1/* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35#include <linux/delay.h> 36#include "cxgb4.h" 37#include "t4_regs.h" 38#include "t4_values.h" 39#include "t4fw_api.h" 40#include "t4fw_version.h" 41 42/** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59{ 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73} 74 75static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77{ 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80} 81 82/** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94{ 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99} 100 101/** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116{ 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122} 123 124/** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139{ 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144} 145 146/* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153{ 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173} 174 175/* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183static void t4_report_fw_error(struct adapter *adap) 184{ 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201} 202 203/* 204 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 205 */ 206static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 207 u32 mbox_addr) 208{ 209 for ( ; nflit; nflit--, mbox_addr += 8) 210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 211} 212 213/* 214 * Handle a FW assertion reported in a mailbox. 215 */ 216static void fw_asrt(struct adapter *adap, u32 mbox_addr) 217{ 218 struct fw_debug_cmd asrt; 219 220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 221 dev_alert(adap->pdev_dev, 222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 225} 226 227static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg) 228{ 229 dev_err(adap->pdev_dev, 230 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox, 231 (unsigned long long)t4_read_reg64(adap, data_reg), 232 (unsigned long long)t4_read_reg64(adap, data_reg + 8), 233 (unsigned long long)t4_read_reg64(adap, data_reg + 16), 234 (unsigned long long)t4_read_reg64(adap, data_reg + 24), 235 (unsigned long long)t4_read_reg64(adap, data_reg + 32), 236 (unsigned long long)t4_read_reg64(adap, data_reg + 40), 237 (unsigned long long)t4_read_reg64(adap, data_reg + 48), 238 (unsigned long long)t4_read_reg64(adap, data_reg + 56)); 239} 240 241/** 242 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 243 * @adap: the adapter 244 * @mbox: index of the mailbox to use 245 * @cmd: the command to write 246 * @size: command length in bytes 247 * @rpl: where to optionally store the reply 248 * @sleep_ok: if true we may sleep while awaiting command completion 249 * @timeout: time to wait for command to finish before timing out 250 * 251 * Sends the given command to FW through the selected mailbox and waits 252 * for the FW to execute the command. If @rpl is not %NULL it is used to 253 * store the FW's reply to the command. The command and its optional 254 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 255 * to respond. @sleep_ok determines whether we may sleep while awaiting 256 * the response. If sleeping is allowed we use progressive backoff 257 * otherwise we spin. 258 * 259 * The return value is 0 on success or a negative errno on failure. A 260 * failure can happen either because we are not able to execute the 261 * command or FW executes it but signals an error. In the latter case 262 * the return value is the error code indicated by FW (negated). 263 */ 264int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 265 int size, void *rpl, bool sleep_ok, int timeout) 266{ 267 static const int delay[] = { 268 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 269 }; 270 271 u32 v; 272 u64 res; 273 int i, ms, delay_idx; 274 const __be64 *p = cmd; 275 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 276 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 277 278 if ((size & 15) || size > MBOX_LEN) 279 return -EINVAL; 280 281 /* 282 * If the device is off-line, as in EEH, commands will time out. 283 * Fail them early so we don't waste time waiting. 284 */ 285 if (adap->pdev->error_state != pci_channel_io_normal) 286 return -EIO; 287 288 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 289 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 290 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 291 292 if (v != MBOX_OWNER_DRV) 293 return v ? -EBUSY : -ETIMEDOUT; 294 295 for (i = 0; i < size; i += 8) 296 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 297 298 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 299 t4_read_reg(adap, ctl_reg); /* flush write */ 300 301 delay_idx = 0; 302 ms = delay[0]; 303 304 for (i = 0; i < timeout; i += ms) { 305 if (sleep_ok) { 306 ms = delay[delay_idx]; /* last element may repeat */ 307 if (delay_idx < ARRAY_SIZE(delay) - 1) 308 delay_idx++; 309 msleep(ms); 310 } else 311 mdelay(ms); 312 313 v = t4_read_reg(adap, ctl_reg); 314 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 315 if (!(v & MBMSGVALID_F)) { 316 t4_write_reg(adap, ctl_reg, 0); 317 continue; 318 } 319 320 res = t4_read_reg64(adap, data_reg); 321 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 322 fw_asrt(adap, data_reg); 323 res = FW_CMD_RETVAL_V(EIO); 324 } else if (rpl) { 325 get_mbox_rpl(adap, rpl, size / 8, data_reg); 326 } 327 328 if (FW_CMD_RETVAL_G((int)res)) 329 dump_mbox(adap, mbox, data_reg); 330 t4_write_reg(adap, ctl_reg, 0); 331 return -FW_CMD_RETVAL_G((int)res); 332 } 333 } 334 335 dump_mbox(adap, mbox, data_reg); 336 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 337 *(const u8 *)cmd, mbox); 338 t4_report_fw_error(adap); 339 return -ETIMEDOUT; 340} 341 342int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 343 void *rpl, bool sleep_ok) 344{ 345 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 346 FW_CMD_MAX_TIMEOUT); 347} 348 349static int t4_edc_err_read(struct adapter *adap, int idx) 350{ 351 u32 edc_ecc_err_addr_reg; 352 u32 rdata_reg; 353 354 if (is_t4(adap->params.chip)) { 355 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 356 return 0; 357 } 358 if (idx != 0 && idx != 1) { 359 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 360 return 0; 361 } 362 363 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 364 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 365 366 CH_WARN(adap, 367 "edc%d err addr 0x%x: 0x%x.\n", 368 idx, edc_ecc_err_addr_reg, 369 t4_read_reg(adap, edc_ecc_err_addr_reg)); 370 CH_WARN(adap, 371 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 372 rdata_reg, 373 (unsigned long long)t4_read_reg64(adap, rdata_reg), 374 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 375 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 376 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 377 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 378 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 379 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 380 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 381 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 382 383 return 0; 384} 385 386/** 387 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 388 * @adap: the adapter 389 * @win: PCI-E Memory Window to use 390 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 391 * @addr: address within indicated memory type 392 * @len: amount of memory to transfer 393 * @hbuf: host memory buffer 394 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 395 * 396 * Reads/writes an [almost] arbitrary memory region in the firmware: the 397 * firmware memory address and host buffer must be aligned on 32-bit 398 * boudaries; the length may be arbitrary. The memory is transferred as 399 * a raw byte sequence from/to the firmware's memory. If this memory 400 * contains data structures which contain multi-byte integers, it's the 401 * caller's responsibility to perform appropriate byte order conversions. 402 */ 403int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 404 u32 len, void *hbuf, int dir) 405{ 406 u32 pos, offset, resid, memoffset; 407 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; 408 u32 *buf; 409 410 /* Argument sanity checks ... 411 */ 412 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 413 return -EINVAL; 414 buf = (u32 *)hbuf; 415 416 /* It's convenient to be able to handle lengths which aren't a 417 * multiple of 32-bits because we often end up transferring files to 418 * the firmware. So we'll handle that by normalizing the length here 419 * and then handling any residual transfer at the end. 420 */ 421 resid = len & 0x3; 422 len -= resid; 423 424 /* Offset into the region of memory which is being accessed 425 * MEM_EDC0 = 0 426 * MEM_EDC1 = 1 427 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 428 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 429 */ 430 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 431 if (mtype != MEM_MC1) 432 memoffset = (mtype * (edc_size * 1024 * 1024)); 433 else { 434 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 435 MA_EXT_MEMORY0_BAR_A)); 436 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 437 } 438 439 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 440 addr = addr + memoffset; 441 442 /* Each PCI-E Memory Window is programmed with a window size -- or 443 * "aperture" -- which controls the granularity of its mapping onto 444 * adapter memory. We need to grab that aperture in order to know 445 * how to use the specified window. The window is also programmed 446 * with the base address of the Memory Window in BAR0's address 447 * space. For T4 this is an absolute PCI-E Bus Address. For T5 448 * the address is relative to BAR0. 449 */ 450 mem_reg = t4_read_reg(adap, 451 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 452 win)); 453 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 454 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 455 if (is_t4(adap->params.chip)) 456 mem_base -= adap->t4_bar0; 457 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 458 459 /* Calculate our initial PCI-E Memory Window Position and Offset into 460 * that Window. 461 */ 462 pos = addr & ~(mem_aperture-1); 463 offset = addr - pos; 464 465 /* Set up initial PCI-E Memory Window to cover the start of our 466 * transfer. (Read it back to ensure that changes propagate before we 467 * attempt to use the new value.) 468 */ 469 t4_write_reg(adap, 470 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 471 pos | win_pf); 472 t4_read_reg(adap, 473 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 474 475 /* Transfer data to/from the adapter as long as there's an integral 476 * number of 32-bit transfers to complete. 477 * 478 * A note on Endianness issues: 479 * 480 * The "register" reads and writes below from/to the PCI-E Memory 481 * Window invoke the standard adapter Big-Endian to PCI-E Link 482 * Little-Endian "swizzel." As a result, if we have the following 483 * data in adapter memory: 484 * 485 * Memory: ... | b0 | b1 | b2 | b3 | ... 486 * Address: i+0 i+1 i+2 i+3 487 * 488 * Then a read of the adapter memory via the PCI-E Memory Window 489 * will yield: 490 * 491 * x = readl(i) 492 * 31 0 493 * [ b3 | b2 | b1 | b0 ] 494 * 495 * If this value is stored into local memory on a Little-Endian system 496 * it will show up correctly in local memory as: 497 * 498 * ( ..., b0, b1, b2, b3, ... ) 499 * 500 * But on a Big-Endian system, the store will show up in memory 501 * incorrectly swizzled as: 502 * 503 * ( ..., b3, b2, b1, b0, ... ) 504 * 505 * So we need to account for this in the reads and writes to the 506 * PCI-E Memory Window below by undoing the register read/write 507 * swizzels. 508 */ 509 while (len > 0) { 510 if (dir == T4_MEMORY_READ) 511 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 512 mem_base + offset)); 513 else 514 t4_write_reg(adap, mem_base + offset, 515 (__force u32)cpu_to_le32(*buf++)); 516 offset += sizeof(__be32); 517 len -= sizeof(__be32); 518 519 /* If we've reached the end of our current window aperture, 520 * move the PCI-E Memory Window on to the next. Note that 521 * doing this here after "len" may be 0 allows us to set up 522 * the PCI-E Memory Window for a possible final residual 523 * transfer below ... 524 */ 525 if (offset == mem_aperture) { 526 pos += mem_aperture; 527 offset = 0; 528 t4_write_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 530 win), pos | win_pf); 531 t4_read_reg(adap, 532 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 533 win)); 534 } 535 } 536 537 /* If the original transfer had a length which wasn't a multiple of 538 * 32-bits, now's where we need to finish off the transfer of the 539 * residual amount. The PCI-E Memory Window has already been moved 540 * above (if necessary) to cover this final transfer. 541 */ 542 if (resid) { 543 union { 544 u32 word; 545 char byte[4]; 546 } last; 547 unsigned char *bp; 548 int i; 549 550 if (dir == T4_MEMORY_READ) { 551 last.word = le32_to_cpu( 552 (__force __le32)t4_read_reg(adap, 553 mem_base + offset)); 554 for (bp = (unsigned char *)buf, i = resid; i < 4; i++) 555 bp[i] = last.byte[i]; 556 } else { 557 last.word = *buf; 558 for (i = resid; i < 4; i++) 559 last.byte[i] = 0; 560 t4_write_reg(adap, mem_base + offset, 561 (__force u32)cpu_to_le32(last.word)); 562 } 563 } 564 565 return 0; 566} 567 568/* Return the specified PCI-E Configuration Space register from our Physical 569 * Function. We try first via a Firmware LDST Command since we prefer to let 570 * the firmware own all of these registers, but if that fails we go for it 571 * directly ourselves. 572 */ 573u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 574{ 575 u32 val, ldst_addrspace; 576 577 /* If fw_attach != 0, construct and send the Firmware LDST Command to 578 * retrieve the specified PCI-E Configuration Space register. 579 */ 580 struct fw_ldst_cmd ldst_cmd; 581 int ret; 582 583 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 584 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 585 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 586 FW_CMD_REQUEST_F | 587 FW_CMD_READ_F | 588 ldst_addrspace); 589 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 590 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 591 ldst_cmd.u.pcie.ctrl_to_fn = 592 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 593 ldst_cmd.u.pcie.r = reg; 594 595 /* If the LDST Command succeeds, return the result, otherwise 596 * fall through to reading it directly ourselves ... 597 */ 598 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 599 &ldst_cmd); 600 if (ret == 0) 601 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 602 else 603 /* Read the desired Configuration Space register via the PCI-E 604 * Backdoor mechanism. 605 */ 606 t4_hw_pci_read_cfg4(adap, reg, &val); 607 return val; 608} 609 610/* Get the window based on base passed to it. 611 * Window aperture is currently unhandled, but there is no use case for it 612 * right now 613 */ 614static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 615 u32 memwin_base) 616{ 617 u32 ret; 618 619 if (is_t4(adap->params.chip)) { 620 u32 bar0; 621 622 /* Truncation intentional: we only read the bottom 32-bits of 623 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 624 * mechanism to read BAR0 instead of using 625 * pci_resource_start() because we could be operating from 626 * within a Virtual Machine which is trapping our accesses to 627 * our Configuration Space and we need to set up the PCI-E 628 * Memory Window decoders with the actual addresses which will 629 * be coming across the PCI-E link. 630 */ 631 bar0 = t4_read_pcie_cfg4(adap, pci_base); 632 bar0 &= pci_mask; 633 adap->t4_bar0 = bar0; 634 635 ret = bar0 + memwin_base; 636 } else { 637 /* For T5, only relative offset inside the PCIe BAR is passed */ 638 ret = memwin_base; 639 } 640 return ret; 641} 642 643/* Get the default utility window (win0) used by everyone */ 644u32 t4_get_util_window(struct adapter *adap) 645{ 646 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 647 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 648} 649 650/* Set up memory window for accessing adapter memory ranges. (Read 651 * back MA register to ensure that changes propagate before we attempt 652 * to use the new values.) 653 */ 654void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 655{ 656 t4_write_reg(adap, 657 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 658 memwin_base | BIR_V(0) | 659 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 660 t4_read_reg(adap, 661 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 662} 663 664/** 665 * t4_get_regs_len - return the size of the chips register set 666 * @adapter: the adapter 667 * 668 * Returns the size of the chip's BAR0 register space. 669 */ 670unsigned int t4_get_regs_len(struct adapter *adapter) 671{ 672 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 673 674 switch (chip_version) { 675 case CHELSIO_T4: 676 return T4_REGMAP_SIZE; 677 678 case CHELSIO_T5: 679 case CHELSIO_T6: 680 return T5_REGMAP_SIZE; 681 } 682 683 dev_err(adapter->pdev_dev, 684 "Unsupported chip version %d\n", chip_version); 685 return 0; 686} 687 688/** 689 * t4_get_regs - read chip registers into provided buffer 690 * @adap: the adapter 691 * @buf: register buffer 692 * @buf_size: size (in bytes) of register buffer 693 * 694 * If the provided register buffer isn't large enough for the chip's 695 * full register range, the register dump will be truncated to the 696 * register buffer's size. 697 */ 698void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 699{ 700 static const unsigned int t4_reg_ranges[] = { 701 0x1008, 0x1108, 702 0x1180, 0x1184, 703 0x1190, 0x1194, 704 0x11a0, 0x11a4, 705 0x11b0, 0x11b4, 706 0x11fc, 0x123c, 707 0x1300, 0x173c, 708 0x1800, 0x18fc, 709 0x3000, 0x30d8, 710 0x30e0, 0x30e4, 711 0x30ec, 0x5910, 712 0x5920, 0x5924, 713 0x5960, 0x5960, 714 0x5968, 0x5968, 715 0x5970, 0x5970, 716 0x5978, 0x5978, 717 0x5980, 0x5980, 718 0x5988, 0x5988, 719 0x5990, 0x5990, 720 0x5998, 0x5998, 721 0x59a0, 0x59d4, 722 0x5a00, 0x5ae0, 723 0x5ae8, 0x5ae8, 724 0x5af0, 0x5af0, 725 0x5af8, 0x5af8, 726 0x6000, 0x6098, 727 0x6100, 0x6150, 728 0x6200, 0x6208, 729 0x6240, 0x6248, 730 0x6280, 0x62b0, 731 0x62c0, 0x6338, 732 0x6370, 0x638c, 733 0x6400, 0x643c, 734 0x6500, 0x6524, 735 0x6a00, 0x6a04, 736 0x6a14, 0x6a38, 737 0x6a60, 0x6a70, 738 0x6a78, 0x6a78, 739 0x6b00, 0x6b0c, 740 0x6b1c, 0x6b84, 741 0x6bf0, 0x6bf8, 742 0x6c00, 0x6c0c, 743 0x6c1c, 0x6c84, 744 0x6cf0, 0x6cf8, 745 0x6d00, 0x6d0c, 746 0x6d1c, 0x6d84, 747 0x6df0, 0x6df8, 748 0x6e00, 0x6e0c, 749 0x6e1c, 0x6e84, 750 0x6ef0, 0x6ef8, 751 0x6f00, 0x6f0c, 752 0x6f1c, 0x6f84, 753 0x6ff0, 0x6ff8, 754 0x7000, 0x700c, 755 0x701c, 0x7084, 756 0x70f0, 0x70f8, 757 0x7100, 0x710c, 758 0x711c, 0x7184, 759 0x71f0, 0x71f8, 760 0x7200, 0x720c, 761 0x721c, 0x7284, 762 0x72f0, 0x72f8, 763 0x7300, 0x730c, 764 0x731c, 0x7384, 765 0x73f0, 0x73f8, 766 0x7400, 0x7450, 767 0x7500, 0x7530, 768 0x7600, 0x760c, 769 0x7614, 0x761c, 770 0x7680, 0x76cc, 771 0x7700, 0x7798, 772 0x77c0, 0x77fc, 773 0x7900, 0x79fc, 774 0x7b00, 0x7b58, 775 0x7b60, 0x7b84, 776 0x7b8c, 0x7c38, 777 0x7d00, 0x7d38, 778 0x7d40, 0x7d80, 779 0x7d8c, 0x7ddc, 780 0x7de4, 0x7e04, 781 0x7e10, 0x7e1c, 782 0x7e24, 0x7e38, 783 0x7e40, 0x7e44, 784 0x7e4c, 0x7e78, 785 0x7e80, 0x7ea4, 786 0x7eac, 0x7edc, 787 0x7ee8, 0x7efc, 788 0x8dc0, 0x8e04, 789 0x8e10, 0x8e1c, 790 0x8e30, 0x8e78, 791 0x8ea0, 0x8eb8, 792 0x8ec0, 0x8f6c, 793 0x8fc0, 0x9008, 794 0x9010, 0x9058, 795 0x9060, 0x9060, 796 0x9068, 0x9074, 797 0x90fc, 0x90fc, 798 0x9400, 0x9408, 799 0x9410, 0x9458, 800 0x9600, 0x9600, 801 0x9608, 0x9638, 802 0x9640, 0x96bc, 803 0x9800, 0x9808, 804 0x9820, 0x983c, 805 0x9850, 0x9864, 806 0x9c00, 0x9c6c, 807 0x9c80, 0x9cec, 808 0x9d00, 0x9d6c, 809 0x9d80, 0x9dec, 810 0x9e00, 0x9e6c, 811 0x9e80, 0x9eec, 812 0x9f00, 0x9f6c, 813 0x9f80, 0x9fec, 814 0xd004, 0xd004, 815 0xd010, 0xd03c, 816 0xdfc0, 0xdfe0, 817 0xe000, 0xea7c, 818 0xf000, 0x11190, 819 0x19040, 0x1906c, 820 0x19078, 0x19080, 821 0x1908c, 0x190e4, 822 0x190f0, 0x190f8, 823 0x19100, 0x19110, 824 0x19120, 0x19124, 825 0x19150, 0x19194, 826 0x1919c, 0x191b0, 827 0x191d0, 0x191e8, 828 0x19238, 0x1924c, 829 0x193f8, 0x1943c, 830 0x1944c, 0x19474, 831 0x19490, 0x194e0, 832 0x194f0, 0x194f8, 833 0x19800, 0x19c08, 834 0x19c10, 0x19c90, 835 0x19ca0, 0x19ce4, 836 0x19cf0, 0x19d40, 837 0x19d50, 0x19d94, 838 0x19da0, 0x19de8, 839 0x19df0, 0x19e40, 840 0x19e50, 0x19e90, 841 0x19ea0, 0x19f4c, 842 0x1a000, 0x1a004, 843 0x1a010, 0x1a06c, 844 0x1a0b0, 0x1a0e4, 845 0x1a0ec, 0x1a0f4, 846 0x1a100, 0x1a108, 847 0x1a114, 0x1a120, 848 0x1a128, 0x1a130, 849 0x1a138, 0x1a138, 850 0x1a190, 0x1a1c4, 851 0x1a1fc, 0x1a1fc, 852 0x1e040, 0x1e04c, 853 0x1e284, 0x1e28c, 854 0x1e2c0, 0x1e2c0, 855 0x1e2e0, 0x1e2e0, 856 0x1e300, 0x1e384, 857 0x1e3c0, 0x1e3c8, 858 0x1e440, 0x1e44c, 859 0x1e684, 0x1e68c, 860 0x1e6c0, 0x1e6c0, 861 0x1e6e0, 0x1e6e0, 862 0x1e700, 0x1e784, 863 0x1e7c0, 0x1e7c8, 864 0x1e840, 0x1e84c, 865 0x1ea84, 0x1ea8c, 866 0x1eac0, 0x1eac0, 867 0x1eae0, 0x1eae0, 868 0x1eb00, 0x1eb84, 869 0x1ebc0, 0x1ebc8, 870 0x1ec40, 0x1ec4c, 871 0x1ee84, 0x1ee8c, 872 0x1eec0, 0x1eec0, 873 0x1eee0, 0x1eee0, 874 0x1ef00, 0x1ef84, 875 0x1efc0, 0x1efc8, 876 0x1f040, 0x1f04c, 877 0x1f284, 0x1f28c, 878 0x1f2c0, 0x1f2c0, 879 0x1f2e0, 0x1f2e0, 880 0x1f300, 0x1f384, 881 0x1f3c0, 0x1f3c8, 882 0x1f440, 0x1f44c, 883 0x1f684, 0x1f68c, 884 0x1f6c0, 0x1f6c0, 885 0x1f6e0, 0x1f6e0, 886 0x1f700, 0x1f784, 887 0x1f7c0, 0x1f7c8, 888 0x1f840, 0x1f84c, 889 0x1fa84, 0x1fa8c, 890 0x1fac0, 0x1fac0, 891 0x1fae0, 0x1fae0, 892 0x1fb00, 0x1fb84, 893 0x1fbc0, 0x1fbc8, 894 0x1fc40, 0x1fc4c, 895 0x1fe84, 0x1fe8c, 896 0x1fec0, 0x1fec0, 897 0x1fee0, 0x1fee0, 898 0x1ff00, 0x1ff84, 899 0x1ffc0, 0x1ffc8, 900 0x20000, 0x2002c, 901 0x20100, 0x2013c, 902 0x20190, 0x201a0, 903 0x201a8, 0x201b8, 904 0x201c4, 0x201c8, 905 0x20200, 0x20318, 906 0x20400, 0x204b4, 907 0x204c0, 0x20528, 908 0x20540, 0x20614, 909 0x21000, 0x21040, 910 0x2104c, 0x21060, 911 0x210c0, 0x210ec, 912 0x21200, 0x21268, 913 0x21270, 0x21284, 914 0x212fc, 0x21388, 915 0x21400, 0x21404, 916 0x21500, 0x21500, 917 0x21510, 0x21518, 918 0x2152c, 0x21530, 919 0x2153c, 0x2153c, 920 0x21550, 0x21554, 921 0x21600, 0x21600, 922 0x21608, 0x2161c, 923 0x21624, 0x21628, 924 0x21630, 0x21634, 925 0x2163c, 0x2163c, 926 0x21700, 0x2171c, 927 0x21780, 0x2178c, 928 0x21800, 0x21818, 929 0x21820, 0x21828, 930 0x21830, 0x21848, 931 0x21850, 0x21854, 932 0x21860, 0x21868, 933 0x21870, 0x21870, 934 0x21878, 0x21898, 935 0x218a0, 0x218a8, 936 0x218b0, 0x218c8, 937 0x218d0, 0x218d4, 938 0x218e0, 0x218e8, 939 0x218f0, 0x218f0, 940 0x218f8, 0x21a18, 941 0x21a20, 0x21a28, 942 0x21a30, 0x21a48, 943 0x21a50, 0x21a54, 944 0x21a60, 0x21a68, 945 0x21a70, 0x21a70, 946 0x21a78, 0x21a98, 947 0x21aa0, 0x21aa8, 948 0x21ab0, 0x21ac8, 949 0x21ad0, 0x21ad4, 950 0x21ae0, 0x21ae8, 951 0x21af0, 0x21af0, 952 0x21af8, 0x21c18, 953 0x21c20, 0x21c20, 954 0x21c28, 0x21c30, 955 0x21c38, 0x21c38, 956 0x21c80, 0x21c98, 957 0x21ca0, 0x21ca8, 958 0x21cb0, 0x21cc8, 959 0x21cd0, 0x21cd4, 960 0x21ce0, 0x21ce8, 961 0x21cf0, 0x21cf0, 962 0x21cf8, 0x21d7c, 963 0x21e00, 0x21e04, 964 0x22000, 0x2202c, 965 0x22100, 0x2213c, 966 0x22190, 0x221a0, 967 0x221a8, 0x221b8, 968 0x221c4, 0x221c8, 969 0x22200, 0x22318, 970 0x22400, 0x224b4, 971 0x224c0, 0x22528, 972 0x22540, 0x22614, 973 0x23000, 0x23040, 974 0x2304c, 0x23060, 975 0x230c0, 0x230ec, 976 0x23200, 0x23268, 977 0x23270, 0x23284, 978 0x232fc, 0x23388, 979 0x23400, 0x23404, 980 0x23500, 0x23500, 981 0x23510, 0x23518, 982 0x2352c, 0x23530, 983 0x2353c, 0x2353c, 984 0x23550, 0x23554, 985 0x23600, 0x23600, 986 0x23608, 0x2361c, 987 0x23624, 0x23628, 988 0x23630, 0x23634, 989 0x2363c, 0x2363c, 990 0x23700, 0x2371c, 991 0x23780, 0x2378c, 992 0x23800, 0x23818, 993 0x23820, 0x23828, 994 0x23830, 0x23848, 995 0x23850, 0x23854, 996 0x23860, 0x23868, 997 0x23870, 0x23870, 998 0x23878, 0x23898, 999 0x238a0, 0x238a8, 1000 0x238b0, 0x238c8, 1001 0x238d0, 0x238d4, 1002 0x238e0, 0x238e8, 1003 0x238f0, 0x238f0, 1004 0x238f8, 0x23a18, 1005 0x23a20, 0x23a28, 1006 0x23a30, 0x23a48, 1007 0x23a50, 0x23a54, 1008 0x23a60, 0x23a68, 1009 0x23a70, 0x23a70, 1010 0x23a78, 0x23a98, 1011 0x23aa0, 0x23aa8, 1012 0x23ab0, 0x23ac8, 1013 0x23ad0, 0x23ad4, 1014 0x23ae0, 0x23ae8, 1015 0x23af0, 0x23af0, 1016 0x23af8, 0x23c18, 1017 0x23c20, 0x23c20, 1018 0x23c28, 0x23c30, 1019 0x23c38, 0x23c38, 1020 0x23c80, 0x23c98, 1021 0x23ca0, 0x23ca8, 1022 0x23cb0, 0x23cc8, 1023 0x23cd0, 0x23cd4, 1024 0x23ce0, 0x23ce8, 1025 0x23cf0, 0x23cf0, 1026 0x23cf8, 0x23d7c, 1027 0x23e00, 0x23e04, 1028 0x24000, 0x2402c, 1029 0x24100, 0x2413c, 1030 0x24190, 0x241a0, 1031 0x241a8, 0x241b8, 1032 0x241c4, 0x241c8, 1033 0x24200, 0x24318, 1034 0x24400, 0x244b4, 1035 0x244c0, 0x24528, 1036 0x24540, 0x24614, 1037 0x25000, 0x25040, 1038 0x2504c, 0x25060, 1039 0x250c0, 0x250ec, 1040 0x25200, 0x25268, 1041 0x25270, 0x25284, 1042 0x252fc, 0x25388, 1043 0x25400, 0x25404, 1044 0x25500, 0x25500, 1045 0x25510, 0x25518, 1046 0x2552c, 0x25530, 1047 0x2553c, 0x2553c, 1048 0x25550, 0x25554, 1049 0x25600, 0x25600, 1050 0x25608, 0x2561c, 1051 0x25624, 0x25628, 1052 0x25630, 0x25634, 1053 0x2563c, 0x2563c, 1054 0x25700, 0x2571c, 1055 0x25780, 0x2578c, 1056 0x25800, 0x25818, 1057 0x25820, 0x25828, 1058 0x25830, 0x25848, 1059 0x25850, 0x25854, 1060 0x25860, 0x25868, 1061 0x25870, 0x25870, 1062 0x25878, 0x25898, 1063 0x258a0, 0x258a8, 1064 0x258b0, 0x258c8, 1065 0x258d0, 0x258d4, 1066 0x258e0, 0x258e8, 1067 0x258f0, 0x258f0, 1068 0x258f8, 0x25a18, 1069 0x25a20, 0x25a28, 1070 0x25a30, 0x25a48, 1071 0x25a50, 0x25a54, 1072 0x25a60, 0x25a68, 1073 0x25a70, 0x25a70, 1074 0x25a78, 0x25a98, 1075 0x25aa0, 0x25aa8, 1076 0x25ab0, 0x25ac8, 1077 0x25ad0, 0x25ad4, 1078 0x25ae0, 0x25ae8, 1079 0x25af0, 0x25af0, 1080 0x25af8, 0x25c18, 1081 0x25c20, 0x25c20, 1082 0x25c28, 0x25c30, 1083 0x25c38, 0x25c38, 1084 0x25c80, 0x25c98, 1085 0x25ca0, 0x25ca8, 1086 0x25cb0, 0x25cc8, 1087 0x25cd0, 0x25cd4, 1088 0x25ce0, 0x25ce8, 1089 0x25cf0, 0x25cf0, 1090 0x25cf8, 0x25d7c, 1091 0x25e00, 0x25e04, 1092 0x26000, 0x2602c, 1093 0x26100, 0x2613c, 1094 0x26190, 0x261a0, 1095 0x261a8, 0x261b8, 1096 0x261c4, 0x261c8, 1097 0x26200, 0x26318, 1098 0x26400, 0x264b4, 1099 0x264c0, 0x26528, 1100 0x26540, 0x26614, 1101 0x27000, 0x27040, 1102 0x2704c, 0x27060, 1103 0x270c0, 0x270ec, 1104 0x27200, 0x27268, 1105 0x27270, 0x27284, 1106 0x272fc, 0x27388, 1107 0x27400, 0x27404, 1108 0x27500, 0x27500, 1109 0x27510, 0x27518, 1110 0x2752c, 0x27530, 1111 0x2753c, 0x2753c, 1112 0x27550, 0x27554, 1113 0x27600, 0x27600, 1114 0x27608, 0x2761c, 1115 0x27624, 0x27628, 1116 0x27630, 0x27634, 1117 0x2763c, 0x2763c, 1118 0x27700, 0x2771c, 1119 0x27780, 0x2778c, 1120 0x27800, 0x27818, 1121 0x27820, 0x27828, 1122 0x27830, 0x27848, 1123 0x27850, 0x27854, 1124 0x27860, 0x27868, 1125 0x27870, 0x27870, 1126 0x27878, 0x27898, 1127 0x278a0, 0x278a8, 1128 0x278b0, 0x278c8, 1129 0x278d0, 0x278d4, 1130 0x278e0, 0x278e8, 1131 0x278f0, 0x278f0, 1132 0x278f8, 0x27a18, 1133 0x27a20, 0x27a28, 1134 0x27a30, 0x27a48, 1135 0x27a50, 0x27a54, 1136 0x27a60, 0x27a68, 1137 0x27a70, 0x27a70, 1138 0x27a78, 0x27a98, 1139 0x27aa0, 0x27aa8, 1140 0x27ab0, 0x27ac8, 1141 0x27ad0, 0x27ad4, 1142 0x27ae0, 0x27ae8, 1143 0x27af0, 0x27af0, 1144 0x27af8, 0x27c18, 1145 0x27c20, 0x27c20, 1146 0x27c28, 0x27c30, 1147 0x27c38, 0x27c38, 1148 0x27c80, 0x27c98, 1149 0x27ca0, 0x27ca8, 1150 0x27cb0, 0x27cc8, 1151 0x27cd0, 0x27cd4, 1152 0x27ce0, 0x27ce8, 1153 0x27cf0, 0x27cf0, 1154 0x27cf8, 0x27d7c, 1155 0x27e00, 0x27e04, 1156 }; 1157 1158 static const unsigned int t5_reg_ranges[] = { 1159 0x1008, 0x10c0, 1160 0x10cc, 0x10f8, 1161 0x1100, 0x1100, 1162 0x110c, 0x1148, 1163 0x1180, 0x1184, 1164 0x1190, 0x1194, 1165 0x11a0, 0x11a4, 1166 0x11b0, 0x11b4, 1167 0x11fc, 0x123c, 1168 0x1280, 0x173c, 1169 0x1800, 0x18fc, 1170 0x3000, 0x3028, 1171 0x3060, 0x30b0, 1172 0x30b8, 0x30d8, 1173 0x30e0, 0x30fc, 1174 0x3140, 0x357c, 1175 0x35a8, 0x35cc, 1176 0x35ec, 0x35ec, 1177 0x3600, 0x5624, 1178 0x56cc, 0x56ec, 1179 0x56f4, 0x5720, 1180 0x5728, 0x575c, 1181 0x580c, 0x5814, 1182 0x5890, 0x589c, 1183 0x58a4, 0x58ac, 1184 0x58b8, 0x58bc, 1185 0x5940, 0x59c8, 1186 0x59d0, 0x59dc, 1187 0x59fc, 0x5a18, 1188 0x5a60, 0x5a70, 1189 0x5a80, 0x5a9c, 1190 0x5b94, 0x5bfc, 1191 0x6000, 0x6020, 1192 0x6028, 0x6040, 1193 0x6058, 0x609c, 1194 0x60a8, 0x614c, 1195 0x7700, 0x7798, 1196 0x77c0, 0x78fc, 1197 0x7b00, 0x7b58, 1198 0x7b60, 0x7b84, 1199 0x7b8c, 0x7c54, 1200 0x7d00, 0x7d38, 1201 0x7d40, 0x7d80, 1202 0x7d8c, 0x7ddc, 1203 0x7de4, 0x7e04, 1204 0x7e10, 0x7e1c, 1205 0x7e24, 0x7e38, 1206 0x7e40, 0x7e44, 1207 0x7e4c, 0x7e78, 1208 0x7e80, 0x7edc, 1209 0x7ee8, 0x7efc, 1210 0x8dc0, 0x8de0, 1211 0x8df8, 0x8e04, 1212 0x8e10, 0x8e84, 1213 0x8ea0, 0x8f84, 1214 0x8fc0, 0x9058, 1215 0x9060, 0x9060, 1216 0x9068, 0x90f8, 1217 0x9400, 0x9408, 1218 0x9410, 0x9470, 1219 0x9600, 0x9600, 1220 0x9608, 0x9638, 1221 0x9640, 0x96f4, 1222 0x9800, 0x9808, 1223 0x9820, 0x983c, 1224 0x9850, 0x9864, 1225 0x9c00, 0x9c6c, 1226 0x9c80, 0x9cec, 1227 0x9d00, 0x9d6c, 1228 0x9d80, 0x9dec, 1229 0x9e00, 0x9e6c, 1230 0x9e80, 0x9eec, 1231 0x9f00, 0x9f6c, 1232 0x9f80, 0xa020, 1233 0xd004, 0xd004, 1234 0xd010, 0xd03c, 1235 0xdfc0, 0xdfe0, 1236 0xe000, 0x1106c, 1237 0x11074, 0x11088, 1238 0x1109c, 0x1117c, 1239 0x11190, 0x11204, 1240 0x19040, 0x1906c, 1241 0x19078, 0x19080, 1242 0x1908c, 0x190e8, 1243 0x190f0, 0x190f8, 1244 0x19100, 0x19110, 1245 0x19120, 0x19124, 1246 0x19150, 0x19194, 1247 0x1919c, 0x191b0, 1248 0x191d0, 0x191e8, 1249 0x19238, 0x19290, 1250 0x193f8, 0x19428, 1251 0x19430, 0x19444, 1252 0x1944c, 0x1946c, 1253 0x19474, 0x19474, 1254 0x19490, 0x194cc, 1255 0x194f0, 0x194f8, 1256 0x19c00, 0x19c08, 1257 0x19c10, 0x19c60, 1258 0x19c94, 0x19ce4, 1259 0x19cf0, 0x19d40, 1260 0x19d50, 0x19d94, 1261 0x19da0, 0x19de8, 1262 0x19df0, 0x19e10, 1263 0x19e50, 0x19e90, 1264 0x19ea0, 0x19f24, 1265 0x19f34, 0x19f34, 1266 0x19f40, 0x19f50, 1267 0x19f90, 0x19fb4, 1268 0x19fc4, 0x19fe4, 1269 0x1a000, 0x1a004, 1270 0x1a010, 