1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 *     Redistribution and use in source and binary forms, with or
13 *     without modification, are permitted provided that the following
14 *     conditions are met:
15 *
16 *      - Redistributions of source code must retain the above
17 *        copyright notice, this list of conditions and the following
18 *        disclaimer.
19 *
20 *      - Redistributions in binary form must reproduce the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer in the documentation and/or other materials
23 *        provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/delay.h>
36#include "cxgb4.h"
37#include "t4_regs.h"
38#include "t4_values.h"
39#include "t4fw_api.h"
40#include "t4fw_version.h"
41
42/**
43 *	t4_wait_op_done_val - wait until an operation is completed
44 *	@adapter: the adapter performing the operation
45 *	@reg: the register to check for completion
46 *	@mask: a single-bit field within @reg that indicates completion
47 *	@polarity: the value of the field when the operation is completed
48 *	@attempts: number of check iterations
49 *	@delay: delay in usecs between iterations
50 *	@valp: where to store the value of the register at completion time
51 *
52 *	Wait until an operation is completed by checking a bit in a register
53 *	up to @attempts times.  If @valp is not NULL the value of the register
54 *	at the time it indicated completion is stored there.  Returns 0 if the
55 *	operation completes and	-EAGAIN	otherwise.
56 */
57static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58			       int polarity, int attempts, int delay, u32 *valp)
59{
60	while (1) {
61		u32 val = t4_read_reg(adapter, reg);
62
63		if (!!(val & mask) == polarity) {
64			if (valp)
65				*valp = val;
66			return 0;
67		}
68		if (--attempts == 0)
69			return -EAGAIN;
70		if (delay)
71			udelay(delay);
72	}
73}
74
75static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76				  int polarity, int attempts, int delay)
77{
78	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79				   delay, NULL);
80}
81
82/**
83 *	t4_set_reg_field - set a register field to a value
84 *	@adapter: the adapter to program
85 *	@addr: the register address
86 *	@mask: specifies the portion of the register to modify
87 *	@val: the new value for the register field
88 *
89 *	Sets a register field specified by the supplied mask to the
90 *	given value.
91 */
92void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93		      u32 val)
94{
95	u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97	t4_write_reg(adapter, addr, v | val);
98	(void) t4_read_reg(adapter, addr);      /* flush */
99}
100
101/**
102 *	t4_read_indirect - read indirectly addressed registers
103 *	@adap: the adapter
104 *	@addr_reg: register holding the indirect address
105 *	@data_reg: register holding the value of the indirect register
106 *	@vals: where the read register values are stored
107 *	@nregs: how many indirect registers to read
108 *	@start_idx: index of first indirect register to read
109 *
110 *	Reads registers that are accessed indirectly through an address/data
111 *	register pair.
112 */
113void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114			     unsigned int data_reg, u32 *vals,
115			     unsigned int nregs, unsigned int start_idx)
116{
117	while (nregs--) {
118		t4_write_reg(adap, addr_reg, start_idx);
119		*vals++ = t4_read_reg(adap, data_reg);
120		start_idx++;
121	}
122}
123
124/**
125 *	t4_write_indirect - write indirectly addressed registers
126 *	@adap: the adapter
127 *	@addr_reg: register holding the indirect addresses
128 *	@data_reg: register holding the value for the indirect registers
129 *	@vals: values to write
130 *	@nregs: how many indirect registers to write
131 *	@start_idx: address of first indirect register to write
132 *
133 *	Writes a sequential block of registers that are accessed indirectly
134 *	through an address/data register pair.
135 */
136void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137		       unsigned int data_reg, const u32 *vals,
138		       unsigned int nregs, unsigned int start_idx)
139{
140	while (nregs--) {
141		t4_write_reg(adap, addr_reg, start_idx++);
142		t4_write_reg(adap, data_reg, *vals++);
143	}
144}
145
146/*
147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148 * mechanism.  This guarantees that we get the real value even if we're
149 * operating within a Virtual Machine and the Hypervisor is trapping our
150 * Configuration Space accesses.
151 */
152void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153{
154	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157		req |= ENABLE_F;
158	else
159		req |= T6_ENABLE_F;
160
161	if (is_t4(adap->params.chip))
162		req |= LOCALCFG_F;
163
164	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168	 * Configuration Space read.  (None of the other fields matter when
169	 * ENABLE is 0 so a simple register write is easier than a
170	 * read-modify-write via t4_set_reg_field().)
171	 */
172	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173}
174
175/*
176 * t4_report_fw_error - report firmware error
177 * @adap: the adapter
178 *
179 * The adapter firmware can indicate error conditions to the host.
180 * If the firmware has indicated an error, print out the reason for
181 * the firmware error.
182 */
183static void t4_report_fw_error(struct adapter *adap)
184{
185	static const char *const reason[] = {
186		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193		"Reserved",                     /* reserved */
194	};
195	u32 pcie_fw;
196
197	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198	if (pcie_fw & PCIE_FW_ERR_F)
199		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201}
202
203/*
204 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205 */
206static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207			 u32 mbox_addr)
208{
209	for ( ; nflit; nflit--, mbox_addr += 8)
210		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211}
212
213/*
214 * Handle a FW assertion reported in a mailbox.
215 */
216static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217{
218	struct fw_debug_cmd asrt;
219
220	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221	dev_alert(adap->pdev_dev,
222		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225}
226
227static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
228{
229	dev_err(adap->pdev_dev,
230		"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
231		(unsigned long long)t4_read_reg64(adap, data_reg),
232		(unsigned long long)t4_read_reg64(adap, data_reg + 8),
233		(unsigned long long)t4_read_reg64(adap, data_reg + 16),
234		(unsigned long long)t4_read_reg64(adap, data_reg + 24),
235		(unsigned long long)t4_read_reg64(adap, data_reg + 32),
236		(unsigned long long)t4_read_reg64(adap, data_reg + 40),
237		(unsigned long long)t4_read_reg64(adap, data_reg + 48),
238		(unsigned long long)t4_read_reg64(adap, data_reg + 56));
239}
240
241/**
242 *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243 *	@adap: the adapter
244 *	@mbox: index of the mailbox to use
245 *	@cmd: the command to write
246 *	@size: command length in bytes
247 *	@rpl: where to optionally store the reply
248 *	@sleep_ok: if true we may sleep while awaiting command completion
249 *	@timeout: time to wait for command to finish before timing out
250 *
251 *	Sends the given command to FW through the selected mailbox and waits
252 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
253 *	store the FW's reply to the command.  The command and its optional
254 *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
255 *	to respond.  @sleep_ok determines whether we may sleep while awaiting
256 *	the response.  If sleeping is allowed we use progressive backoff
257 *	otherwise we spin.
258 *
259 *	The return value is 0 on success or a negative errno on failure.  A
260 *	failure can happen either because we are not able to execute the
261 *	command or FW executes it but signals an error.  In the latter case
262 *	the return value is the error code indicated by FW (negated).
263 */
264int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
265			    int size, void *rpl, bool sleep_ok, int timeout)
266{
267	static const int delay[] = {
268		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
269	};
270
271	u32 v;
272	u64 res;
273	int i, ms, delay_idx;
274	const __be64 *p = cmd;
275	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
276	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
277
278	if ((size & 15) || size > MBOX_LEN)
279		return -EINVAL;
280
281	/*
282	 * If the device is off-line, as in EEH, commands will time out.
283	 * Fail them early so we don't waste time waiting.
284	 */
285	if (adap->pdev->error_state != pci_channel_io_normal)
286		return -EIO;
287
288	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
289	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
290		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
291
292	if (v != MBOX_OWNER_DRV)
293		return v ? -EBUSY : -ETIMEDOUT;
294
295	for (i = 0; i < size; i += 8)
296		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
297
298	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
299	t4_read_reg(adap, ctl_reg);          /* flush write */
300
301	delay_idx = 0;
302	ms = delay[0];
303
304	for (i = 0; i < timeout; i += ms) {
305		if (sleep_ok) {
306			ms = delay[delay_idx];  /* last element may repeat */
307			if (delay_idx < ARRAY_SIZE(delay) - 1)
308				delay_idx++;
309			msleep(ms);
310		} else
311			mdelay(ms);
312
313		v = t4_read_reg(adap, ctl_reg);
314		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
315			if (!(v & MBMSGVALID_F)) {
316				t4_write_reg(adap, ctl_reg, 0);
317				continue;
318			}
319
320			res = t4_read_reg64(adap, data_reg);
321			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
322				fw_asrt(adap, data_reg);
323				res = FW_CMD_RETVAL_V(EIO);
324			} else if (rpl) {
325				get_mbox_rpl(adap, rpl, size / 8, data_reg);
326			}
327
328			if (FW_CMD_RETVAL_G((int)res))
329				dump_mbox(adap, mbox, data_reg);
330			t4_write_reg(adap, ctl_reg, 0);
331			return -FW_CMD_RETVAL_G((int)res);
332		}
333	}
334
335	dump_mbox(adap, mbox, data_reg);
336	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
337		*(const u8 *)cmd, mbox);
338	t4_report_fw_error(adap);
339	return -ETIMEDOUT;
340}
341
342int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
343		    void *rpl, bool sleep_ok)
344{
345	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
346				       FW_CMD_MAX_TIMEOUT);
347}
348
349static int t4_edc_err_read(struct adapter *adap, int idx)
350{
351	u32 edc_ecc_err_addr_reg;
352	u32 rdata_reg;
353
354	if (is_t4(adap->params.chip)) {
355		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
356		return 0;
357	}
358	if (idx != 0 && idx != 1) {
359		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
360		return 0;
361	}
362
363	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
364	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
365
366	CH_WARN(adap,
367		"edc%d err addr 0x%x: 0x%x.\n",
368		idx, edc_ecc_err_addr_reg,
369		t4_read_reg(adap, edc_ecc_err_addr_reg));
370	CH_WARN(adap,
371		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
372		rdata_reg,
373		(unsigned long long)t4_read_reg64(adap, rdata_reg),
374		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
375		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
376		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
377		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
378		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
379		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
380		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
381		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
382
383	return 0;
384}
385
386/**
387 *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
388 *	@adap: the adapter
389 *	@win: PCI-E Memory Window to use
390 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
391 *	@addr: address within indicated memory type
392 *	@len: amount of memory to transfer
393 *	@hbuf: host memory buffer
394 *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
395 *
396 *	Reads/writes an [almost] arbitrary memory region in the firmware: the
397 *	firmware memory address and host buffer must be aligned on 32-bit
398 *	boudaries; the length may be arbitrary.  The memory is transferred as
399 *	a raw byte sequence from/to the firmware's memory.  If this memory
400 *	contains data structures which contain multi-byte integers, it's the
401 *	caller's responsibility to perform appropriate byte order conversions.
402 */
403int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
404		 u32 len, void *hbuf, int dir)
405{
406	u32 pos, offset, resid, memoffset;
407	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
408	u32 *buf;
409
410	/* Argument sanity checks ...
411	 */
412	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
413		return -EINVAL;
414	buf = (u32 *)hbuf;
415
416	/* It's convenient to be able to handle lengths which aren't a
417	 * multiple of 32-bits because we often end up transferring files to
418	 * the firmware.  So we'll handle that by normalizing the length here
419	 * and then handling any residual transfer at the end.
420	 */
421	resid = len & 0x3;
422	len -= resid;
423
424	/* Offset into the region of memory which is being accessed
425	 * MEM_EDC0 = 0
426	 * MEM_EDC1 = 1
427	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
428	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
429	 */
430	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
431	if (mtype != MEM_MC1)
432		memoffset = (mtype * (edc_size * 1024 * 1024));
433	else {
434		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
435						      MA_EXT_MEMORY0_BAR_A));
436		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
437	}
438
439	/* Determine the PCIE_MEM_ACCESS_OFFSET */
440	addr = addr + memoffset;
441
442	/* Each PCI-E Memory Window is programmed with a window size -- or
443	 * "aperture" -- which controls the granularity of its mapping onto
444	 * adapter memory.  We need to grab that aperture in order to know
445	 * how to use the specified window.  The window is also programmed
446	 * with the base address of the Memory Window in BAR0's address
447	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
448	 * the address is relative to BAR0.
449	 */
450	mem_reg = t4_read_reg(adap,
451			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
452						  win));
453	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
454	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
455	if (is_t4(adap->params.chip))
456		mem_base -= adap->t4_bar0;
457	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
458
459	/* Calculate our initial PCI-E Memory Window Position and Offset into
460	 * that Window.
461	 */
462	pos = addr & ~(mem_aperture-1);
463	offset = addr - pos;
464
465	/* Set up initial PCI-E Memory Window to cover the start of our
466	 * transfer.  (Read it back to ensure that changes propagate before we
467	 * attempt to use the new value.)
468	 */
469	t4_write_reg(adap,
470		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
471		     pos | win_pf);
472	t4_read_reg(adap,
473		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
474
475	/* Transfer data to/from the adapter as long as there's an integral
476	 * number of 32-bit transfers to complete.
477	 *
478	 * A note on Endianness issues:
479	 *
480	 * The "register" reads and writes below from/to the PCI-E Memory
481	 * Window invoke the standard adapter Big-Endian to PCI-E Link
482	 * Little-Endian "swizzel."  As a result, if we have the following
483	 * data in adapter memory:
484	 *
485	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
486	 *     Address:      i+0  i+1  i+2  i+3
487	 *
488	 * Then a read of the adapter memory via the PCI-E Memory Window
489	 * will yield:
490	 *
491	 *     x = readl(i)
492	 *         31                  0
493	 *         [ b3 | b2 | b1 | b0 ]
494	 *
495	 * If this value is stored into local memory on a Little-Endian system
496	 * it will show up correctly in local memory as:
497	 *
498	 *     ( ..., b0, b1, b2, b3, ... )
499	 *
500	 * But on a Big-Endian system, the store will show up in memory
501	 * incorrectly swizzled as:
502	 *
503	 *     ( ..., b3, b2, b1, b0, ... )
504	 *
505	 * So we need to account for this in the reads and writes to the
506	 * PCI-E Memory Window below by undoing the register read/write
507	 * swizzels.
508	 */
509	while (len > 0) {
510		if (dir == T4_MEMORY_READ)
511			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
512						mem_base + offset));
513		else
514			t4_write_reg(adap, mem_base + offset,
515				     (__force u32)cpu_to_le32(*buf++));
516		offset += sizeof(__be32);
517		len -= sizeof(__be32);
518
519		/* If we've reached the end of our current window aperture,
520		 * move the PCI-E Memory Window on to the next.  Note that
521		 * doing this here after "len" may be 0 allows us to set up
522		 * the PCI-E Memory Window for a possible final residual
523		 * transfer below ...
524		 */
525		if (offset == mem_aperture) {
526			pos += mem_aperture;
527			offset = 0;
528			t4_write_reg(adap,
529				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
530						    win), pos | win_pf);
531			t4_read_reg(adap,
532				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
533						    win));
534		}
535	}
536
537	/* If the original transfer had a length which wasn't a multiple of
538	 * 32-bits, now's where we need to finish off the transfer of the
539	 * residual amount.  The PCI-E Memory Window has already been moved
540	 * above (if necessary) to cover this final transfer.
541	 */
542	if (resid) {
543		union {
544			u32 word;
545			char byte[4];
546		} last;
547		unsigned char *bp;
548		int i;
549
550		if (dir == T4_MEMORY_READ) {
551			last.word = le32_to_cpu(
552					(__force __le32)t4_read_reg(adap,
553						mem_base + offset));
554			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
555				bp[i] = last.byte[i];
556		} else {
557			last.word = *buf;
558			for (i = resid; i < 4; i++)
559				last.byte[i] = 0;
560			t4_write_reg(adap, mem_base + offset,
561				     (__force u32)cpu_to_le32(last.word));
562		}
563	}
564
565	return 0;
566}
567
568/* Return the specified PCI-E Configuration Space register from our Physical
569 * Function.  We try first via a Firmware LDST Command since we prefer to let
570 * the firmware own all of these registers, but if that fails we go for it
571 * directly ourselves.
572 */
573u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
574{
575	u32 val, ldst_addrspace;
576
577	/* If fw_attach != 0, construct and send the Firmware LDST Command to
578	 * retrieve the specified PCI-E Configuration Space register.
579	 */
580	struct fw_ldst_cmd ldst_cmd;
581	int ret;
582
583	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
584	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
585	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
586					       FW_CMD_REQUEST_F |
587					       FW_CMD_READ_F |
588					       ldst_addrspace);
589	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
590	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
591	ldst_cmd.u.pcie.ctrl_to_fn =
592		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
593	ldst_cmd.u.pcie.r = reg;
594
595	/* If the LDST Command succeeds, return the result, otherwise
596	 * fall through to reading it directly ourselves ...
597	 */
598	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
599			 &ldst_cmd);
600	if (ret == 0)
601		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
602	else
603		/* Read the desired Configuration Space register via the PCI-E
604		 * Backdoor mechanism.
605		 */
606		t4_hw_pci_read_cfg4(adap, reg, &val);
607	return val;
608}
609
610/* Get the window based on base passed to it.
611 * Window aperture is currently unhandled, but there is no use case for it
612 * right now
613 */
614static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
615			 u32 memwin_base)
616{
617	u32 ret;
618
619	if (is_t4(adap->params.chip)) {
620		u32 bar0;
621
622		/* Truncation intentional: we only read the bottom 32-bits of
623		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
624		 * mechanism to read BAR0 instead of using
625		 * pci_resource_start() because we could be operating from
626		 * within a Virtual Machine which is trapping our accesses to
627		 * our Configuration Space and we need to set up the PCI-E
628		 * Memory Window decoders with the actual addresses which will
629		 * be coming across the PCI-E link.
630		 */
631		bar0 = t4_read_pcie_cfg4(adap, pci_base);
632		bar0 &= pci_mask;
633		adap->t4_bar0 = bar0;
634
635		ret = bar0 + memwin_base;
636	} else {
637		/* For T5, only relative offset inside the PCIe BAR is passed */
638		ret = memwin_base;
639	}
640	return ret;
641}
642
643/* Get the default utility window (win0) used by everyone */
644u32 t4_get_util_window(struct adapter *adap)
645{
646	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
647			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
648}
649
650/* Set up memory window for accessing adapter memory ranges.  (Read
651 * back MA register to ensure that changes propagate before we attempt
652 * to use the new values.)
653 */
654void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
655{
656	t4_write_reg(adap,
657		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
658		     memwin_base | BIR_V(0) |
659		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
660	t4_read_reg(adap,
661		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
662}
663
664/**
665 *	t4_get_regs_len - return the size of the chips register set
