1/* bnx2x_main.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22#include <linux/module.h>
23#include <linux/moduleparam.h>
24#include <linux/kernel.h>
25#include <linux/device.h>  /* for dev_info() */
26#include <linux/timer.h>
27#include <linux/errno.h>
28#include <linux/ioport.h>
29#include <linux/slab.h>
30#include <linux/interrupt.h>
31#include <linux/pci.h>
32#include <linux/aer.h>
33#include <linux/init.h>
34#include <linux/netdevice.h>
35#include <linux/etherdevice.h>
36#include <linux/skbuff.h>
37#include <linux/dma-mapping.h>
38#include <linux/bitops.h>
39#include <linux/irq.h>
40#include <linux/delay.h>
41#include <asm/byteorder.h>
42#include <linux/time.h>
43#include <linux/ethtool.h>
44#include <linux/mii.h>
45#include <linux/if_vlan.h>
46#include <linux/crash_dump.h>
47#include <net/ip.h>
48#include <net/ipv6.h>
49#include <net/tcp.h>
50#include <net/vxlan.h>
51#include <net/checksum.h>
52#include <net/ip6_checksum.h>
53#include <linux/workqueue.h>
54#include <linux/crc32.h>
55#include <linux/crc32c.h>
56#include <linux/prefetch.h>
57#include <linux/zlib.h>
58#include <linux/io.h>
59#include <linux/semaphore.h>
60#include <linux/stringify.h>
61#include <linux/vmalloc.h>
62
63#include "bnx2x.h"
64#include "bnx2x_init.h"
65#include "bnx2x_init_ops.h"
66#include "bnx2x_cmn.h"
67#include "bnx2x_vfpf.h"
68#include "bnx2x_dcb.h"
69#include "bnx2x_sp.h"
70#include <linux/firmware.h>
71#include "bnx2x_fw_file_hdr.h"
72/* FW files */
73#define FW_FILE_VERSION					\
74	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
75	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
76	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
77	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
78#define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
79#define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
80#define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
81
82/* Time in jiffies before concluding the transmitter is hung */
83#define TX_TIMEOUT		(5*HZ)
84
85static char version[] =
86	"QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
87	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
88
89MODULE_AUTHOR("Eliezer Tamir");
90MODULE_DESCRIPTION("QLogic "
91		   "BCM57710/57711/57711E/"
92		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
93		   "57840/57840_MF Driver");
94MODULE_LICENSE("GPL");
95MODULE_VERSION(DRV_MODULE_VERSION);
96MODULE_FIRMWARE(FW_FILE_NAME_E1);
97MODULE_FIRMWARE(FW_FILE_NAME_E1H);
98MODULE_FIRMWARE(FW_FILE_NAME_E2);
99
100int bnx2x_num_queues;
101module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
102MODULE_PARM_DESC(num_queues,
103		 " Set number of queues (default is as a number of CPUs)");
104
105static int disable_tpa;
106module_param(disable_tpa, int, S_IRUGO);
107MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109static int int_mode;
110module_param(int_mode, int, S_IRUGO);
111MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
112				"(1 INT#x; 2 MSI)");
113
114static int dropless_fc;
115module_param(dropless_fc, int, S_IRUGO);
116MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
117
118static int mrrs = -1;
119module_param(mrrs, int, S_IRUGO);
120MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
121
122static int debug;
123module_param(debug, int, S_IRUGO);
124MODULE_PARM_DESC(debug, " Default debug msglevel");
125
126static struct workqueue_struct *bnx2x_wq;
127struct workqueue_struct *bnx2x_iov_wq;
128
129struct bnx2x_mac_vals {
130	u32 xmac_addr;
131	u32 xmac_val;
132	u32 emac_addr;
133	u32 emac_val;
134	u32 umac_addr[2];
135	u32 umac_val[2];
136	u32 bmac_addr;
137	u32 bmac_val[2];
138};
139
140enum bnx2x_board_type {
141	BCM57710 = 0,
142	BCM57711,
143	BCM57711E,
144	BCM57712,
145	BCM57712_MF,
146	BCM57712_VF,
147	BCM57800,
148	BCM57800_MF,
149	BCM57800_VF,
150	BCM57810,
151	BCM57810_MF,
152	BCM57810_VF,
153	BCM57840_4_10,
154	BCM57840_2_20,
155	BCM57840_MF,
156	BCM57840_VF,
157	BCM57811,
158	BCM57811_MF,
159	BCM57840_O,
160	BCM57840_MFO,
161	BCM57811_VF
162};
163
164/* indexed by board_type, above */
165static struct {
166	char *name;
167} board_info[] = {
168	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
169	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
170	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
171	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
172	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
173	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
174	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
175	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
176	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
177	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
178	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
179	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
180	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
181	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
182	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
183	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
184	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
185	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
186	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
187	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
188	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
189};
190
191#ifndef PCI_DEVICE_ID_NX2_57710
192#define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
193#endif
194#ifndef PCI_DEVICE_ID_NX2_57711
195#define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
196#endif
197#ifndef PCI_DEVICE_ID_NX2_57711E
198#define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
199#endif
200#ifndef PCI_DEVICE_ID_NX2_57712
201#define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
202#endif
203#ifndef PCI_DEVICE_ID_NX2_57712_MF
204#define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
205#endif
206#ifndef PCI_DEVICE_ID_NX2_57712_VF
207#define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
208#endif
209#ifndef PCI_DEVICE_ID_NX2_57800
210#define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
211#endif
212#ifndef PCI_DEVICE_ID_NX2_57800_MF
213#define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
214#endif
215#ifndef PCI_DEVICE_ID_NX2_57800_VF
216#define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
217#endif
218#ifndef PCI_DEVICE_ID_NX2_57810
219#define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
220#endif
221#ifndef PCI_DEVICE_ID_NX2_57810_MF
222#define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
223#endif
224#ifndef PCI_DEVICE_ID_NX2_57840_O
225#define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
226#endif
227#ifndef PCI_DEVICE_ID_NX2_57810_VF
228#define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
229#endif
230#ifndef PCI_DEVICE_ID_NX2_57840_4_10
231#define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
232#endif
233#ifndef PCI_DEVICE_ID_NX2_57840_2_20
234#define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
235#endif
236#ifndef PCI_DEVICE_ID_NX2_57840_MFO
237#define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
238#endif
239#ifndef PCI_DEVICE_ID_NX2_57840_MF
240#define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
241#endif
242#ifndef PCI_DEVICE_ID_NX2_57840_VF
243#define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
244#endif
245#ifndef PCI_DEVICE_ID_NX2_57811
246#define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
247#endif
248#ifndef PCI_DEVICE_ID_NX2_57811_MF
249#define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
250#endif
251#ifndef PCI_DEVICE_ID_NX2_57811_VF
252#define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
253#endif
254
255static const struct pci_device_id bnx2x_pci_tbl[] = {
256	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
257	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
258	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
259	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
260	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
261	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
262	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
263	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
264	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
265	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
266	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
267	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
268	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
270	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
271	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
272	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
273	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
275	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
277	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
278	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
279	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
280	{ 0 }
281};
282
283MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
284
285/* Global resources for unloading a previously loaded device */
286#define BNX2X_PREV_WAIT_NEEDED 1
287static DEFINE_SEMAPHORE(bnx2x_prev_sem);
288static LIST_HEAD(bnx2x_prev_list);
289
290/* Forward declaration */
291static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
292static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
293static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
294
295/****************************************************************************
296* General service functions
297****************************************************************************/
298
299static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
300
301static void __storm_memset_dma_mapping(struct bnx2x *bp,
302				       u32 addr, dma_addr_t mapping)
303{
304	REG_WR(bp,  addr, U64_LO(mapping));
305	REG_WR(bp,  addr + 4, U64_HI(mapping));
306}
307
308static void storm_memset_spq_addr(struct bnx2x *bp,
309				  dma_addr_t mapping, u16 abs_fid)
310{
311	u32 addr = XSEM_REG_FAST_MEMORY +
312			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
313
314	__storm_memset_dma_mapping(bp, addr, mapping);
315}
316
317static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
318				  u16 pf_id)
319{
320	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
321		pf_id);
322	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
323		pf_id);
324	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
325		pf_id);
326	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
327		pf_id);
328}
329
330static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
331				 u8 enable)
332{
333	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
334		enable);
335	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
336		enable);
337	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
338		enable);
339	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
340		enable);
341}
342
343static void storm_memset_eq_data(struct bnx2x *bp,
344				 struct event_ring_data *eq_data,
345				u16 pfid)
346{
347	size_t size = sizeof(struct event_ring_data);
348
349	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
350
351	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
352}
353
354static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
355				 u16 pfid)
356{
357	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
358	REG_WR16(bp, addr, eq_prod);
359}
360
361/* used only at init
362 * locking is done by mcp
363 */
364static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
365{
366	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
367	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
368	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
369			       PCICFG_VENDOR_ID_OFFSET);
370}
371
372static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
373{
374	u32 val;
375
376	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
377	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
378	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
379			       PCICFG_VENDOR_ID_OFFSET);
380
381	return val;
382}
383
384#define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
385#define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
386#define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
387#define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
388#define DMAE_DP_DST_NONE	"dst_addr [none]"
389
390static void bnx2x_dp_dmae(struct bnx2x *bp,
391			  struct dmae_command *dmae, int msglvl)
392{
393	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
394	int i;
395
396	switch (dmae->opcode & DMAE_COMMAND_DST) {
397	case DMAE_CMD_DST_PCI:
398		if (src_type == DMAE_CMD_SRC_PCI)
399			DP(msglvl, "DMAE: opcode 0x%08x\n"
400			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
401			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
402			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
403			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
404			   dmae->comp_addr_hi, dmae->comp_addr_lo,
405			   dmae->comp_val);
406		else
407			DP(msglvl, "DMAE: opcode 0x%08x\n"
408			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
409			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
410			   dmae->opcode, dmae->src_addr_lo >> 2,
411			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
412			   dmae->comp_addr_hi, dmae->comp_addr_lo,
413			   dmae->comp_val);
414		break;
415	case DMAE_CMD_DST_GRC:
416		if (src_type == DMAE_CMD_SRC_PCI)
417			DP(msglvl, "DMAE: opcode 0x%08x\n"
418			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
419			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
420			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
421			   dmae->len, dmae->dst_addr_lo >> 2,
422			   dmae->comp_addr_hi, dmae->comp_addr_lo,
423			   dmae->comp_val);
424		else
425			DP(msglvl, "DMAE: opcode 0x%08x\n"
426			   "src [%08x], len [%d*4], dst [%08x]\n"
427			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
428			   dmae->opcode, dmae->src_addr_lo >> 2,
429			   dmae->len, dmae->dst_addr_lo >> 2,
430			   dmae->comp_addr_hi, dmae->comp_addr_lo,
431			   dmae->comp_val);
432		break;
433	default:
434		if (src_type == DMAE_CMD_SRC_PCI)
435			DP(msglvl, "DMAE: opcode 0x%08x\n"
436			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
437			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
438			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
439			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
440			   dmae->comp_val);
441		else
442			DP(msglvl, "DMAE: opcode 0x%08x\n"
443			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
444			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
445			   dmae->opcode, dmae->src_addr_lo >> 2,
446			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
447			   dmae->comp_val);
448		break;
449	}
450
451	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
452		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
453		   i, *(((u32 *)dmae) + i));
454}
455
456/* copy command into DMAE command memory and set DMAE command go */
457void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
458{
459	u32 cmd_offset;
460	int i;
461
462	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
463	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
464		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
465	}
466	REG_WR(bp, dmae_reg_go_c[idx], 1);
467}
468
469u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
470{
471	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
472			   DMAE_CMD_C_ENABLE);
473}
474
475u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
476{
477	return opcode & ~DMAE_CMD_SRC_RESET;
478}
479
480u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
481			     bool with_comp, u8 comp_type)
482{
483	u32 opcode = 0;
484
485	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
486		   (dst_type << DMAE_COMMAND_DST_SHIFT));
487
488	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
489
490	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
491	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
492		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
493	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
494
495#ifdef __BIG_ENDIAN
496	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
497#else
498	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
499#endif
500	if (with_comp)
501		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
502	return opcode;
503}
504
505void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
506				      struct dmae_command *dmae,
507				      u8 src_type, u8 dst_type)
508{
509	memset(dmae, 0, sizeof(struct dmae_command));
510
511	/* set the opcode */
512	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
513					 true, DMAE_COMP_PCI);
514
515	/* fill in the completion parameters */
516	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
517	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
518	dmae->comp_val = DMAE_COMP_VAL;
519}
520
521/* issue a dmae command over the init-channel and wait for completion */
522int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
523			       u32 *comp)
524{
525	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
526	int rc = 0;
527
528	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
529
530	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
531	 * as long as this code is called both from syscall context and
532	 * from ndo_set_rx_mode() flow that may be called from BH.
