFF,
285};
286
287/* CSR (Control/Status Registers) */
288struct csr {
289	struct {
290		u8 status;
291		u8 stat_ack;
292		u8 cmd_lo;
293		u8 cmd_hi;
294		u32 gen_ptr;
295	} scb;
296	u32 port;
297	u16 flash_ctrl;
298	u8 eeprom_ctrl_lo;
299	u8 eeprom_ctrl_hi;
300	u32 mdi_ctrl;
301	u32 rx_dma_count;
302};
303
304enum scb_status {
305	rus_no_res       = 0x08,
306	rus_ready        = 0x10,
307	rus_mask         = 0x3C,
308};
309
310enum ru_state  {
311	RU_SUSPENDED = 0,
312	RU_RUNNING	 = 1,
313	RU_UNINITIALIZED = -1,
314};
315
316enum scb_stat_ack {
317	stat_ack_not_ours    = 0x00,
318	stat_ack_sw_gen      = 0x04,
319	stat_ack_rnr         = 0x10,
320	stat_ack_cu_idle     = 0x20,
321	stat_ack_frame_rx    = 0x40,
322	stat_ack_cu_cmd_done = 0x80,
323	stat_ack_not_present = 0xFF,
324	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
325	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
326};
327
328enum scb_cmd_hi {
329	irq_mask_none = 0x00,
330	irq_mask_all  = 0x01,
331	irq_sw_gen    = 0x02,
332};
333
334enum scb_cmd_lo {
335	cuc_nop        = 0x00,
336	ruc_start      = 0x01,
337	ruc_load_base  = 0x06,
338	cuc_start      = 0x10,
339	cuc_resume     = 0x20,
340	cuc_dump_addr  = 0x40,
341	cuc_dump_stats = 0x50,
342	cuc_load_base  = 0x60,
343	cuc_dump_reset = 0x70,
344};
345
346enum cuc_dump {
347	cuc_dump_complete       = 0x0000A005,
348	cuc_dump_reset_complete = 0x0000A007,
349};
350
351enum port {
352	software_reset  = 0x0000,
353	selftest        = 0x0001,
354	selective_reset = 0x0002,
355};
356
357enum eeprom_ctrl_lo {
358	eesk = 0x01,
359	eecs = 0x02,
360	eedi = 0x04,
361	eedo = 0x08,
362};
363
364enum mdi_ctrl {
365	mdi_write = 0x04000000,
366	mdi_read  = 0x08000000,
367	mdi_ready = 0x10000000,
368};
369
370enum eeprom_op {
371	op_write = 0x05,
372	op_read  = 0x06,
373	op_ewds  = 0x10,
374	op_ewen  = 0x13,
375};
376
377enum eeprom_offsets {
378	eeprom_cnfg_mdix  = 0x03,
379	eeprom_phy_iface  = 0x06,
380	eeprom_id         = 0x0A,
381	eeprom_config_asf = 0x0D,
382	eeprom_smbus_addr = 0x90,
383};
384
385enum eeprom_cnfg_mdix {
386	eeprom_mdix_enabled = 0x0080,
387};
388
389enum eeprom_phy_iface {
390	NoSuchPhy = 0,
391	I82553AB,
392	I82553C,
393	I82503,
394	DP83840,
395	S80C240,
396	S80C24,
397	I82555,
398	DP83840A = 10,
399};
400
401enum eeprom_id {
402	eeprom_id_wol = 0x0020,
403};
404
405enum eeprom_config_asf {
406	eeprom_asf = 0x8000,
407	eeprom_gcl = 0x4000,
408};
409
410enum cb_status {
411	cb_complete = 0x8000,
412	cb_ok       = 0x2000,
413};
414
415/**
416 * cb_command - Command Block flags
417 * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
418 */
419enum cb_command {
420	cb_nop    = 0x0000,
421	cb_iaaddr = 0x0001,
422	cb_config = 0x0002,
423	cb_multi  = 0x0003,
424	cb_tx     = 0x0004,
425	cb_ucode  = 0x0005,
426	cb_dump   = 0x0006,
427	cb_tx_sf  = 0x0008,
428	cb_tx_nc  = 0x0010,
429	cb_cid    = 0x1f00,
430	cb_i      = 0x2000,
431	cb_s      = 0x4000,
432	cb_el     = 0x8000,
433};
434
435struct rfd {
436	__le16 status;
437	__le16 command;
438	__le32 link;
439	__le32 rbd;
440	__le16 actual_size;
441	__le16 size;
442};
443
444struct rx {
445	struct rx *next, *prev;
446	struct sk_buff *skb;
447	dma_addr_t dma_addr;
448};
449
450#if defined(__BIG_ENDIAN_BITFIELD)
451#define X(a,b)	b,a
452#else
453#define X(a,b)	a,b
454#endif
455struct config {
456/*0*/	u8 X(byte_count:6, pad0:2);
457/*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
458/*2*/	u8 adaptive_ifs;
459/*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
460	   term_write_cache_line:1), pad3:4);
461/*4*/	u8 X(rx_dma_max_count:7, pad4:1);
462/*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
463/*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
464	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
465	   rx_save_overruns : 1), rx_save_bad_frames : 1);
466/*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
467	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
468	   tx_dynamic_tbd:1);
469/*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
470/*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
471	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
472/*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
473	   loopback:2);
474/*11*/	u8 X(linear_priority:3, pad11:5);
475/*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
476/*13*/	u8 ip_addr_lo;
477/*14*/	u8 ip_addr_hi;
478/*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
479	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
480	   pad15_2:1), crs_or_cdt:1);
481/*16*/	u8 fc_delay_lo;
482/*17*/	u8 fc_delay_hi;
483/*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
484	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
485/*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
486	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
487	   full_duplex_force:1), full_duplex_pin:1);
488/*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
489/*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
490/*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
491	u8 pad_d102[9];
492};
493
494#define E100_MAX_MULTICAST_ADDRS	64
495struct multi {
496	__le16 count;
497	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
498};
499
500/* Important: keep total struct u32-aligned */
501#define UCODE_SIZE			134
502struct cb {
503	__le16 status;
504	__le16 command;
505	__le32 link;
506	union {
507		u8 iaaddr[ETH_ALEN];
508		__le32 ucode[UCODE_SIZE];
509		struct config config;
510		struct multi multi;
511		struct {
512			u32 tbd_array;
513			u16 tcb_byte_count;
514			u8 threshold;
515			u8 tbd_count;
516			struct {
517				__le32 buf_addr;
518				__le16 size;
519				u16 eol;
520			} tbd;
521		} tcb;
522		__le32 dump_buffer_addr;
523	} u;
524	struct cb *next, *prev;
525	dma_addr_t dma_addr;
526	struct sk_buff *skb;
527};
528
529enum loopback {
530	lb_none = 0, lb_mac = 1, lb_phy = 3,
531};
532
533struct stats {
534	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
535		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
536		tx_multiple_collisions, tx_total_collisions;
537	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
538		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
539		rx_short_frame_errors;
540	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
541	__le16 xmt_tco_frames, rcv_tco_frames;
542	__le32 complete;
543};
544
545struct mem {
546	struct {
547		u32 signature;
548		u32 result;
549	} selftest;
550	struct stats stats;
551	u8 dump_buf[596];
552};
553
554struct param_range {
555	u32 min;
556	u32 max;
557	u32 count;
558};
559
560struct params {
561	struct param_range rfds;
562	struct param_range cbs;
563};
564
565struct nic {
566	/* Begin: frequently used values: keep adjacent for cache effect */
567	u32 msg_enable				____cacheline_aligned;
568	struct net_device *netdev;
569	struct pci_dev *pdev;
570	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
571
572	struct rx *rxs				____cacheline_aligned;
573	struct rx *rx_to_use;
574	struct rx *rx_to_clean;
575	struct rfd blank_rfd;
576	enum ru_state ru_running;
577
578	spinlock_t cb_lock			____cacheline_aligned;
579	spinlock_t cmd_lock;
580	struct csr __iomem *csr;
581	enum scb_cmd_lo cuc_cmd;
582	unsigned int cbs_avail;
583	struct napi_struct napi;
584	struct cb *cbs;
585	struct cb *cb_to_use;
586	struct cb *cb_to_send;
587	struct cb *cb_to_clean;
588	__le16 tx_command;
589	/* End: frequently used values: keep adjacent for cache effect */
590
591	enum {
592		ich                = (1 << 0),
593		promiscuous        = (1 << 1),
594		multicast_all      = (1 << 2),
595		wol_magic          = (1 << 3),
596		ich_10h_workaround = (1 << 4),
597	} flags					____cacheline_aligned;
598
599	enum mac mac;
600	enum phy phy;
601	struct params params;
602	struct timer_list watchdog;
603	struct mii_if_info mii;
604	struct work_struct tx_timeout_task;
605	enum loopback loopback;
606
607	struct mem *mem;
608	dma_addr_t dma_addr;
609
610	struct pci_pool *cbs_pool;
611	dma_addr_t cbs_dma_addr;
612	u8 adaptive_ifs;
613	u8 tx_threshold;
614	u32 tx_frames;
615	u32 tx_collisions;
616	u32 tx_deferred;
617	u32 tx_single_collisions;
618	u32 tx_multiple_collisions;
619	u32 tx_fc_pause;
620	u32 tx_tco_frames;
621
622	u32 rx_fc_pause;
623	u32 rx_fc_unsupported;
624	u32 rx_tco_frames;
625	u32 rx_short_frame_errors;
626	u32 rx_over_length_errors;
627
628	u16 eeprom_wc;
629	__le16 eeprom[256];
630	spinlock_t mdio_lock;
631	const struct firmware *fw;
632};
633
634static inline void e100_write_flush(struct nic *nic)
635{
636	/* Flush previous PCI writes through intermediate bridges
637	 * by doing a benign read */
638	(void)ioread8(&nic->csr->scb.status);
639}
640
641static void e100_enable_irq(struct nic *nic)
642{
643	unsigned long flags;
644
645	spin_lock_irqsave(&nic->cmd_lock, flags);
646	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
647	e100_write_flush(nic);
648	spin_unlock_irqrestore(&nic->cmd_lock, flags);
649}
650
651static void e100_disable_irq(struct nic *nic)
652{
653	unsigned long flags;
654
655	spin_lock_irqsave(&nic->cmd_lock, flags);
656	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
657	e100_write_flush(nic);
658	spin_unlock_irqrestore(&nic->cmd_lock, flags);
659}
660
661static void e100_hw_reset(struct nic *nic)
662{
663	/* Put CU and RU into idle with a selective reset to get
664	 * device off of PCI bus */
665	iowrite32(selective_reset, &nic->csr->port);
666	e100_write_flush(nic); udelay(20);
667
668	/* Now fully reset device */
669	iowrite32(software_reset, &nic->csr->port);
670	e100_write_flush(nic); udelay(20);
671
672	/* Mask off our interrupt line - it's unmasked after reset */
673	e100_disable_irq(nic);
674}
675
676static int e100_self_test(struct nic *nic)
677{
678	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
679
680	/* Passing the self-test is a pretty good indication
681	 * that the device can DMA to/from host memory */
682
683	nic->mem->selftest.signature = 0;
684	nic->mem->selftest.result = 0xFFFFFFFF;
685
686	iowrite32(selftest | dma_addr, &nic->csr->port);
687	e100_write_flush(nic);
688	/* Wait 10 msec for self-test to complete */
689	msleep(10);
690
691	/* Interrupts are enabled after self-test */
692	e100_disable_irq(nic);
693
694	/* Check results of self-test */
695	if (nic->mem->selftest.result != 0) {
696		netif_err(nic, hw, nic->netdev,
697			  "Self-test failed: result=0x%08X\n",
698			  nic->mem->selftest.result);
699		return -ETIMEDOUT;
700	}
701	if (nic->mem->selftest.signature == 0) {
702		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
703		return -ETIMEDOUT;
704	}
705
706	return 0;
707}
708
709static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
710{
711	u32 cmd_addr_data[3];
712	u8 ctrl;
713	int i, j;
714
715	/* Three cmds: write/erase enable, write data, write/erase disable */
716	cmd_addr_data[0] = op_ewen << (addr_len - 2);
717	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
718		le16_to_cpu(data);
719	cmd_addr_data[2] = op_ewds << (addr_len - 2);
720
721	/* Bit-bang cmds to write word to eeprom */
722	for (j = 0; j < 3; j++) {
723
724		/* Chip select */
725		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
726		e100_write_flush(nic); udelay(4);
727
728		for (i = 31; i >= 0; i--) {
729			ctrl = (cmd_addr_data[j] & (1 << i)) ?