666 *	@adapter: the adapter
667 *
668 *	Returns the size of the chip's BAR0 register space.
669 */
670unsigned int t4_get_regs_len(struct adapter *adapter)
671{
672	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
673
674	switch (chip_version) {
675	case CHELSIO_T4:
676		return T4_REGMAP_SIZE;
677
678	case CHELSIO_T5:
679	case CHELSIO_T6:
680		return T5_REGMAP_SIZE;
681	}
682
683	dev_err(adapter->pdev_dev,
684		"Unsupported chip version %d\n", chip_version);
685	return 0;
686}
687
688/**
689 *	t4_get_regs - read chip registers into provided buffer
690 *	@adap: the adapter
691 *	@buf: register buffer
692 *	@buf_size: size (in bytes) of register buffer
693 *
694 *	If the provided register buffer isn't large enough for the chip's
695 *	full register range, the register dump will be truncated to the
696 *	register buffer's size.
697 */
698void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
699{
700	static const unsigned int t4_reg_ranges[] = {
701		0x1008, 0x1108,
702		0x1180, 0x1184,
703		0x1190, 0x1194,
704		0x11a0, 0x11a4,
705		0x11b0, 0x11b4,
706		0x11fc, 0x123c,
707		0x1300, 0x173c,
708		0x1800, 0x18fc,
709		0x3000, 0x30d8,
710		0x30e0, 0x30e4,
711		0x30ec, 0x5910,
712		0x5920, 0x5924,
713		0x5960, 0x5960,
714		0x5968, 0x5968,
715		0x5970, 0x5970,
716		0x5978, 0x5978,
717		0x5980, 0x5980,
718		0x5988, 0x5988,
719		0x5990, 0x5990,
720		0x5998, 0x5998,
721		0x59a0, 0x59d4,
722		0x5a00, 0x5ae0,
723		0x5ae8, 0x5ae8,
724		0x5af0, 0x5af0,
725		0x5af8, 0x5af8,
726		0x6000, 0x6098,
727		0x6100, 0x6150,
728		0x6200, 0x6208,
729		0x6240, 0x6248,
730		0x6280, 0x62b0,
731		0x62c0, 0x6338,
732		0x6370, 0x638c,
733		0x6400, 0x643c,
734		0x6500, 0x6524,
735		0x6a00, 0x6a04,
736		0x6a14, 0x6a38,
737		0x6a60, 0x6a70,
738		0x6a78, 0x6a78,
739		0x6b00, 0x6b0c,
740		0x6b1c, 0x6b84,
741		0x6bf0, 0x6bf8,
742		0x6c00, 0x6c0c,
743		0x6c1c, 0x6c84,
744		0x6cf0, 0x6cf8,
745		0x6d00, 0x6d0c,
746		0x6d1c, 0x6d84,
747		0x6df0, 0x6df8,
748		0x6e00, 0x6e0c,
749		0x6e1c, 0x6e84,
750		0x6ef0, 0x6ef8,
751		0x6f00, 0x6f0c,
752		0x6f1c, 0x6f84,
753		0x6ff0, 0x6ff8,
754		0x7000, 0x700c,
755		0x701c, 0x7084,
756		0x70f0, 0x70f8,
757		0x7100, 0x710c,
758		0x711c, 0x7184,
759		0x71f0, 0x71f8,
760		0x7200, 0x720c,
761		0x721c, 0x7284,
762		0x72f0, 0x72f8,
763		0x7300, 0x730c,
764		0x731c, 0x7384,
765		0x73f0, 0x73f8,
766		0x7400, 0x7450,
767		0x7500, 0x7530,
768		0x7600, 0x760c,
769		0x7614, 0x761c,
770		0x7680, 0x76cc,
771		0x7700, 0x7798,
772		0x77c0, 0x77fc,
773		0x7900, 0x79fc,
774		0x7b00, 0x7b58,
775		0x7b60, 0x7b84,
776		0x7b8c, 0x7c38,
777		0x7d00, 0x7d38,
778		0x7d40, 0x7d80,
779		0x7d8c, 0x7ddc,
780		0x7de4, 0x7e04,
781		0x7e10, 0x7e1c,
782		0x7e24, 0x7e38,
783		0x7e40, 0x7e44,
784		0x7e4c, 0x7e78,
785		0x7e80, 0x7ea4,
786		0x7eac, 0x7edc,
787		0x7ee8, 0x7efc,
788		0x8dc0, 0x8e04,
789		0x8e10, 0x8e1c,
790		0x8e30, 0x8e78,
791		0x8ea0, 0x8eb8,
792		0x8ec0, 0x8f6c,
793		0x8fc0, 0x9008,
794		0x9010, 0x9058,
795		0x9060, 0x9060,
796		0x9068, 0x9074,
797		0x90fc, 0x90fc,
798		0x9400, 0x9408,
799		0x9410, 0x9458,
800		0x9600, 0x9600,
801		0x9608, 0x9638,
802		0x9640, 0x96bc,
803		0x9800, 0x9808,
804		0x9820, 0x983c,
805		0x9850, 0x9864,
806		0x9c00, 0x9c6c,
807		0x9c80, 0x9cec,
808		0x9d00, 0x9d6c,
809		0x9d80, 0x9dec,
810		0x9e00, 0x9e6c,
811		0x9e80, 0x9eec,
812		0x9f00, 0x9f6c,
813		0x9f80, 0x9fec,
814		0xd004, 0xd004,
815		0xd010, 0xd03c,
816		0xdfc0, 0xdfe0,
817		0xe000, 0xea7c,
818		0xf000, 0x11190,
819		0x19040, 0x1906c,
820		0x19078, 0x19080,
821		0x1908c, 0x190e4,
822		0x190f0, 0x190f8,
823		0x19100, 0x19110,
824		0x19120, 0x19124,
825		0x19150, 0x19194,
826		0x1919c, 0x191b0,
827		0x191d0, 0x191e8,
828		0x19238, 0x1924c,
829		0x193f8, 0x1943c,
830		0x1944c, 0x19474,
831		0x19490, 0x194e0,
832		0x194f0, 0x194f8,
833		0x19800, 0x19c08,
834		0x19c10, 0x19c90,
835		0x19ca0, 0x19ce4,
836		0x19cf0, 0x19d40,
837		0x19d50, 0x19d94,
838		0x19da0, 0x19de8,
839		0x19df0, 0x19e40,
840		0x19e50, 0x19e90,
841		0x19ea0, 0x19f4c,
842		0x1a000, 0x1a004,
843		0x1a010, 0x1a06c,
844		0x1a0b0, 0x1a0e4,
845		0x1a0ec, 0x1a0f4,
846		0x1a100, 0x1a108,
847		0x1a114, 0x1a120,
848		0x1a128, 0x1a130,
849		0x1a138, 0x1a138,
850		0x1a190, 0x1a1c4,
851		0x1a1fc, 0x1a1fc,
852		0x1e040, 0x1e04c,
853		0x1e284, 0x1e28c,
854		0x1e2c0, 0x1e2c0,
855		0x1e2e0, 0x1e2e0,
856		0x1e300, 0x1e384,
857		0x1e3c0, 0x1e3c8,
858		0x1e440, 0x1e44c,
859		0x1e684, 0x1e68c,
860		0x1e6c0, 0x1e6c0,
861		0x1e6e0, 0x1e6e0,
862		0x1e700, 0x1e784,
863		0x1e7c0, 0x1e7c8,
864		0x1e840, 0x1e84c,
865		0x1ea84, 0x1ea8c,
866		0x1eac0, 0x1eac0,
867		0x1eae0, 0x1eae0,
868		0x1eb00, 0x1eb84,
869		0x1ebc0, 0x1ebc8,
870		0x1ec40, 0x1ec4c,
871		0x1ee84, 0x1ee8c,
872		0x1eec0, 0x1eec0,
873		0x1eee0, 0x1eee0,
874		0x1ef00, 0x1ef84,
875		0x1efc0, 0x1efc8,
876		0x1f040, 0x1f04c,
877		0x1f284, 0x1f28c,
878		0x1f2c0, 0x1f2c0,
879		0x1f2e0, 0x1f2e0,
880		0x1f300, 0x1f384,
881		0x1f3c0, 0x1f3c8,
882		0x1f440, 0x1f44c,
883		0x1f684, 0x1f68c,
884		0x1f6c0, 0x1f6c0,
885		0x1f6e0, 0x1f6e0,
886		0x1f700, 0x1f784,
887		0x1f7c0, 0x1f7c8,
888		0x1f840, 0x1f84c,
889		0x1fa84, 0x1fa8c,
890		0x1fac0, 0x1fac0,
891		0x1fae0, 0x1fae0,
892		0x1fb00, 0x1fb84,
893		0x1fbc0, 0x1fbc8,
894		0x1fc40, 0x1fc4c,
895		0x1fe84, 0x1fe8c,
896		0x1fec0, 0x1fec0,
897		0x1fee0, 0x1fee0,
898		0x1ff00, 0x1ff84,
899		0x1ffc0, 0x1ffc8,
900		0x20000, 0x2002c,
901		0x20100, 0x2013c,
902		0x20190, 0x201a0,
903		0x201a8, 0x201b8,
904		0x201c4, 0x201c8,
905		0x20200, 0x20318,
906		0x20400, 0x204b4,
907		0x204c0, 0x20528,
908		0x20540, 0x20614,
909		0x21000, 0x21040,
910		0x2104c, 0x21060,
911		0x210c0, 0x210ec,
912		0x21200, 0x21268,
913		0x21270, 0x21284,
914		0x212fc, 0x21388,
915		0x21400, 0x21404,
916		0x21500, 0x21500,
917		0x21510, 0x21518,
918		0x2152c, 0x21530,
919		0x2153c, 0x2153c,
920		0x21550, 0x21554,
921		0x21600, 0x21600,
922		0x21608, 0x2161c,
923		0x21624, 0x21628,
924		0x21630, 0x21634,
925		0x2163c, 0x2163c,
926		0x21700, 0x2171c,
927		0x21780, 0x2178c,
928		0x21800, 0x21818,
929		0x21820, 0x21828,
930		0x21830, 0x21848,
931		0x21850, 0x21854,
932		0x21860, 0x21868,
933		0x21870, 0x21870,
934		0x21878, 0x21898,
935		0x218a0, 0x218a8,
936		0x218b0, 0x218c8,
937		0x218d0, 0x218d4,
938		0x218e0, 0x218e8,
939		0x218f0, 0x218f0,
940		0x218f8, 0x21a18,
941		0x21a20, 0x21a28,
942		0x21a30, 0x21a48,
943		0x21a50, 0x21a54,
944		0x21a60, 0x21a68,
945		0x21a70, 0x21a70,
946		0x21a78, 0x21a98,
947		0x21aa0, 0x21aa8,
948		0x21ab0, 0x21ac8,
949		0x21ad0, 0x21ad4,
950		0x21ae0, 0x21ae8,
951		0x21af0, 0x21af0,
952		0x21af8, 0x21c18,
953		0x21c20, 0x21c20,
954		0x21c28, 0x21c30,
955		0x21c38, 0x21c38,
956		0x21c80, 0x21c98,
957		0x21ca0, 0x21ca8,
958		0x21cb0, 0x21cc8,
959		0x21cd0, 0x21cd4,
960		0x21ce0, 0x21ce8,
961		0x21cf0, 0x21cf0,
962		0x21cf8, 0x21d7c,
963		0x21e00, 0x21e04,
964		0x22000, 0x2202c,
965		0x22100, 0x2213c,
966		0x22190, 0x221a0,
967		0x221a8, 0x221b8,
968		0x221c4, 0x221c8,
969		0x22200, 0x22318,
970		0x22400, 0x224b4,
971		0x224c0, 0x22528,
972		0x22540, 0x22614,
973		0x23000, 0x23040,
974		0x2304c, 0x23060,
975		0x230c0, 0x230ec,
976		0x23200, 0x23268,
977		0x23270, 0x23284,
978		0x232fc, 0x23388,
979		0x23400, 0x23404,
980		0x23500, 0x23500,
981		0x23510, 0x23518,
982		0x2352c, 0x23530,
983		0x2353c, 0x2353c,
984		0x23550, 0x23554,
985		0x23600, 0x23600,
986		0x23608, 0x2361c,
987		0x23624, 0x23628,
988		0x23630, 0x23634,
989		0x2363c, 0x2363c,
990		0x23700, 0x2371c,
991		0x23780, 0x2378c,
992		0x23800, 0x23818,
993		0x23820, 0x23828,
994		0x23830, 0x23848,
995		0x23850, 0x23854,
996		0x23860, 0x23868,
997		0x23870, 0x23870,
998		0x23878, 0x23898,
999		0x238a0, 0x238a8,
1000		0x238b0, 0x238c8,
1001		0x238d0, 0x238d4,
1002		0x238e0, 0x238e8,
1003		0x238f0, 0x238f0,
1004		0x238f8, 0x23a18,
1005		0x23a20, 0x23a28,
1006		0x23a30, 0x23a48,
1007		0x23a50, 0x23a54,
1008		0x23a60, 0x23a68,
1009		0x23a70, 0x23a70,
1010		0x23a78, 0x23a98,
1011		0x23aa0, 0x23aa8,
1012		0x23ab0, 0x23ac8,
1013		0x23ad0, 0x23ad4,
1014		0x23ae0, 0x23ae8,
1015		0x23af0, 0x23af0,
1016		0x23af8, 0x23c18,
1017		0x23c20, 0x23c20,
1018		0x23c28, 0x23c30,
1019		0x23c38, 0x23c38,
1020		0x23c80, 0x23c98,
1021		0x23ca0, 0x23ca8,
1022		0x23cb0, 0x23cc8,
1023		0x23cd0, 0x23cd4,
1024		0x23ce0, 0x23ce8,
1025		0x23cf0, 0x23cf0,
1026		0x23cf8, 0x23d7c,
1027		0x23e00, 0x23e04,
1028		0x24000, 0x2402c,
1029		0x24100, 0x2413c,
1030		0x24190, 0x241a0,
1031		0x241a8, 0x241b8,
1032		0x241c4, 0x241c8,
1033		0x24200, 0x24318,
1034		0x24400, 0x244b4,
1035		0x244c0, 0x24528,
1036		0x24540, 0x24614,
1037		0x25000, 0x25040,
1038		0x2504c, 0x25060,
1039		0x250c0, 0x250ec,
1040		0x25200, 0x25268,
1041		0x25270, 0x25284,
1042		0x252fc, 0x25388,
1043		0x25400, 0x25404,
1044		0x25500, 0x25500,
1045		0x25510, 0x25518,
1046		0x2552c, 0x25530,
1047		0x2553c, 0x2553c,
1048		0x25550, 0x25554,
1049		0x25600, 0x25600,
1050		0x25608, 0x2561c,
1051		0x25624, 0x25628,
1052		0x25630, 0x25634,
1053		0x2563c, 0x2563c,
1054		0x25700, 0x2571c,
1055		0x25780, 0x2578c,
1056		0x25800, 0x25818,
1057		0x25820, 0x25828,
1058		0x25830, 0x25848,
1059		0x25850, 0x25854,
1060		0x25860, 0x25868,
1061		0x25870, 0x25870,
1062		0x25878, 0x25898,
1063		0x258a0, 0x258a8,
1064		0x258b0, 0x258c8,
1065		0x258d0, 0x258d4,
1066		0x258e0, 0x258e8,
1067		0x258f0, 0x258f0,
1068		0x258f8, 0x25a18,
1069		0x25a20, 0x25a28,
1070		0x25a30, 0x25a48,
1071		0x25a50, 0x25a54,
1072		0x25a60, 0x25a68,
1073		0x25a70, 0x25a70,
1074		0x25a78, 0x25a98,
1075		0x25aa0, 0x25aa8,
1076		0x25ab0, 0x25ac8,
1077		0x25ad0, 0x25ad4,
1078		0x25ae0, 0x25ae8,
1079		0x25af0, 0x25af0,
1080		0x25af8, 0x25c18,
1081		0x25c20, 0x25c20,
1082		0x25c28, 0x25c30,
1083		0x25c38, 0x25c38,
1084		0x25c80, 0x25c98,
1085		0x25ca0, 0x25ca8,
1086		0x25cb0, 0x25cc8,
1087		0x25cd0, 0x25cd4,
1088		0x25ce0, 0x25ce8,
1089		0x25cf0, 0x25cf0,
1090		0x25cf8, 0x25d7c,
1091		0x25e00, 0x25e04,
1092		0x26000, 0x2602c,
1093		0x26100, 0x2613c,
1094		0x26190, 0x261a0,
1095		0x261a8, 0x261b8,
1096		0x261c4, 0x261c8,
1097		0x26200, 0x26318,
1098		0x26400, 0x264b4,
1099		0x264c0, 0x26528,
1100		0x26540, 0x26614,
1101		0x27000, 0x27040,
1102		0x2704c, 0x27060,
1103		0x270c0, 0x270ec,
1104		0x27200, 0x27268,
1105		0x27270, 0x27284,
1106		0x272fc, 0x27388,
1107		0x27400, 0x27404,
1108		0x27500, 0x27500,
1109		0x27510, 0x27518,
1110		0x2752c, 0x27530,
1111		0x2753c, 0x2753c,
1112		0x27550, 0x27554,
1113		0x27600, 0x27600,
1114		0x27608, 0x2761c,
1115		0x27624, 0x27628,
1116		0x27630, 0x27634,
1117		0x2763c, 0x2763c,
1118		0x27700, 0x2771c,
1119		0x27780, 0x2778c,
1120		0x27800, 0x27818,
1121		0x27820, 0x27828,
1122		0x27830, 0x27848,
1123		0x27850, 0x27854,
1124		0x27860, 0x27868,
1125		0x27870, 0x27870,
1126		0x27878, 0x27898,
1127		0x278a0, 0x278a8,
1128		0x278b0, 0x278c8,
1129		0x278d0, 0x278d4,
1130		0x278e0, 0x278e8,
1131		0x278f0, 0x278f0,
1132		0x278f8, 0x27a18,
1133		0x27a20, 0x27a28,
1134		0x27a30, 0x27a48,
1135		0x27a50, 0x27a54,
1136		0x27a60, 0x27a68,
1137		0x27a70, 0x27a70,
1138		0x27a78, 0x27a98,
1139		0x27aa0, 0x27aa8,
1140		0x27ab0, 0x27ac8,
1141		0x27ad0, 0x27ad4,
1142		0x27ae0, 0x27ae8,
1143		0x27af0, 0x27af0,
1144		0x27af8, 0x27c18,
1145		0x27c20, 0x27c20,
1146		0x27c28, 0x27c30,
1147		0x27c38, 0x27c38,
1148		0x27c80, 0x27c98,
1149		0x27ca0, 0x27ca8,
1150		0x27cb0, 0x27cc8,
1151		0x27cd0, 0x27cd4,
1152		0x27ce0, 0x27ce8,
1153		0x27cf0, 0x27cf0,
1154		0x27cf8, 0x27d7c,
1155		0x27e00, 0x27e04,
1156	};
1157
1158	static const unsigned int t5_reg_ranges[] = {
1159		0x1008, 0x10c0,
1160		0x10cc, 0x10f8,
1161		0x1100, 0x1100,
1162		0x110c, 0x1148,
1163		0x1180, 0x1184,
1164		0x1190, 0x1194,
1165		0x11a0, 0x11a4,
1166		0x11b0, 0x11b4,
1167		0x11fc, 0x123c,
1168		0x1280, 0x173c,
1169		0x1800, 0x18fc,
1170		0x3000, 0x3028,
1171		0x3060, 0x30b0,
1172		0x30b8, 0x30d8,
1173		0x30e0, 0x30fc,
1174		0x3140, 0x357c,
1175		0x35a8, 0x35cc,
1176		0x35ec, 0x35ec,
1177		0x3600, 0x5624,
1178		0x56cc, 0x56ec,
1179		0x56f4, 0x5720,
1180		0x5728, 0x575c,
1181		0x580c, 0x5814,
1182		0x5890, 0x589c,
1183		0x58a4, 0x58ac,
1184		0x58b8, 0x58bc,
1185		0x5940, 0x59c8,
1186		0x59d0, 0x59dc,
1187		0x59fc, 0x5a18,
1188		0x5a60, 0x5a70,
1189		0x5a80, 0x5a9c,
1190		0x5b94, 0x5bfc,
1191		0x6000, 0x6020,
1192		0x6028, 0x6040,
1193		0x6058, 0x609c,
1194		0x60a8, 0x614c,
1195		0x7700, 0x7798,
1196		0x77c0, 0x78fc,
1197		0x7b00, 0x7b58,
1198		0x7b60, 0x7b84,
1199		0x7b8c, 0x7c54,
1200		0x7d00, 0x7d38,
1201		0x7d40, 0x7d80,
1202		0x7d8c, 0x7ddc,
1203		0x7de4, 0x7e04,
1204		0x7e10, 0x7e1c,
1205		0x7e24, 0x7e38,
1206		0x7e40, 0x7e44,
1207		0x7e4c, 0x7e78,
1208		0x7e80, 0x7edc,
1209		0x7ee8, 0x7efc,
1210		0x8dc0, 0x8de0,
1211		0x8df8, 0x8e04,
1212		0x8e10, 0x8e84,
1213		0x8ea0, 0x8f84,
1214		0x8fc0, 0x9058,
1215		0x9060, 0x9060,
1216		0x9068, 0x90f8,
1217		0x9400, 0x9408,
1218		0x9410, 0x9470,
1219		0x9600, 0x9600,
1220		0x9608, 0x9638,
1221		0x9640, 0x96f4,
1222		0x9800, 0x9808,
1223		0x9820, 0x983c,
1224		0x9850, 0x9864,
1225		0x9c00, 0x9c6c,
1226		0x9c80, 0x9cec,
1227		0x9d00, 0x9d6c,
1228		0x9d80, 0x9dec,
1229		0x9e00, 0x9e6c,
1230		0x9e80, 0x9eec,
1231		0x9f00, 0x9f6c,
1232		0x9f80, 0xa020,
1233		0xd004, 0xd004,
1234		0xd010, 0xd03c,
1235		0xdfc0, 0xdfe0,
1236		0xe000, 0x1106c,
1237		0x11074, 0x11088,
1238		0x1109c, 0x1117c,
1239		0x11190, 0x11204,
1240		0x19040, 0x1906c,
1241		0x19078, 0x19080,
1242		0x1908c, 0x190e8,
1243		0x190f0, 0x190f8,
1244		0x19100, 0x19110,
1245		0x19120, 0x19124,
1246		0x19150, 0x19194,
1247		0x1919c, 0x191b0,
1248		0x191d0, 0x191e8,
1249		0x19238, 0x19290,
1250		0x193f8, 0x19428,
1251		0x19430, 0x19444,
1252		0x1944c, 0x1946c,
1253		0x19474, 0x19474,
1254		0x19490, 0x194cc,
1255		0x194f0, 0x194f8,
1256		0x19c00, 0x19c08,
1257		0x19c10, 0x19c60,
1258		0x19c94, 0x19ce4,
1259		0x19cf0, 0x19d40,
1260		0x19d50, 0x19d94,
1261		0x19da0, 0x19de8,
1262		0x19df0, 0x19e10,
1263		0x19e50, 0x19e90,
1264		0x19ea0, 0x19f24,
1265		0x19f34, 0x19f34,
1266		0x19f40, 0x19f50,
1267		0x19f90, 0x19fb4,
1268		0x19fc4, 0x19fe4,
1269		0x1a000, 0x1a004,
1270		0x1a010, 0x1a06c,
1271		0x1a0b0, 0x1a0e4,
1272		0x1a0ec, 0x1a0f8,
1273		0x1a100, 0x1a108,
1274		0x1a114, 0x1a120,
1275		0x1a128, 0x1a130,
1276		0x1a138, 0x1a138,
1277		0x1a190, 0x1a1c4,
1278		0x1a1fc, 0x1a1fc,
1279		0x1e008, 0x1e00c,
1280		0x1e040, 0x1e044,
1281		0x1e04c, 0x1e04c,
1282		0x1e284, 0x1e290,
1283		0x1e2c0, 0x1e2c0,
1284		0x1e2e0, 0x1e2e0,
1285		0x1e300, 0x1e384,
1286		0x1e3c0, 0x1e3c8,
1287		0x1e408, 0x1e40c,
1288		0x1e440, 0x1e444,
1289		0x1e44c, 0x1e44c,
1290		0x1e684, 0x1e690,
1291		0x1e6c0, 0x1e6c0,
1292		0x1e6e0, 0x1e6e0,
1293		0x1e700, 0x1e784,
1294		0x1e7c0, 0x1e7c8,
1295		0x1e808, 0x1e80c,
1296		0x1e840, 0x1e844,
1297		0x1e84c, 0x1e84c,
1298		0x1ea84, 0x1ea90,
1299		0x1eac0, 0x1eac0,
1300		0x1eae0, 0x1eae0,
1301		0x1eb00, 0x1eb84,
1302		0x1ebc0, 0x1ebc8,
1303		0x1ec08, 0x1ec0c,
1304		0x1ec40, 0x1ec44,
1305		0x1ec4c, 0x1ec4c,
1306		0x1ee84, 0x1ee90,
1307		0x1eec0, 0x1eec0,
1308		0x1eee0, 0x1eee0,
1309		0x1ef00, 0x1ef84,
1310		0x1efc0, 0x1efc8,
1311		0x1f008, 0x1f00c,
1312		0x1f040, 0x1f044,
1313		0x1f04c, 0x1f04c,
1314		0x1f284, 0x1f290,
1315		0x1f2c0, 0x1f2c0,
1316		0x1f2e0, 0x1f2e0,
1317		0x1f300, 0x1f384,
1318		0x1f3c0, 0x1f3c8,
1319		0x1f408, 0x1f40c,
1320		0x1f440, 0x1f444,
1321		0x1f44c, 0x1f44c,
1322		0x1f684, 0x1f690,
1323		0x1f6c0, 0x1f6c0,
1324		0x1f6e0, 0x1f6e0,
1325		0x1f700, 0x1f784,
1326		0x1f7c0, 0x1f7c8,
1327		0x1f808, 0x1f80c,
1328		0x1f840, 0x1f844,
1329		0x1f84c, 0x1f84c,
1330		0x1fa84, 0x1fa90,
1331		0x1fac0, 0x1fac0,
1332		0x1fae0, 0x1fae0,
1333		0x1fb00, 0x1fb84,
1334		0x1fbc0, 0x1fbc8,
1335		0x1fc08, 0x1fc0c,
1336		0x1fc40, 0x1fc44,
1337		0x1fc4c, 0x1fc4c,
1338		0x1fe84, 0x1fe90,
1339		0x1fec0, 0x1fec0,
1340		0x1fee0, 0x1fee0,
1341		0x1ff00, 0x1ff84,
1342		0x1ffc0, 0x1ffc8,
1343		0x30000, 0x30030,
1344		0x30038, 0x30038,
1345		0x30040, 0x30040,
1346		0x30100, 0x30144,
1347		0x30190, 0x301a0,
1348		0x301a8, 0x301b8,
1349		0x301c4, 0x301c8,
1350		0x301d0, 0x301d0,
1351		0x30200, 0x30318,
1352		0x30400, 0x304b4,
1353		0x304c0, 0x3052c,
1354		0x30540, 0x3061c,
1355		0x30800, 0x30828,
1356		0x30834, 0x30834,
1357		0x308c0, 0x30908,
1358		0x30910, 0x309ac,
1359		0x30a00, 0x30a14,
1360		0x30a1c, 0x30a2c,
1361		0x30a44, 0x30a50,
1362		0x30a74, 0x30a74,
1363		0x30a7c, 0x30afc,
1364		0x30b08, 0x30c24,
1365		0x30d00, 0x30d00,
1366		0x30d08, 0x30d14,
1367		0x30d1c, 0x30d20,
1368		0x30d3c, 0x30d3c,
1369		0x30d48, 0x30d50,
1370		0x31200, 0x3120c,
1371		0x31220, 0x31220,
1372		0x31240, 0x31240,
1373		0x31600, 0x3160c,
1374		0x31a00, 0x31a1c,
1375		0x31e00, 0x31e20,
1376		0x31e38, 0x31e3c,
1377		0x31e80, 0x31e80,
1378		0x31e88, 0x31ea8,
1379		0x31eb0, 0x31eb4,
1380		0x31ec8, 0x31ed4,
1381		0x31fb8, 0x32004,
1382		0x32200, 0x32200,
1383		0x32208, 0x32240,
1384		0x32248, 0x32280,
1385		0x32288, 0x322c0,
1386		0x322c8, 0x322fc,
1387		0x32600, 0x32630,
1388		0x32a00, 0x32abc,
1389		0x32b00, 0x32b10,
1390		0x32b20, 0x32b30,
1391		0x32b40, 0x32b50,
1392		0x32b60, 0x32b70,
1393		0x33000, 0x33028,
1394		0x33030, 0x33048,
1395		0x33060, 0x33068,
1396		0x33070, 0x3309c,
1397		0x330f0, 0x33128,
1398		0x33130, 0x33148,
1399		0x33160, 0x33168,
1400		0x33170, 0x3319c,
1401		0x331f0, 0x33238,
1402		0x33240, 0x33240,
1403		0x33248, 0x33250,
1404		0x3325c, 0x33264,
1405		0x33270, 0x332b8,
1406		0x332c0, 0x332e4,
1407		0x332f8, 0x33338,
1408		0x33340, 0x33340,
1409		0x33348, 0x33350,
1410		0x3335c, 0x33364,
1411		0x33370, 0x333b8,
1412		0x333c0, 0x333e4,
1413		0x333f8, 0x33428,
1414		0x33430, 0x33448,
1415		0x33460, 0x33468,
1416		0x33470, 0x3349c,
1417		0x334f0, 0x33528,
1418		0x33530, 0x33548,
1419		0x33560, 0x33568,
1420		0x33570, 0x3359c,
1421		0x335f0, 0x33638,
1422		0x33640, 0x33640,
1423		0x33648, 0x33650,
1424		0x3365c, 0x33664,
1425		0x33670, 0x336b8,
1426		0x336c0, 0x336e4,
1427		0x336f8, 0x33738,
1428		0x33740, 0x33740,
1429		0x33748, 0x33750,
1430		0x3375c, 0x33764,
1431		0x33770, 0x337b8,
1432		0x337c0, 0x337e4,
1433		0x337f8, 0x337fc,
1434		0x33814, 0x33814,
1435		0x3382c, 0x3382c,
1436		0x33880, 0x3388c,
1437		0x338e8, 0x338ec,
1438		0x33900, 0x33928,
1439		0x33930, 0x33948,
1440		0x33960, 0x33968,
1441		0x33970, 0x3399c,
1442		0x339f0, 0x33a38,
1443		0x33a40, 0x33a40,
1444		0x33a48, 0x33a50,
1445		0x33a5c, 0x33a64,
1446		0x33a70, 0x33ab8,
1447		0x33ac0, 0x33ae4,
1448		0x33af8, 0x33b10,
1449		0x33b28, 0x33b28,
1450		0x33b3c, 0x33b50,
1451		0x33bf0, 0x33c10,
1452		0x33c28, 0x33c28,
1453		0x33c3c, 0x33c50,
1454		0x33cf0, 0x33cfc,
1455		0x34000, 0x34030,
1456		0x34038, 0x34038,
1457		0x34040, 0x34040,
1458		0x34100, 0x34144,
1459		0x34190, 0x341a0,
1460		0x341a8, 0x341b8,
1461		0x341c4, 0x341c8,
1462		0x341d0, 0x341d0,
1463		0x34200, 0x34318,
1464		0x34400, 0x344b4,
1465		0x344c0, 0x3452c,
1466		0x34540, 0x3461c,
1467		0x34800, 0x34828,
1468		0x34834, 0x34834,
1469		0x348c0, 0x34908,
1470		0x34910, 0x349ac,
1471		0x34a00, 0x34a14,
1472		0x34a1c, 0x34a2c,
1473		0x34a44, 0x34a50,
1474		0x34a74, 0x34a74,
1475		0x34a7c, 0x34afc,
1476		0x34b08, 0x34c24,
1477		0x34d00, 0x34d00,
1478		0x34d08, 0x34d14,
1479		0x34d1c, 0x34d20,
1480		0x34d3c, 0x34d3c,
1481		0x34d48, 0x34d50,
1482		0x35200, 0x3520c,
1483		0x35220, 0x35220,
1484		0x35240, 0x35240,
1485		0x35600, 0x3560c,
1486		0x35a00, 0x35a1c,
1487		0x35e00, 0x35e20,
1488		0x35e38, 0x35e3c,
1489		0x35e80, 0x35e80,
1490		0x35e88, 0x35ea8,
1491		0x35eb0, 0x35eb4,
1492		0x35ec8, 0x35ed4,
1493		0x35fb8, 0x36004,
1494		0x36200, 0x36200,
1495		0x36208, 0x36240,
1496		0x36248, 0x36280,
1497		0x36288, 0x362c0,
1498		0x362c8, 0x362fc,
1499		0x36600, 0x36630,
1500		0x36a00, 0x36abc,
1501		0x36b00, 0x36b10,
1502		0x36b20, 0x36b30,
1503		0x36b40, 0x36b50,
1504		0x36b60, 0x36b70,
1505		0x37000, 0x37028,
1506		0x37030, 0x37048,
1507		0x37060, 0x37068,
1508		0x37070, 0x3709c,
1509		0x370f0, 0x37128,
1510		0x37130, 0x37148,
1511		0x37160, 0x37168,
1512		0x37170, 0x3719c,
1513		0x371f0, 0x37238,
1514		0x37240, 0x37240,
1515		0x37248, 0x37250,
1516		0x3725c, 0x37264,
1517		0x37270, 0x372b8,
1518		0x372c0, 0x372e4,
1519		0x372f8, 0x37338,
1520		0x37340, 0x37340,
1521		0x37348, 0x37350,
1522		0x3735c, 0x37364,
1523		0x37370, 0x373b8,
1524		0x373c0, 0x373e4,
1525		0x373f8, 0x37428,
1526		0x37430, 0x37448,
1527		0x37460, 0x37468,
1528		0x37470, 0x3749c,
1529		0x374f0, 0x37528,
1530		0x37530, 0x37548,
1531		0x37560, 0x37568,
1532		0x37570, 0x3759c,
1533		0x375f0, 0x37638,
1534		0x37640, 0x37640,
1535		0x37648, 0x37650,
1536		0x3765c, 0x37664,
1537		0x37670, 0x376b8,
1538		0x376c0, 0x376e4,
1539		0x376f8, 0x37738,
1540		0x37740, 0x37740,
1541		0x37748, 0x37750,
1542		0x3775c, 0x37764,
1543		0x37770, 0x377b8,
1544		0x377c0, 0x377e4,
1545		0x377f8, 0x377fc,
1546		0x37814, 0x37814,
1547		0x3782c, 0x3782c,
1548		0x37880, 0x3788c,
1549		0x378e8, 0x378ec,
1550		0x37900, 0x37928,
1551		0x37930, 0x37948,
1552		0x37960, 0x37968,
1553		0x37970, 0x3799c,
1554		0x379f0, 0x37a38,
1555		0x37a40, 0x37a40,
1556		0x37a48, 0x37a50,
1557		0x37a5c, 0x37a64,
1558		0x37a70, 0x37ab8,
1559		0x37ac0, 0x37ae4,
1560		0x37af8, 0x37b10,
1561		0x37b28, 0x37b28,
1562		0x37b3c, 0x37b50,
1563		0x37bf0, 0x37c10,
1564		0x37c28, 0x37c28,
1565		0x37c3c, 0x37c50,
1566		0x37cf0, 0x37cfc,
1567		0x38000, 0x38030,
1568		0x38038, 0x38038,
1569		0x38040, 0x38040,
1570		0x38100, 0x38144,
1571		0x38190, 0x381a0,
1572		0x381a8, 0x381b8,
1573		0x381c4, 0x381c8,
1574		0x381d0, 0x381d0,
1575		0x38200, 0x38318,
1576		0x38400, 0x384b4,
1577		0x384c0, 0x3852c,
1578		0x38540, 0x3861c,
1579		0x38800, 0x38828,
1580		0x38834, 0x38834,
1581		0x388c0, 0x38908,
1582		0x38910, 0x389ac,
1583		0x38a00, 0x38a14,
1584		0x38a1c, 0x38a2c,
1585		0x38a44, 0x38a50,
1586		0x38a74, 0x38a74,
1587		0x38a7c, 0x38afc,
1588		0x38b08, 0x38c24,
1589		0x38d00, 0x38d00,
1590		0x38d08, 0x38d14,
1591		0x38d1c, 0x38d20,
1592		0x38d3c, 0x38d3c,
1593		0x38d48, 0x38d50,
1594		0x39200, 0x3920c,
1595		0x39220, 0x39220,
1596		0x39240, 0x39240,
1597		0x39600, 0x3960c,