533	 */
534
535	spin_lock_bh(&bp->dmae_lock);
536
537	/* reset completion */
538	*comp = 0;
539
540	/* post the command on the channel used for initializations */
541	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
542
543	/* wait for completion */
544	udelay(5);
545	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
546
547		if (!cnt ||
548		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
549		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
550			BNX2X_ERR("DMAE timeout!\n");
551			rc = DMAE_TIMEOUT;
552			goto unlock;
553		}
554		cnt--;
555		udelay(50);
556	}
557	if (*comp & DMAE_PCI_ERR_FLAG) {
558		BNX2X_ERR("DMAE PCI error!\n");
559		rc = DMAE_PCI_ERROR;
560	}
561
562unlock:
563
564	spin_unlock_bh(&bp->dmae_lock);
565
566	return rc;
567}
568
569void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
570		      u32 len32)
571{
572	int rc;
573	struct dmae_command dmae;
574
575	if (!bp->dmae_ready) {
576		u32 *data = bnx2x_sp(bp, wb_data[0]);
577
578		if (CHIP_IS_E1(bp))
579			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
580		else
581			bnx2x_init_str_wr(bp, dst_addr, data, len32);
582		return;
583	}
584
585	/* set opcode and fixed command fields */
586	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
587
588	/* fill in addresses and len */
589	dmae.src_addr_lo = U64_LO(dma_addr);
590	dmae.src_addr_hi = U64_HI(dma_addr);
591	dmae.dst_addr_lo = dst_addr >> 2;
592	dmae.dst_addr_hi = 0;
593	dmae.len = len32;
594
595	/* issue the command and wait for completion */
596	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
597	if (rc) {
598		BNX2X_ERR("DMAE returned failure %d\n", rc);
599#ifdef BNX2X_STOP_ON_ERROR
600		bnx2x_panic();
601#endif
602	}
603}
604
605void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
606{
607	int rc;
608	struct dmae_command dmae;
609
610	if (!bp->dmae_ready) {
611		u32 *data = bnx2x_sp(bp, wb_data[0]);
612		int i;
613
614		if (CHIP_IS_E1(bp))
615			for (i = 0; i < len32; i++)
616				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
617		else
618			for (i = 0; i < len32; i++)
619				data[i] = REG_RD(bp, src_addr + i*4);
620
621		return;
622	}
623
624	/* set opcode and fixed command fields */
625	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
626
627	/* fill in addresses and len */
628	dmae.src_addr_lo = src_addr >> 2;
629	dmae.src_addr_hi = 0;
630	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
631	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
632	dmae.len = len32;
633
634	/* issue the command and wait for completion */
635	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
636	if (rc) {
637		BNX2X_ERR("DMAE returned failure %d\n", rc);
638#ifdef BNX2X_STOP_ON_ERROR
639		bnx2x_panic();
640#endif
641	}
642}
643
644static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
645				      u32 addr, u32 len)
646{
647	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
648	int offset = 0;
649
650	while (len > dmae_wr_max) {
651		bnx2x_write_dmae(bp, phys_addr + offset,
652				 addr + offset, dmae_wr_max);
653		offset += dmae_wr_max * 4;
654		len -= dmae_wr_max;
655	}
656
657	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
658}
659
660enum storms {
661	   XSTORM,
662	   TSTORM,
663	   CSTORM,
664	   USTORM,
665	   MAX_STORMS
666};
667
668#define STORMS_NUM 4
669#define REGS_IN_ENTRY 4
670
671static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
672					      enum storms storm,
673					      int entry)
674{
675	switch (storm) {
676	case XSTORM:
677		return XSTORM_ASSERT_LIST_OFFSET(entry);
678	case TSTORM:
679		return TSTORM_ASSERT_LIST_OFFSET(entry);
680	case CSTORM:
681		return CSTORM_ASSERT_LIST_OFFSET(entry);
682	case USTORM:
683		return USTORM_ASSERT_LIST_OFFSET(entry);
684	case MAX_STORMS:
685	default:
686		BNX2X_ERR("unknown storm\n");
687	}
688	return -EINVAL;
689}
690
691static int bnx2x_mc_assert(struct bnx2x *bp)
692{
693	char last_idx;
694	int i, j, rc = 0;
695	enum storms storm;
696	u32 regs[REGS_IN_ENTRY];
697	u32 bar_storm_intmem[STORMS_NUM] = {
698		BAR_XSTRORM_INTMEM,
699		BAR_TSTRORM_INTMEM,
700		BAR_CSTRORM_INTMEM,
701		BAR_USTRORM_INTMEM
702	};
703	u32 storm_assert_list_index[STORMS_NUM] = {
704		XSTORM_ASSERT_LIST_INDEX_OFFSET,
705		TSTORM_ASSERT_LIST_INDEX_OFFSET,
706		CSTORM_ASSERT_LIST_INDEX_OFFSET,
707		USTORM_ASSERT_LIST_INDEX_OFFSET
708	};
709	char *storms_string[STORMS_NUM] = {
710		"XSTORM",
711		"TSTORM",
712		"CSTORM",
713		"USTORM"
714	};
715
716	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
717		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
718				   storm_assert_list_index[storm]);
719		if (last_idx)
720			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
721				  storms_string[storm], last_idx);
722
723		/* print the asserts */
724		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
725			/* read a single assert entry */
726			for (j = 0; j < REGS_IN_ENTRY; j++)
727				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
728					  bnx2x_get_assert_list_entry(bp,
729								      storm,
730								      i) +
731					  sizeof(u32) * j);
732
733			/* log entry if it contains a valid assert */
734			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
735				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
736					  storms_string[storm], i, regs[3],
737					  regs[2], regs[1], regs[0]);
738				rc++;
739			} else {
740				break;
741			}
742		}
743	}
744
745	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
746		  CHIP_IS_E1(bp) ? "everest1" :
747		  CHIP_IS_E1H(bp) ? "everest1h" :
748		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
749		  BCM_5710_FW_MAJOR_VERSION,
750		  BCM_5710_FW_MINOR_VERSION,
751		  BCM_5710_FW_REVISION_VERSION);
752
753	return rc;
754}
755
756#define MCPR_TRACE_BUFFER_SIZE	(0x800)
757#define SCRATCH_BUFFER_SIZE(bp)	\
758	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
759
760void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
761{
762	u32 addr, val;
763	u32 mark, offset;
764	__be32 data[9];
765	int word;
766	u32 trace_shmem_base;
767	if (BP_NOMCP(bp)) {
768		BNX2X_ERR("NO MCP - can not dump\n");
769		return;
770	}
771	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
772		(bp->common.bc_ver & 0xff0000) >> 16,
773		(bp->common.bc_ver & 0xff00) >> 8,
774		(bp->common.bc_ver & 0xff));
775
776	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
777	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
778		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
779
780	if (BP_PATH(bp) == 0)
781		trace_shmem_base = bp->common.shmem_base;
782	else
783		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
784
785	/* sanity */
786	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
787	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
788				SCRATCH_BUFFER_SIZE(bp)) {
789		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
790			  trace_shmem_base);
791		return;
792	}
793
794	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
795
796	/* validate TRCB signature */
797	mark = REG_RD(bp, addr);
798	if (mark != MFW_TRACE_SIGNATURE) {
799		BNX2X_ERR("Trace buffer signature is missing.");
800		return ;
801	}
802
803	/* read cyclic buffer pointer */
804	addr += 4;
805	mark = REG_RD(bp, addr);
806	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
807	if (mark >= trace_shmem_base || mark < addr + 4) {
808		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
809		return;
810	}
811	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
812
813	printk("%s", lvl);
814
815	/* dump buffer after the mark */
816	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
817		for (word = 0; word < 8; word++)
818			data[word] = htonl(REG_RD(bp, offset + 4*word));
819		data[8] = 0x0;
820		pr_cont("%s", (char *)data);
821	}
822
823	/* dump buffer before the mark */
824	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
825		for (word = 0; word < 8; word++)
826			data[word] = htonl(REG_RD(bp, offset + 4*word));
827		data[8] = 0x0;
828		pr_cont("%s", (char *)data);
829	}
830	printk("%s" "end of fw dump\n", lvl);
831}
832
833static void bnx2x_fw_dump(struct bnx2x *bp)
834{
835	bnx2x_fw_dump_lvl(bp, KERN_ERR);
836}
837
838static void bnx2x_hc_int_disable(struct bnx2x *bp)
839{
840	int port = BP_PORT(bp);
841	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
842	u32 val = REG_RD(bp, addr);
843
844	/* in E1 we must use only PCI configuration space to disable
845	 * MSI/MSIX capability
846	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
847	 */
848	if (CHIP_IS_E1(bp)) {
849		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
850		 * Use mask register to prevent from HC sending interrupts
851		 * after we exit the function
852		 */
853		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
854
855		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
856			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
857			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
858	} else
859		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
860			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
861			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
862			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
863
864	DP(NETIF_MSG_IFDOWN,
865	   "write %x to HC %d (addr 0x%x)\n",
866	   val, port, addr);
867
868	/* flush all outstanding writes */
869	mmiowb();
870
871	REG_WR(bp, addr, val);
872	if (REG_RD(bp, addr) != val)
873		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
874}
875
876static void bnx2x_igu_int_disable(struct bnx2x *bp)
877{
878	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
879
880	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
881		 IGU_PF_CONF_INT_LINE_EN |
882		 IGU_PF_CONF_ATTN_BIT_EN);
883
884	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
885
886	/* flush all outstanding writes */
887	mmiowb();
888
889	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
890	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
891		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
892}
893
894static void bnx2x_int_disable(struct bnx2x *bp)
895{
896	if (bp->common.int_block == INT_BLOCK_HC)
897		bnx2x_hc_int_disable(bp);
898	else
899		bnx2x_igu_int_disable(bp);
900}
901
902void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
903{
904	int i;
905	u16 j;
906	struct hc_sp_status_block_data sp_sb_data;
907	int func = BP_FUNC(bp);
908#ifdef BNX2X_STOP_ON_ERROR
909	u16 start = 0, end = 0;
910	u8 cos;
911#endif
912	if (IS_PF(bp) && disable_int)
913		bnx2x_int_disable(bp);
914
915	bp->stats_state = STATS_STATE_DISABLED;
916	bp->eth_stats.unrecoverable_error++;
917	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
918
919	BNX2X_ERR("begin crash dump -----------------\n");
920
921	/* Indices */
922	/* Common */
923	if (IS_PF(bp)) {
924		struct host_sp_status_block *def_sb = bp->def_status_blk;
925		int data_size, cstorm_offset;
926
927		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
928			  bp->def_idx, bp->def_att_idx, bp->attn_state,
929			  bp->spq_prod_idx, bp->stats_counter);
930		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
931			  def_sb->atten_status_block.attn_bits,
932			  def_sb->atten_status_block.attn_bits_ack,
933			  def_sb->atten_status_block.status_block_id,
934			  def_sb->atten_status_block.attn_bits_index);
935		BNX2X_ERR("     def (");
936		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
937			pr_cont("0x%x%s",
938				def_sb->sp_sb.index_values[i],
939				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
940
941		data_size = sizeof(struct hc_sp_status_block_data) /
942			    sizeof(u32);
943		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
944		for (i = 0; i < data_size; i++)
945			*((u32 *)&sp_sb_data + i) =
946				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
947					   i * sizeof(u32));
948
949		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
950			sp_sb_data.igu_sb_id,
951			sp_sb_data.igu_seg_id,
952			sp_sb_data.p_func.pf_id,
953			sp_sb_data.p_func.vnic_id,
954			sp_sb_data.p_func.vf_id,
955			sp_sb_data.p_func.vf_valid,
956			sp_sb_data.state);
957	}
958
959	for_each_eth_queue(bp, i) {
960		struct bnx2x_fastpath *fp = &bp->fp[i];
961		int loop;
962		struct hc_status_block_data_e2 sb_data_e2;
963		struct hc_status_block_data_e1x sb_data_e1x;
964		struct hc_status_block_sm  *hc_sm_p =
965			CHIP_IS_E1x(bp) ?
966			sb_data_e1x.common.state_machine :
967			sb_data_e2.common.state_machine;
968		struct hc_index_data *hc_index_p =
969			CHIP_IS_E1x(bp) ?
970			sb_data_e1x.index_data :
971			sb_data_e2.index_data;
972		u8 data_size, cos;
973		u32 *sb_data_p;
974		struct bnx2x_fp_txdata txdata;
975
976		if (!bp->fp)
977			break;
978
979		if (!fp->rx_cons_sb)
980			continue;
981
982		/* Rx */
983		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
984			  i, fp->rx_bd_prod, fp->rx_bd_cons,
985			  fp->rx_comp_prod,
986			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
987		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
988			  fp->rx_sge_prod, fp->last_max_sge,
989			  le16_to_cpu(fp->fp_hc_idx));
990
991		/* Tx */
992		for_each_cos_in_tx_queue(fp, cos)
993		{
994			if (!fp->txdata_ptr[cos])
995				break;
996
997			txdata = *fp->txdata_ptr[cos];
998
999			if (!txdata.tx_cons_sb)
1000				continue;
1001
1002			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1003				  i, txdata.tx_pkt_prod,
1004				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1005				  txdata.tx_bd_cons,
1006				  le16_to_cpu(*txdata.tx_cons_sb));
1007		}
1008
1009		loop = CHIP_IS_E1x(bp) ?
1010			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1011
1012		/* host sb data */
1013
1014		if (IS_FCOE_FP(fp))
1015			continue;
1016
1017		BNX2X_ERR("     run indexes (");
1018		for (j = 0; j < HC_SB_MAX_SM; j++)
1019			pr_cont("0x%x%s",
1020			       fp->sb_running_index[j],
1021			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1022
1023		BNX2X_ERR("     indexes (");
1024		for (j = 0; j < loop; j++)
1025			pr_cont("0x%x%s",
1026			       fp->sb_index_values[j],
1027			       (j == loop - 1) ? ")" : " ");
1028
1029		/* VF cannot access FW refelection for status block */
1030		if (IS_VF(bp))
1031			continue;
1032
1033		/* fw sb data */
1034		data_size = CHIP_IS_E1x(bp) ?
1035			sizeof(struct hc_status_block_data_e1x) :
1036			sizeof(struct hc_status_block_data_e2);
1037		data_size /= sizeof(u32);
1038		sb_data_p = CHIP_IS_E1x(bp) ?
1039			(u32 *)&sb_data_e1x :
1040			(u32 *)&sb_data_e2;
1041		/* copy sb data in here */
1042		for (j = 0; j < data_size; j++)
1043			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1044				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1045				j * sizeof(u32));
1046
1047		if (!CHIP_IS_E1x(bp)) {
1048			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1049				sb_data_e2.common.p_func.pf_id,
1050				sb_data_e2.common.p_func.vf_id,
1051				sb_data_e2.common.p_func.vf_valid,
1052				sb_data_e2.common.p_func.vnic_id,
1053				sb_data_e2.common.same_igu_sb_1b,
1054				sb_data_e2.common.state);
1055		} else {
1056			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1057				sb_data_e1x.common.p_func.pf_id,
1058				sb_data_e1x.common.p_func.vf_id,
1059				sb_data_e1x.common.p_func.vf_valid,
1060				sb_data_e1x.common.p_func.vnic_id,
1061				sb_data_e1x.common.same_igu_sb_1b,
1062				sb_data_e1x.common.state);
1063		}
1064
1065		/* SB_SMs data */
1066		for (j = 0; j < HC_SB_MAX_SM; j++) {
1067			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1068				j, hc_sm_p[j].__flags,
1069				hc_sm_p[j].igu_sb_id,
1070				hc_sm_p[j].igu_seg_id,
1071				hc_sm_p[j].time_to_expire,
1072				hc_sm_p[j].timer_value);
1073		}
1074
1075		/* Indices data */
1076		for (j = 0; j < loop; j++) {
1077			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1078			       hc_index_p[j].flags,
1079			       hc_index_p[j].timeout);
1080		}
1081	}
1082
1083#ifdef BNX2X_STOP_ON_ERROR
1084	if (IS_PF(bp)) {
1085		/* event queue */
1086		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1087		for (i = 0; i < NUM_EQ_DESC; i++) {
1088			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1089
1090			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1091				  i, bp->eq_ring[i].message.opcode,
1092				  bp->eq_ring[i].message.error);
1093			BNX2X_ERR("data: %x %x %x\n",
1094				  data[0], data[1], data[2]);
1095		}
1096	}
1097
1098	/* Rings */
1099	/* Rx */
1100	for_each_valid_rx_queue(bp, i) {
1101		struct bnx2x_fastpath *fp = &bp->fp[i];
1102
1103		if (!bp->fp)
1104			break;
1105
1106		if (!fp->rx_cons_sb)
1107			continue;
1108
1109		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1110		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1111		for (j = start; j != end; j = RX_BD(j + 1)) {
1112			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1113			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1114
1115			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1116				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1117		}
1118
1119		start = RX_SGE(fp->rx_sge_prod);
1120		end = RX_SGE(fp->last_max_sge);
1121		for (j = start; j != end; j = RX_SGE(j + 1)) {
1122			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1123			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1124
1125			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1126				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1127		}
1128
1129		start = RCQ_BD(fp->rx_comp_cons - 10);
1130		end = RCQ_BD(fp->rx_comp_cons + 503);
1131		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1132			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1133
1134			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1135				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1136		}
1137	}
1138
1139	/* Tx */
1140	for_each_valid_tx_queue(bp, i) {
1141		struct bnx2x_fastpath *fp = &bp->fp[i];
1142
1143		if (!bp->fp)
1144			break;
1145
1146		for_each_cos_in_tx_queue(fp, cos) {
1147			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1148
1149			if (!fp->txdata_ptr[cos])
1150				break;
1151
1152			if (!txdata->tx_cons_sb)
1153				continue;
1154
1155			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1156			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1157			for (j = start; j != end; j = TX_BD(j + 1)) {
1158				struct sw_tx_bd *sw_bd =
1159					&txdata->tx_buf_ring[j];
1160
1161				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1162					  i, cos, j, sw_bd->skb,
1163					  sw_bd->first_bd);
1164			}
1165
1166			start = TX_BD(txdata->tx_bd_cons - 10);
1167			end = TX_BD(txdata->tx_bd_cons + 254);
1168			for (j = start; j != end; j = TX_BD(j + 1)) {
1169				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1170
1171				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1172					  i, cos, j, tx_bd[0], tx_bd[1],
1173					  tx_bd[2], tx_bd[3]);
1174			}
1175		}
1176	}
1177#endif
1178	if (IS_PF(bp)) {
1179		bnx2x_fw_dump(bp);
1180		bnx2x_mc_assert(bp);
1181	}
1182	BNX2X_ERR("end crash dump -----------------\n");
1183}
1184
1185/*
1186 * FLR Support for E2
1187 *
1188 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1189 * initialization.
