1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses.  You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 *     Redistribution and use in source and binary forms, with or
14 *     without modification, are permitted provided that the following
15 *     conditions are met:
16 *
17 *      - Redistributions of source code must retain the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer.
20 *
21 *      - Redistributions in binary form must reproduce the above
22 *        copyright notice, this list of conditions and the following
23 *        disclaimer in the documentation and/or other materials
24 *        provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/pci.h>
37
38#include "t4vf_common.h"
39#include "t4vf_defs.h"
40
41#include "../cxgb4/t4_regs.h"
42#include "../cxgb4/t4_values.h"
43#include "../cxgb4/t4fw_api.h"
44
45/*
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's).  Return an error if it doesn't
48 * become ready ...
49 */
50int t4vf_wait_dev_ready(struct adapter *adapter)
51{
52	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53	const u32 notready1 = 0xffffffff;
54	const u32 notready2 = 0xeeeeeeee;
55	u32 val;
56
57	val = t4_read_reg(adapter, whoami);
58	if (val != notready1 && val != notready2)
59		return 0;
60	msleep(500);
61	val = t4_read_reg(adapter, whoami);
62	if (val != notready1 && val != notready2)
63		return 0;
64	else
65		return -EIO;
66}
67
68/*
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
71 */
72static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73			 u32 mbox_data)
74{
75	for ( ; size; size -= 8, mbox_data += 8)
76		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77}
78
79/*
80 * Dump contents of mailbox with a leading tag.
81 */
82static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
83{
84	dev_err(adapter->pdev_dev,
85		"mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
86		(unsigned long long)t4_read_reg64(adapter, mbox_data +  0),
87		(unsigned long long)t4_read_reg64(adapter, mbox_data +  8),
88		(unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
89		(unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
90		(unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
91		(unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
92		(unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
93		(unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
94}
95
96/**
97 *	t4vf_wr_mbox_core - send a command to FW through the mailbox
98 *	@adapter: the adapter
99 *	@cmd: the command to write
100 *	@size: command length in bytes
101 *	@rpl: where to optionally store the reply
102 *	@sleep_ok: if true we may sleep while awaiting command completion
103 *
104 *	Sends the given command to FW through the mailbox and waits for the
105 *	FW to execute the command.  If @rpl is not %NULL it is used to store
106 *	the FW's reply to the command.  The command and its optional reply
107 *	are of the same length.  FW can take up to 500 ms to respond.
108 *	@sleep_ok determines whether we may sleep while awaiting the response.
109 *	If sleeping is allowed we use progressive backoff otherwise we spin.
110 *
111 *	The return value is 0 on success or a negative errno on failure.  A
112 *	failure can happen either because we are not able to execute the
113 *	command or FW executes it but signals an error.  In the latter case
114 *	the return value is the error code indicated by FW (negated).
115 */
116int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
117		      void *rpl, bool sleep_ok)
118{
119	static const int delay[] = {
120		1, 1, 3, 5, 10, 10, 20, 50, 100
121	};
122
123	u32 v;
124	int i, ms, delay_idx;
125	const __be64 *p;
126	u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
127	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
128
129	/*
130	 * Commands must be multiples of 16 bytes in length and may not be
131	 * larger than the size of the Mailbox Data register array.
132	 */
133	if ((size % 16) != 0 ||
134	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
135		return -EINVAL;
136
137	/*
138	 * Loop trying to get ownership of the mailbox.  Return an error
139	 * if we can't gain ownership.
140	 */
141	v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
142	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
143		v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
144	if (v != MBOX_OWNER_DRV)
145		return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
146
147	/*
148	 * Write the command array into the Mailbox Data register array and
149	 * transfer ownership of the mailbox to the firmware.
150	 *
151	 * For the VFs, the Mailbox Data "registers" are actually backed by
152	 * T4's "MA" interface rather than PL Registers (as is the case for
153	 * the PFs).  Because these are in different coherency domains, the
154	 * write to the VF's PL-register-backed Mailbox Control can race in
155	 * front of the writes to the MA-backed VF Mailbox Data "registers".
156	 * So we need to do a read-back on at least one byte of the VF Mailbox
157	 * Data registers before doing the write to the VF Mailbox Control
158	 * register.
159	 */
160	for (i = 0, p = cmd; i < size; i += 8)
161		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
162	t4_read_reg(adapter, mbox_data);         /* flush write */
163
164	t4_write_reg(adapter, mbox_ctl,
165		     MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
166	t4_read_reg(adapter, mbox_ctl);          /* flush write */
167
168	/*
169	 * Spin waiting for firmware to acknowledge processing our command.
170	 */
171	delay_idx = 0;
172	ms = delay[0];
173
174	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
175		if (sleep_ok) {
176			ms = delay[delay_idx];
177			if (delay_idx < ARRAY_SIZE(delay) - 1)
178				delay_idx++;
179			msleep(ms);
180		} else
181			mdelay(ms);
182
183		/*
184		 * If we're the owner, see if this is the reply we wanted.
185		 */
186		v = t4_read_reg(adapter, mbox_ctl);
187		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
188			/*
189			 * If the Message Valid bit isn't on, revoke ownership
190			 * of the mailbox and continue waiting for our reply.
191			 */
192			if ((v & MBMSGVALID_F) == 0) {
193				t4_write_reg(adapter, mbox_ctl,
194					     MBOWNER_V(MBOX_OWNER_NONE));
195				continue;
196			}
197
198			/*
199			 * We now have our reply.  Extract the command return
200			 * value, copy the reply back to our caller's buffer
201			 * (if specified) and revoke ownership of the mailbox.
202			 * We return the (negated) firmware command return
203			 * code (this depends on FW_SUCCESS == 0).