730				eecs | eedi : eecs;
731			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
732			e100_write_flush(nic); udelay(4);
733
734			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
735			e100_write_flush(nic); udelay(4);
736		}
737		/* Wait 10 msec for cmd to complete */
738		msleep(10);
739
740		/* Chip deselect */
741		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
742		e100_write_flush(nic); udelay(4);
743	}
744};
745
746/* General technique stolen from the eepro100 driver - very clever */
747static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
748{
749	u32 cmd_addr_data;
750	u16 data = 0;
751	u8 ctrl;
752	int i;
753
754	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
755
756	/* Chip select */
757	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
758	e100_write_flush(nic); udelay(4);
759
760	/* Bit-bang to read word from eeprom */
761	for (i = 31; i >= 0; i--) {
762		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
763		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
764		e100_write_flush(nic); udelay(4);
765
766		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
767		e100_write_flush(nic); udelay(4);
768
769		/* Eeprom drives a dummy zero to EEDO after receiving
770		 * complete address.  Use this to adjust addr_len. */
771		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
772		if (!(ctrl & eedo) && i > 16) {
773			*addr_len -= (i - 16);
774			i = 17;
775		}
776
777		data = (data << 1) | (ctrl & eedo ? 1 : 0);
778	}
779
780	/* Chip deselect */
781	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
782	e100_write_flush(nic); udelay(4);
783
784	return cpu_to_le16(data);
785};
786
787/* Load entire EEPROM image into driver cache and validate checksum */
788static int e100_eeprom_load(struct nic *nic)
789{
790	u16 addr, addr_len = 8, checksum = 0;
791
792	/* Try reading with an 8-bit addr len to discover actual addr len */
793	e100_eeprom_read(nic, &addr_len, 0);
794	nic->eeprom_wc = 1 << addr_len;
795
796	for (addr = 0; addr < nic->eeprom_wc; addr++) {
797		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
798		if (addr < nic->eeprom_wc - 1)
799			checksum += le16_to_cpu(nic->eeprom[addr]);
800	}
801
802	/* The checksum, stored in the last word, is calculated such that
803	 * the sum of words should be 0xBABA */
804	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
805		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
806		if (!eeprom_bad_csum_allow)
807			return -EAGAIN;
808	}
809
810	return 0;
811}
812
813/* Save (portion of) driver EEPROM cache to device and update checksum */
814static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
815{
816	u16 addr, addr_len = 8, checksum = 0;
817
818	/* Try reading with an 8-bit addr len to discover actual addr len */
819	e100_eeprom_read(nic, &addr_len, 0);
820	nic->eeprom_wc = 1 << addr_len;
821
822	if (start + count >= nic->eeprom_wc)
823		return -EINVAL;
824
825	for (addr = start; addr < start + count; addr++)
826		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
827
828	/* The checksum, stored in the last word, is calculated such that
829	 * the sum of words should be 0xBABA */
830	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
831		checksum += le16_to_cpu(nic->eeprom[addr]);
832	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
833	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
834		nic->eeprom[nic->eeprom_wc - 1]);
835
836	return 0;
837}
838
839#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
840#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
841static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
842{
843	unsigned long flags;
844	unsigned int i;
845	int err = 0;
846
847	spin_lock_irqsave(&nic->cmd_lock, flags);
848
849	/* Previous command is accepted when SCB clears */
850	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
851		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
852			break;
853		cpu_relax();
854		if (unlikely(i > E100_WAIT_SCB_FAST))
855			udelay(5);
856	}
857	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
858		err = -EAGAIN;
859		goto err_unlock;
860	}
861
862	if (unlikely(cmd != cuc_resume))
863		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
864	iowrite8(cmd, &nic->csr->scb.cmd_lo);
865
866err_unlock:
867	spin_unlock_irqrestore(&nic->cmd_lock, flags);
868
869	return err;
870}
871
872static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
873	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
874{
875	struct cb *cb;
876	unsigned long flags;
877	int err;
878
879	spin_lock_irqsave(&nic->cb_lock, flags);
880
881	if (unlikely(!nic->cbs_avail)) {
882		err = -ENOMEM;
883		goto err_unlock;
884	}
885
886	cb = nic->cb_to_use;
887	nic->cb_to_use = cb->next;
888	nic->cbs_avail--;
889	cb->skb = skb;
890
891	err = cb_prepare(nic, cb, skb);
892	if (err)
893		goto err_unlock;
894
895	if (unlikely(!nic->cbs_avail))
896		err = -ENOSPC;
897
898
899	/* Order is important otherwise we'll be in a race with h/w:
900	 * set S-bit in current first, then clear S-bit in previous. */
901	cb->command |= cpu_to_le16(cb_s);
902	dma_wmb();
903	cb->prev->command &= cpu_to_le16(~cb_s);
904
905	while (nic->cb_to_send != nic->cb_to_use) {
906		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
907			nic->cb_to_send->dma_addr))) {
908			/* Ok, here's where things get sticky.  It's
909			 * possible that we can't schedule the command
910			 * because the controller is too busy, so
911			 * let's just queue the command and try again
912			 * when another command is scheduled. */
913			if (err == -ENOSPC) {
914				//request a reset
915				schedule_work(&nic->tx_timeout_task);
916			}
917			break;
918		} else {
919			nic->cuc_cmd = cuc_resume;
920			nic->cb_to_send = nic->cb_to_send->next;
921		}
922	}
923
924err_unlock:
925	spin_unlock_irqrestore(&nic->cb_lock, flags);
926
927	return err;
928}
929
930static int mdio_read(struct net_device *netdev, int addr, int reg)
931{
932	struct nic *nic = netdev_priv(netdev);
933	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
934}
935
936static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
937{
938	struct nic *nic = netdev_priv(netdev);
939
940	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
941}
942
943/* the standard mdio_ctrl() function for usual MII-compliant hardware */
944static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
945{
946	u32 data_out = 0;
947	unsigned int i;
948	unsigned long flags;
949
950
951	/*
952	 * Stratus87247: we shouldn't be writing the MDI control
953	 * register until the Ready bit shows True.  Also, since
954	 * manipulation of the MDI control registers is a multi-step
955	 * procedure it should be done under lock.
956	 */
957	spin_lock_irqsave(&nic->mdio_lock, flags);
958	for (i = 100; i; --i) {
959		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
960			break;
961		udelay(20);
962	}
963	if (unlikely(!i)) {
964		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
965		spin_unlock_irqrestore(&nic->mdio_lock, flags);
966		return 0;		/* No way to indicate timeout error */
967	}
968	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
969
970	for (i = 0; i < 100; i++) {
971		udelay(20);
972		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
973			break;
974	}
975	spin_unlock_irqrestore(&nic->mdio_lock, flags);
976	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
977		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
978		     dir == mdi_read ? "READ" : "WRITE",
979		     addr, reg, data, data_out);
980	return (u16)data_out;
981}
982
983/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
984static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
985				 u32 addr,
986				 u32 dir,
987				 u32 reg,
988				 u16 data)
989{
990	if ((reg == MII_BMCR) && (dir == mdi_write)) {
991		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
992			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
993							MII_ADVERTISE);
994
995			/*
996			 * Workaround Si issue where sometimes the part will not
997			 * autoneg to 100Mbps even when advertised.
998			 */
999			if (advert & ADVERTISE_100FULL)
1000				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
1001			else if (advert & ADVERTISE_100HALF)
1002				data |= BMCR_SPEED100;
1003		}
1004	}
1005	return mdio_ctrl_hw(nic, addr, dir, reg, data);
1006}
1007
1008/* Fully software-emulated mdio_ctrl() function for cards without
1009 * MII-compliant PHYs.
1010 * For now, this is mainly geared towards 80c24 support; in case of further
1011 * requirements for other types (i82503, ...?) either extend this mechanism
1012 * or split it, whichever is cleaner.
1013 */
1014static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1015				      u32 addr,
1016				      u32 dir,
1017				      u32 reg,
1018				      u16 data)
1019{
1020	/* might need to allocate a netdev_priv'ed register array eventually
1021	 * to be able to record state changes, but for now
1022	 * some fully hardcoded register handling ought to be ok I guess. */
1023
1024	if (dir == mdi_read) {
1025		switch (reg) {
1026		case MII_BMCR:
1027			/* Auto-negotiation, right? */
1028			return  BMCR_ANENABLE |
1029				BMCR_FULLDPLX;
1030		case MII_BMSR:
1031			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1032				BMSR_ANEGCAPABLE |
1033				BMSR_10FULL;
1034		case MII_ADVERTISE:
1035			/* 80c24 is a "combo card" PHY, right? */
1036			return	ADVERTISE_10HALF |
1037				ADVERTISE_10FULL;
1038		default:
1039			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1040				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1041				     dir == mdi_read ? "READ" : "WRITE",
1042				     addr, reg, data);
1043			return 0xFFFF;
1044		}
1045	} else {
1046		switch (reg) {
1047		default:
1048			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1049				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1050				     dir == mdi_read ? "READ" : "WRITE",
1051				     addr, reg, data);
1052			return 0xFFFF;
1053		}
1054	}
1055}
1056static inline int e100_phy_supports_mii(struct nic *nic)
1057{
1058	/* for now, just check it by comparing whether we
1059	   are using MII software emulation.