1190 */
1191#define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1192#define FLR_WAIT_INTERVAL	50	/* usec */
1193#define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1194
1195struct pbf_pN_buf_regs {
1196	int pN;
1197	u32 init_crd;
1198	u32 crd;
1199	u32 crd_freed;
1200};
1201
1202struct pbf_pN_cmd_regs {
1203	int pN;
1204	u32 lines_occup;
1205	u32 lines_freed;
1206};
1207
1208static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1209				     struct pbf_pN_buf_regs *regs,
1210				     u32 poll_count)
1211{
1212	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1213	u32 cur_cnt = poll_count;
1214
1215	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1216	crd = crd_start = REG_RD(bp, regs->crd);
1217	init_crd = REG_RD(bp, regs->init_crd);
1218
1219	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1220	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1221	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1222
1223	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1224	       (init_crd - crd_start))) {
1225		if (cur_cnt--) {
1226			udelay(FLR_WAIT_INTERVAL);
1227			crd = REG_RD(bp, regs->crd);
1228			crd_freed = REG_RD(bp, regs->crd_freed);
1229		} else {
1230			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1231			   regs->pN);
1232			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1233			   regs->pN, crd);
1234			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1235			   regs->pN, crd_freed);
1236			break;
1237		}
1238	}
1239	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1240	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1241}
1242
1243static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1244				     struct pbf_pN_cmd_regs *regs,
1245				     u32 poll_count)
1246{
1247	u32 occup, to_free, freed, freed_start;
1248	u32 cur_cnt = poll_count;
1249
1250	occup = to_free = REG_RD(bp, regs->lines_occup);
1251	freed = freed_start = REG_RD(bp, regs->lines_freed);
1252
1253	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1254	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1255
1256	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1257		if (cur_cnt--) {
1258			udelay(FLR_WAIT_INTERVAL);
1259			occup = REG_RD(bp, regs->lines_occup);
1260			freed = REG_RD(bp, regs->lines_freed);
1261		} else {
1262			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1263			   regs->pN);
1264			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1265			   regs->pN, occup);
1266			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1267			   regs->pN, freed);
1268			break;
1269		}
1270	}
1271	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1272	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1273}
1274
1275static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1276				    u32 expected, u32 poll_count)
1277{
1278	u32 cur_cnt = poll_count;
1279	u32 val;
1280
1281	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1282		udelay(FLR_WAIT_INTERVAL);
1283
1284	return val;
1285}
1286
1287int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1288				    char *msg, u32 poll_cnt)
1289{
1290	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1291	if (val != 0) {
1292		BNX2X_ERR("%s usage count=%d\n", msg, val);
1293		return 1;
1294	}
1295	return 0;
1296}
1297
1298/* Common routines with VF FLR cleanup */
1299u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1300{
1301	/* adjust polling timeout */
1302	if (CHIP_REV_IS_EMUL(bp))
1303		return FLR_POLL_CNT * 2000;
1304
1305	if (CHIP_REV_IS_FPGA(bp))
1306		return FLR_POLL_CNT * 120;
1307
1308	return FLR_POLL_CNT;
1309}
1310
1311void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1312{
1313	struct pbf_pN_cmd_regs cmd_regs[] = {
1314		{0, (CHIP_IS_E3B0(bp)) ?
1315			PBF_REG_TQ_OCCUPANCY_Q0 :
1316			PBF_REG_P0_TQ_OCCUPANCY,
1317		    (CHIP_IS_E3B0(bp)) ?
1318			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1319			PBF_REG_P0_TQ_LINES_FREED_CNT},
1320		{1, (CHIP_IS_E3B0(bp)) ?
1321			PBF_REG_TQ_OCCUPANCY_Q1 :
1322			PBF_REG_P1_TQ_OCCUPANCY,
1323		    (CHIP_IS_E3B0(bp)) ?
1324			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1325			PBF_REG_P1_TQ_LINES_FREED_CNT},
1326		{4, (CHIP_IS_E3B0(bp)) ?
1327			PBF_REG_TQ_OCCUPANCY_LB_Q :
1328			PBF_REG_P4_TQ_OCCUPANCY,
1329		    (CHIP_IS_E3B0(bp)) ?
1330			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1331			PBF_REG_P4_TQ_LINES_FREED_CNT}
1332	};
1333
1334	struct pbf_pN_buf_regs buf_regs[] = {
1335		{0, (CHIP_IS_E3B0(bp)) ?
1336			PBF_REG_INIT_CRD_Q0 :
1337			PBF_REG_P0_INIT_CRD ,
1338		    (CHIP_IS_E3B0(bp)) ?
1339			PBF_REG_CREDIT_Q0 :
1340			PBF_REG_P0_CREDIT,
1341		    (CHIP_IS_E3B0(bp)) ?
1342			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1343			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1344		{1, (CHIP_IS_E3B0(bp)) ?
1345			PBF_REG_INIT_CRD_Q1 :
1346			PBF_REG_P1_INIT_CRD,
1347		    (CHIP_IS_E3B0(bp)) ?
1348			PBF_REG_CREDIT_Q1 :
1349			PBF_REG_P1_CREDIT,
1350		    (CHIP_IS_E3B0(bp)) ?
1351			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1352			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1353		{4, (CHIP_IS_E3B0(bp)) ?
1354			PBF_REG_INIT_CRD_LB_Q :
1355			PBF_REG_P4_INIT_CRD,
1356		    (CHIP_IS_E3B0(bp)) ?
1357			PBF_REG_CREDIT_LB_Q :
1358			PBF_REG_P4_CREDIT,
1359		    (CHIP_IS_E3B0(bp)) ?
1360			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1361			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1362	};
1363
1364	int i;
1365
1366	/* Verify the command queues are flushed P0, P1, P4 */
1367	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1368		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1369
1370	/* Verify the transmission buffers are flushed P0, P1, P4 */
1371	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1372		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1373}
1374
1375#define OP_GEN_PARAM(param) \
1376	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1377
1378#define OP_GEN_TYPE(type) \
1379	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1380
1381#define OP_GEN_AGG_VECT(index) \
1382	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1383
1384int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1385{
1386	u32 op_gen_command = 0;
1387	u32 comp_addr = BAR_CSTRORM_INTMEM +
1388			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1389	int ret = 0;
1390
1391	if (REG_RD(bp, comp_addr)) {
1392		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1393		return 1;
1394	}
1395
1396	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1397	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1398	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1399	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1400
1401	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1402	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1403
1404	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1405		BNX2X_ERR("FW final cleanup did not succeed\n");
1406		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1407		   (REG_RD(bp, comp_addr)));
1408		bnx2x_panic();
1409		return 1;
1410	}
1411	/* Zero completion for next FLR */
1412	REG_WR(bp, comp_addr, 0);
1413
1414	return ret;
1415}
1416
1417u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1418{
1419	u16 status;
1420
1421	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1422	return status & PCI_EXP_DEVSTA_TRPND;
1423}
1424
1425/* PF FLR specific routines
1426*/
1427static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1428{
1429	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1430	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1431			CFC_REG_NUM_LCIDS_INSIDE_PF,
1432			"CFC PF usage counter timed out",
1433			poll_cnt))
1434		return 1;
1435
1436	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1437	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1438			DORQ_REG_PF_USAGE_CNT,
1439			"DQ PF usage counter timed out",
1440			poll_cnt))
1441		return 1;
1442
1443	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1444	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1445			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1446			"QM PF usage counter timed out",
1447			poll_cnt))
1448		return 1;
1449
1450	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1451	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1452			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1453			"Timers VNIC usage counter timed out",
1454			poll_cnt))
1455		return 1;
1456	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1457			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1458			"Timers NUM_SCANS usage counter timed out",
1459			poll_cnt))
1460		return 1;
1461
1462	/* Wait DMAE PF usage counter to zero */
1463	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1464			dmae_reg_go_c[INIT_DMAE_C(bp)],
1465			"DMAE command register timed out",
1466			poll_cnt))
1467		return 1;
1468
1469	return 0;
1470}
1471
1472static void bnx2x_hw_enable_status(struct bnx2x *bp)
1473{
1474	u32 val;
1475
1476	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1477	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1478
1479	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1480	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1481
1482	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1483	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1484
1485	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1486	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1487
1488	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1489	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1490
1491	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1492	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1493
1494	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1495	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1496
1497	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1498	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1499	   val);
1500}
1501
1502static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1503{
1504	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1505
1506	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1507
1508	/* Re-enable PF target read access */
1509	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1510
1511	/* Poll HW usage counters */
1512	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1513	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1514		return -EBUSY;
1515
1516	/* Zero the igu 'trailing edge' and 'leading edge' */
1517
1518	/* Send the FW cleanup command */
1519	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1520		return -EBUSY;
1521
1522	/* ATC cleanup */
1523
1524	/* Verify TX hw is flushed */
1525	bnx2x_tx_hw_flushed(bp, poll_cnt);
1526
1527	/* Wait 100ms (not adjusted according to platform) */
1528	msleep(100);
1529
1530	/* Verify no pending pci transactions */
1531	if (bnx2x_is_pcie_pending(bp->pdev))
1532		BNX2X_ERR("PCIE Transactions still pending\n");
1533
1534	/* Debug */
1535	bnx2x_hw_enable_status(bp);
1536
1537	/*
1538	 * Master enable - Due to WB DMAE writes performed before this
1539	 * register is re-initialized as part of the regular function init
1540	 */
1541	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1542
1543	return 0;
1544}
1545
1546static void bnx2x_hc_int_enable(struct bnx2x *bp)
1547{
1548	int port = BP_PORT(bp);
1549	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1550	u32 val = REG_RD(bp, addr);
1551	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1552	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1553	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1554
1555	if (msix) {
1556		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1557			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1558		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1559			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1560		if (single_msix)
1561			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1562	} else if (msi) {
1563		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1564		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1565			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1566			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1567	} else {
1568		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1569			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1570			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1571			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1572
1573		if (!CHIP_IS_E1(bp)) {
1574			DP(NETIF_MSG_IFUP,
1575			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1576
1577			REG_WR(bp, addr, val);
1578
1579			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1580		}
1581	}
1582
1583	if (CHIP_IS_E1(bp))
1584		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1585
1586	DP(NETIF_MSG_IFUP,
1587	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1588	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589
1590	REG_WR(bp, addr, val);
1591	/*
1592	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1593	 */
1594	mmiowb();
1595	barrier();
1596
1597	if (!CHIP_IS_E1(bp)) {
1598		/* init leading/trailing edge */
1599		if (IS_MF(bp)) {
1600			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1601			if (bp->port.pmf)
1602				/* enable nig and gpio3 attention */
1603				val |= 0x1100;
1604		} else
1605			val = 0xffff;
1606
1607		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1608		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1609	}
1610
1611	/* Make sure that interrupts are indeed enabled from here on */
1612	mmiowb();
1613}
1614
1615static void bnx2x_igu_int_enable(struct bnx2x *bp)
1616{
1617	u32 val;
1618	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1619	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1620	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1621
1622	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1623
1624	if (msix) {
1625		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1626			 IGU_PF_CONF_SINGLE_ISR_EN);
1627		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1628			IGU_PF_CONF_ATTN_BIT_EN);
1629
1630		if (single_msix)
1631			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1632	} else if (msi) {
1633		val &= ~IGU_PF_CONF_INT_LINE_EN;
1634		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1635			IGU_PF_CONF_ATTN_BIT_EN |
1636			IGU_PF_CONF_SINGLE_ISR_EN);
1637	} else {
1638		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1639		val |= (IGU_PF_CONF_INT_LINE_EN |
1640			IGU_PF_CONF_ATTN_BIT_EN |
1641			IGU_PF_CONF_SINGLE_ISR_EN);
1642	}
1643
1644	/* Clean previous status - need to configure igu prior to ack*/
1645	if ((!msix) || single_msix) {
1646		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1647		bnx2x_ack_int(bp);
1648	}
1649
1650	val |= IGU_PF_CONF_FUNC_EN;
1651
1652	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1653	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1654
1655	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1656
1657	if (val & IGU_PF_CONF_INT_LINE_EN)
1658		pci_intx(bp->pdev, true);
1659
1660	barrier();
1661
1662	/* init leading/trailing edge */
1663	if (IS_MF(bp)) {
1664		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1665		if (bp->port.pmf)
1666			/* enable nig and gpio3 attention */
1667			val |= 0x1100;
1668	} else
1669		val = 0xffff;
1670
1671	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1672	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1673
1674	/* Make sure that interrupts are indeed enabled from here on */
1675	mmiowb();
1676}
1677
1678void bnx2x_int_enable(struct bnx2x *bp)
1679{
1680	if (bp->common.int_block == INT_BLOCK_HC)
1681		bnx2x_hc_int_enable(bp);
1682	else
1683		bnx2x_igu_int_enable(bp);
1684}
1685
1686void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1687{
1688	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1689	int i, offset;
1690
1691	if (disable_hw)
1692		/* prevent the HW from sending interrupts */
1693		bnx2x_int_disable(bp);
1694
1695	/* make sure all ISRs are done */
1696	if (msix) {
1697		synchronize_irq(bp->msix_table[0].vector);
1698		offset = 1;
1699		if (CNIC_SUPPORT(bp))
1700			offset++;
1701		for_each_eth_queue(bp, i)
1702			synchronize_irq(bp->msix_table[offset++].vector);
1703	} else
1704		synchronize_irq(bp->pdev->irq);
1705
1706	/* make sure sp_task is not running */
1707	cancel_delayed_work(&bp->sp_task);
1708	cancel_delayed_work(&bp->period_task);
1709	flush_workqueue(bnx2x_wq);
1710}
1711
1712/* fast path */
1713
1714/*
1715 * General service functions
1716 */
1717
1718/* Return true if succeeded to acquire the lock */
1719static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1720{
1721	u32 lock_status;
1722	u32 resource_bit = (1 << resource);
1723	int func = BP_FUNC(bp);
1724	u32 hw_lock_control_reg;
1725
1726	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1727	   "Trying to take a lock on resource %d\n", resource);
1728
1729	/* Validating that the resource is within range */
1730	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1731		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1732		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1733		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1734		return false;
1735	}
1736
1737	if (func <= 5)
1738		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1739	else
1740		hw_lock_control_reg =
1741				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1742
1743	/* Try to acquire the lock */
1744	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1745	lock_status = REG_RD(bp, hw_lock_control_reg);
1746	if (lock_status & resource_bit)
1747		return true;
1748
1749	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1750	   "Failed to get a lock on resource %d\n", resource);
1751	return false;
1752}
1753
1754/**
1755 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1756 *
1757 * @bp:	driver handle
1758 *
1759 * Returns the recovery leader resource id according to the engine this function
1760 * belongs to. Currently only only 2 engines is supported.