1598		0x39a00, 0x39a1c,
1599		0x39e00, 0x39e20,
1600		0x39e38, 0x39e3c,
1601		0x39e80, 0x39e80,
1602		0x39e88, 0x39ea8,
1603		0x39eb0, 0x39eb4,
1604		0x39ec8, 0x39ed4,
1605		0x39fb8, 0x3a004,
1606		0x3a200, 0x3a200,
1607		0x3a208, 0x3a240,
1608		0x3a248, 0x3a280,
1609		0x3a288, 0x3a2c0,
1610		0x3a2c8, 0x3a2fc,
1611		0x3a600, 0x3a630,
1612		0x3aa00, 0x3aabc,
1613		0x3ab00, 0x3ab10,
1614		0x3ab20, 0x3ab30,
1615		0x3ab40, 0x3ab50,
1616		0x3ab60, 0x3ab70,
1617		0x3b000, 0x3b028,
1618		0x3b030, 0x3b048,
1619		0x3b060, 0x3b068,
1620		0x3b070, 0x3b09c,
1621		0x3b0f0, 0x3b128,
1622		0x3b130, 0x3b148,
1623		0x3b160, 0x3b168,
1624		0x3b170, 0x3b19c,
1625		0x3b1f0, 0x3b238,
1626		0x3b240, 0x3b240,
1627		0x3b248, 0x3b250,
1628		0x3b25c, 0x3b264,
1629		0x3b270, 0x3b2b8,
1630		0x3b2c0, 0x3b2e4,
1631		0x3b2f8, 0x3b338,
1632		0x3b340, 0x3b340,
1633		0x3b348, 0x3b350,
1634		0x3b35c, 0x3b364,
1635		0x3b370, 0x3b3b8,
1636		0x3b3c0, 0x3b3e4,
1637		0x3b3f8, 0x3b428,
1638		0x3b430, 0x3b448,
1639		0x3b460, 0x3b468,
1640		0x3b470, 0x3b49c,
1641		0x3b4f0, 0x3b528,
1642		0x3b530, 0x3b548,
1643		0x3b560, 0x3b568,
1644		0x3b570, 0x3b59c,
1645		0x3b5f0, 0x3b638,
1646		0x3b640, 0x3b640,
1647		0x3b648, 0x3b650,
1648		0x3b65c, 0x3b664,
1649		0x3b670, 0x3b6b8,
1650		0x3b6c0, 0x3b6e4,
1651		0x3b6f8, 0x3b738,
1652		0x3b740, 0x3b740,
1653		0x3b748, 0x3b750,
1654		0x3b75c, 0x3b764,
1655		0x3b770, 0x3b7b8,
1656		0x3b7c0, 0x3b7e4,
1657		0x3b7f8, 0x3b7fc,
1658		0x3b814, 0x3b814,
1659		0x3b82c, 0x3b82c,
1660		0x3b880, 0x3b88c,
1661		0x3b8e8, 0x3b8ec,
1662		0x3b900, 0x3b928,
1663		0x3b930, 0x3b948,
1664		0x3b960, 0x3b968,
1665		0x3b970, 0x3b99c,
1666		0x3b9f0, 0x3ba38,
1667		0x3ba40, 0x3ba40,
1668		0x3ba48, 0x3ba50,
1669		0x3ba5c, 0x3ba64,
1670		0x3ba70, 0x3bab8,
1671		0x3bac0, 0x3bae4,
1672		0x3baf8, 0x3bb10,
1673		0x3bb28, 0x3bb28,
1674		0x3bb3c, 0x3bb50,
1675		0x3bbf0, 0x3bc10,
1676		0x3bc28, 0x3bc28,
1677		0x3bc3c, 0x3bc50,
1678		0x3bcf0, 0x3bcfc,
1679		0x3c000, 0x3c030,
1680		0x3c038, 0x3c038,
1681		0x3c040, 0x3c040,
1682		0x3c100, 0x3c144,
1683		0x3c190, 0x3c1a0,
1684		0x3c1a8, 0x3c1b8,
1685		0x3c1c4, 0x3c1c8,
1686		0x3c1d0, 0x3c1d0,
1687		0x3c200, 0x3c318,
1688		0x3c400, 0x3c4b4,
1689		0x3c4c0, 0x3c52c,
1690		0x3c540, 0x3c61c,
1691		0x3c800, 0x3c828,
1692		0x3c834, 0x3c834,
1693		0x3c8c0, 0x3c908,
1694		0x3c910, 0x3c9ac,
1695		0x3ca00, 0x3ca14,
1696		0x3ca1c, 0x3ca2c,
1697		0x3ca44, 0x3ca50,
1698		0x3ca74, 0x3ca74,
1699		0x3ca7c, 0x3cafc,
1700		0x3cb08, 0x3cc24,
1701		0x3cd00, 0x3cd00,
1702		0x3cd08, 0x3cd14,
1703		0x3cd1c, 0x3cd20,
1704		0x3cd3c, 0x3cd3c,
1705		0x3cd48, 0x3cd50,
1706		0x3d200, 0x3d20c,
1707		0x3d220, 0x3d220,
1708		0x3d240, 0x3d240,
1709		0x3d600, 0x3d60c,
1710		0x3da00, 0x3da1c,
1711		0x3de00, 0x3de20,
1712		0x3de38, 0x3de3c,
1713		0x3de80, 0x3de80,
1714		0x3de88, 0x3dea8,
1715		0x3deb0, 0x3deb4,
1716		0x3dec8, 0x3ded4,
1717		0x3dfb8, 0x3e004,
1718		0x3e200, 0x3e200,
1719		0x3e208, 0x3e240,
1720		0x3e248, 0x3e280,
1721		0x3e288, 0x3e2c0,
1722		0x3e2c8, 0x3e2fc,
1723		0x3e600, 0x3e630,
1724		0x3ea00, 0x3eabc,
1725		0x3eb00, 0x3eb10,
1726		0x3eb20, 0x3eb30,
1727		0x3eb40, 0x3eb50,
1728		0x3eb60, 0x3eb70,
1729		0x3f000, 0x3f028,
1730		0x3f030, 0x3f048,
1731		0x3f060, 0x3f068,
1732		0x3f070, 0x3f09c,
1733		0x3f0f0, 0x3f128,
1734		0x3f130, 0x3f148,
1735		0x3f160, 0x3f168,
1736		0x3f170, 0x3f19c,
1737		0x3f1f0, 0x3f238,
1738		0x3f240, 0x3f240,
1739		0x3f248, 0x3f250,
1740		0x3f25c, 0x3f264,
1741		0x3f270, 0x3f2b8,
1742		0x3f2c0, 0x3f2e4,
1743		0x3f2f8, 0x3f338,
1744		0x3f340, 0x3f340,
1745		0x3f348, 0x3f350,
1746		0x3f35c, 0x3f364,
1747		0x3f370, 0x3f3b8,
1748		0x3f3c0, 0x3f3e4,
1749		0x3f3f8, 0x3f428,
1750		0x3f430, 0x3f448,
1751		0x3f460, 0x3f468,
1752		0x3f470, 0x3f49c,
1753		0x3f4f0, 0x3f528,
1754		0x3f530, 0x3f548,
1755		0x3f560, 0x3f568,
1756		0x3f570, 0x3f59c,
1757		0x3f5f0, 0x3f638,
1758		0x3f640, 0x3f640,
1759		0x3f648, 0x3f650,
1760		0x3f65c, 0x3f664,
1761		0x3f670, 0x3f6b8,
1762		0x3f6c0, 0x3f6e4,
1763		0x3f6f8, 0x3f738,
1764		0x3f740, 0x3f740,
1765		0x3f748, 0x3f750,
1766		0x3f75c, 0x3f764,
1767		0x3f770, 0x3f7b8,
1768		0x3f7c0, 0x3f7e4,
1769		0x3f7f8, 0x3f7fc,
1770		0x3f814, 0x3f814,
1771		0x3f82c, 0x3f82c,
1772		0x3f880, 0x3f88c,
1773		0x3f8e8, 0x3f8ec,
1774		0x3f900, 0x3f928,
1775		0x3f930, 0x3f948,
1776		0x3f960, 0x3f968,
1777		0x3f970, 0x3f99c,
1778		0x3f9f0, 0x3fa38,
1779		0x3fa40, 0x3fa40,
1780		0x3fa48, 0x3fa50,
1781		0x3fa5c, 0x3fa64,
1782		0x3fa70, 0x3fab8,
1783		0x3fac0, 0x3fae4,
1784		0x3faf8, 0x3fb10,
1785		0x3fb28, 0x3fb28,
1786		0x3fb3c, 0x3fb50,
1787		0x3fbf0, 0x3fc10,
1788		0x3fc28, 0x3fc28,
1789		0x3fc3c, 0x3fc50,
1790		0x3fcf0, 0x3fcfc,
1791		0x40000, 0x4000c,
1792		0x40040, 0x40050,
1793		0x40060, 0x40068,
1794		0x4007c, 0x4008c,
1795		0x40094, 0x400b0,
1796		0x400c0, 0x40144,
1797		0x40180, 0x4018c,
1798		0x40200, 0x40254,
1799		0x40260, 0x40264,
1800		0x40270, 0x40288,
1801		0x40290, 0x40298,
1802		0x402ac, 0x402c8,
1803		0x402d0, 0x402e0,
1804		0x402f0, 0x402f0,
1805		0x40300, 0x4033c,
1806		0x403f8, 0x403fc,
1807		0x41304, 0x413c4,
1808		0x41400, 0x4140c,
1809		0x41414, 0x4141c,
1810		0x41480, 0x414d0,
1811		0x44000, 0x44054,
1812		0x4405c, 0x44078,
1813		0x440c0, 0x44174,
1814		0x44180, 0x441ac,
1815		0x441b4, 0x441b8,
1816		0x441c0, 0x44254,
1817		0x4425c, 0x44278,
1818		0x442c0, 0x44374,
1819		0x44380, 0x443ac,
1820		0x443b4, 0x443b8,
1821		0x443c0, 0x44454,
1822		0x4445c, 0x44478,
1823		0x444c0, 0x44574,
1824		0x44580, 0x445ac,
1825		0x445b4, 0x445b8,
1826		0x445c0, 0x44654,
1827		0x4465c, 0x44678,
1828		0x446c0, 0x44774,
1829		0x44780, 0x447ac,
1830		0x447b4, 0x447b8,
1831		0x447c0, 0x44854,
1832		0x4485c, 0x44878,
1833		0x448c0, 0x44974,
1834		0x44980, 0x449ac,
1835		0x449b4, 0x449b8,
1836		0x449c0, 0x449fc,
1837		0x45000, 0x45004,
1838		0x45010, 0x45030,
1839		0x45040, 0x45060,
1840		0x45068, 0x45068,
1841		0x45080, 0x45084,
1842		0x450a0, 0x450b0,
1843		0x45200, 0x45204,
1844		0x45210, 0x45230,
1845		0x45240, 0x45260,
1846		0x45268, 0x45268,
1847		0x45280, 0x45284,
1848		0x452a0, 0x452b0,
1849		0x460c0, 0x460e4,
1850		0x47000, 0x4703c,
1851		0x47044, 0x4708c,
1852		0x47200, 0x47250,
1853		0x47400, 0x47408,
1854		0x47414, 0x47420,
1855		0x47600, 0x47618,
1856		0x47800, 0x47814,
1857		0x48000, 0x4800c,
1858		0x48040, 0x48050,
1859		0x48060, 0x48068,
1860		0x4807c, 0x4808c,
1861		0x48094, 0x480b0,
1862		0x480c0, 0x48144,
1863		0x48180, 0x4818c,
1864		0x48200, 0x48254,
1865		0x48260, 0x48264,
1866		0x48270, 0x48288,
1867		0x48290, 0x48298,
1868		0x482ac, 0x482c8,
1869		0x482d0, 0x482e0,
1870		0x482f0, 0x482f0,
1871		0x48300, 0x4833c,
1872		0x483f8, 0x483fc,
1873		0x49304, 0x493c4,
1874		0x49400, 0x4940c,
1875		0x49414, 0x4941c,
1876		0x49480, 0x494d0,
1877		0x4c000, 0x4c054,
1878		0x4c05c, 0x4c078,
1879		0x4c0c0, 0x4c174,
1880		0x4c180, 0x4c1ac,
1881		0x4c1b4, 0x4c1b8,
1882		0x4c1c0, 0x4c254,
1883		0x4c25c, 0x4c278,
1884		0x4c2c0, 0x4c374,
1885		0x4c380, 0x4c3ac,
1886		0x4c3b4, 0x4c3b8,
1887		0x4c3c0, 0x4c454,
1888		0x4c45c, 0x4c478,
1889		0x4c4c0, 0x4c574,
1890		0x4c580, 0x4c5ac,
1891		0x4c5b4, 0x4c5b8,
1892		0x4c5c0, 0x4c654,
1893		0x4c65c, 0x4c678,
1894		0x4c6c0, 0x4c774,
1895		0x4c780, 0x4c7ac,
1896		0x4c7b4, 0x4c7b8,
1897		0x4c7c0, 0x4c854,
1898		0x4c85c, 0x4c878,
1899		0x4c8c0, 0x4c974,
1900		0x4c980, 0x4c9ac,
1901		0x4c9b4, 0x4c9b8,
1902		0x4c9c0, 0x4c9fc,
1903		0x4d000, 0x4d004,
1904		0x4d010, 0x4d030,
1905		0x4d040, 0x4d060,
1906		0x4d068, 0x4d068,
1907		0x4d080, 0x4d084,
1908		0x4d0a0, 0x4d0b0,
1909		0x4d200, 0x4d204,
1910		0x4d210, 0x4d230,
1911		0x4d240, 0x4d260,
1912		0x4d268, 0x4d268,
1913		0x4d280, 0x4d284,
1914		0x4d2a0, 0x4d2b0,
1915		0x4e0c0, 0x4e0e4,
1916		0x4f000, 0x4f03c,
1917		0x4f044, 0x4f08c,
1918		0x4f200, 0x4f250,
1919		0x4f400, 0x4f408,
1920		0x4f414, 0x4f420,
1921		0x4f600, 0x4f618,
1922		0x4f800, 0x4f814,
1923		0x50000, 0x50084,
1924		0x50090, 0x500cc,
1925		0x50400, 0x50400,
1926		0x50800, 0x50884,
1927		0x50890, 0x508cc,
1928		0x50c00, 0x50c00,
1929		0x51000, 0x5101c,
1930		0x51300, 0x51308,
1931	};
1932
1933	static const unsigned int t6_reg_ranges[] = {
1934		0x1008, 0x101c,
1935		0x1024, 0x10a8,
1936		0x10b4, 0x10f8,
1937		0x1100, 0x1114,
1938		0x111c, 0x112c,
1939		0x1138, 0x113c,
1940		0x1144, 0x114c,
1941		0x1180, 0x1184,
1942		0x1190, 0x1194,
1943		0x11a0, 0x11a4,
1944		0x11b0, 0x11b4,
1945		0x11fc, 0x1254,
1946		0x1280, 0x133c,
1947		0x1800, 0x18fc,
1948		0x3000, 0x302c,
1949		0x3060, 0x30b0,
1950		0x30b8, 0x30d8,
1951		0x30e0, 0x30fc,
1952		0x3140, 0x357c,
1953		0x35a8, 0x35cc,
1954		0x35ec, 0x35ec,
1955		0x3600, 0x5624,
1956		0x56cc, 0x56ec,
1957		0x56f4, 0x5720,
1958		0x5728, 0x575c,
1959		0x580c, 0x5814,
1960		0x5890, 0x589c,
1961		0x58a4, 0x58ac,
1962		0x58b8, 0x58bc,
1963		0x5940, 0x595c,
1964		0x5980, 0x598c,
1965		0x59b0, 0x59c8,
1966		0x59d0, 0x59dc,
1967		0x59fc, 0x5a18,
1968		0x5a60, 0x5a6c,
1969		0x5a80, 0x5a8c,
1970		0x5a94, 0x5a9c,
1971		0x5b94, 0x5bfc,
1972		0x5c10, 0x5e48,
1973		0x5e50, 0x5e94,
1974		0x5ea0, 0x5eb0,
1975		0x5ec0, 0x5ec0,
1976		0x5ec8, 0x5ecc,
1977		0x6000, 0x6020,
1978		0x6028, 0x6040,
1979		0x6058, 0x609c,
1980		0x60a8, 0x619c,
1981		0x7700, 0x7798,
1982		0x77c0, 0x7880,
1983		0x78cc, 0x78fc,
1984		0x7b00, 0x7b58,
1985		0x7b60, 0x7b84,
1986		0x7b8c, 0x7c54,
1987		0x7d00, 0x7d38,
1988		0x7d40, 0x7d84,
1989		0x7d8c, 0x7ddc,
1990		0x7de4, 0x7e04,
1991		0x7e10, 0x7e1c,
1992		0x7e24, 0x7e38,
1993		0x7e40, 0x7e44,
1994		0x7e4c, 0x7e78,
1995		0x7e80, 0x7edc,
1996		0x7ee8, 0x7efc,
1997		0x8dc0, 0x8de4,
1998		0x8df8, 0x8e04,
1999		0x8e10, 0x8e84,
2000		0x8ea0, 0x8f88,
2001		0x8fb8, 0x9058,
2002		0x9060, 0x9060,
2003		0x9068, 0x90f8,
2004		0x9100, 0x9124,
2005		0x9400, 0x9470,
2006		0x9600, 0x9600,
2007		0x9608, 0x9638,
2008		0x9640, 0x9704,
2009		0x9710, 0x971c,
2010		0x9800, 0x9808,
2011		0x9820, 0x983c,
2012		0x9850, 0x9864,
2013		0x9c00, 0x9c6c,
2014		0x9c80, 0x9cec,
2015		0x9d00, 0x9d6c,
2016		0x9d80, 0x9dec,
2017		0x9e00, 0x9e6c,
2018		0x9e80, 0x9eec,
2019		0x9f00, 0x9f6c,
2020		0x9f80, 0xa020,
2021		0xd004, 0xd03c,
2022		0xd100, 0xd118,
2023		0xd200, 0xd214,
2024		0xd220, 0xd234,
2025		0xd240, 0xd254,
2026		0xd260, 0xd274,
2027		0xd280, 0xd294,
2028		0xd2a0, 0xd2b4,
2029		0xd2c0, 0xd2d4,
2030		0xd2e0, 0xd2f4,
2031		0xd300, 0xd31c,
2032		0xdfc0, 0xdfe0,
2033		0xe000, 0xf008,
2034		0x11000, 0x11014,
2035		0x11048, 0x1106c,
2036		0x11074, 0x11088,
2037		0x11098, 0x11120,
2038		0x1112c, 0x1117c,
2039		0x11190, 0x112e0,
2040		0x11300, 0x1130c,
2041		0x12000, 0x1206c,
2042		0x19040, 0x1906c,
2043		0x19078, 0x19080,
2044		0x1908c, 0x190e8,
2045		0x190f0, 0x190f8,
2046		0x19100, 0x19110,
2047		0x19120, 0x19124,
2048		0x19150, 0x19194,
2049		0x1919c, 0x191b0,
2050		0x191d0, 0x191e8,
2051		0x19238, 0x192b0,
2052		0x192bc, 0x192bc,
2053		0x19348, 0x1934c,
2054		0x193f8, 0x19418,
2055		0x19420, 0x19428,
2056		0x19430, 0x19444,
2057		0x1944c, 0x1946c,
2058		0x19474, 0x19474,
2059		0x19490, 0x194cc,
2060		0x194f0, 0x194f8,
2061		0x19c00, 0x19c48,
2062		0x19c50, 0x19c80,
2063		0x19c94, 0x19c98,
2064		0x19ca0, 0x19cbc,
2065		0x19ce4, 0x19ce4,
2066		0x19cf0, 0x19cf8,
2067		0x19d00, 0x19d28,
2068		0x19d50, 0x19d78,
2069		0x19d94, 0x19d98,
2070		0x19da0, 0x19dc8,
2071		0x19df0, 0x19e10,
2072		0x19e50, 0x19e6c,
2073		0x19ea0, 0x19ebc,
2074		0x19ec4, 0x19ef4,
2075		0x19f04, 0x19f2c,
2076		0x19f34, 0x19f34,
2077		0x19f40, 0x19f50,
2078		0x19f90, 0x19fac,
2079		0x19fc4, 0x19fc8,
2080		0x19fd0, 0x19fe4,
2081		0x1a000, 0x1a004,
2082		0x1a010, 0x1a06c,
2083		0x1a0b0, 0x1a0e4,
2084		0x1a0ec, 0x1a0f8,
2085		0x1a100, 0x1a108,
2086		0x1a114, 0x1a120,
2087		0x1a128, 0x1a130,
2088		0x1a138, 0x1a138,
2089		0x1a190, 0x1a1c4,
2090		0x1a1fc, 0x1a1fc,
2091		0x1e008, 0x1e00c,
2092		0x1e040, 0x1e044,
2093		0x1e04c, 0x1e04c,
2094		0x1e284, 0x1e290,
2095		0x1e2c0, 0x1e2c0,
2096		0x1e2e0, 0x1e2e0,
2097		0x1e300, 0x1e384,
2098		0x1e3c0, 0x1e3c8,
2099		0x1e408, 0x1e40c,
2100		0x1e440, 0x1e444,
2101		0x1e44c, 0x1e44c,
2102		0x1e684, 0x1e690,
2103		0x1e6c0, 0x1e6c0,
2104		0x1e6e0, 0x1e6e0,
2105		0x1e700, 0x1e784,
2106		0x1e7c0, 0x1e7c8,
2107		0x1e808, 0x1e80c,
2108		0x1e840, 0x1e844,
2109		0x1e84c, 0x1e84c,
2110		0x1ea84, 0x1ea90,
2111		0x1eac0, 0x1eac0,
2112		0x1eae0, 0x1eae0,
2113		0x1eb00, 0x1eb84,
2114		0x1ebc0, 0x1ebc8,
2115		0x1ec08, 0x1ec0c,
2116		0x1ec40, 0x1ec44,
2117		0x1ec4c, 0x1ec4c,
2118		0x1ee84, 0x1ee90,
2119		0x1eec0, 0x1eec0,
2120		0x1eee0, 0x1eee0,
2121		0x1ef00, 0x1ef84,
2122		0x1efc0, 0x1efc8,
2123		0x1f008, 0x1f00c,
2124		0x1f040, 0x1f044,
2125		0x1f04c, 0x1f04c,
2126		0x1f284, 0x1f290,
2127		0x1f2c0, 0x1f2c0,
2128		0x1f2e0, 0x1f2e0,
2129		0x1f300, 0x1f384,
2130		0x1f3c0, 0x1f3c8,
2131		0x1f408, 0x1f40c,
2132		0x1f440, 0x1f444,
2133		0x1f44c, 0x1f44c,
2134		0x1f684, 0x1f690,
2135		0x1f6c0, 0x1f6c0,
2136		0x1f6e0, 0x1f6e0,
2137		0x1f700, 0x1f784,
2138		0x1f7c0, 0x1f7c8,
2139		0x1f808, 0x1f80c,
2140		0x1f840, 0x1f844,
2141		0x1f84c, 0x1f84c,
2142		0x1fa84, 0x1fa90,
2143		0x1fac0, 0x1fac0,
2144		0x1fae0, 0x1fae0,
2145		0x1fb00, 0x1fb84,
2146		0x1fbc0, 0x1fbc8,
2147		0x1fc08, 0x1fc0c,
2148		0x1fc40, 0x1fc44,
2149		0x1fc4c, 0x1fc4c,
2150		0x1fe84, 0x1fe90,
2151		0x1fec0, 0x1fec0,
2152		0x1fee0, 0x1fee0,
2153		0x1ff00, 0x1ff84,
2154		0x1ffc0, 0x1ffc8,
2155		0x30000, 0x30030,
2156		0x30038, 0x30038,
2157		0x30040, 0x30040,
2158		0x30048, 0x30048,
2159		0x30050, 0x30050,
2160		0x3005c, 0x30060,
2161		0x30068, 0x30068,
2162		0x30070, 0x30070,
2163		0x30100, 0x30168,
2164		0x30190, 0x301a0,
2165		0x301a8, 0x301b8,
2166		0x301c4, 0x301c8,
2167		0x301d0, 0x301d0,
2168		0x30200, 0x30320,
2169		0x30400, 0x304b4,
2170		0x304c0, 0x3052c,
2171		0x30540, 0x3061c,
2172		0x30800, 0x308a0,
2173		0x308c0, 0x30908,
2174		0x30910, 0x309b8,
2175		0x30a00, 0x30a04,
2176		0x30a0c, 0x30a14,
2177		0x30a1c, 0x30a2c,
2178		0x30a44, 0x30a50,
2179		0x30a74, 0x30a74,
2180		0x30a7c, 0x30afc,
2181		0x30b08, 0x30c24,
2182		0x30d00, 0x30d14,
2183		0x30d1c, 0x30d3c,
2184		0x30d44, 0x30d4c,
2185		0x30d54, 0x30d74,
2186		0x30d7c, 0x30d7c,
2187		0x30de0, 0x30de0,
2188		0x30e00, 0x30ed4,
2189		0x30f00, 0x30fa4,
2190		0x30fc0, 0x30fc4,
2191		0x31000, 0x31004,
2192		0x31080, 0x310fc,
2193		0x31208, 0x31220,
2194		0x3123c, 0x31254,
2195		0x31300, 0x31300,
2196		0x31308, 0x3131c,
2197		0x31338, 0x3133c,
2198		0x31380, 0x31380,
2199		0x31388, 0x313a8,
2200		0x313b4, 0x313b4,
2201		0x31400, 0x31420,
2202		0x31438, 0x3143c,
2203		0x31480, 0x31480,
2204		0x314a8, 0x314a8,
2205		0x314b0, 0x314b4,
2206		0x314c8, 0x314d4,
2207		0x31a40, 0x31a4c,
2208		0x31af0, 0x31b20,
2209		0x31b38, 0x31b3c,
2210		0x31b80, 0x31b80,
2211		0x31ba8, 0x31ba8,
2212		0x31bb0, 0x31bb4,
2213		0x31bc8, 0x31bd4,
2214		0x32140, 0x3218c,
2215		0x321f0, 0x321f4,
2216		0x32200, 0x32200,
2217		0x32218, 0x32218,
2218		0x32400, 0x32400,
2219		0x32408, 0x3241c,
2220		0x32618, 0x32620,
2221		0x32664, 0x32664,
2222		0x326a8, 0x326a8,
2223		0x326ec, 0x326ec,
2224		0x32a00, 0x32abc,
2225		0x32b00, 0x32b38,
2226		0x32b40, 0x32b58,
2227		0x32b60, 0x32b78,
2228		0x32c00, 0x32c00,
2229		0x32c08, 0x32c3c,
2230		0x32e00, 0x32e2c,
2231		0x32f00, 0x32f2c,
2232		0x33000, 0x3302c,
2233		0x33034, 0x33050,
2234		0x33058, 0x33058,
2235		0x33060, 0x3308c,
2236		0x3309c, 0x330ac,
2237		0x330c0, 0x330c0,
2238		0x330c8, 0x330d0,
2239		0x330d8, 0x330e0,
2240		0x330ec, 0x3312c,
2241		0x33134, 0x33150,
2242		0x33158, 0x33158,
2243		0x33160, 0x3318c,
2244		0x3319c, 0x331ac,
2245		0x331c0, 0x331c0,
2246		0x331c8, 0x331d0,
2247		0x331d8, 0x331e0,
2248		0x331ec, 0x33290,
2249		0x33298, 0x332c4,
2250		0x332e4, 0x33390,
2251		0x33398, 0x333c4,
2252		0x333e4, 0x3342c,
2253		0x33434, 0x33450,
2254		0x33458, 0x33458,
2255		0x33460, 0x3348c,
2256		0x3349c, 0x334ac,
2257		0x334c0, 0x334c0,
2258		0x334c8, 0x334d0,
2259		0x334d8, 0x334e0,
2260		0x334ec, 0x3352c,
2261		0x33534, 0x33550,
2262		0x33558, 0x33558,
2263		0x33560, 0x3358c,
2264		0x3359c, 0x335ac,
2265		0x335c0, 0x335c0,
2266		0x335c8, 0x335d0,
2267		0x335d8, 0x335e0,
2268		0x335ec, 0x33690,
2269		0x33698, 0x336c4,
2270		0x336e4, 0x33790,
2271		0x33798, 0x337c4,
2272		0x337e4, 0x337fc,
2273		0x33814, 0x33814,
2274		0x33854, 0x33868,
2275		0x33880, 0x3388c,
2276		0x338c0, 0x338d0,
2277		0x338e8, 0x338ec,
2278		0x33900, 0x3392c,
2279		0x33934, 0x33950,
2280		0x33958, 0x33958,
2281		0x33960, 0x3398c,
2282		0x3399c, 0x339ac,
2283		0x339c0, 0x339c0,
2284		0x339c8, 0x339d0,
2285		0x339d8, 0x339e0,
2286		0x339ec, 0x33a90,
2287		0x33a98, 0x33ac4,
2288		0x33ae4, 0x33b10,
2289		0x33b24, 0x33b28,
2290		0x33b38, 0x33b50,
2291		0x33bf0, 0x33c10,
2292		0x33c24, 0x33c28,
2293		0x33c38, 0x33c50,
2294		0x33cf0, 0x33cfc,
2295		0x34000, 0x34030,
2296		0x34038, 0x34038,
2297		0x34040, 0x34040,
2298		0x34048, 0x34048,
2299		0x34050, 0x34050,
2300		0x3405c, 0x34060,
2301		0x34068, 0x34068,
2302		0x34070, 0x34070,
2303		0x34100, 0x34168,
2304		0x34190, 0x341a0,
2305		0x341a8, 0x341b8,
2306		0x341c4, 0x341c8,
2307		0x341d0, 0x341d0,
2308		0x34200, 0x34320,
2309		0x34400, 0x344b4,
2310		0x344c0, 0x3452c,
2311		0x34540, 0x3461c,
2312		0x34800, 0x348a0,
2313		0x348c0, 0x34908,
2314		0x34910, 0x349b8,
2315		0x34a00, 0x34a04,
2316		0x34a0c, 0x34a14,
2317		0x34a1c, 0x34a2c,
2318		0x34a44, 0x34a50,
2319		0x34a74, 0x34a74,
2320		0x34a7c, 0x34afc,
2321		0x34b08, 0x34c24,
2322		0x34d00, 0x34d14,
2323		0x34d1c, 0x34d3c,
2324		0x34d44, 0x34d4c,
2325		0x34d54, 0x34d74,
2326		0x34d7c, 0x34d7c,
2327		0x34de0, 0x34de0,
2328		0x34e00, 0x34ed4,
2329		0x34f00, 0x34fa4,
2330		0x34fc0, 0x34fc4,
2331		0x35000, 0x35004,
2332		0x35080, 0x350fc,
2333		0x35208, 0x35220,
2334		0x3523c, 0x35254,
2335		0x35300, 0x35300,
2336		0x35308, 0x3531c,
2337		0x35338, 0x3533c,
2338		0x35380, 0x35380,
2339		0x35388, 0x353a8,
2340		0x353b4, 0x353b4,
2341		0x35400, 0x35420,
2342		0x35438, 0x3543c,
2343		0x35480, 0x35480,
2344		0x354a8, 0x354a8,
2345		0x354b0, 0x354b4,
2346		0x354c8, 0x354d4,
2347		0x35a40, 0x35a4c,
2348		0x35af0, 0x35b20,
2349		0x35b38, 0x35b3c,
2350		0x35b80, 0x35b80,
2351		0x35ba8, 0x35ba8,
2352		0x35bb0, 0x35bb4,
2353		0x35bc8, 0x35bd4,
2354		0x36140, 0x3618c,
2355		0x361f0, 0x361f4,
2356		0x36200, 0x36200,
2357		0x36218, 0x36218,
2358		0x36400, 0x36400,
2359		0x36408, 0x3641c,
2360		0x36618, 0x36620,
2361		0x36664, 0x36664,
2362		0x366a8, 0x366a8,
2363		0x366ec, 0x366ec,
2364		0x36a00, 0x36abc,
2365		0x36b00, 0x36b38,
2366		0x36b40, 0x36b58,
2367		0x36b60, 0x36b78,
2368		0x36c00, 0x36c00,
2369		0x36c08, 0x36c3c,
2370		0x36e00, 0x36e2c,
2371		0x36f00, 0x36f2c,
2372		0x37000, 0x3702c,
2373		0x37034, 0x37050,
2374		0x37058, 0x37058,
2375		0x37060, 0x3708c,
2376		0x3709c, 0x370ac,
2377		0x370c0, 0x370c0,
2378		0x370c8, 0x370d0,
2379		0x370d8, 0x370e0,
2380		0x370ec, 0x3712c,
2381		0x37134, 0x37150,
2382		0x37158, 0x37158,
2383		0x37160, 0x3718c,
2384		0x3719c, 0x371ac,
2385		0x371c0, 0x371c0,
2386		0x371c8, 0x371d0,
2387		0x371d8, 0x371e0,
2388		0x371ec, 0x37290,
2389		0x37298, 0x372c4,
2390		0x372e4, 0x37390,
2391		0x37398, 0x373c4,
2392		0x373e4, 0x3742c,
2393		0x37434, 0x37450,
2394		0x37458, 0x37458,
2395		0x37460, 0x3748c,
2396		0x3749c, 0x374ac,
2397		0x374c0, 0x374c0,
2398		0x374c8, 0x374d0,
2399		0x374d8, 0x374e0,
2400		0x374ec, 0x3752c,
2401		0x37534, 0x37550,
2402		0x37558, 0x37558,
2403		0x37560, 0x3758c,
2404		0x3759c, 0x375ac,
2405		0x375c0, 0x375c0,
2406		0x375c8, 0x375d0,
2407		0x375d8, 0x375e0,
2408		0x375ec, 0x37690,
2409		0x37698, 0x376c4,
2410		0x376e4, 0x37790,
2411		0x37798, 0x377c4,
2412		0x377e4, 0x377fc,
2413		0x37814, 0x37814,
2414		0x37854, 0x37868,
2415		0x37880, 0x3788c,
2416		0x378c0, 0x378d0,
2417		0x378e8, 0x378ec,
2418		0x37900, 0x3792c,
2419		0x37934, 0x37950,
2420		0x37958, 0x37958,
2421		0x37960, 0x3798c,
2422		0x3799c, 0x379ac,
2423		0x379c0, 0x379c0,
2424		0x379c8, 0x379d0,
2425		0x379d8, 0x379e0,
2426		0x379ec, 0x37a90,
2427		0x37a98, 0x37ac4,
2428		0x37ae4, 0x37b10,
2429		0x37b24, 0x37b28,
2430		0x37b38, 0x37b50,
2431		0x37bf0, 0x37c10,
2432		0x37c24, 0x37c28,
2433		0x37c38, 0x37c50,
2434		0x37cf0, 0x37cfc,
2435		0x40040, 0x40040,
2436		0x40080, 0x40084,
2437		0x40100, 0x40100,
2438		0x40140, 0x401bc,
2439		0x40200, 0x40214,
2440		0x40228, 0x40228,
2441		0x40240, 0x40258,
2442		0x40280, 0x40280,
2443		0x40304, 0x40304,
2444		0x40330, 0x4033c,
2445		0x41304, 0x413c8,
2446		0x413d0, 0x413dc,
2447		0x413f0, 0x413f0,
2448		0x41400, 0x4140c,
2449		0x41414, 0x4141c,
2450		0x41480, 0x414d0,
2451		0x44000, 0x4407c,
2452		0x440c0, 0x441ac,
2453		0x441b4, 0x4427c,
2454		0x442c0, 0x443ac,
2455		0x443b4, 0x4447c,
2456		0x444c0, 0x445ac,
2457		0x445b4, 0x4467c,
2458		0x446c0, 0x447ac,
2459		0x447b4, 0x4487c,
2460		0x448c0, 0x449ac,
2461		0x449b4, 0x44a7c,
2462		0x44ac0, 0x44bac,
2463		0x44bb4, 0x44c7c,
2464		0x44cc0, 0x44dac,
2465		0x44db4, 0x44e7c,
2466		0x44ec0, 0x44fac,
2467		0x44fb4, 0x4507c,
2468		0x450c0, 0x451ac,
2469		0x451b4, 0x451fc,
2470		0x45800, 0x45804,
2471		0x45810, 0x45830,
2472		0x45840, 0x45860,
2473		0x45868, 0x45868,
2474		0x45880, 0x45884,
2475		0x458a0, 0x458b0,
2476		0x45a00, 0x45a04,
2477		0x45a10, 0x45a30,
2478		0x45a40, 0x45a60,
2479		0x45a68, 0x45a68,
2480		0x45a80, 0x45a84,
2481		0x45aa0, 0x45ab0,
2482		0x460c0, 0x460e4,
2483		0x47000, 0x4703c,
2484		0x47044, 0x4708c,
2485		0x47200, 0x47250,
2486		0x47400, 0x47408,
2487		0x47414, 0x47420,
2488		0x47600, 0x47618,
2489		0x47800, 0x47814,
2490		0x47820, 0x4782c,
2491		0x50000, 0x50084,
2492		0x50090, 0x500cc,
2493		0x50300, 0x50384,
2494		0x50400, 0x50400,
2495		0x50800, 0x50884,
2496		0x50890, 0x508cc,
2497		0x50b00, 0x50b84,
2498		0x50c00, 0x50c00,
2499		0x51000, 0x51020,
2500		0x51028, 0x510b0,
2501		0x51300, 0x51324,
2502	};
2503
2504	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2505	const unsigned int *reg_ranges;
2506	int reg_ranges_size, range;
2507	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2508
2509	/* Select the right set of register ranges to dump depending on the
2510	 * adapter chip type.