1060	*/
1061	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1062}
1063
1064static void e100_get_defaults(struct nic *nic)
1065{
1066	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1067	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1068
1069	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1070	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1071	if (nic->mac == mac_unknown)
1072		nic->mac = mac_82557_D100_A;
1073
1074	nic->params.rfds = rfds;
1075	nic->params.cbs = cbs;
1076
1077	/* Quadwords to DMA into FIFO before starting frame transmit */
1078	nic->tx_threshold = 0xE0;
1079
1080	/* no interrupt for every tx completion, delay = 256us if not 557 */
1081	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1082		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1083
1084	/* Template for a freshly allocated RFD */
1085	nic->blank_rfd.command = 0;
1086	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1087	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1088
1089	/* MII setup */
1090	nic->mii.phy_id_mask = 0x1F;
1091	nic->mii.reg_num_mask = 0x1F;
1092	nic->mii.dev = nic->netdev;
1093	nic->mii.mdio_read = mdio_read;
1094	nic->mii.mdio_write = mdio_write;
1095}
1096
1097static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1098{
1099	struct config *config = &cb->u.config;
1100	u8 *c = (u8 *)config;
1101	struct net_device *netdev = nic->netdev;
1102
1103	cb->command = cpu_to_le16(cb_config);
1104
1105	memset(config, 0, sizeof(struct config));
1106
1107	config->byte_count = 0x16;		/* bytes in this struct */
1108	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1109	config->direct_rx_dma = 0x1;		/* reserved */
1110	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1111	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1112	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1113	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1114	if (e100_phy_supports_mii(nic))
1115		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1116	config->pad10 = 0x6;
1117	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1118	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1119	config->ifs = 0x6;			/* x16 = inter frame spacing */
1120	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1121	config->pad15_1 = 0x1;
1122	config->pad15_2 = 0x1;
1123	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1124	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1125	config->tx_padding = 0x1;		/* 1=pad short frames */
1126	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1127	config->pad18 = 0x1;
1128	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1129	config->pad20_1 = 0x1F;
1130	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1131	config->pad21_1 = 0x5;
1132
1133	config->adaptive_ifs = nic->adaptive_ifs;
1134	config->loopback = nic->loopback;
1135
1136	if (nic->mii.force_media && nic->mii.full_duplex)
1137		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1138
1139	if (nic->flags & promiscuous || nic->loopback) {
1140		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1141		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1142		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1143	}
1144
1145	if (unlikely(netdev->features & NETIF_F_RXFCS))
1146		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1147
1148	if (nic->flags & multicast_all)
1149		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1150
1151	/* disable WoL when up */
1152	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1153		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1154
1155	if (nic->mac >= mac_82558_D101_A4) {
1156		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1157		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1158		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1159		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1160		if (nic->mac >= mac_82559_D101M) {
1161			config->tno_intr = 0x1;		/* TCO stats enable */
1162			/* Enable TCO in extended config */
1163			if (nic->mac >= mac_82551_10) {
1164				config->byte_count = 0x20; /* extended bytes */
1165				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1166			}
1167		} else {
1168			config->standard_stat_counter = 0x0;
1169		}
1170	}
1171
1172	if (netdev->features & NETIF_F_RXALL) {
1173		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1174		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1175		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1176	}
1177
1178	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1179		     c + 0);
1180	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1181		     c + 8);
1182	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1183		     c + 16);
1184	return 0;
1185}
1186
1187/*************************************************************************
1188*  CPUSaver parameters
1189*
1190*  All CPUSaver parameters are 16-bit literals that are part of a
1191*  "move immediate value" instruction.  By changing the value of
1192*  the literal in the instruction before the code is loaded, the
1193*  driver can change the algorithm.
1194*
1195*  INTDELAY - This loads the dead-man timer with its initial value.
1196*    When this timer expires the interrupt is asserted, and the
1197*    timer is reset each time a new packet is received.  (see
1198*    BUNDLEMAX below to set the limit on number of chained packets)
1199*    The current default is 0x600 or 1536.  Experiments show that
1200*    the value should probably stay within the 0x200 - 0x1000.
1201*
1202*  BUNDLEMAX -
1203*    This sets the maximum number of frames that will be bundled.  In
1204*    some situations, such as the TCP windowing algorithm, it may be
1205*    better to limit the growth of the bundle size than let it go as
1206*    high as it can, because that could cause too much added latency.
1207*    The default is six, because this is the number of packets in the
1208*    default TCP window size.  A value of 1 would make CPUSaver indicate
1209*    an interrupt for every frame received.  If you do not want to put
1210*    a limit on the bundle size, set this value to xFFFF.
1211*
1212*  BUNDLESMALL -
1213*    This contains a bit-mask describing the minimum size frame that
1214*    will be bundled.  The default masks the lower 7 bits, which means
1215*    that any frame less than 128 bytes in length will not be bundled,
1216*    but will instead immediately generate an interrupt.  This does
1217*    not affect the current bundle in any way.  Any frame that is 128
1218*    bytes or large will be bundled normally.  This feature is meant
1219*    to provide immediate indication of ACK frames in a TCP environment.
1220*    Customers were seeing poor performance when a machine with CPUSaver
1221*    enabled was sending but not receiving.  The delay introduced when
1222*    the ACKs were received was enough to reduce total throughput, because
1223*    the sender would sit idle until the ACK was finally seen.
1224*
1225*    The current default is 0xFF80, which masks out the lower 7 bits.
1226*    This means that any frame which is x7F (127) bytes or smaller
1227*    will cause an immediate interrupt.  Because this value must be a
1228*    bit mask, there are only a few valid values that can be used.  To
1229*    turn this feature off, the driver can write the value xFFFF to the
1230*    lower word of this instruction (in the same way that the other
1231*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1232*    cause an interrupt to be generated for every frame, because all
1233*    standard Ethernet frames are <= 2047 bytes in length.
1234*************************************************************************/
1235
1236/* if you wish to disable the ucode functionality, while maintaining the
1237 * workarounds it provides, set the following defines to:
1238 * BUNDLESMALL 0
1239 * BUNDLEMAX 1
1240 * INTDELAY 1
1241 */
1242#define BUNDLESMALL 1
1243#define BUNDLEMAX (u16)6
1244#define INTDELAY (u16)1536 /* 0x600 */
1245
1246/* Initialize firmware */
1247static const struct firmware *e100_request_firmware(struct nic *nic)
1248{
1249	const char *fw_name;
1250	const struct firmware *fw = nic->fw;
1251	u8 timer, bundle, min_size;
1252	int err = 0;
1253	bool required = false;
1254
1255	/* do not load u-code for ICH devices */
1256	if (nic->flags & ich)
1257		return NULL;
1258
1259	/* Search for ucode match against h/w revision
1260	 *
1261	 * Based on comments in the source code for the FreeBSD fxp
1262	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1263	 *
1264	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1265	 *     with Inline Receive)."
1266	 *
1267	 * So we must fail if it cannot be loaded.
1268	 *
1269	 * The other microcode files are only required for the optional
1270	 * CPUSaver feature.  Nice to have, but no reason to fail.
1271	 */
1272	if (nic->mac == mac_82559_D101M) {
1273		fw_name = FIRMWARE_D101M;
1274	} else if (nic->mac == mac_82559_D101S) {
1275		fw_name = FIRMWARE_D101S;
1276	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1277		fw_name = FIRMWARE_D102E;
1278		required = true;
1279	} else { /* No ucode on other devices */
1280		return NULL;
1281	}
1282
1283	/* If the firmware has not previously been loaded, request a pointer
1284	 * to it. If it was previously loaded, we are reinitializing the
1285	 * adapter, possibly in a resume from hibernate, in which case
1286	 * request_firmware() cannot be used.
1287	 */
1288	if (!fw)
1289		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1290
1291	if (err) {
1292		if (required) {
1293			netif_err(nic, probe, nic->netdev,
1294				  "Failed to load firmware \"%s\": %d\n",
1295				  fw_name, err);
1296			return ERR_PTR(err);
1297		} else {
1298			netif_info(nic, probe, nic->netdev,
1299				   "CPUSaver disabled. Needs \"%s\": %d\n",
1300				   fw_name, err);
1301			return NULL;
1302		}
1303	}
1304
1305	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1306	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1307	if (fw->size != UCODE_SIZE * 4 + 3) {
1308		netif_err(nic, probe, nic->netdev,
1309			  "Firmware \"%s\" has wrong size %zu\n",
1310			  fw_name, fw->size);
1311		release_firmware(fw);
1312		return ERR_PTR(-EINVAL);
1313	}
1314
1315	/* Read timer, bundle and min_size from end of firmware blob */
1316	timer = fw->data[UCODE_SIZE * 4];
1317	bundle = fw->data[UCODE_SIZE * 4 + 1];
1318	min_size = fw->data[UCODE_SIZE * 4 + 2];
1319
1320	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1321	    min_size >= UCODE_SIZE) {
1322		netif_err(nic, probe, nic->netdev,
1323			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1324			  fw_name, timer, bundle, min_size);
1325		release_firmware(fw);
1326		return ERR_PTR(-EINVAL);
1327	}
1328
1329	/* OK, firmware is validated and ready to use. Save a pointer
1330	 * to it in the nic */
1331	nic->fw = fw;
1332	return fw;
1333}
1334
1335static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1336			     struct sk_buff *skb)
1337{
1338	const struct firmware *fw = (void *)skb;
1339	u8 timer, bundle, min_size;
1340
1341	/* It's not a real skb; we just abused the fact that e100_exec_cb
1342	   will pass it through to here... */
1343	cb->skb = NULL;
1344
1345	/* firmware is stored as little endian already */
1346	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1347
1348	/* Read timer, bundle and min_size from end of firmware blob */
1349	timer = fw->data[UCODE_SIZE * 4];
1350	bundle = fw->data[UCODE_SIZE * 4 + 1];
1351	min_size = fw->data[UCODE_SIZE * 4 + 2];
1352
1353	/* Insert user-tunable settings in cb->u.ucode */
1354	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1355	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1356	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1357	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1358	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1359	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1360
1361	cb->command = cpu_to_le16(cb_ucode | cb_el);
1362	return 0;
1363}
1364
1365static inline int e100_load_ucode_wait(struct nic *nic)
1366{
1367	const struct firmware *fw;
1368	int err = 0, counter = 50;
1369	struct cb *cb = nic->cb_to_clean;
1370
1371	fw = e100_request_firmware(nic);
1372	/* If it's NULL, then no ucode is required */
1373	if (!fw || IS_ERR(fw))
1374		return PTR_ERR(fw);
1375
1376	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1377		netif_err(nic, probe, nic->netdev,
1378			  "ucode cmd failed with error %d\n", err);
1379
1380	/* must restart cuc */
1381	nic->cuc_cmd = cuc_start;
1382
1383	/* wait for completion */
1384	e100_write_flush(nic);
1385	udelay(10);
1386
1387	/* wait for possibly (ouch) 500ms */
1388	while (!(cb->status & cpu_to_le16(cb_complete))) {
1389		msleep(10);
1390		if (!--counter) break;
1391	}
1392
1393	/* ack any interrupts, something could have been set */
1394	iowrite8(~0, &nic->csr->scb.stat_ack);
1395
1396	/* if the command failed, or is not OK, notify and return */
1397	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1398		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1399		err = -EPERM;
1400	}
1401
1402	return err;
1403}
1404
1405static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1406	struct sk_buff *skb)
1407{
1408	cb->command = cpu_to_le16(cb_iaaddr);
1409	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1410	return 0;
1411}
1412
1413static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1414{
1415	cb->command = cpu_to_le16(cb_dump);
1416	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1417		offsetof(struct mem, dump_buf));
1418	return 0;
1419}
1420
1421static int e100_phy_check_without_mii(struct nic *nic)
1422{
1423	u8 phy_type;
1424	int without_mii;
1425
1426	phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1427
1428	switch (phy_type) {
1429	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1430	case I82503: /* Non-MII PHY; UNTESTED! */
1431	case S80C24: /* Non-MII PHY; tested and working */
1432		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1433		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1434		 * doesn't have a programming interface of any sort.  The
1435		 * media is sensed automatically based on how the link partner
1436		 * is configured.  This is, in essence, manual configuration.