1761 */
1762static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1763{
1764	if (BP_PATH(bp))
1765		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1766	else
1767		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1768}
1769
1770/**
1771 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1772 *
1773 * @bp: driver handle
1774 *
1775 * Tries to acquire a leader lock for current engine.
1776 */
1777static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1778{
1779	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1780}
1781
1782static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1783
1784/* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1785static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1786{
1787	/* Set the interrupt occurred bit for the sp-task to recognize it
1788	 * must ack the interrupt and transition according to the IGU
1789	 * state machine.
1790	 */
1791	atomic_set(&bp->interrupt_occurred, 1);
1792
1793	/* The sp_task must execute only after this bit
1794	 * is set, otherwise we will get out of sync and miss all
1795	 * further interrupts. Hence, the barrier.
1796	 */
1797	smp_wmb();
1798
1799	/* schedule sp_task to workqueue */
1800	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1801}
1802
1803void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1804{
1805	struct bnx2x *bp = fp->bp;
1806	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1807	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1808	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1809	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1810
1811	DP(BNX2X_MSG_SP,
1812	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1813	   fp->index, cid, command, bp->state,
1814	   rr_cqe->ramrod_cqe.ramrod_type);
1815
1816	/* If cid is within VF range, replace the slowpath object with the
1817	 * one corresponding to this VF
1818	 */
1819	if (cid >= BNX2X_FIRST_VF_CID  &&
1820	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1821		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1822
1823	switch (command) {
1824	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1825		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1826		drv_cmd = BNX2X_Q_CMD_UPDATE;
1827		break;
1828
1829	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1830		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1831		drv_cmd = BNX2X_Q_CMD_SETUP;
1832		break;
1833
1834	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1835		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1836		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1837		break;
1838
1839	case (RAMROD_CMD_ID_ETH_HALT):
1840		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1841		drv_cmd = BNX2X_Q_CMD_HALT;
1842		break;
1843
1844	case (RAMROD_CMD_ID_ETH_TERMINATE):
1845		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1846		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1847		break;
1848
1849	case (RAMROD_CMD_ID_ETH_EMPTY):
1850		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1851		drv_cmd = BNX2X_Q_CMD_EMPTY;
1852		break;
1853
1854	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1855		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1856		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1857		break;
1858
1859	default:
1860		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1861			  command, fp->index);
1862		return;
1863	}
1864
1865	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1866	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1867		/* q_obj->complete_cmd() failure means that this was
1868		 * an unexpected completion.
1869		 *
1870		 * In this case we don't want to increase the bp->spq_left
1871		 * because apparently we haven't sent this command the first
1872		 * place.
1873		 */
1874#ifdef BNX2X_STOP_ON_ERROR
1875		bnx2x_panic();
1876#else
1877		return;
1878#endif
1879
1880	smp_mb__before_atomic();
1881	atomic_inc(&bp->cq_spq_left);
1882	/* push the change in bp->spq_left and towards the memory */
1883	smp_mb__after_atomic();
1884
1885	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1886
1887	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1888	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1889		/* if Q update ramrod is completed for last Q in AFEX vif set
1890		 * flow, then ACK MCP at the end
1891		 *
1892		 * mark pending ACK to MCP bit.
1893		 * prevent case that both bits are cleared.
1894		 * At the end of load/unload driver checks that
1895		 * sp_state is cleared, and this order prevents
1896		 * races
1897		 */
1898		smp_mb__before_atomic();
1899		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1900		wmb();
1901		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1902		smp_mb__after_atomic();
1903
1904		/* schedule the sp task as mcp ack is required */
1905		bnx2x_schedule_sp_task(bp);
1906	}
1907
1908	return;
1909}
1910
1911irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1912{
1913	struct bnx2x *bp = netdev_priv(dev_instance);
1914	u16 status = bnx2x_ack_int(bp);
1915	u16 mask;
1916	int i;
1917	u8 cos;
1918
1919	/* Return here if interrupt is shared and it's not for us */
1920	if (unlikely(status == 0)) {
1921		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1922		return IRQ_NONE;
1923	}
1924	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1925
1926#ifdef BNX2X_STOP_ON_ERROR
1927	if (unlikely(bp->panic))
1928		return IRQ_HANDLED;
1929#endif
1930
1931	for_each_eth_queue(bp, i) {
1932		struct bnx2x_fastpath *fp = &bp->fp[i];
1933
1934		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1935		if (status & mask) {
1936			/* Handle Rx or Tx according to SB id */
1937			for_each_cos_in_tx_queue(fp, cos)
1938				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1939			prefetch(&fp->sb_running_index[SM_RX_ID]);
1940			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1941			status &= ~mask;
1942		}
1943	}
1944
1945	if (CNIC_SUPPORT(bp)) {
1946		mask = 0x2;
1947		if (status & (mask | 0x1)) {
1948			struct cnic_ops *c_ops = NULL;
1949
1950			rcu_read_lock();
1951			c_ops = rcu_dereference(bp->cnic_ops);
1952			if (c_ops && (bp->cnic_eth_dev.drv_state &
1953				      CNIC_DRV_STATE_HANDLES_IRQ))
1954				c_ops->cnic_handler(bp->cnic_data, NULL);
1955			rcu_read_unlock();
1956
1957			status &= ~mask;
1958		}
1959	}
1960
1961	if (unlikely(status & 0x1)) {
1962
1963		/* schedule sp task to perform default status block work, ack
1964		 * attentions and enable interrupts.
1965		 */
1966		bnx2x_schedule_sp_task(bp);
1967
1968		status &= ~0x1;
1969		if (!status)
1970			return IRQ_HANDLED;
1971	}
1972
1973	if (unlikely(status))
1974		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1975		   status);
1976
1977	return IRQ_HANDLED;
1978}
1979
1980/* Link */
1981
1982/*
1983 * General service functions
1984 */
1985
1986int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1987{
1988	u32 lock_status;
1989	u32 resource_bit = (1 << resource);
1990	int func = BP_FUNC(bp);
1991	u32 hw_lock_control_reg;
1992	int cnt;
1993
1994	/* Validating that the resource is within range */
1995	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1996		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1997		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1998		return -EINVAL;
1999	}
2000
2001	if (func <= 5) {
2002		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2003	} else {
2004		hw_lock_control_reg =
2005				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2006	}
2007
2008	/* Validating that the resource is not already taken */
2009	lock_status = REG_RD(bp, hw_lock_control_reg);
2010	if (lock_status & resource_bit) {
2011		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2012		   lock_status, resource_bit);
2013		return -EEXIST;
2014	}
2015
2016	/* Try for 5 second every 5ms */
2017	for (cnt = 0; cnt < 1000; cnt++) {
2018		/* Try to acquire the lock */
2019		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2020		lock_status = REG_RD(bp, hw_lock_control_reg);
2021		if (lock_status & resource_bit)
2022			return 0;
2023
2024		usleep_range(5000, 10000);
2025	}
2026	BNX2X_ERR("Timeout\n");
2027	return -EAGAIN;
2028}
2029
2030int bnx2x_release_leader_lock(struct bnx2x *bp)
2031{
2032	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2033}
2034
2035int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2036{
2037	u32 lock_status;
2038	u32 resource_bit = (1 << resource);
2039	int func = BP_FUNC(bp);
2040	u32 hw_lock_control_reg;
2041
2042	/* Validating that the resource is within range */
2043	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2044		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2045		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2046		return -EINVAL;
2047	}
2048
2049	if (func <= 5) {
2050		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2051	} else {
2052		hw_lock_control_reg =
2053				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2054	}
2055
2056	/* Validating that the resource is currently taken */
2057	lock_status = REG_RD(bp, hw_lock_control_reg);
2058	if (!(lock_status & resource_bit)) {
2059		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2060			  lock_status, resource_bit);
2061		return -EFAULT;
2062	}
2063
2064	REG_WR(bp, hw_lock_control_reg, resource_bit);
2065	return 0;
2066}
2067
2068int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2069{
2070	/* The GPIO should be swapped if swap register is set and active */
2071	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2072			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2073	int gpio_shift = gpio_num +
2074			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2075	u32 gpio_mask = (1 << gpio_shift);
2076	u32 gpio_reg;
2077	int value;
2078
2079	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2080		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2081		return -EINVAL;
2082	}
2083
2084	/* read GPIO value */
2085	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2086
2087	/* get the requested pin value */
2088	if ((gpio_reg & gpio_mask) == gpio_mask)
2089		value = 1;
2090	else
2091		value = 0;
2092
2093	return value;
2094}
2095
2096int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2097{
2098	/* The GPIO should be swapped if swap register is set and active */
2099	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2100			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2101	int gpio_shift = gpio_num +
2102			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2103	u32 gpio_mask = (1 << gpio_shift);
2104	u32 gpio_reg;
2105
2106	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2107		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2108		return -EINVAL;
2109	}
2110
2111	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2112	/* read GPIO and mask except the float bits */
2113	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2114
2115	switch (mode) {
2116	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2117		DP(NETIF_MSG_LINK,
2118		   "Set GPIO %d (shift %d) -> output low\n",
2119		   gpio_num, gpio_shift);
2120		/* clear FLOAT and set CLR */
2121		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2122		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2123		break;
2124
2125	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2126		DP(NETIF_MSG_LINK,
2127		   "Set GPIO %d (shift %d) -> output high\n",
2128		   gpio_num, gpio_shift);
2129		/* clear FLOAT and set SET */
2130		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2131		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2132		break;
2133
2134	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2135		DP(NETIF_MSG_LINK,
2136		   "Set GPIO %d (shift %d) -> input\n",
2137		   gpio_num, gpio_shift);
2138		/* set FLOAT */
2139		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2140		break;
2141
2142	default:
2143		break;
2144	}
2145
2146	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2147	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2148
2149	return 0;
2150}
2151
2152int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2153{
2154	u32 gpio_reg = 0;
2155	int rc = 0;
2156
2157	/* Any port swapping should be handled by caller. */
2158
2159	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2160	/* read GPIO and mask except the float bits */
2161	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2162	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2163	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2164	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2165
2166	switch (mode) {
2167	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2168		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2169		/* set CLR */
2170		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2171		break;
2172
2173	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2174		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2175		/* set SET */
2176		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2177		break;
2178
2179	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2180		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2181		/* set FLOAT */
2182		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2183		break;
2184
2185	default:
2186		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2187		rc = -EINVAL;
2188		break;
2189	}
2190
2191	if (rc == 0)
2192		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2193
2194	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2195
2196	return rc;
2197}
2198
2199int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2200{
2201	/* The GPIO should be swapped if swap register is set and active */
2202	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2203			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2204	int gpio_shift = gpio_num +
2205			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2206	u32 gpio_mask = (1 << gpio_shift);
2207	u32 gpio_reg;
2208
2209	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2210		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2211		return -EINVAL;
2212	}
2213
2214	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2215	/* read GPIO int */
2216	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2217
2218	switch (mode) {
2219	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2220		DP(NETIF_MSG_LINK,
2221		   "Clear GPIO INT %d (shift %d) -> output low\n",
2222		   gpio_num, gpio_shift);
2223		/* clear SET and set CLR */
2224		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2225		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2226		break;
2227
2228	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2229		DP(NETIF_MSG_LINK,
2230		   "Set GPIO INT %d (shift %d) -> output high\n",
2231		   gpio_num, gpio_shift);
2232		/* clear CLR and set SET */
2233		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2234		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2235		break;
2236
2237	default:
2238		break;
2239	}
2240
2241	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2242	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2243
2244	return 0;
2245}
2246
2247static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2248{
2249	u32 spio_reg;
2250
2251	/* Only 2 SPIOs are configurable */
2252	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2253		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2254		return -EINVAL;
2255	}
2256
2257	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2258	/* read SPIO and mask except the float bits */
2259	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2260
2261	switch (mode) {
2262	case MISC_SPIO_OUTPUT_LOW:
2263		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2264		/* clear FLOAT and set CLR */
2265		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2266		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2267		break;
2268
2269	case MISC_SPIO_OUTPUT_HIGH:
2270		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2271		/* clear FLOAT and set SET */
2272		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2273		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2274		break;
2275
2276	case MISC_SPIO_INPUT_HI_Z:
2277		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2278		/* set FLOAT */
2279		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2280		break;
2281
2282	default:
2283		break;
2284	}
2285
2286	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2287	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2288
2289	return 0;
2290}
2291
2292void bnx2x_calc_fc_adv(struct bnx2x *bp)
2293{
2294	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2295
2296	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2297					   ADVERTISED_Pause);
2298	switch (bp->link_vars.ieee_fc &
2299		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2300	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2301		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2302						  ADVERTISED_Pause);
2303		break;
2304
2305	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2306		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2307		break;
2308
2309	default:
2310		break;
2311	}
2312}
2313
2314static void bnx2x_set_requested_fc(struct bnx2x *bp)
2315{
2316	/* Initialize link parameters structure variables
2317	 * It is recommended to turn off RX FC for jumbo frames
2318	 *  for better performance
2319	 */
2320	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2321		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2322	else
2323		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2324}
2325
2326static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2327{
2328	u32 pause_enabled = 0;
2329
2330	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2331		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2332			pause_enabled = 1;
2333
2334		REG_WR(bp, BAR_USTRORM_INTMEM +
2335			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2336		       pause_enabled);
2337	}
2338
2339	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2340	   pause_enabled ? "enabled" : "disabled");
2341}
2342
2343int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2344{
2345	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2346	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2347
2348	if (!BP_NOMCP(bp)) {
2349		bnx2x_set_requested_fc(bp);
2350		bnx2x_acquire_phy_lock(bp);
2351
2352		if (load_mode == LOAD_DIAG) {
2353			struct link_params *lp = &bp->link_params;
2354			lp->loopback_mode = LOOPBACK_XGXS;
2355			/* Prefer doing PHY loopback at highest speed */
2356			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2357				if (lp->speed_cap_mask[cfx_idx] &
2358				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2359					lp->req_line_speed[cfx_idx] =
2360					SPEED_20000;
2361				else if (lp->speed_cap_mask[cfx_idx] &
2362					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2363						lp->req_line_speed[cfx_idx] =
2364						SPEED_10000;
2365				else
2366					lp->req_line_speed[cfx_idx] =
2367					SPEED_1000;
2368			}
2369		}
2370
2371		if (load_mode == LOAD_LOOPBACK_EXT) {
2372			struct link_params *lp = &bp->link_params;
2373			lp->loopback_mode = LOOPBACK_EXT;
2374		}
2375
2376		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2377
2378		bnx2x_release_phy_lock(bp);
2379
2380		bnx2x_init_dropless_fc(bp);
2381
2382		bnx2x_calc_fc_adv(bp);
2383
2384		if (bp->link_vars.link_up) {
2385			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2386			bnx2x_link_report(bp);
2387		}
2388		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2389		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2390		return rc;
2391	}
2392	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2393	return -EINVAL;
2394}
2395
2396void bnx2x_link_set(struct bnx2x *bp)
2397{
2398	if (!BP_NOMCP(bp)) {
2399		bnx2x_acquire_phy_lock(bp);
2400		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2401		bnx2x_release_phy_lock(bp);
2402
2403		bnx2x_init_dropless_fc(bp);
2404
2405		bnx2x_calc_fc_adv(bp);
2406	} else
2407		BNX2X_ERR("Bootcode is missing - can not set link\n");
2408}
2409
2410static void bnx2x__link_reset(struct bnx2x *bp)
2411{
2412	if (!BP_NOMCP(bp)) {
2413		bnx2x_acquire_phy_lock(bp);
2414		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2415		bnx2x_release_phy_lock(bp);
2416	} else
2417		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2418}
2419
2420void bnx2x_force_link_reset(struct bnx2x *bp)
2421{
2422	bnx2x_acquire_phy_lock(bp);
2423	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2424	bnx2x_release_phy_lock(bp);
2425}
2426
2427u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2428{
2429	u8 rc = 0;
2430
2431	if (!BP_NOMCP(bp)) {
2432		bnx2x_acquire_phy_lock(bp);
2433		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2434				     is_serdes);
2435		bnx2x_release_phy_lock(bp);
2436	} else
2437		BNX2X_ERR("Bootcode is missing - can not test link\n");
2438
2439	return rc;
2440}
2441
2442/* Calculates the sum of vn_min_rates.