2511	 */
2512	switch (chip_version) {
2513	case CHELSIO_T4:
2514		reg_ranges = t4_reg_ranges;
2515		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2516		break;
2517
2518	case CHELSIO_T5:
2519		reg_ranges = t5_reg_ranges;
2520		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2521		break;
2522
2523	case CHELSIO_T6:
2524		reg_ranges = t6_reg_ranges;
2525		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2526		break;
2527
2528	default:
2529		dev_err(adap->pdev_dev,
2530			"Unsupported chip version %d\n", chip_version);
2531		return;
2532	}
2533
2534	/* Clear the register buffer and insert the appropriate register
2535	 * values selected by the above register ranges.
2536	 */
2537	memset(buf, 0, buf_size);
2538	for (range = 0; range < reg_ranges_size; range += 2) {
2539		unsigned int reg = reg_ranges[range];
2540		unsigned int last_reg = reg_ranges[range + 1];
2541		u32 *bufp = (u32 *)((char *)buf + reg);
2542
2543		/* Iterate across the register range filling in the register
2544		 * buffer but don't write past the end of the register buffer.
2545		 */
2546		while (reg <= last_reg && bufp < buf_end) {
2547			*bufp++ = t4_read_reg(adap, reg);
2548			reg += sizeof(u32);
2549		}
2550	}
2551}
2552
2553#define EEPROM_STAT_ADDR   0x7bfc
2554#define VPD_BASE           0x400
2555#define VPD_BASE_OLD       0
2556#define VPD_LEN            1024
2557#define CHELSIO_VPD_UNIQUE_ID 0x82
2558
2559/**
2560 *	t4_seeprom_wp - enable/disable EEPROM write protection
2561 *	@adapter: the adapter
2562 *	@enable: whether to enable or disable write protection
2563 *
2564 *	Enables or disables write protection on the serial EEPROM.
2565 */
2566int t4_seeprom_wp(struct adapter *adapter, bool enable)
2567{
2568	unsigned int v = enable ? 0xc : 0;
2569	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2570	return ret < 0 ? ret : 0;
2571}
2572
2573/**
2574 *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2575 *	@adapter: adapter to read
2576 *	@p: where to store the parameters
2577 *
2578 *	Reads card parameters stored in VPD EEPROM.
2579 */
2580int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2581{
2582	int i, ret = 0, addr;
2583	int ec, sn, pn, na;
2584	u8 *vpd, csum;
2585	unsigned int vpdr_len, kw_offset, id_len;
2586
2587	vpd = vmalloc(VPD_LEN);
2588	if (!vpd)
2589		return -ENOMEM;
2590
2591	/* Card information normally starts at VPD_BASE but early cards had
2592	 * it at 0.
2593	 */
2594	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2595	if (ret < 0)
2596		goto out;
2597
2598	/* The VPD shall have a unique identifier specified by the PCI SIG.
2599	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2600	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2601	 * is expected to automatically put this entry at the
2602	 * beginning of the VPD.
2603	 */
2604	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2605
2606	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2607	if (ret < 0)
2608		goto out;
2609
2610	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2611		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2612		ret = -EINVAL;
2613		goto out;
2614	}
2615
2616	id_len = pci_vpd_lrdt_size(vpd);
2617	if (id_len > ID_LEN)
2618		id_len = ID_LEN;
2619
2620	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2621	if (i < 0) {
2622		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2623		ret = -EINVAL;
2624		goto out;
2625	}
2626
2627	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2628	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2629	if (vpdr_len + kw_offset > VPD_LEN) {
2630		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2631		ret = -EINVAL;
2632		goto out;
2633	}
2634
2635#define FIND_VPD_KW(var, name) do { \
2636	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2637	if (var < 0) { \
2638		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2639		ret = -EINVAL; \
2640		goto out; \
2641	} \
2642	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2643} while (0)
2644
2645	FIND_VPD_KW(i, "RV");
2646	for (csum = 0; i >= 0; i--)
2647		csum += vpd[i];
2648
2649	if (csum) {
2650		dev_err(adapter->pdev_dev,
2651			"corrupted VPD EEPROM, actual csum %u\n", csum);
2652		ret = -EINVAL;
2653		goto out;
2654	}
2655
2656	FIND_VPD_KW(ec, "EC");
2657	FIND_VPD_KW(sn, "SN");
2658	FIND_VPD_KW(pn, "PN");
2659	FIND_VPD_KW(na, "NA");
2660#undef FIND_VPD_KW
2661
2662	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2663	strim(p->id);
2664	memcpy(p->ec, vpd + ec, EC_LEN);
2665	strim(p->ec);
2666	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2667	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2668	strim(p->sn);
2669	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2670	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2671	strim(p->pn);
2672	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2673	strim((char *)p->na);
2674
2675out:
2676	vfree(vpd);
2677	return ret;
2678}
2679
2680/**
2681 *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2682 *	@adapter: adapter to read
2683 *	@p: where to store the parameters
2684 *
2685 *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2686 *	Clock.  This can only be called after a connection to the firmware
2687 *	is established.
2688 */
2689int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2690{
2691	u32 cclk_param, cclk_val;
2692	int ret;
2693
2694	/* Grab the raw VPD parameters.
2695	 */
2696	ret = t4_get_raw_vpd_params(adapter, p);
2697	if (ret)
2698		return ret;
2699
2700	/* Ask firmware for the Core Clock since it knows how to translate the
2701	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2702	 */
2703	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2704		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2705	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2706			      1, &cclk_param, &cclk_val);
2707
2708	if (ret)
2709		return ret;
2710	p->cclk = cclk_val;
2711
2712	return 0;
2713}
2714
2715/* serial flash and firmware constants */
2716enum {
2717	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2718
2719	/* flash command opcodes */
2720	SF_PROG_PAGE    = 2,          /* program page */
2721	SF_WR_DISABLE   = 4,          /* disable writes */
2722	SF_RD_STATUS    = 5,          /* read status register */
2723	SF_WR_ENABLE    = 6,          /* enable writes */
2724	SF_RD_DATA_FAST = 0xb,        /* read flash */
2725	SF_RD_ID        = 0x9f,       /* read ID */
2726	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2727
2728	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2729};
2730
2731/**
2732 *	sf1_read - read data from the serial flash
2733 *	@adapter: the adapter
2734 *	@byte_cnt: number of bytes to read
2735 *	@cont: whether another operation will be chained
2736 *	@lock: whether to lock SF for PL access only
2737 *	@valp: where to store the read data
2738 *
2739 *	Reads up to 4 bytes of data from the serial flash.  The location of
2740 *	the read needs to be specified prior to calling this by issuing the
2741 *	appropriate commands to the serial flash.
2742 */
2743static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2744		    int lock, u32 *valp)
2745{
2746	int ret;
2747
2748	if (!byte_cnt || byte_cnt > 4)
2749		return -EINVAL;
2750	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2751		return -EBUSY;
2752	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2753		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2754	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2755	if (!ret)
2756		*valp = t4_read_reg(adapter, SF_DATA_A);
2757	return ret;
2758}
2759
2760/**
2761 *	sf1_write - write data to the serial flash
2762 *	@adapter: the adapter
2763 *	@byte_cnt: number of bytes to write
2764 *	@cont: whether another operation will be chained
2765 *	@lock: whether to lock SF for PL access only
2766 *	@val: value to write
2767 *
2768 *	Writes up to 4 bytes of data to the serial flash.  The location of
2769 *	the write needs to be specified prior to calling this by issuing the
2770 *	appropriate commands to the serial flash.
2771 */
2772static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2773		     int lock, u32 val)
2774{
2775	if (!byte_cnt || byte_cnt > 4)
2776		return -EINVAL;
2777	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2778		return -EBUSY;
2779	t4_write_reg(adapter, SF_DATA_A, val);
2780	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2781		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2782	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2783}
2784
2785/**
2786 *	flash_wait_op - wait for a flash operation to complete
2787 *	@adapter: the adapter
2788 *	@attempts: max number of polls of the status register
2789 *	@delay: delay between polls in ms
2790 *
2791 *	Wait for a flash operation to complete by polling the status register.
2792 */
2793static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2794{
2795	int ret;
2796	u32 status;
2797
2798	while (1) {
2799		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2800		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2801			return ret;
2802		if (!(status & 1))
2803			return 0;
2804		if (--attempts == 0)
2805			return -EAGAIN;
2806		if (delay)
2807			msleep(delay);
2808	}
2809}
2810
2811/**
2812 *	t4_read_flash - read words from serial flash
2813 *	@adapter: the adapter
2814 *	@addr: the start address for the read
2815 *	@nwords: how many 32-bit words to read
2816 *	@data: where to store the read data
2817 *	@byte_oriented: whether to store data as bytes or as words
2818 *
2819 *	Read the specified number of 32-bit words from the serial flash.
2820 *	If @byte_oriented is set the read data is stored as a byte array
2821 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2822 *	natural endianness.
2823 */
2824int t4_read_flash(struct adapter *adapter, unsigned int addr,
2825		  unsigned int nwords, u32 *data, int byte_oriented)
2826{
2827	int ret;
2828
2829	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2830		return -EINVAL;
2831
2832	addr = swab32(addr) | SF_RD_DATA_FAST;
2833
2834	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2835	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2836		return ret;
2837
2838	for ( ; nwords; nwords--, data++) {
2839		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2840		if (nwords == 1)
2841			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2842		if (ret)
2843			return ret;
2844		if (byte_oriented)
2845			*data = (__force __u32)(cpu_to_be32(*data));
2846	}
2847	return 0;
2848}
2849
2850/**
2851 *	t4_write_flash - write up to a page of data to the serial flash
2852 *	@adapter: the adapter
2853 *	@addr: the start address to write
2854 *	@n: length of data to write in bytes
2855 *	@data: the data to write
2856 *
2857 *	Writes up to a page of data (256 bytes) to the serial flash starting
2858 *	at the given address.  All the data must be written to the same page.
2859 */
2860static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2861			  unsigned int n, const u8 *data)
2862{
2863	int ret;
2864	u32 buf[64];
2865	unsigned int i, c, left, val, offset = addr & 0xff;
2866
2867	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2868		return -EINVAL;
2869
2870	val = swab32(addr) | SF_PROG_PAGE;
2871
2872	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2873	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2874		goto unlock;
2875
2876	for (left = n; left; left -= c) {
2877		c = min(left, 4U);
2878		for (val = 0, i = 0; i < c; ++i)
2879			val = (val << 8) + *data++;
2880
2881		ret = sf1_write(adapter, c, c != left, 1, val);
2882		if (ret)
2883			goto unlock;
2884	}
2885	ret = flash_wait_op(adapter, 8, 1);
2886	if (ret)
2887		goto unlock;
2888
2889	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2890
2891	/* Read the page to verify the write succeeded */
2892	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2893	if (ret)
2894		return ret;
2895
2896	if (memcmp(data - n, (u8 *)buf + offset, n)) {
2897		dev_err(adapter->pdev_dev,
2898			"failed to correctly write the flash page at %#x\n",
2899			addr);
2900		return -EIO;
2901	}
2902	return 0;
2903
2904unlock:
2905	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2906	return ret;
2907}
2908
2909/**
2910 *	t4_get_fw_version - read the firmware version
2911 *	@adapter: the adapter
2912 *	@vers: where to place the version
2913 *
2914 *	Reads the FW version from flash.
2915 */
2916int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2917{
2918	return t4_read_flash(adapter, FLASH_FW_START +
2919			     offsetof(struct fw_hdr, fw_ver), 1,
2920			     vers, 0);
2921}
2922
2923/**
2924 *	t4_get_tp_version - read the TP microcode version
2925 *	@adapter: the adapter
2926 *	@vers: where to place the version
2927 *
2928 *	Reads the TP microcode version from flash.
2929 */
2930int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2931{
2932	return t4_read_flash(adapter, FLASH_FW_START +
2933			     offsetof(struct fw_hdr, tp_microcode_ver),
2934			     1, vers, 0);
2935}
2936
2937/**
2938 *	t4_get_exprom_version - return the Expansion ROM version (if any)
2939 *	@adapter: the adapter
2940 *	@vers: where to place the version
2941 *
2942 *	Reads the Expansion ROM header from FLASH and returns the version
2943 *	number (if present) through the @vers return value pointer.  We return
2944 *	this in the Firmware Version Format since it's convenient.  Return
2945 *	0 on success, -ENOENT if no Expansion ROM is present.
2946 */
2947int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2948{
2949	struct exprom_header {
2950		unsigned char hdr_arr[16];	/* must start with 0x55aa */
2951		unsigned char hdr_ver[4];	/* Expansion ROM version */
2952	} *hdr;
2953	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2954					   sizeof(u32))];
2955	int ret;
2956
2957	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2958			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2959			    0);
2960	if (ret)
2961		return ret;
2962
2963	hdr = (struct exprom_header *)exprom_header_buf;
2964	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2965		return -ENOENT;
2966
2967	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2968		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2969		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2970		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2971	return 0;
2972}
2973
2974/**
2975 *	t4_check_fw_version - check if the FW is supported with this driver
2976 *	@adap: the adapter
2977 *
2978 *	Checks if an adapter's FW is compatible with the driver.  Returns 0
2979 *	if there's exact match, a negative error if the version could not be
2980 *	read or there's a major version mismatch
2981 */
2982int t4_check_fw_version(struct adapter *adap)
2983{
2984	int i, ret, major, minor, micro;
2985	int exp_major, exp_minor, exp_micro;
2986	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2987
2988	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2989	/* Try multiple times before returning error */
2990	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
2991		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2992
2993	if (ret)
2994		return ret;
2995
2996	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
2997	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
2998	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
2999
3000	switch (chip_version) {
3001	case CHELSIO_T4:
3002		exp_major = T4FW_MIN_VERSION_MAJOR;
3003		exp_minor = T4FW_MIN_VERSION_MINOR;
3004		exp_micro = T4FW_MIN_VERSION_MICRO;
3005		break;
3006	case CHELSIO_T5:
3007		exp_major = T5FW_MIN_VERSION_MAJOR;
3008		exp_minor = T5FW_MIN_VERSION_MINOR;
3009		exp_micro = T5FW_MIN_VERSION_MICRO;
3010		break;
3011	case CHELSIO_T6:
3012		exp_major = T6FW_MIN_VERSION_MAJOR;
3013		exp_minor = T6FW_MIN_VERSION_MINOR;
3014		exp_micro = T6FW_MIN_VERSION_MICRO;
3015		break;
3016	default:
3017		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3018			adap->chip);
3019		return -EINVAL;
3020	}
3021
3022	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3023	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3024		dev_err(adap->pdev_dev,
3025			"Card has firmware version %u.%u.%u, minimum "
3026			"supported firmware is %u.%u.%u.\n", major, minor,
3027			micro, exp_major, exp_minor, exp_micro);
3028		return -EFAULT;
3029	}
3030	return 0;
3031}
3032
3033/* Is the given firmware API compatible with the one the driver was compiled
3034 * with?
3035 */
3036static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3037{
3038
3039	/* short circuit if it's the exact same firmware version */
3040	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3041		return 1;
3042
3043#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3044	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3045	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3046		return 1;
3047#undef SAME_INTF
3048
3049	return 0;
3050}
3051
3052/* The firmware in the filesystem is usable, but should it be installed?
3053 * This routine explains itself in detail if it indicates the filesystem
3054 * firmware should be installed.
3055 */
3056static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3057				int k, int c)
3058{
3059	const char *reason;
3060
3061	if (!card_fw_usable) {
3062		reason = "incompatible or unusable";
3063		goto install;
3064	}
3065
3066	if (k > c) {
3067		reason = "older than the version supported with this driver";
3068		goto install;
3069	}
3070
3071	return 0;
3072
3073install:
3074	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3075		"installing firmware %u.%u.%u.%u on card.\n",
3076		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3077		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3078		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3079		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3080
3081	return 1;
3082}
3083
3084int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3085	       const u8 *fw_data, unsigned int fw_size,
3086	       struct fw_hdr *card_fw, enum dev_state state,
3087	       int *reset)
3088{
3089	int ret, card_fw_usable, fs_fw_usable;
3090	const struct fw_hdr *fs_fw;
3091	const struct fw_hdr *drv_fw;
3092
3093	drv_fw = &fw_info->fw_hdr;
3094
3095	/* Read the header of the firmware on the card */
3096	ret = -t4_read_flash(adap, FLASH_FW_START,
3097			    sizeof(*card_fw) / sizeof(uint32_t),
3098			    (uint32_t *)card_fw, 1);
3099	if (ret == 0) {
3100		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3101	} else {
3102		dev_err(adap->pdev_dev,
3103			"Unable to read card's firmware header: %d\n", ret);
3104		card_fw_usable = 0;
3105	}
3106
3107	if (fw_data != NULL) {
3108		fs_fw = (const void *)fw_data;
3109		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3110	} else {
3111		fs_fw = NULL;
3112		fs_fw_usable = 0;
3113	}
3114
3115	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3116	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3117		/* Common case: the firmware on the card is an exact match and
3118		 * the filesystem one is an exact match too, or the filesystem
3119		 * one is absent/incompatible.
3120		 */
3121	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3122		   should_install_fs_fw(adap, card_fw_usable,
3123					be32_to_cpu(fs_fw->fw_ver),
3124					be32_to_cpu(card_fw->fw_ver))) {
3125		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3126				     fw_size, 0);
3127		if (ret != 0) {
3128			dev_err(adap->pdev_dev,
3129				"failed to install firmware: %d\n", ret);
3130			goto bye;
3131		}
3132
3133		/* Installed successfully, update the cached header too. */
3134		*card_fw = *fs_fw;
3135		card_fw_usable = 1;
3136		*reset = 0;	/* already reset as part of load_fw */
3137	}
3138
3139	if (!card_fw_usable) {
3140		uint32_t d, c, k;
3141
3142		d = be32_to_cpu(drv_fw->fw_ver);
3143		c = be32_to_cpu(card_fw->fw_ver);
3144		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3145
3146		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3147			"chip state %d, "
3148			"driver compiled with %d.%d.%d.%d, "
3149			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3150			state,
3151			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3152			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3153			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3154			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3155			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3156			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3157		ret = EINVAL;
3158		goto bye;
3159	}
3160
3161	/* We're using whatever's on the card and it's known to be good. */
3162	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3163	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3164
3165bye:
3166	return ret;
3167}
3168
3169/**
3170 *	t4_flash_erase_sectors - erase a range of flash sectors
3171 *	@adapter: the adapter
3172 *	@start: the first sector to erase
3173 *	@end: the last sector to erase
3174 *
3175 *	Erases the sectors in the given inclusive range.
3176 */
3177static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3178{
3179	int ret = 0;
3180
3181	if (end >= adapter->params.sf_nsec)
3182		return -EINVAL;
3183
3184	while (start <= end) {
3185		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3186		    (ret = sf1_write(adapter, 4, 0, 1,
3187				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3188		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3189			dev_err(adapter->pdev_dev,
3190				"erase of flash sector %d failed, error %d\n",
3191				start, ret);
3192			break;
3193		}
3194		start++;
3195	}
3196	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3197	return ret;
3198}
3199
3200/**
3201 *	t4_flash_cfg_addr - return the address of the flash configuration file
3202 *	@adapter: the adapter
3203 *
3204 *	Return the address within the flash where the Firmware Configuration
3205 *	File is stored.
3206 */
3207unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3208{
3209	if (adapter->params.sf_size == 0x100000)
3210		return FLASH_FPGA_CFG_START;
3211	else
3212		return FLASH_CFG_START;
3213}
3214
3215/* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3216 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3217 * and emit an error message for mismatched firmware to save our caller the
3218 * effort ...
3219 */
3220static bool t4_fw_matches_chip(const struct adapter *adap,
3221			       const struct fw_hdr *hdr)
3222{
3223	/* The expression below will return FALSE for any unsupported adapter
3224	 * which will keep us "honest" in the future ...
3225	 */
3226	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3227	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3228	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3229		return true;
3230
3231	dev_err(adap->pdev_dev,
3232		"FW image (%d) is not suitable for this adapter (%d)\n",
3233		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3234	return false;
3235}
3236
3237/**
3238 *	t4_load_fw - download firmware
3239 *	@adap: the adapter
3240 *	@fw_data: the firmware image to write
3241 *	@size: image size
3242 *
3243 *	Write the supplied firmware image to the card's serial flash.
3244 */
3245int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3246{
3247	u32 csum;
3248	int ret, addr;
3249	unsigned int i;
3250	u8 first_page[SF_PAGE_SIZE];
3251	const __be32 *p = (const __be32 *)fw_data;
3252	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3253	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3254	unsigned int fw_img_start = adap->params.sf_fw_start;
3255	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3256
3257	if (!size) {
3258		dev_err(adap->pdev_dev, "FW image has no data\n");
3259		return -EINVAL;
3260	}
3261	if (size & 511) {
3262		dev_err(adap->pdev_dev,
3263			"FW image size not multiple of 512 bytes\n");
3264		return -EINVAL;
3265	}
3266	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3267		dev_err(adap->pdev_dev,
3268			"FW image size differs from size in FW header\n");
3269		return -EINVAL;
3270	}
3271	if (size > FW_MAX_SIZE) {
3272		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3273			FW_MAX_SIZE);
3274		return -EFBIG;
3275	}
3276	if (!t4_fw_matches_chip(adap, hdr))
3277		return -EINVAL;
3278
3279	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3280		csum += be32_to_cpu(p[i]);
3281
3282	if (csum != 0xffffffff) {
3283		dev_err(adap->pdev_dev,
3284			"corrupted firmware image, checksum %#x\n", csum);
3285		return -EINVAL;
3286	}
3287
3288	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3289	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3290	if (ret)
3291		goto out;
3292
3293	/*
3294	 * We write the correct version at the end so the driver can see a bad
3295	 * version if the FW write fails.  Start by writing a copy of the
3296	 * first page with a bad version.
3297	 */
3298	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3299	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3300	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3301	if (ret)
3302		goto out;
3303
3304	addr = fw_img_start;
3305	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3306		addr += SF_PAGE_SIZE;
3307		fw_data += SF_PAGE_SIZE;
3308		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3309		if (ret)
3310			goto out;
3311	}
3312
3313	ret = t4_write_flash(adap,
3314			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
3315			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3316out:
3317	if (ret)
3318		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3319			ret);
3320	else
3321		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3322	return ret;
3323}
3324
3325/**
3326 *	t4_phy_fw_ver - return current PHY firmware version
3327 *	@adap: the adapter
3328 *	@phy_fw_ver: return value buffer for PHY firmware version
3329 *
3330 *	Returns the current version of external PHY firmware on the
3331 *	adapter.
3332 */
3333int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3334{
3335	u32 param, val;
3336	int ret;
3337
3338	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3339		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3340		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3341		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3342	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3343			      &param, &val);
3344	if (ret < 0)
3345		return ret;
3346	*phy_fw_ver = val;
3347	return 0;
3348}
3349
3350/**
3351 *	t4_load_phy_fw - download port PHY firmware
3352 *	@adap: the adapter
3353 *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3354 *	@win_lock: the lock to use to guard the memory copy
3355 *	@phy_fw_version: function to check PHY firmware versions
3356 *	@phy_fw_data: the PHY firmware image to write
3357 *	@phy_fw_size: image size
3358 *
3359 *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3360 *	@phy_fw_version is supplied, then it will be used to determine if
3361 *	it's necessary to perform the transfer by comparing the version
3362 *	of any existing adapter PHY firmware with that of the passed in
3363 *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3364 *	around the call to t4_memory_rw() which transfers the PHY firmware
3365 *	to the adapter.
3366 *
3367 *	A negative error number will be returned if an error occurs.  If
3368 *	version number support is available and there's no need to upgrade
3369 *	the firmware, 0 will be returned.  If firmware is successfully
3370 *	transferred to the adapter, 1 will be retured.
3371 *
3372 *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3373 *	a result, a RESET of the adapter would cause that RAM to lose its
3374 *	contents.  Thus, loading PHY firmware on such adapters must happen
3375 *	after any FW_RESET_CMDs ...
3376 */
3377int t4_load_phy_fw(struct adapter *adap,
3378		   int win, spinlock_t *win_lock,
3379		   int (*phy_fw_version)(const u8 *, size_t),
3380		   const u8 *phy_fw_data, size_t phy_fw_size)
3381{
3382	unsigned long mtype = 0, maddr = 0;
3383	u32 param, val;
3384	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3385	int ret;
3386
3387	/* If we have version number support, then check to see if the adapter
3388	 * already has up-to-date PHY firmware loaded.
3389	 */
3390	 if (phy_fw_version) {
3391		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3392		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3393		if (ret < 0)
3394			return ret;
3395
3396		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3397			CH_WARN(adap, "PHY Firmware already up-to-date, "
3398				"version %#x\n", cur_phy_fw_ver);
3399			return 0;
3400		}
3401	}
3402
3403	/* Ask the firmware where it wants us to copy the PHY firmware image.
3404	 * The size of the file requires a special version of the READ coommand
3405	 * which will pass the file size via the values field in PARAMS_CMD and
3406	 * retrieve the return value from firmware and place it in the same
3407	 * buffer values
3408	 */
3409	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3410		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3411		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3412		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3413	val = phy_fw_size;
3414	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3415				 &param, &val, 1);
3416	if (ret < 0)
3417		return ret;
3418	mtype = val >> 8;
3419	maddr = (val & 0xff) << 16;
3420
3421	/* Copy the supplied PHY Firmware image to the adapter memory location
3422	 * allocated by the adapter firmware.
3423	 */
3424	if (win_lock)
3425		spin_lock_bh(win_lock);
3426	ret = t4_memory_rw(adap, win, mtype, maddr,
3427			   phy_fw_size, (__be32 *)phy_fw_data,
3428			   T4_MEMORY_WRITE);
3429	if (win_lock)
3430		spin_unlock_bh(win_lock);
3431	if (ret)
3432		return ret;
3433
3434	/* Tell the firmware that the PHY firmware image has been written to
3435	 * RAM and it can now start copying it over to the PHYs.  The chip
3436	 * firmware will RESET the affected PHYs as part of this operation
3437	 * leaving them running the new PHY firmware image.
3438	 */
3439	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3440		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3441		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3442		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3443	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3444				    &param, &val, 30000);
3445
3446	/* If we have version number support, then check to see that the new
3447	 * firmware got loaded properly.
3448	 */
3449	if (phy_fw_version) {
3450		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3451		if (ret < 0)
3452			return ret;
3453
3454		if (cur_phy_fw_ver != new_phy_fw_vers) {
3455			CH_WARN(adap, "PHY Firmware did not update: "
3456				"version on adapter %#x, "
3457				"version flashed %#x\n",
3458				cur_phy_fw_ver, new_phy_fw_vers);
3459			return -ENXIO;
3460		}
3461	}
3462
3463	return 1;
3464}
3465
3466/**
3467 *	t4_fwcache - firmware cache operation
3468 *	@adap: the adapter
3469 *	@op  : the operation (flush or flush and invalidate)
3470 */
3471int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3472{
3473	struct fw_params_cmd c;
3474
3475	memset(&c, 0, sizeof(c));
3476	c.op_to_vfn =
3477		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3478			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3479			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3480			    FW_PARAMS_CMD_VFN_V(0));
3481	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3482	c.param[0].mnem =
3483		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3484			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3485	c.param[0].val = (__force __be32)op;
3486
3487	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3488}
3489
3490void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3491			unsigned int *pif_req_wrptr,
3492			unsigned int *pif_rsp_wrptr)
3493{
3494	int i, j;
3495	u32 cfg, val, req, rsp;
3496
3497	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3498	if (cfg & LADBGEN_F)
3499		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3500
3501	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3502	req = POLADBGWRPTR_G(val);
3503	rsp = PILADBGWRPTR_G(val);
3504	if (pif_req_wrptr)
3505		*pif_req_wrptr = req;
3506	if (pif_rsp_wrptr)
3507		*pif_rsp_wrptr = rsp;
3508
3509	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3510		for (j = 0; j < 6; j++) {
3511			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3512				     PILADBGRDPTR_V(rsp));
3513			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3514			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3515			req++;
3516			rsp++;
3517		}
3518		req = (req + 2) & POLADBGRDPTR_M;
3519		rsp = (rsp + 2) & PILADBGRDPTR_M;
3520	}
3521	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3522}
3523
3524void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3525{
3526	u32 cfg;
3527	int i, j, idx;
3528
3529	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3530	if (cfg & LADBGEN_F)
3531		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3532
3533	for (i = 0; i < CIM_MALA_SIZE; i++) {
3534		for (j = 0; j < 5; j++) {
3535			idx = 8 * i + j;
3536			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3537				     PILADBGRDPTR_V(idx));
3538			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3539			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3540		}
3541	}
3542	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3543}
3544
3545void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3546{
3547	unsigned int i, j;
3548
3549	for (i = 0; i < 8; i++) {
3550		u32 *p = la_buf + i;
3551
3552		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3553		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3554		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3555		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3556			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3557	}
3558}
3559
3560#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3561		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3562		     FW_PORT_CAP_ANEG)
3563
3564/**
3565 *	t4_link_l1cfg - apply link configuration to MAC/PHY
3566 *	@phy: the PHY to setup
3567 *	@mac: the MAC to setup
3568 *	@lc: the requested link configuration
3569 *
3570 *	Set up a port's MAC and PHY according to a desired link configuration.
3571 *	- If the PHY can auto-negotiate first decide what to advertise, then
3572 *	  enable/disable auto-negotiation as desired, and reset.
3573 *	- If the PHY does not auto-negotiate just reset it.
3574 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3575 *	  otherwise do it later based on the outcome of auto-negotiation.
3576 */
3577int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3578		  struct link_config *lc)
3579{
3580	struct fw_port_cmd c;
3581	unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3582
3583	lc->link_ok = 0;
3584	if (lc->requested_fc & PAUSE_RX)
3585		fc |= FW_PORT_CAP_FC_RX;
3586	if (lc->requested_fc & PAUSE_TX)
3587		fc |= FW_PORT_CAP_FC_TX;
3588
3589	memset(&c, 0, sizeof(c));
3590	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3591				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3592				     FW_PORT_CMD_PORTID_V(port));
3593	c.action_to_len16 =
3594		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3595			    FW_LEN16(c));
3596
3597	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3598		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3599					     fc);
3600		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3601	} else if (lc->autoneg == AUTONEG_DISABLE) {
3602		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3603		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3604	} else
3605		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3606
3607	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3608}
3609
3610/**
3611 *	t4_restart_aneg - restart autonegotiation
3612 *	@adap: the adapter
3613 *	@mbox: mbox to use for the FW command
3614 *	@port: the port id
3615 *
3616 *	Restarts autonegotiation for the selected port.