1437		 */
1438		netif_info(nic, probe, nic->netdev,
1439			   "found MII-less i82503 or 80c24 or other PHY\n");
1440
1441		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1442		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1443
1444		/* these might be needed for certain MII-less cards...
1445		 * nic->flags |= ich;
1446		 * nic->flags |= ich_10h_workaround; */
1447
1448		without_mii = 1;
1449		break;
1450	default:
1451		without_mii = 0;
1452		break;
1453	}
1454	return without_mii;
1455}
1456
1457#define NCONFIG_AUTO_SWITCH	0x0080
1458#define MII_NSC_CONG		MII_RESV1
1459#define NSC_CONG_ENABLE		0x0100
1460#define NSC_CONG_TXREADY	0x0400
1461#define ADVERTISE_FC_SUPPORTED	0x0400
1462static int e100_phy_init(struct nic *nic)
1463{
1464	struct net_device *netdev = nic->netdev;
1465	u32 addr;
1466	u16 bmcr, stat, id_lo, id_hi, cong;
1467
1468	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1469	for (addr = 0; addr < 32; addr++) {
1470		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1471		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1472		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1473		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1474		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1475			break;
1476	}
1477	if (addr == 32) {
1478		/* uhoh, no PHY detected: check whether we seem to be some
1479		 * weird, rare variant which is *known* to not have any MII.
1480		 * But do this AFTER MII checking only, since this does
1481		 * lookup of EEPROM values which may easily be unreliable. */
1482		if (e100_phy_check_without_mii(nic))
1483			return 0; /* simply return and hope for the best */
1484		else {
1485			/* for unknown cases log a fatal error */
1486			netif_err(nic, hw, nic->netdev,
1487				  "Failed to locate any known PHY, aborting\n");
1488			return -EAGAIN;
1489		}
1490	} else
1491		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1492			     "phy_addr = %d\n", nic->mii.phy_id);
1493
1494	/* Get phy ID */
1495	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1496	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1497	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1498	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1499		     "phy ID = 0x%08X\n", nic->phy);
1500
1501	/* Select the phy and isolate the rest */
1502	for (addr = 0; addr < 32; addr++) {
1503		if (addr != nic->mii.phy_id) {
1504			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1505		} else if (nic->phy != phy_82552_v) {
1506			bmcr = mdio_read(netdev, addr, MII_BMCR);
1507			mdio_write(netdev, addr, MII_BMCR,
1508				bmcr & ~BMCR_ISOLATE);
1509		}
1510	}
1511	/*
1512	 * Workaround for 82552:
1513	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1514	 * other phy_id's) using bmcr value from addr discovery loop above.
1515	 */
1516	if (nic->phy == phy_82552_v)
1517		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1518			bmcr & ~BMCR_ISOLATE);
1519
1520	/* Handle National tx phys */
1521#define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1522	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1523		/* Disable congestion control */
1524		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1525		cong |= NSC_CONG_TXREADY;
1526		cong &= ~NSC_CONG_ENABLE;
1527		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1528	}
1529
1530	if (nic->phy == phy_82552_v) {
1531		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1532
1533		/* assign special tweaked mdio_ctrl() function */
1534		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1535
1536		/* Workaround Si not advertising flow-control during autoneg */
1537		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1538		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1539
1540		/* Reset for the above changes to take effect */
1541		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1542		bmcr |= BMCR_RESET;
1543		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1544	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1545	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1546		(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1547		/* enable/disable MDI/MDI-X auto-switching. */
1548		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1549				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1550	}
1551
1552	return 0;
1553}
1554
1555static int e100_hw_init(struct nic *nic)
1556{
1557	int err = 0;
1558
1559	e100_hw_reset(nic);
1560
1561	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1562	if (!in_interrupt() && (err = e100_self_test(nic)))
1563		return err;
1564
1565	if ((err = e100_phy_init(nic)))
1566		return err;
1567	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1568		return err;
1569	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1570		return err;
1571	if ((err = e100_load_ucode_wait(nic)))
1572		return err;
1573	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1574		return err;
1575	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1576		return err;
1577	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1578		nic->dma_addr + offsetof(struct mem, stats))))
1579		return err;
1580	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1581		return err;
1582
1583	e100_disable_irq(nic);
1584
1585	return 0;
1586}
1587
1588static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1589{
1590	struct net_device *netdev = nic->netdev;
1591	struct netdev_hw_addr *ha;
1592	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1593
1594	cb->command = cpu_to_le16(cb_multi);
1595	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1596	i = 0;
1597	netdev_for_each_mc_addr(ha, netdev) {
1598		if (i == count)
1599			break;
1600		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1601			ETH_ALEN);
1602	}
1603	return 0;
1604}
1605
1606static void e100_set_multicast_list(struct net_device *netdev)
1607{
1608	struct nic *nic = netdev_priv(netdev);
1609
1610	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1611		     "mc_count=%d, flags=0x%04X\n",
1612		     netdev_mc_count(netdev), netdev->flags);
1613
1614	if (netdev->flags & IFF_PROMISC)
1615		nic->flags |= promiscuous;
1616	else
1617		nic->flags &= ~promiscuous;
1618
1619	if (netdev->flags & IFF_ALLMULTI ||
1620		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1621		nic->flags |= multicast_all;
1622	else
1623		nic->flags &= ~multicast_all;
1624
1625	e100_exec_cb(nic, NULL, e100_configure);
1626	e100_exec_cb(nic, NULL, e100_multi);
1627}
1628
1629static void e100_update_stats(struct nic *nic)
1630{
1631	struct net_device *dev = nic->netdev;
1632	struct net_device_stats *ns = &dev->stats;
1633	struct stats *s = &nic->mem->stats;
1634	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1635		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1636		&s->complete;
1637
1638	/* Device's stats reporting may take several microseconds to
1639	 * complete, so we're always waiting for results of the
1640	 * previous command. */
1641
1642	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1643		*complete = 0;
1644		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1645		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1646		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1647		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1648		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1649		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1650		ns->collisions += nic->tx_collisions;
1651		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1652			le32_to_cpu(s->tx_lost_crs);
1653		nic->rx_short_frame_errors +=
1654			le32_to_cpu(s->rx_short_frame_errors);
1655		ns->rx_length_errors = nic->rx_short_frame_errors +
1656			nic->rx_over_length_errors;
1657		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1658		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1659		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1660		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1661		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1662		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1663			le32_to_cpu(s->rx_alignment_errors) +
1664			le32_to_cpu(s->rx_short_frame_errors) +
1665			le32_to_cpu(s->rx_cdt_errors);
1666		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1667		nic->tx_single_collisions +=
1668			le32_to_cpu(s->tx_single_collisions);
1669		nic->tx_multiple_collisions +=
1670			le32_to_cpu(s->tx_multiple_collisions);
1671		if (nic->mac >= mac_82558_D101_A4) {
1672			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1673			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1674			nic->rx_fc_unsupported +=
1675				le32_to_cpu(s->fc_rcv_unsupported);
1676			if (nic->mac >= mac_82559_D101M) {
1677				nic->tx_tco_frames +=
1678					le16_to_cpu(s->xmt_tco_frames);
1679				nic->rx_tco_frames +=
1680					le16_to_cpu(s->rcv_tco_frames);
1681			}
1682		}
1683	}
1684
1685
1686	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1687		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1688			     "exec cuc_dump_reset failed\n");
1689}
1690
1691static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1692{
1693	/* Adjust inter-frame-spacing (IFS) between two transmits if
1694	 * we're getting collisions on a half-duplex connection. */
1695
1696	if (duplex == DUPLEX_HALF) {
1697		u32 prev = nic->adaptive_ifs;
1698		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1699
1700		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1701		   (nic->tx_frames > min_frames)) {
1702			if (nic->adaptive_ifs < 60)
1703				nic->adaptive_ifs += 5;
1704		} else if (nic->tx_frames < min_frames) {
1705			if (nic->adaptive_ifs >= 5)
1706				nic->adaptive_ifs -= 5;
1707		}
1708		if (nic->adaptive_ifs != prev)
1709			e100_exec_cb(nic, NULL, e100_configure);
1710	}
1711}
1712
1713static void e100_watchdog(unsigned long data)
1714{
1715	struct nic *nic = (struct nic *)data;
1716	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1717	u32 speed;
1718
1719	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1720		     "right now = %ld\n", jiffies);
1721
1722	/* mii library handles link maintenance tasks */
1723
1724	mii_ethtool_gset(&nic->mii, &cmd);
1725	speed = ethtool_cmd_speed(&cmd);
1726
1727	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1728		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1729			    speed == SPEED_100 ? 100 : 10,
1730			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1731	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1732		netdev_info(nic->netdev, "NIC Link is Down\n");
1733	}
1734
1735	mii_check_link(&nic->mii);
1736
1737	/* Software generated interrupt to recover from (rare) Rx
1738	 * allocation failure.
1739	 * Unfortunately have to use a spinlock to not re-enable interrupts
1740	 * accidentally, due to hardware that shares a register between the
1741	 * interrupt mask bit and the SW Interrupt generation bit */
1742	spin_lock_irq(&nic->cmd_lock);
1743	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1744	e100_write_flush(nic);
1745	spin_unlock_irq(&nic->cmd_lock);
1746
1747	e100_update_stats(nic);
1748	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1749
1750	if (nic->mac <= mac_82557_D100_C)
1751		/* Issue a multicast command to workaround a 557 lock up */
1752		e100_set_multicast_list(nic->netdev);
1753
1754	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1755		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1756		nic->flags |= ich_10h_workaround;
1757	else
1758		nic->flags &= ~ich_10h_workaround;
1759
1760	mod_timer(&nic->watchdog,
1761		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1762}
1763
1764static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1765	struct sk_buff *skb)
1766{
1767	dma_addr_t dma_addr;
1768	cb->command = nic->tx_command;
1769
1770	dma_addr = pci_map_single(nic->pdev,
1771				  skb->data, skb->len, PCI_DMA_TODEVICE);
1772	/* If we can't map the skb, have the upper layer try later */
1773	if (pci_dma_mapping_error(nic->pdev, dma_addr)) {
1774		dev_kfree_skb_any(skb);
1775		skb = NULL;
1776		return -ENOMEM;
1777	}
1778
1779	/*
1780	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1781	 * testing, ie sending frames with bad CRC.