0x1a06c, 1271 0x1a0b0, 0x1a0e4, 1272 0x1a0ec, 0x1a0f8, 1273 0x1a100, 0x1a108, 1274 0x1a114, 0x1a120, 1275 0x1a128, 0x1a130, 1276 0x1a138, 0x1a138, 1277 0x1a190, 0x1a1c4, 1278 0x1a1fc, 0x1a1fc, 1279 0x1e008, 0x1e00c, 1280 0x1e040, 0x1e044, 1281 0x1e04c, 0x1e04c, 1282 0x1e284, 0x1e290, 1283 0x1e2c0, 0x1e2c0, 1284 0x1e2e0, 0x1e2e0, 1285 0x1e300, 0x1e384, 1286 0x1e3c0, 0x1e3c8, 1287 0x1e408, 0x1e40c, 1288 0x1e440, 0x1e444, 1289 0x1e44c, 0x1e44c, 1290 0x1e684, 0x1e690, 1291 0x1e6c0, 0x1e6c0, 1292 0x1e6e0, 0x1e6e0, 1293 0x1e700, 0x1e784, 1294 0x1e7c0, 0x1e7c8, 1295 0x1e808, 0x1e80c, 1296 0x1e840, 0x1e844, 1297 0x1e84c, 0x1e84c, 1298 0x1ea84, 0x1ea90, 1299 0x1eac0, 0x1eac0, 1300 0x1eae0, 0x1eae0, 1301 0x1eb00, 0x1eb84, 1302 0x1ebc0, 0x1ebc8, 1303 0x1ec08, 0x1ec0c, 1304 0x1ec40, 0x1ec44, 1305 0x1ec4c, 0x1ec4c, 1306 0x1ee84, 0x1ee90, 1307 0x1eec0, 0x1eec0, 1308 0x1eee0, 0x1eee0, 1309 0x1ef00, 0x1ef84, 1310 0x1efc0, 0x1efc8, 1311 0x1f008, 0x1f00c, 1312 0x1f040, 0x1f044, 1313 0x1f04c, 0x1f04c, 1314 0x1f284, 0x1f290, 1315 0x1f2c0, 0x1f2c0, 1316 0x1f2e0, 0x1f2e0, 1317 0x1f300, 0x1f384, 1318 0x1f3c0, 0x1f3c8, 1319 0x1f408, 0x1f40c, 1320 0x1f440, 0x1f444, 1321 0x1f44c, 0x1f44c, 1322 0x1f684, 0x1f690, 1323 0x1f6c0, 0x1f6c0, 1324 0x1f6e0, 0x1f6e0, 1325 0x1f700, 0x1f784, 1326 0x1f7c0, 0x1f7c8, 1327 0x1f808, 0x1f80c, 1328 0x1f840, 0x1f844, 1329 0x1f84c, 0x1f84c, 1330 0x1fa84, 0x1fa90, 1331 0x1fac0, 0x1fac0, 1332 0x1fae0, 0x1fae0, 1333 0x1fb00, 0x1fb84, 1334 0x1fbc0, 0x1fbc8, 1335 0x1fc08, 0x1fc0c, 1336 0x1fc40, 0x1fc44, 1337 0x1fc4c, 0x1fc4c, 1338 0x1fe84, 0x1fe90, 1339 0x1fec0, 0x1fec0, 1340 0x1fee0, 0x1fee0, 1341 0x1ff00, 0x1ff84, 1342 0x1ffc0, 0x1ffc8, 1343 0x30000, 0x30030, 1344 0x30038, 0x30038, 1345 0x30040, 0x30040, 1346 0x30100, 0x30144, 1347 0x30190, 0x301a0, 1348 0x301a8, 0x301b8, 1349 0x301c4, 0x301c8, 1350 0x301d0, 0x301d0, 1351 0x30200, 0x30318, 1352 0x30400, 0x304b4, 1353 0x304c0, 0x3052c, 1354 0x30540, 0x3061c, 1355 0x30800, 0x30828, 1356 0x30834, 0x30834, 1357 0x308c0, 0x30908, 1358 0x30910, 0x309ac, 1359 0x30a00, 0x30a14, 1360 0x30a1c, 0x30a2c, 1361 0x30a44, 0x30a50, 1362 0x30a74, 0x30a74, 1363 0x30a7c, 0x30afc, 1364 0x30b08, 0x30c24, 1365 0x30d00, 0x30d00, 1366 0x30d08, 0x30d14, 1367 0x30d1c, 0x30d20, 1368 0x30d3c, 0x30d3c, 1369 0x30d48, 0x30d50, 1370 0x31200, 0x3120c, 1371 0x31220, 0x31220, 1372 0x31240, 0x31240, 1373 0x31600, 0x3160c, 1374 0x31a00, 0x31a1c, 1375 0x31e00, 0x31e20, 1376 0x31e38, 0x31e3c, 1377 0x31e80, 0x31e80, 1378 0x31e88, 0x31ea8, 1379 0x31eb0, 0x31eb4, 1380 0x31ec8, 0x31ed4, 1381 0x31fb8, 0x32004, 1382 0x32200, 0x32200, 1383 0x32208, 0x32240, 1384 0x32248, 0x32280, 1385 0x32288, 0x322c0, 1386 0x322c8, 0x322fc, 1387 0x32600, 0x32630, 1388 0x32a00, 0x32abc, 1389 0x32b00, 0x32b10, 1390 0x32b20, 0x32b30, 1391 0x32b40, 0x32b50, 1392 0x32b60, 0x32b70, 1393 0x33000, 0x33028, 1394 0x33030, 0x33048, 1395 0x33060, 0x33068, 1396 0x33070, 0x3309c, 1397 0x330f0, 0x33128, 1398 0x33130, 0x33148, 1399 0x33160, 0x33168, 1400 0x33170, 0x3319c, 1401 0x331f0, 0x33238, 1402 0x33240, 0x33240, 1403 0x33248, 0x33250, 1404 0x3325c, 0x33264, 1405 0x33270, 0x332b8, 1406 0x332c0, 0x332e4, 1407 0x332f8, 0x33338, 1408 0x33340, 0x33340, 1409 0x33348, 0x33350, 1410 0x3335c, 0x33364, 1411 0x33370, 0x333b8, 1412 0x333c0, 0x333e4, 1413 0x333f8, 0x33428, 1414 0x33430, 0x33448, 1415 0x33460, 0x33468, 1416 0x33470, 0x3349c, 1417 0x334f0, 0x33528, 1418 0x33530, 0x33548, 1419 0x33560, 0x33568, 1420 0x33570, 0x3359c, 1421 0x335f0, 0x33638, 1422 0x33640, 0x33640, 1423 0x33648, 0x33650, 1424 0x3365c, 0x33664, 1425 0x33670, 0x336b8, 1426 0x336c0, 0x336e4, 1427 0x336f8, 0x33738, 1428 0x33740, 0x33740, 1429 0x33748, 0x33750, 1430 0x3375c, 0x33764, 1431 0x33770, 0x337b8, 1432 0x337c0, 0x337e4, 1433 0x337f8, 0x337fc, 1434 0x33814, 0x33814, 1435 0x3382c, 0x3382c, 1436 0x33880, 0x3388c, 1437 0x338e8, 0x338ec, 1438 0x33900, 0x33928, 1439 0x33930, 0x33948, 1440 0x33960, 0x33968, 1441 0x33970, 0x3399c, 1442 0x339f0, 0x33a38, 1443 0x33a40, 0x33a40, 1444 0x33a48, 0x33a50, 1445 0x33a5c, 0x33a64, 1446 0x33a70, 0x33ab8, 1447 0x33ac0, 0x33ae4, 1448 0x33af8, 0x33b10, 1449 0x33b28, 0x33b28, 1450 0x33b3c, 0x33b50, 1451 0x33bf0, 0x33c10, 1452 0x33c28, 0x33c28, 1453 0x33c3c, 0x33c50, 1454 0x33cf0, 0x33cfc, 1455 0x34000, 0x34030, 1456 0x34038, 0x34038, 1457 0x34040, 0x34040, 1458 0x34100, 0x34144, 1459 0x34190, 0x341a0, 1460 0x341a8, 0x341b8, 1461 0x341c4, 0x341c8, 1462 0x341d0, 0x341d0, 1463 0x34200, 0x34318, 1464 0x34400, 0x344b4, 1465 0x344c0, 0x3452c, 1466 0x34540, 0x3461c, 1467 0x34800, 0x34828, 1468 0x34834, 0x34834, 1469 0x348c0, 0x34908, 1470 0x34910, 0x349ac, 1471 0x34a00, 0x34a14, 1472 0x34a1c, 0x34a2c, 1473 0x34a44, 0x34a50, 1474 0x34a74, 0x34a74, 1475 0x34a7c, 0x34afc, 1476 0x34b08, 0x34c24, 1477 0x34d00, 0x34d00, 1478 0x34d08, 0x34d14, 1479 0x34d1c, 0x34d20, 1480 0x34d3c, 0x34d3c, 1481 0x34d48, 0x34d50, 1482 0x35200, 0x3520c, 1483 0x35220, 0x35220, 1484 0x35240, 0x35240, 1485 0x35600, 0x3560c, 1486 0x35a00, 0x35a1c, 1487 0x35e00, 0x35e20, 1488 0x35e38, 0x35e3c, 1489 0x35e80, 0x35e80, 1490 0x35e88, 0x35ea8, 1491 0x35eb0, 0x35eb4, 1492 0x35ec8, 0x35ed4, 1493 0x35fb8, 0x36004, 1494 0x36200, 0x36200, 1495 0x36208, 0x36240, 1496 0x36248, 0x36280, 1497 0x36288, 0x362c0, 1498 0x362c8, 0x362fc, 1499 0x36600, 0x36630, 1500 0x36a00, 0x36abc, 1501 0x36b00, 0x36b10, 1502 0x36b20, 0x36b30, 1503 0x36b40, 0x36b50, 1504 0x36b60, 0x36b70, 1505 0x37000, 0x37028, 1506 0x37030, 0x37048, 1507 0x37060, 0x37068, 1508 0x37070, 0x3709c, 1509 0x370f0, 0x37128, 1510 0x37130, 0x37148, 1511 0x37160, 0x37168, 1512 0x37170, 0x3719c, 1513 0x371f0, 0x37238, 1514 0x37240, 0x37240, 1515 0x37248, 0x37250, 1516 0x3725c, 0x37264, 1517 0x37270, 0x372b8, 1518 0x372c0, 0x372e4, 1519 0x372f8, 0x37338, 1520 0x37340, 0x37340, 1521 0x37348, 0x37350, 1522 0x3735c, 0x37364, 1523 0x37370, 0x373b8, 1524 0x373c0, 0x373e4, 1525 0x373f8, 0x37428, 1526 0x37430, 0x37448, 1527 0x37460, 0x37468, 1528 0x37470, 0x3749c, 1529 0x374f0, 0x37528, 1530 0x37530, 0x37548, 1531 0x37560, 0x37568, 1532 0x37570, 0x3759c, 1533 0x375f0, 0x37638, 1534 0x37640, 0x37640, 1535 0x37648, 0x37650, 1536 0x3765c, 0x37664, 1537 0x37670, 0x376b8, 1538 0x376c0, 0x376e4, 1539 0x376f8, 0x37738, 1540 0x37740, 0x37740, 1541 0x37748, 0x37750, 1542 0x3775c, 0x37764, 1543 0x37770, 0x377b8, 1544 0x377c0, 0x377e4, 1545 0x377f8, 0x377fc, 1546 0x37814, 0x37814, 1547 0x3782c, 0x3782c, 1548 0x37880, 0x3788c, 1549 0x378e8, 0x378ec, 1550 0x37900, 0x37928, 1551 0x37930, 0x37948, 1552 0x37960, 0x37968, 1553 0x37970, 0x3799c, 1554 0x379f0, 0x37a38, 1555 0x37a40, 0x37a40, 1556 0x37a48, 0x37a50, 1557 0x37a5c, 0x37a64, 1558 0x37a70, 0x37ab8, 1559 0x37ac0, 0x37ae4, 1560 0x37af8, 0x37b10, 1561 0x37b28, 0x37b28, 1562 0x37b3c, 0x37b50, 1563 0x37bf0, 0x37c10, 1564 0x37c28, 0x37c28, 1565 0x37c3c, 0x37c50, 1566 0x37cf0, 0x37cfc, 1567 0x38000, 0x38030, 1568 0x38038, 0x38038, 1569 0x38040, 0x38040, 1570 0x38100, 0x38144, 1571 0x38190, 0x381a0, 1572 0x381a8, 0x381b8, 1573 0x381c4, 0x381c8, 1574 0x381d0, 0x381d0, 1575 0x38200, 0x38318, 1576 0x38400, 0x384b4, 1577 0x384c0, 0x3852c, 1578 0x38540, 0x3861c, 1579 0x38800, 0x38828, 1580 0x38834, 0x38834, 1581 0x388c0, 0x38908, 1582 0x38910, 0x389ac, 1583 0x38a00, 0x38a14, 1584 0x38a1c, 0x38a2c, 1585 0x38a44, 0x38a50, 1586 0x38a74, 0x38a74, 1587 0x38a7c, 0x38afc, 1588 0x38b08, 0x38c24, 1589 0x38d00, 0x38d00, 1590 0x38d08, 0x38d14, 1591 0x38d1c, 0x38d20, 1592 0x38d3c, 0x38d3c, 1593 0x38d48, 0x38d50, 1594 0x39200, 0x3920c, 1595 0x39220, 0x39220, 1596 0x39240, 0x39240, 1597 0x39600, 0x3960c, 1598 0x39a00, 0x39a1c, 1599 0x39e00, 0x39e20, 1600 0x39e38, 0x39e3c, 1601 0x39e80, 0x39e80, 1602 0x39e88, 0x39ea8, 1603 0x39eb0, 0x39eb4, 1604 0x39ec8, 0x39ed4, 1605 0x39fb8, 0x3a004, 1606 0x3a200, 0x3a200, 1607 0x3a208, 0x3a240, 1608 0x3a248, 0x3a280, 1609 0x3a288, 0x3a2c0, 1610 0x3a2c8, 0x3a2fc, 1611 0x3a600, 0x3a630, 1612 0x3aa00, 0x3aabc, 1613 0x3ab00, 0x3ab10, 1614 0x3ab20, 0x3ab30, 1615 0x3ab40, 0x3ab50, 1616 0x3ab60, 0x3ab70, 1617 0x3b000, 0x3b028, 1618 0x3b030, 0x3b048, 1619 0x3b060, 0x3b068, 1620 0x3b070, 0x3b09c, 1621 0x3b0f0, 0x3b128, 1622 0x3b130, 0x3b148, 1623 0x3b160, 0x3b168, 1624 0x3b170, 0x3b19c, 1625 0x3b1f0, 0x3b238, 1626 0x3b240, 0x3b240, 1627 0x3b248, 0x3b250, 1628 0x3b25c, 0x3b264, 1629 0x3b270, 0x3b2b8, 1630 0x3b2c0, 0x3b2e4, 1631 0x3b2f8, 0x3b338, 1632 0x3b340, 0x3b340, 1633 0x3b348, 0x3b350, 1634 0x3b35c, 0x3b364, 1635 0x3b370, 0x3b3b8, 1636 0x3b3c0, 0x3b3e4, 1637 0x3b3f8, 0x3b428, 1638 0x3b430, 0x3b448, 1639 0x3b460, 0x3b468, 1640 0x3b470, 0x3b49c, 1641 0x3b4f0, 0x3b528, 1642 0x3b530, 0x3b548, 1643 0x3b560, 0x3b568, 1644 0x3b570, 0x3b59c, 1645 0x3b5f0, 0x3b638, 1646 0x3b640, 0x3b640, 1647 0x3b648, 0x3b650, 1648 0x3b65c, 0x3b664, 1649 0x3b670, 0x3b6b8, 1650 0x3b6c0, 0x3b6e4, 1651 0x3b6f8, 0x3b738, 1652 0x3b740, 0x3b740, 1653 0x3b748, 0x3b750, 1654 0x3b75c, 0x3b764, 1655 0x3b770, 0x3b7b8, 1656 0x3b7c0, 0x3b7e4, 1657 0x3b7f8, 0x3b7fc, 1658 0x3b814, 0x3b814, 1659 0x3b82c, 0x3b82c, 1660 0x3b880, 0x3b88c, 1661 0x3b8e8, 0x3b8ec, 1662 0x3b900, 0x3b928, 1663 0x3b930, 0x3b948, 1664 0x3b960, 0x3b968, 1665 0x3b970, 0x3b99c, 1666 0x3b9f0, 0x3ba38, 1667 0x3ba40, 0x3ba40, 1668 0x3ba48, 0x3ba50, 1669 0x3ba5c, 0x3ba64, 1670 0x3ba70, 0x3bab8, 1671 0x3bac0, 0x3bae4, 1672 0x3baf8, 0x3bb10, 1673 0x3bb28, 0x3bb28, 1674 0x3bb3c, 0x3bb50, 1675 0x3bbf0, 0x3bc10, 1676 0x3bc28, 0x3bc28, 1677 0x3bc3c, 0x3bc50, 1678 0x3bcf0, 0x3bcfc, 1679 0x3c000, 0x3c030, 1680 0x3c038, 0x3c038, 1681 0x3c040, 0x3c040, 1682 0x3c100, 0x3c144, 1683 0x3c190, 0x3c1a0, 1684 0x3c1a8, 0x3c1b8, 1685 0x3c1c4, 0x3c1c8, 1686 0x3c1d0, 0x3c1d0, 1687 0x3c200, 0x3c318, 1688 0x3c400, 0x3c4b4, 1689 0x3c4c0, 0x3c52c, 1690 0x3c540, 0x3c61c, 1691 0x3c800, 0x3c828, 1692 0x3c834, 0x3c834, 1693 0x3c8c0, 0x3c908, 1694 0x3c910, 0x3c9ac, 1695 0x3ca00, 0x3ca14, 1696 0x3ca1c, 0x3ca2c, 1697 0x3ca44, 0x3ca50, 1698 0x3ca74, 0x3ca74, 1699 0x3ca7c, 0x3cafc, 1700 0x3cb08, 0x3cc24, 1701 0x3cd00, 0x3cd00, 1702 0x3cd08, 0x3cd14, 1703 0x3cd1c, 0x3cd20, 1704 0x3cd3c, 0x3cd3c, 1705 0x3cd48, 0x3cd50, 1706 0x3d200, 0x3d20c, 1707 0x3d220, 0x3d220, 1708 0x3d240, 0x3d240, 1709 0x3d600, 0x3d60c, 1710 0x3da00, 0x3da1c, 1711 0x3de00, 0x3de20, 1712 0x3de38, 0x3de3c, 1713 0x3de80, 0x3de80, 1714 0x3de88, 0x3dea8, 1715 0x3deb0, 0x3deb4, 1716 0x3dec8, 0x3ded4, 1717 0x3dfb8, 0x3e004, 1718 0x3e200, 0x3e200, 1719 0x3e208, 0x3e240, 1720 0x3e248, 0x3e280, 1721 0x3e288, 0x3e2c0, 1722 0x3e2c8, 0x3e2fc, 1723 0x3e600, 0x3e630, 1724 0x3ea00, 0x3eabc, 1725 0x3eb00, 0x3eb10, 1726 0x3eb20, 0x3eb30, 1727 0x3eb40, 0x3eb50, 1728 0x3eb60, 0x3eb70, 1729 0x3f000, 0x3f028, 1730 0x3f030, 0x3f048, 1731 0x3f060, 0x3f068, 1732 0x3f070, 0x3f09c, 1733 0x3f0f0, 0x3f128, 1734 0x3f130, 0x3f148, 1735 0x3f160, 0x3f168, 1736 0x3f170, 0x3f19c, 1737 0x3f1f0, 0x3f238, 1738 0x3f240, 0x3f240, 1739 0x3f248, 0x3f250, 1740 0x3f25c, 0x3f264, 1741 0x3f270, 0x3f2b8, 1742 0x3f2c0, 0x3f2e4, 1743 0x3f2f8, 0x3f338, 1744 0x3f340, 0x3f340, 1745 0x3f348, 0x3f350, 1746 0x3f35c, 0x3f364, 1747 0x3f370, 0x3f3b8, 1748 0x3f3c0, 0x3f3e4, 1749 0x3f3f8, 0x3f428, 1750 0x3f430, 0x3f448, 1751 0x3f460, 0x3f468, 1752 0x3f470, 0x3f49c, 1753 0x3f4f0, 0x3f528, 1754 0x3f530, 0x3f548, 1755 0x3f560, 0x3f568, 1756 0x3f570, 0x3f59c, 1757 0x3f5f0, 0x3f638, 1758 0x3f640, 0x3f640, 1759 0x3f648, 0x3f650, 1760 0x3f65c, 0x3f664, 1761 0x3f670, 0x3f6b8, 1762 0x3f6c0, 0x3f6e4, 1763 0x3f6f8, 0x3f738, 1764 0x3f740, 0x3f740, 1765 0x3f748, 0x3f750, 1766 0x3f75c, 0x3f764, 1767 0x3f770, 0x3f7b8, 1768 0x3f7c0, 0x3f7e4, 1769 0x3f7f8, 0x3f7fc, 1770 0x3f814, 0x3f814, 1771 0x3f82c, 0x3f82c, 1772 0x3f880, 0x3f88c, 1773 0x3f8e8, 0x3f8ec, 1774 0x3f900, 0x3f928, 1775 0x3f930, 0x3f948, 1776 0x3f960, 0x3f968, 1777 0x3f970, 0x3f99c, 1778 0x3f9f0, 0x3fa38, 1779 0x3fa40, 0x3fa40, 1780 0x3fa48, 0x3fa50, 1781 0x3fa5c, 0x3fa64, 1782 0x3fa70, 0x3fab8, 1783 0x3fac0, 0x3fae4, 1784 0x3faf8, 0x3fb10, 1785 0x3fb28, 0x3fb28, 1786 0x3fb3c, 0x3fb50, 1787 0x3fbf0, 0x3fc10, 1788 0x3fc28, 0x3fc28, 1789 0x3fc3c, 0x3fc50, 1790 0x3fcf0, 0x3fcfc, 1791 0x40000, 0x4000c, 1792 0x40040, 0x40050, 1793 0x40060, 0x40068, 1794 0x4007c, 0x4008c, 1795 0x40094, 0x400b0, 1796 0x400c0, 0x40144, 1797 0x40180, 0x4018c, 1798 0x40200, 0x40254, 1799 0x40260, 0x40264, 1800 0x40270, 0x40288, 1801 0x40290, 0x40298, 1802 0x402ac, 0x402c8, 1803 0x402d0, 0x402e0, 1804 0x402f0, 0x402f0, 1805 0x40300, 0x4033c, 1806 0x403f8, 0x403fc, 1807 0x41304, 0x413c4, 1808 0x41400, 0x4140c, 1809 0x41414, 0x4141c, 1810 0x41480, 0x414d0, 1811 0x44000, 0x44054, 1812 0x4405c, 0x44078, 1813 0x440c0, 0x44174, 1814 0x44180, 0x441ac, 1815 0x441b4, 0x441b8, 1816 0x441c0, 0x44254, 1817 0x4425c, 0x44278, 1818 0x442c0, 0x44374, 1819 0x44380, 0x443ac, 1820 0x443b4, 0x443b8, 1821 0x443c0, 0x44454, 1822 0x4445c, 0x44478, 1823 0x444c0, 0x44574, 1824 0x44580, 0x445ac, 1825 0x445b4, 0x445b8, 1826 0x445c0, 0x44654, 1827 0x4465c, 0x44678, 1828 0x446c0, 0x44774, 1829 0x44780, 0x447ac, 1830 0x447b4, 0x447b8, 1831 0x447c0, 0x44854, 1832 0x4485c, 0x44878, 1833 0x448c0, 0x44974, 1834 0x44980, 0x449ac, 1835 0x449b4, 0x449b8, 1836 0x449c0, 0x449fc, 1837 0x45000, 0x45004, 1838 0x45010, 0x45030, 1839 0x45040, 0x45060, 1840 0x45068, 0x45068, 1841 0x45080, 0x45084, 1842 0x450a0, 0x450b0, 1843 0x45200, 0x45204, 1844 0x45210, 0x45230, 1845 0x45240, 0x45260, 1846 0x45268, 0x45268, 1847 0x45280, 0x45284, 1848 0x452a0, 0x452b0, 1849 0x460c0, 0x460e4, 1850 0x47000, 0x4703c, 1851 0x47044, 0x4708c, 1852 0x47200, 0x47250, 1853 0x47400, 0x47408, 1854 0x47414, 0x47420, 1855 0x47600, 0x47618, 1856 0x47800, 0x47814, 1857 0x48000, 0x4800c, 1858 0x48040, 0x48050, 1859 0x48060, 0x48068, 1860 0x4807c, 0x4808c, 1861 0x48094, 0x480b0, 1862 0x480c0, 0x48144, 1863 0x48180, 0x4818c, 1864 0x48200, 0x48254, 1865 0x48260, 0x48264, 1866 0x48270, 0x48288, 1867 0x48290, 0x48298, 1868 0x482ac, 0x482c8, 1869 0x482d0, 0x482e0, 1870 0x482f0, 0x482f0, 1871 0x48300, 0x4833c, 1872 0x483f8, 0x483fc, 1873 0x49304, 0x493c4, 1874 0x49400, 0x4940c, 1875 0x49414, 0x4941c, 1876 0x49480, 0x494d0, 1877 0x4c000, 0x4c054, 1878 0x4c05c, 0x4c078, 1879 0x4c0c0, 0x4c174, 1880 0x4c180, 0x4c1ac, 1881 0x4c1b4, 0x4c1b8, 1882 0x4c1c0, 0x4c254, 1883 0x4c25c, 0x4c278, 1884 0x4c2c0, 0x4c374, 1885 0x4c380, 0x4c3ac, 1886 0x4c3b4, 0x4c3b8, 1887 0x4c3c0, 0x4c454, 1888 0x4c45c, 0x4c478, 1889 0x4c4c0, 0x4c574, 1890 0x4c580, 0x4c5ac, 1891 0x4c5b4, 0x4c5b8, 1892 0x4c5c0, 0x4c654, 1893 0x4c65c, 0x4c678, 1894 0x4c6c0, 0x4c774, 1895 0x4c780, 0x4c7ac, 1896 0x4c7b4, 0x4c7b8, 1897 0x4c7c0, 0x4c854, 1898 0x4c85c, 0x4c878, 1899 0x4c8c0, 0x4c974, 1900 0x4c980, 0x4c9ac, 1901 0x4c9b4, 0x4c9b8, 1902 0x4c9c0, 0x4c9fc, 1903 0x4d000, 0x4d004, 1904 0x4d010, 0x4d030, 1905 0x4d040, 0x4d060, 1906 0x4d068, 0x4d068, 1907 0x4d080, 0x4d084, 1908 0x4d0a0, 0x4d0b0, 1909 0x4d200, 0x4d204, 1910 0x4d210, 0x4d230, 1911 0x4d240, 0x4d260, 1912 0x4d268, 0x4d268, 1913 0x4d280, 0x4d284, 1914 0x4d2a0, 0x4d2b0, 1915 0x4e0c0, 0x4e0e4, 1916 0x4f000, 0x4f03c, 1917 0x4f044, 0x4f08c, 1918 0x4f200, 0x4f250, 1919 0x4f400, 0x4f408, 1920 0x4f414, 0x4f420, 1921 0x4f600, 0x4f618, 1922 0x4f800, 0x4f814, 1923 0x50000, 0x50084, 1924 0x50090, 0x500cc, 1925 0x50400, 0x50400, 1926 0x50800, 0x50884, 1927 0x50890, 0x508cc, 1928 0x50c00, 0x50c00, 1929 0x51000, 0x5101c, 1930 0x51300, 0x51308, 1931 }; 1932 1933 static const unsigned int t6_reg_ranges[] = { 1934 0x1008, 0x101c, 1935 0x1024, 0x10a8, 1936 0x10b4, 0x10f8, 1937 0x1100, 0x1114, 1938 0x111c, 0x112c, 1939 0x1138, 0x113c, 1940 0x1144, 0x114c, 1941 0x1180, 0x1184, 1942 0x1190, 0x1194, 1943 0x11a0, 0x11a4, 1944 0x11b0, 0x11b4, 1945 0x11fc, 0x1254, 1946 0x1280, 0x133c, 1947 0x1800, 0x18fc, 1948 0x3000, 0x302c, 1949 0x3060, 0x30b0, 1950 0x30b8, 0x30d8, 1951 0x30e0, 0x30fc, 1952 0x3140, 0x357c, 1953 0x35a8, 0x35cc, 1954 0x35ec, 0x35ec, 1955 0x3600, 0x5624, 1956 0x56cc, 0x56ec, 1957 0x56f4, 0x5720, 1958 0x5728, 0x575c, 1959 0x580c, 0x5814, 1960 0x5890, 0x589c, 1961 0x58a4, 0x58ac, 1962 0x58b8, 0x58bc, 1963 0x5940, 0x595c, 1964 0x5980, 0x598c, 1965 0x59b0, 0x59c8, 1966 0x59d0, 0x59dc, 1967 0x59fc, 0x5a18, 1968 0x5a60, 0x5a6c, 1969 0x5a80, 0x5a8c, 1970 0x5a94, 0x5a9c, 1971 0x5b94, 0x5bfc, 1972 0x5c10, 0x5e48, 1973 0x5e50, 0x5e94, 1974 0x5ea0, 0x5eb0, 1975 0x5ec0, 0x5ec0, 1976 0x5ec8, 0x5ecc, 1977 0x6000, 0x6020, 1978 0x6028, 0x6040, 1979 0x6058, 0x609c, 1980 0x60a8, 0x619c, 1981 0x7700, 0x7798, 1982 0x77c0, 0x7880, 1983 0x78cc, 0x78fc, 1984 0x7b00, 0x7b58, 1985 0x7b60, 0x7b84, 1986 0x7b8c, 0x7c54, 1987 0x7d00, 0x7d38, 1988 0x7d40, 0x7d84, 1989 0x7d8c, 0x7ddc, 1990 0x7de4, 0x7e04, 1991 0x7e10, 0x7e1c, 1992 0x7e24, 0x7e38, 1993 0x7e40, 0x7e44, 1994 0x7e4c, 0x7e78, 1995 0x7e80, 0x7edc, 1996 0x7ee8, 0x7efc, 1997 0x8dc0, 0x8de4, 1998 0x8df8, 0x8e04, 1999 0x8e10, 0x8e84, 2000 0x8ea0, 0x8f88, 2001 0x8fb8, 0x9058, 2002 0x9060, 0x9060, 2003 0x9068, 0x90f8, 2004 0x9100, 0x9124, 2005 0x9400, 0x9470, 2006 0x9600, 0x9600, 2007 0x9608, 0x9638, 2008 0x9640, 0x9704, 2009 0x9710, 0x971c, 2010 0x9800, 0x9808, 2011 0x9820, 0x983c, 2012 0x9850, 0x9864, 2013 0x9c00, 0x9c6c, 2014 0x9c80, 0x9cec, 2015 0x9d00, 0x9d6c, 2016 0x9d80, 0x9dec, 2017 0x9e00, 0x9e6c, 2018 0x9e80, 0x9eec, 2019 0x9f00, 0x9f6c, 2020 0x9f80, 0xa020, 2021 0xd004, 0xd03c, 2022 0xd100, 0xd118, 2023 0xd200, 0xd214, 2024 0xd220, 0xd234, 2025 0xd240, 0xd254, 2026 0xd260, 0xd274, 2027 0xd280, 0xd294, 2028 0xd2a0, 0xd2b4, 2029 0xd2c0, 0xd2d4, 2030 0xd2e0, 0xd2f4, 2031 0xd300, 0xd31c, 2032 0xdfc0, 0xdfe0, 2033 0xe000, 0xf008, 2034 0x11000, 0x11014, 2035 0x11048, 0x1106c, 2036 0x11074, 0x11088, 2037 0x11098, 0x11120, 2038 0x1112c, 0x1117c, 2039 0x11190, 0x112e0, 2040 0x11300, 0x1130c, 2041 0x12000, 0x1206c, 2042 0x19040, 0x1906c, 2043 0x19078, 0x19080, 2044 0x1908c, 0x190e8, 2045 0x190f0, 0x190f8, 2046 0x19100, 0x19110, 2047 0x19120, 0x19124, 2048 0x19150, 0x19194, 2049 0x1919c, 0x191b0, 2050 0x191d0, 0x191e8, 2051 0x19238, 0x192b0, 2052 0x192bc, 0x192bc, 2053 0x19348, 0x1934c, 2054 0x193f8, 0x19418, 2055 0x19420, 0x19428, 2056 0x19430, 0x19444, 2057 0x1944c, 0x1946c, 2058 0x19474, 0x19474, 2059 0x19490, 0x194cc, 2060 0x194f0, 0x194f8, 2061 0x19c00, 0x19c48, 2062 0x19c50, 0x19c80, 2063 0x19c94, 0x19c98, 2064 0x19ca0, 0x19cbc, 2065 0x19ce4, 0x19ce4, 2066 0x19cf0, 0x19cf8, 2067 0x19d00, 0x19d28, 2068 0x19d50, 0x19d78, 2069 0x19d94, 0x19d98, 2070 0x19da0, 0x19dc8, 2071 0x19df0, 0x19e10, 2072 0x19e50, 0x19e6c, 2073 0x19ea0, 0x19ebc, 2074 0x19ec4, 0x19ef4, 2075 0x19f04, 0x19f2c, 2076 0x19f34, 0x19f34, 2077 0x19f40, 0x19f50, 2078 0x19f90, 0x19fac, 2079 0x19fc4, 0x19fc8, 2080 0x19fd0, 0x19fe4, 2081 0x1a000, 0x1a004, 2082 0x1a010, 0x1a06c, 2083 0x1a0b0, 0x1a0e4, 2084 0x1a0ec, 0x1a0f8, 2085 0x1a100, 0x1a108, 2086 0x1a114, 0x1a120, 2087 0x1a128, 0x1a130, 2088 0x1a138, 0x1a138, 2089 0x1a190, 0x1a1c4, 2090 0x1a1fc, 0x1a1fc, 2091 0x1e008, 0x1e00c, 2092 0x1e040, 0x1e044, 2093 0x1e04c, 0x1e04c, 2094 0x1e284, 0x1e290, 2095 0x1e2c0, 0x1e2c0, 2096 0x1e2e0, 0x1e2e0, 2097 0x1e300, 0x1e384, 2098 0x1e3c0, 0x1e3c8, 2099 0x1e408, 0x1e40c, 2100 0x1e440, 0x1e444, 2101 0x1e44c, 0x1e44c, 2102 0x1e684, 0x1e690, 2103 0x1e6c0, 0x1e6c0, 2104 0x1e6e0, 0x1e6e0, 2105 0x1e700, 0x1e784, 2106 0x1e7c0, 0x1e7c8, 2107 0x1e808, 0x1e80c, 2108 0x1e840, 0x1e844, 2109 0x1e84c, 0x1e84c, 2110 0x1ea84, 0x1ea90, 2111 0x1eac0, 0x1eac0, 2112 0x1eae0, 0x1eae0, 2113 0x1eb00, 0x1eb84, 2114 0x1ebc0, 0x1ebc8, 2115 0x1ec08, 0x1ec0c, 2116 0x1ec40, 0x1ec44, 2117 0x1ec4c, 0x1ec4c, 2118 0x1ee84, 0x1ee90, 2119 0x1eec0, 0x1eec0, 2120 0x1eee0, 0x1eee0, 2121 0x1ef00, 0x1ef84, 2122 0x1efc0, 0x1efc8, 2123 0x1f008, 0x1f00c, 2124 0x1f040, 0x1f044, 2125 0x1f04c, 0x1f04c, 2126 0x1f284, 0x1f290, 2127 0x1f2c0, 0x1f2c0, 2128 0x1f2e0, 0x1f2e0, 2129 0x1f300, 0x1f384, 2130 0x1f3c0, 0x1f3c8, 2131 0x1f408, 0x1f40c, 2132 0x1f440, 0x1f444, 2133 0x1f44c, 0x1f44c, 2134 0x1f684, 0x1f690, 2135 0x1f6c0, 0x1f6c0, 2136 0x1f6e0, 0x1f6e0, 2137 0x1f700, 0x1f784, 2138 0x1f7c0, 0x1f7c8, 2139 0x1f808, 0x1f80c, 2140 0x1f840, 0x1f844, 2141 0x1f84c, 0x1f84c, 2142 0x1fa84, 0x1fa90, 2143 0x1fac0, 0x1fac0, 2144 0x1fae0, 0x1fae0, 2145 0x1fb00, 0x1fb84, 2146 0x1fbc0, 0x1fbc8, 2147 0x1fc08, 0x1fc0c, 2148 0x1fc40, 0x1fc44, 2149 0x1fc4c, 0x1fc4c, 2150 0x1fe84, 0x1fe90, 2151 0x1fec0, 0x1fec0, 2152 0x1fee0, 0x1fee0, 2153 0x1ff00, 0x1ff84, 2154 0x1ffc0, 0x1ffc8, 2155 0x30000, 0x30030, 2156 0x30038, 0x30038, 2157 0x30040, 0x30040, 2158 0x30048, 0x30048, 2159 0x30050, 0x30050, 2160 0x3005c, 0x30060, 2161 0x30068, 0x30068, 2162 0x30070, 0x30070, 2163 0x30100, 0x30168, 2164 0x30190, 0x301a0, 2165 0x301a8, 0x301b8, 2166 0x301c4, 0x301c8, 2167 0x301d0, 0x301d0, 2168 0x30200, 0x30320, 2169 0x30400, 0x304b4, 2170 0x304c0, 0x3052c, 2171 0x30540, 0x3061c, 2172 0x30800, 0x308a0, 2173 0x308c0, 0x30908, 2174 0x30910, 0x309b8, 2175 0x30a00, 0x30a04, 2176 0x30a0c, 0x30a14, 2177 0x30a1c, 0x30a2c, 2178 0x30a44, 0x30a50, 2179 0x30a74, 0x30a74, 2180 0x30a7c, 0x30afc, 2181 0x30b08, 0x30c24, 2182 0x30d00, 0x30d14, 2183 0x30d1c, 0x30d3c, 2184 0x30d44, 0x30d4c, 2185 0x30d54, 0x30d74, 2186 0x30d7c, 0x30d7c, 2187 0x30de0, 0x30de0, 2188 0x30e00, 0x30ed4, 2189 0x30f00, 0x30fa4, 2190 0x30fc0, 0x30fc4, 2191 0x31000, 0x31004, 2192 0x31080, 0x310fc, 2193 0x31208, 0x31220, 2194 0x3123c, 0x31254, 2195 0x31300, 0x31300, 2196 0x31308, 0x3131c, 2197 0x31338, 0x3133c, 2198 0x31380, 0x31380, 2199 0x31388, 0x313a8, 2200 0x313b4, 0x313b4, 2201 0x31400, 0x31420, 2202 0x31438, 0x3143c, 2203 0x31480, 0x31480, 2204 0x314a8, 0x314a8, 2205 0x314b0, 0x314b4, 2206 0x314c8, 0x314d4, 2207 0x31a40, 0x31a4c, 2208 0x31af0, 0x31b20, 2209 0x31b38, 0x31b3c, 2210 0x31b80, 0x31b80, 2211 0x31ba8, 0x31ba8, 2212 0x31bb0, 0x31bb4, 2213 0x31bc8, 0x31bd4, 2214 0x32140, 0x3218c, 2215 0x321f0, 0x321f4, 2216 0x32200, 0x32200, 2217 0x32218, 0x32218, 2218 0x32400, 0x32400, 2219 0x32408, 0x3241c, 2220 0x32618, 0x32620, 2221 0x32664, 0x32664, 2222 0x326a8, 0x326a8, 2223 0x326ec, 0x326ec, 2224 0x32a00, 0x32abc, 2225 0x32b00, 0x32b38, 2226 0x32b40, 0x32b58, 2227 0x32b60, 0x32b78, 2228 0x32c00, 0x32c00, 2229 0x32c08, 0x32c3c, 2230 0x32e00, 0x32e2c, 2231 0x32f00, 0x32f2c, 2232 0x33000, 0x3302c, 2233 0x33034, 0x33050, 2234 0x33058, 0x33058, 2235 0x33060, 0x3308c, 2236 0x3309c, 0x330ac, 2237 0x330c0, 0x330c0, 2238 0x330c8, 0x330d0, 2239 0x330d8, 0x330e0, 2240 0x330ec, 0x3312c, 2241 0x33134, 0x33150, 2242 0x33158, 0x33158, 2243 0x33160, 0x3318c, 2244 0x3319c, 0x331ac, 2245 0x331c0, 0x331c0, 2246 0x331c8, 0x331d0, 2247 0x331d8, 0x331e0, 2248 0x331ec, 0x33290, 2249 0x33298, 0x332c4, 2250 0x332e4, 0x33390, 2251 0x33398, 0x333c4, 2252 0x333e4, 0x3342c, 2253 0x33434, 0x33450, 2254 0x33458, 0x33458, 2255 0x33460, 0x3348c, 2256 0x3349c, 0x334ac, 2257 0x334c0, 0x334c0, 2258 0x334c8, 0x334d0, 2259 0x334d8, 0x334e0, 2260 0x334ec, 0x3352c, 2261 0x33534, 0x33550, 2262 0x33558, 0x33558, 2263 0x33560, 0x3358c, 2264 0x3359c, 0x335ac, 2265 0x335c0, 0x335c0, 2266 0x335c8, 0x335d0, 2267 0x335d8, 0x335e0, 2268 0x335ec, 0x33690, 2269 0x33698, 0x336c4, 2270 0x336e4, 0x33790, 2271 0x33798, 0x337c4, 2272 0x337e4, 0x337fc, 2273 0x33814, 0x33814, 2274 0x33854, 0x33868, 2275 0x33880, 0x3388c, 2276 0x338c0, 0x338d0, 2277 0x338e8, 0x338ec, 2278 0x33900, 0x3392c, 2279 0x33934, 0x33950, 2280 0x33958, 0x33958, 2281 0x33960, 0x3398c, 2282 0x3399c, 0x339ac, 2283 0x339c0, 0x339c0, 2284 0x339c8, 0x339d0, 2285 0x339d8, 0x339e0, 2286 0x339ec, 0x33a90, 2287 0x33a98, 0x33ac4, 2288 0x33ae4, 0x33b10, 2289 0x33b24, 0x33b28, 2290 0x33b38, 0x33b50, 2291 0x33bf0, 0x33c10, 2292 0x33c24, 0x33c28, 2293 0x33c38, 0x33c50, 2294 0x33cf0, 0x33cfc, 2295 0x34000, 0x34030, 2296 0x34038, 0x34038, 2297 0x34040, 0x34040, 2298 0x34048, 0x34048, 2299 0x34050, 0x34050, 2300 0x3405c, 0x34060, 2301 0x34068, 0x34068, 2302 0x34070, 0x34070, 2303 0x34100, 0x34168, 2304 0x34190, 0x341a0, 2305 0x341a8, 0x341b8, 2306 0x341c4, 0x341c8, 2307 0x341d0, 0x341d0, 2308 0x34200, 0x34320, 2309 0x34400, 0x344b4, 2310 0x344c0, 0x3452c, 2311 0x34540, 0x3461c, 2312 0x34800, 0x348a0, 2313 0x348c0, 0x34908, 2314 0x34910, 0x349b8, 2315 0x34a00, 0x34a04, 2316 0x34a0c, 0x34a14, 2317 0x34a1c, 0x34a2c, 2318 0x34a44, 0x34a50, 2319 0x34a74, 0x34a74, 2320 0x34a7c, 0x34afc, 2321 0x34b08, 0x34c24, 2322 0x34d00, 0x34d14, 2323 0x34d1c, 0x34d3c, 2324 0x34d44, 0x34d4c, 2325 0x34d54, 0x34d74, 2326 0x34d7c, 0x34d7c, 2327 0x34de0, 0x34de0, 2328 0x34e00, 0x34ed4, 2329 0x34f00, 0x34fa4, 2330 0x34fc0, 0x34fc4, 2331 0x35000, 0x35004, 2332 0x35080, 0x350fc, 2333 0x35208, 0x35220, 2334 0x3523c, 0x35254, 2335 0x35300, 0x35300, 2336 0x35308, 0x3531c, 2337 0x35338, 0x3533c, 2338 0x35380, 0x35380, 2339 0x35388, 0x353a8, 2340 0x353b4, 0x353b4, 2341 0x35400, 0x35420, 2342 0x35438, 0x3543c, 2343 0x35480, 0x35480, 2344 0x354a8, 0x354a8, 2345 0x354b0, 0x354b4, 2346 0x354c8, 0x354d4, 2347 0x35a40, 0x35a4c, 2348 0x35af0, 0x35b20, 2349 0x35b38, 0x35b3c, 2350 0x35b80, 0x35b80, 2351 0x35ba8, 0x35ba8, 2352 0x35bb0, 0x35bb4, 2353 0x35bc8, 0x35bd4, 2354 0x36140, 0x3618c, 2355 0x361f0, 0x361f4, 2356 0x36200, 0x36200, 2357 0x36218, 0x36218, 2358 0x36400, 0x36400, 2359 0x36408, 0x3641c, 2360 0x36618, 0x36620, 2361 0x36664, 0x36664, 2362 0x366a8, 0x366a8, 2363 0x366ec, 0x366ec, 2364 0x36a00, 0x36abc, 2365 0x36b00, 0x36b38, 2366 0x36b40, 0x36b58, 2367 0x36b60, 0x36b78, 2368 0x36c00, 0x36c00, 2369 0x36c08, 0x36c3c, 2370 0x36e00, 0x36e2c, 2371 0x36f00, 0x36f2c, 2372 0x37000, 0x3702c, 2373 0x37034, 0x37050, 2374 0x37058, 0x37058, 2375 0x37060, 0x3708c, 2376 0x3709c, 0x370ac, 2377 0x370c0, 0x370c0, 2378 0x370c8, 0x370d0, 2379 0x370d8, 0x370e0, 2380 0x370ec, 0x3712c, 2381 0x37134, 0x37150, 2382 0x37158, 0x37158, 2383 0x37160, 0x3718c, 2384 0x3719c, 0x371ac, 2385 0x371c0, 0x371c0, 2386 0x371c8, 0x371d0, 2387 0x371d8, 0x371e0, 2388 0x371ec, 0x37290, 2389 0x37298, 0x372c4, 2390 0x372e4, 0x37390, 2391 0x37398, 0x373c4, 2392 0x373e4, 0x3742c, 2393 0x37434, 0x37450, 2394 0x37458, 0x37458, 2395 0x37460, 0x3748c, 2396 0x3749c, 0x374ac, 2397 0x374c0, 0x374c0, 2398 0x374c8, 0x374d0, 2399 0x374d8, 0x374e0, 2400 0x374ec, 0x3752c, 2401 0x37534, 0x37550, 2402 0x37558, 0x37558, 2403 0x37560, 0x3758c, 2404 0x3759c, 0x375ac, 2405 0x375c0, 0x375c0, 2406 0x375c8, 0x375d0, 2407 0x375d8, 0x375e0, 2408 0x375ec, 0x37690, 2409 0x37698, 0x376c4, 2410 0x376e4, 0x37790, 2411 0x37798, 0x377c4, 2412 0x377e4, 0x377fc, 2413 0x37814, 0x37814, 2414 0x37854, 0x37868, 2415 0x37880, 0x3788c, 2416 0x378c0, 0x378d0, 2417 0x378e8, 0x378ec, 2418 0x37900, 0x3792c, 2419 0x37934, 0x37950, 2420 0x37958, 0x37958, 2421 0x37960, 0x3798c, 2422 0x3799c, 0x379ac, 2423 0x379c0, 0x379c0, 2424 0x379c8, 0x379d0, 2425 0x379d8, 0x379e0, 2426 0x379ec, 0x37a90, 2427 0x37a98, 0x37ac4, 2428 0x37ae4, 0x37b10, 2429 0x37b24, 0x37b28, 2430 0x37b38, 0x37b50, 2431 0x37bf0, 0x37c10, 2432 0x37c24, 0x37c28, 2433 0x37c38, 0x37c50, 2434 0x37cf0, 0x37cfc, 2435 0x40040, 0x40040, 2436 0x40080, 0x40084, 2437 0x40100, 0x40100, 2438 0x40140, 0x401bc, 2439 0x40200, 0x40214, 2440 0x40228, 0x40228, 2441 0x40240, 0x40258, 2442 0x40280, 0x40280, 2443 0x40304, 0x40304, 2444 0x40330, 0x4033c, 2445 0x41304, 0x413c8, 2446 0x413d0, 0x413dc, 2447 0x413f0, 0x413f0, 2448 0x41400, 0x4140c, 2449 0x41414, 0x4141c, 2450 0x41480, 0x414d0, 2451 0x44000, 0x4407c, 2452 0x440c0, 0x441ac, 2453 0x441b4, 0x4427c, 2454 0x442c0, 0x443ac, 2455 0x443b4, 0x4447c, 2456 0x444c0, 0x445ac, 2457 0x445b4, 0x4467c, 2458 0x446c0, 0x447ac, 2459 0x447b4, 0x4487c, 2460 0x448c0, 0x449ac, 2461 0x449b4, 0x44a7c, 2462 0x44ac0, 0x44bac, 2463 0x44bb4, 0x44c7c, 2464 0x44cc0, 0x44dac, 2465 0x44db4, 0x44e7c, 2466 0x44ec0, 0x44fac, 2467 0x44fb4, 0x4507c, 2468 0x450c0, 0x451ac, 2469 0x451b4, 0x451fc, 2470 0x45800, 0x45804, 2471 0x45810, 0x45830, 2472 0x45840, 0x45860, 2473 0x45868, 0x45868, 2474 0x45880, 0x45884, 2475 0x458a0, 0x458b0, 2476 0x45a00, 0x45a04, 2477 0x45a10, 0x45a30, 2478 0x45a40, 0x45a60, 2479 0x45a68, 0x45a68, 2480 0x45a80, 0x45a84, 2481 0x45aa0, 0x45ab0, 2482 0x460c0, 0x460e4, 2483 0x47000, 0x4703c, 2484 0x47044, 0x4708c, 2485 0x47200, 0x47250, 2486 0x47400, 0x47408, 2487 0x47414, 0x47420, 2488 0x47600, 0x47618, 2489 0x47800, 0x47814, 2490 0x47820, 0x4782c, 2491 0x50000, 0x50084, 2492 0x50090, 0x500cc, 2493 0x50300, 0x50384, 2494 0x50400, 0x50400, 2495 0x50800, 0x50884, 2496 0x50890, 0x508cc, 2497 0x50b00, 0x50b84, 2498 0x50c00, 0x50c00, 2499 0x51000, 0x51020, 2500 0x51028, 0x510b0, 2501 0x51300, 0x51324, 2502 }; 2503 2504 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2505 const unsigned int *reg_ranges; 2506 int reg_ranges_size, range; 2507 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2508 2509 /* Select the right set of register ranges to dump depending on the 2510 * adapter chip type. 2511 */ 2512 switch (chip_version) { 2513 case CHELSIO_T4: 2514 reg_ranges = t4_reg_ranges; 2515 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2516 break; 2517 2518 case CHELSIO_T5: 2519 reg_ranges = t5_reg_ranges; 2520 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2521 break; 2522 2523 case CHELSIO_T6: 2524 reg_ranges = t6_reg_ranges; 2525 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2526 break; 2527 2528 default: 2529 dev_err(adap->pdev_dev, 2530 "Unsupported chip version %d\n", chip_version); 2531 return; 2532 } 2533 2534 /* Clear the register buffer and insert the appropriate register 2535 * values selected by the above register ranges. 2536 */ 2537 memset(buf, 0, buf_size); 2538 for (range = 0; range < reg_ranges_size; range += 2) { 2539 unsigned int reg = reg_ranges[range]; 2540 unsigned int last_reg = reg_ranges[range + 1]; 2541 u32 *bufp = (u32 *)((char *)buf + reg); 2542 2543 /* Iterate across the register range filling in the register 2544 * buffer but don't write past the end of the register buffer. 2545 */ 2546 while (reg <= last_reg && bufp < buf_end) { 2547 *bufp++ = t4_read_reg(adap, reg); 2548 reg += sizeof(u32); 2549 } 2550 } 2551} 2552 2553#define EEPROM_STAT_ADDR 0x7bfc 2554#define VPD_BASE 0x400 2555#define VPD_BASE_OLD 0 2556#define VPD_LEN 1024 2557#define CHELSIO_VPD_UNIQUE_ID 0x82 2558 2559/** 2560 * t4_seeprom_wp - enable/disable EEPROM write protection 2561 * @adapter: the adapter 2562 * @enable: whether to enable or disable write protection 2563 * 2564 * Enables or disables write protection on the serial EEPROM. 2565 */ 2566int t4_seeprom_wp(struct adapter *adapter, bool enable) 2567{ 2568 unsigned int v = enable ? 