204			 */
205
206			/* return value in low-order little-endian word */
207			v = t4_read_reg(adapter, mbox_data);
208			if (FW_CMD_RETVAL_G(v))
209				dump_mbox(adapter, "FW Error", mbox_data);
210
211			if (rpl) {
212				/* request bit in high-order BE word */
213				WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
214					 & FW_CMD_REQUEST_F) == 0);
215				get_mbox_rpl(adapter, rpl, size, mbox_data);
216				WARN_ON((be32_to_cpu(*(__be32 *)rpl)
217					 & FW_CMD_REQUEST_F) != 0);
218			}
219			t4_write_reg(adapter, mbox_ctl,
220				     MBOWNER_V(MBOX_OWNER_NONE));
221			return -FW_CMD_RETVAL_G(v);
222		}
223	}
224
225	/*
226	 * We timed out.  Return the error ...
227	 */
228	dump_mbox(adapter, "FW Timeout", mbox_data);
229	return -ETIMEDOUT;
230}
231
232/**
233 *	hash_mac_addr - return the hash value of a MAC address
234 *	@addr: the 48-bit Ethernet MAC address
235 *
236 *	Hashes a MAC address according to the hash function used by hardware
237 *	inexact (hash) address matching.
238 */
239static int hash_mac_addr(const u8 *addr)
240{
241	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
242	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
243	a ^= b;
244	a ^= (a >> 12);
245	a ^= (a >> 6);
246	return a & 0x3f;
247}
248
249#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
250		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
251		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
252
253/**
254 *	init_link_config - initialize a link's SW state
255 *	@lc: structure holding the link state
256 *	@caps: link capabilities
257 *
258 *	Initializes the SW state maintained for each link, including the link's
259 *	capabilities and default speed/flow-control/autonegotiation settings.
260 */
261static void init_link_config(struct link_config *lc, unsigned int caps)
262{
263	lc->supported = caps;
264	lc->requested_speed = 0;
265	lc->speed = 0;
266	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
267	if (lc->supported & FW_PORT_CAP_ANEG) {
268		lc->advertising = lc->supported & ADVERT_MASK;
269		lc->autoneg = AUTONEG_ENABLE;
270		lc->requested_fc |= PAUSE_AUTONEG;
271	} else {
272		lc->advertising = 0;
273		lc->autoneg = AUTONEG_DISABLE;
274	}
275}
276
277/**
278 *	t4vf_port_init - initialize port hardware/software state
279 *	@adapter: the adapter
280 *	@pidx: the adapter port index
281 */
282int t4vf_port_init(struct adapter *adapter, int pidx)
283{
284	struct port_info *pi = adap2pinfo(adapter, pidx);
285	struct fw_vi_cmd vi_cmd, vi_rpl;
286	struct fw_port_cmd port_cmd, port_rpl;
287	int v;
288
289	/*
290	 * Execute a VI Read command to get our Virtual Interface information
291	 * like MAC address, etc.
292	 */
293	memset(&vi_cmd, 0, sizeof(vi_cmd));
294	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
295				       FW_CMD_REQUEST_F |
296				       FW_CMD_READ_F);
297	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
298	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
299	v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
300	if (v)
301		return v;
302
303	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
304	pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
305	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
306
307	/*
308	 * If we don't have read access to our port information, we're done
309	 * now.  Otherwise, execute a PORT Read command to get it ...
310	 */
311	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
312		return 0;
313
314	memset(&port_cmd, 0, sizeof(port_cmd));
315	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
316					    FW_CMD_REQUEST_F |
317					    FW_CMD_READ_F |
318					    FW_PORT_CMD_PORTID_V(pi->port_id));
319	port_cmd.action_to_len16 =
320		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
321			    FW_LEN16(port_cmd));
322	v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
323	if (v)
324		return v;
325
326	v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
327	pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ?
328			FW_PORT_CMD_MDIOADDR_G(v) : -1;
329	pi->port_type = FW_PORT_CMD_PTYPE_G(v);
330	pi->mod_type = FW_PORT_MOD_TYPE_NA;
331
332	init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
333
334	return 0;
335}
336
337/**
338 *      t4vf_fw_reset - issue a reset to FW
339 *      @adapter: the adapter
340 *
341 *	Issues a reset command to FW.  For a Physical Function this would
342 *	result in the Firmware resetting all of its state.  For a Virtual
343 *	Function this just resets the state associated with the VF.
344 */
345int t4vf_fw_reset(struct adapter *adapter)
346{
347	struct fw_reset_cmd cmd;
348
349	memset(&cmd, 0, sizeof(cmd));
350	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
351				      FW_CMD_WRITE_F);
352	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
353	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
354}
355
356/**
357 *	t4vf_query_params - query FW or device parameters
358 *	@adapter: the adapter
359 *	@nparams: the number of parameters
360 *	@params: the parameter names
361 *	@vals: the parameter values
362 *
363 *	Reads the values of firmware or device parameters.  Up to 7 parameters
364 *	can be queried at once.
365 */
366static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
367			     const u32 *params, u32 *vals)
368{
369	int i, ret;
370	struct fw_params_cmd cmd, rpl;
371	struct fw_params_param *p;
372	size_t len16;
373
374	if (nparams > 7)
375		return -EINVAL;
376
377	memset(&cmd, 0, sizeof(cmd));
378	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
379				    FW_CMD_REQUEST_F |
380				    FW_CMD_READ_F);
381	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
382				      param[nparams].mnem), 16);
383	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
384	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
385		p->mnem = htonl(*params++);
386
387	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
388	if (ret == 0)
389		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
390			*vals++ = be32_to_cpu(p->val);
391	return ret;
392}
393
394/**
395 *	t4vf_set_params - sets FW or device parameters
396 *	@adapter: the adapter
397 *	@nparams: the number of parameters
398 *	@params: the parameter names
399 *	@vals: the parameter values
400 *
401 *	Sets the values of firmware or device parameters.  Up to 7 parameters
402 *	can be specified at once.