3617 */
3618int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3619{
3620	struct fw_port_cmd c;
3621
3622	memset(&c, 0, sizeof(c));
3623	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3624				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3625				     FW_PORT_CMD_PORTID_V(port));
3626	c.action_to_len16 =
3627		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3628			    FW_LEN16(c));
3629	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3630	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3631}
3632
3633typedef void (*int_handler_t)(struct adapter *adap);
3634
3635struct intr_info {
3636	unsigned int mask;       /* bits to check in interrupt status */
3637	const char *msg;         /* message to print or NULL */
3638	short stat_idx;          /* stat counter to increment or -1 */
3639	unsigned short fatal;    /* whether the condition reported is fatal */
3640	int_handler_t int_handler; /* platform-specific int handler */
3641};
3642
3643/**
3644 *	t4_handle_intr_status - table driven interrupt handler
3645 *	@adapter: the adapter that generated the interrupt
3646 *	@reg: the interrupt status register to process
3647 *	@acts: table of interrupt actions
3648 *
3649 *	A table driven interrupt handler that applies a set of masks to an
3650 *	interrupt status word and performs the corresponding actions if the
3651 *	interrupts described by the mask have occurred.  The actions include
3652 *	optionally emitting a warning or alert message.  The table is terminated
3653 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3654 *	conditions.
3655 */
3656static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3657				 const struct intr_info *acts)
3658{
3659	int fatal = 0;
3660	unsigned int mask = 0;
3661	unsigned int status = t4_read_reg(adapter, reg);
3662
3663	for ( ; acts->mask; ++acts) {
3664		if (!(status & acts->mask))
3665			continue;
3666		if (acts->fatal) {
3667			fatal++;
3668			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3669				  status & acts->mask);
3670		} else if (acts->msg && printk_ratelimit())
3671			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3672				 status & acts->mask);
3673		if (acts->int_handler)
3674			acts->int_handler(adapter);
3675		mask |= acts->mask;
3676	}
3677	status &= mask;
3678	if (status)                           /* clear processed interrupts */
3679		t4_write_reg(adapter, reg, status);
3680	return fatal;
3681}
3682
3683/*
3684 * Interrupt handler for the PCIE module.
3685 */
3686static void pcie_intr_handler(struct adapter *adapter)
3687{
3688	static const struct intr_info sysbus_intr_info[] = {
3689		{ RNPP_F, "RXNP array parity error", -1, 1 },
3690		{ RPCP_F, "RXPC array parity error", -1, 1 },
3691		{ RCIP_F, "RXCIF array parity error", -1, 1 },
3692		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
3693		{ RFTP_F, "RXFT array parity error", -1, 1 },
3694		{ 0 }
3695	};
3696	static const struct intr_info pcie_port_intr_info[] = {
3697		{ TPCP_F, "TXPC array parity error", -1, 1 },
3698		{ TNPP_F, "TXNP array parity error", -1, 1 },
3699		{ TFTP_F, "TXFT array parity error", -1, 1 },
3700		{ TCAP_F, "TXCA array parity error", -1, 1 },
3701		{ TCIP_F, "TXCIF array parity error", -1, 1 },
3702		{ RCAP_F, "RXCA array parity error", -1, 1 },
3703		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
3704		{ RDPE_F, "Rx data parity error", -1, 1 },
3705		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
3706		{ 0 }
3707	};
3708	static const struct intr_info pcie_intr_info[] = {
3709		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3710		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3711		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3712		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3713		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3714		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3715		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3716		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3717		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3718		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3719		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3720		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3721		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3722		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3723		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3724		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3725		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3726		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3727		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3728		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3729		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
3730		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3731		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3732		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3733		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3734		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3735		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3736		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
3737		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
3738		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
3739		  -1, 0 },
3740		{ 0 }
3741	};
3742
3743	static struct intr_info t5_pcie_intr_info[] = {
3744		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
3745		  -1, 1 },
3746		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3747		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3748		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3749		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3750		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3751		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3752		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3753		  -1, 1 },
3754		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3755		  -1, 1 },
3756		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3757		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3758		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3759		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3760		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
3761		  -1, 1 },
3762		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3763		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3764		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3765		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3766		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3767		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3768		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
3769		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3770		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3771		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3772		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3773		  -1, 1 },
3774		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3775		  -1, 1 },
3776		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3777		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3778		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3779		{ READRSPERR_F, "Outbound read error", -1, 0 },
3780		{ 0 }
3781	};
3782
3783	int fat;
3784
3785	if (is_t4(adapter->params.chip))
3786		fat = t4_handle_intr_status(adapter,
3787				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3788				sysbus_intr_info) +
3789			t4_handle_intr_status(adapter,
3790					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3791					pcie_port_intr_info) +
3792			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3793					      pcie_intr_info);
3794	else
3795		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3796					    t5_pcie_intr_info);
3797
3798	if (fat)
3799		t4_fatal_err(adapter);
3800}
3801
3802/*
3803 * TP interrupt handler.
3804 */
3805static void tp_intr_handler(struct adapter *adapter)
3806{
3807	static const struct intr_info tp_intr_info[] = {
3808		{ 0x3fffffff, "TP parity error", -1, 1 },
3809		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3810		{ 0 }
3811	};
3812
3813	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3814		t4_fatal_err(adapter);
3815}
3816
3817/*
3818 * SGE interrupt handler.
3819 */
3820static void sge_intr_handler(struct adapter *adapter)
3821{
3822	u64 v;
3823	u32 err;
3824
3825	static const struct intr_info sge_intr_info[] = {
3826		{ ERR_CPL_EXCEED_IQE_SIZE_F,
3827		  "SGE received CPL exceeding IQE size", -1, 1 },
3828		{ ERR_INVALID_CIDX_INC_F,
3829		  "SGE GTS CIDX increment too large", -1, 0 },
3830		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3831		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3832		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3833		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3834		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3835		  0 },
3836		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3837		  0 },
3838		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3839		  0 },
3840		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3841		  0 },
3842		{ ERR_ING_CTXT_PRIO_F,
3843		  "SGE too many priority ingress contexts", -1, 0 },
3844		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3845		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3846		{ 0 }
3847	};
3848
3849	static struct intr_info t4t5_sge_intr_info[] = {
3850		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3851		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3852		{ ERR_EGR_CTXT_PRIO_F,
3853		  "SGE too many priority egress contexts", -1, 0 },
3854		{ 0 }
3855	};
3856
3857	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3858		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3859	if (v) {
3860		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3861				(unsigned long long)v);
3862		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3863		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3864	}
3865
3866	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3867	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3868		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3869					   t4t5_sge_intr_info);
3870
3871	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3872	if (err & ERROR_QID_VALID_F) {
3873		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3874			ERROR_QID_G(err));
3875		if (err & UNCAPTURED_ERROR_F)
3876			dev_err(adapter->pdev_dev,
3877				"SGE UNCAPTURED_ERROR set (clearing)\n");
3878		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3879			     UNCAPTURED_ERROR_F);
3880	}
3881
3882	if (v != 0)
3883		t4_fatal_err(adapter);
3884}
3885
3886#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3887		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3888#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3889		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3890
3891/*
3892 * CIM interrupt handler.
3893 */
3894static void cim_intr_handler(struct adapter *adapter)
3895{
3896	static const struct intr_info cim_intr_info[] = {
3897		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3898		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3899		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3900		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3901		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3902		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3903		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3904		{ 0 }
3905	};
3906	static const struct intr_info cim_upintr_info[] = {
3907		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3908		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3909		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
3910		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
3911		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3912		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3913		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3914		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3915		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3916		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3917		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3918		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3919		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3920		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3921		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3922		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3923		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3924		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3925		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3926		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3927		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3928		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3929		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3930		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3931		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3932		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3933		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3934		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3935		{ 0 }
3936	};
3937
3938	int fat;
3939
3940	if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3941		t4_report_fw_error(adapter);
3942
3943	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3944				    cim_intr_info) +
3945	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3946				    cim_upintr_info);
3947	if (fat)
3948		t4_fatal_err(adapter);
3949}
3950
3951/*
3952 * ULP RX interrupt handler.
3953 */
3954static void ulprx_intr_handler(struct adapter *adapter)
3955{
3956	static const struct intr_info ulprx_intr_info[] = {
3957		{ 0x1800000, "ULPRX context error", -1, 1 },
3958		{ 0x7fffff, "ULPRX parity error", -1, 1 },
3959		{ 0 }
3960	};
3961
3962	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3963		t4_fatal_err(adapter);
3964}
3965
3966/*
3967 * ULP TX interrupt handler.
3968 */
3969static void ulptx_intr_handler(struct adapter *adapter)
3970{
3971	static const struct intr_info ulptx_intr_info[] = {
3972		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3973		  0 },
3974		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3975		  0 },
3976		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3977		  0 },
3978		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3979		  0 },
3980		{ 0xfffffff, "ULPTX parity error", -1, 1 },
3981		{ 0 }
3982	};
3983
3984	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3985		t4_fatal_err(adapter);
3986}
3987
3988/*
3989 * PM TX interrupt handler.
3990 */
3991static void pmtx_intr_handler(struct adapter *adapter)
3992{
3993	static const struct intr_info pmtx_intr_info[] = {
3994		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3995		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3996		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3997		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3998		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
3999		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4000		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4001		  -1, 1 },
4002		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4003		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4004		{ 0 }
4005	};
4006
4007	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4008		t4_fatal_err(adapter);
4009}
4010
4011/*
4012 * PM RX interrupt handler.
4013 */
4014static void pmrx_intr_handler(struct adapter *adapter)
4015{
4016	static const struct intr_info pmrx_intr_info[] = {
4017		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4018		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4019		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4020		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4021		  -1, 1 },
4022		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4023		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4024		{ 0 }
4025	};
4026
4027	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4028		t4_fatal_err(adapter);
4029}
4030
4031/*
4032 * CPL switch interrupt handler.
4033 */
4034static void cplsw_intr_handler(struct adapter *adapter)
4035{
4036	static const struct intr_info cplsw_intr_info[] = {
4037		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4038		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4039		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4040		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4041		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4042		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4043		{ 0 }
4044	};
4045
4046	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4047		t4_fatal_err(adapter);
4048}
4049
4050/*
4051 * LE interrupt handler.
4052 */
4053static void le_intr_handler(struct adapter *adap)
4054{
4055	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4056	static const struct intr_info le_intr_info[] = {
4057		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4058		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4059		{ PARITYERR_F, "LE parity error", -1, 1 },
4060		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4061		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4062		{ 0 }
4063	};
4064
4065	static struct intr_info t6_le_intr_info[] = {
4066		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4067		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4068		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4069		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4070		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4071		{ 0 }
4072	};
4073
4074	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4075				  (chip <= CHELSIO_T5) ?
4076				  le_intr_info : t6_le_intr_info))
4077		t4_fatal_err(adap);
4078}
4079
4080/*
4081 * MPS interrupt handler.
4082 */
4083static void mps_intr_handler(struct adapter *adapter)
4084{
4085	static const struct intr_info mps_rx_intr_info[] = {
4086		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4087		{ 0 }
4088	};
4089	static const struct intr_info mps_tx_intr_info[] = {
4090		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4091		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4092		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4093		  -1, 1 },
4094		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4095		  -1, 1 },
4096		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4097		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4098		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4099		{ 0 }
4100	};
4101	static const struct intr_info mps_trc_intr_info[] = {
4102		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4103		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4104		  -1, 1 },
4105		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4106		{ 0 }
4107	};
4108	static const struct intr_info mps_stat_sram_intr_info[] = {
4109		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4110		{ 0 }
4111	};
4112	static const struct intr_info mps_stat_tx_intr_info[] = {
4113		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4114		{ 0 }
4115	};
4116	static const struct intr_info mps_stat_rx_intr_info[] = {
4117		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4118		{ 0 }
4119	};
4120	static const struct intr_info mps_cls_intr_info[] = {
4121		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4122		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4123		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4124		{ 0 }
4125	};
4126
4127	int fat;
4128
4129	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4130				    mps_rx_intr_info) +
4131	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4132				    mps_tx_intr_info) +
4133	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4134				    mps_trc_intr_info) +
4135	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4136				    mps_stat_sram_intr_info) +
4137	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4138				    mps_stat_tx_intr_info) +
4139	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4140				    mps_stat_rx_intr_info) +
4141	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4142				    mps_cls_intr_info);
4143
4144	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4145	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4146	if (fat)
4147		t4_fatal_err(adapter);
4148}
4149
4150#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4151		      ECC_UE_INT_CAUSE_F)
4152
4153/*
4154 * EDC/MC interrupt handler.
4155 */
4156static void mem_intr_handler(struct adapter *adapter, int idx)
4157{
4158	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4159
4160	unsigned int addr, cnt_addr, v;
4161
4162	if (idx <= MEM_EDC1) {
4163		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4164		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4165	} else if (idx == MEM_MC) {
4166		if (is_t4(adapter->params.chip)) {
4167			addr = MC_INT_CAUSE_A;
4168			cnt_addr = MC_ECC_STATUS_A;
4169		} else {
4170			addr = MC_P_INT_CAUSE_A;
4171			cnt_addr = MC_P_ECC_STATUS_A;
4172		}
4173	} else {
4174		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4175		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4176	}
4177
4178	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4179	if (v & PERR_INT_CAUSE_F)
4180		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4181			  name[idx]);
4182	if (v & ECC_CE_INT_CAUSE_F) {
4183		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4184
4185		t4_edc_err_read(adapter, idx);
4186
4187		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4188		if (printk_ratelimit())
4189			dev_warn(adapter->pdev_dev,
4190				 "%u %s correctable ECC data error%s\n",
4191				 cnt, name[idx], cnt > 1 ? "s" : "");
4192	}
4193	if (v & ECC_UE_INT_CAUSE_F)
4194		dev_alert(adapter->pdev_dev,
4195			  "%s uncorrectable ECC data error\n", name[idx]);
4196
4197	t4_write_reg(adapter, addr, v);
4198	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4199		t4_fatal_err(adapter);
4200}
4201
4202/*
4203 * MA interrupt handler.
4204 */
4205static void ma_intr_handler(struct adapter *adap)
4206{
4207	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4208
4209	if (status & MEM_PERR_INT_CAUSE_F) {
4210		dev_alert(adap->pdev_dev,
4211			  "MA parity error, parity status %#x\n",
4212			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4213		if (is_t5(adap->params.chip))
4214			dev_alert(adap->pdev_dev,
4215				  "MA parity error, parity status %#x\n",
4216				  t4_read_reg(adap,
4217					      MA_PARITY_ERROR_STATUS2_A));
4218	}
4219	if (status & MEM_WRAP_INT_CAUSE_F) {
4220		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4221		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4222			  "client %u to address %#x\n",
4223			  MEM_WRAP_CLIENT_NUM_G(v),
4224			  MEM_WRAP_ADDRESS_G(v) << 4);
4225	}
4226	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4227	t4_fatal_err(adap);
4228}
4229
4230/*
4231 * SMB interrupt handler.
4232 */
4233static void smb_intr_handler(struct adapter *adap)
4234{
4235	static const struct intr_info smb_intr_info[] = {
4236		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4237		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4238		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4239		{ 0 }
4240	};
4241
4242	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4243		t4_fatal_err(adap);
4244}
4245
4246/*
4247 * NC-SI interrupt handler.
4248 */
4249static void ncsi_intr_handler(struct adapter *adap)
4250{
4251	static const struct intr_info ncsi_intr_info[] = {
4252		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4253		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4254		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4255		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4256		{ 0 }
4257	};
4258
4259	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4260		t4_fatal_err(adap);
4261}
4262
4263/*
4264 * XGMAC interrupt handler.
4265 */
4266static void xgmac_intr_handler(struct adapter *adap, int port)
4267{
4268	u32 v, int_cause_reg;
4269
4270	if (is_t4(adap->params.chip))
4271		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4272	else
4273		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4274
4275	v = t4_read_reg(adap, int_cause_reg);
4276
4277	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4278	if (!v)
4279		return;
4280
4281	if (v & TXFIFO_PRTY_ERR_F)
4282		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4283			  port);
4284	if (v & RXFIFO_PRTY_ERR_F)
4285		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4286			  port);
4287	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4288	t4_fatal_err(adap);
4289}
4290
4291/*
4292 * PL interrupt handler.
4293 */
4294static void pl_intr_handler(struct adapter *adap)
4295{
4296	static const struct intr_info pl_intr_info[] = {
4297		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4298		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4299		{ 0 }
4300	};
4301
4302	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4303		t4_fatal_err(adap);
4304}
4305
4306#define PF_INTR_MASK (PFSW_F)
4307#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4308		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4309		CPL_SWITCH_F | SGE_F | ULP_TX_F)
4310
4311/**
4312 *	t4_slow_intr_handler - control path interrupt handler
4313 *	@adapter: the adapter
4314 *
4315 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4316 *	The designation 'slow' is because it involves register reads, while
4317 *	data interrupts typically don't involve any MMIOs.
4318 */
4319int t4_slow_intr_handler(struct adapter *adapter)
4320{
4321	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4322
4323	if (!(cause & GLBL_INTR_MASK))
4324		return 0;
4325	if (cause & CIM_F)
4326		cim_intr_handler(adapter);
4327	if (cause & MPS_F)
4328		mps_intr_handler(adapter);
4329	if (cause & NCSI_F)
4330		ncsi_intr_handler(adapter);
4331	if (cause & PL_F)
4332		pl_intr_handler(adapter);
4333	if (cause & SMB_F)
4334		smb_intr_handler(adapter);
4335	if (cause & XGMAC0_F)
4336		xgmac_intr_handler(adapter, 0);
4337	if (cause & XGMAC1_F)
4338		xgmac_intr_handler(adapter, 1);
4339	if (cause & XGMAC_KR0_F)
4340		xgmac_intr_handler(adapter, 2);
4341	if (cause & XGMAC_KR1_F)
4342		xgmac_intr_handler(adapter, 3);
4343	if (cause & PCIE_F)
4344		pcie_intr_handler(adapter);
4345	if (cause & MC_F)
4346		mem_intr_handler(adapter, MEM_MC);
4347	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4348		mem_intr_handler(adapter, MEM_MC1);
4349	if (cause & EDC0_F)
4350		mem_intr_handler(adapter, MEM_EDC0);
4351	if (cause & EDC1_F)
4352		mem_intr_handler(adapter, MEM_EDC1);
4353	if (cause & LE_F)
4354		le_intr_handler(adapter);
4355	if (cause & TP_F)
4356		tp_intr_handler(adapter);
4357	if (cause & MA_F)
4358		ma_intr_handler(adapter);
4359	if (cause & PM_TX_F)
4360		pmtx_intr_handler(adapter);
4361	if (cause & PM_RX_F)
4362		pmrx_intr_handler(adapter);
4363	if (cause & ULP_RX_F)
4364		ulprx_intr_handler(adapter);
4365	if (cause & CPL_SWITCH_F)
4366		cplsw_intr_handler(adapter);
4367	if (cause & SGE_F)
4368		sge_intr_handler(adapter);
4369	if (cause & ULP_TX_F)
4370		ulptx_intr_handler(adapter);
4371
4372	/* Clear the interrupts just processed for which we are the master. */
4373	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4374	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4375	return 1;
4376}
4377
4378/**
4379 *	t4_intr_enable - enable interrupts
4380 *	@adapter: the adapter whose interrupts should be enabled
4381 *
4382 *	Enable PF-specific interrupts for the calling function and the top-level
4383 *	interrupt concentrator for global interrupts.  Interrupts are already
4384 *	enabled at each module,	here we just enable the roots of the interrupt
4385 *	hierarchies.
4386 *
4387 *	Note: this function should be called only when the driver manages
4388 *	non PF-specific interrupts from the various HW modules.  Only one PCI
4389 *	function at a time should be doing this.
4390 */
4391void t4_intr_enable(struct adapter *adapter)
4392{
4393	u32 val = 0;
4394	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4395	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4396			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4397
4398	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4399		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4400	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4401		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4402		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4403		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4404		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4405		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4406		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4407	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4408	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4409}
4410
4411/**
4412 *	t4_intr_disable - disable interrupts
4413 *	@adapter: the adapter whose interrupts should be disabled
4414 *
4415 *	Disable interrupts.  We only disable the top-level interrupt
4416 *	concentrators.  The caller must be a PCI function managing global
4417 *	interrupts.
4418 */
4419void t4_intr_disable(struct adapter *adapter)
4420{
4421	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4422	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4423			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4424
4425	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4426	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4427}
4428
4429/**
4430 *	hash_mac_addr - return the hash value of a MAC address
4431 *	@addr: the 48-bit Ethernet MAC address
4432 *
4433 *	Hashes a MAC address according to the hash function used by HW inexact
4434 *	(hash) address matching.
4435 */
4436static int hash_mac_addr(const u8 *addr)
4437{
4438	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4439	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4440	a ^= b;
4441	a ^= (a >> 12);
4442	a ^= (a >> 6);
4443	return a & 0x3f;
4444}
4445
4446/**
4447 *	t4_config_rss_range - configure a portion of the RSS mapping table
4448 *	@adapter: the adapter
4449 *	@mbox: mbox to use for the FW command
4450 *	@viid: virtual interface whose RSS subtable is to be written
4451 *	@start: start entry in the table to write
4452 *	@n: how many table entries to write
4453 *	@rspq: values for the response queue lookup table
4454 *	@nrspq: number of values in @rspq
4455 *
4456 *	Programs the selected part of the VI's RSS mapping table with the
4457 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4458 *	until the full table range is populated.
4459 *
4460 *	The caller must ensure the values in @rspq are in the range allowed for
4461 *	@viid.
4462 */
4463int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4464			int start, int n, const u16 *rspq, unsigned int nrspq)
4465{
4466	int ret;
4467	const u16 *rsp = rspq;
4468	const u16 *rsp_end = rspq + nrspq;
4469	struct fw_rss_ind_tbl_cmd cmd;
4470
4471	memset(&cmd, 0, sizeof(cmd));
4472	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4473			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4474			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
4475	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4476
4477	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4478	while (n > 0) {
4479		int nq = min(n, 32);
4480		__be32 *qp = &cmd.iq0_to_iq2;
4481
4482		cmd.niqid = cpu_to_be16(nq);
4483		cmd.startidx = cpu_to_be16(start);
4484
4485		start += nq;
4486		n -= nq;
4487
4488		while (nq > 0) {
4489			unsigned int v;
4490
4491			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4492			if (++rsp >= rsp_end)
4493				rsp = rspq;
4494			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4495			if (++rsp >= rsp_end)
4496				rsp = rspq;
4497			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4498			if (++rsp >= rsp_end)
4499				rsp = rspq;
4500
4501			*qp++ = cpu_to_be32(v);
4502			nq -= 3;
4503		}
4504
4505		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4506		if (ret)
4507			return ret;
4508	}
4509	return 0;
4510}
4511
4512/**
4513 *	t4_config_glbl_rss - configure the global RSS mode
4514 *	@adapter: the adapter
4515 *	@mbox: mbox to use for the FW command
4516 *	@mode: global RSS mode
4517 *	@flags: mode-specific flags
4518 *
4519 *	Sets the global RSS mode.
4520 */
4521int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4522		       unsigned int flags)
4523{
4524	struct fw_rss_glb_config_cmd c;
4525
4526	memset(&c, 0, sizeof(c));
4527	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4528				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4529	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4530	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4531		c.u.manual.mode_pkd =
4532			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4533	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4534		c.u.basicvirtual.mode_pkd =
4535			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4536		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4537	} else
4538		return -EINVAL;
4539	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4540}
4541
4542/**
4543 *	t4_config_vi_rss - configure per VI RSS settings
4544 *	@adapter: the adapter
4545 *	@mbox: mbox to use for the FW command
4546 *	@viid: the VI id
4547 *	@flags: RSS flags
4548 *	@defq: id of the default RSS queue for the VI.
4549 *
4550 *	Configures VI-specific RSS properties.
4551 */
4552int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4553		     unsigned int flags, unsigned int defq)
4554{
4555	struct fw_rss_vi_config_cmd c;
4556
4557	memset(&c, 0, sizeof(c));
4558	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4559				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4560				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4561	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4562	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4563					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4564	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4565}
4566
4567/* Read an RSS table row */
4568static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4569{
4570	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4571	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4572				   5, 0, val);
4573}
4574
4575/**
4576 *	t4_read_rss - read the contents of the RSS mapping table
4577 *	@adapter: the adapter
4578 *	@map: holds the contents of the RSS mapping table
4579 *
4580 *	Reads the contents of the RSS hash->queue mapping table.
4581 */
4582int t4_read_rss(struct adapter *adapter, u16 *map)
4583{
4584	u32 val;
4585	int i, ret;
4586
4587	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4588		ret = rd_rss_row(adapter, i, &val);
4589		if (ret)
4590			return ret;
4591		*map++ = LKPTBLQUEUE0_G(val);
4592		*map++ = LKPTBLQUEUE1_G(val);
4593	}
4594	return 0;
4595}
4596
4597static unsigned int t4_use_ldst(struct adapter *adap)
4598{
4599	return (adap->flags & FW_OK) || !adap->use_bd;
4600}
4601
4602/**
4603 *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4604 *	@adap: the adapter
4605 *	@vals: where the indirect register values are stored/written
4606 *	@nregs: how many indirect registers to read/write
4607 *	@start_idx: index of first indirect register to read/write
4608 *	@rw: Read (1) or Write (0)
4609 *
4610 *	Access TP PIO registers through LDST
4611 */
4612static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4613			    unsigned int start_index, unsigned int rw)
4614{
4615	int ret, i;
4616	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4617	struct fw_ldst_cmd c;
4618
4619	for (i = 0 ; i < nregs; i++) {
4620		memset(&c, 0, sizeof(c));
4621		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4622						FW_CMD_REQUEST_F |
4623						(rw ? FW_CMD_READ_F :
4624						      FW_CMD_WRITE_F) |
4625						FW_LDST_CMD_ADDRSPACE_V(cmd));
4626		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4627
4628		c.u.addrval.addr = cpu_to_be32(start_index + i);
4629		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4630		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4631		if (!ret && rw)
4632			vals[i] = be32_to_cpu(c.u.addrval.val);
4633	}
4634}
4635
4636/**
4637 *	t4_read_rss_key - read the global RSS key
4638 *	@adap: the adapter
4639 *	@key: 10-entry array holding the 320-bit RSS key
4640 *
4641 *	Reads the global 320-bit RSS key.
4642 */
4643void t4_read_rss_key(struct adapter *adap, u32 *key)
4644{
4645	if (t4_use_ldst(adap))
4646		t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4647	else
4648		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4649				 TP_RSS_SECRET_KEY0_A);
4650}
4651
4652/**
4653 *	t4_write_rss_key - program one of the RSS keys
4654 *	@adap: the adapter
4655 *	@key: 10-entry array holding the 320-bit RSS key
4656 *	@idx: which RSS key to write
4657 *
4658 *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4659 *	0..15 the corresponding entry in the RSS key table is written,
4660 *	otherwise the global RSS key is written.
4661 */
4662void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4663{
4664	u8 rss_key_addr_cnt = 16;
4665	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4666
4667	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4668	 * allows access to key addresses 16-63 by using KeyWrAddrX
4669	 * as index[5:4](upper 2) into key table
4670	 */
4671	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4672	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4673		rss_key_addr_cnt = 32;
4674
4675	if (t4_use_ldst(adap))
4676		t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4677	else
4678		t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4679				  TP_RSS_SECRET_KEY0_A);
4680
4681	if (idx >= 0 && idx < rss_key_addr_cnt) {
4682		if (rss_key_addr_cnt > 16)
4683			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4684				     KEYWRADDRX_V(idx >> 4) |
4685				     T6_VFWRADDR_V(idx) | KEYWREN_F);
4686		else
4687			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4688				     KEYWRADDR_V(idx) | KEYWREN_F);
4689	}
4690}
4691
4692/**
4693 *	t4_read_rss_pf_config - read PF RSS Configuration Table
4694 *	@adapter: the adapter
4695 *	@index: the entry in the PF RSS table to read
4696 *	@valp: where to store the returned value
4697 *
4698 *	Reads the PF RSS Configuration Table at the specified index and returns
4699 *	the value found there.
4700 */
4701void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4702			   u32 *valp)
4703{
4704	if (t4_use_ldst(adapter))
4705		t4_fw_tp_pio_rw(adapter, valp, 1,
4706				TP_RSS_PF0_CONFIG_A + index, 1);
4707	else
4708		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4709				 valp, 1, TP_RSS_PF0_CONFIG_A + index);
4710}
4711
4712/**
4713 *	t4_read_rss_vf_config - read VF RSS Configuration Table
4714 *	@adapter: the adapter
4715 *	@index: the entry in the VF RSS table to read
4716 *	@vfl: where to store the returned VFL
4717 *	@vfh: where to store the returned VFH
4718 *
4719 *	Reads the VF RSS Configuration Table at the specified index and returns
4720 *	the (VFL, VFH) values found there.
4721 */
4722void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4723			   u32 *vfl, u32 *vfh)
4724{
4725	u32 vrt, mask, data;
4726
4727	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4728		mask = VFWRADDR_V(VFWRADDR_M);
4729		data = VFWRADDR_V(index);
4730	} else {
4731		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4732		 data = T6_VFWRADDR_V(index);
4733	}
4734
4735	/* Request that the index'th VF Table values be read into VFL/VFH.
4736	 */
4737	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4738	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4739	vrt |= data | VFRDEN_F;
4740	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4741
4742	/* Grab the VFL/VFH values ...
4743	 */
4744	if (t4_use_ldst(adapter)) {
4745		t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4746		t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4747	} else {
4748		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4749				 vfl, 1, TP_RSS_VFL_CONFIG_A);
4750		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4751				 vfh, 1, TP_RSS_VFH_CONFIG_A);
4752	}
4753}
4754
4755/**
4756 *	t4_read_rss_pf_map - read PF RSS Map
4757 *	@adapter: the adapter
4758 *
4759 *	Reads the PF RSS Map register and returns its value.
4760 */
4761u32 t4_read_rss_pf_map(struct adapter *adapter)
4762{
4763	u32 pfmap;
4764
4765	if (t4_use_ldst(adapter))
4766		t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4767	else
4768		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4769				 &pfmap, 1, TP_RSS_PF_MAP_A);
4770	return pfmap;
4771}
4772
4773/**
4774 *	t4_read_rss_pf_mask - read PF RSS Mask
4775 *	@adapter: the adapter
4776 *
4777 *	Reads the PF RSS Mask register and returns its value.