0xc : 0; 2569 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2570 return ret < 0 ? ret : 0; 2571} 2572 2573/** 2574 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2575 * @adapter: adapter to read 2576 * @p: where to store the parameters 2577 * 2578 * Reads card parameters stored in VPD EEPROM. 2579 */ 2580int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2581{ 2582 int i, ret = 0, addr; 2583 int ec, sn, pn, na; 2584 u8 *vpd, csum; 2585 unsigned int vpdr_len, kw_offset, id_len; 2586 2587 vpd = vmalloc(VPD_LEN); 2588 if (!vpd) 2589 return -ENOMEM; 2590 2591 /* Card information normally starts at VPD_BASE but early cards had 2592 * it at 0. 2593 */ 2594 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2595 if (ret < 0) 2596 goto out; 2597 2598 /* The VPD shall have a unique identifier specified by the PCI SIG. 2599 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2600 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2601 * is expected to automatically put this entry at the 2602 * beginning of the VPD. 2603 */ 2604 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2605 2606 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2607 if (ret < 0) 2608 goto out; 2609 2610 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2611 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2612 ret = -EINVAL; 2613 goto out; 2614 } 2615 2616 id_len = pci_vpd_lrdt_size(vpd); 2617 if (id_len > ID_LEN) 2618 id_len = ID_LEN; 2619 2620 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2621 if (i < 0) { 2622 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2623 ret = -EINVAL; 2624 goto out; 2625 } 2626 2627 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2628 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2629 if (vpdr_len + kw_offset > VPD_LEN) { 2630 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2631 ret = -EINVAL; 2632 goto out; 2633 } 2634 2635#define FIND_VPD_KW(var, name) do { \ 2636 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2637 if (var < 0) { \ 2638 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2639 ret = -EINVAL; \ 2640 goto out; \ 2641 } \ 2642 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2643} while (0) 2644 2645 FIND_VPD_KW(i, "RV"); 2646 for (csum = 0; i >= 0; i--) 2647 csum += vpd[i]; 2648 2649 if (csum) { 2650 dev_err(adapter->pdev_dev, 2651 "corrupted VPD EEPROM, actual csum %u\n", csum); 2652 ret = -EINVAL; 2653 goto out; 2654 } 2655 2656 FIND_VPD_KW(ec, "EC"); 2657 FIND_VPD_KW(sn, "SN"); 2658 FIND_VPD_KW(pn, "PN"); 2659 FIND_VPD_KW(na, "NA"); 2660#undef FIND_VPD_KW 2661 2662 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2663 strim(p->id); 2664 memcpy(p->ec, vpd + ec, EC_LEN); 2665 strim(p->ec); 2666 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2667 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2668 strim(p->sn); 2669 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2670 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2671 strim(p->pn); 2672 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2673 strim((char *)p->na); 2674 2675out: 2676 vfree(vpd); 2677 return ret; 2678} 2679 2680/** 2681 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2682 * @adapter: adapter to read 2683 * @p: where to store the parameters 2684 * 2685 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2686 * Clock. This can only be called after a connection to the firmware 2687 * is established. 2688 */ 2689int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2690{ 2691 u32 cclk_param, cclk_val; 2692 int ret; 2693 2694 /* Grab the raw VPD parameters. 2695 */ 2696 ret = t4_get_raw_vpd_params(adapter, p); 2697 if (ret) 2698 return ret; 2699 2700 /* Ask firmware for the Core Clock since it knows how to translate the 2701 * Reference Clock ('V2') VPD field into a Core Clock value ... 2702 */ 2703 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2704 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2705 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2706 1, &cclk_param, &cclk_val); 2707 2708 if (ret) 2709 return ret; 2710 p->cclk = cclk_val; 2711 2712 return 0; 2713} 2714 2715/* serial flash and firmware constants */ 2716enum { 2717 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2718 2719 /* flash command opcodes */ 2720 SF_PROG_PAGE = 2, /* program page */ 2721 SF_WR_DISABLE = 4, /* disable writes */ 2722 SF_RD_STATUS = 5, /* read status register */ 2723 SF_WR_ENABLE = 6, /* enable writes */ 2724 SF_RD_DATA_FAST = 0xb, /* read flash */ 2725 SF_RD_ID = 0x9f, /* read ID */ 2726 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2727 2728 FW_MAX_SIZE = 16 * SF_SEC_SIZE, 2729}; 2730 2731/** 2732 * sf1_read - read data from the serial flash 2733 * @adapter: the adapter 2734 * @byte_cnt: number of bytes to read 2735 * @cont: whether another operation will be chained 2736 * @lock: whether to lock SF for PL access only 2737 * @valp: where to store the read data 2738 * 2739 * Reads up to 4 bytes of data from the serial flash. The location of 2740 * the read needs to be specified prior to calling this by issuing the 2741 * appropriate commands to the serial flash. 2742 */ 2743static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2744 int lock, u32 *valp) 2745{ 2746 int ret; 2747 2748 if (!byte_cnt || byte_cnt > 4) 2749 return -EINVAL; 2750 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2751 return -EBUSY; 2752 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2753 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2754 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2755 if (!ret) 2756 *valp = t4_read_reg(adapter, SF_DATA_A); 2757 return ret; 2758} 2759 2760/** 2761 * sf1_write - write data to the serial flash 2762 * @adapter: the adapter 2763 * @byte_cnt: number of bytes to write 2764 * @cont: whether another operation will be chained 2765 * @lock: whether to lock SF for PL access only 2766 * @val: value to write 2767 * 2768 * Writes up to 4 bytes of data to the serial flash. The location of 2769 * the write needs to be specified prior to calling this by issuing the 2770 * appropriate commands to the serial flash. 2771 */ 2772static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2773 int lock, u32 val) 2774{ 2775 if (!byte_cnt || byte_cnt > 4) 2776 return -EINVAL; 2777 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2778 return -EBUSY; 2779 t4_write_reg(adapter, SF_DATA_A, val); 2780 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2781 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2782 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2783} 2784 2785/** 2786 * flash_wait_op - wait for a flash operation to complete 2787 * @adapter: the adapter 2788 * @attempts: max number of polls of the status register 2789 * @delay: delay between polls in ms 2790 * 2791 * Wait for a flash operation to complete by polling the status register. 2792 */ 2793static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 2794{ 2795 int ret; 2796 u32 status; 2797 2798 while (1) { 2799 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 2800 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 2801 return ret; 2802 if (!(status & 1)) 2803 return 0; 2804 if (--attempts == 0) 2805 return -EAGAIN; 2806 if (delay) 2807 msleep(delay); 2808 } 2809} 2810 2811/** 2812 * t4_read_flash - read words from serial flash 2813 * @adapter: the adapter 2814 * @addr: the start address for the read 2815 * @nwords: how many 32-bit words to read 2816 * @data: where to store the read data 2817 * @byte_oriented: whether to store data as bytes or as words 2818 * 2819 * Read the specified number of 32-bit words from the serial flash. 2820 * If @byte_oriented is set the read data is stored as a byte array 2821 * (i.e., big-endian), otherwise as 32-bit words in the platform's 2822 * natural endianness. 2823 */ 2824int t4_read_flash(struct adapter *adapter, unsigned int addr, 2825 unsigned int nwords, u32 *data, int byte_oriented) 2826{ 2827 int ret; 2828 2829 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 2830 return -EINVAL; 2831 2832 addr = swab32(addr) | SF_RD_DATA_FAST; 2833 2834 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 2835 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 2836 return ret; 2837 2838 for ( ; nwords; nwords--, data++) { 2839 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 2840 if (nwords == 1) 2841 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2842 if (ret) 2843 return ret; 2844 if (byte_oriented) 2845 *data = (__force __u32)(cpu_to_be32(*data)); 2846 } 2847 return 0; 2848} 2849 2850/** 2851 * t4_write_flash - write up to a page of data to the serial flash 2852 * @adapter: the adapter 2853 * @addr: the start address to write 2854 * @n: length of data to write in bytes 2855 * @data: the data to write 2856 * 2857 * Writes up to a page of data (256 bytes) to the serial flash starting 2858 * at the given address. All the data must be written to the same page. 2859 */ 2860static int t4_write_flash(struct adapter *adapter, unsigned int addr, 2861 unsigned int n, const u8 *data) 2862{ 2863 int ret; 2864 u32 buf[64]; 2865 unsigned int i, c, left, val, offset = addr & 0xff; 2866 2867 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 2868 return -EINVAL; 2869 2870 val = swab32(addr) | SF_PROG_PAGE; 2871 2872 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 2873 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 2874 goto unlock; 2875 2876 for (left = n; left; left -= c) { 2877 c = min(left, 4U); 2878 for (val = 0, i = 0; i < c; ++i) 2879 val = (val << 8) + *data++; 2880 2881 ret = sf1_write(adapter, c, c != left, 1, val); 2882 if (ret) 2883 goto unlock; 2884 } 2885 ret = flash_wait_op(adapter, 8, 1); 2886 if (ret) 2887 goto unlock; 2888 2889 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2890 2891 /* Read the page to verify the write succeeded */ 2892 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 2893 if (ret) 2894 return ret; 2895 2896 if (memcmp(data - n, (u8 *)buf + offset, n)) { 2897 dev_err(adapter->pdev_dev, 2898 "failed to correctly write the flash page at %#x\n", 2899 addr); 2900 return -EIO; 2901 } 2902 return 0; 2903 2904unlock: 2905 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2906 return ret; 2907} 2908 2909/** 2910 * t4_get_fw_version - read the firmware version 2911 * @adapter: the adapter 2912 * @vers: where to place the version 2913 * 2914 * Reads the FW version from flash. 2915 */ 2916int t4_get_fw_version(struct adapter *adapter, u32 *vers) 2917{ 2918 return t4_read_flash(adapter, FLASH_FW_START + 2919 offsetof(struct fw_hdr, fw_ver), 1, 2920 vers, 0); 2921} 2922 2923/** 2924 * t4_get_tp_version - read the TP microcode version 2925 * @adapter: the adapter 2926 * @vers: where to place the version 2927 * 2928 * Reads the TP microcode version from flash. 2929 */ 2930int t4_get_tp_version(struct adapter *adapter, u32 *vers) 2931{ 2932 return t4_read_flash(adapter, FLASH_FW_START + 2933 offsetof(struct fw_hdr, tp_microcode_ver), 2934 1, vers, 0); 2935} 2936 2937/** 2938 * t4_get_exprom_version - return the Expansion ROM version (if any) 2939 * @adapter: the adapter 2940 * @vers: where to place the version 2941 * 2942 * Reads the Expansion ROM header from FLASH and returns the version 2943 * number (if present) through the @vers return value pointer. We return 2944 * this in the Firmware Version Format since it's convenient. Return 2945 * 0 on success, -ENOENT if no Expansion ROM is present. 2946 */ 2947int t4_get_exprom_version(struct adapter *adap, u32 *vers) 2948{ 2949 struct exprom_header { 2950 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 2951 unsigned char hdr_ver[4]; /* Expansion ROM version */ 2952 } *hdr; 2953 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 2954 sizeof(u32))]; 2955 int ret; 2956 2957 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 2958 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 2959 0); 2960 if (ret) 2961 return ret; 2962 2963 hdr = (struct exprom_header *)exprom_header_buf; 2964 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 2965 return -ENOENT; 2966 2967 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 2968 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 2969 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 2970 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 2971 return 0; 2972} 2973 2974/** 2975 * t4_check_fw_version - check if the FW is supported with this driver 2976 * @adap: the adapter 2977 * 2978 * Checks if an adapter's FW is compatible with the driver. Returns 0 2979 * if there's exact match, a negative error if the version could not be 2980 * read or there's a major version mismatch 2981 */ 2982int t4_check_fw_version(struct adapter *adap) 2983{ 2984 int i, ret, major, minor, micro; 2985 int exp_major, exp_minor, exp_micro; 2986 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2987 2988 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 2989 /* Try multiple times before returning error */ 2990 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 2991 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 2992 2993 if (ret) 2994 return ret; 2995 2996 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 2997 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 2998 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 2999 3000 switch (chip_version) { 3001 case CHELSIO_T4: 3002 exp_major = T4FW_MIN_VERSION_MAJOR; 3003 exp_minor = T4FW_MIN_VERSION_MINOR; 3004 exp_micro = T4FW_MIN_VERSION_MICRO; 3005 break; 3006 case CHELSIO_T5: 3007 exp_major = T5FW_MIN_VERSION_MAJOR; 3008 exp_minor = T5FW_MIN_VERSION_MINOR; 3009 exp_micro = T5FW_MIN_VERSION_MICRO; 3010 break; 3011 case CHELSIO_T6: 3012 exp_major = T6FW_MIN_VERSION_MAJOR; 3013 exp_minor = T6FW_MIN_VERSION_MINOR; 3014 exp_micro = T6FW_MIN_VERSION_MICRO; 3015 break; 3016 default: 3017 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3018 adap->chip); 3019 return -EINVAL; 3020 } 3021 3022 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3023 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3024 dev_err(adap->pdev_dev, 3025 "Card has firmware version %u.%u.%u, minimum " 3026 "supported firmware is %u.%u.%u.\n", major, minor, 3027 micro, exp_major, exp_minor, exp_micro); 3028 return -EFAULT; 3029 } 3030 return 0; 3031} 3032 3033/* Is the given firmware API compatible with the one the driver was compiled 3034 * with? 3035 */ 3036static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3037{ 3038 3039 /* short circuit if it's the exact same firmware version */ 3040 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3041 return 1; 3042 3043#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3044 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3045 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3046 return 1; 3047#undef SAME_INTF 3048 3049 return 0; 3050} 3051 3052/* The firmware in the filesystem is usable, but should it be installed? 3053 * This routine explains itself in detail if it indicates the filesystem 3054 * firmware should be installed. 3055 */ 3056static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3057 int k, int c) 3058{ 3059 const char *reason; 3060 3061 if (!card_fw_usable) { 3062 reason = "incompatible or unusable"; 3063 goto install; 3064 } 3065 3066 if (k > c) { 3067 reason = "older than the version supported with this driver"; 3068 goto install; 3069 } 3070 3071 return 0; 3072 3073install: 3074 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3075 "installing firmware %u.%u.%u.%u on card.\n", 3076 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3077 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3078 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3079 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3080 3081 return 1; 3082} 3083 3084int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3085 const u8 *fw_data, unsigned int fw_size, 3086 struct fw_hdr *card_fw, enum dev_state state, 3087 int *reset) 3088{ 3089 int ret, card_fw_usable, fs_fw_usable; 3090 const struct fw_hdr *fs_fw; 3091 const struct fw_hdr *drv_fw; 3092 3093 drv_fw = &fw_info->fw_hdr; 3094 3095 /* Read the header of the firmware on the card */ 3096 ret = -t4_read_flash(adap, FLASH_FW_START, 3097 sizeof(*card_fw) / sizeof(uint32_t), 3098 (uint32_t *)card_fw, 1); 3099 if (ret == 0) { 3100 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3101 } else { 3102 dev_err(adap->pdev_dev, 3103 "Unable to read card's firmware header: %d\n", ret); 3104 card_fw_usable = 0; 3105 } 3106 3107 if (fw_data != NULL) { 3108 fs_fw = (const void *)fw_data; 3109 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3110 } else { 3111 fs_fw = NULL; 3112 fs_fw_usable = 0; 3113 } 3114 3115 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3116 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3117 /* Common case: the firmware on the card is an exact match and 3118 * the filesystem one is an exact match too, or the filesystem 3119 * one is absent/incompatible. 3120 */ 3121 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3122 should_install_fs_fw(adap, card_fw_usable, 3123 be32_to_cpu(fs_fw->fw_ver), 3124 be32_to_cpu(card_fw->fw_ver))) { 3125 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3126 fw_size, 0); 3127 if (ret != 0) { 3128 dev_err(adap->pdev_dev, 3129 "failed to install firmware: %d\n", ret); 3130 goto bye; 3131 } 3132 3133 /* Installed successfully, update the cached header too. */ 3134 *card_fw = *fs_fw; 3135 card_fw_usable = 1; 3136 *reset = 0; /* already reset as part of load_fw */ 3137 } 3138 3139 if (!card_fw_usable) { 3140 uint32_t d, c, k; 3141 3142 d = be32_to_cpu(drv_fw->fw_ver); 3143 c = be32_to_cpu(card_fw->fw_ver); 3144 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3145 3146 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3147 "chip state %d, " 3148 "driver compiled with %d.%d.%d.%d, " 3149 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3150 state, 3151 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3152 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3153 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3154 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3155 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3156 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3157 ret = EINVAL; 3158 goto bye; 3159 } 3160 3161 /* We're using whatever's on the card and it's known to be good. */ 3162 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3163 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3164 3165bye: 3166 return ret; 3167} 3168 3169/** 3170 * t4_flash_erase_sectors - erase a range of flash sectors 3171 * @adapter: the adapter 3172 * @start: the first sector to erase 3173 * @end: the last sector to erase 3174 * 3175 * Erases the sectors in the given inclusive range. 3176 */ 3177static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3178{ 3179 int ret = 0; 3180 3181 if (end >= adapter->params.sf_nsec) 3182 return -EINVAL; 3183 3184 while (start <= end) { 3185 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3186 (ret = sf1_write(adapter, 4, 0, 1, 3187 SF_ERASE_SECTOR | (start << 8))) != 0 || 3188 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3189 dev_err(adapter->pdev_dev, 3190 "erase of flash sector %d failed, error %d\n", 3191 start, ret); 3192 break; 3193 } 3194 start++; 3195 } 3196 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3197 return ret; 3198} 3199 3200/** 3201 * t4_flash_cfg_addr - return the address of the flash configuration file 3202 * @adapter: the adapter 3203 * 3204 * Return the address within the flash where the Firmware Configuration 3205 * File is stored. 3206 */ 3207unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3208{ 3209 if (adapter->params.sf_size == 0x100000) 3210 return FLASH_FPGA_CFG_START; 3211 else 3212 return FLASH_CFG_START; 3213} 3214 3215/* Return TRUE if the specified firmware matches the adapter. I.e. T4 3216 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3217 * and emit an error message for mismatched firmware to save our caller the 3218 * effort ... 3219 */ 3220static bool t4_fw_matches_chip(const struct adapter *adap, 3221 const struct fw_hdr *hdr) 3222{ 3223 /* The expression below will return FALSE for any unsupported adapter 3224 * which will keep us "honest" in the future ... 3225 */ 3226 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3227 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3228 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3229 return true; 3230 3231 dev_err(adap->pdev_dev, 3232 "FW image (%d) is not suitable for this adapter (%d)\n", 3233 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3234 return false; 3235} 3236 3237/** 3238 * t4_load_fw - download firmware 3239 * @adap: the adapter 3240 * @fw_data: the firmware image to write 3241 * @size: image size 3242 * 3243 * Write the supplied firmware image to the card's serial flash. 3244 */ 3245int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3246{ 3247 u32 csum; 3248 int ret, addr; 3249 unsigned int i; 3250 u8 first_page[SF_PAGE_SIZE]; 3251 const __be32 *p = (const __be32 *)fw_data; 3252 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3253 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3254 unsigned int fw_img_start = adap->params.sf_fw_start; 3255 unsigned int fw_start_sec = fw_img_start / sf_sec_size; 3256 3257 if (!size) { 3258 dev_err(adap->pdev_dev, "FW image has no data\n"); 3259 return -EINVAL; 3260 } 3261 if (size & 511) { 3262 dev_err(adap->pdev_dev, 3263 "FW image size not multiple of 512 bytes\n"); 3264 return -EINVAL; 3265 } 3266 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3267 dev_err(adap->pdev_dev, 3268 "FW image size differs from size in FW header\n"); 3269 return -EINVAL; 3270 } 3271 if (size > FW_MAX_SIZE) { 3272 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3273 FW_MAX_SIZE); 3274 return -EFBIG; 3275 } 3276 if (!t4_fw_matches_chip(adap, hdr)) 3277 return -EINVAL; 3278 3279 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3280 csum += be32_to_cpu(p[i]); 3281 3282 if (csum != 0xffffffff) { 3283 dev_err(adap->pdev_dev, 3284 "corrupted firmware image, checksum %#x\n", csum); 3285 return -EINVAL; 3286 } 3287 3288 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3289 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3290 if (ret) 3291 goto out; 3292 3293 /* 3294 * We write the correct version at the end so the driver can see a bad 3295 * version if the FW write fails. Start by writing a copy of the 3296 * first page with a bad version. 3297 */ 3298 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3299 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3300 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page); 3301 if (ret) 3302 goto out; 3303 3304 addr = fw_img_start; 3305 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3306 addr += SF_PAGE_SIZE; 3307 fw_data += SF_PAGE_SIZE; 3308 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3309 if (ret) 3310 goto out; 3311 } 3312 3313 ret = t4_write_flash(adap, 3314 fw_img_start + offsetof(struct fw_hdr, fw_ver), 3315 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3316out: 3317 if (ret) 3318 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3319 ret); 3320 else 3321 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3322 return ret; 3323} 3324 3325/** 3326 * t4_phy_fw_ver - return current PHY firmware version 3327 * @adap: the adapter 3328 * @phy_fw_ver: return value buffer for PHY firmware version 3329 * 3330 * Returns the current version of external PHY firmware on the 3331 * adapter. 3332 */ 3333int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3334{ 3335 u32 param, val; 3336 int ret; 3337 3338 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3339 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3340 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3341 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3342 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3343 ¶m, &val); 3344 if (ret < 0) 3345 return ret; 3346 *phy_fw_ver = val; 3347 return 0; 3348} 3349 3350/** 3351 * t4_load_phy_fw - download port PHY firmware 3352 * @adap: the adapter 3353 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3354 * @win_lock: the lock to use to guard the memory copy 3355 * @phy_fw_version: function to check PHY firmware versions 3356 * @phy_fw_data: the PHY firmware image to write 3357 * @phy_fw_size: image size 3358 * 3359 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3360 * @phy_fw_version is supplied, then it will be used to determine if 3361 * it's necessary to perform the transfer by comparing the version 3362 * of any existing adapter PHY firmware with that of the passed in 3363 * PHY firmware image. If @win_lock is non-NULL then it will be used 3364 * around the call to t4_memory_rw() which transfers the PHY firmware 3365 * to the adapter. 3366 * 3367 * A negative error number will be returned if an error occurs. If 3368 * version number support is available and there's no need to upgrade 3369 * the firmware, 0 will be returned. If firmware is successfully 3370 * transferred to the adapter, 1 will be retured. 3371 * 3372 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3373 * a result, a RESET of the adapter would cause that RAM to lose its 3374 * contents. Thus, loading PHY firmware on such adapters must happen 3375 * after any FW_RESET_CMDs ... 3376 */ 3377int t4_load_phy_fw(struct adapter *adap, 3378 int win, spinlock_t *win_lock, 3379 int (*phy_fw_version)(const u8 *, size_t), 3380 const u8 *phy_fw_data, size_t phy_fw_size) 3381{ 3382 unsigned long mtype = 0, maddr = 0; 3383 u32 param, val; 3384 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3385 int ret; 3386 3387 /* If we have version number support, then check to see if the adapter 3388 * already has up-to-date PHY firmware loaded. 3389 */ 3390 if (phy_fw_version) { 3391 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3392 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3393 if (ret < 0) 3394 return ret; 3395 3396 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3397 CH_WARN(adap, "PHY Firmware already up-to-date, " 3398 "version %#x\n", cur_phy_fw_ver); 3399 return 0; 3400 } 3401 } 3402 3403 /* Ask the firmware where it wants us to copy the PHY firmware image. 3404 * The size of the file requires a special version of the READ coommand 3405 * which will pass the file size via the values field in PARAMS_CMD and 3406 * retrieve the return value from firmware and place it in the same 3407 * buffer values 3408 */ 3409 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3410 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3411 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3412 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3413 val = phy_fw_size; 3414 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3415 ¶m, &val, 1); 3416 if (ret < 0) 3417 return ret; 3418 mtype = val >> 8; 3419 maddr = (val & 0xff) << 16; 3420 3421 /* Copy the supplied PHY Firmware image to the adapter memory location 3422 * allocated by the adapter firmware. 3423 */ 3424 if (win_lock) 3425 spin_lock_bh(win_lock); 3426 ret = t4_memory_rw(adap, win, mtype, maddr, 3427 phy_fw_size, (__be32 *)phy_fw_data, 3428 T4_MEMORY_WRITE); 3429 if (win_lock) 3430 spin_unlock_bh(win_lock); 3431 if (ret) 3432 return ret; 3433 3434 /* Tell the firmware that the PHY firmware image has been written to 3435 * RAM and it can now start copying it over to the PHYs. The chip 3436 * firmware will RESET the affected PHYs as part of this operation 3437 * leaving them running the new PHY firmware image. 3438 */ 3439 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3440 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3441 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3442 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3443 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3444 ¶m, &val, 30000); 3445 3446 /* If we have version number support, then check to see that the new 3447 * firmware got loaded properly. 3448 */ 3449 if (phy_fw_version) { 3450 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3451 if (ret < 0) 3452 return ret; 3453 3454 if (cur_phy_fw_ver != new_phy_fw_vers) { 3455 CH_WARN(adap, "PHY Firmware did not update: " 3456 "version on adapter %#x, " 3457 "version flashed %#x\n", 3458 cur_phy_fw_ver, new_phy_fw_vers); 3459 return -ENXIO; 3460 } 3461 } 3462 3463 return 1; 3464} 3465 3466/** 3467 * t4_fwcache - firmware cache operation 3468 * @adap: the adapter 3469 * @op : the operation (flush or flush and invalidate) 3470 */ 3471int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3472{ 3473 struct fw_params_cmd c; 3474 3475 memset(&c, 0, sizeof(c)); 3476 c.op_to_vfn = 3477 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3478 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3479 FW_PARAMS_CMD_PFN_V(adap->pf) | 3480 FW_PARAMS_CMD_VFN_V(0)); 3481 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3482 c.param[0].mnem = 3483 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3484 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3485 c.param[0].val = (__force __be32)op; 3486 3487 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3488} 3489 3490void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3491 unsigned int *pif_req_wrptr, 3492 unsigned int *pif_rsp_wrptr) 3493{ 3494 int i, j; 3495 u32 cfg, val, req, rsp; 3496 3497 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3498 if (cfg & LADBGEN_F) 3499 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3500 3501 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3502 req = POLADBGWRPTR_G(val); 3503 rsp = PILADBGWRPTR_G(val); 3504 if (pif_req_wrptr) 3505 *pif_req_wrptr = req; 3506 if (pif_rsp_wrptr) 3507 *pif_rsp_wrptr = rsp; 3508 3509 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3510 for (j = 0; j < 6; j++) { 3511 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3512 PILADBGRDPTR_V(rsp)); 3513 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3514 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3515 req++; 3516 rsp++; 3517 } 3518 req = (req + 2) & POLADBGRDPTR_M; 3519 rsp = (rsp + 2) & PILADBGRDPTR_M; 3520 } 3521 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3522} 3523 3524void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3525{ 3526 u32 cfg; 3527 int i, j, idx; 3528 3529 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3530 if (cfg & LADBGEN_F) 3531 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3532 3533 for (i = 0; i < CIM_MALA_SIZE; i++) { 3534 for (j = 0; j < 5; j++) { 3535 idx = 8 * i + j; 3536 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3537 PILADBGRDPTR_V(idx)); 3538 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3539 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3540 } 3541 } 3542 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3543} 3544 3545void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3546{ 3547 unsigned int i, j; 3548 3549 for (i = 0; i < 8; i++) { 3550 u32 *p = la_buf + i; 3551 3552 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3553 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3554 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3555 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3556 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3557 } 3558} 3559 3560#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ 3561 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \ 3562 FW_PORT_CAP_ANEG) 3563 3564/** 3565 * t4_link_l1cfg - apply link configuration to MAC/PHY 3566 * @phy: the PHY to setup 3567 * @mac: the MAC to setup 3568 * @lc: the requested link configuration 3569 * 3570 * Set up a port's MAC and PHY according to a desired link configuration. 