1782	 */
1783	if (unlikely(skb->no_fcs))
1784		cb->command |= cpu_to_le16(cb_tx_nc);
1785	else
1786		cb->command &= ~cpu_to_le16(cb_tx_nc);
1787
1788	/* interrupt every 16 packets regardless of delay */
1789	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1790		cb->command |= cpu_to_le16(cb_i);
1791	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1792	cb->u.tcb.tcb_byte_count = 0;
1793	cb->u.tcb.threshold = nic->tx_threshold;
1794	cb->u.tcb.tbd_count = 1;
1795	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1796	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1797	skb_tx_timestamp(skb);
1798	return 0;
1799}
1800
1801static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1802				   struct net_device *netdev)
1803{
1804	struct nic *nic = netdev_priv(netdev);
1805	int err;
1806
1807	if (nic->flags & ich_10h_workaround) {
1808		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1809		   Issue a NOP command followed by a 1us delay before
1810		   issuing the Tx command. */
1811		if (e100_exec_cmd(nic, cuc_nop, 0))
1812			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1813				     "exec cuc_nop failed\n");
1814		udelay(1);
1815	}
1816
1817	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1818
1819	switch (err) {
1820	case -ENOSPC:
1821		/* We queued the skb, but now we're out of space. */
1822		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1823			     "No space for CB\n");
1824		netif_stop_queue(netdev);
1825		break;
1826	case -ENOMEM:
1827		/* This is a hard error - log it. */
1828		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1829			     "Out of Tx resources, returning skb\n");
1830		netif_stop_queue(netdev);
1831		return NETDEV_TX_BUSY;
1832	}
1833
1834	return NETDEV_TX_OK;
1835}
1836
1837static int e100_tx_clean(struct nic *nic)
1838{
1839	struct net_device *dev = nic->netdev;
1840	struct cb *cb;
1841	int tx_cleaned = 0;
1842
1843	spin_lock(&nic->cb_lock);
1844
1845	/* Clean CBs marked complete */
1846	for (cb = nic->cb_to_clean;
1847	    cb->status & cpu_to_le16(cb_complete);
1848	    cb = nic->cb_to_clean = cb->next) {
1849		dma_rmb(); /* read skb after status */
1850		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1851			     "cb[%d]->status = 0x%04X\n",
1852			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1853			     cb->status);
1854
1855		if (likely(cb->skb != NULL)) {
1856			dev->stats.tx_packets++;
1857			dev->stats.tx_bytes += cb->skb->len;
1858
1859			pci_unmap_single(nic->pdev,
1860				le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1861				le16_to_cpu(cb->u.tcb.tbd.size),
1862				PCI_DMA_TODEVICE);
1863			dev_kfree_skb_any(cb->skb);
1864			cb->skb = NULL;
1865			tx_cleaned = 1;
1866		}
1867		cb->status = 0;
1868		nic->cbs_avail++;
1869	}
1870
1871	spin_unlock(&nic->cb_lock);
1872
1873	/* Recover from running out of Tx resources in xmit_frame */
1874	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1875		netif_wake_queue(nic->netdev);
1876
1877	return tx_cleaned;
1878}
1879
1880static void e100_clean_cbs(struct nic *nic)
1881{
1882	if (nic->cbs) {
1883		while (nic->cbs_avail != nic->params.cbs.count) {
1884			struct cb *cb = nic->cb_to_clean;
1885			if (cb->skb) {
1886				pci_unmap_single(nic->pdev,
1887					le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1888					le16_to_cpu(cb->u.tcb.tbd.size),
1889					PCI_DMA_TODEVICE);
1890				dev_kfree_skb(cb->skb);
1891			}
1892			nic->cb_to_clean = nic->cb_to_clean->next;
1893			nic->cbs_avail++;
1894		}
1895		pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1896		nic->cbs = NULL;
1897		nic->cbs_avail = 0;
1898	}
1899	nic->cuc_cmd = cuc_start;
1900	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1901		nic->cbs;
1902}
1903
1904static int e100_alloc_cbs(struct nic *nic)
1905{
1906	struct cb *cb;
1907	unsigned int i, count = nic->params.cbs.count;
1908
1909	nic->cuc_cmd = cuc_start;
1910	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1911	nic->cbs_avail = 0;
1912
1913	nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
1914				  &nic->cbs_dma_addr);
1915	if (!nic->cbs)
1916		return -ENOMEM;
1917	memset(nic->cbs, 0, count * sizeof(struct cb));
1918
1919	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1920		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1921		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1922
1923		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1924		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1925			((i+1) % count) * sizeof(struct cb));
1926	}
1927
1928	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1929	nic->cbs_avail = count;
1930
1931	return 0;
1932}
1933
1934static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1935{
1936	if (!nic->rxs) return;
1937	if (RU_SUSPENDED != nic->ru_running) return;
1938
1939	/* handle init time starts */
1940	if (!rx) rx = nic->rxs;
1941
1942	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1943	if (rx->skb) {
1944		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1945		nic->ru_running = RU_RUNNING;
1946	}
1947}
1948
1949#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1950static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1951{
1952	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1953		return -ENOMEM;
1954
1955	/* Init, and map the RFD. */
1956	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1957	rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1958		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1959
1960	if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1961		dev_kfree_skb_any(rx->skb);
1962		rx->skb = NULL;
1963		rx->dma_addr = 0;
1964		return -ENOMEM;
1965	}
1966
1967	/* Link the RFD to end of RFA by linking previous RFD to
1968	 * this one.  We are safe to touch the previous RFD because
1969	 * it is protected by the before last buffer's el bit being set */
1970	if (rx->prev->skb) {
1971		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1972		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1973		pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1974			sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1975	}
1976
1977	return 0;
1978}
1979
1980static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1981	unsigned int *work_done, unsigned int work_to_do)
1982{
1983	struct net_device *dev = nic->netdev;
1984	struct sk_buff *skb = rx->skb;
1985	struct rfd *rfd = (struct rfd *)skb->data;
1986	u16 rfd_status, actual_size;
1987	u16 fcs_pad = 0;
1988
1989	if (unlikely(work_done && *work_done >= work_to_do))
1990		return -EAGAIN;
1991
1992	/* Need to sync before taking a peek at cb_complete bit */
1993	pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1994		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1995	rfd_status = le16_to_cpu(rfd->status);
1996
1997	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1998		     "status=0x%04X\n", rfd_status);
1999	dma_rmb(); /* read size after status bit */
2000
2001	/* If data isn't ready, nothing to indicate */
2002	if (unlikely(!(rfd_status & cb_complete))) {
2003		/* If the next buffer has the el bit, but we think the receiver
2004		 * is still running, check to see if it really stopped while
2005		 * we had interrupts off.
2006		 * This allows for a fast restart without re-enabling
2007		 * interrupts */
2008		if ((le16_to_cpu(rfd->command) & cb_el) &&
2009		    (RU_RUNNING == nic->ru_running))
2010
2011			if (ioread8(&nic->csr->scb.status) & rus_no_res)
2012				nic->ru_running = RU_SUSPENDED;
2013		pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2014					       sizeof(struct rfd),
2015					       PCI_DMA_FROMDEVICE);
2016		return -ENODATA;
2017	}
2018
2019	/* Get actual data size */
2020	if (unlikely(dev->features & NETIF_F_RXFCS))
2021		fcs_pad = 4;
2022	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
2023	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
2024		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
2025
2026	/* Get data */
2027	pci_unmap_single(nic->pdev, rx->dma_addr,
2028		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2029
2030	/* If this buffer has the el bit, but we think the receiver
2031	 * is still running, check to see if it really stopped while
2032	 * we had interrupts off.
2033	 * This allows for a fast restart without re-enabling interrupts.
2034	 * This can happen when the RU sees the size change but also sees
2035	 * the el bit set. */
2036	if ((le16_to_cpu(rfd->command) & cb_el) &&
2037	    (RU_RUNNING == nic->ru_running)) {
2038
2039	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2040		nic->ru_running = RU_SUSPENDED;
2041	}
2042
2043	/* Pull off the RFD and put the actual data (minus eth hdr) */
2044	skb_reserve(skb, sizeof(struct rfd));
2045	skb_put(skb, actual_size);
2046	skb->protocol = eth_type_trans(skb, nic->netdev);
2047
2048	/* If we are receiving all frames, then don't bother
2049	 * checking for errors.
2050	 */
2051	if (unlikely(dev->features & NETIF_F_RXALL)) {
2052		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2053			/* Received oversized frame, but keep it. */
2054			nic->rx_over_length_errors++;
2055		goto process_skb;
2056	}
2057
2058	if (unlikely(!(rfd_status & cb_ok))) {
2059		/* Don't indicate if hardware indicates errors */
2060		dev_kfree_skb_any(skb);
2061	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2062		/* Don't indicate oversized frames */
2063		nic->rx_over_length_errors++;
2064		dev_kfree_skb_any(skb);
2065	} else {
2066process_skb:
2067		dev->stats.rx_packets++;
2068		dev->stats.rx_bytes += (actual_size - fcs_pad);
2069		netif_receive_skb(skb);
2070		if (work_done)
2071			(*work_done)++;
2072	}
2073
2074	rx->skb = NULL;
2075
2076	return 0;
2077}
2078
2079static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2080	unsigned int work_to_do)
2081{
2082	struct rx *rx;
2083	int restart_required = 0, err = 0;
2084	struct rx *old_before_last_rx, *new_before_last_rx;
2085	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2086
2087	/* Indicate newly arrived packets */
2088	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2089		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2090		/* Hit quota or no more to clean */
2091		if (-EAGAIN == err || -ENODATA == err)
2092			break;
2093	}
2094
2095
2096	/* On EAGAIN, hit quota so have more work to do, restart once
2097	 * cleanup is complete.
2098	 * Else, are we already rnr? then pay attention!!! this ensures that
2099	 * the state machine progression never allows a start with a
2100	 * partially cleaned list, avoiding a race between hardware
2101	 * and rx_to_clean when in NAPI mode */
2102	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2103		restart_required = 1;
2104
2105	old_before_last_rx = nic->rx_to_use->prev->prev;
2106	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2107
2108	/* Alloc new skbs to refill list */
2109	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2110		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2111			break; /* Better luck next time (see watchdog) */
2112	}
2113
2114	new_before_last_rx = nic->rx_to_use->prev->prev;
2115	if (new_before_last_rx != old_before_last_rx) {
2116		/* Set the el-bit on the buffer that is before the last buffer.
2117		 * This lets us update the next pointer on the last buffer
2118		 * without worrying about hardware touching it.
2119		 * We set the size to 0 to prevent hardware from touching this
2120		 * buffer.
2121		 * When the hardware hits the before last buffer with el-bit
2122		 * and size of 0, it will RNR interrupt, the RUS will go into
2123		 * the No Resources state.  It will not complete nor write to
2124		 * this buffer. */
2125		new_before_last_rfd =
2126			(struct rfd *)new_before_last_rx->skb->data;
2127		new_before_last_rfd->size = 0;
2128		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2129		pci_dma_sync_single_for_device(nic->pdev,
2130			new_before_last_rx->dma_addr, sizeof(struct rfd),
2131			PCI_DMA_BIDIRECTIONAL);
2132
2133		/* Now that we have a new stopping point, we can clear the old
2134		 * stopping point.  We must sync twice to get the proper
2135		 * ordering on the hardware side of things. */
2136		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2137		pci_dma_sync_single_for_device(nic->pdev,
2138			old_before_last_rx->dma_addr, sizeof(struct rfd),
2139			PCI_DMA_BIDIRECTIONAL);
2140		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2141							+ ETH_FCS_LEN);
2142		pci_dma_sync_single_for_device(nic->pdev,
2143			old_before_last_rx->dma_addr, sizeof(struct rfd),
2144			PCI_DMA_BIDIRECTIONAL);
2145	}
2146
2147	if (restart_required) {
2148		// ack the rnr?