4778 */
4779u32 t4_read_rss_pf_mask(struct adapter *adapter)
4780{
4781	u32 pfmask;
4782
4783	if (t4_use_ldst(adapter))
4784		t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4785	else
4786		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4787				 &pfmask, 1, TP_RSS_PF_MSK_A);
4788	return pfmask;
4789}
4790
4791/**
4792 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
4793 *	@adap: the adapter
4794 *	@v4: holds the TCP/IP counter values
4795 *	@v6: holds the TCP/IPv6 counter values
4796 *
4797 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4798 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4799 */
4800void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4801			 struct tp_tcp_stats *v6)
4802{
4803	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4804
4805#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4806#define STAT(x)     val[STAT_IDX(x)]
4807#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4808
4809	if (v4) {
4810		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4811				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4812		v4->tcp_out_rsts = STAT(OUT_RST);
4813		v4->tcp_in_segs  = STAT64(IN_SEG);
4814		v4->tcp_out_segs = STAT64(OUT_SEG);
4815		v4->tcp_retrans_segs = STAT64(RXT_SEG);
4816	}
4817	if (v6) {
4818		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4819				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4820		v6->tcp_out_rsts = STAT(OUT_RST);
4821		v6->tcp_in_segs  = STAT64(IN_SEG);
4822		v6->tcp_out_segs = STAT64(OUT_SEG);
4823		v6->tcp_retrans_segs = STAT64(RXT_SEG);
4824	}
4825#undef STAT64
4826#undef STAT
4827#undef STAT_IDX
4828}
4829
4830/**
4831 *	t4_tp_get_err_stats - read TP's error MIB counters
4832 *	@adap: the adapter
4833 *	@st: holds the counter values
4834 *
4835 *	Returns the values of TP's error counters.
4836 */
4837void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4838{
4839	int nchan = adap->params.arch.nchan;
4840
4841	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4842			 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4843	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4844			 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4845	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4846			 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4847	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4848			 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4849	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4850			 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4851	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4852			 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4853	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4854			 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4855	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4856			 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4857
4858	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4859			 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4860}
4861
4862/**
4863 *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
4864 *	@adap: the adapter
4865 *	@st: holds the counter values
4866 *
4867 *	Returns the values of TP's CPL counters.
4868 */
4869void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4870{
4871	int nchan = adap->params.arch.nchan;
4872
4873	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4874			 nchan, TP_MIB_CPL_IN_REQ_0_A);
4875	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4876			 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4877
4878}
4879
4880/**
4881 *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4882 *	@adap: the adapter
4883 *	@st: holds the counter values
4884 *
4885 *	Returns the values of TP's RDMA counters.
4886 */
4887void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4888{
4889	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4890			 2, TP_MIB_RQE_DFR_PKT_A);
4891}
4892
4893/**
4894 *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4895 *	@adap: the adapter
4896 *	@idx: the port index
4897 *	@st: holds the counter values
4898 *
4899 *	Returns the values of TP's FCoE counters for the selected port.
4900 */
4901void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4902		       struct tp_fcoe_stats *st)
4903{
4904	u32 val[2];
4905
4906	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4907			 1, TP_MIB_FCOE_DDP_0_A + idx);
4908	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4909			 1, TP_MIB_FCOE_DROP_0_A + idx);
4910	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4911			 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4912	st->octets_ddp = ((u64)val[0] << 32) | val[1];
4913}
4914
4915/**
4916 *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4917 *	@adap: the adapter
4918 *	@st: holds the counter values
4919 *
4920 *	Returns the values of TP's counters for non-TCP directly-placed packets.
4921 */
4922void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4923{
4924	u32 val[4];
4925
4926	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4927			 TP_MIB_USM_PKTS_A);
4928	st->frames = val[0];
4929	st->drops = val[1];
4930	st->octets = ((u64)val[2] << 32) | val[3];
4931}
4932
4933/**
4934 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
4935 *	@adap: the adapter
4936 *	@mtus: where to store the MTU values
4937 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
4938 *
4939 *	Reads the HW path MTU table.
4940 */
4941void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4942{
4943	u32 v;
4944	int i;
4945
4946	for (i = 0; i < NMTUS; ++i) {
4947		t4_write_reg(adap, TP_MTU_TABLE_A,
4948			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
4949		v = t4_read_reg(adap, TP_MTU_TABLE_A);
4950		mtus[i] = MTUVALUE_G(v);
4951		if (mtu_log)
4952			mtu_log[i] = MTUWIDTH_G(v);
4953	}
4954}
4955
4956/**
4957 *	t4_read_cong_tbl - reads the congestion control table
4958 *	@adap: the adapter
4959 *	@incr: where to store the alpha values
4960 *
4961 *	Reads the additive increments programmed into the HW congestion
4962 *	control table.
4963 */
4964void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4965{
4966	unsigned int mtu, w;
4967
4968	for (mtu = 0; mtu < NMTUS; ++mtu)
4969		for (w = 0; w < NCCTRL_WIN; ++w) {
4970			t4_write_reg(adap, TP_CCTRL_TABLE_A,
4971				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
4972			incr[mtu][w] = (u16)t4_read_reg(adap,
4973						TP_CCTRL_TABLE_A) & 0x1fff;
4974		}
4975}
4976
4977/**
4978 *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4979 *	@adap: the adapter
4980 *	@addr: the indirect TP register address
4981 *	@mask: specifies the field within the register to modify
4982 *	@val: new value for the field
4983 *
4984 *	Sets a field of an indirect TP register to the given value.
4985 */
4986void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4987			    unsigned int mask, unsigned int val)
4988{
4989	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4990	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4991	t4_write_reg(adap, TP_PIO_DATA_A, val);
4992}
4993
4994/**
4995 *	init_cong_ctrl - initialize congestion control parameters
4996 *	@a: the alpha values for congestion control
4997 *	@b: the beta values for congestion control
4998 *
4999 *	Initialize the congestion control parameters.
5000 */
5001static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5002{
5003	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5004	a[9] = 2;
5005	a[10] = 3;
5006	a[11] = 4;
5007	a[12] = 5;
5008	a[13] = 6;
5009	a[14] = 7;
5010	a[15] = 8;
5011	a[16] = 9;
5012	a[17] = 10;
5013	a[18] = 14;
5014	a[19] = 17;
5015	a[20] = 21;
5016	a[21] = 25;
5017	a[22] = 30;
5018	a[23] = 35;
5019	a[24] = 45;
5020	a[25] = 60;
5021	a[26] = 80;
5022	a[27] = 100;
5023	a[28] = 200;
5024	a[29] = 300;
5025	a[30] = 400;
5026	a[31] = 500;
5027
5028	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5029	b[9] = b[10] = 1;
5030	b[11] = b[12] = 2;
5031	b[13] = b[14] = b[15] = b[16] = 3;
5032	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5033	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5034	b[28] = b[29] = 6;
5035	b[30] = b[31] = 7;
5036}
5037
5038/* The minimum additive increment value for the congestion control table */
5039#define CC_MIN_INCR 2U
5040
5041/**
5042 *	t4_load_mtus - write the MTU and congestion control HW tables
5043 *	@adap: the adapter
5044 *	@mtus: the values for the MTU table
5045 *	@alpha: the values for the congestion control alpha parameter
5046 *	@beta: the values for the congestion control beta parameter
5047 *
5048 *	Write the HW MTU table with the supplied MTUs and the high-speed
5049 *	congestion control table with the supplied alpha, beta, and MTUs.
5050 *	We write the two tables together because the additive increments
5051 *	depend on the MTUs.
5052 */
5053void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5054		  const unsigned short *alpha, const unsigned short *beta)
5055{
5056	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5057		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5058		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5059		28672, 40960, 57344, 81920, 114688, 163840, 229376
5060	};
5061
5062	unsigned int i, w;
5063
5064	for (i = 0; i < NMTUS; ++i) {
5065		unsigned int mtu = mtus[i];
5066		unsigned int log2 = fls(mtu);
5067
5068		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5069			log2--;
5070		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5071			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5072
5073		for (w = 0; w < NCCTRL_WIN; ++w) {
5074			unsigned int inc;
5075
5076			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5077				  CC_MIN_INCR);
5078
5079			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5080				     (w << 16) | (beta[w] << 13) | inc);
5081		}
5082	}
5083}
5084
5085/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5086 * clocks.  The formula is
5087 *
5088 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5089 *
5090 * which is equivalent to
5091 *
5092 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5093 */
5094static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5095{
5096	u64 v = bytes256 * adap->params.vpd.cclk;
5097
5098	return v * 62 + v / 2;
5099}
5100
5101/**
5102 *	t4_get_chan_txrate - get the current per channel Tx rates
5103 *	@adap: the adapter
5104 *	@nic_rate: rates for NIC traffic
5105 *	@ofld_rate: rates for offloaded traffic
5106 *
5107 *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5108 *	for each channel.
5109 */
5110void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5111{
5112	u32 v;
5113
5114	v = t4_read_reg(adap, TP_TX_TRATE_A);
5115	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5116	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5117	if (adap->params.arch.nchan == NCHAN) {
5118		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5119		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5120	}
5121
5122	v = t4_read_reg(adap, TP_TX_ORATE_A);
5123	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5124	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5125	if (adap->params.arch.nchan == NCHAN) {
5126		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5127		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5128	}
5129}
5130
5131/**
5132 *	t4_set_trace_filter - configure one of the tracing filters
5133 *	@adap: the adapter
5134 *	@tp: the desired trace filter parameters
5135 *	@idx: which filter to configure
5136 *	@enable: whether to enable or disable the filter
5137 *
5138 *	Configures one of the tracing filters available in HW.  If @enable is
5139 *	%0 @tp is not examined and may be %NULL. The user is responsible to
5140 *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5141 */
5142int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5143			int idx, int enable)
5144{
5145	int i, ofst = idx * 4;
5146	u32 data_reg, mask_reg, cfg;
5147	u32 multitrc = TRCMULTIFILTER_F;
5148
5149	if (!enable) {
5150		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5151		return 0;
5152	}
5153
5154	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5155	if (cfg & TRCMULTIFILTER_F) {
5156		/* If multiple tracers are enabled, then maximum
5157		 * capture size is 2.5KB (FIFO size of a single channel)
5158		 * minus 2 flits for CPL_TRACE_PKT header.
5159		 */
5160		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5161			return -EINVAL;
5162	} else {
5163		/* If multiple tracers are disabled, to avoid deadlocks
5164		 * maximum packet capture size of 9600 bytes is recommended.
5165		 * Also in this mode, only trace0 can be enabled and running.
5166		 */
5167		multitrc = 0;
5168		if (tp->snap_len > 9600 || idx)
5169			return -EINVAL;
5170	}
5171
5172	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5173	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5174	    tp->min_len > TFMINPKTSIZE_M)
5175		return -EINVAL;
5176
5177	/* stop the tracer we'll be changing */
5178	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5179
5180	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5181	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5182	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5183
5184	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5185		t4_write_reg(adap, data_reg, tp->data[i]);
5186		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5187	}
5188	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5189		     TFCAPTUREMAX_V(tp->snap_len) |
5190		     TFMINPKTSIZE_V(tp->min_len));
5191	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5192		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5193		     (is_t4(adap->params.chip) ?
5194		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5195		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5196		     T5_TFINVERTMATCH_V(tp->invert)));
5197
5198	return 0;
5199}
5200
5201/**
5202 *	t4_get_trace_filter - query one of the tracing filters
5203 *	@adap: the adapter
5204 *	@tp: the current trace filter parameters
5205 *	@idx: which trace filter to query
5206 *	@enabled: non-zero if the filter is enabled
5207 *
5208 *	Returns the current settings of one of the HW tracing filters.
5209 */
5210void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5211			 int *enabled)
5212{
5213	u32 ctla, ctlb;
5214	int i, ofst = idx * 4;
5215	u32 data_reg, mask_reg;
5216
5217	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5218	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5219
5220	if (is_t4(adap->params.chip)) {
5221		*enabled = !!(ctla & TFEN_F);
5222		tp->port =  TFPORT_G(ctla);
5223		tp->invert = !!(ctla & TFINVERTMATCH_F);
5224	} else {
5225		*enabled = !!(ctla & T5_TFEN_F);
5226		tp->port = T5_TFPORT_G(ctla);
5227		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5228	}
5229	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5230	tp->min_len = TFMINPKTSIZE_G(ctlb);
5231	tp->skip_ofst = TFOFFSET_G(ctla);
5232	tp->skip_len = TFLENGTH_G(ctla);
5233
5234	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5235	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5236	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5237
5238	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5239		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5240		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5241	}
5242}
5243
5244/**
5245 *	t4_pmtx_get_stats - returns the HW stats from PMTX
5246 *	@adap: the adapter
5247 *	@cnt: where to store the count statistics
5248 *	@cycles: where to store the cycle statistics
5249 *
5250 *	Returns performance statistics from PMTX.
5251 */
5252void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5253{
5254	int i;
5255	u32 data[2];
5256
5257	for (i = 0; i < PM_NSTATS; i++) {
5258		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5259		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5260		if (is_t4(adap->params.chip)) {
5261			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5262		} else {
5263			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5264					 PM_TX_DBG_DATA_A, data, 2,
5265					 PM_TX_DBG_STAT_MSB_A);
5266			cycles[i] = (((u64)data[0] << 32) | data[1]);
5267		}
5268	}
5269}
5270
5271/**
5272 *	t4_pmrx_get_stats - returns the HW stats from PMRX
5273 *	@adap: the adapter
5274 *	@cnt: where to store the count statistics
5275 *	@cycles: where to store the cycle statistics
5276 *
5277 *	Returns performance statistics from PMRX.
5278 */
5279void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5280{
5281	int i;
5282	u32 data[2];
5283
5284	for (i = 0; i < PM_NSTATS; i++) {
5285		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5286		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5287		if (is_t4(adap->params.chip)) {
5288			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5289		} else {
5290			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5291					 PM_RX_DBG_DATA_A, data, 2,
5292					 PM_RX_DBG_STAT_MSB_A);
5293			cycles[i] = (((u64)data[0] << 32) | data[1]);
5294		}
5295	}
5296}
5297
5298/**
5299 *	t4_get_mps_bg_map - return the buffer groups associated with a port
5300 *	@adap: the adapter
5301 *	@idx: the port index
5302 *
5303 *	Returns a bitmap indicating which MPS buffer groups are associated
5304 *	with the given port.  Bit i is set if buffer group i is used by the
5305 *	port.
5306 */
5307unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5308{
5309	u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5310
5311	if (n == 0)
5312		return idx == 0 ? 0xf : 0;
5313	if (n == 1)
5314		return idx < 2 ? (3 << (2 * idx)) : 0;
5315	return 1 << idx;
5316}
5317
5318/**
5319 *      t4_get_port_type_description - return Port Type string description
5320 *      @port_type: firmware Port Type enumeration
5321 */
5322const char *t4_get_port_type_description(enum fw_port_type port_type)
5323{
5324	static const char *const port_type_description[] = {
5325		"R XFI",
5326		"R XAUI",
5327		"T SGMII",
5328		"T XFI",
5329		"T XAUI",
5330		"KX4",
5331		"CX4",
5332		"KX",
5333		"KR",
5334		"R SFP+",
5335		"KR/KX",
5336		"KR/KX/KX4",
5337		"R QSFP_10G",
5338		"R QSA",
5339		"R QSFP",
5340		"R BP40_BA",
5341	};
5342
5343	if (port_type < ARRAY_SIZE(port_type_description))
5344		return port_type_description[port_type];
5345	return "UNKNOWN";
5346}
5347
5348/**
5349 *      t4_get_port_stats_offset - collect port stats relative to a previous
5350 *                                 snapshot
5351 *      @adap: The adapter
5352 *      @idx: The port
5353 *      @stats: Current stats to fill
5354 *      @offset: Previous stats snapshot
5355 */
5356void t4_get_port_stats_offset(struct adapter *adap, int idx,
5357			      struct port_stats *stats,
5358			      struct port_stats *offset)
5359{
5360	u64 *s, *o;
5361	int i;
5362
5363	t4_get_port_stats(adap, idx, stats);
5364	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5365			i < (sizeof(struct port_stats) / sizeof(u64));
5366			i++, s++, o++)
5367		*s -= *o;
5368}
5369
5370/**
5371 *	t4_get_port_stats - collect port statistics
5372 *	@adap: the adapter
5373 *	@idx: the port index
5374 *	@p: the stats structure to fill
5375 *
5376 *	Collect statistics related to the given port from HW.
5377 */
5378void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5379{
5380	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5381
5382#define GET_STAT(name) \
5383	t4_read_reg64(adap, \
5384	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5385	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5386#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5387
5388	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5389	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5390	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5391	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5392	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5393	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5394	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5395	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5396	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5397	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5398	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5399	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5400	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5401	p->tx_drop             = GET_STAT(TX_PORT_DROP);
5402	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5403	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5404	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5405	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5406	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5407	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5408	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5409	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5410	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5411
5412	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5413	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5414	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5415	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5416	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5417	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5418	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5419	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5420	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5421	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5422	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5423	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5424	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5425	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5426	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5427	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5428	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5429	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5430	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5431	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5432	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5433	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5434	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5435	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5436	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5437	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5438	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5439
5440	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5441	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5442	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5443	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5444	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5445	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5446	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5447	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5448
5449#undef GET_STAT
5450#undef GET_STAT_COM
5451}
5452
5453/**
5454 *	t4_get_lb_stats - collect loopback port statistics
5455 *	@adap: the adapter
5456 *	@idx: the loopback port index
5457 *	@p: the stats structure to fill
5458 *
5459 *	Return HW statistics for the given loopback port.
5460 */
5461void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5462{
5463	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5464
5465#define GET_STAT(name) \
5466	t4_read_reg64(adap, \
5467	(is_t4(adap->params.chip) ? \
5468	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5469	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5470#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5471
5472	p->octets           = GET_STAT(BYTES);
5473	p->frames           = GET_STAT(FRAMES);
5474	p->bcast_frames     = GET_STAT(BCAST);
5475	p->mcast_frames     = GET_STAT(MCAST);
5476	p->ucast_frames     = GET_STAT(UCAST);
5477	p->error_frames     = GET_STAT(ERROR);
5478
5479	p->frames_64        = GET_STAT(64B);
5480	p->frames_65_127    = GET_STAT(65B_127B);
5481	p->frames_128_255   = GET_STAT(128B_255B);
5482	p->frames_256_511   = GET_STAT(256B_511B);
5483	p->frames_512_1023  = GET_STAT(512B_1023B);
5484	p->frames_1024_1518 = GET_STAT(1024B_1518B);
5485	p->frames_1519_max  = GET_STAT(1519B_MAX);
5486	p->drop             = GET_STAT(DROP_FRAMES);
5487
5488	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5489	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5490	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5491	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5492	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5493	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5494	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5495	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5496
5497#undef GET_STAT
5498#undef GET_STAT_COM
5499}
5500
5501/*     t4_mk_filtdelwr - create a delete filter WR
5502 *     @ftid: the filter ID
5503 *     @wr: the filter work request to populate
5504 *     @qid: ingress queue to receive the delete notification
5505 *
5506 *     Creates a filter work request to delete the supplied filter.  If @qid is
5507 *     negative the delete notification is suppressed.
5508 */
5509void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5510{
5511	memset(wr, 0, sizeof(*wr));
5512	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5513	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5514	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5515				    FW_FILTER_WR_NOREPLY_V(qid < 0));
5516	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5517	if (qid >= 0)
5518		wr->rx_chan_rx_rpl_iq =
5519			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5520}
5521
5522#define INIT_CMD(var, cmd, rd_wr) do { \
5523	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5524					FW_CMD_REQUEST_F | \
5525					FW_CMD_##rd_wr##_F); \
5526	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5527} while (0)
5528
5529int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5530			  u32 addr, u32 val)
5531{
5532	u32 ldst_addrspace;
5533	struct fw_ldst_cmd c;
5534
5535	memset(&c, 0, sizeof(c));
5536	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5537	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5538					FW_CMD_REQUEST_F |
5539					FW_CMD_WRITE_F |
5540					ldst_addrspace);
5541	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5542	c.u.addrval.addr = cpu_to_be32(addr);
5543	c.u.addrval.val = cpu_to_be32(val);
5544
5545	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5546}
5547
5548/**
5549 *	t4_mdio_rd - read a PHY register through MDIO
5550 *	@adap: the adapter
5551 *	@mbox: mailbox to use for the FW command
5552 *	@phy_addr: the PHY address
5553 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5554 *	@reg: the register to read
5555 *	@valp: where to store the value
5556 *
5557 *	Issues a FW command through the given mailbox to read a PHY register.
5558 */
5559int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5560	       unsigned int mmd, unsigned int reg, u16 *valp)
5561{
5562	int ret;
5563	u32 ldst_addrspace;
5564	struct fw_ldst_cmd c;
5565
5566	memset(&c, 0, sizeof(c));
5567	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5568	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5569					FW_CMD_REQUEST_F | FW_CMD_READ_F |
5570					ldst_addrspace);
5571	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5572	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5573					 FW_LDST_CMD_MMD_V(mmd));
5574	c.u.mdio.raddr = cpu_to_be16(reg);
5575
5576	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5577	if (ret == 0)
5578		*valp = be16_to_cpu(c.u.mdio.rval);
5579	return ret;
5580}
5581
5582/**
5583 *	t4_mdio_wr - write a PHY register through MDIO
5584 *	@adap: the adapter
5585 *	@mbox: mailbox to use for the FW command
5586 *	@phy_addr: the PHY address
5587 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5588 *	@reg: the register to write
5589 *	@valp: value to write
5590 *
5591 *	Issues a FW command through the given mailbox to write a PHY register.
5592 */
5593int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5594	       unsigned int mmd, unsigned int reg, u16 val)
5595{
5596	u32 ldst_addrspace;
5597	struct fw_ldst_cmd c;
5598
5599	memset(&c, 0, sizeof(c));
5600	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5601	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5602					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5603					ldst_addrspace);
5604	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5605	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5606					 FW_LDST_CMD_MMD_V(mmd));
5607	c.u.mdio.raddr = cpu_to_be16(reg);
5608	c.u.mdio.rval = cpu_to_be16(val);
5609
5610	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5611}
5612
5613/**
5614 *	t4_sge_decode_idma_state - decode the idma state
5615 *	@adap: the adapter
5616 *	@state: the state idma is stuck in
5617 */
5618void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5619{
5620	static const char * const t4_decode[] = {
5621		"IDMA_IDLE",
5622		"IDMA_PUSH_MORE_CPL_FIFO",
5623		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5624		"Not used",
5625		"IDMA_PHYSADDR_SEND_PCIEHDR",
5626		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5627		"IDMA_PHYSADDR_SEND_PAYLOAD",
5628		"IDMA_SEND_FIFO_TO_IMSG",
5629		"IDMA_FL_REQ_DATA_FL_PREP",
5630		"IDMA_FL_REQ_DATA_FL",
5631		"IDMA_FL_DROP",
5632		"IDMA_FL_H_REQ_HEADER_FL",
5633		"IDMA_FL_H_SEND_PCIEHDR",
5634		"IDMA_FL_H_PUSH_CPL_FIFO",
5635		"IDMA_FL_H_SEND_CPL",
5636		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5637		"IDMA_FL_H_SEND_IP_HDR",
5638		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5639		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5640		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5641		"IDMA_FL_D_SEND_PCIEHDR",
5642		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5643		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5644		"IDMA_FL_SEND_PCIEHDR",
5645		"IDMA_FL_PUSH_CPL_FIFO",
5646		"IDMA_FL_SEND_CPL",
5647		"IDMA_FL_SEND_PAYLOAD_FIRST",
5648		"IDMA_FL_SEND_PAYLOAD",
5649		"IDMA_FL_REQ_NEXT_DATA_FL",
5650		"IDMA_FL_SEND_NEXT_PCIEHDR",
5651		"IDMA_FL_SEND_PADDING",
5652		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5653		"IDMA_FL_SEND_FIFO_TO_IMSG",
5654		"IDMA_FL_REQ_DATAFL_DONE",
5655		"IDMA_FL_REQ_HEADERFL_DONE",
5656	};
5657	static const char * const t5_decode[] = {
5658		"IDMA_IDLE",
5659		"IDMA_ALMOST_IDLE",
5660		"IDMA_PUSH_MORE_CPL_FIFO",
5661		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5662		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5663		"IDMA_PHYSADDR_SEND_PCIEHDR",
5664		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5665		"IDMA_PHYSADDR_SEND_PAYLOAD",
5666		"IDMA_SEND_FIFO_TO_IMSG",
5667		"IDMA_FL_REQ_DATA_FL",
5668		"IDMA_FL_DROP",
5669		"IDMA_FL_DROP_SEND_INC",
5670		"IDMA_FL_H_REQ_HEADER_FL",
5671		"IDMA_FL_H_SEND_PCIEHDR",
5672		"IDMA_FL_H_PUSH_CPL_FIFO",
5673		"IDMA_FL_H_SEND_CPL",
5674		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5675		"IDMA_FL_H_SEND_IP_HDR",
5676		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5677		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5678		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5679		"IDMA_FL_D_SEND_PCIEHDR",
5680		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5681		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5682		"IDMA_FL_SEND_PCIEHDR",
5683		"IDMA_FL_PUSH_CPL_FIFO",
5684		"IDMA_FL_SEND_CPL",
5685		"IDMA_FL_SEND_PAYLOAD_FIRST",
5686		"IDMA_FL_SEND_PAYLOAD",
5687		"IDMA_FL_REQ_NEXT_DATA_FL",
5688		"IDMA_FL_SEND_NEXT_PCIEHDR",
5689		"IDMA_FL_SEND_PADDING",
5690		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5691	};
5692	static const u32 sge_regs[] = {
5693		SGE_DEBUG_DATA_LOW_INDEX_2_A,
5694		SGE_DEBUG_DATA_LOW_INDEX_3_A,
5695		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5696	};
5697	const char **sge_idma_decode;
5698	int sge_idma_decode_nstates;
5699	int i;
5700
5701	if (is_t4(adapter->params.chip)) {
5702		sge_idma_decode = (const char **)t4_decode;
5703		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5704	} else {
5705		sge_idma_decode = (const char **)t5_decode;
5706		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5707	}
5708
5709	if (state < sge_idma_decode_nstates)
5710		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5711	else
5712		CH_WARN(adapter, "idma state %d unknown\n", state);
5713
5714	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5715		CH_WARN(adapter, "SGE register %#x value %#x\n",
5716			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5717}
5718
5719/**
5720 *      t4_sge_ctxt_flush - flush the SGE context cache
5721 *      @adap: the adapter
5722 *      @mbox: mailbox to use for the FW command
5723 *
5724 *      Issues a FW command through the given mailbox to flush the
5725 *      SGE context cache.
5726 */
5727int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5728{
5729	int ret;
5730	u32 ldst_addrspace;
5731	struct fw_ldst_cmd c;
5732
5733	memset(&c, 0, sizeof(c));
5734	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5735	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5736					FW_CMD_REQUEST_F | FW_CMD_READ_F |
5737					ldst_addrspace);
5738	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5739	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5740
5741	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5742	return ret;
5743}
5744
5745/**
5746 *      t4_fw_hello - establish communication with FW
5747 *      @adap: the adapter
5748 *      @mbox: mailbox to use for the FW command
5749 *      @evt_mbox: mailbox to receive async FW events
5750 *      @master: specifies the caller's willingness to be the device master
5751 *	@state: returns the current device state (if non-NULL)
5752 *
5753 *	Issues a command to establish communication with FW.  Returns either
5754 *	an error (negative integer) or the mailbox of the Master PF.
5755 */
5756int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5757		enum dev_master master, enum dev_state *state)
5758{
5759	int ret;
5760	struct fw_hello_cmd c;
5761	u32 v;
5762	unsigned int master_mbox;
5763	int retries = FW_CMD_HELLO_RETRIES;
5764
5765retry:
5766	memset(&c, 0, sizeof(c));
5767	INIT_CMD(c, HELLO, WRITE);
5768	c.err_to_clearinit = cpu_to_be32(
5769		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5770		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5771		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5772					mbox : FW_HELLO_CMD_MBMASTER_M) |
5773		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5774		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5775		FW_HELLO_CMD_CLEARINIT_F);
5776
5777	/*
5778	 * Issue the HELLO command to the firmware.  If it's not successful
5779	 * but indicates that we got a "busy" or "timeout" condition, retry
5780	 * the HELLO until we exhaust our retry limit.  If we do exceed our
5781	 * retry limit, check to see if the firmware left us any error
5782	 * information and report that if so.
5783	 */
5784	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5785	if (ret < 0) {
5786		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5787			goto retry;
5788		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5789			t4_report_fw_error(adap);
5790		return ret;
5791	}
5792
5793	v = be32_to_cpu(c.err_to_clearinit);
5794	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5795	if (state) {
5796		if (v & FW_HELLO_CMD_ERR_F)
5797			*state = DEV_STATE_ERR;
5798		else if (v & FW_HELLO_CMD_INIT_F)
5799			*state = DEV_STATE_INIT;
5800		else
5801			*state = DEV_STATE_UNINIT;
5802	}
5803
5804	/*
5805	 * If we're not the Master PF then we need to wait around for the
5806	 * Master PF Driver to finish setting up the adapter.
5807	 *
5808	 * Note that we also do this wait if we're a non-Master-capable PF and
5809	 * there is no current Master PF; a Master PF may show up momentarily
5810	 * and we wouldn't want to fail pointlessly.  (This can happen when an
5811	 * OS loads lots of different drivers rapidly at the same time).  In
5812	 * this case, the Master PF returned by the firmware will be
5813	 * PCIE_FW_MASTER_M so the test below will work ...
5814	 */
5815	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5816	    master_mbox != mbox) {
5817		int waiting = FW_CMD_HELLO_TIMEOUT;
5818
5819		/*
5820		 * Wait for the firmware to either indicate an error or
5821		 * initialized state.  If we see either of these we bail out
5822		 * and report the issue to the caller.  If we exhaust the
5823		 * "hello timeout" and we haven't exhausted our retries, try
5824		 * again.  Otherwise bail with a timeout error.
5825		 */
5826		for (;;) {
5827			u32 pcie_fw;
5828
5829			msleep(50);
5830			waiting -= 50;
5831
5832			/*
5833			 * If neither Error nor Initialialized are indicated
5834			 * by the firmware keep waiting till we exaust our
5835			 * timeout ... and then retry if we haven't exhausted
5836			 * our retries ...
5837			 */
5838			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5839			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5840				if (waiting <= 0) {
5841					if (retries-- > 0)
5842						goto retry;
5843
5844					return -ETIMEDOUT;
5845				}
5846				continue;
5847			}
5848
5849			/*
5850			 * We either have an Error or Initialized condition
5851			 * report errors preferentially.
5852			 */
5853			if (state) {
5854				if (pcie_fw & PCIE_FW_ERR_F)
5855					*state = DEV_STATE_ERR;
5856				else if (pcie_fw & PCIE_FW_INIT_F)
5857					*state = DEV_STATE_INIT;
5858			}
5859
5860			/*
5861			 * If we arrived before a Master PF was selected and
5862			 * there's not a valid Master PF, grab its identity
5863			 * for our caller.
5864			 */
5865			if (master_mbox == PCIE_FW_MASTER_M &&
5866			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
5867				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5868			break;
5869		}
5870	}
5871
5872	return master_mbox;
5873}
5874
5875/**
5876 *	t4_fw_bye - end communication with FW
5877 *	@adap: the adapter
5878 *	@mbox: mailbox to use for the FW command
5879 *
5880 *	Issues a command to terminate communication with FW.