3571 * - If the PHY can auto-negotiate first decide what to advertise, then 3572 * enable/disable auto-negotiation as desired, and reset. 3573 * - If the PHY does not auto-negotiate just reset it. 3574 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 3575 * otherwise do it later based on the outcome of auto-negotiation. 3576 */ 3577int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port, 3578 struct link_config *lc) 3579{ 3580 struct fw_port_cmd c; 3581 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO); 3582 3583 lc->link_ok = 0; 3584 if (lc->requested_fc & PAUSE_RX) 3585 fc |= FW_PORT_CAP_FC_RX; 3586 if (lc->requested_fc & PAUSE_TX) 3587 fc |= FW_PORT_CAP_FC_TX; 3588 3589 memset(&c, 0, sizeof(c)); 3590 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 3591 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 3592 FW_PORT_CMD_PORTID_V(port)); 3593 c.action_to_len16 = 3594 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 3595 FW_LEN16(c)); 3596 3597 if (!(lc->supported & FW_PORT_CAP_ANEG)) { 3598 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) | 3599 fc); 3600 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 3601 } else if (lc->autoneg == AUTONEG_DISABLE) { 3602 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi); 3603 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 3604 } else 3605 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi); 3606 3607 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3608} 3609 3610/** 3611 * t4_restart_aneg - restart autonegotiation 3612 * @adap: the adapter 3613 * @mbox: mbox to use for the FW command 3614 * @port: the port id 3615 * 3616 * Restarts autonegotiation for the selected port. 3617 */ 3618int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 3619{ 3620 struct fw_port_cmd c; 3621 3622 memset(&c, 0, sizeof(c)); 3623 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 3624 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 3625 FW_PORT_CMD_PORTID_V(port)); 3626 c.action_to_len16 = 3627 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 3628 FW_LEN16(c)); 3629 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 3630 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3631} 3632 3633typedef void (*int_handler_t)(struct adapter *adap); 3634 3635struct intr_info { 3636 unsigned int mask; /* bits to check in interrupt status */ 3637 const char *msg; /* message to print or NULL */ 3638 short stat_idx; /* stat counter to increment or -1 */ 3639 unsigned short fatal; /* whether the condition reported is fatal */ 3640 int_handler_t int_handler; /* platform-specific int handler */ 3641}; 3642 3643/** 3644 * t4_handle_intr_status - table driven interrupt handler 3645 * @adapter: the adapter that generated the interrupt 3646 * @reg: the interrupt status register to process 3647 * @acts: table of interrupt actions 3648 * 3649 * A table driven interrupt handler that applies a set of masks to an 3650 * interrupt status word and performs the corresponding actions if the 3651 * interrupts described by the mask have occurred. The actions include 3652 * optionally emitting a warning or alert message. The table is terminated 3653 * by an entry specifying mask 0. Returns the number of fatal interrupt 3654 * conditions. 3655 */ 3656static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 3657 const struct intr_info *acts) 3658{ 3659 int fatal = 0; 3660 unsigned int mask = 0; 3661 unsigned int status = t4_read_reg(adapter, reg); 3662 3663 for ( ; acts->mask; ++acts) { 3664 if (!(status & acts->mask)) 3665 continue; 3666 if (acts->fatal) { 3667 fatal++; 3668 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 3669 status & acts->mask); 3670 } else if (acts->msg && printk_ratelimit()) 3671 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 3672 status & acts->mask); 3673 if (acts->int_handler) 3674 acts->int_handler(adapter); 3675 mask |= acts->mask; 3676 } 3677 status &= mask; 3678 if (status) /* clear processed interrupts */ 3679 t4_write_reg(adapter, reg, status); 3680 return fatal; 3681} 3682 3683/* 3684 * Interrupt handler for the PCIE module. 3685 */ 3686static void pcie_intr_handler(struct adapter *adapter) 3687{ 3688 static const struct intr_info sysbus_intr_info[] = { 3689 { RNPP_F, "RXNP array parity error", -1, 1 }, 3690 { RPCP_F, "RXPC array parity error", -1, 1 }, 3691 { RCIP_F, "RXCIF array parity error", -1, 1 }, 3692 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 3693 { RFTP_F, "RXFT array parity error", -1, 1 }, 3694 { 0 } 3695 }; 3696 static const struct intr_info pcie_port_intr_info[] = { 3697 { TPCP_F, "TXPC array parity error", -1, 1 }, 3698 { TNPP_F, "TXNP array parity error", -1, 1 }, 3699 { TFTP_F, "TXFT array parity error", -1, 1 }, 3700 { TCAP_F, "TXCA array parity error", -1, 1 }, 3701 { TCIP_F, "TXCIF array parity error", -1, 1 }, 3702 { RCAP_F, "RXCA array parity error", -1, 1 }, 3703 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 3704 { RDPE_F, "Rx data parity error", -1, 1 }, 3705 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 3706 { 0 } 3707 }; 3708 static const struct intr_info pcie_intr_info[] = { 3709 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 3710 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 3711 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 3712 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 3713 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 3714 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 3715 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 3716 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 3717 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 3718 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 3719 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 3720 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 3721 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 3722 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 3723 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 3724 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 3725 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 3726 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 3727 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 3728 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 3729 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 3730 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 3731 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 3732 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 3733 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 3734 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 3735 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 3736 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 3737 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 3738 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 3739 -1, 0 }, 3740 { 0 } 3741 }; 3742 3743 static struct intr_info t5_pcie_intr_info[] = { 3744 { MSTGRPPERR_F, "Master Response Read Queue parity error", 3745 -1, 1 }, 3746 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 3747 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 3748 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 3749 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 3750 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 3751 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 3752 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 3753 -1, 1 }, 3754 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 3755 -1, 1 }, 3756 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 3757 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 3758 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 3759 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 3760 { DREQWRPERR_F, "PCI DMA channel write request parity error", 3761 -1, 1 }, 3762 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 3763 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 3764 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 3765 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 3766 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 3767 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 3768 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 3769 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 3770 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 3771 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 3772 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 3773 -1, 1 }, 3774 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 3775 -1, 1 }, 3776 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 3777 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 3778 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 3779 { READRSPERR_F, "Outbound read error", -1, 0 }, 3780 { 0 } 3781 }; 3782 3783 int fat; 3784 3785 if (is_t4(adapter->params.chip)) 3786 fat = t4_handle_intr_status(adapter, 3787 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 3788 sysbus_intr_info) + 3789 t4_handle_intr_status(adapter, 3790 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 3791 pcie_port_intr_info) + 3792 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 3793 pcie_intr_info); 3794 else 3795 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 3796 t5_pcie_intr_info); 3797 3798 if (fat) 3799 t4_fatal_err(adapter); 3800} 3801 3802/* 3803 * TP interrupt handler. 3804 */ 3805static void tp_intr_handler(struct adapter *adapter) 3806{ 3807 static const struct intr_info tp_intr_info[] = { 3808 { 0x3fffffff, "TP parity error", -1, 1 }, 3809 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 3810 { 0 } 3811 }; 3812 3813 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 3814 t4_fatal_err(adapter); 3815} 3816 3817/* 3818 * SGE interrupt handler. 3819 */ 3820static void sge_intr_handler(struct adapter *adapter) 3821{ 3822 u64 v; 3823 u32 err; 3824 3825 static const struct intr_info sge_intr_info[] = { 3826 { ERR_CPL_EXCEED_IQE_SIZE_F, 3827 "SGE received CPL exceeding IQE size", -1, 1 }, 3828 { ERR_INVALID_CIDX_INC_F, 3829 "SGE GTS CIDX increment too large", -1, 0 }, 3830 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 3831 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 3832 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 3833 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 3834 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 3835 0 }, 3836 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 3837 0 }, 3838 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 3839 0 }, 3840 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 3841 0 }, 3842 { ERR_ING_CTXT_PRIO_F, 3843 "SGE too many priority ingress contexts", -1, 0 }, 3844 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 3845 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 3846 { 0 } 3847 }; 3848 3849 static struct intr_info t4t5_sge_intr_info[] = { 3850 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 3851 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 3852 { ERR_EGR_CTXT_PRIO_F, 3853 "SGE too many priority egress contexts", -1, 0 }, 3854 { 0 } 3855 }; 3856 3857 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 3858 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 3859 if (v) { 3860 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 3861 (unsigned long long)v); 3862 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 3863 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 3864 } 3865 3866 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 3867 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 3868 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 3869 t4t5_sge_intr_info); 3870 3871 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 3872 if (err & ERROR_QID_VALID_F) { 3873 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 3874 ERROR_QID_G(err)); 3875 if (err & UNCAPTURED_ERROR_F) 3876 dev_err(adapter->pdev_dev, 3877 "SGE UNCAPTURED_ERROR set (clearing)\n"); 3878 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 3879 UNCAPTURED_ERROR_F); 3880 } 3881 3882 if (v != 0) 3883 t4_fatal_err(adapter); 3884} 3885 3886#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 3887 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 3888#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 3889 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 3890 3891/* 3892 * CIM interrupt handler. 3893 */ 3894static void cim_intr_handler(struct adapter *adapter) 3895{ 3896 static const struct intr_info cim_intr_info[] = { 3897 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 3898 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 3899 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 3900 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 3901 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 3902 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 3903 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 3904 { 0 } 3905 }; 3906 static const struct intr_info cim_upintr_info[] = { 3907 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 3908 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 3909 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 3910 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 3911 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 3912 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 3913 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 3914 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 3915 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 3916 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 3917 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 3918 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 3919 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 3920 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 3921 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 3922 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 3923 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 3924 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 3925 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 3926 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 3927 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 3928 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 3929 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 3930 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 3931 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 3932 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 3933 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 3934 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 3935 { 0 } 3936 }; 3937 3938 int fat; 3939 3940 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F) 3941 t4_report_fw_error(adapter); 3942 3943 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 3944 cim_intr_info) + 3945 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 3946 cim_upintr_info); 3947 if (fat) 3948 t4_fatal_err(adapter); 3949} 3950 3951/* 3952 * ULP RX interrupt handler. 3953 */ 3954static void ulprx_intr_handler(struct adapter *adapter) 3955{ 3956 static const struct intr_info ulprx_intr_info[] = { 3957 { 0x1800000, "ULPRX context error", -1, 1 }, 3958 { 0x7fffff, "ULPRX parity error", -1, 1 }, 3959 { 0 } 3960 }; 3961 3962 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 3963 t4_fatal_err(adapter); 3964} 3965 3966/* 3967 * ULP TX interrupt handler. 3968 */ 3969static void ulptx_intr_handler(struct adapter *adapter) 3970{ 3971 static const struct intr_info ulptx_intr_info[] = { 3972 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 3973 0 }, 3974 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 3975 0 }, 3976 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 3977 0 }, 3978 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 3979 0 }, 3980 { 0xfffffff, "ULPTX parity error", -1, 1 }, 3981 { 0 } 3982 }; 3983 3984 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 3985 t4_fatal_err(adapter); 3986} 3987 3988/* 3989 * PM TX interrupt handler. 3990 */ 3991static void pmtx_intr_handler(struct adapter *adapter) 3992{ 3993 static const struct intr_info pmtx_intr_info[] = { 3994 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 3995 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 3996 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 3997 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 3998 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 3999 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4000 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4001 -1, 1 }, 4002 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4003 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4004 { 0 } 4005 }; 4006 4007 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4008 t4_fatal_err(adapter); 4009} 4010 4011/* 4012 * PM RX interrupt handler. 4013 */ 4014static void pmrx_intr_handler(struct adapter *adapter) 4015{ 4016 static const struct intr_info pmrx_intr_info[] = { 4017 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4018 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4019 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4020 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4021 -1, 1 }, 4022 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4023 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4024 { 0 } 4025 }; 4026 4027 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4028 t4_fatal_err(adapter); 4029} 4030 4031/* 4032 * CPL switch interrupt handler. 4033 */ 4034static void cplsw_intr_handler(struct adapter *adapter) 4035{ 4036 static const struct intr_info cplsw_intr_info[] = { 4037 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4038 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4039 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4040 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4041 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4042 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4043 { 0 } 4044 }; 4045 4046 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4047 t4_fatal_err(adapter); 4048} 4049 4050/* 4051 * LE interrupt handler. 4052 */ 4053static void le_intr_handler(struct adapter *adap) 4054{ 4055 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4056 static const struct intr_info le_intr_info[] = { 4057 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4058 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4059 { PARITYERR_F, "LE parity error", -1, 1 }, 4060 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4061 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4062 { 0 } 4063 }; 4064 4065 static struct intr_info t6_le_intr_info[] = { 4066 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4067 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4068 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4069 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4070 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4071 { 0 } 4072 }; 4073 4074 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4075 (chip <= CHELSIO_T5) ? 4076 le_intr_info : t6_le_intr_info)) 4077 t4_fatal_err(adap); 4078} 4079 4080/* 4081 * MPS interrupt handler. 4082 */ 4083static void mps_intr_handler(struct adapter *adapter) 4084{ 4085 static const struct intr_info mps_rx_intr_info[] = { 4086 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4087 { 0 } 4088 }; 4089 static const struct intr_info mps_tx_intr_info[] = { 4090 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4091 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4092 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4093 -1, 1 }, 4094 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4095 -1, 1 }, 4096 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4097 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4098 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4099 { 0 } 4100 }; 4101 static const struct intr_info mps_trc_intr_info[] = { 4102 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4103 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4104 -1, 1 }, 4105 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4106 { 0 } 4107 }; 4108 static const struct intr_info mps_stat_sram_intr_info[] = { 4109 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4110 { 0 } 4111 }; 4112 static const struct intr_info mps_stat_tx_intr_info[] = { 4113 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4114 { 0 } 4115 }; 4116 static const struct intr_info mps_stat_rx_intr_info[] = { 4117 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4118 { 0 } 4119 }; 4120 static const struct intr_info mps_cls_intr_info[] = { 4121 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4122 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4123 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4124 { 0 } 4125 }; 4126 4127 int fat; 4128 4129 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4130 mps_rx_intr_info) + 4131 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4132 mps_tx_intr_info) + 4133 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4134 mps_trc_intr_info) + 4135 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4136 mps_stat_sram_intr_info) + 4137 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4138 mps_stat_tx_intr_info) + 4139 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4140 mps_stat_rx_intr_info) + 4141 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4142 mps_cls_intr_info); 4143 4144 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4145 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4146 if (fat) 4147 t4_fatal_err(adapter); 4148} 4149 4150#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4151 ECC_UE_INT_CAUSE_F) 4152 4153/* 4154 * EDC/MC interrupt handler. 4155 */ 4156static void mem_intr_handler(struct adapter *adapter, int idx) 4157{ 4158 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4159 4160 unsigned int addr, cnt_addr, v; 4161 4162 if (idx <= MEM_EDC1) { 4163 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4164 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4165 } else if (idx == MEM_MC) { 4166 if (is_t4(adapter->params.chip)) { 4167 addr = MC_INT_CAUSE_A; 4168 cnt_addr = MC_ECC_STATUS_A; 4169 } else { 4170 addr = MC_P_INT_CAUSE_A; 4171 cnt_addr = MC_P_ECC_STATUS_A; 4172 } 4173 } else { 4174 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4175 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4176 } 4177 4178 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4179 if (v & PERR_INT_CAUSE_F) 4180 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4181 name[idx]); 4182 if (v & ECC_CE_INT_CAUSE_F) { 4183 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4184 4185 t4_edc_err_read(adapter, idx); 4186 4187 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4188 if (printk_ratelimit()) 4189 dev_warn(adapter->pdev_dev, 4190 "%u %s correctable ECC data error%s\n", 4191 cnt, name[idx], cnt > 1 ? "s" : ""); 4192 } 4193 if (v & ECC_UE_INT_CAUSE_F) 4194 dev_alert(adapter->pdev_dev, 4195 "%s uncorrectable ECC data error\n", name[idx]); 4196 4197 t4_write_reg(adapter, addr, v); 4198 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4199 t4_fatal_err(adapter); 4200} 4201 4202/* 4203 * MA interrupt handler. 4204 */ 4205static void ma_intr_handler(struct adapter *adap) 4206{ 4207 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4208 4209 if (status & MEM_PERR_INT_CAUSE_F) { 4210 dev_alert(adap->pdev_dev, 4211 "MA parity error, parity status %#x\n", 4212 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4213 if (is_t5(adap->params.chip)) 4214 dev_alert(adap->pdev_dev, 4215 "MA parity error, parity status %#x\n", 4216 t4_read_reg(adap, 4217 MA_PARITY_ERROR_STATUS2_A)); 4218 } 4219 if (status & MEM_WRAP_INT_CAUSE_F) { 4220 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4221 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4222 "client %u to address %#x\n", 4223 MEM_WRAP_CLIENT_NUM_G(v), 4224 MEM_WRAP_ADDRESS_G(v) << 4); 4225 } 4226 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4227 t4_fatal_err(adap); 4228} 4229 4230/* 4231 * SMB interrupt handler. 4232 */ 4233static void smb_intr_handler(struct adapter *adap) 4234{ 4235 static const struct intr_info smb_intr_info[] = { 4236 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4237 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4238 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4239 { 0 } 4240 }; 4241 4242 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4243 t4_fatal_err(adap); 4244} 4245 4246/* 4247 * NC-SI interrupt handler. 4248 */ 4249static void ncsi_intr_handler(struct adapter *adap) 4250{ 4251 static const struct intr_info ncsi_intr_info[] = { 4252 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4253 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4254 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4255 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4256 { 0 } 4257 }; 4258 4259 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4260 t4_fatal_err(adap); 4261} 4262 4263/* 4264 * XGMAC interrupt handler. 4265 */ 4266static void xgmac_intr_handler(struct adapter *adap, int port) 4267{ 4268 u32 v, int_cause_reg; 4269 4270 if (is_t4(adap->params.chip)) 4271 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4272 else 4273 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4274 4275 v = t4_read_reg(adap, int_cause_reg); 4276 4277 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4278 if (!v) 4279 return; 4280 4281 if (v & TXFIFO_PRTY_ERR_F) 4282 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4283 port); 4284 if (v & RXFIFO_PRTY_ERR_F) 4285 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4286 port); 4287 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4288 t4_fatal_err(adap); 4289} 4290 4291/* 4292 * PL interrupt handler. 4293 */ 4294static void pl_intr_handler(struct adapter *adap) 4295{ 4296 static const struct intr_info pl_intr_info[] = { 4297 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4298 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4299 { 0 } 4300 }; 4301 4302 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4303 t4_fatal_err(adap); 4304} 4305 4306#define PF_INTR_MASK (PFSW_F) 4307#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4308 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4309 CPL_SWITCH_F | SGE_F | ULP_TX_F) 4310 4311/** 4312 * t4_slow_intr_handler - control path interrupt handler 4313 * @adapter: the adapter 4314 * 4315 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4316 * The designation 'slow' is because it involves register reads, while 4317 * data interrupts typically don't involve any MMIOs. 4318 */ 4319int t4_slow_intr_handler(struct adapter *adapter) 4320{ 4321 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4322 4323 if (!(cause & GLBL_INTR_MASK)) 4324 return 0; 4325 if (cause & CIM_F) 4326 cim_intr_handler(adapter); 4327 if (cause & MPS_F) 4328 mps_intr_handler(adapter); 4329 if (cause & NCSI_F) 4330 ncsi_intr_handler(adapter); 4331 if (cause & PL_F) 4332 pl_intr_handler(adapter); 4333 if (cause & SMB_F) 4334 smb_intr_handler(adapter); 4335 if (cause & XGMAC0_F) 4336 xgmac_intr_handler(adapter, 0); 4337 if (cause & XGMAC1_F) 4338 xgmac_intr_handler(adapter, 1); 4339 if (cause & XGMAC_KR0_F) 4340 xgmac_intr_handler(adapter, 2); 4341 if (cause & XGMAC_KR1_F) 4342 xgmac_intr_handler(adapter, 3); 4343 if (cause & PCIE_F) 4344 pcie_intr_handler(adapter); 4345 if (cause & MC_F) 4346 mem_intr_handler(adapter, MEM_MC); 4347 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4348 mem_intr_handler(adapter, MEM_MC1); 4349 if (cause & EDC0_F) 4350 mem_intr_handler(adapter, MEM_EDC0); 4351 if (cause & EDC1_F) 4352 mem_intr_handler(adapter, MEM_EDC1); 4353 if (cause & LE_F) 4354 le_intr_handler(adapter); 4355 if (cause & TP_F) 4356 tp_intr_handler(adapter); 4357 if (cause & MA_F) 4358 ma_intr_handler(adapter); 4359 if (cause & PM_TX_F) 4360 pmtx_intr_handler(adapter); 4361 if (cause & PM_RX_F) 4362 pmrx_intr_handler(adapter); 4363 if (cause & ULP_RX_F) 4364 ulprx_intr_handler(adapter); 4365 if (cause & CPL_SWITCH_F) 4366 cplsw_intr_handler(adapter); 4367 if (cause & SGE_F) 4368 sge_intr_handler(adapter); 4369 if (cause & ULP_TX_F) 4370 ulptx_intr_handler(adapter); 4371 4372 /* Clear the interrupts just processed for which we are the master. */ 4373 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 4374 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 4375 return 1; 4376} 4377 4378/** 4379 * t4_intr_enable - enable interrupts 4380 * @adapter: the adapter whose interrupts should be enabled 4381 * 4382 * Enable PF-specific interrupts for the calling function and the top-level 4383 * interrupt concentrator for global interrupts. Interrupts are already 4384 * enabled at each module, here we just enable the roots of the interrupt 4385 * hierarchies. 