2443   It's needed for further normalizing of the min_rates.
2444   Returns:
2445     sum of vn_min_rates.
2446       or
2447     0 - if all the min_rates are 0.
2448     In the later case fairness algorithm should be deactivated.
2449     If not all min_rates are zero then those that are zeroes will be set to 1.
2450 */
2451static void bnx2x_calc_vn_min(struct bnx2x *bp,
2452				      struct cmng_init_input *input)
2453{
2454	int all_zero = 1;
2455	int vn;
2456
2457	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2458		u32 vn_cfg = bp->mf_config[vn];
2459		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2460				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2461
2462		/* Skip hidden vns */
2463		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2464			vn_min_rate = 0;
2465		/* If min rate is zero - set it to 1 */
2466		else if (!vn_min_rate)
2467			vn_min_rate = DEF_MIN_RATE;
2468		else
2469			all_zero = 0;
2470
2471		input->vnic_min_rate[vn] = vn_min_rate;
2472	}
2473
2474	/* if ETS or all min rates are zeros - disable fairness */
2475	if (BNX2X_IS_ETS_ENABLED(bp)) {
2476		input->flags.cmng_enables &=
2477					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2478		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2479	} else if (all_zero) {
2480		input->flags.cmng_enables &=
2481					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482		DP(NETIF_MSG_IFUP,
2483		   "All MIN values are zeroes fairness will be disabled\n");
2484	} else
2485		input->flags.cmng_enables |=
2486					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2487}
2488
2489static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2490				    struct cmng_init_input *input)
2491{
2492	u16 vn_max_rate;
2493	u32 vn_cfg = bp->mf_config[vn];
2494
2495	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2496		vn_max_rate = 0;
2497	else {
2498		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2499
2500		if (IS_MF_PERCENT_BW(bp)) {
2501			/* maxCfg in percents of linkspeed */
2502			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2503		} else /* SD modes */
2504			/* maxCfg is absolute in 100Mb units */
2505			vn_max_rate = maxCfg * 100;
2506	}
2507
2508	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2509
2510	input->vnic_max_rate[vn] = vn_max_rate;
2511}
2512
2513static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2514{
2515	if (CHIP_REV_IS_SLOW(bp))
2516		return CMNG_FNS_NONE;
2517	if (IS_MF(bp))
2518		return CMNG_FNS_MINMAX;
2519
2520	return CMNG_FNS_NONE;
2521}
2522
2523void bnx2x_read_mf_cfg(struct bnx2x *bp)
2524{
2525	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2526
2527	if (BP_NOMCP(bp))
2528		return; /* what should be the default value in this case */
2529
2530	/* For 2 port configuration the absolute function number formula
2531	 * is:
2532	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2533	 *
2534	 *      and there are 4 functions per port
2535	 *
2536	 * For 4 port configuration it is
2537	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2538	 *
2539	 *      and there are 2 functions per port
2540	 */
2541	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2542		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2543
2544		if (func >= E1H_FUNC_MAX)
2545			break;
2546
2547		bp->mf_config[vn] =
2548			MF_CFG_RD(bp, func_mf_config[func].config);
2549	}
2550	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2551		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2552		bp->flags |= MF_FUNC_DIS;
2553	} else {
2554		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2555		bp->flags &= ~MF_FUNC_DIS;
2556	}
2557}
2558
2559static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2560{
2561	struct cmng_init_input input;
2562	memset(&input, 0, sizeof(struct cmng_init_input));
2563
2564	input.port_rate = bp->link_vars.line_speed;
2565
2566	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2567		int vn;
2568
2569		/* read mf conf from shmem */
2570		if (read_cfg)
2571			bnx2x_read_mf_cfg(bp);
2572
2573		/* vn_weight_sum and enable fairness if not 0 */
2574		bnx2x_calc_vn_min(bp, &input);
2575
2576		/* calculate and set min-max rate for each vn */
2577		if (bp->port.pmf)
2578			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2579				bnx2x_calc_vn_max(bp, vn, &input);
2580
2581		/* always enable rate shaping and fairness */
2582		input.flags.cmng_enables |=
2583					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2584
2585		bnx2x_init_cmng(&input, &bp->cmng);
2586		return;
2587	}
2588
2589	/* rate shaping and fairness are disabled */
2590	DP(NETIF_MSG_IFUP,
2591	   "rate shaping and fairness are disabled\n");
2592}
2593
2594static void storm_memset_cmng(struct bnx2x *bp,
2595			      struct cmng_init *cmng,
2596			      u8 port)
2597{
2598	int vn;
2599	size_t size = sizeof(struct cmng_struct_per_port);
2600
2601	u32 addr = BAR_XSTRORM_INTMEM +
2602			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2603
2604	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2605
2606	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2607		int func = func_by_vn(bp, vn);
2608
2609		addr = BAR_XSTRORM_INTMEM +
2610		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2611		size = sizeof(struct rate_shaping_vars_per_vn);
2612		__storm_memset_struct(bp, addr, size,
2613				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2614
2615		addr = BAR_XSTRORM_INTMEM +
2616		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2617		size = sizeof(struct fairness_vars_per_vn);
2618		__storm_memset_struct(bp, addr, size,
2619				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2620	}
2621}
2622
2623/* init cmng mode in HW according to local configuration */
2624void bnx2x_set_local_cmng(struct bnx2x *bp)
2625{
2626	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2627
2628	if (cmng_fns != CMNG_FNS_NONE) {
2629		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2630		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2631	} else {
2632		/* rate shaping and fairness are disabled */
2633		DP(NETIF_MSG_IFUP,
2634		   "single function mode without fairness\n");
2635	}
2636}
2637
2638/* This function is called upon link interrupt */
2639static void bnx2x_link_attn(struct bnx2x *bp)
2640{
2641	/* Make sure that we are synced with the current statistics */
2642	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2643
2644	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2645
2646	bnx2x_init_dropless_fc(bp);
2647
2648	if (bp->link_vars.link_up) {
2649
2650		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2651			struct host_port_stats *pstats;
2652
2653			pstats = bnx2x_sp(bp, port_stats);
2654			/* reset old mac stats */
2655			memset(&(pstats->mac_stx[0]), 0,
2656			       sizeof(struct mac_stx));
2657		}
2658		if (bp->state == BNX2X_STATE_OPEN)
2659			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2660	}
2661
2662	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2663		bnx2x_set_local_cmng(bp);
2664
2665	__bnx2x_link_report(bp);
2666
2667	if (IS_MF(bp))
2668		bnx2x_link_sync_notify(bp);
2669}
2670
2671void bnx2x__link_status_update(struct bnx2x *bp)
2672{
2673	if (bp->state != BNX2X_STATE_OPEN)
2674		return;
2675
2676	/* read updated dcb configuration */
2677	if (IS_PF(bp)) {
2678		bnx2x_dcbx_pmf_update(bp);
2679		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2680		if (bp->link_vars.link_up)
2681			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2682		else
2683			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2684			/* indicate link status */
2685		bnx2x_link_report(bp);
2686
2687	} else { /* VF */
2688		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2689					  SUPPORTED_10baseT_Full |
2690					  SUPPORTED_100baseT_Half |
2691					  SUPPORTED_100baseT_Full |
2692					  SUPPORTED_1000baseT_Full |
2693					  SUPPORTED_2500baseX_Full |
2694					  SUPPORTED_10000baseT_Full |
2695					  SUPPORTED_TP |
2696					  SUPPORTED_FIBRE |
2697					  SUPPORTED_Autoneg |
2698					  SUPPORTED_Pause |
2699					  SUPPORTED_Asym_Pause);
2700		bp->port.advertising[0] = bp->port.supported[0];
2701
2702		bp->link_params.bp = bp;
2703		bp->link_params.port = BP_PORT(bp);
2704		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2705		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2706		bp->link_params.req_line_speed[0] = SPEED_10000;
2707		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2708		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2709		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2710		bp->link_vars.line_speed = SPEED_10000;
2711		bp->link_vars.link_status =
2712			(LINK_STATUS_LINK_UP |
2713			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2714		bp->link_vars.link_up = 1;
2715		bp->link_vars.duplex = DUPLEX_FULL;
2716		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2717		__bnx2x_link_report(bp);
2718
2719		bnx2x_sample_bulletin(bp);
2720
2721		/* if bulletin board did not have an update for link status
2722		 * __bnx2x_link_report will report current status
2723		 * but it will NOT duplicate report in case of already reported
2724		 * during sampling bulletin board.
2725		 */
2726		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2727	}
2728}
2729
2730static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2731				  u16 vlan_val, u8 allowed_prio)
2732{
2733	struct bnx2x_func_state_params func_params = {NULL};
2734	struct bnx2x_func_afex_update_params *f_update_params =
2735		&func_params.params.afex_update;
2736
2737	func_params.f_obj = &bp->func_obj;
2738	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2739
2740	/* no need to wait for RAMROD completion, so don't
2741	 * set RAMROD_COMP_WAIT flag
2742	 */
2743
2744	f_update_params->vif_id = vifid;
2745	f_update_params->afex_default_vlan = vlan_val;
2746	f_update_params->allowed_priorities = allowed_prio;
2747
2748	/* if ramrod can not be sent, response to MCP immediately */
2749	if (bnx2x_func_state_change(bp, &func_params) < 0)
2750		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2751
2752	return 0;
2753}
2754
2755static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2756					  u16 vif_index, u8 func_bit_map)
2757{
2758	struct bnx2x_func_state_params func_params = {NULL};
2759	struct bnx2x_func_afex_viflists_params *update_params =
2760		&func_params.params.afex_viflists;
2761	int rc;
2762	u32 drv_msg_code;
2763
2764	/* validate only LIST_SET and LIST_GET are received from switch */
2765	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2766		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2767			  cmd_type);
2768
2769	func_params.f_obj = &bp->func_obj;
2770	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2771
2772	/* set parameters according to cmd_type */
2773	update_params->afex_vif_list_command = cmd_type;
2774	update_params->vif_list_index = vif_index;
2775	update_params->func_bit_map =
2776		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2777	update_params->func_to_clear = 0;
2778	drv_msg_code =
2779		(cmd_type == VIF_LIST_RULE_GET) ?