403 */
404int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
405		    const u32 *params, const u32 *vals)
406{
407	int i;
408	struct fw_params_cmd cmd;
409	struct fw_params_param *p;
410	size_t len16;
411
412	if (nparams > 7)
413		return -EINVAL;
414
415	memset(&cmd, 0, sizeof(cmd));
416	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
417				    FW_CMD_REQUEST_F |
418				    FW_CMD_WRITE_F);
419	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
420				      param[nparams]), 16);
421	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
422	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
423		p->mnem = cpu_to_be32(*params++);
424		p->val = cpu_to_be32(*vals++);
425	}
426
427	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
428}
429
430/**
431 *	t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
432 *	@adapter: the adapter
433 *	@qid: the Queue ID
434 *	@qtype: the Ingress or Egress type for @qid
435 *	@pbar2_qoffset: BAR2 Queue Offset
436 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
437 *
438 *	Returns the BAR2 SGE Queue Registers information associated with the
439 *	indicated Absolute Queue ID.  These are passed back in return value
440 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
441 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
442 *
443 *	This may return an error which indicates that BAR2 SGE Queue
444 *	registers aren't available.  If an error is not returned, then the
445 *	following values are returned:
446 *
447 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
448 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
449 *
450 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
451 *	require the "Inferred Queue ID" ability may be used.  E.g. the
452 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
453 *	then these "Inferred Queue ID" register may not be used.
454 */
455int t4vf_bar2_sge_qregs(struct adapter *adapter,
456			unsigned int qid,
457			enum t4_bar2_qtype qtype,
458			u64 *pbar2_qoffset,
459			unsigned int *pbar2_qid)
460{
461	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
462	u64 bar2_page_offset, bar2_qoffset;
463	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
464
465	/* T4 doesn't support BAR2 SGE Queue registers.
466	 */
467	if (is_t4(adapter->params.chip))
468		return -EINVAL;
469
470	/* Get our SGE Page Size parameters.
471	 */
472	page_shift = adapter->params.sge.sge_vf_hps + 10;
473	page_size = 1 << page_shift;
474
475	/* Get the right Queues per Page parameters for our Queue.
476	 */
477	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
478		     ? adapter->params.sge.sge_vf_eq_qpp
479		     : adapter->params.sge.sge_vf_iq_qpp);
480	qpp_mask = (1 << qpp_shift) - 1;
481
482	/* Calculate the basics of the BAR2 SGE Queue register area:
483	 *  o The BAR2 page the Queue registers will be in.
484	 *  o The BAR2 Queue ID.
485	 *  o The BAR2 Queue ID Offset into the BAR2 page.
486	 */
487	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
488	bar2_qid = qid & qpp_mask;
489	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
490
491	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
492	 * hardware will infer the Absolute Queue ID simply from the writes to
493	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
494	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
495	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
496	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
497	 * from the BAR2 Page and BAR2 Queue ID.
498	 *
499	 * One important censequence of this is that some BAR2 SGE registers
500	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
501	 * there.  But other registers synthesize the SGE Queue ID purely
502	 * from the writes to the registers -- the Write Combined Doorbell
503	 * Buffer is a good example.  These BAR2 SGE Registers are only
504	 * available for those BAR2 SGE Register areas where the SGE Absolute
505	 * Queue ID can be inferred from simple writes.
506	 */
507	bar2_qoffset = bar2_page_offset;
508	bar2_qinferred = (bar2_qid_offset < page_size);
509	if (bar2_qinferred) {
510		bar2_qoffset += bar2_qid_offset;
511		bar2_qid = 0;
512	}
513
514	*pbar2_qoffset = bar2_qoffset;
515	*pbar2_qid = bar2_qid;
516	return 0;
517}
518
519/**
520 *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
521 *	@adapter: the adapter
522 *
523 *	Retrieves various core SGE parameters in the form of hardware SGE
524 *	register values.  The caller is responsible for decoding these as
525 *	needed.  The SGE parameters are stored in @adapter->params.sge.
526 */
527int t4vf_get_sge_params(struct adapter *adapter)
528{
529	struct sge_params *sge_params = &adapter->params.sge;
530	u32 params[7], vals[7];
531	int v;
532
533	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
534		     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
535	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
536		     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
537	params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
538		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
539	params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
540		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
541	params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
542		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
543	params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
544		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
545	params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
546		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
547	v = t4vf_query_params(adapter, 7, params, vals);
548	if (v)
549		return v;
550	sge_params->sge_control = vals[0];
551	sge_params->sge_host_page_size = vals[1];
552	sge_params->sge_fl_buffer_size[0] = vals[2];
553	sge_params->sge_fl_buffer_size[1] = vals[3];
554	sge_params->sge_timer_value_0_and_1 = vals[4];
555	sge_params->sge_timer_value_2_and_3 = vals[5];
556	sge_params->sge_timer_value_4_and_5 = vals[6];
557
558	/* T4 uses a single control field to specify both the PCIe Padding and
559	 * Packing Boundary.  T5 introduced the ability to specify these
560	 * separately with the Padding Boundary in SGE_CONTROL and and Packing
561	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
562	 * SGE_CONTROL in order to determine how ingress packet data will be
563	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
564	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
565	 * failure grabbing it we throw an error since we can't figure out the
566	 * right value.
567	 */
568	if (!is_t4(adapter->params.chip)) {
569		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
570			     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
571		v = t4vf_query_params(adapter, 1, params, vals);
572		if (v != FW_SUCCESS) {
573			dev_err(adapter->pdev_dev,
574				"Unable to get SGE Control2; "
575				"probably old firmware.\n");
576			return v;
577		}
578		sge_params->sge_control2 = vals[0];
579	}
580
581	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
582		     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
583	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
584		     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
585	v = t4vf_query_params(adapter, 2, params, vals);
586	if (v)
587		return v;
588	sge_params->sge_ingress_rx_threshold = vals[0];
589	sge_params->sge_congestion_control = vals[1];
590
591	/* For T5 and later we want to use the new BAR2 Doorbells.
592	 * Unfortunately, older firmware didn't allow the this register to be
593	 * read.