5881 */
5882int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5883{
5884	struct fw_bye_cmd c;
5885
5886	memset(&c, 0, sizeof(c));
5887	INIT_CMD(c, BYE, WRITE);
5888	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5889}
5890
5891/**
5892 *	t4_init_cmd - ask FW to initialize the device
5893 *	@adap: the adapter
5894 *	@mbox: mailbox to use for the FW command
5895 *
5896 *	Issues a command to FW to partially initialize the device.  This
5897 *	performs initialization that generally doesn't depend on user input.
5898 */
5899int t4_early_init(struct adapter *adap, unsigned int mbox)
5900{
5901	struct fw_initialize_cmd c;
5902
5903	memset(&c, 0, sizeof(c));
5904	INIT_CMD(c, INITIALIZE, WRITE);
5905	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5906}
5907
5908/**
5909 *	t4_fw_reset - issue a reset to FW
5910 *	@adap: the adapter
5911 *	@mbox: mailbox to use for the FW command
5912 *	@reset: specifies the type of reset to perform
5913 *
5914 *	Issues a reset command of the specified type to FW.
5915 */
5916int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5917{
5918	struct fw_reset_cmd c;
5919
5920	memset(&c, 0, sizeof(c));
5921	INIT_CMD(c, RESET, WRITE);
5922	c.val = cpu_to_be32(reset);
5923	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5924}
5925
5926/**
5927 *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
5928 *	@adap: the adapter
5929 *	@mbox: mailbox to use for the FW RESET command (if desired)
5930 *	@force: force uP into RESET even if FW RESET command fails
5931 *
5932 *	Issues a RESET command to firmware (if desired) with a HALT indication
5933 *	and then puts the microprocessor into RESET state.  The RESET command
5934 *	will only be issued if a legitimate mailbox is provided (mbox <=
5935 *	PCIE_FW_MASTER_M).
5936 *
5937 *	This is generally used in order for the host to safely manipulate the
5938 *	adapter without fear of conflicting with whatever the firmware might
5939 *	be doing.  The only way out of this state is to RESTART the firmware
5940 *	...
5941 */
5942static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
5943{
5944	int ret = 0;
5945
5946	/*
5947	 * If a legitimate mailbox is provided, issue a RESET command
5948	 * with a HALT indication.
5949	 */
5950	if (mbox <= PCIE_FW_MASTER_M) {
5951		struct fw_reset_cmd c;
5952
5953		memset(&c, 0, sizeof(c));
5954		INIT_CMD(c, RESET, WRITE);
5955		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
5956		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
5957		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5958	}
5959
5960	/*
5961	 * Normally we won't complete the operation if the firmware RESET
5962	 * command fails but if our caller insists we'll go ahead and put the
5963	 * uP into RESET.  This can be useful if the firmware is hung or even
5964	 * missing ...  We'll have to take the risk of putting the uP into
5965	 * RESET without the cooperation of firmware in that case.
5966	 *
5967	 * We also force the firmware's HALT flag to be on in case we bypassed
5968	 * the firmware RESET command above or we're dealing with old firmware
5969	 * which doesn't have the HALT capability.  This will serve as a flag
5970	 * for the incoming firmware to know that it's coming out of a HALT
5971	 * rather than a RESET ... if it's new enough to understand that ...
5972	 */
5973	if (ret == 0 || force) {
5974		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
5975		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
5976				 PCIE_FW_HALT_F);
5977	}
5978
5979	/*
5980	 * And we always return the result of the firmware RESET command
5981	 * even when we force the uP into RESET ...
5982	 */
5983	return ret;
5984}
5985
5986/**
5987 *	t4_fw_restart - restart the firmware by taking the uP out of RESET
5988 *	@adap: the adapter
5989 *	@reset: if we want to do a RESET to restart things
5990 *
5991 *	Restart firmware previously halted by t4_fw_halt().  On successful
5992 *	return the previous PF Master remains as the new PF Master and there
5993 *	is no need to issue a new HELLO command, etc.
5994 *
5995 *	We do this in two ways:
5996 *
5997 *	 1. If we're dealing with newer firmware we'll simply want to take
5998 *	    the chip's microprocessor out of RESET.  This will cause the
5999 *	    firmware to start up from its start vector.  And then we'll loop
6000 *	    until the firmware indicates it's started again (PCIE_FW.HALT
6001 *	    reset to 0) or we timeout.
6002 *
6003 *	 2. If we're dealing with older firmware then we'll need to RESET
6004 *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6005 *	    flag and automatically RESET itself on startup.
6006 */
6007static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6008{
6009	if (reset) {
6010		/*
6011		 * Since we're directing the RESET instead of the firmware
6012		 * doing it automatically, we need to clear the PCIE_FW.HALT
6013		 * bit.
6014		 */
6015		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6016
6017		/*
6018		 * If we've been given a valid mailbox, first try to get the
6019		 * firmware to do the RESET.  If that works, great and we can
6020		 * return success.  Otherwise, if we haven't been given a
6021		 * valid mailbox or the RESET command failed, fall back to
6022		 * hitting the chip with a hammer.
6023		 */
6024		if (mbox <= PCIE_FW_MASTER_M) {
6025			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6026			msleep(100);
6027			if (t4_fw_reset(adap, mbox,
6028					PIORST_F | PIORSTMODE_F) == 0)
6029				return 0;
6030		}
6031
6032		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6033		msleep(2000);
6034	} else {
6035		int ms;
6036
6037		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6038		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6039			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6040				return 0;
6041			msleep(100);
6042			ms += 100;
6043		}
6044		return -ETIMEDOUT;
6045	}
6046	return 0;
6047}
6048
6049/**
6050 *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6051 *	@adap: the adapter
6052 *	@mbox: mailbox to use for the FW RESET command (if desired)
6053 *	@fw_data: the firmware image to write
6054 *	@size: image size
6055 *	@force: force upgrade even if firmware doesn't cooperate
6056 *
6057 *	Perform all of the steps necessary for upgrading an adapter's
6058 *	firmware image.  Normally this requires the cooperation of the
6059 *	existing firmware in order to halt all existing activities
6060 *	but if an invalid mailbox token is passed in we skip that step
6061 *	(though we'll still put the adapter microprocessor into RESET in
6062 *	that case).
6063 *
6064 *	On successful return the new firmware will have been loaded and
6065 *	the adapter will have been fully RESET losing all previous setup
6066 *	state.  On unsuccessful return the adapter may be completely hosed ...
6067 *	positive errno indicates that the adapter is ~probably~ intact, a
6068 *	negative errno indicates that things are looking bad ...
6069 */
6070int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6071		  const u8 *fw_data, unsigned int size, int force)
6072{
6073	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6074	int reset, ret;
6075
6076	if (!t4_fw_matches_chip(adap, fw_hdr))
6077		return -EINVAL;
6078
6079	ret = t4_fw_halt(adap, mbox, force);
6080	if (ret < 0 && !force)
6081		return ret;
6082
6083	ret = t4_load_fw(adap, fw_data, size);
6084	if (ret < 0)
6085		return ret;
6086
6087	/*
6088	 * Older versions of the firmware don't understand the new
6089	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6090	 * restart.  So for newly loaded older firmware we'll have to do the
6091	 * RESET for it so it starts up on a clean slate.  We can tell if
6092	 * the newly loaded firmware will handle this right by checking
6093	 * its header flags to see if it advertises the capability.
6094	 */
6095	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6096	return t4_fw_restart(adap, mbox, reset);
6097}
6098
6099/**
6100 *	t4_fixup_host_params - fix up host-dependent parameters
6101 *	@adap: the adapter
6102 *	@page_size: the host's Base Page Size
6103 *	@cache_line_size: the host's Cache Line Size
6104 *
6105 *	Various registers in T4 contain values which are dependent on the
6106 *	host's Base Page and Cache Line Sizes.  This function will fix all of
6107 *	those registers with the appropriate values as passed in ...
6108 */
6109int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6110			 unsigned int cache_line_size)
6111{
6112	unsigned int page_shift = fls(page_size) - 1;
6113	unsigned int sge_hps = page_shift - 10;
6114	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6115	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6116	unsigned int fl_align_log = fls(fl_align) - 1;
6117
6118	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6119		     HOSTPAGESIZEPF0_V(sge_hps) |
6120		     HOSTPAGESIZEPF1_V(sge_hps) |
6121		     HOSTPAGESIZEPF2_V(sge_hps) |
6122		     HOSTPAGESIZEPF3_V(sge_hps) |
6123		     HOSTPAGESIZEPF4_V(sge_hps) |
6124		     HOSTPAGESIZEPF5_V(sge_hps) |
6125		     HOSTPAGESIZEPF6_V(sge_hps) |
6126		     HOSTPAGESIZEPF7_V(sge_hps));
6127
6128	if (is_t4(adap->params.chip)) {
6129		t4_set_reg_field(adap, SGE_CONTROL_A,
6130				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6131				 EGRSTATUSPAGESIZE_F,
6132				 INGPADBOUNDARY_V(fl_align_log -
6133						  INGPADBOUNDARY_SHIFT_X) |
6134				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6135	} else {
6136		/* T5 introduced the separation of the Free List Padding and
6137		 * Packing Boundaries.  Thus, we can select a smaller Padding
6138		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6139		 * Bandwidth, and use a Packing Boundary which is large enough
6140		 * to avoid false sharing between CPUs, etc.
6141		 *
6142		 * For the PCI Link, the smaller the Padding Boundary the
6143		 * better.  For the Memory Controller, a smaller Padding
6144		 * Boundary is better until we cross under the Memory Line
6145		 * Size (the minimum unit of transfer to/from Memory).  If we
6146		 * have a Padding Boundary which is smaller than the Memory
6147		 * Line Size, that'll involve a Read-Modify-Write cycle on the
6148		 * Memory Controller which is never good.  For T5 the smallest
6149		 * Padding Boundary which we can select is 32 bytes which is
6150		 * larger than any known Memory Controller Line Size so we'll
6151		 * use that.
6152		 *
6153		 * T5 has a different interpretation of the "0" value for the
6154		 * Packing Boundary.  This corresponds to 16 bytes instead of
6155		 * the expected 32 bytes.  We never have a Packing Boundary
6156		 * less than 32 bytes so we can't use that special value but
6157		 * on the other hand, if we wanted 32 bytes, the best we can
6158		 * really do is 64 bytes.
6159		*/
6160		if (fl_align <= 32) {
6161			fl_align = 64;
6162			fl_align_log = 6;
6163		}
6164		t4_set_reg_field(adap, SGE_CONTROL_A,
6165				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6166				 EGRSTATUSPAGESIZE_F,
6167				 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
6168				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6169		t4_set_reg_field(adap, SGE_CONTROL2_A,
6170				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6171				 INGPACKBOUNDARY_V(fl_align_log -
6172						   INGPACKBOUNDARY_SHIFT_X));
6173	}
6174	/*
6175	 * Adjust various SGE Free List Host Buffer Sizes.
6176	 *
6177	 * This is something of a crock since we're using fixed indices into
6178	 * the array which are also known by the sge.c code and the T4
6179	 * Firmware Configuration File.  We need to come up with a much better
6180	 * approach to managing this array.  For now, the first four entries
6181	 * are:
6182	 *
6183	 *   0: Host Page Size
6184	 *   1: 64KB
6185	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6186	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6187	 *
6188	 * For the single-MTU buffers in unpacked mode we need to include
6189	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6190	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6191	 * Padding boundary.  All of these are accommodated in the Factory
6192	 * Default Firmware Configuration File but we need to adjust it for
6193	 * this host's cache line size.
6194	 */
6195	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6196	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6197		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6198		     & ~(fl_align-1));
6199	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6200		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6201		     & ~(fl_align-1));
6202
6203	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6204
6205	return 0;
6206}
6207
6208/**
6209 *	t4_fw_initialize - ask FW to initialize the device
6210 *	@adap: the adapter
6211 *	@mbox: mailbox to use for the FW command
6212 *
6213 *	Issues a command to FW to partially initialize the device.  This
6214 *	performs initialization that generally doesn't depend on user input.
6215 */
6216int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6217{
6218	struct fw_initialize_cmd c;
6219
6220	memset(&c, 0, sizeof(c));
6221	INIT_CMD(c, INITIALIZE, WRITE);
6222	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6223}
6224
6225/**
6226 *	t4_query_params_rw - query FW or device parameters
6227 *	@adap: the adapter
6228 *	@mbox: mailbox to use for the FW command
6229 *	@pf: the PF
6230 *	@vf: the VF
6231 *	@nparams: the number of parameters
6232 *	@params: the parameter names
6233 *	@val: the parameter values
6234 *	@rw: Write and read flag
6235 *
6236 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6237 *	queried at once.
6238 */
6239int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6240		       unsigned int vf, unsigned int nparams, const u32 *params,
6241		       u32 *val, int rw)
6242{
6243	int i, ret;
6244	struct fw_params_cmd c;
6245	__be32 *p = &c.param[0].mnem;
6246
6247	if (nparams > 7)
6248		return -EINVAL;
6249
6250	memset(&c, 0, sizeof(c));
6251	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6252				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
6253				  FW_PARAMS_CMD_PFN_V(pf) |
6254				  FW_PARAMS_CMD_VFN_V(vf));
6255	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6256
6257	for (i = 0; i < nparams; i++) {
6258		*p++ = cpu_to_be32(*params++);
6259		if (rw)
6260			*p = cpu_to_be32(*(val + i));
6261		p++;
6262	}
6263
6264	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6265	if (ret == 0)
6266		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6267			*val++ = be32_to_cpu(*p);
6268	return ret;
6269}
6270
6271int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6272		    unsigned int vf, unsigned int nparams, const u32 *params,
6273		    u32 *val)
6274{
6275	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6276}
6277
6278/**
6279 *      t4_set_params_timeout - sets FW or device parameters
6280 *      @adap: the adapter
6281 *      @mbox: mailbox to use for the FW command
6282 *      @pf: the PF
6283 *      @vf: the VF
6284 *      @nparams: the number of parameters
6285 *      @params: the parameter names
6286 *      @val: the parameter values
6287 *      @timeout: the timeout time
6288 *
6289 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6290 *      specified at once.
6291 */
6292int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6293			  unsigned int pf, unsigned int vf,
6294			  unsigned int nparams, const u32 *params,
6295			  const u32 *val, int timeout)
6296{
6297	struct fw_params_cmd c;
6298	__be32 *p = &c.param[0].mnem;
6299
6300	if (nparams > 7)
6301		return -EINVAL;
6302
6303	memset(&c, 0, sizeof(c));
6304	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6305				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6306				  FW_PARAMS_CMD_PFN_V(pf) |
6307				  FW_PARAMS_CMD_VFN_V(vf));
6308	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6309
6310	while (nparams--) {
6311		*p++ = cpu_to_be32(*params++);
6312		*p++ = cpu_to_be32(*val++);
6313	}
6314
6315	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6316}
6317
6318/**
6319 *	t4_set_params - sets FW or device parameters
6320 *	@adap: the adapter
6321 *	@mbox: mailbox to use for the FW command
6322 *	@pf: the PF
6323 *	@vf: the VF
6324 *	@nparams: the number of parameters
6325 *	@params: the parameter names
6326 *	@val: the parameter values
6327 *
6328 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6329 *	specified at once.
6330 */
6331int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6332		  unsigned int vf, unsigned int nparams, const u32 *params,
6333		  const u32 *val)
6334{
6335	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6336				     FW_CMD_MAX_TIMEOUT);
6337}
6338
6339/**
6340 *	t4_cfg_pfvf - configure PF/VF resource limits
6341 *	@adap: the adapter
6342 *	@mbox: mailbox to use for the FW command
6343 *	@pf: the PF being configured
6344 *	@vf: the VF being configured
6345 *	@txq: the max number of egress queues
6346 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6347 *	@rxqi: the max number of interrupt-capable ingress queues
6348 *	@rxq: the max number of interruptless ingress queues
6349 *	@tc: the PCI traffic class
6350 *	@vi: the max number of virtual interfaces
6351 *	@cmask: the channel access rights mask for the PF/VF
6352 *	@pmask: the port access rights mask for the PF/VF
6353 *	@nexact: the maximum number of exact MPS filters
6354 *	@rcaps: read capabilities
6355 *	@wxcaps: write/execute capabilities
6356 *
6357 *	Configures resource limits and capabilities for a physical or virtual
6358 *	function.
6359 */
6360int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6361		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6362		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6363		unsigned int vi, unsigned int cmask, unsigned int pmask,
6364		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6365{
6366	struct fw_pfvf_cmd c;
6367
6368	memset(&c, 0, sizeof(c));
6369	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6370				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6371				  FW_PFVF_CMD_VFN_V(vf));
6372	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6373	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6374				     FW_PFVF_CMD_NIQ_V(rxq));
6375	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6376				    FW_PFVF_CMD_PMASK_V(pmask) |
6377				    FW_PFVF_CMD_NEQ_V(txq));
6378	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6379				      FW_PFVF_CMD_NVI_V(vi) |
6380				      FW_PFVF_CMD_NEXACTF_V(nexact));
6381	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6382					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6383					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6384	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6385}
6386
6387/**
6388 *	t4_alloc_vi - allocate a virtual interface
6389 *	@adap: the adapter
6390 *	@mbox: mailbox to use for the FW command
6391 *	@port: physical port associated with the VI
6392 *	@pf: the PF owning the VI
6393 *	@vf: the VF owning the VI
6394 *	@nmac: number of MAC addresses needed (1 to 5)
6395 *	@mac: the MAC addresses of the VI
6396 *	@rss_size: size of RSS table slice associated with this VI
6397 *
6398 *	Allocates a virtual interface for the given physical port.  If @mac is
6399 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6400 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6401 *	stored consecutively so the space needed is @nmac * 6 bytes.
6402 *	Returns a negative error number or the non-negative VI id.
6403 */
6404int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6405		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6406		unsigned int *rss_size)
6407{
6408	int ret;
6409	struct fw_vi_cmd c;
6410
6411	memset(&c, 0, sizeof(c));
6412	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6413				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6414				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6415	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6416	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6417	c.nmac = nmac - 1;
6418
6419	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6420	if (ret)
6421		return ret;
6422
6423	if (mac) {
6424		memcpy(mac, c.mac, sizeof(c.mac));
6425		switch (nmac) {
6426		case 5:
6427			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6428		case 4:
6429			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6430		case 3:
6431			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6432		case 2:
6433			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6434		}
6435	}
6436	if (rss_size)
6437		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6438	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6439}
6440
6441/**
6442 *	t4_free_vi - free a virtual interface
6443 *	@adap: the adapter
6444 *	@mbox: mailbox to use for the FW command
6445 *	@pf: the PF owning the VI
6446 *	@vf: the VF owning the VI
6447 *	@viid: virtual interface identifiler
6448 *
6449 *	Free a previously allocated virtual interface.
6450 */
6451int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6452	       unsigned int vf, unsigned int viid)
6453{
6454	struct fw_vi_cmd c;
6455
6456	memset(&c, 0, sizeof(c));
6457	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6458				  FW_CMD_REQUEST_F |
6459				  FW_CMD_EXEC_F |
6460				  FW_VI_CMD_PFN_V(pf) |
6461				  FW_VI_CMD_VFN_V(vf));
6462	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6463	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6464
6465	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6466}
6467
6468/**
6469 *	t4_set_rxmode - set Rx properties of a virtual interface
6470 *	@adap: the adapter
6471 *	@mbox: mailbox to use for the FW command
6472 *	@viid: the VI id
6473 *	@mtu: the new MTU or -1
6474 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6475 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6476 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6477 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6478 *	@sleep_ok: if true we may sleep while awaiting command completion
6479 *
6480 *	Sets Rx properties of a virtual interface.
6481 */
6482int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6483		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
6484		  bool sleep_ok)
6485{
6486	struct fw_vi_rxmode_cmd c;
6487
6488	/* convert to FW values */
6489	if (mtu < 0)
6490		mtu = FW_RXMODE_MTU_NO_CHG;
6491	if (promisc < 0)
6492		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6493	if (all_multi < 0)
6494		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6495	if (bcast < 0)
6496		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6497	if (vlanex < 0)
6498		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6499
6500	memset(&c, 0, sizeof(c));
6501	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6502				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6503				   FW_VI_RXMODE_CMD_VIID_V(viid));
6504	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6505	c.mtu_to_vlanexen =
6506		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6507			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6508			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6509			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6510			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6511	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6512}
6513
6514/**
6515 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6516 *	@adap: the adapter
6517 *	@mbox: mailbox to use for the FW command
6518 *	@viid: the VI id
6519 *	@free: if true any existing filters for this VI id are first removed
6520 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6521 *	@addr: the MAC address(es)
6522 *	@idx: where to store the index of each allocated filter
6523 *	@hash: pointer to hash address filter bitmap
6524 *	@sleep_ok: call is allowed to sleep
6525 *
6526 *	Allocates an exact-match filter for each of the supplied addresses and
6527 *	sets it to the corresponding address.  If @idx is not %NULL it should
6528 *	have at least @naddr entries, each of which will be set to the index of
6529 *	the filter allocated for the corresponding MAC address.  If a filter
6530 *	could not be allocated for an address its index is set to 0xffff.
6531 *	If @hash is not %NULL addresses that fail to allocate an exact filter
6532 *	are hashed and update the hash filter bitmap pointed at by @hash.
6533 *
6534 *	Returns a negative error number or the number of filters allocated.
6535 */
6536int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6537		      unsigned int viid, bool free, unsigned int naddr,
6538		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6539{
6540	int offset, ret = 0;
6541	struct fw_vi_mac_cmd c;
6542	unsigned int nfilters = 0;
6543	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6544	unsigned int rem = naddr;
6545
6546	if (naddr > max_naddr)
6547		return -EINVAL;
6548
6549	for (offset = 0; offset < naddr ; /**/) {
6550		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6551					 rem : ARRAY_SIZE(c.u.exact));
6552		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6553						     u.exact[fw_naddr]), 16);
6554		struct fw_vi_mac_exact *p;
6555		int i;
6556
6557		memset(&c, 0, sizeof(c));
6558		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6559					   FW_CMD_REQUEST_F |
6560					   FW_CMD_WRITE_F |
6561					   FW_CMD_EXEC_V(free) |
6562					   FW_VI_MAC_CMD_VIID_V(viid));
6563		c.freemacs_to_len16 =
6564			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6565				    FW_CMD_LEN16_V(len16));
6566
6567		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6568			p->valid_to_idx =
6569				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6570					    FW_VI_MAC_CMD_IDX_V(
6571						    FW_VI_MAC_ADD_MAC));
6572			memcpy(p->macaddr, addr[offset + i],
6573			       sizeof(p->macaddr));
6574		}
6575
6576		/* It's okay if we run out of space in our MAC address arena.
6577		 * Some of the addresses we submit may get stored so we need
6578		 * to run through the reply to see what the results were ...
6579		 */
6580		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6581		if (ret && ret != -FW_ENOMEM)
6582			break;
6583
6584		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6585			u16 index = FW_VI_MAC_CMD_IDX_G(
6586					be16_to_cpu(p->valid_to_idx));
6587
6588			if (idx)
6589				idx[offset + i] = (index >= max_naddr ?
6590						   0xffff : index);
6591			if (index < max_naddr)
6592				nfilters++;
6593			else if (hash)
6594				*hash |= (1ULL <<
6595					  hash_mac_addr(addr[offset + i]));
6596		}
6597
6598		free = false;
6599		offset += fw_naddr;
6600		rem -= fw_naddr;
6601	}
6602
6603	if (ret == 0 || ret == -FW_ENOMEM)
6604		ret = nfilters;
6605	return ret;
6606}
6607
6608/**
6609 *	t4_change_mac - modifies the exact-match filter for a MAC address
6610 *	@adap: the adapter
6611 *	@mbox: mailbox to use for the FW command
6612 *	@viid: the VI id
6613 *	@idx: index of existing filter for old value of MAC address, or -1
6614 *	@addr: the new MAC address value
6615 *	@persist: whether a new MAC allocation should be persistent
6616 *	@add_smt: if true also add the address to the HW SMT
6617 *
6618 *	Modifies an exact-match filter and sets it to the new MAC address.
6619 *	Note that in general it is not possible to modify the value of a given
6620 *	filter so the generic way to modify an address filter is to free the one
6621 *	being used by the old address value and allocate a new filter for the
6622 *	new address value.  @idx can be -1 if the address is a new addition.
6623 *
6624 *	Returns a negative error number or the index of the filter with the new
6625 *	MAC value.
6626 */
6627int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6628		  int idx, const u8 *addr, bool persist, bool add_smt)
6629{
6630	int ret, mode;
6631	struct fw_vi_mac_cmd c;
6632	struct fw_vi_mac_exact *p = c.u.exact;
6633	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6634
6635	if (idx < 0)                             /* new allocation */
6636		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6637	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6638
6639	memset(&c, 0, sizeof(c));
6640	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6641				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6642				   FW_VI_MAC_CMD_VIID_V(viid));
6643	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6644	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6645				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6646				      FW_VI_MAC_CMD_IDX_V(idx));
6647	memcpy(p->macaddr, addr, sizeof(p->macaddr));
6648
6649	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6650	if (ret == 0) {
6651		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6652		if (ret >= max_mac_addr)
6653			ret = -ENOMEM;
6654	}
6655	return ret;
6656}
6657
6658/**
6659 *	t4_set_addr_hash - program the MAC inexact-match hash filter
6660 *	@adap: the adapter
6661 *	@mbox: mailbox to use for the FW command
6662 *	@viid: the VI id
6663 *	@ucast: whether the hash filter should also match unicast addresses
6664 *	@vec: the value to be written to the hash filter
6665 *	@sleep_ok: call is allowed to sleep
6666 *
6667 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
6668 */
6669int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6670		     bool ucast, u64 vec, bool sleep_ok)
6671{
6672	struct fw_vi_mac_cmd c;
6673
6674	memset(&c, 0, sizeof(c));
6675	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6676				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6677				   FW_VI_ENABLE_CMD_VIID_V(viid));
6678	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6679					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6680					  FW_CMD_LEN16_V(1));
6681	c.u.hash.hashvec = cpu_to_be64(vec);
6682	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6683}
6684
6685/**
6686 *      t4_enable_vi_params - enable/disable a virtual interface
6687 *      @adap: the adapter
6688 *      @mbox: mailbox to use for the FW command
6689 *      @viid: the VI id
6690 *      @rx_en: 1=enable Rx, 0=disable Rx
6691 *      @tx_en: 1=enable Tx, 0=disable Tx
6692 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
6693 *
6694 *      Enables/disables a virtual interface.  Note that setting DCB Enable
6695 *      only makes sense when enabling a Virtual Interface ...
6696 */
6697int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6698			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6699{
6700	struct fw_vi_enable_cmd c;
6701
6702	memset(&c, 0, sizeof(c));
6703	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6704				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6705				   FW_VI_ENABLE_CMD_VIID_V(viid));
6706	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6707				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6708				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6709				     FW_LEN16(c));
6710	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6711}
6712
6713/**
6714 *	t4_enable_vi - enable/disable a virtual interface
6715 *	@adap: the adapter
6716 *	@mbox: mailbox to use for the FW command
6717 *	@viid: the VI id
6718 *	@rx_en: 1=enable Rx, 0=disable Rx
6719 *	@tx_en: 1=enable Tx, 0=disable Tx
6720 *
6721 *	Enables/disables a virtual interface.
6722 */
6723int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6724		 bool rx_en, bool tx_en)
6725{
6726	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6727}
6728
6729/**
6730 *	t4_identify_port - identify a VI's port by blinking its LED
6731 *	@adap: the adapter
6732 *	@mbox: mailbox to use for the FW command
6733 *	@viid: the VI id
6734 *	@nblinks: how many times to blink LED at 2.5 Hz
6735 *
6736 *	Identifies a VI's port by blinking its LED.
6737 */
6738int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6739		     unsigned int nblinks)
6740{
6741	struct fw_vi_enable_cmd c;
6742
6743	memset(&c, 0, sizeof(c));
6744	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6745				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6746				   FW_VI_ENABLE_CMD_VIID_V(viid));
6747	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
6748	c.blinkdur = cpu_to_be16(nblinks);
6749	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6750}
6751
6752/**
6753 *	t4_iq_free - free an ingress queue and its FLs
6754 *	@adap: the adapter
6755 *	@mbox: mailbox to use for the FW command
6756 *	@pf: the PF owning the queues
6757 *	@vf: the VF owning the queues
6758 *	@iqtype: the ingress queue type
6759 *	@iqid: ingress queue id
6760 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
6761 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
6762 *
6763 *	Frees an ingress queue and its associated FLs, if any.
6764 */
6765int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6766	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
6767	       unsigned int fl0id, unsigned int fl1id)
6768{
6769	struct fw_iq_cmd c;
6770
6771	memset(&c, 0, sizeof(c));
6772	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
6773				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
6774				  FW_IQ_CMD_VFN_V(vf));
6775	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
6776	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
6777	c.iqid = cpu_to_be16(iqid);
6778	c.fl0id = cpu_to_be16(fl0id);
6779	c.fl1id = cpu_to_be16(fl1id);
6780	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6781}
6782
6783/**
6784 *	t4_eth_eq_free - free an Ethernet egress queue
6785 *	@adap: the adapter
6786 *	@mbox: mailbox to use for the FW command
6787 *	@pf: the PF owning the queue
6788 *	@vf: the VF owning the queue
6789 *	@eqid: egress queue id
6790 *
6791 *	Frees an Ethernet egress queue.
6792 */
6793int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6794		   unsigned int vf, unsigned int eqid)
6795{
6796	struct fw_eq_eth_cmd c;
6797
6798	memset(&c, 0, sizeof(c));
6799	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
6800				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6801				  FW_EQ_ETH_CMD_PFN_V(pf) |
6802				  FW_EQ_ETH_CMD_VFN_V(vf));
6803	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
6804	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
6805	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6806}
6807
6808/**
6809 *	t4_ctrl_eq_free - free a control egress queue
6810 *	@adap: the adapter
6811 *	@mbox: mailbox to use for the FW command
6812 *	@pf: the PF owning the queue
6813 *	@vf: the VF owning the queue
6814 *	@eqid: egress queue id
6815 *
6816 *	Frees a control egress queue.
6817 */
6818int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6819		    unsigned int vf, unsigned int eqid)
6820{
6821	struct fw_eq_ctrl_cmd c;
6822
6823	memset(&c, 0, sizeof(c));
6824	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
6825				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6826				  FW_EQ_CTRL_CMD_PFN_V(pf) |
6827				  FW_EQ_CTRL_CMD_VFN_V(vf));
6828	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
6829	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
6830	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6831}
6832
6833/**
6834 *	t4_ofld_eq_free - free an offload egress queue
6835 *	@adap: the adapter
6836 *	@mbox: mailbox to use for the FW command
6837 *	@pf: the PF owning the queue
6838 *	@vf: the VF owning the queue
6839 *	@eqid: egress queue id
6840 *
6841 *	Frees a control egress queue.