4386 * 4387 * Note: this function should be called only when the driver manages 4388 * non PF-specific interrupts from the various HW modules. Only one PCI 4389 * function at a time should be doing this. 4390 */ 4391void t4_intr_enable(struct adapter *adapter) 4392{ 4393 u32 val = 0; 4394 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4395 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4396 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4397 4398 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4399 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 4400 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 4401 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 4402 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 4403 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 4404 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 4405 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 4406 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 4407 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 4408 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 4409} 4410 4411/** 4412 * t4_intr_disable - disable interrupts 4413 * @adapter: the adapter whose interrupts should be disabled 4414 * 4415 * Disable interrupts. We only disable the top-level interrupt 4416 * concentrators. The caller must be a PCI function managing global 4417 * interrupts. 4418 */ 4419void t4_intr_disable(struct adapter *adapter) 4420{ 4421 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4422 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4423 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4424 4425 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 4426 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 4427} 4428 4429/** 4430 * hash_mac_addr - return the hash value of a MAC address 4431 * @addr: the 48-bit Ethernet MAC address 4432 * 4433 * Hashes a MAC address according to the hash function used by HW inexact 4434 * (hash) address matching. 4435 */ 4436static int hash_mac_addr(const u8 *addr) 4437{ 4438 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 4439 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 4440 a ^= b; 4441 a ^= (a >> 12); 4442 a ^= (a >> 6); 4443 return a & 0x3f; 4444} 4445 4446/** 4447 * t4_config_rss_range - configure a portion of the RSS mapping table 4448 * @adapter: the adapter 4449 * @mbox: mbox to use for the FW command 4450 * @viid: virtual interface whose RSS subtable is to be written 4451 * @start: start entry in the table to write 4452 * @n: how many table entries to write 4453 * @rspq: values for the response queue lookup table 4454 * @nrspq: number of values in @rspq 4455 * 4456 * Programs the selected part of the VI's RSS mapping table with the 4457 * provided values. If @nrspq < @n the supplied values are used repeatedly 4458 * until the full table range is populated. 4459 * 4460 * The caller must ensure the values in @rspq are in the range allowed for 4461 * @viid. 4462 */ 4463int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 4464 int start, int n, const u16 *rspq, unsigned int nrspq) 4465{ 4466 int ret; 4467 const u16 *rsp = rspq; 4468 const u16 *rsp_end = rspq + nrspq; 4469 struct fw_rss_ind_tbl_cmd cmd; 4470 4471 memset(&cmd, 0, sizeof(cmd)); 4472 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 4473 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4474 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 4475 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 4476 4477 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 4478 while (n > 0) { 4479 int nq = min(n, 32); 4480 __be32 *qp = &cmd.iq0_to_iq2; 4481 4482 cmd.niqid = cpu_to_be16(nq); 4483 cmd.startidx = cpu_to_be16(start); 4484 4485 start += nq; 4486 n -= nq; 4487 4488 while (nq > 0) { 4489 unsigned int v; 4490 4491 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 4492 if (++rsp >= rsp_end) 4493 rsp = rspq; 4494 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 4495 if (++rsp >= rsp_end) 4496 rsp = rspq; 4497 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 4498 if (++rsp >= rsp_end) 4499 rsp = rspq; 4500 4501 *qp++ = cpu_to_be32(v); 4502 nq -= 3; 4503 } 4504 4505 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 4506 if (ret) 4507 return ret; 4508 } 4509 return 0; 4510} 4511 4512/** 4513 * t4_config_glbl_rss - configure the global RSS mode 4514 * @adapter: the adapter 4515 * @mbox: mbox to use for the FW command 4516 * @mode: global RSS mode 4517 * @flags: mode-specific flags 4518 * 4519 * Sets the global RSS mode. 4520 */ 4521int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 4522 unsigned int flags) 4523{ 4524 struct fw_rss_glb_config_cmd c; 4525 4526 memset(&c, 0, sizeof(c)); 4527 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 4528 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 4529 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 4530 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 4531 c.u.manual.mode_pkd = 4532 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 4533 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 4534 c.u.basicvirtual.mode_pkd = 4535 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 4536 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 4537 } else 4538 return -EINVAL; 4539 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 4540} 4541 4542/** 4543 * t4_config_vi_rss - configure per VI RSS settings 4544 * @adapter: the adapter 4545 * @mbox: mbox to use for the FW command 4546 * @viid: the VI id 4547 * @flags: RSS flags 4548 * @defq: id of the default RSS queue for the VI. 4549 * 4550 * Configures VI-specific RSS properties. 4551 */ 4552int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 4553 unsigned int flags, unsigned int defq) 4554{ 4555 struct fw_rss_vi_config_cmd c; 4556 4557 memset(&c, 0, sizeof(c)); 4558 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 4559 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4560 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 4561 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 4562 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 4563 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 4564 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 4565} 4566 4567/* Read an RSS table row */ 4568static int rd_rss_row(struct adapter *adap, int row, u32 *val) 4569{ 4570 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 4571 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 4572 5, 0, val); 4573} 4574 4575/** 4576 * t4_read_rss - read the contents of the RSS mapping table 4577 * @adapter: the adapter 4578 * @map: holds the contents of the RSS mapping table 4579 * 4580 * Reads the contents of the RSS hash->queue mapping table. 4581 */ 4582int t4_read_rss(struct adapter *adapter, u16 *map) 4583{ 4584 u32 val; 4585 int i, ret; 4586 4587 for (i = 0; i < RSS_NENTRIES / 2; ++i) { 4588 ret = rd_rss_row(adapter, i, &val); 4589 if (ret) 4590 return ret; 4591 *map++ = LKPTBLQUEUE0_G(val); 4592 *map++ = LKPTBLQUEUE1_G(val); 4593 } 4594 return 0; 4595} 4596 4597static unsigned int t4_use_ldst(struct adapter *adap) 4598{ 4599 return (adap->flags & FW_OK) || !adap->use_bd; 4600} 4601 4602/** 4603 * t4_fw_tp_pio_rw - Access TP PIO through LDST 4604 * @adap: the adapter 4605 * @vals: where the indirect register values are stored/written 4606 * @nregs: how many indirect registers to read/write 4607 * @start_idx: index of first indirect register to read/write 4608 * @rw: Read (1) or Write (0) 4609 * 4610 * Access TP PIO registers through LDST 4611 */ 4612static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs, 4613 unsigned int start_index, unsigned int rw) 4614{ 4615 int ret, i; 4616 int cmd = FW_LDST_ADDRSPC_TP_PIO; 4617 struct fw_ldst_cmd c; 4618 4619 for (i = 0 ; i < nregs; i++) { 4620 memset(&c, 0, sizeof(c)); 4621 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 4622 FW_CMD_REQUEST_F | 4623 (rw ? FW_CMD_READ_F : 4624 FW_CMD_WRITE_F) | 4625 FW_LDST_CMD_ADDRSPACE_V(cmd)); 4626 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 4627 4628 c.u.addrval.addr = cpu_to_be32(start_index + i); 4629 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 4630 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4631 if (!ret && rw) 4632 vals[i] = be32_to_cpu(c.u.addrval.val); 4633 } 4634} 4635 4636/** 4637 * t4_read_rss_key - read the global RSS key 4638 * @adap: the adapter 4639 * @key: 10-entry array holding the 320-bit RSS key 4640 * 4641 * Reads the global 320-bit RSS key. 4642 */ 4643void t4_read_rss_key(struct adapter *adap, u32 *key) 4644{ 4645 if (t4_use_ldst(adap)) 4646 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1); 4647 else 4648 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, 4649 TP_RSS_SECRET_KEY0_A); 4650} 4651 4652/** 4653 * t4_write_rss_key - program one of the RSS keys 4654 * @adap: the adapter 4655 * @key: 10-entry array holding the 320-bit RSS key 4656 * @idx: which RSS key to write 4657 * 4658 * Writes one of the RSS keys with the given 320-bit value. If @idx is 4659 * 0..15 the corresponding entry in the RSS key table is written, 4660 * otherwise the global RSS key is written. 4661 */ 4662void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx) 4663{ 4664 u8 rss_key_addr_cnt = 16; 4665 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 4666 4667 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 4668 * allows access to key addresses 16-63 by using KeyWrAddrX 4669 * as index[5:4](upper 2) into key table 4670 */ 4671 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 4672 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 4673 rss_key_addr_cnt = 32; 4674 4675 if (t4_use_ldst(adap)) 4676 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0); 4677 else 4678 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, 4679 TP_RSS_SECRET_KEY0_A); 4680 4681 if (idx >= 0 && idx < rss_key_addr_cnt) { 4682 if (rss_key_addr_cnt > 16) 4683 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 4684 KEYWRADDRX_V(idx >> 4) | 4685 T6_VFWRADDR_V(idx) | KEYWREN_F); 4686 else 4687 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 4688 KEYWRADDR_V(idx) | KEYWREN_F); 4689 } 4690} 4691 4692/** 4693 * t4_read_rss_pf_config - read PF RSS Configuration Table 4694 * @adapter: the adapter 4695 * @index: the entry in the PF RSS table to read 4696 * @valp: where to store the returned value 4697 * 4698 * Reads the PF RSS Configuration Table at the specified index and returns 4699 * the value found there. 4700 */ 4701void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 4702 u32 *valp) 4703{ 4704 if (t4_use_ldst(adapter)) 4705 t4_fw_tp_pio_rw(adapter, valp, 1, 4706 TP_RSS_PF0_CONFIG_A + index, 1); 4707 else 4708 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4709 valp, 1, TP_RSS_PF0_CONFIG_A + index); 4710} 4711 4712/** 4713 * t4_read_rss_vf_config - read VF RSS Configuration Table 4714 * @adapter: the adapter 4715 * @index: the entry in the VF RSS table to read 4716 * @vfl: where to store the returned VFL 4717 * @vfh: where to store the returned VFH 4718 * 4719 * Reads the VF RSS Configuration Table at the specified index and returns 4720 * the (VFL, VFH) values found there. 4721 */ 4722void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 4723 u32 *vfl, u32 *vfh) 4724{ 4725 u32 vrt, mask, data; 4726 4727 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 4728 mask = VFWRADDR_V(VFWRADDR_M); 4729 data = VFWRADDR_V(index); 4730 } else { 4731 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 4732 data = T6_VFWRADDR_V(index); 4733 } 4734 4735 /* Request that the index'th VF Table values be read into VFL/VFH. 4736 */ 4737 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 4738 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 4739 vrt |= data | VFRDEN_F; 4740 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 4741 4742 /* Grab the VFL/VFH values ... 4743 */ 4744 if (t4_use_ldst(adapter)) { 4745 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1); 4746 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1); 4747 } else { 4748 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4749 vfl, 1, TP_RSS_VFL_CONFIG_A); 4750 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4751 vfh, 1, TP_RSS_VFH_CONFIG_A); 4752 } 4753} 4754 4755/** 4756 * t4_read_rss_pf_map - read PF RSS Map 4757 * @adapter: the adapter 4758 * 4759 * Reads the PF RSS Map register and returns its value. 4760 */ 4761u32 t4_read_rss_pf_map(struct adapter *adapter) 4762{ 4763 u32 pfmap; 4764 4765 if (t4_use_ldst(adapter)) 4766 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1); 4767 else 4768 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4769 &pfmap, 1, TP_RSS_PF_MAP_A); 4770 return pfmap; 4771} 4772 4773/** 4774 * t4_read_rss_pf_mask - read PF RSS Mask 4775 * @adapter: the adapter 4776 * 4777 * Reads the PF RSS Mask register and returns its value. 4778 */ 4779u32 t4_read_rss_pf_mask(struct adapter *adapter) 4780{ 4781 u32 pfmask; 4782 4783 if (t4_use_ldst(adapter)) 4784 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1); 4785 else 4786 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4787 &pfmask, 1, TP_RSS_PF_MSK_A); 4788 return pfmask; 4789} 4790 4791/** 4792 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 4793 * @adap: the adapter 4794 * @v4: holds the TCP/IP counter values 4795 * @v6: holds the TCP/IPv6 counter values 4796 * 4797 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 4798 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 4799 */ 4800void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 4801 struct tp_tcp_stats *v6) 4802{ 4803 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 4804 4805#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 4806#define STAT(x) val[STAT_IDX(x)] 4807#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 4808 4809 if (v4) { 4810 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4811 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A); 4812 v4->tcp_out_rsts = STAT(OUT_RST); 4813 v4->tcp_in_segs = STAT64(IN_SEG); 4814 v4->tcp_out_segs = STAT64(OUT_SEG); 4815 v4->tcp_retrans_segs = STAT64(RXT_SEG); 4816 } 4817 if (v6) { 4818 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4819 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A); 4820 v6->tcp_out_rsts = STAT(OUT_RST); 4821 v6->tcp_in_segs = STAT64(IN_SEG); 4822 v6->tcp_out_segs = STAT64(OUT_SEG); 4823 v6->tcp_retrans_segs = STAT64(RXT_SEG); 4824 } 4825#undef STAT64 4826#undef STAT 4827#undef STAT_IDX 4828} 4829 4830/** 4831 * t4_tp_get_err_stats - read TP's error MIB counters 4832 * @adap: the adapter 4833 * @st: holds the counter values 4834 * 4835 * Returns the values of TP's error counters. 4836 */ 4837void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st) 4838{ 4839 int nchan = adap->params.arch.nchan; 4840 4841 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4842 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A); 4843 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4844 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A); 4845 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4846 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A); 4847 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4848 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A); 4849 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4850 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A); 4851 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4852 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A); 4853 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4854 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A); 4855 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4856 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A); 4857 4858 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4859 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A); 4860} 4861 4862/** 4863 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 4864 * @adap: the adapter 4865 * @st: holds the counter values 4866 * 4867 * Returns the values of TP's CPL counters. 4868 */ 4869void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st) 4870{ 4871 int nchan = adap->params.arch.nchan; 4872 4873 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req, 4874 nchan, TP_MIB_CPL_IN_REQ_0_A); 4875 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp, 4876 nchan, TP_MIB_CPL_OUT_RSP_0_A); 4877 4878} 4879 4880/** 4881 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 4882 * @adap: the adapter 4883 * @st: holds the counter values 4884 * 4885 * Returns the values of TP's RDMA counters. 4886 */ 4887void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st) 4888{ 4889 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt, 4890 2, TP_MIB_RQE_DFR_PKT_A); 4891} 4892 4893/** 4894 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 4895 * @adap: the adapter 4896 * @idx: the port index 4897 * @st: holds the counter values 4898 * 4899 * Returns the values of TP's FCoE counters for the selected port. 4900 */ 4901void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 4902 struct tp_fcoe_stats *st) 4903{ 4904 u32 val[2]; 4905 4906 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp, 4907 1, TP_MIB_FCOE_DDP_0_A + idx); 4908 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop, 4909 1, TP_MIB_FCOE_DROP_0_A + idx); 4910 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4911 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx); 4912 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 4913} 4914 4915/** 4916 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 4917 * @adap: the adapter 4918 * @st: holds the counter values 4919 * 4920 * Returns the values of TP's counters for non-TCP directly-placed packets. 4921 */ 4922void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st) 4923{ 4924 u32 val[4]; 4925 4926 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4, 4927 TP_MIB_USM_PKTS_A); 4928 st->frames = val[0]; 4929 st->drops = val[1]; 4930 st->octets = ((u64)val[2] << 32) | val[3]; 4931} 4932 4933/** 4934 * t4_read_mtu_tbl - returns the values in the HW path MTU table 4935 * @adap: the adapter 4936 * @mtus: where to store the MTU values 4937 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 4938 * 4939 * Reads the HW path MTU table. 4940 */ 4941void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 4942{ 4943 u32 v; 4944 int i; 4945 4946 for (i = 0; i < NMTUS; ++i) { 4947 t4_write_reg(adap, TP_MTU_TABLE_A, 4948 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 4949 v = t4_read_reg(adap, TP_MTU_TABLE_A); 4950 mtus[i] = MTUVALUE_G(v); 4951 if (mtu_log) 4952 mtu_log[i] = MTUWIDTH_G(v); 4953 } 4954} 4955 4956/** 4957 * t4_read_cong_tbl - reads the congestion control table 4958 * @adap: the adapter 4959 * @incr: where to store the alpha values 4960 * 4961 * Reads the additive increments programmed into the HW congestion 4962 * control table. 4963 */ 4964void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 4965{ 4966 unsigned int mtu, w; 4967 4968 for (mtu = 0; mtu < NMTUS; ++mtu) 4969 for (w = 0; w < NCCTRL_WIN; ++w) { 4970 t4_write_reg(adap, TP_CCTRL_TABLE_A, 4971 ROWINDEX_V(0xffff) | (mtu << 5) | w); 4972 incr[mtu][w] = (u16)t4_read_reg(adap, 4973 TP_CCTRL_TABLE_A) & 0x1fff; 4974 } 4975} 4976 4977/** 4978 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 4979 * @adap: the adapter 4980 * @addr: the indirect TP register address 4981 * @mask: specifies the field within the register to modify 4982 * @val: new value for the field 4983 * 4984 * Sets a field of an indirect TP register to the given value. 4985 */ 4986void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 4987 unsigned int mask, unsigned int val) 4988{ 4989 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 4990 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 4991 t4_write_reg(adap, TP_PIO_DATA_A, val); 4992} 4993 4994/** 4995 * init_cong_ctrl - initialize congestion control parameters 4996 * @a: the alpha values for congestion control 4997 * @b: the beta values for congestion control 4998 * 4999 * Initialize the congestion control parameters. 5000 */ 5001static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5002{ 5003 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5004 a[9] = 2; 5005 a[10] = 3; 5006 a[11] = 4; 5007 a[12] = 5; 5008 a[13] = 6; 5009 a[14] = 7; 5010 a[15] = 8; 5011 a[16] = 9; 5012 a[17] = 10; 5013 a[18] = 14; 5014 a[19] = 17; 5015 a[20] = 21; 5016 a[21] = 25; 5017 a[22] = 30; 5018 a[23] = 35; 5019 a[24] = 45; 5020 a[25] = 60; 5021 a[26] = 80; 5022 a[27] = 100; 5023 a[28] = 200; 5024 a[29] = 300; 5025 a[30] = 400; 5026 a[31] = 500; 5027 5028 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5029 b[9] = b[10] = 1; 5030 b[11] = b[12] = 2; 5031 b[13] = b[14] = b[15] = b[16] = 3; 5032 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5033 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5034 b[28] = b[29] = 6; 5035 b[30] = b[31] = 7; 5036} 5037 5038/* The minimum additive increment value for the congestion control table */ 5039#define CC_MIN_INCR 2U 5040 5041/** 5042 * t4_load_mtus - write the MTU and congestion control HW tables 5043 * @adap: the adapter 5044 * @mtus: the values for the MTU table 5045 * @alpha: the values for the congestion control alpha parameter 5046 * @beta: the values for the congestion control beta parameter 5047 * 5048 * Write the HW MTU table with the supplied MTUs and the high-speed 5049 * congestion control table with the supplied alpha, beta, and MTUs. 5050 * We write the two tables together because the additive increments 5051 * depend on the MTUs. 5052 */ 5053void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5054 const unsigned short *alpha, const unsigned short *beta) 5055{ 5056 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5057 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5058 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5059 28672, 40960, 57344, 81920, 114688, 163840, 229376 5060 }; 5061 5062 unsigned int i, w; 5063 5064 for (i = 0; i < NMTUS; ++i) { 5065 unsigned int mtu = mtus[i]; 5066 unsigned int log2 = fls(mtu); 5067 5068 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5069 log2--; 5070 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5071 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5072 5073 for (w = 0; w < NCCTRL_WIN; ++w) { 5074 unsigned int inc; 5075 5076 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5077 CC_MIN_INCR); 5078 5079 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5080 (w << 16) | (beta[w] << 13) | inc); 5081 } 5082 } 5083} 5084 5085/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5086 * clocks. The formula is 5087 * 5088 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5089 * 5090 * which is equivalent to 5091 * 5092 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5093 */ 5094static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5095{ 5096 u64 v = bytes256 * adap->params.vpd.cclk; 5097 5098 return v * 62 + v / 2; 5099} 5100 5101/** 5102 * t4_get_chan_txrate - get the current per channel Tx rates 5103 * @adap: the adapter 5104 * @nic_rate: rates for NIC traffic 5105 * @ofld_rate: rates for offloaded traffic 5106 * 5107 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5108 * for each channel. 5109 */ 5110void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5111{ 5112 u32 v; 5113 5114 v = t4_read_reg(adap, TP_TX_TRATE_A); 5115 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5116 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5117 if (adap->params.arch.nchan == NCHAN) { 5118 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5119 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5120 } 5121 5122 v = t4_read_reg(adap, TP_TX_ORATE_A); 5123 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5124 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5125 if (adap->params.arch.nchan == NCHAN) { 5126 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5127 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5128 } 5129} 5130 5131/** 5132 * t4_set_trace_filter - configure one of the tracing filters 5133 * @adap: the adapter 5134 * @tp: the desired trace filter parameters 5135 * @idx: which filter to configure 5136 * @enable: whether to enable or disable the filter 5137 * 5138 * Configures one of the tracing filters available in HW. If @enable is 5139 * %0 @tp is not examined and may be %NULL. The user is responsible to 5140 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5141 */ 5142int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5143 int idx, int enable) 5144{ 5145 int i, ofst = idx * 4; 5146 u32 data_reg, mask_reg, cfg; 5147 u32 multitrc = TRCMULTIFILTER_F; 5148 5149 if (!enable) { 5150 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5151 return 0; 5152 } 5153 5154 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5155 if (cfg & TRCMULTIFILTER_F) { 5156 /* If multiple tracers are enabled, then maximum 5157 * capture size is 2.5KB (FIFO size of a single channel) 5158 * minus 2 flits for CPL_TRACE_PKT header. 5159 */ 5160 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5161 return -EINVAL; 5162 } else { 5163 /* If multiple tracers are disabled, to avoid deadlocks 5164 * maximum packet capture size of 9600 bytes is recommended. 5165 * Also in this mode, only trace0 can be enabled and running. 5166 */ 5167 multitrc = 0; 5168 if (tp->snap_len > 9600 || idx) 5169 return -EINVAL; 5170 } 5171 5172 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5173 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5174 tp->min_len > TFMINPKTSIZE_M) 5175 return -EINVAL; 5176 5177 /* stop the tracer we'll be changing */ 5178 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5179 5180 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5181 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5182 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5183 5184 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5185 t4_write_reg(adap, data_reg, tp->data[i]); 5186 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5187 } 5188 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5189 TFCAPTUREMAX_V(tp->snap_len) | 5190 TFMINPKTSIZE_V(tp->min_len)); 5191 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5192 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5193 (is_t4(adap->params.chip) ? 5194 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5195 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5196 T5_TFINVERTMATCH_V(tp->invert))); 5197 5198 return 0; 5199} 5200 5201/** 5202 * t4_get_trace_filter - query one of the tracing filters 5203 * @adap: the adapter 5204 * @tp: the current trace filter parameters 5205 * @idx: which trace filter to query 5206 * @enabled: non-zero if the filter is enabled 5207 * 5208 * Returns the current settings of one of the HW tracing filters. 5209 */ 5210void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5211 int *enabled) 5212{ 5213 u32 ctla, ctlb; 5214 int i, ofst = idx * 4; 5215 u32 data_reg, mask_reg; 5216 5217 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5218 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5219 5220 if (is_t4(adap->params.chip)) { 5221 *enabled = !!(ctla & TFEN_F); 5222 tp->port = TFPORT_G(ctla); 5223 tp->invert = !!(ctla & TFINVERTMATCH_F); 5224 } else { 5225 *enabled = !!(ctla & T5_TFEN_F); 5226 tp->port = T5_TFPORT_G(ctla); 5227 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5228 } 5229 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5230 tp->min_len = TFMINPKTSIZE_G(ctlb); 5231 tp->skip_ofst = TFOFFSET_G(ctla); 5232 tp->skip_len = TFLENGTH_G(ctla); 5233 5234 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5235 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5236 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5237 5238 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5239 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5240 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5241 } 5242} 5243 5244/** 5245 * t4_pmtx_get_stats - returns the HW stats from PMTX 5246 * @adap: the adapter 5247 * @cnt: where to store the count statistics 5248 * @cycles: where to store the cycle statistics 5249 * 5250 * Returns performance statistics from PMTX. 5251 */ 5252void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5253{ 5254 int i; 5255 u32 data[2]; 5256 5257 for (i = 0; i < PM_NSTATS; i++) { 5258 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 5259 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 5260 if (is_t4(adap->params.chip)) { 5261 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 5262 } else { 5263 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 5264 PM_TX_DBG_DATA_A, data, 2, 5265 PM_TX_DBG_STAT_MSB_A); 5266 cycles[i] = (((u64)data[0] << 32) | data[1]); 5267 } 5268 } 5269} 5270 5271/** 5272 * t4_pmrx_get_stats - returns the HW stats from PMRX 5273 * @adap: the adapter 5274 * @cnt: where to store the count statistics 5275 * @cycles: where to store the cycle statistics 5276 * 5277 * Returns performance statistics from PMRX. 5278 */ 5279void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5280{ 5281 int i; 5282 u32 data[2]; 5283 5284 for (i = 0; i < PM_NSTATS; i++) { 5285 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 5286 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 5287 if (is_t4(adap->params.chip)) { 5288 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 5289 } else { 5290 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 5291 PM_RX_DBG_DATA_A, data, 2, 5292 PM_RX_DBG_STAT_MSB_A); 5293 cycles[i] = (((u64)data[0] << 32) | data[1]); 5294 } 5295 } 5296} 5297 5298/** 5299 * t4_get_mps_bg_map - return the buffer groups associated with a port 5300 * @adap: the adapter 5301 * @idx: the port index 5302 * 5303 * Returns a bitmap indicating which MPS buffer groups are associated 5304 * with the given port. Bit i is set if buffer group i is used by the 5305 * port. 5306 */ 5307unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx) 5308{ 5309 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 5310 5311 if (n == 0) 5312 return idx == 0 ? 