594	 */
595	if (!is_t4(adapter->params.chip)) {
596		u32 whoami;
597		unsigned int pf, s_hps, s_qpp;
598
599		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
600			     FW_PARAMS_PARAM_XYZ_V(
601				     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
602		params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
603			     FW_PARAMS_PARAM_XYZ_V(
604				     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
605		v = t4vf_query_params(adapter, 2, params, vals);
606		if (v != FW_SUCCESS) {
607			dev_warn(adapter->pdev_dev,
608				 "Unable to get VF SGE Queues/Page; "
609				 "probably old firmware.\n");
610			return v;
611		}
612		sge_params->sge_egress_queues_per_page = vals[0];
613		sge_params->sge_ingress_queues_per_page = vals[1];
614
615		/* We need the Queues/Page for our VF.  This is based on the
616		 * PF from which we're instantiated and is indexed in the
617		 * register we just read. Do it once here so other code in
618		 * the driver can just use it.
619		 */
620		whoami = t4_read_reg(adapter,
621				     T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
622		pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
623			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
624
625		s_hps = (HOSTPAGESIZEPF0_S +
626			 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
627		sge_params->sge_vf_hps =
628			((sge_params->sge_host_page_size >> s_hps)
629			 & HOSTPAGESIZEPF0_M);
630
631		s_qpp = (QUEUESPERPAGEPF0_S +
632			 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
633		sge_params->sge_vf_eq_qpp =
634			((sge_params->sge_egress_queues_per_page >> s_qpp)
635			 & QUEUESPERPAGEPF0_M);
636		sge_params->sge_vf_iq_qpp =
637			((sge_params->sge_ingress_queues_per_page >> s_qpp)
638			 & QUEUESPERPAGEPF0_M);
639	}
640
641	return 0;
642}
643
644/**
645 *	t4vf_get_vpd_params - retrieve device VPD paremeters
646 *	@adapter: the adapter
647 *
648 *	Retrives various device Vital Product Data parameters.  The parameters
649 *	are stored in @adapter->params.vpd.
650 */
651int t4vf_get_vpd_params(struct adapter *adapter)
652{
653	struct vpd_params *vpd_params = &adapter->params.vpd;
654	u32 params[7], vals[7];
655	int v;
656
657	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
658		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
659	v = t4vf_query_params(adapter, 1, params, vals);
660	if (v)
661		return v;
662	vpd_params->cclk = vals[0];
663
664	return 0;
665}
666
667/**
668 *	t4vf_get_dev_params - retrieve device paremeters
669 *	@adapter: the adapter
670 *
671 *	Retrives various device parameters.  The parameters are stored in
672 *	@adapter->params.dev.
673 */
674int t4vf_get_dev_params(struct adapter *adapter)
675{
676	struct dev_params *dev_params = &adapter->params.dev;
677	u32 params[7], vals[7];
678	int v;
679
680	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
681		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
682	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
683		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
684	v = t4vf_query_params(adapter, 2, params, vals);
685	if (v)
686		return v;
687	dev_params->fwrev = vals[0];
688	dev_params->tprev = vals[1];
689
690	return 0;
691}
692
693/**
694 *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
695 *	@adapter: the adapter
696 *
697 *	Retrieves global RSS mode and parameters with which we have to live
698 *	and stores them in the @adapter's RSS parameters.
699 */
700int t4vf_get_rss_glb_config(struct adapter *adapter)
701{
702	struct rss_params *rss = &adapter->params.rss;
703	struct fw_rss_glb_config_cmd cmd, rpl;
704	int v;
705
706	/*
707	 * Execute an RSS Global Configuration read command to retrieve
708	 * our RSS configuration.
709	 */
710	memset(&cmd, 0, sizeof(cmd));
711	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
712				      FW_CMD_REQUEST_F |
713				      FW_CMD_READ_F);
714	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
715	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
716	if (v)
717		return v;
718
719	/*
720	 * Transate the big-endian RSS Global Configuration into our
721	 * cpu-endian format based on the RSS mode.  We also do first level
722	 * filtering at this point to weed out modes which don't support
723	 * VF Drivers ...
724	 */
725	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
726			be32_to_cpu(rpl.u.manual.mode_pkd));
727	switch (rss->mode) {
728	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
729		u32 word = be32_to_cpu(
730				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
731
732		rss->u.basicvirtual.synmapen =
733			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
734		rss->u.basicvirtual.syn4tupenipv6 =
735			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
736		rss->u.basicvirtual.syn2tupenipv6 =
737			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
738		rss->u.basicvirtual.syn4tupenipv4 =
739			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
740		rss->u.basicvirtual.syn2tupenipv4 =
741			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
742
743		rss->u.basicvirtual.ofdmapen =
744			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
745
746		rss->u.basicvirtual.tnlmapen =
747			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
748		rss->u.basicvirtual.tnlalllookup =
749			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
750
751		rss->u.basicvirtual.hashtoeplitz =
752			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
753
754		/* we need at least Tunnel Map Enable to be set */
755		if (!rss->u.basicvirtual.tnlmapen)
756			return -EINVAL;
757		break;
758	}
759
760	default:
761		/* all unknown/unsupported RSS modes result in an error */
762		return -EINVAL;
763	}
764
765	return 0;
766}
767
768/**
769 *	t4vf_get_vfres - retrieve VF resource limits
770 *	@adapter: the adapter
771 *
772 *	Retrieves configured resource limits and capabilities for a virtual
773 *	function.  The results are stored in @adapter->vfres.
774 */
775int t4vf_get_vfres(struct adapter *adapter)
776{
777	struct vf_resources *vfres = &adapter->params.vfres;
778	struct fw_pfvf_cmd cmd, rpl;
779	int v;
780	u32 word;
781
782	/*
783	 * Execute PFVF Read command to get VF resource limits; bail out early
784	 * with error on command failure.
785	 */
786	memset(&cmd, 0, sizeof(cmd));
787	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
788				    FW_CMD_REQUEST_F |
789				    FW_CMD_READ_F);
790	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
791	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
792	if (v)
793		return v;
794
795	/*
796	 * Extract VF resource limits and return success.