6842 */
6843int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6844		    unsigned int vf, unsigned int eqid)
6845{
6846	struct fw_eq_ofld_cmd c;
6847
6848	memset(&c, 0, sizeof(c));
6849	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
6850				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6851				  FW_EQ_OFLD_CMD_PFN_V(pf) |
6852				  FW_EQ_OFLD_CMD_VFN_V(vf));
6853	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
6854	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
6855	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6856}
6857
6858/**
6859 *	t4_handle_fw_rpl - process a FW reply message
6860 *	@adap: the adapter
6861 *	@rpl: start of the FW message
6862 *
6863 *	Processes a FW message, such as link state change messages.
6864 */
6865int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
6866{
6867	u8 opcode = *(const u8 *)rpl;
6868
6869	if (opcode == FW_PORT_CMD) {    /* link/module state change message */
6870		int speed = 0, fc = 0;
6871		const struct fw_port_cmd *p = (void *)rpl;
6872		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
6873		int port = adap->chan_map[chan];
6874		struct port_info *pi = adap2pinfo(adap, port);
6875		struct link_config *lc = &pi->link_cfg;
6876		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
6877		int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
6878		u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
6879
6880		if (stat & FW_PORT_CMD_RXPAUSE_F)
6881			fc |= PAUSE_RX;
6882		if (stat & FW_PORT_CMD_TXPAUSE_F)
6883			fc |= PAUSE_TX;
6884		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
6885			speed = 100;
6886		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
6887			speed = 1000;
6888		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
6889			speed = 10000;
6890		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
6891			speed = 40000;
6892
6893		if (link_ok != lc->link_ok || speed != lc->speed ||
6894		    fc != lc->fc) {                    /* something changed */
6895			lc->link_ok = link_ok;
6896			lc->speed = speed;
6897			lc->fc = fc;
6898			lc->supported = be16_to_cpu(p->u.info.pcap);
6899			t4_os_link_changed(adap, port, link_ok);
6900		}
6901		if (mod != pi->mod_type) {
6902			pi->mod_type = mod;
6903			t4_os_portmod_changed(adap, port);
6904		}
6905	}
6906	return 0;
6907}
6908
6909static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
6910{
6911	u16 val;
6912
6913	if (pci_is_pcie(adapter->pdev)) {
6914		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
6915		p->speed = val & PCI_EXP_LNKSTA_CLS;
6916		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
6917	}
6918}
6919
6920/**
6921 *	init_link_config - initialize a link's SW state
6922 *	@lc: structure holding the link state
6923 *	@caps: link capabilities
6924 *
6925 *	Initializes the SW state maintained for each link, including the link's
6926 *	capabilities and default speed/flow-control/autonegotiation settings.
6927 */
6928static void init_link_config(struct link_config *lc, unsigned int caps)
6929{
6930	lc->supported = caps;
6931	lc->requested_speed = 0;
6932	lc->speed = 0;
6933	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
6934	if (lc->supported & FW_PORT_CAP_ANEG) {
6935		lc->advertising = lc->supported & ADVERT_MASK;
6936		lc->autoneg = AUTONEG_ENABLE;
6937		lc->requested_fc |= PAUSE_AUTONEG;
6938	} else {
6939		lc->advertising = 0;
6940		lc->autoneg = AUTONEG_DISABLE;
6941	}
6942}
6943
6944#define CIM_PF_NOACCESS 0xeeeeeeee
6945
6946int t4_wait_dev_ready(void __iomem *regs)
6947{
6948	u32 whoami;
6949
6950	whoami = readl(regs + PL_WHOAMI_A);
6951	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
6952		return 0;
6953
6954	msleep(500);
6955	whoami = readl(regs + PL_WHOAMI_A);
6956	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
6957}
6958
6959struct flash_desc {
6960	u32 vendor_and_model_id;
6961	u32 size_mb;
6962};
6963
6964static int get_flash_params(struct adapter *adap)
6965{
6966	/* Table for non-Numonix supported flash parts.  Numonix parts are left
6967	 * to the preexisting code.  All flash parts have 64KB sectors.
6968	 */
6969	static struct flash_desc supported_flash[] = {
6970		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
6971	};
6972
6973	int ret;
6974	u32 info;
6975
6976	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
6977	if (!ret)
6978		ret = sf1_read(adap, 3, 0, 1, &info);
6979	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
6980	if (ret)
6981		return ret;
6982
6983	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
6984		if (supported_flash[ret].vendor_and_model_id == info) {
6985			adap->params.sf_size = supported_flash[ret].size_mb;
6986			adap->params.sf_nsec =
6987				adap->params.sf_size / SF_SEC_SIZE;
6988			return 0;
6989		}
6990
6991	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
6992		return -EINVAL;
6993	info >>= 16;                           /* log2 of size */
6994	if (info >= 0x14 && info < 0x18)
6995		adap->params.sf_nsec = 1 << (info - 16);
6996	else if (info == 0x18)
6997		adap->params.sf_nsec = 64;
6998	else
6999		return -EINVAL;
7000	adap->params.sf_size = 1 << info;
7001	adap->params.sf_fw_start =
7002		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7003
7004	if (adap->params.sf_size < FLASH_MIN_SIZE)
7005		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7006			 adap->params.sf_size, FLASH_MIN_SIZE);
7007	return 0;
7008}
7009
7010static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7011{
7012	u16 val;
7013	u32 pcie_cap;
7014
7015	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7016	if (pcie_cap) {
7017		pci_read_config_word(adapter->pdev,
7018				     pcie_cap + PCI_EXP_DEVCTL2, &val);
7019		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7020		val |= range;
7021		pci_write_config_word(adapter->pdev,
7022				      pcie_cap + PCI_EXP_DEVCTL2, val);
7023	}
7024}
7025
7026/**
7027 *	t4_prep_adapter - prepare SW and HW for operation
7028 *	@adapter: the adapter
7029 *	@reset: if true perform a HW reset
7030 *
7031 *	Initialize adapter SW state for the various HW modules, set initial
7032 *	values for some adapter tunables, take PHYs out of reset, and
7033 *	initialize the MDIO interface.
7034 */
7035int t4_prep_adapter(struct adapter *adapter)
7036{
7037	int ret, ver;
7038	uint16_t device_id;
7039	u32 pl_rev;
7040
7041	get_pci_mode(adapter, &adapter->params.pci);
7042	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7043
7044	ret = get_flash_params(adapter);
7045	if (ret < 0) {
7046		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7047		return ret;
7048	}
7049
7050	/* Retrieve adapter's device ID
7051	 */
7052	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7053	ver = device_id >> 12;
7054	adapter->params.chip = 0;
7055	switch (ver) {
7056	case CHELSIO_T4:
7057		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7058		adapter->params.arch.sge_fl_db = DBPRIO_F;
7059		adapter->params.arch.mps_tcam_size =
7060				 NUM_MPS_CLS_SRAM_L_INSTANCES;
7061		adapter->params.arch.mps_rplc_size = 128;
7062		adapter->params.arch.nchan = NCHAN;
7063		adapter->params.arch.vfcount = 128;
7064		break;
7065	case CHELSIO_T5:
7066		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7067		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7068		adapter->params.arch.mps_tcam_size =
7069				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7070		adapter->params.arch.mps_rplc_size = 128;
7071		adapter->params.arch.nchan = NCHAN;
7072		adapter->params.arch.vfcount = 128;
7073		break;
7074	case CHELSIO_T6:
7075		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7076		adapter->params.arch.sge_fl_db = 0;
7077		adapter->params.arch.mps_tcam_size =
7078				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7079		adapter->params.arch.mps_rplc_size = 256;
7080		adapter->params.arch.nchan = 2;
7081		adapter->params.arch.vfcount = 256;
7082		break;
7083	default:
7084		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7085			device_id);
7086		return -EINVAL;
7087	}
7088
7089	adapter->params.cim_la_size = CIMLA_SIZE;
7090	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7091
7092	/*
7093	 * Default port for debugging in case we can't reach FW.
7094	 */
7095	adapter->params.nports = 1;
7096	adapter->params.portvec = 1;
7097	adapter->params.vpd.cclk = 50000;
7098
7099	/* Set pci completion timeout value to 4 seconds. */
7100	set_pcie_completion_timeout(adapter, 0xd);
7101	return 0;
7102}
7103
7104/**
7105 *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7106 *	@adapter: the adapter
7107 *	@qid: the Queue ID
7108 *	@qtype: the Ingress or Egress type for @qid
7109 *	@user: true if this request is for a user mode queue
7110 *	@pbar2_qoffset: BAR2 Queue Offset
7111 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7112 *
7113 *	Returns the BAR2 SGE Queue Registers information associated with the
7114 *	indicated Absolute Queue ID.  These are passed back in return value
7115 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7116 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7117 *
7118 *	This may return an error which indicates that BAR2 SGE Queue
7119 *	registers aren't available.  If an error is not returned, then the
7120 *	following values are returned:
7121 *
7122 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7123 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7124 *
7125 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7126 *	require the "Inferred Queue ID" ability may be used.  E.g. the
7127 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7128 *	then these "Inferred Queue ID" register may not be used.
7129 */
7130int t4_bar2_sge_qregs(struct adapter *adapter,
7131		      unsigned int qid,
7132		      enum t4_bar2_qtype qtype,
7133		      int user,
7134		      u64 *pbar2_qoffset,
7135		      unsigned int *pbar2_qid)
7136{
7137	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7138	u64 bar2_page_offset, bar2_qoffset;
7139	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7140
7141	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7142	if (!user && is_t4(adapter->params.chip))
7143		return -EINVAL;
7144
7145	/* Get our SGE Page Size parameters.
7146	 */
7147	page_shift = adapter->params.sge.hps + 10;
7148	page_size = 1 << page_shift;
7149
7150	/* Get the right Queues per Page parameters for our Queue.
7151	 */
7152	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7153		     ? adapter->params.sge.eq_qpp
7154		     : adapter->params.sge.iq_qpp);
7155	qpp_mask = (1 << qpp_shift) - 1;
7156
7157	/*  Calculate the basics of the BAR2 SGE Queue register area:
7158	 *  o The BAR2 page the Queue registers will be in.
7159	 *  o The BAR2 Queue ID.
7160	 *  o The BAR2 Queue ID Offset into the BAR2 page.
7161	 */
7162	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7163	bar2_qid = qid & qpp_mask;
7164	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7165
7166	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
7167	 * hardware will infer the Absolute Queue ID simply from the writes to
7168	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7169	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7170	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7171	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7172	 * from the BAR2 Page and BAR2 Queue ID.
7173	 *
7174	 * One important censequence of this is that some BAR2 SGE registers
7175	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7176	 * there.  But other registers synthesize the SGE Queue ID purely
7177	 * from the writes to the registers -- the Write Combined Doorbell
7178	 * Buffer is a good example.  These BAR2 SGE Registers are only
7179	 * available for those BAR2 SGE Register areas where the SGE Absolute
7180	 * Queue ID can be inferred from simple writes.
7181	 */
7182	bar2_qoffset = bar2_page_offset;
7183	bar2_qinferred = (bar2_qid_offset < page_size);
7184	if (bar2_qinferred) {
7185		bar2_qoffset += bar2_qid_offset;
7186		bar2_qid = 0;
7187	}
7188
7189	*pbar2_qoffset = bar2_qoffset;
7190	*pbar2_qid = bar2_qid;
7191	return 0;
7192}
7193
7194/**
7195 *	t4_init_devlog_params - initialize adapter->params.devlog
7196 *	@adap: the adapter
7197 *
7198 *	Initialize various fields of the adapter's Firmware Device Log
7199 *	Parameters structure.
7200 */
7201int t4_init_devlog_params(struct adapter *adap)
7202{
7203	struct devlog_params *dparams = &adap->params.devlog;
7204	u32 pf_dparams;
7205	unsigned int devlog_meminfo;
7206	struct fw_devlog_cmd devlog_cmd;
7207	int ret;
7208
7209	/* If we're dealing with newer firmware, the Device Log Paramerters
7210	 * are stored in a designated register which allows us to access the
7211	 * Device Log even if we can't talk to the firmware.
7212	 */
7213	pf_dparams =
7214		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7215	if (pf_dparams) {
7216		unsigned int nentries, nentries128;
7217
7218		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7219		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7220
7221		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7222		nentries = (nentries128 + 1) * 128;
7223		dparams->size = nentries * sizeof(struct fw_devlog_e);
7224
7225		return 0;
7226	}
7227
7228	/* Otherwise, ask the firmware for it's Device Log Parameters.
7229	 */
7230	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7231	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7232					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
7233	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7234	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7235			 &devlog_cmd);
7236	if (ret)
7237		return ret;
7238
7239	devlog_meminfo =
7240		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7241	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7242	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7243	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7244
7245	return 0;
7246}
7247
7248/**
7249 *	t4_init_sge_params - initialize adap->params.sge
7250 *	@adapter: the adapter
7251 *
7252 *	Initialize various fields of the adapter's SGE Parameters structure.
7253 */
7254int t4_init_sge_params(struct adapter *adapter)
7255{
7256	struct sge_params *sge_params = &adapter->params.sge;
7257	u32 hps, qpp;
7258	unsigned int s_hps, s_qpp;
7259
7260	/* Extract the SGE Page Size for our PF.
7261	 */
7262	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7263	s_hps = (HOSTPAGESIZEPF0_S +
7264		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7265	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7266
7267	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7268	 */
7269	s_qpp = (QUEUESPERPAGEPF0_S +
7270		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7271	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7272	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7273	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7274	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7275
7276	return 0;
7277}
7278
7279/**
7280 *      t4_init_tp_params - initialize adap->params.tp
7281 *      @adap: the adapter
7282 *
7283 *      Initialize various fields of the adapter's TP Parameters structure.
7284 */
7285int t4_init_tp_params(struct adapter *adap)
7286{
7287	int chan;
7288	u32 v;
7289
7290	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7291	adap->params.tp.tre = TIMERRESOLUTION_G(v);
7292	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7293
7294	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7295	for (chan = 0; chan < NCHAN; chan++)
7296		adap->params.tp.tx_modq[chan] = chan;
7297
7298	/* Cache the adapter's Compressed Filter Mode and global Incress
7299	 * Configuration.
7300	 */
7301	if (t4_use_ldst(adap)) {
7302		t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7303				TP_VLAN_PRI_MAP_A, 1);
7304		t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7305				TP_INGRESS_CONFIG_A, 1);
7306	} else {
7307		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7308				 &adap->params.tp.vlan_pri_map, 1,
7309				 TP_VLAN_PRI_MAP_A);
7310		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7311				 &adap->params.tp.ingress_config, 1,
7312				 TP_INGRESS_CONFIG_A);
7313	}
7314
7315	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7316	 * shift positions of several elements of the Compressed Filter Tuple
7317	 * for this adapter which we need frequently ...
7318	 */
7319	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7320	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7321	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7322	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7323							       PROTOCOL_F);
7324
7325	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7326	 * represents the presence of an Outer VLAN instead of a VNIC ID.
7327	 */
7328	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7329		adap->params.tp.vnic_shift = -1;
7330
7331	return 0;
7332}
7333
7334/**
7335 *      t4_filter_field_shift - calculate filter field shift
7336 *      @adap: the adapter
7337 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7338 *
7339 *      Return the shift position of a filter field within the Compressed
7340 *      Filter Tuple.  The filter field is specified via its selection bit
7341 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7342 */
7343int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7344{
7345	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7346	unsigned int sel;
7347	int field_shift;
7348
7349	if ((filter_mode & filter_sel) == 0)
7350		return -1;
7351
7352	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7353		switch (filter_mode & sel) {
7354		case FCOE_F:
7355			field_shift += FT_FCOE_W;
7356			break;
7357		case PORT_F:
7358			field_shift += FT_PORT_W;
7359			break;
7360		case VNIC_ID_F:
7361			field_shift += FT_VNIC_ID_W;
7362			break;
7363		case VLAN_F:
7364			field_shift += FT_VLAN_W;
7365			break;
7366		case TOS_F:
7367			field_shift += FT_TOS_W;
7368			break;
7369		case PROTOCOL_F:
7370			field_shift += FT_PROTOCOL_W;
7371			break;
7372		case ETHERTYPE_F:
7373			field_shift += FT_ETHERTYPE_W;
7374			break;
7375		case MACMATCH_F:
7376			field_shift += FT_MACMATCH_W;
7377			break;
7378		case MPSHITTYPE_F:
7379			field_shift += FT_MPSHITTYPE_W;
7380			break;
7381		case FRAGMENTATION_F:
7382			field_shift += FT_FRAGMENTATION_W;
7383			break;
7384		}
7385	}
7386	return field_shift;
7387}
7388
7389int t4_init_rss_mode(struct adapter *adap, int mbox)
7390{
7391	int i, ret;
7392	struct fw_rss_vi_config_cmd rvc;
7393
7394	memset(&rvc, 0, sizeof(rvc));
7395
7396	for_each_port(adap, i) {
7397		struct port_info *p = adap2pinfo(adap, i);
7398
7399		rvc.op_to_viid =
7400			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7401				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
7402				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7403		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7404		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7405		if (ret)
7406			return ret;
7407		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7408	}
7409	return 0;
7410}
7411
7412int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7413{
7414	u8 addr[6];
7415	int ret, i, j = 0;
7416	struct fw_port_cmd c;
7417	struct fw_rss_vi_config_cmd rvc;
7418
7419	memset(&c, 0, sizeof(c));
7420	memset(&rvc, 0, sizeof(rvc));
7421
7422	for_each_port(adap, i) {
7423		unsigned int rss_size;
7424		struct port_info *p = adap2pinfo(adap, i);
7425
7426		while ((adap->params.portvec & (1 << j)) == 0)
7427			j++;
7428
7429		c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7430					     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7431					     FW_PORT_CMD_PORTID_V(j));
7432		c.action_to_len16 = cpu_to_be32(
7433			FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7434			FW_LEN16(c));
7435		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7436		if (ret)
7437			return ret;
7438
7439		ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7440		if (ret < 0)
7441			return ret;
7442
7443		p->viid = ret;
7444		p->tx_chan = j;
7445		p->lport = j;
7446		p->rss_size = rss_size;
7447		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7448		adap->port[i]->dev_port = j;
7449
7450		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7451		p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7452			FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7453		p->port_type = FW_PORT_CMD_PTYPE_G(ret);
7454		p->mod_type = FW_PORT_MOD_TYPE_NA;
7455
7456		rvc.op_to_viid =
7457			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7458				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
7459				    FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
7460		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7461		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7462		if (ret)
7463			return ret;
7464		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7465
7466		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7467		j++;
7468	}
7469	return 0;
7470}
7471
7472/**
7473 *	t4_read_cimq_cfg - read CIM queue configuration
7474 *	@adap: the adapter
7475 *	@base: holds the queue base addresses in bytes
7476 *	@size: holds the queue sizes in bytes
7477 *	@thres: holds the queue full thresholds in bytes
7478 *
7479 *	Returns the current configuration of the CIM queues, starting with
7480 *	the IBQs, then the OBQs.
7481 */
7482void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7483{
7484	unsigned int i, v;
7485	int cim_num_obq = is_t4(adap->params.chip) ?
7486				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7487
7488	for (i = 0; i < CIM_NUM_IBQ; i++) {
7489		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7490			     QUENUMSELECT_V(i));
7491		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7492		/* value is in 256-byte units */
7493		*base++ = CIMQBASE_G(v) * 256;
7494		*size++ = CIMQSIZE_G(v) * 256;
7495		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7496	}
7497	for (i = 0; i < cim_num_obq; i++) {
7498		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7499			     QUENUMSELECT_V(i));
7500		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7501		/* value is in 256-byte units */
7502		*base++ = CIMQBASE_G(v) * 256;
7503		*size++ = CIMQSIZE_G(v) * 256;
7504	}
7505}
7506
7507/**
7508 *	t4_read_cim_ibq - read the contents of a CIM inbound queue
7509 *	@adap: the adapter
7510 *	@qid: the queue index
7511 *	@data: where to store the queue contents
7512 *	@n: capacity of @data in 32-bit words
7513 *
7514 *	Reads the contents of the selected CIM queue starting at address 0 up
7515 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7516 *	error and the number of 32-bit words actually read on success.
7517 */
7518int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7519{
7520	int i, err, attempts;
7521	unsigned int addr;
7522	const unsigned int nwords = CIM_IBQ_SIZE * 4;
7523
7524	if (qid > 5 || (n & 3))
7525		return -EINVAL;
7526
7527	addr = qid * nwords;
7528	if (n > nwords)
7529		n = nwords;
7530
7531	/* It might take 3-10ms before the IBQ debug read access is allowed.
7532	 * Wait for 1 Sec with a delay of 1 usec.
7533	 */
7534	attempts = 1000000;
7535
7536	for (i = 0; i < n; i++, addr++) {
7537		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7538			     IBQDBGEN_F);
7539		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7540				      attempts, 1);
7541		if (err)
7542			return err;
7543		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7544	}
7545	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7546	return i;
7547}
7548
7549/**
7550 *	t4_read_cim_obq - read the contents of a CIM outbound queue
7551 *	@adap: the adapter
7552 *	@qid: the queue index
7553 *	@data: where to store the queue contents
7554 *	@n: capacity of @data in 32-bit words
7555 *
7556 *	Reads the contents of the selected CIM queue starting at address 0 up
7557 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7558 *	error and the number of 32-bit words actually read on success.
7559 */
7560int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7561{
7562	int i, err;
7563	unsigned int addr, v, nwords;
7564	int cim_num_obq = is_t4(adap->params.chip) ?
7565				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7566
7567	if ((qid > (cim_num_obq - 1)) || (n & 3))
7568		return -EINVAL;
7569
7570	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7571		     QUENUMSELECT_V(qid));
7572	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7573
7574	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
7575	nwords = CIMQSIZE_G(v) * 64;  /* same */
7576	if (n > nwords)
7577		n = nwords;
7578
7579	for (i = 0; i < n; i++, addr++) {
7580		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7581			     OBQDBGEN_F);
7582		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7583				      2, 1);
7584		if (err)
7585			return err;
7586		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7587	}
7588	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7589	return i;
7590}
7591
7592/**
7593 *	t4_cim_read - read a block from CIM internal address space
7594 *	@adap: the adapter
7595 *	@addr: the start address within the CIM address space
7596 *	@n: number of words to read
7597 *	@valp: where to store the result
7598 *
7599 *	Reads a block of 4-byte words from the CIM intenal address space.
7600 */
7601int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7602		unsigned int *valp)
7603{
7604	int ret = 0;
7605
7606	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7607		return -EBUSY;
7608
7609	for ( ; !ret && n--; addr += 4) {
7610		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7611		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7612				      0, 5, 2);
7613		if (!ret)
7614			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7615	}
7616	return ret;
7617}
7618
7619/**
7620 *	t4_cim_write - write a block into CIM internal address space
7621 *	@adap: the adapter
7622 *	@addr: the start address within the CIM address space
7623 *	@n: number of words to write
7624 *	@valp: set of values to write
7625 *
7626 *	Writes a block of 4-byte words into the CIM intenal address space.
7627 */
7628int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
7629		 const unsigned int *valp)
7630{
7631	int ret = 0;
7632
7633	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7634		return -EBUSY;
7635
7636	for ( ; !ret && n--; addr += 4) {
7637		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
7638		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
7639		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7640				      0, 5, 2);
7641	}
7642	return ret;
7643}
7644
7645static int t4_cim_write1(struct adapter *adap, unsigned int addr,
7646			 unsigned int val)
7647{
7648	return t4_cim_write(adap, addr, 1, &val);
7649}
7650
7651/**
7652 *	t4_cim_read_la - read CIM LA capture buffer
7653 *	@adap: the adapter
7654 *	@la_buf: where to store the LA data
7655 *	@wrptr: the HW write pointer within the capture buffer
7656 *
7657 *	Reads the contents of the CIM LA buffer with the most recent entry at
7658 *	the end	of the returned data and with the entry at @wrptr first.
7659 *	We try to leave the LA in the running state we find it in.
7660 */
7661int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
7662{
7663	int i, ret;
7664	unsigned int cfg, val, idx;
7665
7666	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
7667	if (ret)
7668		return ret;
7669
7670	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
7671		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
7672		if (ret)
7673			return ret;
7674	}
7675
7676	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7677	if (ret)
7678		goto restart;
7679
7680	idx = UPDBGLAWRPTR_G(val);
7681	if (wrptr)
7682		*wrptr = idx;
7683
7684	for (i = 0; i < adap->params.cim_la_size; i++) {
7685		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7686				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
7687		if (ret)
7688			break;
7689		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7690		if (ret)
7691			break;
7692		if (val & UPDBGLARDEN_F) {
7693			ret = -ETIMEDOUT;
7694			break;
7695		}
7696		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
7697		if (ret)
7698			break;
7699		idx = (idx + 1) & UPDBGLARDPTR_M;
7700	}
7701restart:
7702	if (cfg & UPDBGLAEN_F) {
7703		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7704				      cfg & ~UPDBGLARDEN_F);
7705		if (!ret)
7706			ret = r;
7707	}
7708	return ret;
7709}
7710
7711/**
7712 *	t4_tp_read_la - read TP LA capture buffer
7713 *	@adap: the adapter
7714 *	@la_buf: where to store the LA data
7715 *	@wrptr: the HW write pointer within the capture buffer
7716 *
7717 *	Reads the contents of the TP LA buffer with the most recent entry at
7718 *	the end	of the returned data and with the entry at @wrptr first.
7719 *	We leave the LA in the running state we find it in.
7720 */
7721void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
7722{
7723	bool last_incomplete;
7724	unsigned int i, cfg, val, idx;
7725
7726	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
7727	if (cfg & DBGLAENABLE_F)			/* freeze LA */
7728		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7729			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
7730
7731	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
7732	idx = DBGLAWPTR_G(val);
7733	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
7734	if (last_incomplete)
7735		idx = (idx + 1) & DBGLARPTR_M;
7736	if (wrptr)
7737		*wrptr = idx;
7738
7739	val &= 0xffff;
7740	val &= ~DBGLARPTR_V(DBGLARPTR_M);
7741	val |= adap->params.tp.la_mask;
7742
7743	for (i = 0; i < TPLA_SIZE; i++) {
7744		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
7745		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
7746		idx = (idx + 1) & DBGLARPTR_M;
7747	}
7748
7749	/* Wipe out last entry if it isn't valid */
7750	if (last_incomplete)
7751		la_buf[TPLA_SIZE - 1] = ~0ULL;
7752
7753	if (cfg & DBGLAENABLE_F)                    /* restore running state */
7754		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7755			     cfg | adap->params.tp.la_mask);
7756}
7757
7758/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
7759 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
7760 * state for more than the Warning Threshold then we'll issue a warning about
7761 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
7762 * appears to be hung every Warning Repeat second till the situation clears.
7763 * If the situation clears, we'll note that as well.
7764 */
7765#define SGE_IDMA_WARN_THRESH 1
7766#define SGE_IDMA_WARN_REPEAT 300
7767
7768/**
7769 *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
7770 *	@adapter: the adapter
7771 *	@idma: the adapter IDMA Monitor state
7772 *
7773 *	Initialize the state of an SGE Ingress DMA Monitor.
7774 */
7775void t4_idma_monitor_init(struct adapter *adapter,
7776			  struct sge_idma_monitor_state *idma)
7777{
7778	/* Initialize the state variables for detecting an SGE Ingress DMA
7779	 * hang.  The SGE has internal counters which count up on each clock
7780	 * tick whenever the SGE finds its Ingress DMA State Engines in the
7781	 * same state they were on the previous clock tick.  The clock used is
7782	 * the Core Clock so we have a limit on the maximum "time" they can
7783	 * record; typically a very small number of seconds.  For instance,
7784	 * with a 600MHz Core Clock, we can only count up to a bit more than
7785	 * 7s.  So we'll synthesize a larger counter in order to not run the
7786	 * risk of having the "timers" overflow and give us the flexibility to
7787	 * maintain a Hung SGE State Machine of our own which operates across
7788	 * a longer time frame.
7789	 */
7790	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
7791	idma->idma_stalled[0] = 0;
7792	idma->idma_stalled[1] = 0;
7793}
7794
7795/**
7796 *	t4_idma_monitor - monitor SGE Ingress DMA state
7797 *	@adapter: the adapter
7798 *	@idma: the adapter IDMA Monitor state
7799 *	@hz: number of ticks/second
7800 *	@ticks: number of ticks since the last IDMA Monitor call
7801 */
7802void t4_idma_monitor(struct adapter *adapter,
7803		     struct sge_idma_monitor_state *idma,
7804		     int hz, int ticks)
7805{
7806	int i, idma_same_state_cnt[2];
7807
7808	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
7809	  * are counters inside the SGE which count up on each clock when the
7810	  * SGE finds its Ingress DMA State Engines in the same states they
7811	  * were in the previous clock.  The counters will peg out at
7812	  * 0xffffffff without wrapping around so once they pass the 1s
7813	  * threshold they'll stay above that till the IDMA state changes.
7814	  */
7815	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
7816	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
7817	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7818
7819	for (i = 0; i < 2; i++) {
7820		u32 debug0, debug11;
7821
7822		/* If the Ingress DMA Same State Counter ("timer") is less
7823		 * than 1s, then we can reset our synthesized Stall Timer and
7824		 * continue.  If we have previously emitted warnings about a
7825		 * potential stalled Ingress Queue, issue a note indicating
7826		 * that the Ingress Queue has resumed forward progress.
7827		 */
7828		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
7829			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
7830				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
7831					 "resumed after %d seconds\n",
7832					 i, idma->idma_qid[i],
7833					 idma->idma_stalled[i] / hz);
7834			idma->idma_stalled[i] = 0;
7835			continue;
7836		}
7837
7838		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
7839		 * domain.  The first time we get here it'll be because we
7840		 * passed the 1s Threshold; each additional time it'll be
7841		 * because the RX Timer Callback is being fired on its regular
7842		 * schedule.
7843		 *
7844		 * If the stall is below our Potential Hung Ingress Queue
7845		 * Warning Threshold, continue.
7846		 */
7847		if (idma->idma_stalled[i] == 0) {
7848			idma->idma_stalled[i] = hz;
7849			idma->idma_warn[i] = 0;
7850		} else {
7851			idma->idma_stalled[i] += ticks;
7852			idma->idma_warn[i] -= ticks;
7853		}
7854
7855		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
7856			continue;
7857
7858		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
7859		 */
7860		if (idma->idma_warn[i] > 0)
7861			continue;
7862		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
7863
7864		/* Read and save the SGE IDMA State and Queue ID information.
7865		 * We do this every time in case it changes across time ...
7866		 * can't be too careful ...
7867		 */
7868		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
7869		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7870		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
7871
7872		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
7873		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7874		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
7875
7876		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
7877			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
7878			 i, idma->idma_qid[i], idma->idma_state[i],
7879			 idma->idma_stalled[i] / hz,
7880			 debug0, debug11);
7881		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
7882	}
7883}
7884