0xf : 0; 5313 if (n == 1) 5314 return idx < 2 ? (3 << (2 * idx)) : 0; 5315 return 1 << idx; 5316} 5317 5318/** 5319 * t4_get_port_type_description - return Port Type string description 5320 * @port_type: firmware Port Type enumeration 5321 */ 5322const char *t4_get_port_type_description(enum fw_port_type port_type) 5323{ 5324 static const char *const port_type_description[] = { 5325 "R XFI", 5326 "R XAUI", 5327 "T SGMII", 5328 "T XFI", 5329 "T XAUI", 5330 "KX4", 5331 "CX4", 5332 "KX", 5333 "KR", 5334 "R SFP+", 5335 "KR/KX", 5336 "KR/KX/KX4", 5337 "R QSFP_10G", 5338 "R QSA", 5339 "R QSFP", 5340 "R BP40_BA", 5341 }; 5342 5343 if (port_type < ARRAY_SIZE(port_type_description)) 5344 return port_type_description[port_type]; 5345 return "UNKNOWN"; 5346} 5347 5348/** 5349 * t4_get_port_stats_offset - collect port stats relative to a previous 5350 * snapshot 5351 * @adap: The adapter 5352 * @idx: The port 5353 * @stats: Current stats to fill 5354 * @offset: Previous stats snapshot 5355 */ 5356void t4_get_port_stats_offset(struct adapter *adap, int idx, 5357 struct port_stats *stats, 5358 struct port_stats *offset) 5359{ 5360 u64 *s, *o; 5361 int i; 5362 5363 t4_get_port_stats(adap, idx, stats); 5364 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 5365 i < (sizeof(struct port_stats) / sizeof(u64)); 5366 i++, s++, o++) 5367 *s -= *o; 5368} 5369 5370/** 5371 * t4_get_port_stats - collect port statistics 5372 * @adap: the adapter 5373 * @idx: the port index 5374 * @p: the stats structure to fill 5375 * 5376 * Collect statistics related to the given port from HW. 5377 */ 5378void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 5379{ 5380 u32 bgmap = t4_get_mps_bg_map(adap, idx); 5381 5382#define GET_STAT(name) \ 5383 t4_read_reg64(adap, \ 5384 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 5385 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 5386#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 5387 5388 p->tx_octets = GET_STAT(TX_PORT_BYTES); 5389 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 5390 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 5391 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 5392 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 5393 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 5394 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 5395 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 5396 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 5397 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 5398 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 5399 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 5400 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 5401 p->tx_drop = GET_STAT(TX_PORT_DROP); 5402 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 5403 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 5404 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 5405 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 5406 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 5407 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 5408 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 5409 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 5410 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 5411 5412 p->rx_octets = GET_STAT(RX_PORT_BYTES); 5413 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 5414 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 5415 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 5416 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 5417 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 5418 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 5419 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 5420 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 5421 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 5422 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 5423 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 5424 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 5425 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 5426 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 5427 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 5428 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 5429 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 5430 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 5431 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 5432 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 5433 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 5434 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 5435 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 5436 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 5437 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 5438 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 5439 5440 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 5441 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 5442 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 5443 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 5444 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 5445 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 5446 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 5447 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 5448 5449#undef GET_STAT 5450#undef GET_STAT_COM 5451} 5452 5453/** 5454 * t4_get_lb_stats - collect loopback port statistics 5455 * @adap: the adapter 5456 * @idx: the loopback port index 5457 * @p: the stats structure to fill 5458 * 5459 * Return HW statistics for the given loopback port. 5460 */ 5461void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 5462{ 5463 u32 bgmap = t4_get_mps_bg_map(adap, idx); 5464 5465#define GET_STAT(name) \ 5466 t4_read_reg64(adap, \ 5467 (is_t4(adap->params.chip) ? \ 5468 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 5469 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 5470#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 5471 5472 p->octets = GET_STAT(BYTES); 5473 p->frames = GET_STAT(FRAMES); 5474 p->bcast_frames = GET_STAT(BCAST); 5475 p->mcast_frames = GET_STAT(MCAST); 5476 p->ucast_frames = GET_STAT(UCAST); 5477 p->error_frames = GET_STAT(ERROR); 5478 5479 p->frames_64 = GET_STAT(64B); 5480 p->frames_65_127 = GET_STAT(65B_127B); 5481 p->frames_128_255 = GET_STAT(128B_255B); 5482 p->frames_256_511 = GET_STAT(256B_511B); 5483 p->frames_512_1023 = GET_STAT(512B_1023B); 5484 p->frames_1024_1518 = GET_STAT(1024B_1518B); 5485 p->frames_1519_max = GET_STAT(1519B_MAX); 5486 p->drop = GET_STAT(DROP_FRAMES); 5487 5488 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 5489 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 5490 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 5491 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 5492 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 5493 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 5494 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 5495 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 5496 5497#undef GET_STAT 5498#undef GET_STAT_COM 5499} 5500 5501/* t4_mk_filtdelwr - create a delete filter WR 5502 * @ftid: the filter ID 5503 * @wr: the filter work request to populate 5504 * @qid: ingress queue to receive the delete notification 5505 * 5506 * Creates a filter work request to delete the supplied filter. If @qid is 5507 * negative the delete notification is suppressed. 5508 */ 5509void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 5510{ 5511 memset(wr, 0, sizeof(*wr)); 5512 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 5513 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 5514 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 5515 FW_FILTER_WR_NOREPLY_V(qid < 0)); 5516 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 5517 if (qid >= 0) 5518 wr->rx_chan_rx_rpl_iq = 5519 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 5520} 5521 5522#define INIT_CMD(var, cmd, rd_wr) do { \ 5523 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 5524 FW_CMD_REQUEST_F | \ 5525 FW_CMD_##rd_wr##_F); \ 5526 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 5527} while (0) 5528 5529int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 5530 u32 addr, u32 val) 5531{ 5532 u32 ldst_addrspace; 5533 struct fw_ldst_cmd c; 5534 5535 memset(&c, 0, sizeof(c)); 5536 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 5537 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5538 FW_CMD_REQUEST_F | 5539 FW_CMD_WRITE_F | 5540 ldst_addrspace); 5541 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5542 c.u.addrval.addr = cpu_to_be32(addr); 5543 c.u.addrval.val = cpu_to_be32(val); 5544 5545 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5546} 5547 5548/** 5549 * t4_mdio_rd - read a PHY register through MDIO 5550 * @adap: the adapter 5551 * @mbox: mailbox to use for the FW command 5552 * @phy_addr: the PHY address 5553 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 5554 * @reg: the register to read 5555 * @valp: where to store the value 5556 * 5557 * Issues a FW command through the given mailbox to read a PHY register. 5558 */ 5559int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 5560 unsigned int mmd, unsigned int reg, u16 *valp) 5561{ 5562 int ret; 5563 u32 ldst_addrspace; 5564 struct fw_ldst_cmd c; 5565 5566 memset(&c, 0, sizeof(c)); 5567 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 5568 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5569 FW_CMD_REQUEST_F | FW_CMD_READ_F | 5570 ldst_addrspace); 5571 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5572 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 5573 FW_LDST_CMD_MMD_V(mmd)); 5574 c.u.mdio.raddr = cpu_to_be16(reg); 5575 5576 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5577 if (ret == 0) 5578 *valp = be16_to_cpu(c.u.mdio.rval); 5579 return ret; 5580} 5581 5582/** 5583 * t4_mdio_wr - write a PHY register through MDIO 5584 * @adap: the adapter 5585 * @mbox: mailbox to use for the FW command 5586 * @phy_addr: the PHY address 5587 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 5588 * @reg: the register to write 5589 * @valp: value to write 5590 * 5591 * Issues a FW command through the given mailbox to write a PHY register. 5592 */ 5593int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 5594 unsigned int mmd, unsigned int reg, u16 val) 5595{ 5596 u32 ldst_addrspace; 5597 struct fw_ldst_cmd c; 5598 5599 memset(&c, 0, sizeof(c)); 5600 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 5601 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5602 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5603 ldst_addrspace); 5604 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5605 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 5606 FW_LDST_CMD_MMD_V(mmd)); 5607 c.u.mdio.raddr = cpu_to_be16(reg); 5608 c.u.mdio.rval = cpu_to_be16(val); 5609 5610 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5611} 5612 5613/** 5614 * t4_sge_decode_idma_state - decode the idma state 5615 * @adap: the adapter 5616 * @state: the state idma is stuck in 5617 */ 5618void t4_sge_decode_idma_state(struct adapter *adapter, int state) 5619{ 5620 static const char * const t4_decode[] = { 5621 "IDMA_IDLE", 5622 "IDMA_PUSH_MORE_CPL_FIFO", 5623 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 5624 "Not used", 5625 "IDMA_PHYSADDR_SEND_PCIEHDR", 5626 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 5627 "IDMA_PHYSADDR_SEND_PAYLOAD", 5628 "IDMA_SEND_FIFO_TO_IMSG", 5629 "IDMA_FL_REQ_DATA_FL_PREP", 5630 "IDMA_FL_REQ_DATA_FL", 5631 "IDMA_FL_DROP", 5632 "IDMA_FL_H_REQ_HEADER_FL", 5633 "IDMA_FL_H_SEND_PCIEHDR", 5634 "IDMA_FL_H_PUSH_CPL_FIFO", 5635 "IDMA_FL_H_SEND_CPL", 5636 "IDMA_FL_H_SEND_IP_HDR_FIRST", 5637 "IDMA_FL_H_SEND_IP_HDR", 5638 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 5639 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 5640 "IDMA_FL_H_SEND_IP_HDR_PADDING", 5641 "IDMA_FL_D_SEND_PCIEHDR", 5642 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 5643 "IDMA_FL_D_REQ_NEXT_DATA_FL", 5644 "IDMA_FL_SEND_PCIEHDR", 5645 "IDMA_FL_PUSH_CPL_FIFO", 5646 "IDMA_FL_SEND_CPL", 5647 "IDMA_FL_SEND_PAYLOAD_FIRST", 5648 "IDMA_FL_SEND_PAYLOAD", 5649 "IDMA_FL_REQ_NEXT_DATA_FL", 5650 "IDMA_FL_SEND_NEXT_PCIEHDR", 5651 "IDMA_FL_SEND_PADDING", 5652 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 5653 "IDMA_FL_SEND_FIFO_TO_IMSG", 5654 "IDMA_FL_REQ_DATAFL_DONE", 5655 "IDMA_FL_REQ_HEADERFL_DONE", 5656 }; 5657 static const char * const t5_decode[] = { 5658 "IDMA_IDLE", 5659 "IDMA_ALMOST_IDLE", 5660 "IDMA_PUSH_MORE_CPL_FIFO", 5661 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 5662 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 5663 "IDMA_PHYSADDR_SEND_PCIEHDR", 5664 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 5665 "IDMA_PHYSADDR_SEND_PAYLOAD", 5666 "IDMA_SEND_FIFO_TO_IMSG", 5667 "IDMA_FL_REQ_DATA_FL", 5668 "IDMA_FL_DROP", 5669 "IDMA_FL_DROP_SEND_INC", 5670 "IDMA_FL_H_REQ_HEADER_FL", 5671 "IDMA_FL_H_SEND_PCIEHDR", 5672 "IDMA_FL_H_PUSH_CPL_FIFO", 5673 "IDMA_FL_H_SEND_CPL", 5674 "IDMA_FL_H_SEND_IP_HDR_FIRST", 5675 "IDMA_FL_H_SEND_IP_HDR", 5676 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 5677 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 5678 "IDMA_FL_H_SEND_IP_HDR_PADDING", 5679 "IDMA_FL_D_SEND_PCIEHDR", 5680 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 5681 "IDMA_FL_D_REQ_NEXT_DATA_FL", 5682 "IDMA_FL_SEND_PCIEHDR", 5683 "IDMA_FL_PUSH_CPL_FIFO", 5684 "IDMA_FL_SEND_CPL", 5685 "IDMA_FL_SEND_PAYLOAD_FIRST", 5686 "IDMA_FL_SEND_PAYLOAD", 5687 "IDMA_FL_REQ_NEXT_DATA_FL", 5688 "IDMA_FL_SEND_NEXT_PCIEHDR", 5689 "IDMA_FL_SEND_PADDING", 5690 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 5691 }; 5692 static const u32 sge_regs[] = { 5693 SGE_DEBUG_DATA_LOW_INDEX_2_A, 5694 SGE_DEBUG_DATA_LOW_INDEX_3_A, 5695 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 5696 }; 5697 const char **sge_idma_decode; 5698 int sge_idma_decode_nstates; 5699 int i; 5700 5701 if (is_t4(adapter->params.chip)) { 5702 sge_idma_decode = (const char **)t4_decode; 5703 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 5704 } else { 5705 sge_idma_decode = (const char **)t5_decode; 5706 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 5707 } 5708 5709 if (state < sge_idma_decode_nstates) 5710 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 5711 else 5712 CH_WARN(adapter, "idma state %d unknown\n", state); 5713 5714 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 5715 CH_WARN(adapter, "SGE register %#x value %#x\n", 5716 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 5717} 5718 5719/** 5720 * t4_sge_ctxt_flush - flush the SGE context cache 5721 * @adap: the adapter 5722 * @mbox: mailbox to use for the FW command 5723 * 5724 * Issues a FW command through the given mailbox to flush the 5725 * SGE context cache. 5726 */ 5727int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox) 5728{ 5729 int ret; 5730 u32 ldst_addrspace; 5731 struct fw_ldst_cmd c; 5732 5733 memset(&c, 0, sizeof(c)); 5734 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC); 5735 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5736 FW_CMD_REQUEST_F | FW_CMD_READ_F | 5737 ldst_addrspace); 5738 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5739 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 5740 5741 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5742 return ret; 5743} 5744 5745/** 5746 * t4_fw_hello - establish communication with FW 5747 * @adap: the adapter 5748 * @mbox: mailbox to use for the FW command 5749 * @evt_mbox: mailbox to receive async FW events 5750 * @master: specifies the caller's willingness to be the device master 5751 * @state: returns the current device state (if non-NULL) 5752 * 5753 * Issues a command to establish communication with FW. Returns either 5754 * an error (negative integer) or the mailbox of the Master PF. 5755 */ 5756int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 5757 enum dev_master master, enum dev_state *state) 5758{ 5759 int ret; 5760 struct fw_hello_cmd c; 5761 u32 v; 5762 unsigned int master_mbox; 5763 int retries = FW_CMD_HELLO_RETRIES; 5764 5765retry: 5766 memset(&c, 0, sizeof(c)); 5767 INIT_CMD(c, HELLO, WRITE); 5768 c.err_to_clearinit = cpu_to_be32( 5769 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 5770 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 5771 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 5772 mbox : FW_HELLO_CMD_MBMASTER_M) | 5773 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 5774 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 5775 FW_HELLO_CMD_CLEARINIT_F); 5776 5777 /* 5778 * Issue the HELLO command to the firmware. If it's not successful 5779 * but indicates that we got a "busy" or "timeout" condition, retry 5780 * the HELLO until we exhaust our retry limit. If we do exceed our 5781 * retry limit, check to see if the firmware left us any error 5782 * information and report that if so. 5783 */ 5784 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5785 if (ret < 0) { 5786 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 5787 goto retry; 5788 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 5789 t4_report_fw_error(adap); 5790 return ret; 5791 } 5792 5793 v = be32_to_cpu(c.err_to_clearinit); 5794 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 5795 if (state) { 5796 if (v & FW_HELLO_CMD_ERR_F) 5797 *state = DEV_STATE_ERR; 5798 else if (v & FW_HELLO_CMD_INIT_F) 5799 *state = DEV_STATE_INIT; 5800 else 5801 *state = DEV_STATE_UNINIT; 5802 } 5803 5804 /* 5805 * If we're not the Master PF then we need to wait around for the 5806 * Master PF Driver to finish setting up the adapter. 5807 * 5808 * Note that we also do this wait if we're a non-Master-capable PF and 5809 * there is no current Master PF; a Master PF may show up momentarily 5810 * and we wouldn't want to fail pointlessly. (This can happen when an 5811 * OS loads lots of different drivers rapidly at the same time). In 5812 * this case, the Master PF returned by the firmware will be 5813 * PCIE_FW_MASTER_M so the test below will work ... 5814 */ 5815 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 5816 master_mbox != mbox) { 5817 int waiting = FW_CMD_HELLO_TIMEOUT; 5818 5819 /* 5820 * Wait for the firmware to either indicate an error or 5821 * initialized state. If we see either of these we bail out 5822 * and report the issue to the caller. If we exhaust the 5823 * "hello timeout" and we haven't exhausted our retries, try 5824 * again. Otherwise bail with a timeout error. 5825 */ 5826 for (;;) { 5827 u32 pcie_fw; 5828 5829 msleep(50); 5830 waiting -= 50; 5831 5832 /* 5833 * If neither Error nor Initialialized are indicated 5834 * by the firmware keep waiting till we exaust our 5835 * timeout ... and then retry if we haven't exhausted 5836 * our retries ... 5837 */ 5838 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 5839 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 5840 if (waiting <= 0) { 5841 if (retries-- > 0) 5842 goto retry; 5843 5844 return -ETIMEDOUT; 5845 } 5846 continue; 5847 } 5848 5849 /* 5850 * We either have an Error or Initialized condition 5851 * report errors preferentially. 5852 */ 5853 if (state) { 5854 if (pcie_fw & PCIE_FW_ERR_F) 5855 *state = DEV_STATE_ERR; 5856 else if (pcie_fw & PCIE_FW_INIT_F) 5857 *state = DEV_STATE_INIT; 5858 } 5859 5860 /* 5861 * If we arrived before a Master PF was selected and 5862 * there's not a valid Master PF, grab its identity 5863 * for our caller. 5864 */ 5865 if (master_mbox == PCIE_FW_MASTER_M && 5866 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 5867 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 5868 break; 5869 } 5870 } 5871 5872 return master_mbox; 5873} 5874 5875/** 5876 * t4_fw_bye - end communication with FW 5877 * @adap: the adapter 5878 * @mbox: mailbox to use for the FW command 5879 * 5880 * Issues a command to terminate communication with FW. 5881 */ 5882int t4_fw_bye(struct adapter *adap, unsigned int mbox) 5883{ 5884 struct fw_bye_cmd c; 5885 5886 memset(&c, 0, sizeof(c)); 5887 INIT_CMD(c, BYE, WRITE); 5888 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5889} 5890 5891/** 5892 * t4_init_cmd - ask FW to initialize the device 5893 * @adap: the adapter 5894 * @mbox: mailbox to use for the FW command 5895 * 5896 * Issues a command to FW to partially initialize the device. This 5897 * performs initialization that generally doesn't depend on user input. 5898 */ 5899int t4_early_init(struct adapter *adap, unsigned int mbox) 5900{ 5901 struct fw_initialize_cmd c; 5902 5903 memset(&c, 0, sizeof(c)); 5904 INIT_CMD(c, INITIALIZE, WRITE); 5905 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5906} 5907 5908/** 5909 * t4_fw_reset - issue a reset to FW 5910 * @adap: the adapter 5911 * @mbox: mailbox to use for the FW command 5912 * @reset: specifies the type of reset to perform 5913 * 5914 * Issues a reset command of the specified type to FW. 5915 */ 5916int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 5917{ 5918 struct fw_reset_cmd c; 5919 5920 memset(&c, 0, sizeof(c)); 5921 INIT_CMD(c, RESET, WRITE); 5922 c.val = cpu_to_be32(reset); 5923 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5924} 5925 5926/** 5927 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 5928 * @adap: the adapter 5929 * @mbox: mailbox to use for the FW RESET command (if desired) 5930 * @force: force uP into RESET even if FW RESET command fails 5931 * 5932 * Issues a RESET command to firmware (if desired) with a HALT indication 5933 * and then puts the microprocessor into RESET state. The RESET command 5934 * will only be issued if a legitimate mailbox is provided (mbox <= 5935 * PCIE_FW_MASTER_M). 5936 * 5937 * This is generally used in order for the host to safely manipulate the 5938 * adapter without fear of conflicting with whatever the firmware might 5939 * be doing. The only way out of this state is to RESTART the firmware 5940 * ... 5941 */ 5942static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 5943{ 5944 int ret = 0; 5945 5946 /* 5947 * If a legitimate mailbox is provided, issue a RESET command 5948 * with a HALT indication. 5949 */ 5950 if (mbox <= PCIE_FW_MASTER_M) { 5951 struct fw_reset_cmd c; 5952 5953 memset(&c, 0, sizeof(c)); 5954 INIT_CMD(c, RESET, WRITE); 5955 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 5956 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 5957 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5958 } 5959 5960 /* 5961 * Normally we won't complete the operation if the firmware RESET 5962 * command fails but if our caller insists we'll go ahead and put the 5963 * uP into RESET. This can be useful if the firmware is hung or even 5964 * missing ... We'll have to take the risk of putting the uP into 5965 * RESET without the cooperation of firmware in that case. 5966 * 5967 * We also force the firmware's HALT flag to be on in case we bypassed 5968 * the firmware RESET command above or we're dealing with old firmware 5969 * which doesn't have the HALT capability. This will serve as a flag 5970 * for the incoming firmware to know that it's coming out of a HALT 5971 * rather than a RESET ... if it's new enough to understand that ... 5972 */ 5973 if (ret == 0 || force) { 5974 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 5975 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 5976 PCIE_FW_HALT_F); 5977 } 5978 5979 /* 5980 * And we always return the result of the firmware RESET command 5981 * even when we force the uP into RESET ... 5982 */ 5983 return ret; 5984} 5985 5986/** 5987 * t4_fw_restart - restart the firmware by taking the uP out of RESET 5988 * @adap: the adapter 5989 * @reset: if we want to do a RESET to restart things 5990 * 5991 * Restart firmware previously halted by t4_fw_halt(). On successful 5992 * return the previous PF Master remains as the new PF Master and there 5993 * is no need to issue a new HELLO command, etc. 5994 * 5995 * We do this in two ways: 5996 * 5997 * 1. If we're dealing with newer firmware we'll simply want to take 5998 * the chip's microprocessor out of RESET. This will cause the 5999 * firmware to start up from its start vector. And then we'll loop 6000 * until the firmware indicates it's started again (PCIE_FW.HALT 6001 * reset to 0) or we timeout. 6002 * 6003 * 2. If we're dealing with older firmware then we'll need to RESET 6004 * the chip since older firmware won't recognize the PCIE_FW.HALT 6005 * flag and automatically RESET itself on startup. 6006 */ 6007static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6008{ 6009 if (reset) { 6010 /* 6011 * Since we're directing the RESET instead of the firmware 6012 * doing it automatically, we need to clear the PCIE_FW.HALT 6013 * bit. 6014 */ 6015 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6016 6017 /* 6018 * If we've been given a valid mailbox, first try to get the 6019 * firmware to do the RESET. If that works, great and we can 6020 * return success. Otherwise, if we haven't been given a 6021 * valid mailbox or the RESET command failed, fall back to 6022 * hitting the chip with a hammer. 6023 */ 6024 if (mbox <= PCIE_FW_MASTER_M) { 6025 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6026 msleep(100); 6027 if (t4_fw_reset(adap, mbox, 6028 PIORST_F | PIORSTMODE_F) == 0) 6029 return 0; 6030 } 6031 6032 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 6033 msleep(2000); 6034 } else { 6035 int ms; 6036 6037 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6038 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 6039 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 6040 return 0; 6041 msleep(100); 6042 ms += 100; 6043 } 6044 return -ETIMEDOUT; 6045 } 6046 return 0; 6047} 6048 6049/** 6050 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 6051 * @adap: the adapter 6052 * @mbox: mailbox to use for the FW RESET command (if desired) 6053 * @fw_data: the firmware image to write 6054 * @size: image size 6055 * @force: force upgrade even if firmware doesn't cooperate 6056 * 6057 * Perform all of the steps necessary for upgrading an adapter's 6058 * firmware image. Normally this requires the cooperation of the 6059 * existing firmware in order to halt all existing activities 6060 * but if an invalid mailbox token is passed in we skip that step 6061 * (though we'll still put the adapter microprocessor into RESET in 6062 * that case). 6063 * 6064 * On successful return the new firmware will have been loaded and 6065 * the adapter will have been fully RESET losing all previous setup 6066 * state. On unsuccessful return the adapter may be completely hosed ... 6067 * positive errno indicates that the adapter is ~probably~ intact, a 6068 * negative errno indicates that things are looking bad ... 6069 */ 6070int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 6071 const u8 *fw_data, unsigned int size, int force) 6072{ 6073 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 6074 int reset, ret; 6075 6076 if (!t4_fw_matches_chip(adap, fw_hdr)) 6077 return -EINVAL; 6078 6079 ret = t4_fw_halt(adap, mbox, force); 6080 if (ret < 0 && !force) 6081 return ret; 6082 6083 ret = t4_load_fw(adap, fw_data, size); 6084 if (ret < 0) 6085 return ret; 6086 6087 /* 6088 * Older versions of the firmware don't understand the new 6089 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 6090 * restart. So for newly loaded older firmware we'll have to do the 6091 * RESET for it so it starts up on a clean slate. We can tell if 6092 * the newly loaded firmware will handle this right by checking 6093 * its header flags to see if it advertises the capability. 6094 */ 6095 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 6096 return t4_fw_restart(adap, mbox, reset); 6097} 6098 6099/** 6100 * t4_fixup_host_params - fix up host-dependent parameters 6101 * @adap: the adapter 6102 * @page_size: the host's Base Page Size 6103 * @cache_line_size: the host's Cache Line Size 6104 * 6105 * Various registers in T4 contain values which are dependent on the 6106 * host's Base Page and Cache Line Sizes. This function will fix all of 6107 * those registers with the appropriate values as passed in ... 