797	 */
798	word = be32_to_cpu(rpl.niqflint_niq);
799	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
800	vfres->niq = FW_PFVF_CMD_NIQ_G(word);
801
802	word = be32_to_cpu(rpl.type_to_neq);
803	vfres->neq = FW_PFVF_CMD_NEQ_G(word);
804	vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
805
806	word = be32_to_cpu(rpl.tc_to_nexactf);
807	vfres->tc = FW_PFVF_CMD_TC_G(word);
808	vfres->nvi = FW_PFVF_CMD_NVI_G(word);
809	vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
810
811	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
812	vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
813	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
814	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
815
816	return 0;
817}
818
819/**
820 *	t4vf_read_rss_vi_config - read a VI's RSS configuration
821 *	@adapter: the adapter
822 *	@viid: Virtual Interface ID
823 *	@config: pointer to host-native VI RSS Configuration buffer
824 *
825 *	Reads the Virtual Interface's RSS configuration information and
826 *	translates it into CPU-native format.
827 */
828int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
829			    union rss_vi_config *config)
830{
831	struct fw_rss_vi_config_cmd cmd, rpl;
832	int v;
833
834	memset(&cmd, 0, sizeof(cmd));
835	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
836				     FW_CMD_REQUEST_F |
837				     FW_CMD_READ_F |
838				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
839	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
840	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
841	if (v)
842		return v;
843
844	switch (adapter->params.rss.mode) {
845	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
846		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
847
848		config->basicvirtual.ip6fourtupen =
849			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
850		config->basicvirtual.ip6twotupen =
851			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
852		config->basicvirtual.ip4fourtupen =
853			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
854		config->basicvirtual.ip4twotupen =
855			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
856		config->basicvirtual.udpen =
857			((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
858		config->basicvirtual.defaultq =
859			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
860		break;
861	}
862
863	default:
864		return -EINVAL;
865	}
866
867	return 0;
868}
869
870/**
871 *	t4vf_write_rss_vi_config - write a VI's RSS configuration
872 *	@adapter: the adapter
873 *	@viid: Virtual Interface ID
874 *	@config: pointer to host-native VI RSS Configuration buffer
875 *
876 *	Write the Virtual Interface's RSS configuration information
877 *	(translating it into firmware-native format before writing).
878 */
879int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
880			     union rss_vi_config *config)
881{
882	struct fw_rss_vi_config_cmd cmd, rpl;
883
884	memset(&cmd, 0, sizeof(cmd));
885	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
886				     FW_CMD_REQUEST_F |
887				     FW_CMD_WRITE_F |
888				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
889	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
890	switch (adapter->params.rss.mode) {
891	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
892		u32 word = 0;
893
894		if (config->basicvirtual.ip6fourtupen)
895			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
896		if (config->basicvirtual.ip6twotupen)
897			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
898		if (config->basicvirtual.ip4fourtupen)
899			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
900		if (config->basicvirtual.ip4twotupen)
901			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
902		if (config->basicvirtual.udpen)
903			word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
904		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
905				config->basicvirtual.defaultq);
906		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
907		break;
908	}
909
910	default:
911		return -EINVAL;
912	}
913
914	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
915}
916
917/**
918 *	t4vf_config_rss_range - configure a portion of the RSS mapping table
919 *	@adapter: the adapter
920 *	@viid: Virtual Interface of RSS Table Slice
921 *	@start: starting entry in the table to write
922 *	@n: how many table entries to write
923 *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
924 *	@nrspq: number of values in @rspq
925 *
926 *	Programs the selected part of the VI's RSS mapping table with the
927 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
928 *	until the full table range is populated.
929 *
930 *	The caller must ensure the values in @rspq are in the range 0..1023.
931 */
932int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
933			  int start, int n, const u16 *rspq, int nrspq)
934{
935	const u16 *rsp = rspq;
936	const u16 *rsp_end = rspq+nrspq;
937	struct fw_rss_ind_tbl_cmd cmd;
938
939	/*
940	 * Initialize firmware command template to write the RSS table.
941	 */
942	memset(&cmd, 0, sizeof(cmd));
943	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
944				     FW_CMD_REQUEST_F |
945				     FW_CMD_WRITE_F |
946				     FW_RSS_IND_TBL_CMD_VIID_V(viid));
947	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
948
949	/*
950	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
951	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
952	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
953	 * reserved.
954	 */
955	while (n > 0) {
956		__be32 *qp = &cmd.iq0_to_iq2;
957		int nq = min(n, 32);
958		int ret;
959
960		/*
961		 * Set up the firmware RSS command header to send the next
962		 * "nq" Ingress Queue IDs to the firmware.
963		 */
964		cmd.niqid = cpu_to_be16(nq);
965		cmd.startidx = cpu_to_be16(start);
966
967		/*
968		 * "nq" more done for the start of the next loop.
969		 */
970		start += nq;
971		n -= nq;
972
973		/*
974		 * While there are still Ingress Queue IDs to stuff into the
975		 * current firmware RSS command, retrieve them from the
976		 * Ingress Queue ID array and insert them into the command.
977		 */
978		while (nq > 0) {
979			/*
980			 * Grab up to the next 3 Ingress Queue IDs (wrapping
981			 * around the Ingress Queue ID array if necessary) and
982			 * insert them into the firmware RSS command at the
983			 * current 3-tuple position within the commad.
984			 */
985			u16 qbuf[3];
986			u16 *qbp = qbuf;
987			int nqbuf = min(3, nq);
988
989			nq -= nqbuf;
990			qbuf[0] = qbuf[1] = qbuf[2] = 0;
991			while (nqbuf) {
992				nqbuf--;
993				*qbp++ = *rsp++;
994				if (rsp >= rsp_end)
995					rsp = rspq;
996			}
997			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
998					    FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
999					    FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1000		}
1001
1002		/*
1003		 * Send this portion of the RRS table update to the firmware;
1004		 * bail out on any errors.
1005		 */
1006		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1007		if (ret)
1008			return ret;
1009	}
1010	return 0;
1011}
1012
1013/**
1014 *	t4vf_alloc_vi - allocate a virtual interface on a port
1015 *	@adapter: the adapter
1016 *	@port_id: physical port associated with the VI
1017 *
1018 *	Allocate a new Virtual Interface and bind it to the indicated
1019 *	physical port.  Return the new Virtual Interface Identifier on
1020 *	success, or a [negative] error number on failure.