2149		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2150		e100_start_receiver(nic, nic->rx_to_clean);
2151		if (work_done)
2152			(*work_done)++;
2153	}
2154}
2155
2156static void e100_rx_clean_list(struct nic *nic)
2157{
2158	struct rx *rx;
2159	unsigned int i, count = nic->params.rfds.count;
2160
2161	nic->ru_running = RU_UNINITIALIZED;
2162
2163	if (nic->rxs) {
2164		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2165			if (rx->skb) {
2166				pci_unmap_single(nic->pdev, rx->dma_addr,
2167					RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2168				dev_kfree_skb(rx->skb);
2169			}
2170		}
2171		kfree(nic->rxs);
2172		nic->rxs = NULL;
2173	}
2174
2175	nic->rx_to_use = nic->rx_to_clean = NULL;
2176}
2177
2178static int e100_rx_alloc_list(struct nic *nic)
2179{
2180	struct rx *rx;
2181	unsigned int i, count = nic->params.rfds.count;
2182	struct rfd *before_last;
2183
2184	nic->rx_to_use = nic->rx_to_clean = NULL;
2185	nic->ru_running = RU_UNINITIALIZED;
2186
2187	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2188		return -ENOMEM;
2189
2190	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2191		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2192		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2193		if (e100_rx_alloc_skb(nic, rx)) {
2194			e100_rx_clean_list(nic);
2195			return -ENOMEM;
2196		}
2197	}
2198	/* Set the el-bit on the buffer that is before the last buffer.
2199	 * This lets us update the next pointer on the last buffer without
2200	 * worrying about hardware touching it.
2201	 * We set the size to 0 to prevent hardware from touching this buffer.
2202	 * When the hardware hits the before last buffer with el-bit and size
2203	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2204	 * state.  It will not complete nor write to this buffer. */
2205	rx = nic->rxs->prev->prev;
2206	before_last = (struct rfd *)rx->skb->data;
2207	before_last->command |= cpu_to_le16(cb_el);
2208	before_last->size = 0;
2209	pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2210		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2211
2212	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2213	nic->ru_running = RU_SUSPENDED;
2214
2215	return 0;
2216}
2217
2218static irqreturn_t e100_intr(int irq, void *dev_id)
2219{
2220	struct net_device *netdev = dev_id;
2221	struct nic *nic = netdev_priv(netdev);
2222	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2223
2224	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2225		     "stat_ack = 0x%02X\n", stat_ack);
2226
2227	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2228	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2229		return IRQ_NONE;
2230
2231	/* Ack interrupt(s) */
2232	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2233
2234	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2235	if (stat_ack & stat_ack_rnr)
2236		nic->ru_running = RU_SUSPENDED;
2237
2238	if (likely(napi_schedule_prep(&nic->napi))) {
2239		e100_disable_irq(nic);
2240		__napi_schedule(&nic->napi);
2241	}
2242
2243	return IRQ_HANDLED;
2244}
2245
2246static int e100_poll(struct napi_struct *napi, int budget)
2247{
2248	struct nic *nic = container_of(napi, struct nic, napi);
2249	unsigned int work_done = 0;
2250
2251	e100_rx_clean(nic, &work_done, budget);
2252	e100_tx_clean(nic);
2253
2254	/* If budget not fully consumed, exit the polling mode */
2255	if (work_done < budget) {
2256		napi_complete(napi);
2257		e100_enable_irq(nic);
2258	}
2259
2260	return work_done;
2261}
2262
2263#ifdef CONFIG_NET_POLL_CONTROLLER
2264static void e100_netpoll(struct net_device *netdev)
2265{
2266	struct nic *nic = netdev_priv(netdev);
2267
2268	e100_disable_irq(nic);
2269	e100_intr(nic->pdev->irq, netdev);
2270	e100_tx_clean(nic);
2271	e100_enable_irq(nic);
2272}
2273#endif
2274
2275static int e100_set_mac_address(struct net_device *netdev, void *p)
2276{
2277	struct nic *nic = netdev_priv(netdev);
2278	struct sockaddr *addr = p;
2279
2280	if (!is_valid_ether_addr(addr->sa_data))
2281		return -EADDRNOTAVAIL;
2282
2283	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2284	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2285
2286	return 0;
2287}
2288
2289static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2290{
2291	if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2292		return -EINVAL;
2293	netdev->mtu = new_mtu;
2294	return 0;
2295}
2296
2297static int e100_asf(struct nic *nic)
2298{
2299	/* ASF can be enabled from eeprom */
2300	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2301	   (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2302	   !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2303	   ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2304}
2305
2306static int e100_up(struct nic *nic)
2307{
2308	int err;
2309
2310	if ((err = e100_rx_alloc_list(nic)))
2311		return err;
2312	if ((err = e100_alloc_cbs(nic)))
2313		goto err_rx_clean_list;
2314	if ((err = e100_hw_init(nic)))
2315		goto err_clean_cbs;
2316	e100_set_multicast_list(nic->netdev);
2317	e100_start_receiver(nic, NULL);
2318	mod_timer(&nic->watchdog, jiffies);
2319	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2320		nic->netdev->name, nic->netdev)))
2321		goto err_no_irq;
2322	netif_wake_queue(nic->netdev);
2323	napi_enable(&nic->napi);
2324	/* enable ints _after_ enabling poll, preventing a race between
2325	 * disable ints+schedule */
2326	e100_enable_irq(nic);
2327	return 0;
2328
2329err_no_irq:
2330	del_timer_sync(&nic->watchdog);
2331err_clean_cbs:
2332	e100_clean_cbs(nic);
2333err_rx_clean_list:
2334	e100_rx_clean_list(nic);
2335	return err;
2336}
2337
2338static void e100_down(struct nic *nic)
2339{
2340	/* wait here for poll to complete */
2341	napi_disable(&nic->napi);
2342	netif_stop_queue(nic->netdev);
2343	e100_hw_reset(nic);
2344	free_irq(nic->pdev->irq, nic->netdev);
2345	del_timer_sync(&nic->watchdog);
2346	netif_carrier_off(nic->netdev);
2347	e100_clean_cbs(nic);
2348	e100_rx_clean_list(nic);
2349}
2350
2351static void e100_tx_timeout(struct net_device *netdev)
2352{
2353	struct nic *nic = netdev_priv(netdev);
2354
2355	/* Reset outside of interrupt context, to avoid request_irq
2356	 * in interrupt context */
2357	schedule_work(&nic->tx_timeout_task);
2358}
2359
2360static void e100_tx_timeout_task(struct work_struct *work)
2361{
2362	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2363	struct net_device *netdev = nic->netdev;
2364
2365	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2366		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2367
2368	rtnl_lock();
2369	if (netif_running(netdev)) {
2370		e100_down(netdev_priv(netdev));
2371		e100_up(netdev_priv(netdev));
2372	}
2373	rtnl_unlock();
2374}
2375
2376static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2377{
2378	int err;
2379	struct sk_buff *skb;
2380
2381	/* Use driver resources to perform internal MAC or PHY
2382	 * loopback test.  A single packet is prepared and transmitted
2383	 * in loopback mode, and the test passes if the received
2384	 * packet compares byte-for-byte to the transmitted packet. */
2385
2386	if ((err = e100_rx_alloc_list(nic)))
2387		return err;
2388	if ((err = e100_alloc_cbs(nic)))
2389		goto err_clean_rx;
2390
2391	/* ICH PHY loopback is broken so do MAC loopback instead */
2392	if (nic->flags & ich && loopback_mode == lb_phy)
2393		loopback_mode = lb_mac;
2394
2395	nic->loopback = loopback_mode;
2396	if ((err = e100_hw_init(nic)))
2397		goto err_loopback_none;
2398
2399	if (loopback_mode == lb_phy)
2400		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2401			BMCR_LOOPBACK);
2402
2403	e100_start_receiver(nic, NULL);
2404
2405	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2406		err = -ENOMEM;
2407		goto err_loopback_none;
2408	}
2409	skb_put(skb, ETH_DATA_LEN);
2410	memset(skb->data, 0xFF, ETH_DATA_LEN);
2411	e100_xmit_frame(skb, nic->netdev);
2412
2413	msleep(10);
2414
2415	pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2416			RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2417
2418	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2419	   skb->data, ETH_DATA_LEN))
2420		err = -EAGAIN;
2421
2422err_loopback_none:
2423	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2424	nic->loopback = lb_none;
2425	e100_clean_cbs(nic);
2426	e100_hw_reset(nic);
2427err_clean_rx:
2428	e100_rx_clean_list(nic);
2429	return err;
2430}
2431
2432#define MII_LED_CONTROL	0x1B
2433#define E100_82552_LED_OVERRIDE 0x19
2434#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2435#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2436
2437static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2438{
2439	struct nic *nic = netdev_priv(netdev);
2440	return mii_ethtool_gset(&nic->mii, cmd);
2441}
2442
2443static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2444{
2445	struct nic *nic = netdev_priv(netdev);
2446	int err;
2447
2448	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2449	err = mii_ethtool_sset(&nic->mii, cmd);
2450	e100_exec_cb(nic, NULL, e100_configure);
2451
2452	return err;
2453}
2454
2455static void e100_get_drvinfo(struct net_device *netdev,
2456	struct ethtool_drvinfo *info)
2457{
2458	struct nic *nic = netdev_priv(netdev);
2459	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2460	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2461	strlcpy(info->bus_info, pci_name(nic->pdev),
2462		sizeof(info->bus_info));
2463}
2464
2465#define E100_PHY_REGS 0x1C
2466static int e100_get_regs_len(struct net_device *netdev)
2467{
2468	struct nic *nic = netdev_priv(netdev);
2469	return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2470}
2471
2472static void e100_get_regs(struct net_device *netdev,
2473	struct ethtool_regs *regs, void *p)
2474{
2475	struct nic *nic = netdev_priv(netdev);
2476	u32 *buff = p;
2477	int i;
2478
2479	regs->version = (1 << 24) | nic->pdev->revision;
2480	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2481		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2482		ioread16(&nic->csr->scb.status);
2483	for (i = E100_PHY_REGS; i >= 0; i--)
2484		buff[1 + E100_PHY_REGS - i] =
2485			mdio_read(netdev, nic->mii.phy_id, i);
2486	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2487	e100_exec_cb(nic, NULL, e100_dump);
2488	msleep(10);
2489	memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2490		sizeof(nic->mem->dump_buf));
2491}
2492
2493static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2494{
2495	struct nic *nic = netdev_priv(netdev);