6108 */ 6109int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 6110 unsigned int cache_line_size) 6111{ 6112 unsigned int page_shift = fls(page_size) - 1; 6113 unsigned int sge_hps = page_shift - 10; 6114 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 6115 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 6116 unsigned int fl_align_log = fls(fl_align) - 1; 6117 6118 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 6119 HOSTPAGESIZEPF0_V(sge_hps) | 6120 HOSTPAGESIZEPF1_V(sge_hps) | 6121 HOSTPAGESIZEPF2_V(sge_hps) | 6122 HOSTPAGESIZEPF3_V(sge_hps) | 6123 HOSTPAGESIZEPF4_V(sge_hps) | 6124 HOSTPAGESIZEPF5_V(sge_hps) | 6125 HOSTPAGESIZEPF6_V(sge_hps) | 6126 HOSTPAGESIZEPF7_V(sge_hps)); 6127 6128 if (is_t4(adap->params.chip)) { 6129 t4_set_reg_field(adap, SGE_CONTROL_A, 6130 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 6131 EGRSTATUSPAGESIZE_F, 6132 INGPADBOUNDARY_V(fl_align_log - 6133 INGPADBOUNDARY_SHIFT_X) | 6134 EGRSTATUSPAGESIZE_V(stat_len != 64)); 6135 } else { 6136 /* T5 introduced the separation of the Free List Padding and 6137 * Packing Boundaries. Thus, we can select a smaller Padding 6138 * Boundary to avoid uselessly chewing up PCIe Link and Memory 6139 * Bandwidth, and use a Packing Boundary which is large enough 6140 * to avoid false sharing between CPUs, etc. 6141 * 6142 * For the PCI Link, the smaller the Padding Boundary the 6143 * better. For the Memory Controller, a smaller Padding 6144 * Boundary is better until we cross under the Memory Line 6145 * Size (the minimum unit of transfer to/from Memory). If we 6146 * have a Padding Boundary which is smaller than the Memory 6147 * Line Size, that'll involve a Read-Modify-Write cycle on the 6148 * Memory Controller which is never good. For T5 the smallest 6149 * Padding Boundary which we can select is 32 bytes which is 6150 * larger than any known Memory Controller Line Size so we'll 6151 * use that. 6152 * 6153 * T5 has a different interpretation of the "0" value for the 6154 * Packing Boundary. This corresponds to 16 bytes instead of 6155 * the expected 32 bytes. We never have a Packing Boundary 6156 * less than 32 bytes so we can't use that special value but 6157 * on the other hand, if we wanted 32 bytes, the best we can 6158 * really do is 64 bytes. 6159 */ 6160 if (fl_align <= 32) { 6161 fl_align = 64; 6162 fl_align_log = 6; 6163 } 6164 t4_set_reg_field(adap, SGE_CONTROL_A, 6165 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 6166 EGRSTATUSPAGESIZE_F, 6167 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) | 6168 EGRSTATUSPAGESIZE_V(stat_len != 64)); 6169 t4_set_reg_field(adap, SGE_CONTROL2_A, 6170 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 6171 INGPACKBOUNDARY_V(fl_align_log - 6172 INGPACKBOUNDARY_SHIFT_X)); 6173 } 6174 /* 6175 * Adjust various SGE Free List Host Buffer Sizes. 6176 * 6177 * This is something of a crock since we're using fixed indices into 6178 * the array which are also known by the sge.c code and the T4 6179 * Firmware Configuration File. We need to come up with a much better 6180 * approach to managing this array. For now, the first four entries 6181 * are: 6182 * 6183 * 0: Host Page Size 6184 * 1: 64KB 6185 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 6186 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 6187 * 6188 * For the single-MTU buffers in unpacked mode we need to include 6189 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 6190 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 6191 * Padding boundary. All of these are accommodated in the Factory 6192 * Default Firmware Configuration File but we need to adjust it for 6193 * this host's cache line size. 6194 */ 6195 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 6196 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 6197 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 6198 & ~(fl_align-1)); 6199 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 6200 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 6201 & ~(fl_align-1)); 6202 6203 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 6204 6205 return 0; 6206} 6207 6208/** 6209 * t4_fw_initialize - ask FW to initialize the device 6210 * @adap: the adapter 6211 * @mbox: mailbox to use for the FW command 6212 * 6213 * Issues a command to FW to partially initialize the device. This 6214 * performs initialization that generally doesn't depend on user input. 6215 */ 6216int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 6217{ 6218 struct fw_initialize_cmd c; 6219 6220 memset(&c, 0, sizeof(c)); 6221 INIT_CMD(c, INITIALIZE, WRITE); 6222 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6223} 6224 6225/** 6226 * t4_query_params_rw - query FW or device parameters 6227 * @adap: the adapter 6228 * @mbox: mailbox to use for the FW command 6229 * @pf: the PF 6230 * @vf: the VF 6231 * @nparams: the number of parameters 6232 * @params: the parameter names 6233 * @val: the parameter values 6234 * @rw: Write and read flag 6235 * 6236 * Reads the value of FW or device parameters. Up to 7 parameters can be 6237 * queried at once. 6238 */ 6239int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 6240 unsigned int vf, unsigned int nparams, const u32 *params, 6241 u32 *val, int rw) 6242{ 6243 int i, ret; 6244 struct fw_params_cmd c; 6245 __be32 *p = &c.param[0].mnem; 6246 6247 if (nparams > 7) 6248 return -EINVAL; 6249 6250 memset(&c, 0, sizeof(c)); 6251 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 6252 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6253 FW_PARAMS_CMD_PFN_V(pf) | 6254 FW_PARAMS_CMD_VFN_V(vf)); 6255 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6256 6257 for (i = 0; i < nparams; i++) { 6258 *p++ = cpu_to_be32(*params++); 6259 if (rw) 6260 *p = cpu_to_be32(*(val + i)); 6261 p++; 6262 } 6263 6264 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6265 if (ret == 0) 6266 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 6267 *val++ = be32_to_cpu(*p); 6268 return ret; 6269} 6270 6271int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 6272 unsigned int vf, unsigned int nparams, const u32 *params, 6273 u32 *val) 6274{ 6275 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0); 6276} 6277 6278/** 6279 * t4_set_params_timeout - sets FW or device parameters 6280 * @adap: the adapter 6281 * @mbox: mailbox to use for the FW command 6282 * @pf: the PF 6283 * @vf: the VF 6284 * @nparams: the number of parameters 6285 * @params: the parameter names 6286 * @val: the parameter values 6287 * @timeout: the timeout time 6288 * 6289 * Sets the value of FW or device parameters. Up to 7 parameters can be 6290 * specified at once. 6291 */ 6292int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 6293 unsigned int pf, unsigned int vf, 6294 unsigned int nparams, const u32 *params, 6295 const u32 *val, int timeout) 6296{ 6297 struct fw_params_cmd c; 6298 __be32 *p = &c.param[0].mnem; 6299 6300 if (nparams > 7) 6301 return -EINVAL; 6302 6303 memset(&c, 0, sizeof(c)); 6304 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 6305 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6306 FW_PARAMS_CMD_PFN_V(pf) | 6307 FW_PARAMS_CMD_VFN_V(vf)); 6308 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6309 6310 while (nparams--) { 6311 *p++ = cpu_to_be32(*params++); 6312 *p++ = cpu_to_be32(*val++); 6313 } 6314 6315 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 6316} 6317 6318/** 6319 * t4_set_params - sets FW or device parameters 6320 * @adap: the adapter 6321 * @mbox: mailbox to use for the FW command 6322 * @pf: the PF 6323 * @vf: the VF 6324 * @nparams: the number of parameters 6325 * @params: the parameter names 6326 * @val: the parameter values 6327 * 6328 * Sets the value of FW or device parameters. Up to 7 parameters can be 6329 * specified at once. 6330 */ 6331int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 6332 unsigned int vf, unsigned int nparams, const u32 *params, 6333 const u32 *val) 6334{ 6335 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 6336 FW_CMD_MAX_TIMEOUT); 6337} 6338 6339/** 6340 * t4_cfg_pfvf - configure PF/VF resource limits 6341 * @adap: the adapter 6342 * @mbox: mailbox to use for the FW command 6343 * @pf: the PF being configured 6344 * @vf: the VF being configured 6345 * @txq: the max number of egress queues 6346 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 6347 * @rxqi: the max number of interrupt-capable ingress queues 6348 * @rxq: the max number of interruptless ingress queues 6349 * @tc: the PCI traffic class 6350 * @vi: the max number of virtual interfaces 6351 * @cmask: the channel access rights mask for the PF/VF 6352 * @pmask: the port access rights mask for the PF/VF 6353 * @nexact: the maximum number of exact MPS filters 6354 * @rcaps: read capabilities 6355 * @wxcaps: write/execute capabilities 6356 * 6357 * Configures resource limits and capabilities for a physical or virtual 6358 * function. 6359 */ 6360int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 6361 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 6362 unsigned int rxqi, unsigned int rxq, unsigned int tc, 6363 unsigned int vi, unsigned int cmask, unsigned int pmask, 6364 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 6365{ 6366 struct fw_pfvf_cmd c; 6367 6368 memset(&c, 0, sizeof(c)); 6369 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 6370 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 6371 FW_PFVF_CMD_VFN_V(vf)); 6372 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6373 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 6374 FW_PFVF_CMD_NIQ_V(rxq)); 6375 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 6376 FW_PFVF_CMD_PMASK_V(pmask) | 6377 FW_PFVF_CMD_NEQ_V(txq)); 6378 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 6379 FW_PFVF_CMD_NVI_V(vi) | 6380 FW_PFVF_CMD_NEXACTF_V(nexact)); 6381 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 6382 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 6383 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 6384 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6385} 6386 6387/** 6388 * t4_alloc_vi - allocate a virtual interface 6389 * @adap: the adapter 6390 * @mbox: mailbox to use for the FW command 6391 * @port: physical port associated with the VI 6392 * @pf: the PF owning the VI 6393 * @vf: the VF owning the VI 6394 * @nmac: number of MAC addresses needed (1 to 5) 6395 * @mac: the MAC addresses of the VI 6396 * @rss_size: size of RSS table slice associated with this VI 6397 * 6398 * Allocates a virtual interface for the given physical port. If @mac is 6399 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 6400 * @mac should be large enough to hold @nmac Ethernet addresses, they are 6401 * stored consecutively so the space needed is @nmac * 6 bytes. 6402 * Returns a negative error number or the non-negative VI id. 6403 */ 6404int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 6405 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 6406 unsigned int *rss_size) 6407{ 6408 int ret; 6409 struct fw_vi_cmd c; 6410 6411 memset(&c, 0, sizeof(c)); 6412 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 6413 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 6414 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 6415 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 6416 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 6417 c.nmac = nmac - 1; 6418 6419 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6420 if (ret) 6421 return ret; 6422 6423 if (mac) { 6424 memcpy(mac, c.mac, sizeof(c.mac)); 6425 switch (nmac) { 6426 case 5: 6427 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 6428 case 4: 6429 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 6430 case 3: 6431 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 6432 case 2: 6433 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 6434 } 6435 } 6436 if (rss_size) 6437 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 6438 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 6439} 6440 6441/** 6442 * t4_free_vi - free a virtual interface 6443 * @adap: the adapter 6444 * @mbox: mailbox to use for the FW command 6445 * @pf: the PF owning the VI 6446 * @vf: the VF owning the VI 6447 * @viid: virtual interface identifiler 6448 * 6449 * Free a previously allocated virtual interface. 6450 */ 6451int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 6452 unsigned int vf, unsigned int viid) 6453{ 6454 struct fw_vi_cmd c; 6455 6456 memset(&c, 0, sizeof(c)); 6457 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 6458 FW_CMD_REQUEST_F | 6459 FW_CMD_EXEC_F | 6460 FW_VI_CMD_PFN_V(pf) | 6461 FW_VI_CMD_VFN_V(vf)); 6462 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 6463 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 6464 6465 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6466} 6467 6468/** 6469 * t4_set_rxmode - set Rx properties of a virtual interface 6470 * @adap: the adapter 6471 * @mbox: mailbox to use for the FW command 6472 * @viid: the VI id 6473 * @mtu: the new MTU or -1 6474 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 6475 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 6476 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 6477 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 6478 * @sleep_ok: if true we may sleep while awaiting command completion 6479 * 6480 * Sets Rx properties of a virtual interface. 6481 */ 6482int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 6483 int mtu, int promisc, int all_multi, int bcast, int vlanex, 6484 bool sleep_ok) 6485{ 6486 struct fw_vi_rxmode_cmd c; 6487 6488 /* convert to FW values */ 6489 if (mtu < 0) 6490 mtu = FW_RXMODE_MTU_NO_CHG; 6491 if (promisc < 0) 6492 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 6493 if (all_multi < 0) 6494 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 6495 if (bcast < 0) 6496 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 6497 if (vlanex < 0) 6498 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 6499 6500 memset(&c, 0, sizeof(c)); 6501 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 6502 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6503 FW_VI_RXMODE_CMD_VIID_V(viid)); 6504 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6505 c.mtu_to_vlanexen = 6506 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 6507 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 6508 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 6509 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 6510 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 6511 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 6512} 6513 6514/** 6515 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 6516 * @adap: the adapter 6517 * @mbox: mailbox to use for the FW command 6518 * @viid: the VI id 6519 * @free: if true any existing filters for this VI id are first removed 6520 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 6521 * @addr: the MAC address(es) 6522 * @idx: where to store the index of each allocated filter 6523 * @hash: pointer to hash address filter bitmap 6524 * @sleep_ok: call is allowed to sleep 6525 * 6526 * Allocates an exact-match filter for each of the supplied addresses and 6527 * sets it to the corresponding address. If @idx is not %NULL it should 6528 * have at least @naddr entries, each of which will be set to the index of 6529 * the filter allocated for the corresponding MAC address. If a filter 6530 * could not be allocated for an address its index is set to 0xffff. 6531 * If @hash is not %NULL addresses that fail to allocate an exact filter 6532 * are hashed and update the hash filter bitmap pointed at by @hash. 6533 * 6534 * Returns a negative error number or the number of filters allocated. 6535 */ 6536int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 6537 unsigned int viid, bool free, unsigned int naddr, 6538 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 6539{ 6540 int offset, ret = 0; 6541 struct fw_vi_mac_cmd c; 6542 unsigned int nfilters = 0; 6543 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 6544 unsigned int rem = naddr; 6545 6546 if (naddr > max_naddr) 6547 return -EINVAL; 6548 6549 for (offset = 0; offset < naddr ; /**/) { 6550 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 6551 rem : ARRAY_SIZE(c.u.exact)); 6552 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 6553 u.exact[fw_naddr]), 16); 6554 struct fw_vi_mac_exact *p; 6555 int i; 6556 6557 memset(&c, 0, sizeof(c)); 6558 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6559 FW_CMD_REQUEST_F | 6560 FW_CMD_WRITE_F | 6561 FW_CMD_EXEC_V(free) | 6562 FW_VI_MAC_CMD_VIID_V(viid)); 6563 c.freemacs_to_len16 = 6564 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 6565 FW_CMD_LEN16_V(len16)); 6566 6567 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 6568 p->valid_to_idx = 6569 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 6570 FW_VI_MAC_CMD_IDX_V( 6571 FW_VI_MAC_ADD_MAC)); 6572 memcpy(p->macaddr, addr[offset + i], 6573 sizeof(p->macaddr)); 6574 } 6575 6576 /* It's okay if we run out of space in our MAC address arena. 6577 * Some of the addresses we submit may get stored so we need 6578 * to run through the reply to see what the results were ... 6579 */ 6580 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 6581 if (ret && ret != -FW_ENOMEM) 6582 break; 6583 6584 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 6585 u16 index = FW_VI_MAC_CMD_IDX_G( 6586 be16_to_cpu(p->valid_to_idx)); 6587 6588 if (idx) 6589 idx[offset + i] = (index >= max_naddr ? 6590 0xffff : index); 6591 if (index < max_naddr) 6592 nfilters++; 6593 else if (hash) 6594 *hash |= (1ULL << 6595 hash_mac_addr(addr[offset + i])); 6596 } 6597 6598 free = false; 6599 offset += fw_naddr; 6600 rem -= fw_naddr; 6601 } 6602 6603 if (ret == 0 || ret == -FW_ENOMEM) 6604 ret = nfilters; 6605 return ret; 6606} 6607 6608/** 6609 * t4_change_mac - modifies the exact-match filter for a MAC address 6610 * @adap: the adapter 6611 * @mbox: mailbox to use for the FW command 6612 * @viid: the VI id 6613 * @idx: index of existing filter for old value of MAC address, or -1 6614 * @addr: the new MAC address value 6615 * @persist: whether a new MAC allocation should be persistent 6616 * @add_smt: if true also add the address to the HW SMT 6617 * 6618 * Modifies an exact-match filter and sets it to the new MAC address. 6619 * Note that in general it is not possible to modify the value of a given 6620 * filter so the generic way to modify an address filter is to free the one 6621 * being used by the old address value and allocate a new filter for the 6622 * new address value. @idx can be -1 if the address is a new addition. 6623 * 6624 * Returns a negative error number or the index of the filter with the new 6625 * MAC value. 6626 */ 6627int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 6628 int idx, const u8 *addr, bool persist, bool add_smt) 6629{ 6630 int ret, mode; 6631 struct fw_vi_mac_cmd c; 6632 struct fw_vi_mac_exact *p = c.u.exact; 6633 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 6634 6635 if (idx < 0) /* new allocation */ 6636 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 6637 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 6638 6639 memset(&c, 0, sizeof(c)); 6640 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6641 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6642 FW_VI_MAC_CMD_VIID_V(viid)); 6643 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 6644 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 6645 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 6646 FW_VI_MAC_CMD_IDX_V(idx)); 6647 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 6648 6649 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6650 if (ret == 0) { 6651 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 6652 if (ret >= max_mac_addr) 6653 ret = -ENOMEM; 6654 } 6655 return ret; 6656} 6657 6658/** 6659 * t4_set_addr_hash - program the MAC inexact-match hash filter 6660 * @adap: the adapter 6661 * @mbox: mailbox to use for the FW command 6662 * @viid: the VI id 6663 * @ucast: whether the hash filter should also match unicast addresses 6664 * @vec: the value to be written to the hash filter 6665 * @sleep_ok: call is allowed to sleep 6666 * 6667 * Sets the 64-bit inexact-match hash filter for a virtual interface. 6668 */ 6669int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 6670 bool ucast, u64 vec, bool sleep_ok) 6671{ 6672 struct fw_vi_mac_cmd c; 6673 6674 memset(&c, 0, sizeof(c)); 6675 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6676 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6677 FW_VI_ENABLE_CMD_VIID_V(viid)); 6678 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 6679 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 6680 FW_CMD_LEN16_V(1)); 6681 c.u.hash.hashvec = cpu_to_be64(vec); 6682 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 6683} 6684 6685/** 6686 * t4_enable_vi_params - enable/disable a virtual interface 6687 * @adap: the adapter 6688 * @mbox: mailbox to use for the FW command 6689 * @viid: the VI id 6690 * @rx_en: 1=enable Rx, 0=disable Rx 6691 * @tx_en: 1=enable Tx, 0=disable Tx 6692 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 6693 * 6694 * Enables/disables a virtual interface. Note that setting DCB Enable 6695 * only makes sense when enabling a Virtual Interface ... 6696 */ 6697int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 6698 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 6699{ 6700 struct fw_vi_enable_cmd c; 6701 6702 memset(&c, 0, sizeof(c)); 6703 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 6704 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 6705 FW_VI_ENABLE_CMD_VIID_V(viid)); 6706 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 6707 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 6708 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 6709 FW_LEN16(c)); 6710 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 6711} 6712 6713/** 6714 * t4_enable_vi - enable/disable a virtual interface 6715 * @adap: the adapter 6716 * @mbox: mailbox to use for the FW command 6717 * @viid: the VI id 6718 * @rx_en: 1=enable Rx, 0=disable Rx 6719 * @tx_en: 1=enable Tx, 0=disable Tx 6720 * 6721 * Enables/disables a virtual interface. 6722 */ 6723int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 6724 bool rx_en, bool tx_en) 6725{ 6726 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 6727} 6728 6729/** 6730 * t4_identify_port - identify a VI's port by blinking its LED 6731 * @adap: the adapter 6732 * @mbox: mailbox to use for the FW command 6733 * @viid: the VI id 6734 * @nblinks: how many times to blink LED at 2.5 Hz 6735 * 6736 * Identifies a VI's port by blinking its LED. 6737 */ 6738int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 6739 unsigned int nblinks) 6740{ 6741 struct fw_vi_enable_cmd c; 6742 6743 memset(&c, 0, sizeof(c)); 6744 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 6745 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 6746 FW_VI_ENABLE_CMD_VIID_V(viid)); 6747 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 6748 c.blinkdur = cpu_to_be16(nblinks); 6749 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6750} 6751 6752/** 6753 * t4_iq_free - free an ingress queue and its FLs 6754 * @adap: the adapter 6755 * @mbox: mailbox to use for the FW command 6756 * @pf: the PF owning the queues 6757 * @vf: the VF owning the queues 6758 * @iqtype: the ingress queue type 6759 * @iqid: ingress queue id 6760 * @fl0id: FL0 queue id or 0xffff if no attached FL0 6761 * @fl1id: FL1 queue id or 0xffff if no attached FL1 6762 * 6763 * Frees an ingress queue and its associated FLs, if any. 6764 */ 6765int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 6766 unsigned int vf, unsigned int iqtype, unsigned int iqid, 6767 unsigned int fl0id, unsigned int fl1id) 6768{ 6769 struct fw_iq_cmd c; 6770 6771 memset(&c, 0, sizeof(c)); 6772 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 6773 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 6774 FW_IQ_CMD_VFN_V(vf)); 6775 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 6776 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 6777 c.iqid = cpu_to_be16(iqid); 6778 c.fl0id = cpu_to_be16(fl0id); 6779 c.fl1id = cpu_to_be16(fl1id); 6780 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6781} 6782 6783/** 6784 * t4_eth_eq_free - free an Ethernet egress queue 6785 * @adap: the adapter 6786 * @mbox: mailbox to use for the FW command 6787 * @pf: the PF owning the queue 6788 * @vf: the VF owning the queue 6789 * @eqid: egress queue id 6790 * 6791 * Frees an Ethernet egress queue. 6792 */ 6793int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 6794 unsigned int vf, unsigned int eqid) 6795{ 6796 struct fw_eq_eth_cmd c; 6797 6798 memset(&c, 0, sizeof(c)); 6799 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 6800 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 6801 FW_EQ_ETH_CMD_PFN_V(pf) | 6802 FW_EQ_ETH_CMD_VFN_V(vf)); 6803 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 6804 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 6805 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6806} 6807 6808/** 6809 * t4_ctrl_eq_free - free a control egress queue 6810 * @adap: the adapter 6811 * @mbox: mailbox to use for the FW command 6812 * @pf: the PF owning the queue 6813 * @vf: the VF owning the queue 6814 * @eqid: egress queue id 6815 * 6816 * Frees a control egress queue. 6817 */ 6818int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 6819 unsigned int vf, unsigned int eqid) 6820{ 6821 struct fw_eq_ctrl_cmd c; 6822 6823 memset(&c, 0, sizeof(c)); 6824 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 6825 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 6826 FW_EQ_CTRL_CMD_PFN_V(pf) | 6827 FW_EQ_CTRL_CMD_VFN_V(vf)); 6828 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 6829 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 6830 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6831} 6832 6833/** 6834 * t4_ofld_eq_free - free an offload egress queue 6835 * @adap: the adapter 6836 * @mbox: mailbox to use for the FW command 6837 * @pf: the PF owning the queue 6838 * @vf: the VF owning the queue 6839 * @eqid: egress queue id 6840 * 6841 * Frees a control egress queue. 6842 */ 6843int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 6844 unsigned int vf, unsigned int eqid) 6845{ 6846 struct fw_eq_ofld_cmd c; 6847 6848 memset(&c, 0, sizeof(c)); 6849 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 6850 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 6851 FW_EQ_OFLD_CMD_PFN_V(pf) | 6852 FW_EQ_OFLD_CMD_VFN_V(vf)); 6853 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 6854 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 6855 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6856} 6857 6858/** 6859 * t4_handle_fw_rpl - process a FW reply message 6860 * @adap: the adapter 6861 * @rpl: start of the FW message 6862 * 6863 * Processes a FW message, such as link state change messages. 6864 */ 6865int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 6866{ 6867 u8 opcode = *(const u8 *)rpl; 6868 6869 if (opcode == FW_PORT_CMD) { /* link/module state change message */ 6870 int speed = 0, fc = 0; 6871 const struct fw_port_cmd *p = (void *)rpl; 6872 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 6873 int port = adap->chan_map[chan]; 6874 struct port_info *pi = adap2pinfo(adap, port); 6875 struct link_config *lc = &pi->link_cfg; 6876 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype); 6877 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0; 6878 u32 mod = FW_PORT_CMD_MODTYPE_G(stat); 6879 6880 if (stat & FW_PORT_CMD_RXPAUSE_F) 6881 fc |= PAUSE_RX; 6882 if (stat & FW_PORT_CMD_TXPAUSE_F) 6883 fc |= PAUSE_TX; 6884 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 6885 speed = 100; 6886 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 6887 speed = 1000; 6888 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 6889 speed = 10000; 6890 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 6891 speed = 40000; 6892 6893 if (link_ok != lc->link_ok || speed != lc->speed || 6894 fc != lc->fc) { /* something changed */ 6895 lc->link_ok = link_ok; 6896 lc->speed = speed; 6897 lc->fc = fc; 6898 lc->supported = be16_to_cpu(p->u.info.pcap); 6899 t4_os_link_changed(adap, port, link_ok); 6900 } 6901 if (mod != pi->mod_type) { 6902 pi->mod_type = mod; 6903 t4_os_portmod_changed(adap, port); 6904 } 6905 } 6906 return 0; 6907} 6908 6909static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 6910{ 6911 u16 val; 6912 6913 if (pci_is_pcie(adapter->pdev)) { 6914 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 6915 p->speed = val & PCI_EXP_LNKSTA_CLS; 6916 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 6917 } 6918} 6919 6920/** 6921 * init_link_config - initialize a link's SW state 6922 * @lc: structure holding the link state 6923 * @caps: link capabilities 6924 * 6925 * Initializes the SW state maintained for each link, including the link's 6926 * capabilities and default speed/flow-control/autonegotiation settings. 6927 */ 6928static void init_link_config(struct link_config *lc, unsigned int caps) 6929{ 6930 lc->supported = caps; 6931 lc->requested_speed = 0; 6932 lc->speed = 0; 6933 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 6934 if (lc->supported & FW_PORT_CAP_ANEG) { 6935 lc->advertising = lc->supported & ADVERT_MASK; 6936 lc->autoneg = AUTONEG_ENABLE; 6937 lc->requested_fc |= PAUSE_AUTONEG; 6938 } else { 6939 lc->advertising = 0; 6940 lc->autoneg = AUTONEG_DISABLE; 6941 } 6942} 6943 6944#define CIM_PF_NOACCESS 0xeeeeeeee 6945 6946int t4_wait_dev_ready(void __iomem *regs) 6947{ 6948 u32 whoami; 6949 6950 whoami = readl(regs + PL_WHOAMI_A); 6951 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 6952 return 0; 6953 6954 msleep(500); 6955 whoami = readl(regs + PL_WHOAMI_A); 6956 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 6957} 6958 6959struct flash_desc { 6960 u32 vendor_and_model_id; 6961 u32 size_mb; 6962}; 6963 6964static int get_flash_params(struct adapter *adap) 6965{ 6966 /* Table for non-Numonix supported flash parts. Numonix parts are left 6967 * to the preexisting code. All flash parts have 64KB sectors. 