1021 */
1022int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1023{
1024	struct fw_vi_cmd cmd, rpl;
1025	int v;
1026
1027	/*
1028	 * Execute a VI command to allocate Virtual Interface and return its
1029	 * VIID.
1030	 */
1031	memset(&cmd, 0, sizeof(cmd));
1032	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1033				    FW_CMD_REQUEST_F |
1034				    FW_CMD_WRITE_F |
1035				    FW_CMD_EXEC_F);
1036	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1037					 FW_VI_CMD_ALLOC_F);
1038	cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1039	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1040	if (v)
1041		return v;
1042
1043	return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1044}
1045
1046/**
1047 *	t4vf_free_vi -- free a virtual interface
1048 *	@adapter: the adapter
1049 *	@viid: the virtual interface identifier
1050 *
1051 *	Free a previously allocated Virtual Interface.  Return an error on
1052 *	failure.
1053 */
1054int t4vf_free_vi(struct adapter *adapter, int viid)
1055{
1056	struct fw_vi_cmd cmd;
1057
1058	/*
1059	 * Execute a VI command to free the Virtual Interface.
1060	 */
1061	memset(&cmd, 0, sizeof(cmd));
1062	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1063				    FW_CMD_REQUEST_F |
1064				    FW_CMD_EXEC_F);
1065	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1066					 FW_VI_CMD_FREE_F);
1067	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1068	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1069}
1070
1071/**
1072 *	t4vf_enable_vi - enable/disable a virtual interface
1073 *	@adapter: the adapter
1074 *	@viid: the Virtual Interface ID
1075 *	@rx_en: 1=enable Rx, 0=disable Rx
1076 *	@tx_en: 1=enable Tx, 0=disable Tx
1077 *
1078 *	Enables/disables a virtual interface.
1079 */
1080int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1081		   bool rx_en, bool tx_en)
1082{
1083	struct fw_vi_enable_cmd cmd;
1084
1085	memset(&cmd, 0, sizeof(cmd));
1086	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1087				     FW_CMD_REQUEST_F |
1088				     FW_CMD_EXEC_F |
1089				     FW_VI_ENABLE_CMD_VIID_V(viid));
1090	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1091				       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1092				       FW_LEN16(cmd));
1093	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1094}
1095
1096/**
1097 *	t4vf_identify_port - identify a VI's port by blinking its LED
1098 *	@adapter: the adapter
1099 *	@viid: the Virtual Interface ID
1100 *	@nblinks: how many times to blink LED at 2.5 Hz
1101 *
1102 *	Identifies a VI's port by blinking its LED.
1103 */
1104int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1105		       unsigned int nblinks)
1106{
1107	struct fw_vi_enable_cmd cmd;
1108
1109	memset(&cmd, 0, sizeof(cmd));
1110	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1111				     FW_CMD_REQUEST_F |
1112				     FW_CMD_EXEC_F |
1113				     FW_VI_ENABLE_CMD_VIID_V(viid));
1114	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1115				       FW_LEN16(cmd));
1116	cmd.blinkdur = cpu_to_be16(nblinks);
1117	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1118}
1119
1120/**
1121 *	t4vf_set_rxmode - set Rx properties of a virtual interface
1122 *	@adapter: the adapter
1123 *	@viid: the VI id
1124 *	@mtu: the new MTU or -1 for no change
1125 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1126 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1127 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1128 *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1129 *		-1 no change
1130 *
1131 *	Sets Rx properties of a virtual interface.
1132 */
1133int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1134		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
1135		    bool sleep_ok)
1136{
1137	struct fw_vi_rxmode_cmd cmd;
1138
1139	/* convert to FW values */
1140	if (mtu < 0)
1141		mtu = FW_VI_RXMODE_CMD_MTU_M;
1142	if (promisc < 0)
1143		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1144	if (all_multi < 0)
1145		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1146	if (bcast < 0)
1147		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1148	if (vlanex < 0)
1149		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1150
1151	memset(&cmd, 0, sizeof(cmd));
1152	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1153				     FW_CMD_REQUEST_F |
1154				     FW_CMD_WRITE_F |
1155				     FW_VI_RXMODE_CMD_VIID_V(viid));
1156	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1157	cmd.mtu_to_vlanexen =
1158		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1159			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1160			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1161			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1162			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1163	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1164}
1165
1166/**
1167 *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1168 *	@adapter: the adapter
1169 *	@viid: the Virtual Interface Identifier
1170 *	@free: if true any existing filters for this VI id are first removed
1171 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1172 *	@addr: the MAC address(es)
1173 *	@idx: where to store the index of each allocated filter
1174 *	@hash: pointer to hash address filter bitmap
1175 *	@sleep_ok: call is allowed to sleep
1176 *
1177 *	Allocates an exact-match filter for each of the supplied addresses and
1178 *	sets it to the corresponding address.  If @idx is not %NULL it should
1179 *	have at least @naddr entries, each of which will be set to the index of
1180 *	the filter allocated for the corresponding MAC address.  If a filter
1181 *	could not be allocated for an address its index is set to 0xffff.
1182 *	If @hash is not %NULL addresses that fail to allocate an exact filter
1183 *	are hashed and update the hash filter bitmap pointed at by @hash.
1184 *
1185 *	Returns a negative error number or the number of filters allocated.