2780		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2781		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2782
2783	/* if ramrod can not be sent, respond to MCP immediately for
2784	 * SET and GET requests (other are not triggered from MCP)
2785	 */
2786	rc = bnx2x_func_state_change(bp, &func_params);
2787	if (rc < 0)
2788		bnx2x_fw_command(bp, drv_msg_code, 0);
2789
2790	return 0;
2791}
2792
2793static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2794{
2795	struct afex_stats afex_stats;
2796	u32 func = BP_ABS_FUNC(bp);
2797	u32 mf_config;
2798	u16 vlan_val;
2799	u32 vlan_prio;
2800	u16 vif_id;
2801	u8 allowed_prio;
2802	u8 vlan_mode;
2803	u32 addr_to_write, vifid, addrs, stats_type, i;
2804
2805	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2806		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2807		DP(BNX2X_MSG_MCP,
2808		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2809		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2810	}
2811
2812	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2813		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2814		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2815		DP(BNX2X_MSG_MCP,
2816		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2817		   vifid, addrs);
2818		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2819					       addrs);
2820	}
2821
2822	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2823		addr_to_write = SHMEM2_RD(bp,
2824			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2825		stats_type = SHMEM2_RD(bp,
2826			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2827
2828		DP(BNX2X_MSG_MCP,
2829		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2830		   addr_to_write);
2831
2832		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2833
2834		/* write response to scratchpad, for MCP */
2835		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2836			REG_WR(bp, addr_to_write + i*sizeof(u32),
2837			       *(((u32 *)(&afex_stats))+i));
2838
2839		/* send ack message to MCP */
2840		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2841	}
2842
2843	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2844		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2845		bp->mf_config[BP_VN(bp)] = mf_config;
2846		DP(BNX2X_MSG_MCP,
2847		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2848		   mf_config);
2849
2850		/* if VIF_SET is "enabled" */
2851		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2852			/* set rate limit directly to internal RAM */
2853			struct cmng_init_input cmng_input;
2854			struct rate_shaping_vars_per_vn m_rs_vn;
2855			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2856			u32 addr = BAR_XSTRORM_INTMEM +
2857			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2858
2859			bp->mf_config[BP_VN(bp)] = mf_config;
2860
2861			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2862			m_rs_vn.vn_counter.rate =
2863				cmng_input.vnic_max_rate[BP_VN(bp)];
2864			m_rs_vn.vn_counter.quota =
2865				(m_rs_vn.vn_counter.rate *
2866				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2867
2868			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2869
2870			/* read relevant values from mf_cfg struct in shmem */
2871			vif_id =
2872				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2873				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2874				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2875			vlan_val =
2876				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2877				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2878				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2879			vlan_prio = (mf_config &
2880				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2881				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2882			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2883			vlan_mode =
2884				(MF_CFG_RD(bp,
2885					   func_mf_config[func].afex_config) &
2886				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2887				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2888			allowed_prio =
2889				(MF_CFG_RD(bp,
2890					   func_mf_config[func].afex_config) &
2891				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2892				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2893
2894			/* send ramrod to FW, return in case of failure */
2895			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2896						   allowed_prio))
2897				return;
2898
2899			bp->afex_def_vlan_tag = vlan_val;
2900			bp->afex_vlan_mode = vlan_mode;
2901		} else {
2902			/* notify link down because BP->flags is disabled */
2903			bnx2x_link_report(bp);
2904
2905			/* send INVALID VIF ramrod to FW */
2906			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2907
2908			/* Reset the default afex VLAN */
2909			bp->afex_def_vlan_tag = -1;
2910		}
2911	}
2912}
2913
2914static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2915{
2916	struct bnx2x_func_switch_update_params *switch_update_params;
2917	struct bnx2x_func_state_params func_params;
2918
2919	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2920	switch_update_params = &func_params.params.switch_update;
2921	func_params.f_obj = &bp->func_obj;
2922	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2923
2924	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2925		int func = BP_ABS_FUNC(bp);
2926		u32 val;
2927
2928		/* Re-learn the S-tag from shmem */
2929		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2930				FUNC_MF_CFG_E1HOV_TAG_MASK;
2931		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2932			bp->mf_ov = val;
2933		} else {
2934			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2935			goto fail;
2936		}
2937
2938		/* Configure new S-tag in LLH */
2939		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2940		       bp->mf_ov);
2941
2942		/* Send Ramrod to update FW of change */
2943		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2944			  &switch_update_params->changes);
2945		switch_update_params->vlan = bp->mf_ov;
2946
2947		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2948			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2949				  bp->mf_ov);
2950			goto fail;
2951		} else {
2952			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2953			   bp->mf_ov);
2954		}
2955	} else {
2956		goto fail;
2957	}
2958
2959	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2960	return;
2961fail:
2962	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2963}
2964
2965static void bnx2x_pmf_update(struct bnx2x *bp)
2966{
2967	int port = BP_PORT(bp);
2968	u32 val;
2969
2970	bp->port.pmf = 1;
2971	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2972
2973	/*
2974	 * We need the mb() to ensure the ordering between the writing to
2975	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2976	 */
2977	smp_mb();
2978
2979	/* queue a periodic task */
2980	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2981
2982	bnx2x_dcbx_pmf_update(bp);
2983
2984	/* enable nig attention */
2985	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2986	if (bp->common.int_block == INT_BLOCK_HC) {
2987		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2988		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2989	} else if (!CHIP_IS_E1x(bp)) {
2990		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2991		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2992	}
2993
2994	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2995}
2996
2997/* end of Link */
2998
2999/* slow path */
3000
3001/*
3002 * General service functions
3003 */
3004
3005/* send the MCP a request, block until there is a reply */
3006u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3007{
3008	int mb_idx = BP_FW_MB_IDX(bp);
3009	u32 seq;
3010	u32 rc = 0;
3011	u32 cnt = 1;
3012	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3013
3014	mutex_lock(&bp->fw_mb_mutex);
3015	seq = ++bp->fw_seq;
3016	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3017	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3018
3019	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3020			(command | seq), param);
3021
3022	do {
3023		/* let the FW do it's magic ... */
3024		msleep(delay);
3025
3026		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3027
3028		/* Give the FW up to 5 second (500*10ms) */
3029	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3030
3031	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3032	   cnt*delay, rc, seq);
3033
3034	/* is this a reply to our command? */
3035	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3036		rc &= FW_MSG_CODE_MASK;
3037	else {
3038		/* FW BUG! */
3039		BNX2X_ERR("FW failed to respond!\n");
3040		bnx2x_fw_dump(bp);
3041		rc = 0;
3042	}
3043	mutex_unlock(&bp->fw_mb_mutex);
3044
3045	return rc;
3046}
3047
3048static void storm_memset_func_cfg(struct bnx2x *bp,
3049				 struct tstorm_eth_function_common_config *tcfg,
3050				 u16 abs_fid)
3051{
3052	size_t size = sizeof(struct tstorm_eth_function_common_config);
3053
3054	u32 addr = BAR_TSTRORM_INTMEM +
3055			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3056
3057	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3058}
3059
3060void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3061{
3062	if (CHIP_IS_E1x(bp)) {
3063		struct tstorm_eth_function_common_config tcfg = {0};
3064
3065		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3066	}
3067
3068	/* Enable the function in the FW */
3069	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3070	storm_memset_func_en(bp, p->func_id, 1);
3071
3072	/* spq */
3073	if (p->spq_active) {
3074		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3075		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3076		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3077	}
3078}
3079
3080/**
3081 * bnx2x_get_common_flags - Return common flags
3082 *
3083 * @bp		device handle
3084 * @fp		queue handle
3085 * @zero_stats	TRUE if statistics zeroing is needed
3086 *
3087 * Return the flags that are common for the Tx-only and not normal connections.
3088 */
3089static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3090					    struct bnx2x_fastpath *fp,
3091					    bool zero_stats)
3092{
3093	unsigned long flags = 0;
3094
3095	/* PF driver will always initialize the Queue to an ACTIVE state */
3096	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3097
3098	/* tx only connections collect statistics (on the same index as the
3099	 * parent connection). The statistics are zeroed when the parent
3100	 * connection is initialized.
3101	 */
3102
3103	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3104	if (zero_stats)
3105		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3106
3107	if (bp->flags & TX_SWITCHING)
3108		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3109
3110	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3111	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3112
3113#ifdef BNX2X_STOP_ON_ERROR
3114	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3115#endif
3116
3117	return flags;
3118}
3119
3120static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3121				       struct bnx2x_fastpath *fp,
3122				       bool leading)
3123{
3124	unsigned long flags = 0;
3125
3126	/* calculate other queue flags */
3127	if (IS_MF_SD(bp))
3128		__set_bit(BNX2X_Q_FLG_OV, &flags);
3129
3130	if (IS_FCOE_FP(fp)) {
3131		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3132		/* For FCoE - force usage of default priority (for afex) */
3133		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3134	}
3135
3136	if (fp->mode != TPA_MODE_DISABLED) {
3137		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3138		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3139		if (fp->mode == TPA_MODE_GRO)
3140			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3141	}
3142
3143	if (leading) {
3144		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3145		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3146	}
3147
3148	/* Always set HW VLAN stripping */
3149	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3150
3151	/* configure silent vlan removal */
3152	if (IS_MF_AFEX(bp))
3153		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3154
3155	return flags | bnx2x_get_common_flags(bp, fp, true);
3156}
3157
3158static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3159	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3160	u8 cos)
3161{
3162	gen_init->stat_id = bnx2x_stats_id(fp);
3163	gen_init->spcl_id = fp->cl_id;
3164
3165	/* Always use mini-jumbo MTU for FCoE L2 ring */
3166	if (IS_FCOE_FP(fp))
3167		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3168	else
3169		gen_init->mtu = bp->dev->mtu;
3170
3171	gen_init->cos = cos;
3172
3173	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3174}
3175
3176static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3177	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3178	struct bnx2x_rxq_setup_params *rxq_init)
3179{
3180	u8 max_sge = 0;
3181	u16 sge_sz = 0;
3182	u16 tpa_agg_size = 0;
3183
3184	if (fp->mode != TPA_MODE_DISABLED) {
3185		pause->sge_th_lo = SGE_TH_LO(bp);
3186		pause->sge_th_hi = SGE_TH_HI(bp);
3187
3188		/* validate SGE ring has enough to cross high threshold */
3189		WARN_ON(bp->dropless_fc &&
3190				pause->sge_th_hi + FW_PREFETCH_CNT >
3191				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3192
3193		tpa_agg_size = TPA_AGG_SIZE;
3194		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3195			SGE_PAGE_SHIFT;
3196		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3197			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3198		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3199	}
3200
3201	/* pause - not for e1 */
3202	if (!CHIP_IS_E1(bp)) {
3203		pause->bd_th_lo = BD_TH_LO(bp);
3204		pause->bd_th_hi = BD_TH_HI(bp);
3205
3206		pause->rcq_th_lo = RCQ_TH_LO(bp);
3207		pause->rcq_th_hi = RCQ_TH_HI(bp);
3208		/*
3209		 * validate that rings have enough entries to cross
3210		 * high thresholds
3211		 */
3212		WARN_ON(bp->dropless_fc &&
3213				pause->bd_th_hi + FW_PREFETCH_CNT >
3214				bp->rx_ring_size);
3215		WARN_ON(bp->dropless_fc &&
3216				pause->rcq_th_hi + FW_PREFETCH_CNT >
3217				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3218
3219		pause->pri_map = 1;
3220	}
3221
3222	/* rxq setup */
3223	rxq_init->dscr_map = fp->rx_desc_mapping;
3224	rxq_init->sge_map = fp->rx_sge_mapping;
3225	rxq_init->rcq_map = fp->rx_comp_mapping;
3226	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3227
3228	/* This should be a maximum number of data bytes that may be
3229	 * placed on the BD (not including paddings).
3230	 */
3231	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3232			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3233
3234	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3235	rxq_init->tpa_agg_sz = tpa_agg_size;
3236	rxq_init->sge_buf_sz = sge_sz;
3237	rxq_init->max_sges_pkt = max_sge;
3238	rxq_init->rss_engine_id = BP_FUNC(bp);
3239	rxq_init->mcast_engine_id = BP_FUNC(bp);
3240
3241	/* Maximum number or simultaneous TPA aggregation for this Queue.
3242	 *
3243	 * For PF Clients it should be the maximum available number.
3244	 * VF driver(s) may want to define it to a smaller value.
3245	 */
3246	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3247
3248	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3249	rxq_init->fw_sb_id = fp->fw_sb_id;
3250
3251	if (IS_FCOE_FP(fp))
3252		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3253	else
3254		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3255	/* configure silent vlan removal
3256	 * if multi function mode is afex, then mask default vlan
3257	 */
3258	if (IS_MF_AFEX(bp)) {
3259		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3260		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3261	}
3262}
3263
3264static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3265	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3266	u8 cos)
3267{
3268	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3269	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3270	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3271	txq_init->fw_sb_id = fp->fw_sb_id;
3272
3273	/*
3274	 * set the tss leading client id for TX classification ==
3275	 * leading RSS client id
3276	 */
3277	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3278
3279	if (IS_FCOE_FP(fp)) {
3280		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3281		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3282	}
3283}
3284
3285static void bnx2x_pf_init(struct bnx2x *bp)
3286{
3287	struct bnx2x_func_init_params func_init = {0};
3288	struct event_ring_data eq_data = { {0} };
3289
3290	if (!CHIP_IS_E1x(bp)) {
3291		/* reset IGU PF statistics: MSIX + ATTN */
3292		/* PF */
3293		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3294			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3295			   (CHIP_MODE_IS_4_PORT(bp) ?
3296				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3297		/* ATTN */
3298		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3299			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3300			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3301			   (CHIP_MODE_IS_4_PORT(bp) ?
3302				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3303	}
3304
3305	func_init.spq_active = true;
3306	func_init.pf_id = BP_FUNC(bp);
3307	func_init.func_id = BP_FUNC(bp);
3308	func_init.spq_map = bp->spq_mapping;
3309	func_init.spq_prod = bp->spq_prod_idx;
3310
3311	bnx2x_func_init(bp, &func_init);
3312
3313	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3314
3315	/*
3316	 * Congestion management values depend on the link rate
3317	 * There is no active link so initial link rate is set to 10 Gbps.
3318	 * When the link comes up The congestion management values are
3319	 * re-calculated according to the actual link rate.
3320	 */
3321	bp->link_vars.line_speed = SPEED_10000;
3322	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3323
3324	/* Only the PMF sets the HW */
3325	if (bp->port.pmf)
3326		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3327
3328	/* init Event Queue - PCI bus guarantees correct endianity*/
3329	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3330	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3331	eq_data.producer = bp->eq_prod;
3332	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3333	eq_data.sb_id = DEF_SB_ID;
3334	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3335}
3336
3337static void bnx2x_e1h_disable(struct bnx2x *bp)
3338{
3339	int port = BP_PORT(bp);
3340
3341	bnx2x_tx_disable(bp);
3342
3343	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3344}
3345
3346static void bnx2x_e1h_enable(struct bnx2x *bp)
3347{
3348	int port = BP_PORT(bp);
3349
3350	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3351		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3352
3353	/* Tx queue should be only re-enabled */
3354	netif_tx_wake_all_queues(bp->dev);
3355
3356	/*
3357	 * Should not call netif_carrier_on since it will be called if the link
3358	 * is up when checking for link state
3359	 */
3360}
3361
3362#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3363
3364static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3365{
3366	struct eth_stats_info *ether_stat =
3367		&bp->slowpath->drv_info_to_mcp.ether_stat;
3368	struct bnx2x_vlan_mac_obj *mac_obj =
3369		&bp->sp_objs->mac_obj;
3370	int i;
3371
3372	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3373		ETH_STAT_INFO_VERSION_LEN);
3374
3375	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3376	 * mac_local field in ether_stat struct. The base address is offset by 2
3377	 * bytes to account for the field being 8 bytes but a mac address is
3378	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3379	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3380	 * allocated by the ether_stat struct, so the macs will land in their
3381	 * proper positions.