2496	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2497	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2498}
2499
2500static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2501{
2502	struct nic *nic = netdev_priv(netdev);
2503
2504	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2505	    !device_can_wakeup(&nic->pdev->dev))
2506		return -EOPNOTSUPP;
2507
2508	if (wol->wolopts)
2509		nic->flags |= wol_magic;
2510	else
2511		nic->flags &= ~wol_magic;
2512
2513	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2514
2515	e100_exec_cb(nic, NULL, e100_configure);
2516
2517	return 0;
2518}
2519
2520static u32 e100_get_msglevel(struct net_device *netdev)
2521{
2522	struct nic *nic = netdev_priv(netdev);
2523	return nic->msg_enable;
2524}
2525
2526static void e100_set_msglevel(struct net_device *netdev, u32 value)
2527{
2528	struct nic *nic = netdev_priv(netdev);
2529	nic->msg_enable = value;
2530}
2531
2532static int e100_nway_reset(struct net_device *netdev)
2533{
2534	struct nic *nic = netdev_priv(netdev);
2535	return mii_nway_restart(&nic->mii);
2536}
2537
2538static u32 e100_get_link(struct net_device *netdev)
2539{
2540	struct nic *nic = netdev_priv(netdev);
2541	return mii_link_ok(&nic->mii);
2542}
2543
2544static int e100_get_eeprom_len(struct net_device *netdev)
2545{
2546	struct nic *nic = netdev_priv(netdev);
2547	return nic->eeprom_wc << 1;
2548}
2549
2550#define E100_EEPROM_MAGIC	0x1234
2551static int e100_get_eeprom(struct net_device *netdev,
2552	struct ethtool_eeprom *eeprom, u8 *bytes)
2553{
2554	struct nic *nic = netdev_priv(netdev);
2555
2556	eeprom->magic = E100_EEPROM_MAGIC;
2557	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2558
2559	return 0;
2560}
2561
2562static int e100_set_eeprom(struct net_device *netdev,
2563	struct ethtool_eeprom *eeprom, u8 *bytes)
2564{
2565	struct nic *nic = netdev_priv(netdev);
2566
2567	if (eeprom->magic != E100_EEPROM_MAGIC)
2568		return -EINVAL;
2569
2570	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2571
2572	return e100_eeprom_save(nic, eeprom->offset >> 1,
2573		(eeprom->len >> 1) + 1);
2574}
2575
2576static void e100_get_ringparam(struct net_device *netdev,
2577	struct ethtool_ringparam *ring)
2578{
2579	struct nic *nic = netdev_priv(netdev);
2580	struct param_range *rfds = &nic->params.rfds;
2581	struct param_range *cbs = &nic->params.cbs;
2582
2583	ring->rx_max_pending = rfds->max;
2584	ring->tx_max_pending = cbs->max;
2585	ring->rx_pending = rfds->count;
2586	ring->tx_pending = cbs->count;
2587}
2588
2589static int e100_set_ringparam(struct net_device *netdev,
2590	struct ethtool_ringparam *ring)
2591{
2592	struct nic *nic = netdev_priv(netdev);
2593	struct param_range *rfds = &nic->params.rfds;
2594	struct param_range *cbs = &nic->params.cbs;
2595
2596	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2597		return -EINVAL;
2598
2599	if (netif_running(netdev))
2600		e100_down(nic);
2601	rfds->count = max(ring->rx_pending, rfds->min);
2602	rfds->count = min(rfds->count, rfds->max);
2603	cbs->count = max(ring->tx_pending, cbs->min);
2604	cbs->count = min(cbs->count, cbs->max);
2605	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2606		   rfds->count, cbs->count);
2607	if (netif_running(netdev))
2608		e100_up(nic);
2609
2610	return 0;
2611}
2612
2613static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2614	"Link test     (on/offline)",
2615	"Eeprom test   (on/offline)",
2616	"Self test        (offline)",
2617	"Mac loopback     (offline)",
2618	"Phy loopback     (offline)",
2619};
2620#define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2621
2622static void e100_diag_test(struct net_device *netdev,
2623	struct ethtool_test *test, u64 *data)
2624{
2625	struct ethtool_cmd cmd;
2626	struct nic *nic = netdev_priv(netdev);
2627	int i, err;
2628
2629	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2630	data[0] = !mii_link_ok(&nic->mii);
2631	data[1] = e100_eeprom_load(nic);
2632	if (test->flags & ETH_TEST_FL_OFFLINE) {
2633
2634		/* save speed, duplex & autoneg settings */
2635		err = mii_ethtool_gset(&nic->mii, &cmd);
2636
2637		if (netif_running(netdev))
2638			e100_down(nic);
2639		data[2] = e100_self_test(nic);
2640		data[3] = e100_loopback_test(nic, lb_mac);
2641		data[4] = e100_loopback_test(nic, lb_phy);
2642
2643		/* restore speed, duplex & autoneg settings */
2644		err = mii_ethtool_sset(&nic->mii, &cmd);
2645
2646		if (netif_running(netdev))
2647			e100_up(nic);
2648	}
2649	for (i = 0; i < E100_TEST_LEN; i++)
2650		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2651
2652	msleep_interruptible(4 * 1000);
2653}
2654
2655static int e100_set_phys_id(struct net_device *netdev,
2656			    enum ethtool_phys_id_state state)
2657{
2658	struct nic *nic = netdev_priv(netdev);
2659	enum led_state {
2660		led_on     = 0x01,
2661		led_off    = 0x04,
2662		led_on_559 = 0x05,
2663		led_on_557 = 0x07,
2664	};
2665	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2666		MII_LED_CONTROL;
2667	u16 leds = 0;
2668
2669	switch (state) {
2670	case ETHTOOL_ID_ACTIVE:
2671		return 2;
2672
2673	case ETHTOOL_ID_ON:
2674		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2675		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2676		break;
2677
2678	case ETHTOOL_ID_OFF:
2679		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2680		break;
2681
2682	case ETHTOOL_ID_INACTIVE:
2683		break;
2684	}
2685
2686	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2687	return 0;
2688}
2689
2690static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2691	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2692	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2693	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2694	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2695	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2696	"tx_heartbeat_errors", "tx_window_errors",
2697	/* device-specific stats */
2698	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2699	"tx_flow_control_pause", "rx_flow_control_pause",
2700	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2701	"rx_short_frame_errors", "rx_over_length_errors",
2702};
2703#define E100_NET_STATS_LEN	21
2704#define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2705
2706static int e100_get_sset_count(struct net_device *netdev, int sset)
2707{
2708	switch (sset) {
2709	case ETH_SS_TEST:
2710		return E100_TEST_LEN;
2711	case ETH_SS_STATS:
2712		return E100_STATS_LEN;
2713	default:
2714		return -EOPNOTSUPP;
2715	}
2716}
2717
2718static void e100_get_ethtool_stats(struct net_device *netdev,
2719	struct ethtool_stats *stats, u64 *data)
2720{
2721	struct nic *nic = netdev_priv(netdev);
2722	int i;
2723
2724	for (i = 0; i < E100_NET_STATS_LEN; i++)
2725		data[i] = ((unsigned long *)&netdev->stats)[i];
2726
2727	data[i++] = nic->tx_deferred;
2728	data[i++] = nic->tx_single_collisions;
2729	data[i++] = nic->tx_multiple_collisions;
2730	data[i++] = nic->tx_fc_pause;
2731	data[i++] = nic->rx_fc_pause;
2732	data[i++] = nic->rx_fc_unsupported;
2733	data[i++] = nic->tx_tco_frames;
2734	data[i++] = nic->rx_tco_frames;
2735	data[i++] = nic->rx_short_frame_errors;
2736	data[i++] = nic->rx_over_length_errors;
2737}
2738
2739static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2740{
2741	switch (stringset) {
2742	case ETH_SS_TEST:
2743		memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2744		break;
2745	case ETH_SS_STATS:
2746		memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2747		break;
2748	}
2749}
2750
2751static const struct ethtool_ops e100_ethtool_ops = {
2752	.get_settings		= e100_get_settings,
2753	.set_settings		= e100_set_settings,
2754	.get_drvinfo		= e100_get_drvinfo,
2755	.get_regs_len		= e100_get_regs_len,
2756	.get_regs		= e100_get_regs,
2757	.get_wol		= e100_get_wol,
2758	.set_wol		= e100_set_wol,
2759	.get_msglevel		= e100_get_msglevel,
2760	.set_msglevel		= e100_set_msglevel,
2761	.nway_reset		= e100_nway_reset,
2762	.get_link		= e100_get_link,
2763	.get_eeprom_len		= e100_get_eeprom_len,
2764	.get_eeprom		= e100_get_eeprom,
2765	.set_eeprom		= e100_set_eeprom,
2766	.get_ringparam		= e100_get_ringparam,
2767	.set_ringparam		= e100_set_ringparam,
2768	.self_test		= e100_diag_test,
2769	.get_strings		= e100_get_strings,
2770	.set_phys_id		= e100_set_phys_id,
2771	.get_ethtool_stats	= e100_get_ethtool_stats,
2772	.get_sset_count		= e100_get_sset_count,
2773	.get_ts_info		= ethtool_op_get_ts_info,
2774};
2775
2776static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2777{
2778	struct nic *nic = netdev_priv(netdev);
2779
2780	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2781}
2782
2783static int e100_alloc(struct nic *nic)
2784{
2785	nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2786		&nic->dma_addr);
2787	return nic->mem ? 0 : -ENOMEM;
2788}
2789
2790static void e100_free(struct nic *nic)
2791{
2792	if (nic->mem) {
2793		pci_free_consistent(nic->pdev, sizeof(struct mem),
2794			nic->mem, nic->dma_addr);
2795		nic->mem = NULL;
2796	}
2797}
2798
2799static int e100_open(struct net_device *netdev)
2800{
2801	struct nic *nic = netdev_priv(netdev);
2802	int err = 0;
2803
2804	netif_carrier_off(netdev);
2805	if ((err = e100_up(nic)))
2806		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2807	return err;
2808}
2809
2810static int e100_close(struct net_device *netdev)
2811{
2812	e100_down(netdev_priv(netdev));
2813	return 0;
2814}
2815
2816static int e100_set_features(struct net_device *netdev,
2817			     netdev_features_t features)
2818{
2819	struct nic *nic = netdev_priv(netdev);
2820	netdev_features_t changed = features ^ netdev->features;
2821
2822	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2823		return 0;
2824
2825	netdev->features = features;
2826	e100_exec_cb(nic, NULL, e100_configure);
2827	return 0;
2828}
2829
2830static const struct net_device_ops e100_netdev_ops = {
2831	.ndo_open		= e100_open,
2832	.ndo_stop		= e100_close,
2833	.ndo_start_xmit		= e100_xmit_frame,
2834	.ndo_validate_addr	= eth_validate_addr,
2835	.ndo_set_rx_mode	= e100_set_multicast_list,
2836	.ndo_set_mac_address	= e100_set_mac_address,
2837	.ndo_change_mtu		= e100_change_mtu,
2838	.ndo_do_ioctl		= e100_do_ioctl,
2839	.ndo_tx_timeout		= e100_tx_timeout,
2840#ifdef CONFIG_NET_POLL_CONTROLLER
2841	.ndo_poll_controller	= e100_netpoll,
2842#endif
2843	.ndo_set_features	= e100_set_features,
2844};
2845
2846static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2847{
2848	struct net_device *netdev;
2849	struct nic *nic;
2850	int err;
2851