1186 */
1187int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1188			unsigned int naddr, const u8 **addr, u16 *idx,
1189			u64 *hash, bool sleep_ok)
1190{
1191	int offset, ret = 0;
1192	unsigned nfilters = 0;
1193	unsigned int rem = naddr;
1194	struct fw_vi_mac_cmd cmd, rpl;
1195	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1196
1197	if (naddr > max_naddr)
1198		return -EINVAL;
1199
1200	for (offset = 0; offset < naddr; /**/) {
1201		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1202					 ? rem
1203					 : ARRAY_SIZE(cmd.u.exact));
1204		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1205						     u.exact[fw_naddr]), 16);
1206		struct fw_vi_mac_exact *p;
1207		int i;
1208
1209		memset(&cmd, 0, sizeof(cmd));
1210		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1211					     FW_CMD_REQUEST_F |
1212					     FW_CMD_WRITE_F |
1213					     (free ? FW_CMD_EXEC_F : 0) |
1214					     FW_VI_MAC_CMD_VIID_V(viid));
1215		cmd.freemacs_to_len16 =
1216			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1217				    FW_CMD_LEN16_V(len16));
1218
1219		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1220			p->valid_to_idx = cpu_to_be16(
1221				FW_VI_MAC_CMD_VALID_F |
1222				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1223			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1224		}
1225
1226
1227		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1228					sleep_ok);
1229		if (ret && ret != -ENOMEM)
1230			break;
1231
1232		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1233			u16 index = FW_VI_MAC_CMD_IDX_G(
1234				be16_to_cpu(p->valid_to_idx));
1235
1236			if (idx)
1237				idx[offset+i] =
1238					(index >= max_naddr
1239					 ? 0xffff
1240					 : index);
1241			if (index < max_naddr)
1242				nfilters++;
1243			else if (hash)
1244				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1245		}
1246
1247		free = false;
1248		offset += fw_naddr;
1249		rem -= fw_naddr;
1250	}
1251
1252	/*
1253	 * If there were no errors or we merely ran out of room in our MAC
1254	 * address arena, return the number of filters actually written.
1255	 */
1256	if (ret == 0 || ret == -ENOMEM)
1257		ret = nfilters;
1258	return ret;
1259}
1260
1261/**
1262 *	t4vf_change_mac - modifies the exact-match filter for a MAC address
1263 *	@adapter: the adapter
1264 *	@viid: the Virtual Interface ID
1265 *	@idx: index of existing filter for old value of MAC address, or -1
1266 *	@addr: the new MAC address value
1267 *	@persist: if idx < 0, the new MAC allocation should be persistent
1268 *
1269 *	Modifies an exact-match filter and sets it to the new MAC address.
1270 *	Note that in general it is not possible to modify the value of a given
1271 *	filter so the generic way to modify an address filter is to free the
1272 *	one being used by the old address value and allocate a new filter for
1273 *	the new address value.  @idx can be -1 if the address is a new
1274 *	addition.
1275 *
1276 *	Returns a negative error number or the index of the filter with the new
1277 *	MAC value.
1278 */
1279int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1280		    int idx, const u8 *addr, bool persist)
1281{
1282	int ret;
1283	struct fw_vi_mac_cmd cmd, rpl;
1284	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1285	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1286					     u.exact[1]), 16);
1287	unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1288
1289	/*
1290	 * If this is a new allocation, determine whether it should be
1291	 * persistent (across a "freemacs" operation) or not.
1292	 */
1293	if (idx < 0)
1294		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1295
1296	memset(&cmd, 0, sizeof(cmd));
1297	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1298				     FW_CMD_REQUEST_F |
1299				     FW_CMD_WRITE_F |
1300				     FW_VI_MAC_CMD_VIID_V(viid));
1301	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1302	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1303				      FW_VI_MAC_CMD_IDX_V(idx));
1304	memcpy(p->macaddr, addr, sizeof(p->macaddr));
1305
1306	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1307	if (ret == 0) {
1308		p = &rpl.u.exact[0];
1309		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1310		if (ret >= max_mac_addr)
1311			ret = -ENOMEM;
1312	}
1313	return ret;
1314}
1315
1316/**
1317 *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
1318 *	@adapter: the adapter
1319 *	@viid: the Virtual Interface Identifier
1320 *	@ucast: whether the hash filter should also match unicast addresses
1321 *	@vec: the value to be written to the hash filter
1322 *	@sleep_ok: call is allowed to sleep
1323 *
1324 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
1325 */
1326int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1327		       bool ucast, u64 vec, bool sleep_ok)
1328{
1329	struct fw_vi_mac_cmd cmd;
1330	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1331					     u.exact[0]), 16);
1332
1333	memset(&cmd, 0, sizeof(cmd));
1334	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1335				     FW_CMD_REQUEST_F |
1336				     FW_CMD_WRITE_F |
1337				     FW_VI_ENABLE_CMD_VIID_V(viid));
1338	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1339					    FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1340					    FW_CMD_LEN16_V(len16));
1341	cmd.u.hash.hashvec = cpu_to_be64(vec);
1342	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1343}
1344
1345/**
1346 *	t4vf_get_port_stats - collect "port" statistics
1347 *	@adapter: the adapter
1348 *	@pidx: the port index
1349 *	@s: the stats structure to fill
1350 *
1351 *	Collect statistics for the "port"'s Virtual Interface.
1352 */
1353int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1354			struct t4vf_port_stats *s)
1355{
1356	struct port_info *pi = adap2pinfo(adapter, pidx);
1357	struct fw_vi_stats_vf fwstats;
1358	unsigned int rem = VI_VF_NUM_STATS;
1359	__be64 *fwsp = (__be64 *)&fwstats;
1360
1361	/*
1362	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1363	 * commands.  We could use a Work Request and get all of them at once
1364	 * but that's an asynchronous interface which is awkward to use.
1365	 */
1366	while (rem) {
1367		unsigned int ix = VI_VF_NUM_STATS - rem;
1368		unsigned int nstats = min(6U, rem);
1369		struct fw_vi_stats_cmd cmd, rpl;
1370		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1371			      sizeof(struct fw_vi_stats_ctl));
1372		size_t len16 = DIV_ROUND_UP(len, 16);
1373		int ret;
1374
1375		memset(&cmd, 0, sizeof(cmd));
1376		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1377					     FW_VI_STATS_CMD_VIID_V(pi->viid) |
1378					     FW_CMD_REQUEST_F |
1379					     FW_CMD_READ_F);
1380		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1381		cmd.u.ctl.nstats_ix =
1382			cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1383				    FW_VI_STATS_CMD_NSTATS_V(nstats));
1384		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1385		if (ret)
1386			return ret;
1387
1388		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1389
1390		rem -= nstats;
1391		fwsp += nstats;
1392	}
1393
1394	/*
1395	 * Translate firmware statistics into host native statistics.