3382	 */
3383	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3384		memset(ether_stat->mac_local + i, 0,
3385		       sizeof(ether_stat->mac_local[0]));
3386	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3387				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3388				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3389				ETH_ALEN);
3390	ether_stat->mtu_size = bp->dev->mtu;
3391	if (bp->dev->features & NETIF_F_RXCSUM)
3392		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3393	if (bp->dev->features & NETIF_F_TSO)
3394		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3395	ether_stat->feature_flags |= bp->common.boot_mode;
3396
3397	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3398
3399	ether_stat->txq_size = bp->tx_ring_size;
3400	ether_stat->rxq_size = bp->rx_ring_size;
3401
3402#ifdef CONFIG_BNX2X_SRIOV
3403	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3404#endif
3405}
3406
3407static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3408{
3409	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3410	struct fcoe_stats_info *fcoe_stat =
3411		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3412
3413	if (!CNIC_LOADED(bp))
3414		return;
3415
3416	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3417
3418	fcoe_stat->qos_priority =
3419		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3420
3421	/* insert FCoE stats from ramrod response */
3422	if (!NO_FCOE(bp)) {
3423		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3424			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3425			tstorm_queue_statistics;
3426
3427		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3428			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3429			xstorm_queue_statistics;
3430
3431		struct fcoe_statistics_params *fw_fcoe_stat =
3432			&bp->fw_stats_data->fcoe;
3433
3434		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3435			  fcoe_stat->rx_bytes_lo,
3436			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3437
3438		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3439			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3440			  fcoe_stat->rx_bytes_lo,
3441			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3442
3443		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3444			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3445			  fcoe_stat->rx_bytes_lo,
3446			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3447
3448		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3449			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3450			  fcoe_stat->rx_bytes_lo,
3451			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3452
3453		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3454			  fcoe_stat->rx_frames_lo,
3455			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3456
3457		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3458			  fcoe_stat->rx_frames_lo,
3459			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3460
3461		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462			  fcoe_stat->rx_frames_lo,
3463			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3464
3465		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466			  fcoe_stat->rx_frames_lo,
3467			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3468
3469		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3470			  fcoe_stat->tx_bytes_lo,
3471			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3472
3473		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3474			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3475			  fcoe_stat->tx_bytes_lo,
3476			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3477
3478		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3479			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3480			  fcoe_stat->tx_bytes_lo,
3481			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3482
3483		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3484			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3485			  fcoe_stat->tx_bytes_lo,
3486			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3487
3488		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3489			  fcoe_stat->tx_frames_lo,
3490			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3491
3492		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3493			  fcoe_stat->tx_frames_lo,
3494			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3495
3496		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497			  fcoe_stat->tx_frames_lo,
3498			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3499
3500		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501			  fcoe_stat->tx_frames_lo,
3502			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3503	}
3504
3505	/* ask L5 driver to add data to the struct */
3506	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3507}
3508
3509static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3510{
3511	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3512	struct iscsi_stats_info *iscsi_stat =
3513		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3514
3515	if (!CNIC_LOADED(bp))
3516		return;
3517
3518	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3519	       ETH_ALEN);
3520
3521	iscsi_stat->qos_priority =
3522		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3523
3524	/* ask L5 driver to add data to the struct */
3525	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3526}
3527
3528/* called due to MCP event (on pmf):
3529 *	reread new bandwidth configuration
3530 *	configure FW
3531 *	notify others function about the change
3532 */
3533static void bnx2x_config_mf_bw(struct bnx2x *bp)
3534{
3535	if (bp->link_vars.link_up) {
3536		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3537		bnx2x_link_sync_notify(bp);
3538	}
3539	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3540}
3541
3542static void bnx2x_set_mf_bw(struct bnx2x *bp)
3543{
3544	bnx2x_config_mf_bw(bp);
3545	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3546}
3547
3548static void bnx2x_handle_eee_event(struct bnx2x *bp)
3549{
3550	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3551	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3552}
3553
3554#define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3555#define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3556
3557static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3558{
3559	enum drv_info_opcode op_code;
3560	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3561	bool release = false;
3562	int wait;
3563
3564	/* if drv_info version supported by MFW doesn't match - send NACK */
3565	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3566		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3567		return;
3568	}
3569
3570	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3571		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3572
3573	/* Must prevent other flows from accessing drv_info_to_mcp */
3574	mutex_lock(&bp->drv_info_mutex);
3575
3576	memset(&bp->slowpath->drv_info_to_mcp, 0,
3577	       sizeof(union drv_info_to_mcp));
3578
3579	switch (op_code) {
3580	case ETH_STATS_OPCODE:
3581		bnx2x_drv_info_ether_stat(bp);
3582		break;
3583	case FCOE_STATS_OPCODE:
3584		bnx2x_drv_info_fcoe_stat(bp);
3585		break;
3586	case ISCSI_STATS_OPCODE:
3587		bnx2x_drv_info_iscsi_stat(bp);
3588		break;
3589	default:
3590		/* if op code isn't supported - send NACK */
3591		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3592		goto out;
3593	}
3594
3595	/* if we got drv_info attn from MFW then these fields are defined in
3596	 * shmem2 for sure
3597	 */
3598	SHMEM2_WR(bp, drv_info_host_addr_lo,
3599		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3600	SHMEM2_WR(bp, drv_info_host_addr_hi,
3601		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3602
3603	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3604
3605	/* Since possible management wants both this and get_driver_version
3606	 * need to wait until management notifies us it finished utilizing
3607	 * the buffer.
3608	 */
3609	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3610		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3611	} else if (!bp->drv_info_mng_owner) {
3612		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3613
3614		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3615			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3616
3617			/* Management is done; need to clear indication */
3618			if (indication & bit) {
3619				SHMEM2_WR(bp, mfw_drv_indication,
3620					  indication & ~bit);
3621				release = true;
3622				break;
3623			}
3624
3625			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3626		}
3627	}
3628	if (!release) {
3629		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3630		bp->drv_info_mng_owner = true;
3631	}
3632
3633out:
3634	mutex_unlock(&bp->drv_info_mutex);
3635}
3636
3637static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3638{
3639	u8 vals[4];
3640	int i = 0;
3641
3642	if (bnx2x_format) {
3643		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3644			   &vals[0], &vals[1], &vals[2], &vals[3]);
3645		if (i > 0)
3646			vals[0] -= '0';
3647	} else {
3648		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3649			   &vals[0], &vals[1], &vals[2], &vals[3]);
3650	}
3651
3652	while (i < 4)
3653		vals[i++] = 0;
3654
3655	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3656}
3657
3658void bnx2x_update_mng_version(struct bnx2x *bp)
3659{
3660	u32 iscsiver = DRV_VER_NOT_LOADED;
3661	u32 fcoever = DRV_VER_NOT_LOADED;
3662	u32 ethver = DRV_VER_NOT_LOADED;
3663	int idx = BP_FW_MB_IDX(bp);
3664	u8 *version;
3665
3666	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3667		return;
3668
3669	mutex_lock(&bp->drv_info_mutex);
3670	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3671	if (bp->drv_info_mng_owner)
3672		goto out;
3673
3674	if (bp->state != BNX2X_STATE_OPEN)
3675		goto out;
3676
3677	/* Parse ethernet driver version */
3678	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3679	if (!CNIC_LOADED(bp))
3680		goto out;
3681
3682	/* Try getting storage driver version via cnic */
3683	memset(&bp->slowpath->drv_info_to_mcp, 0,
3684	       sizeof(union drv_info_to_mcp));
3685	bnx2x_drv_info_iscsi_stat(bp);
3686	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3687	iscsiver = bnx2x_update_mng_version_utility(version, false);
3688
3689	memset(&bp->slowpath->drv_info_to_mcp, 0,
3690	       sizeof(union drv_info_to_mcp));
3691	bnx2x_drv_info_fcoe_stat(bp);
3692	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3693	fcoever = bnx2x_update_mng_version_utility(version, false);
3694
3695out:
3696	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3697	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3698	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3699
3700	mutex_unlock(&bp->drv_info_mutex);
3701
3702	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3703	   ethver, iscsiver, fcoever);
3704}
3705
3706void bnx2x_update_mfw_dump(struct bnx2x *bp)
3707{
3708	u32 drv_ver;
3709	u32 valid_dump;
3710
3711	if (!SHMEM2_HAS(bp, drv_info))
3712		return;
3713
3714	/* Update Driver load time, possibly broken in y2038 */
3715	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3716
3717	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3718	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3719
3720	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3721
3722	/* Check & notify On-Chip dump. */
3723	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3724
3725	if (valid_dump & FIRST_DUMP_VALID)
3726		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3727
3728	if (valid_dump & SECOND_DUMP_VALID)
3729		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3730}
3731
3732static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3733{
3734	u32 cmd_ok, cmd_fail;
3735
3736	/* sanity */
3737	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3738	    event & DRV_STATUS_OEM_EVENT_MASK) {
3739		BNX2X_ERR("Received simultaneous events %08x\n", event);
3740		return;
3741	}
3742
3743	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3744		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3745		cmd_ok = DRV_MSG_CODE_DCC_OK;
3746	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3747		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3748		cmd_ok = DRV_MSG_CODE_OEM_OK;
3749	}
3750
3751	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3752
3753	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3754		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3755		/* This is the only place besides the function initialization
3756		 * where the bp->flags can change so it is done without any
3757		 * locks
3758		 */
3759		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3760			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3761			bp->flags |= MF_FUNC_DIS;
3762
3763			bnx2x_e1h_disable(bp);
3764		} else {
3765			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3766			bp->flags &= ~MF_FUNC_DIS;
3767
3768			bnx2x_e1h_enable(bp);
3769		}
3770		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3771			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3772	}
3773
3774	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3775		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3776		bnx2x_config_mf_bw(bp);
3777		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3778			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3779	}
3780
3781	/* Report results to MCP */
3782	if (event)
3783		bnx2x_fw_command(bp, cmd_fail, 0);
3784	else
3785		bnx2x_fw_command(bp, cmd_ok, 0);
3786}
3787
3788/* must be called under the spq lock */
3789static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3790{
3791	struct eth_spe *next_spe = bp->spq_prod_bd;
3792
3793	if (bp->spq_prod_bd == bp->spq_last_bd) {
3794		bp->spq_prod_bd = bp->spq;
3795		bp->spq_prod_idx = 0;
3796		DP(BNX2X_MSG_SP, "end of spq\n");
3797	} else {
3798		bp->spq_prod_bd++;
3799		bp->spq_prod_idx++;
3800	}
3801	return next_spe;
3802}
3803
3804/* must be called under the spq lock */
3805static void bnx2x_sp_prod_update(struct bnx2x *bp)
3806{
3807	int func = BP_FUNC(bp);
3808
3809	/*
3810	 * Make sure that BD data is updated before writing the producer:
3811	 * BD data is written to the memory, the producer is read from the
3812	 * memory, thus we need a full memory barrier to ensure the ordering.
3813	 */
3814	mb();
3815
3816	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3817		 bp->spq_prod_idx);
3818	mmiowb();
3819}
3820
3821/**
3822 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3823 *
3824 * @cmd:	command to check
3825 * @cmd_type:	command type
3826 */
3827static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3828{
3829	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3830	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3831	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3832	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3833	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3834	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3835	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3836		return true;
3837	else
3838		return false;
3839}
3840
3841/**
3842 * bnx2x_sp_post - place a single command on an SP ring
3843 *
3844 * @bp:		driver handle
3845 * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3846 * @cid:	SW CID the command is related to
3847 * @data_hi:	command private data address (high 32 bits)
3848 * @data_lo:	command private data address (low 32 bits)
3849 * @cmd_type:	command type (e.g. NONE, ETH)
3850 *
3851 * SP data is handled as if it's always an address pair, thus data fields are
3852 * not swapped to little endian in upper functions. Instead this function swaps
3853 * data as if it's two u32 fields.
3854 */
3855int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3856		  u32 data_hi, u32 data_lo, int cmd_type)
3857{
3858	struct eth_spe *spe;
3859	u16 type;
3860	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3861
3862#ifdef BNX2X_STOP_ON_ERROR
3863	if (unlikely(bp->panic)) {
3864		BNX2X_ERR("Can't post SP when there is panic\n");
3865		return -EIO;
3866	}
3867#endif
3868
3869	spin_lock_bh(&bp->spq_lock);
3870
3871	if (common) {
3872		if (!atomic_read(&bp->eq_spq_left)) {
3873			BNX2X_ERR("BUG! EQ ring full!\n");
3874			spin_unlock_bh(&bp->spq_lock);
3875			bnx2x_panic();
3876			return -EBUSY;
3877		}
3878	} else if (!atomic_read(&bp->cq_spq_left)) {
3879			BNX2X_ERR("BUG! SPQ ring full!\n");
3880			spin_unlock_bh(&bp->spq_lock);
3881			bnx2x_panic();
3882			return -EBUSY;
3883	}
3884
3885	spe = bnx2x_sp_get_next(bp);
3886
3887	/* CID needs port number to be encoded int it */
3888	spe->hdr.conn_and_cmd_data =
3889			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3890				    HW_CID(bp, cid));
3891
3892	/* In some cases, type may already contain the func-id
3893	 * mainly in SRIOV related use cases, so we add it here only
3894	 * if it's not already set.
3895	 */
3896	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3897		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3898			SPE_HDR_CONN_TYPE;
3899		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3900			 SPE_HDR_FUNCTION_ID);
3901	} else {
3902		type = cmd_type;
3903	}
3904
3905	spe->hdr.type = cpu_to_le16(type);
3906
3907	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3908	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3909
3910	/*
3911	 * It's ok if the actual decrement is issued towards the memory
3912	 * somewhere between the spin_lock and spin_unlock. Thus no
3913	 * more explicit memory barrier is needed.