2852	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2853		return -ENOMEM;
2854
2855	netdev->hw_features |= NETIF_F_RXFCS;
2856	netdev->priv_flags |= IFF_SUPP_NOFCS;
2857	netdev->hw_features |= NETIF_F_RXALL;
2858
2859	netdev->netdev_ops = &e100_netdev_ops;
2860	netdev->ethtool_ops = &e100_ethtool_ops;
2861	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2862	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2863
2864	nic = netdev_priv(netdev);
2865	netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2866	nic->netdev = netdev;
2867	nic->pdev = pdev;
2868	nic->msg_enable = (1 << debug) - 1;
2869	nic->mdio_ctrl = mdio_ctrl_hw;
2870	pci_set_drvdata(pdev, netdev);
2871
2872	if ((err = pci_enable_device(pdev))) {
2873		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2874		goto err_out_free_dev;
2875	}
2876
2877	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2878		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2879		err = -ENODEV;
2880		goto err_out_disable_pdev;
2881	}
2882
2883	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2884		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2885		goto err_out_disable_pdev;
2886	}
2887
2888	if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2889		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2890		goto err_out_free_res;
2891	}
2892
2893	SET_NETDEV_DEV(netdev, &pdev->dev);
2894
2895	if (use_io)
2896		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2897
2898	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2899	if (!nic->csr) {
2900		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2901		err = -ENOMEM;
2902		goto err_out_free_res;
2903	}
2904
2905	if (ent->driver_data)
2906		nic->flags |= ich;
2907	else
2908		nic->flags &= ~ich;
2909
2910	e100_get_defaults(nic);
2911
2912	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2913	if (nic->mac < mac_82558_D101_A4)
2914		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2915
2916	/* locks must be initialized before calling hw_reset */
2917	spin_lock_init(&nic->cb_lock);
2918	spin_lock_init(&nic->cmd_lock);
2919	spin_lock_init(&nic->mdio_lock);
2920
2921	/* Reset the device before pci_set_master() in case device is in some
2922	 * funky state and has an interrupt pending - hint: we don't have the
2923	 * interrupt handler registered yet. */
2924	e100_hw_reset(nic);
2925
2926	pci_set_master(pdev);
2927
2928	setup_timer(&nic->watchdog, e100_watchdog, (unsigned long)nic);
2929
2930	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2931
2932	if ((err = e100_alloc(nic))) {
2933		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2934		goto err_out_iounmap;
2935	}
2936
2937	if ((err = e100_eeprom_load(nic)))
2938		goto err_out_free;
2939
2940	e100_phy_init(nic);
2941
2942	memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2943	if (!is_valid_ether_addr(netdev->dev_addr)) {
2944		if (!eeprom_bad_csum_allow) {
2945			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2946			err = -EAGAIN;
2947			goto err_out_free;
2948		} else {
2949			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2950		}
2951	}
2952
2953	/* Wol magic packet can be enabled from eeprom */
2954	if ((nic->mac >= mac_82558_D101_A4) &&
2955	   (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2956		nic->flags |= wol_magic;
2957		device_set_wakeup_enable(&pdev->dev, true);
2958	}
2959
2960	/* ack any pending wake events, disable PME */
2961	pci_pme_active(pdev, false);
2962
2963	strcpy(netdev->name, "eth%d");
2964	if ((err = register_netdev(netdev))) {
2965		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2966		goto err_out_free;
2967	}
2968	nic->cbs_pool = pci_pool_create(netdev->name,
2969			   nic->pdev,
2970			   nic->params.cbs.max * sizeof(struct cb),
2971			   sizeof(u32),
2972			   0);
2973	if (!nic->cbs_pool) {
2974		netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2975		err = -ENOMEM;
2976		goto err_out_pool;
2977	}
2978	netif_info(nic, probe, nic->netdev,
2979		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2980		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2981		   pdev->irq, netdev->dev_addr);
2982
2983	return 0;
2984
2985err_out_pool:
2986	unregister_netdev(netdev);
2987err_out_free:
2988	e100_free(nic);
2989err_out_iounmap:
2990	pci_iounmap(pdev, nic->csr);
2991err_out_free_res:
2992	pci_release_regions(pdev);
2993err_out_disable_pdev:
2994	pci_disable_device(pdev);
2995err_out_free_dev:
2996	free_netdev(netdev);
2997	return err;
2998}
2999
3000static void e100_remove(struct pci_dev *pdev)
3001{
3002	struct net_device *netdev = pci_get_drvdata(pdev);
3003
3004	if (netdev) {
3005		struct nic *nic = netdev_priv(netdev);
3006		unregister_netdev(netdev);
3007		e100_free(nic);
3008		pci_iounmap(pdev, nic->csr);
3009		pci_pool_destroy(nic->cbs_pool);
3010		free_netdev(netdev);
3011		pci_release_regions(pdev);
3012		pci_disable_device(pdev);
3013	}
3014}
3015
3016#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
3017#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
3018#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3019static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3020{
3021	struct net_device *netdev = pci_get_drvdata(pdev);
3022	struct nic *nic = netdev_priv(netdev);
3023
3024	if (netif_running(netdev))
3025		e100_down(nic);
3026	netif_device_detach(netdev);
3027
3028	pci_save_state(pdev);
3029
3030	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3031		/* enable reverse auto-negotiation */
3032		if (nic->phy == phy_82552_v) {
3033			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3034			                           E100_82552_SMARTSPEED);
3035
3036			mdio_write(netdev, nic->mii.phy_id,
3037			           E100_82552_SMARTSPEED, smartspeed |
3038			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3039		}
3040		*enable_wake = true;
3041	} else {
3042		*enable_wake = false;
3043	}
3044
3045	pci_clear_master(pdev);
3046}
3047
3048static int __e100_power_off(struct pci_dev *pdev, bool wake)
3049{
3050	if (wake)
3051		return pci_prepare_to_sleep(pdev);
3052
3053	pci_wake_from_d3(pdev, false);
3054	pci_set_power_state(pdev, PCI_D3hot);
3055
3056	return 0;
3057}
3058
3059#ifdef CONFIG_PM
3060static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
3061{
3062	bool wake;
3063	__e100_shutdown(pdev, &wake);
3064	return __e100_power_off(pdev, wake);
3065}
3066
3067static int e100_resume(struct pci_dev *pdev)
3068{
3069	struct net_device *netdev = pci_get_drvdata(pdev);
3070	struct nic *nic = netdev_priv(netdev);
3071
3072	pci_set_power_state(pdev, PCI_D0);
3073	pci_restore_state(pdev);
3074	/* ack any pending wake events, disable PME */
3075	pci_enable_wake(pdev, PCI_D0, 0);
3076
3077	/* disable reverse auto-negotiation */
3078	if (nic->phy == phy_82552_v) {
3079		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3080		                           E100_82552_SMARTSPEED);
3081
3082		mdio_write(netdev, nic->mii.phy_id,
3083		           E100_82552_SMARTSPEED,
3084		           smartspeed & ~(E100_82552_REV_ANEG));
3085	}
3086
3087	netif_device_attach(netdev);
3088	if (netif_running(netdev))
3089		e100_up(nic);
3090
3091	return 0;
3092}
3093#endif /* CONFIG_PM */
3094
3095static void e100_shutdown(struct pci_dev *pdev)
3096{
3097	bool wake;
3098	__e100_shutdown(pdev, &wake);
3099	if (system_state == SYSTEM_POWER_OFF)
3100		__e100_power_off(pdev, wake);
3101}
3102
3103/* ------------------ PCI Error Recovery infrastructure  -------------- */
3104/**
3105 * e100_io_error_detected - called when PCI error is detected.
3106 * @pdev: Pointer to PCI device
3107 * @state: The current pci connection state
3108 */
3109static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3110{
3111	struct net_device *netdev = pci_get_drvdata(pdev);
3112	struct nic *nic = netdev_priv(netdev);
3113
3114	netif_device_detach(netdev);
3115
3116	if (state == pci_channel_io_perm_failure)
3117		return PCI_ERS_RESULT_DISCONNECT;
3118
3119	if (netif_running(netdev))
3120		e100_down(nic);
3121	pci_disable_device(pdev);
3122
3123	/* Request a slot reset. */
3124	return PCI_ERS_RESULT_NEED_RESET;
3125}
3126
3127/**
3128 * e100_io_slot_reset - called after the pci bus has been reset.
3129 * @pdev: Pointer to PCI device
3130 *
3131 * Restart the card from scratch.
3132 */
3133static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3134{
3135	struct net_device *netdev = pci_get_drvdata(pdev);
3136	struct nic *nic = netdev_priv(netdev);
3137
3138	if (pci_enable_device(pdev)) {
3139		pr_err("Cannot re-enable PCI device after reset\n");
3140		return PCI_ERS_RESULT_DISCONNECT;
3141	}
3142	pci_set_master(pdev);
3143
3144	/* Only one device per card can do a reset */
3145	if (0 != PCI_FUNC(pdev->devfn))
3146		return PCI_ERS_RESULT_RECOVERED;
3147	e100_hw_reset(nic);
3148	e100_phy_init(nic);
3149
3150	return PCI_ERS_RESULT_RECOVERED;
3151}
3152
3153/**
3154 * e100_io_resume - resume normal operations
3155 * @pdev: Pointer to PCI device
3156 *
3157 * Resume normal operations after an error recovery
3158 * sequence has been completed.
3159 */
3160static void e100_io_resume(struct pci_dev *pdev)
3161{
3162	struct net_device *netdev = pci_get_drvdata(pdev);
3163	struct nic *nic = netdev_priv(netdev);
3164
3165	/* ack any pending wake events, disable PME */
3166	pci_enable_wake(pdev, PCI_D0, 0);
3167
3168	netif_device_attach(netdev);
3169	if (netif_running(netdev)) {
3170		e100_open(netdev);
3171		mod_timer(&nic->watchdog, jiffies);
3172	}
3173}
3174
3175static const struct pci_error_handlers e100_err_handler = {
3176	.error_detected = e100_io_error_detected,
3177	.slot_reset = e100_io_slot_reset,
3178	.resume = e100_io_resume,
3179};
3180
3181static struct pci_driver e100_driver = {
3182	.name =         DRV_NAME,
3183	.id_table =     e100_id_table,
3184	.probe =        e100_probe,
3185	.remove =       e100_remove,
3186#ifdef CONFIG_PM
3187	/* Power Management hooks */
3188	.suspend =      e100_suspend,
3189	.resume =       e100_resume,
3190#endif
3191	.shutdown =     e100_shutdown,
3192	.err_handler = &e100_err_handler,
3193};
3194
3195static int __init e100_init_module(void)
3196{
3197	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3198		pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3199		pr_info("%s\n", DRV_COPYRIGHT);
3200	}
3201	return pci_register_driver(&e100_driver);
3202}
3203
3204static void __exit e100_cleanup_module(void)
3205{
3206	pci_unregister_driver(&e100_driver);
3207}
3208
3209module_init(e100_init_module);
3210module_exit(e100_cleanup_module);
3211