1396	 */
1397	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1398	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1399	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1400	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1401	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1402	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1403	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1404	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1405	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1406
1407	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1408	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1409	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1410	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1411	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1412	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1413
1414	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1415
1416	return 0;
1417}
1418
1419/**
1420 *	t4vf_iq_free - free an ingress queue and its free lists
1421 *	@adapter: the adapter
1422 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1423 *	@iqid: ingress queue ID
1424 *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
1425 *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
1426 *
1427 *	Frees an ingress queue and its associated free lists, if any.
1428 */
1429int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1430		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1431{
1432	struct fw_iq_cmd cmd;
1433
1434	memset(&cmd, 0, sizeof(cmd));
1435	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1436				    FW_CMD_REQUEST_F |
1437				    FW_CMD_EXEC_F);
1438	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1439					 FW_LEN16(cmd));
1440	cmd.type_to_iqandstindex =
1441		cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1442
1443	cmd.iqid = cpu_to_be16(iqid);
1444	cmd.fl0id = cpu_to_be16(fl0id);
1445	cmd.fl1id = cpu_to_be16(fl1id);
1446	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1447}
1448
1449/**
1450 *	t4vf_eth_eq_free - free an Ethernet egress queue
1451 *	@adapter: the adapter
1452 *	@eqid: egress queue ID
1453 *
1454 *	Frees an Ethernet egress queue.
1455 */
1456int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1457{
1458	struct fw_eq_eth_cmd cmd;
1459
1460	memset(&cmd, 0, sizeof(cmd));
1461	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1462				    FW_CMD_REQUEST_F |
1463				    FW_CMD_EXEC_F);
1464	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1465					 FW_LEN16(cmd));
1466	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1467	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1468}
1469
1470/**
1471 *	t4vf_handle_fw_rpl - process a firmware reply message
1472 *	@adapter: the adapter
1473 *	@rpl: start of the firmware message
1474 *
1475 *	Processes a firmware message, such as link state change messages.
1476 */
1477int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1478{
1479	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1480	u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
1481
1482	switch (opcode) {
1483	case FW_PORT_CMD: {
1484		/*
1485		 * Link/module state change message.
1486		 */
1487		const struct fw_port_cmd *port_cmd =
1488			(const struct fw_port_cmd *)rpl;
1489		u32 stat, mod;
1490		int action, port_id, link_ok, speed, fc, pidx;
1491
1492		/*
1493		 * Extract various fields from port status change message.
1494		 */
1495		action = FW_PORT_CMD_ACTION_G(
1496			be32_to_cpu(port_cmd->action_to_len16));
1497		if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1498			dev_err(adapter->pdev_dev,
1499				"Unknown firmware PORT reply action %x\n",
1500				action);
1501			break;
1502		}
1503
1504		port_id = FW_PORT_CMD_PORTID_G(
1505			be32_to_cpu(port_cmd->op_to_portid));
1506
1507		stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1508		link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
1509		speed = 0;
1510		fc = 0;
1511		if (stat & FW_PORT_CMD_RXPAUSE_F)
1512			fc |= PAUSE_RX;
1513		if (stat & FW_PORT_CMD_TXPAUSE_F)
1514			fc |= PAUSE_TX;
1515		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1516			speed = 100;
1517		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1518			speed = 1000;
1519		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1520			speed = 10000;
1521		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1522			speed = 40000;
1523
1524		/*
1525		 * Scan all of our "ports" (Virtual Interfaces) looking for
1526		 * those bound to the physical port which has changed.  If
1527		 * our recorded state doesn't match the current state,
1528		 * signal that change to the OS code.
1529		 */
1530		for_each_port(adapter, pidx) {
1531			struct port_info *pi = adap2pinfo(adapter, pidx);
1532			struct link_config *lc;
1533
1534			if (pi->port_id != port_id)
1535				continue;
1536
1537			lc = &pi->link_cfg;
1538
1539			mod = FW_PORT_CMD_MODTYPE_G(stat);
1540			if (mod != pi->mod_type) {
1541				pi->mod_type = mod;
1542				t4vf_os_portmod_changed(adapter, pidx);
1543			}
1544
1545			if (link_ok != lc->link_ok || speed != lc->speed ||
1546			    fc != lc->fc) {
1547				/* something changed */
1548				lc->link_ok = link_ok;
1549				lc->speed = speed;
1550				lc->fc = fc;
1551				lc->supported =
1552					be16_to_cpu(port_cmd->u.info.pcap);
1553				t4vf_os_link_changed(adapter, pidx, link_ok);
1554			}
1555		}
1556		break;
1557	}
1558
1559	default:
1560		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1561			opcode);
1562	}
1563	return 0;
1564}
1565
1566/**
1567 */
1568int t4vf_prep_adapter(struct adapter *adapter)
1569{
1570	int err;
1571	unsigned int chipid;
1572
1573	/* Wait for the device to become ready before proceeding ...
1574	 */
1575	err = t4vf_wait_dev_ready(adapter);
1576	if (err)
1577		return err;
1578
1579	/* Default port and clock for debugging in case we can't reach
1580	 * firmware.
1581	 */
1582	adapter->params.nports = 1;
1583	adapter->params.vfres.pmask = 1;
1584	adapter->params.vpd.cclk = 50000;
1585
1586	adapter->params.chip = 0;
1587	switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1588	case CHELSIO_T4:
1589		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
1590		adapter->params.arch.sge_fl_db = DBPRIO_F;
1591		adapter->params.arch.mps_tcam_size =
1592				NUM_MPS_CLS_SRAM_L_INSTANCES;
1593		break;
1594
1595	case CHELSIO_T5:
1596		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1597		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
1598		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
1599		adapter->params.arch.mps_tcam_size =
1600				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1601		break;
1602
1603	case CHELSIO_T6:
1604		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1605		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
1606		adapter->params.arch.sge_fl_db = 0;
1607		adapter->params.arch.mps_tcam_size =
1608				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1609		break;
1610	}
1611
1612	return 0;
1613}
1614