6968 */ 6969 static struct flash_desc supported_flash[] = { 6970 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 6971 }; 6972 6973 int ret; 6974 u32 info; 6975 6976 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 6977 if (!ret) 6978 ret = sf1_read(adap, 3, 0, 1, &info); 6979 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 6980 if (ret) 6981 return ret; 6982 6983 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret) 6984 if (supported_flash[ret].vendor_and_model_id == info) { 6985 adap->params.sf_size = supported_flash[ret].size_mb; 6986 adap->params.sf_nsec = 6987 adap->params.sf_size / SF_SEC_SIZE; 6988 return 0; 6989 } 6990 6991 if ((info & 0xff) != 0x20) /* not a Numonix flash */ 6992 return -EINVAL; 6993 info >>= 16; /* log2 of size */ 6994 if (info >= 0x14 && info < 0x18) 6995 adap->params.sf_nsec = 1 << (info - 16); 6996 else if (info == 0x18) 6997 adap->params.sf_nsec = 64; 6998 else 6999 return -EINVAL; 7000 adap->params.sf_size = 1 << info; 7001 adap->params.sf_fw_start = 7002 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M; 7003 7004 if (adap->params.sf_size < FLASH_MIN_SIZE) 7005 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n", 7006 adap->params.sf_size, FLASH_MIN_SIZE); 7007 return 0; 7008} 7009 7010static void set_pcie_completion_timeout(struct adapter *adapter, u8 range) 7011{ 7012 u16 val; 7013 u32 pcie_cap; 7014 7015 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 7016 if (pcie_cap) { 7017 pci_read_config_word(adapter->pdev, 7018 pcie_cap + PCI_EXP_DEVCTL2, &val); 7019 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT; 7020 val |= range; 7021 pci_write_config_word(adapter->pdev, 7022 pcie_cap + PCI_EXP_DEVCTL2, val); 7023 } 7024} 7025 7026/** 7027 * t4_prep_adapter - prepare SW and HW for operation 7028 * @adapter: the adapter 7029 * @reset: if true perform a HW reset 7030 * 7031 * Initialize adapter SW state for the various HW modules, set initial 7032 * values for some adapter tunables, take PHYs out of reset, and 7033 * initialize the MDIO interface. 7034 */ 7035int t4_prep_adapter(struct adapter *adapter) 7036{ 7037 int ret, ver; 7038 uint16_t device_id; 7039 u32 pl_rev; 7040 7041 get_pci_mode(adapter, &adapter->params.pci); 7042 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 7043 7044 ret = get_flash_params(adapter); 7045 if (ret < 0) { 7046 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 7047 return ret; 7048 } 7049 7050 /* Retrieve adapter's device ID 7051 */ 7052 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 7053 ver = device_id >> 12; 7054 adapter->params.chip = 0; 7055 switch (ver) { 7056 case CHELSIO_T4: 7057 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 7058 adapter->params.arch.sge_fl_db = DBPRIO_F; 7059 adapter->params.arch.mps_tcam_size = 7060 NUM_MPS_CLS_SRAM_L_INSTANCES; 7061 adapter->params.arch.mps_rplc_size = 128; 7062 adapter->params.arch.nchan = NCHAN; 7063 adapter->params.arch.vfcount = 128; 7064 break; 7065 case CHELSIO_T5: 7066 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 7067 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 7068 adapter->params.arch.mps_tcam_size = 7069 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7070 adapter->params.arch.mps_rplc_size = 128; 7071 adapter->params.arch.nchan = NCHAN; 7072 adapter->params.arch.vfcount = 128; 7073 break; 7074 case CHELSIO_T6: 7075 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 7076 adapter->params.arch.sge_fl_db = 0; 7077 adapter->params.arch.mps_tcam_size = 7078 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7079 adapter->params.arch.mps_rplc_size = 256; 7080 adapter->params.arch.nchan = 2; 7081 adapter->params.arch.vfcount = 256; 7082 break; 7083 default: 7084 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 7085 device_id); 7086 return -EINVAL; 7087 } 7088 7089 adapter->params.cim_la_size = CIMLA_SIZE; 7090 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 7091 7092 /* 7093 * Default port for debugging in case we can't reach FW. 7094 */ 7095 adapter->params.nports = 1; 7096 adapter->params.portvec = 1; 7097 adapter->params.vpd.cclk = 50000; 7098 7099 /* Set pci completion timeout value to 4 seconds. */ 7100 set_pcie_completion_timeout(adapter, 0xd); 7101 return 0; 7102} 7103 7104/** 7105 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 7106 * @adapter: the adapter 7107 * @qid: the Queue ID 7108 * @qtype: the Ingress or Egress type for @qid 7109 * @user: true if this request is for a user mode queue 7110 * @pbar2_qoffset: BAR2 Queue Offset 7111 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 7112 * 7113 * Returns the BAR2 SGE Queue Registers information associated with the 7114 * indicated Absolute Queue ID. These are passed back in return value 7115 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 7116 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 7117 * 7118 * This may return an error which indicates that BAR2 SGE Queue 7119 * registers aren't available. If an error is not returned, then the 7120 * following values are returned: 7121 * 7122 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 7123 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 7124 * 7125 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 7126 * require the "Inferred Queue ID" ability may be used. E.g. the 7127 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 7128 * then these "Inferred Queue ID" register may not be used. 7129 */ 7130int t4_bar2_sge_qregs(struct adapter *adapter, 7131 unsigned int qid, 7132 enum t4_bar2_qtype qtype, 7133 int user, 7134 u64 *pbar2_qoffset, 7135 unsigned int *pbar2_qid) 7136{ 7137 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 7138 u64 bar2_page_offset, bar2_qoffset; 7139 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 7140 7141 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 7142 if (!user && is_t4(adapter->params.chip)) 7143 return -EINVAL; 7144 7145 /* Get our SGE Page Size parameters. 7146 */ 7147 page_shift = adapter->params.sge.hps + 10; 7148 page_size = 1 << page_shift; 7149 7150 /* Get the right Queues per Page parameters for our Queue. 7151 */ 7152 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 7153 ? adapter->params.sge.eq_qpp 7154 : adapter->params.sge.iq_qpp); 7155 qpp_mask = (1 << qpp_shift) - 1; 7156 7157 /* Calculate the basics of the BAR2 SGE Queue register area: 7158 * o The BAR2 page the Queue registers will be in. 7159 * o The BAR2 Queue ID. 7160 * o The BAR2 Queue ID Offset into the BAR2 page. 7161 */ 7162 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 7163 bar2_qid = qid & qpp_mask; 7164 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 7165 7166 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 7167 * hardware will infer the Absolute Queue ID simply from the writes to 7168 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 7169 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 7170 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 7171 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 7172 * from the BAR2 Page and BAR2 Queue ID. 7173 * 7174 * One important censequence of this is that some BAR2 SGE registers 7175 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 7176 * there. But other registers synthesize the SGE Queue ID purely 7177 * from the writes to the registers -- the Write Combined Doorbell 7178 * Buffer is a good example. These BAR2 SGE Registers are only 7179 * available for those BAR2 SGE Register areas where the SGE Absolute 7180 * Queue ID can be inferred from simple writes. 7181 */ 7182 bar2_qoffset = bar2_page_offset; 7183 bar2_qinferred = (bar2_qid_offset < page_size); 7184 if (bar2_qinferred) { 7185 bar2_qoffset += bar2_qid_offset; 7186 bar2_qid = 0; 7187 } 7188 7189 *pbar2_qoffset = bar2_qoffset; 7190 *pbar2_qid = bar2_qid; 7191 return 0; 7192} 7193 7194/** 7195 * t4_init_devlog_params - initialize adapter->params.devlog 7196 * @adap: the adapter 7197 * 7198 * Initialize various fields of the adapter's Firmware Device Log 7199 * Parameters structure. 7200 */ 7201int t4_init_devlog_params(struct adapter *adap) 7202{ 7203 struct devlog_params *dparams = &adap->params.devlog; 7204 u32 pf_dparams; 7205 unsigned int devlog_meminfo; 7206 struct fw_devlog_cmd devlog_cmd; 7207 int ret; 7208 7209 /* If we're dealing with newer firmware, the Device Log Paramerters 7210 * are stored in a designated register which allows us to access the 7211 * Device Log even if we can't talk to the firmware. 7212 */ 7213 pf_dparams = 7214 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 7215 if (pf_dparams) { 7216 unsigned int nentries, nentries128; 7217 7218 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 7219 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 7220 7221 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 7222 nentries = (nentries128 + 1) * 128; 7223 dparams->size = nentries * sizeof(struct fw_devlog_e); 7224 7225 return 0; 7226 } 7227 7228 /* Otherwise, ask the firmware for it's Device Log Parameters. 7229 */ 7230 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 7231 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 7232 FW_CMD_REQUEST_F | FW_CMD_READ_F); 7233 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 7234 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 7235 &devlog_cmd); 7236 if (ret) 7237 return ret; 7238 7239 devlog_meminfo = 7240 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 7241 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 7242 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 7243 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 7244 7245 return 0; 7246} 7247 7248/** 7249 * t4_init_sge_params - initialize adap->params.sge 7250 * @adapter: the adapter 7251 * 7252 * Initialize various fields of the adapter's SGE Parameters structure. 7253 */ 7254int t4_init_sge_params(struct adapter *adapter) 7255{ 7256 struct sge_params *sge_params = &adapter->params.sge; 7257 u32 hps, qpp; 7258 unsigned int s_hps, s_qpp; 7259 7260 /* Extract the SGE Page Size for our PF. 7261 */ 7262 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 7263 s_hps = (HOSTPAGESIZEPF0_S + 7264 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 7265 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 7266 7267 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 7268 */ 7269 s_qpp = (QUEUESPERPAGEPF0_S + 7270 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 7271 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 7272 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 7273 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 7274 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 7275 7276 return 0; 7277} 7278 7279/** 7280 * t4_init_tp_params - initialize adap->params.tp 7281 * @adap: the adapter 7282 * 7283 * Initialize various fields of the adapter's TP Parameters structure. 7284 */ 7285int t4_init_tp_params(struct adapter *adap) 7286{ 7287 int chan; 7288 u32 v; 7289 7290 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 7291 adap->params.tp.tre = TIMERRESOLUTION_G(v); 7292 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 7293 7294 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 7295 for (chan = 0; chan < NCHAN; chan++) 7296 adap->params.tp.tx_modq[chan] = chan; 7297 7298 /* Cache the adapter's Compressed Filter Mode and global Incress 7299 * Configuration. 7300 */ 7301 if (t4_use_ldst(adap)) { 7302 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1, 7303 TP_VLAN_PRI_MAP_A, 1); 7304 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1, 7305 TP_INGRESS_CONFIG_A, 1); 7306 } else { 7307 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 7308 &adap->params.tp.vlan_pri_map, 1, 7309 TP_VLAN_PRI_MAP_A); 7310 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 7311 &adap->params.tp.ingress_config, 1, 7312 TP_INGRESS_CONFIG_A); 7313 } 7314 7315 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 7316 * shift positions of several elements of the Compressed Filter Tuple 7317 * for this adapter which we need frequently ... 7318 */ 7319 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 7320 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 7321 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 7322 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 7323 PROTOCOL_F); 7324 7325 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 7326 * represents the presence of an Outer VLAN instead of a VNIC ID. 7327 */ 7328 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 7329 adap->params.tp.vnic_shift = -1; 7330 7331 return 0; 7332} 7333 7334/** 7335 * t4_filter_field_shift - calculate filter field shift 7336 * @adap: the adapter 7337 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 7338 * 7339 * Return the shift position of a filter field within the Compressed 7340 * Filter Tuple. The filter field is specified via its selection bit 7341 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 7342 */ 7343int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 7344{ 7345 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 7346 unsigned int sel; 7347 int field_shift; 7348 7349 if ((filter_mode & filter_sel) == 0) 7350 return -1; 7351 7352 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 7353 switch (filter_mode & sel) { 7354 case FCOE_F: 7355 field_shift += FT_FCOE_W; 7356 break; 7357 case PORT_F: 7358 field_shift += FT_PORT_W; 7359 break; 7360 case VNIC_ID_F: 7361 field_shift += FT_VNIC_ID_W; 7362 break; 7363 case VLAN_F: 7364 field_shift += FT_VLAN_W; 7365 break; 7366 case TOS_F: 7367 field_shift += FT_TOS_W; 7368 break; 7369 case PROTOCOL_F: 7370 field_shift += FT_PROTOCOL_W; 7371 break; 7372 case ETHERTYPE_F: 7373 field_shift += FT_ETHERTYPE_W; 7374 break; 7375 case MACMATCH_F: 7376 field_shift += FT_MACMATCH_W; 7377 break; 7378 case MPSHITTYPE_F: 7379 field_shift += FT_MPSHITTYPE_W; 7380 break; 7381 case FRAGMENTATION_F: 7382 field_shift += FT_FRAGMENTATION_W; 7383 break; 7384 } 7385 } 7386 return field_shift; 7387} 7388 7389int t4_init_rss_mode(struct adapter *adap, int mbox) 7390{ 7391 int i, ret; 7392 struct fw_rss_vi_config_cmd rvc; 7393 7394 memset(&rvc, 0, sizeof(rvc)); 7395 7396 for_each_port(adap, i) { 7397 struct port_info *p = adap2pinfo(adap, i); 7398 7399 rvc.op_to_viid = 7400 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 7401 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7402 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 7403 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 7404 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 7405 if (ret) 7406 return ret; 7407 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 7408 } 7409 return 0; 7410} 7411 7412int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 7413{ 7414 u8 addr[6]; 7415 int ret, i, j = 0; 7416 struct fw_port_cmd c; 7417 struct fw_rss_vi_config_cmd rvc; 7418 7419 memset(&c, 0, sizeof(c)); 7420 memset(&rvc, 0, sizeof(rvc)); 7421 7422 for_each_port(adap, i) { 7423 unsigned int rss_size; 7424 struct port_info *p = adap2pinfo(adap, i); 7425 7426 while ((adap->params.portvec & (1 << j)) == 0) 7427 j++; 7428 7429 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 7430 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7431 FW_PORT_CMD_PORTID_V(j)); 7432 c.action_to_len16 = cpu_to_be32( 7433 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) | 7434 FW_LEN16(c)); 7435 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7436 if (ret) 7437 return ret; 7438 7439 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size); 7440 if (ret < 0) 7441 return ret; 7442 7443 p->viid = ret; 7444 p->tx_chan = j; 7445 p->lport = j; 7446 p->rss_size = rss_size; 7447 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 7448 adap->port[i]->dev_port = j; 7449 7450 ret = be32_to_cpu(c.u.info.lstatus_to_modtype); 7451 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ? 7452 FW_PORT_CMD_MDIOADDR_G(ret) : -1; 7453 p->port_type = FW_PORT_CMD_PTYPE_G(ret); 7454 p->mod_type = FW_PORT_MOD_TYPE_NA; 7455 7456 rvc.op_to_viid = 7457 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 7458 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7459 FW_RSS_VI_CONFIG_CMD_VIID(p->viid)); 7460 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 7461 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 7462 if (ret) 7463 return ret; 7464 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 7465 7466 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap)); 7467 j++; 7468 } 7469 return 0; 7470} 7471 7472/** 7473 * t4_read_cimq_cfg - read CIM queue configuration 7474 * @adap: the adapter 7475 * @base: holds the queue base addresses in bytes 7476 * @size: holds the queue sizes in bytes 7477 * @thres: holds the queue full thresholds in bytes 7478 * 7479 * Returns the current configuration of the CIM queues, starting with 7480 * the IBQs, then the OBQs. 7481 */ 7482void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 7483{ 7484 unsigned int i, v; 7485 int cim_num_obq = is_t4(adap->params.chip) ? 7486 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 7487 7488 for (i = 0; i < CIM_NUM_IBQ; i++) { 7489 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 7490 QUENUMSELECT_V(i)); 7491 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 7492 /* value is in 256-byte units */ 7493 *base++ = CIMQBASE_G(v) * 256; 7494 *size++ = CIMQSIZE_G(v) * 256; 7495 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 7496 } 7497 for (i = 0; i < cim_num_obq; i++) { 7498 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 7499 QUENUMSELECT_V(i)); 7500 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 7501 /* value is in 256-byte units */ 7502 *base++ = CIMQBASE_G(v) * 256; 7503 *size++ = CIMQSIZE_G(v) * 256; 7504 } 7505} 7506 7507/** 7508 * t4_read_cim_ibq - read the contents of a CIM inbound queue 7509 * @adap: the adapter 7510 * @qid: the queue index 7511 * @data: where to store the queue contents 7512 * @n: capacity of @data in 32-bit words 7513 * 7514 * Reads the contents of the selected CIM queue starting at address 0 up 7515 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 7516 * error and the number of 32-bit words actually read on success. 7517 */ 7518int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 7519{ 7520 int i, err, attempts; 7521 unsigned int addr; 7522 const unsigned int nwords = CIM_IBQ_SIZE * 4; 7523 7524 if (qid > 5 || (n & 3)) 7525 return -EINVAL; 7526 7527 addr = qid * nwords; 7528 if (n > nwords) 7529 n = nwords; 7530 7531 /* It might take 3-10ms before the IBQ debug read access is allowed. 7532 * Wait for 1 Sec with a delay of 1 usec. 7533 */ 7534 attempts = 1000000; 7535 7536 for (i = 0; i < n; i++, addr++) { 7537 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 7538 IBQDBGEN_F); 7539 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 7540 attempts, 1); 7541 if (err) 7542 return err; 7543 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 7544 } 7545 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 7546 return i; 7547} 7548 7549/** 7550 * t4_read_cim_obq - read the contents of a CIM outbound queue 7551 * @adap: the adapter 7552 * @qid: the queue index 7553 * @data: where to store the queue contents 7554 * @n: capacity of @data in 32-bit words 7555 * 7556 * Reads the contents of the selected CIM queue starting at address 0 up 7557 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 7558 * error and the number of 32-bit words actually read on success. 7559 */ 7560int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 7561{ 7562 int i, err; 7563 unsigned int addr, v, nwords; 7564 int cim_num_obq = is_t4(adap->params.chip) ? 7565 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 7566 7567 if ((qid > (cim_num_obq - 1)) || (n & 3)) 7568 return -EINVAL; 7569 7570 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 7571 QUENUMSELECT_V(qid)); 7572 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 7573 7574 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 7575 nwords = CIMQSIZE_G(v) * 64; /* same */ 7576 if (n > nwords) 7577 n = nwords; 7578 7579 for (i = 0; i < n; i++, addr++) { 7580 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 7581 OBQDBGEN_F); 7582 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 7583 2, 1); 7584 if (err) 7585 return err; 7586 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 7587 } 7588 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 7589 return i; 7590} 7591 7592/** 7593 * t4_cim_read - read a block from CIM internal address space 7594 * @adap: the adapter 7595 * @addr: the start address within the CIM address space 7596 * @n: number of words to read 7597 * @valp: where to store the result 7598 * 7599 * Reads a block of 4-byte words from the CIM intenal address space. 7600 */ 7601int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 7602 unsigned int *valp) 7603{ 7604 int ret = 0; 7605 7606 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 7607 return -EBUSY; 7608 7609 for ( ; !ret && n--; addr += 4) { 7610 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 7611 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 7612 0, 5, 2); 7613 if (!ret) 7614 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 7615 } 7616 return ret; 7617} 7618 7619/** 7620 * t4_cim_write - write a block into CIM internal address space 7621 * @adap: the adapter 7622 * @addr: the start address within the CIM address space 7623 * @n: number of words to write 7624 * @valp: set of values to write 7625 * 7626 * Writes a block of 4-byte words into the CIM intenal address space. 7627 */ 7628int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 7629 const unsigned int *valp) 7630{ 7631 int ret = 0; 7632 7633 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 7634 return -EBUSY; 7635 7636 for ( ; !ret && n--; addr += 4) { 7637 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 7638 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 7639 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 7640 0, 5, 2); 7641 } 7642 return ret; 7643} 7644 7645static int t4_cim_write1(struct adapter *adap, unsigned int addr, 7646 unsigned int val) 7647{ 7648 return t4_cim_write(adap, addr, 1, &val); 7649} 7650 7651/** 7652 * t4_cim_read_la - read CIM LA capture buffer 7653 * @adap: the adapter 7654 * @la_buf: where to store the LA data 7655 * @wrptr: the HW write pointer within the capture buffer 7656 * 7657 * Reads the contents of the CIM LA buffer with the most recent entry at 7658 * the end of the returned data and with the entry at @wrptr first. 7659 * We try to leave the LA in the running state we find it in. 7660 */ 7661int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 7662{ 7663 int i, ret; 7664 unsigned int cfg, val, idx; 7665 7666 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 7667 if (ret) 7668 return ret; 7669 7670 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 7671 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 7672 if (ret) 7673 return ret; 7674 } 7675 7676 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 7677 if (ret) 7678 goto restart; 7679 7680 idx = UPDBGLAWRPTR_G(val); 7681 if (wrptr) 7682 *wrptr = idx; 7683 7684 for (i = 0; i < adap->params.cim_la_size; i++) { 7685 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 7686 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 7687 if (ret) 7688 break; 7689 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 7690 if (ret) 7691 break; 7692 if (val & UPDBGLARDEN_F) { 7693 ret = -ETIMEDOUT; 7694 break; 7695 } 7696 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 7697 if (ret) 7698 break; 7699 idx = (idx + 1) & UPDBGLARDPTR_M; 7700 } 7701restart: 7702 if (cfg & UPDBGLAEN_F) { 7703 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 7704 cfg & ~UPDBGLARDEN_F); 7705 if (!ret) 7706 ret = r; 7707 } 7708 return ret; 7709} 7710 7711/** 7712 * t4_tp_read_la - read TP LA capture buffer 7713 * @adap: the adapter 7714 * @la_buf: where to store the LA data 7715 * @wrptr: the HW write pointer within the capture buffer 7716 * 7717 * Reads the contents of the TP LA buffer with the most recent entry at 7718 * the end of the returned data and with the entry at @wrptr first. 7719 * We leave the LA in the running state we find it in. 7720 */ 7721void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 7722{ 7723 bool last_incomplete; 7724 unsigned int i, cfg, val, idx; 7725 7726 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 7727 if (cfg & DBGLAENABLE_F) /* freeze LA */ 7728 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 7729 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 7730 7731 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 7732 idx = DBGLAWPTR_G(val); 7733 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 7734 if (last_incomplete) 7735 idx = (idx + 1) & DBGLARPTR_M; 7736 if (wrptr) 7737 *wrptr = idx; 7738 7739 val &= 0xffff; 7740 val &= ~DBGLARPTR_V(DBGLARPTR_M); 7741 val |= adap->params.tp.la_mask; 7742 7743 for (i = 0; i < TPLA_SIZE; i++) { 7744 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 7745 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 7746 idx = (idx + 1) & DBGLARPTR_M; 7747 } 7748 7749 /* Wipe out last entry if it isn't valid */ 7750 if (last_incomplete) 7751 la_buf[TPLA_SIZE - 1] = ~0ULL; 7752 7753 if (cfg & DBGLAENABLE_F) /* restore running state */ 7754 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 7755 cfg | adap->params.tp.la_mask); 7756} 7757 7758/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 7759 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 7760 * state for more than the Warning Threshold then we'll issue a warning about 7761 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 7762 * appears to be hung every Warning Repeat second till the situation clears. 7763 * If the situation clears, we'll note that as well. 7764 */ 7765#define SGE_IDMA_WARN_THRESH 1 7766#define SGE_IDMA_WARN_REPEAT 300 7767 7768/** 7769 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 7770 * @adapter: the adapter 7771 * @idma: the adapter IDMA Monitor state 7772 * 7773 * Initialize the state of an SGE Ingress DMA Monitor. 7774 */ 7775void t4_idma_monitor_init(struct adapter *adapter, 7776 struct sge_idma_monitor_state *idma) 7777{ 7778 /* Initialize the state variables for detecting an SGE Ingress DMA 7779 * hang. The SGE has internal counters which count up on each clock 7780 * tick whenever the SGE finds its Ingress DMA State Engines in the 7781 * same state they were on the previous clock tick. The clock used is 7782 * the Core Clock so we have a limit on the maximum "time" they can 7783 * record; typically a very small number of seconds. For instance, 7784 * with a 600MHz Core Clock, we can only count up to a bit more than 7785 * 7s. So we'll synthesize a larger counter in order to not run the 7786 * risk of having the "timers" overflow and give us the flexibility to 7787 * maintain a Hung SGE State Machine of our own which operates across 7788 * a longer time frame. 7789 */ 7790 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 7791 idma->idma_stalled[0] = 0; 7792 idma->idma_stalled[1] = 0; 7793} 7794 7795/** 7796 * t4_idma_monitor - monitor SGE Ingress DMA state 7797 * @adapter: the adapter 7798 * @idma: the adapter IDMA Monitor state 7799 * @hz: number of ticks/second 7800 * @ticks: number of ticks since the last IDMA Monitor call 7801 */ 7802void t4_idma_monitor(struct adapter *adapter, 7803 struct sge_idma_monitor_state *idma, 7804 int hz, int ticks) 7805{ 7806 int i, idma_same_state_cnt[2]; 7807 7808 /* Read the SGE Debug Ingress DMA Same State Count registers. These 7809 * are counters inside the SGE which count up on each clock when the 7810 * SGE finds its Ingress DMA State Engines in the same states they 7811 * were in the previous clock. The counters will peg out at 7812 * 0xffffffff without wrapping around so once they pass the 1s 7813 * threshold they'll stay above that till the IDMA state changes. 7814 */ 7815 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 7816 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 7817 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 7818 7819 for (i = 0; i < 2; i++) { 7820 u32 debug0, debug11; 7821 7822 /* If the Ingress DMA Same State Counter ("timer") is less 7823 * than 1s, then we can reset our synthesized Stall Timer and 7824 * continue. If we have previously emitted warnings about a 7825 * potential stalled Ingress Queue, issue a note indicating 7826 * that the Ingress Queue has resumed forward progress. 7827 */ 7828 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 7829 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 7830 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 7831 "resumed after %d seconds\n", 7832 i, idma->idma_qid[i], 7833 idma->idma_stalled[i] / hz); 7834 idma->idma_stalled[i] = 0; 7835 continue; 7836 } 7837 7838 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 7839 * domain. The first time we get here it'll be because we 7840 * passed the 1s Threshold; each additional time it'll be 7841 * because the RX Timer Callback is being fired on its regular 7842 * schedule. 7843 * 7844 * If the stall is below our Potential Hung Ingress Queue 7845 * Warning Threshold, continue. 7846 */ 7847 if (idma->idma_stalled[i] == 0) { 7848 idma->idma_stalled[i] = hz; 7849 idma->idma_warn[i] = 0; 7850 } else { 7851 idma->idma_stalled[i] += ticks; 7852 idma->idma_warn[i] -= ticks; 7853 } 7854 7855 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 7856 continue; 7857 7858 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 7859 */ 7860 if (idma->idma_warn[i] > 0) 7861 continue; 7862 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 7863 7864 /* Read and save the SGE IDMA State and Queue ID information. 7865 * We do this every time in case it changes across time ... 7866 * can't be too careful ... 7867 */ 7868 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 7869 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 7870 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 7871 7872 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 7873 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 7874 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 7875 7876 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 7877 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 7878 i, idma->idma_qid[i], idma->idma_state[i], 7879 idma->idma_stalled[i] / hz, 7880 debug0, debug11); 7881 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 7882 } 7883} 7884