3914	 */
3915	if (common)
3916		atomic_dec(&bp->eq_spq_left);
3917	else
3918		atomic_dec(&bp->cq_spq_left);
3919
3920	DP(BNX2X_MSG_SP,
3921	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3922	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3923	   (u32)(U64_LO(bp->spq_mapping) +
3924	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3925	   HW_CID(bp, cid), data_hi, data_lo, type,
3926	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3927
3928	bnx2x_sp_prod_update(bp);
3929	spin_unlock_bh(&bp->spq_lock);
3930	return 0;
3931}
3932
3933/* acquire split MCP access lock register */
3934static int bnx2x_acquire_alr(struct bnx2x *bp)
3935{
3936	u32 j, val;
3937	int rc = 0;
3938
3939	might_sleep();
3940	for (j = 0; j < 1000; j++) {
3941		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3942		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3943		if (val & MCPR_ACCESS_LOCK_LOCK)
3944			break;
3945
3946		usleep_range(5000, 10000);
3947	}
3948	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3949		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3950		rc = -EBUSY;
3951	}
3952
3953	return rc;
3954}
3955
3956/* release split MCP access lock register */
3957static void bnx2x_release_alr(struct bnx2x *bp)
3958{
3959	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3960}
3961
3962#define BNX2X_DEF_SB_ATT_IDX	0x0001
3963#define BNX2X_DEF_SB_IDX	0x0002
3964
3965static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3966{
3967	struct host_sp_status_block *def_sb = bp->def_status_blk;
3968	u16 rc = 0;
3969
3970	barrier(); /* status block is written to by the chip */
3971	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3972		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3973		rc |= BNX2X_DEF_SB_ATT_IDX;
3974	}
3975
3976	if (bp->def_idx != def_sb->sp_sb.running_index) {
3977		bp->def_idx = def_sb->sp_sb.running_index;
3978		rc |= BNX2X_DEF_SB_IDX;
3979	}
3980
3981	/* Do not reorder: indices reading should complete before handling */
3982	barrier();
3983	return rc;
3984}
3985
3986/*
3987 * slow path service functions
3988 */
3989
3990static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3991{
3992	int port = BP_PORT(bp);
3993	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3994			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3995	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3996				       NIG_REG_MASK_INTERRUPT_PORT0;
3997	u32 aeu_mask;
3998	u32 nig_mask = 0;
3999	u32 reg_addr;
4000
4001	if (bp->attn_state & asserted)
4002		BNX2X_ERR("IGU ERROR\n");
4003
4004	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4005	aeu_mask = REG_RD(bp, aeu_addr);
4006
4007	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4008	   aeu_mask, asserted);
4009	aeu_mask &= ~(asserted & 0x3ff);
4010	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4011
4012	REG_WR(bp, aeu_addr, aeu_mask);
4013	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4014
4015	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4016	bp->attn_state |= asserted;
4017	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4018
4019	if (asserted & ATTN_HARD_WIRED_MASK) {
4020		if (asserted & ATTN_NIG_FOR_FUNC) {
4021
4022			bnx2x_acquire_phy_lock(bp);
4023
4024			/* save nig interrupt mask */
4025			nig_mask = REG_RD(bp, nig_int_mask_addr);
4026
4027			/* If nig_mask is not set, no need to call the update
4028			 * function.
4029			 */
4030			if (nig_mask) {
4031				REG_WR(bp, nig_int_mask_addr, 0);
4032
4033				bnx2x_link_attn(bp);
4034			}
4035
4036			/* handle unicore attn? */
4037		}
4038		if (asserted & ATTN_SW_TIMER_4_FUNC)
4039			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4040
4041		if (asserted & GPIO_2_FUNC)
4042			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4043
4044		if (asserted & GPIO_3_FUNC)
4045			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4046
4047		if (asserted & GPIO_4_FUNC)
4048			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4049
4050		if (port == 0) {
4051			if (asserted & ATTN_GENERAL_ATTN_1) {
4052				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4053				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4054			}
4055			if (asserted & ATTN_GENERAL_ATTN_2) {
4056				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4057				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4058			}
4059			if (asserted & ATTN_GENERAL_ATTN_3) {
4060				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4061				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4062			}
4063		} else {
4064			if (asserted & ATTN_GENERAL_ATTN_4) {
4065				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4066				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4067			}
4068			if (asserted & ATTN_GENERAL_ATTN_5) {
4069				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4070				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4071			}
4072			if (asserted & ATTN_GENERAL_ATTN_6) {
4073				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4074				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4075			}
4076		}
4077
4078	} /* if hardwired */
4079
4080	if (bp->common.int_block == INT_BLOCK_HC)
4081		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4082			    COMMAND_REG_ATTN_BITS_SET);
4083	else
4084		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4085
4086	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4087	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4088	REG_WR(bp, reg_addr, asserted);
4089
4090	/* now set back the mask */
4091	if (asserted & ATTN_NIG_FOR_FUNC) {
4092		/* Verify that IGU ack through BAR was written before restoring
4093		 * NIG mask. This loop should exit after 2-3 iterations max.
4094		 */
4095		if (bp->common.int_block != INT_BLOCK_HC) {
4096			u32 cnt = 0, igu_acked;
4097			do {
4098				igu_acked = REG_RD(bp,
4099						   IGU_REG_ATTENTION_ACK_BITS);
4100			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4101				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4102			if (!igu_acked)
4103				DP(NETIF_MSG_HW,
4104				   "Failed to verify IGU ack on time\n");
4105			barrier();
4106		}
4107		REG_WR(bp, nig_int_mask_addr, nig_mask);
4108		bnx2x_release_phy_lock(bp);
4109	}
4110}
4111
4112static void bnx2x_fan_failure(struct bnx2x *bp)
4113{
4114	int port = BP_PORT(bp);
4115	u32 ext_phy_config;
4116	/* mark the failure */
4117	ext_phy_config =
4118		SHMEM_RD(bp,
4119			 dev_info.port_hw_config[port].external_phy_config);
4120
4121	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4122	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4123	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4124		 ext_phy_config);
4125
4126	/* log the failure */
4127	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4128			    "Please contact OEM Support for assistance\n");
4129
4130	/* Schedule device reset (unload)
4131	 * This is due to some boards consuming sufficient power when driver is
4132	 * up to overheat if fan fails.
4133	 */
4134	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4135}
4136
4137static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4138{
4139	int port = BP_PORT(bp);
4140	int reg_offset;
4141	u32 val;
4142
4143	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4144			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4145
4146	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4147
4148		val = REG_RD(bp, reg_offset);
4149		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4150		REG_WR(bp, reg_offset, val);
4151
4152		BNX2X_ERR("SPIO5 hw attention\n");
4153
4154		/* Fan failure attention */
4155		bnx2x_hw_reset_phy(&bp->link_params);
4156		bnx2x_fan_failure(bp);
4157	}
4158
4159	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4160		bnx2x_acquire_phy_lock(bp);
4161		bnx2x_handle_module_detect_int(&bp->link_params);
4162		bnx2x_release_phy_lock(bp);
4163	}
4164
4165	if (attn & HW_INTERRUT_ASSERT_SET_0) {
4166
4167		val = REG_RD(bp, reg_offset);
4168		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4169		REG_WR(bp, reg_offset, val);
4170
4171		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4172			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4173		bnx2x_panic();
4174	}
4175}
4176
4177static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4178{
4179	u32 val;
4180
4181	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4182
4183		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4184		BNX2X_ERR("DB hw attention 0x%x\n", val);
4185		/* DORQ discard attention */
4186		if (val & 0x2)
4187			BNX2X_ERR("FATAL error from DORQ\n");
4188	}
4189
4190	if (attn & HW_INTERRUT_ASSERT_SET_1) {
4191
4192		int port = BP_PORT(bp);
4193		int reg_offset;
4194
4195		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4196				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4197
4198		val = REG_RD(bp, reg_offset);
4199		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4200		REG_WR(bp, reg_offset, val);
4201
4202		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4203			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4204		bnx2x_panic();
4205	}
4206}
4207
4208static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4209{
4210	u32 val;
4211
4212	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4213
4214		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4215		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4216		/* CFC error attention */
4217		if (val & 0x2)
4218			BNX2X_ERR("FATAL error from CFC\n");
4219	}
4220
4221	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4222		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4223		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4224		/* RQ_USDMDP_FIFO_OVERFLOW */
4225		if (val & 0x18000)
4226			BNX2X_ERR("FATAL error from PXP\n");
4227
4228		if (!CHIP_IS_E1x(bp)) {
4229			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4230			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4231		}
4232	}
4233
4234	if (attn & HW_INTERRUT_ASSERT_SET_2) {
4235
4236		int port = BP_PORT(bp);
4237		int reg_offset;
4238
4239		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4240				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4241
4242		val = REG_RD(bp, reg_offset);
4243		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4244		REG_WR(bp, reg_offset, val);
4245
4246		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4247			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4248		bnx2x_panic();
4249	}
4250}
4251
4252static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4253{
4254	u32 val;
4255
4256	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4257
4258		if (attn & BNX2X_PMF_LINK_ASSERT) {
4259			int func = BP_FUNC(bp);
4260
4261			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4262			bnx2x_read_mf_cfg(bp);
4263			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4264					func_mf_config[BP_ABS_FUNC(bp)].config);
4265			val = SHMEM_RD(bp,
4266				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4267
4268			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4269				   DRV_STATUS_OEM_EVENT_MASK))
4270				bnx2x_oem_event(bp,
4271					(val & (DRV_STATUS_DCC_EVENT_MASK |
4272						DRV_STATUS_OEM_EVENT_MASK)));
4273
4274			if (val & DRV_STATUS_SET_MF_BW)
4275				bnx2x_set_mf_bw(bp);
4276
4277			if (val & DRV_STATUS_DRV_INFO_REQ)
4278				bnx2x_handle_drv_info_req(bp);
4279
4280			if (val & DRV_STATUS_VF_DISABLED)
4281				bnx2x_schedule_iov_task(bp,
4282							BNX2X_IOV_HANDLE_FLR);
4283
4284			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4285				bnx2x_pmf_update(bp);
4286
4287			if (bp->port.pmf &&
4288			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4289				bp->dcbx_enabled > 0)
4290				/* start dcbx state machine */
4291				bnx2x_dcbx_set_params(bp,
4292					BNX2X_DCBX_STATE_NEG_RECEIVED);
4293			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4294				bnx2x_handle_afex_cmd(bp,
4295					val & DRV_STATUS_AFEX_EVENT_MASK);
4296			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4297				bnx2x_handle_eee_event(bp);
4298
4299			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4300				bnx2x_handle_update_svid_cmd(bp);
4301
4302			if (bp->link_vars.periodic_flags &
4303			    PERIODIC_FLAGS_LINK_EVENT) {
4304				/*  sync with link */
4305				bnx2x_acquire_phy_lock(bp);
4306				bp->link_vars.periodic_flags &=
4307					~PERIODIC_FLAGS_LINK_EVENT;
4308				bnx2x_release_phy_lock(bp);
4309				if (IS_MF(bp))
4310					bnx2x_link_sync_notify(bp);
4311				bnx2x_link_report(bp);
4312			}
4313			/* Always call it here: bnx2x_link_report() will
4314			 * prevent the link indication duplication.
4315			 */
4316			bnx2x__link_status_update(bp);
4317		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4318
4319			BNX2X_ERR("MC assert!\n");
4320			bnx2x_mc_assert(bp);
4321			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4322			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4323			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4324			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4325			bnx2x_panic();
4326
4327		} else if (attn & BNX2X_MCP_ASSERT) {
4328
4329			BNX2X_ERR("MCP assert!\n");
4330			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4331			bnx2x_fw_dump(bp);
4332
4333		} else
4334			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4335	}
4336
4337	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4338		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4339		if (attn & BNX2X_GRC_TIMEOUT) {
4340			val = CHIP_IS_E1(bp) ? 0 :
4341					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4342			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4343		}
4344		if (attn & BNX2X_GRC_RSV) {
4345			val = CHIP_IS_E1(bp) ? 0 :
4346					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4347			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4348		}
4349		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4350	}
4351}
4352
4353/*
4354 * Bits map:
4355 * 0-7   - Engine0 load counter.
4356 * 8-15  - Engine1 load counter.
4357 * 16    - Engine0 RESET_IN_PROGRESS bit.
4358 * 17    - Engine1 RESET_IN_PROGRESS bit.
4359 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4360 *         on the engine
4361 * 19    - Engine1 ONE_IS_LOADED.
4362 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4363 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4364 *         just the one belonging to its engine).
4365 *
4366 */
4367#define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4368
4369#define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4370#define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4371#define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4372#define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4373#define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4374#define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4375#define BNX2X_GLOBAL_RESET_BIT		0x00040000
4376
4377/*
4378 * Set the GLOBAL_RESET bit.
4379 *
4380 * Should be run under rtnl lock
4381 */
4382void bnx2x_set_reset_global(struct bnx2x *bp)
4383{
4384	u32 val;
4385	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4386	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4387	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4388	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4389}
4390
4391/*
4392 * Clear the GLOBAL_RESET bit.
4393 *
4394 * Should be run under rtnl lock
4395 */
4396static void bnx2x_clear_reset_global(struct bnx2x *bp)
4397{
4398	u32 val;
4399	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4400	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4401	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4402	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4403}
4404
4405/*
4406 * Checks the GLOBAL_RESET bit.
4407 *
4408 * should be run under rtnl lock
4409 */
4410static bool bnx2x_reset_is_global(struct bnx2x *bp)
4411{
4412	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4413
4414	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4415	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4416}
4417
4418/*
4419 * Clear RESET_IN_PROGRESS bit for the current engine.
4420 *
4421 * Should be run under rtnl lock
4422 */
4423static void bnx2x_set_reset_done(struct bnx2x *bp)
4424{
4425	u32 val;
4426	u32 bit = BP_PATH(bp) ?
4427		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4428	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4429	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4430
4431	/* Clear the bit */
4432	val &= ~bit;
4433	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4434
4435	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4436}
4437
4438/*
4439 * Set RESET_IN_PROGRESS for the current engine.
4440 *
4441 * should be run under rtnl lock
4442 */
4443void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4444{
4445	u32 val;
4446	u32 bit = BP_PATH(bp) ?
4447		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4448	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4449	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4450
4451	/* Set the bit */
4452	val |= bit;
4453	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4454	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4455}
4456
4457/*
4458 * Checks the RESET_IN_PROGRESS bit for the given engine.
4459 * should be run under rtnl lock
4460 */
4461bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4462{
4463	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4464	u32 bit = engine ?
4465		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4466
4467	/* return false if bit is set */
4468	return (val & bit) ? false : true;
4469}
4470
4471/*
4472 * set pf load for the current pf.
4473 *
4474 * should be run under rtnl lock
4475 */
4476void bnx2x_set_pf_load(struct bnx2x *bp)
4477{
4478	u32 val1, val;
4479	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4480			     BNX2X_PATH0_LOAD_CNT_MASK;
4481	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4482			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4483
4484	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4485	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4486
4487	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4488
4489	/* get the current counter value */
4490	val1 = (val & mask) >> shift;
4491
4492	/* set bit of that PF */
4493	val1 |= (1 << bp->pf_num);
4494
4495	/* clear the old value */
4496	val &= ~mask;
4497
4498	/* set the new one */
4499	val |= ((val1 << shift) & mask);
4500
4501	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4502	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4503}
4504
4505/**
4506 * bnx2x_clear_pf_load - clear pf load mark
4507 *
4508 * @bp:		driver handle
4509 *
4510 * Should be run under rtnl lock.
4511 * Decrements the load counter for the current engine. Returns
4512 * whether other functions are still loaded
4513 */
4514bool bnx2x_clear_pf_load(struct bnx2x *bp)
4515{
4516	u32 val1, val;
4517	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4518			     BNX2X_PATH0_LOAD_CNT_MASK;
4519	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4520			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4521
4522	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4523	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4524	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4525
4526	/* get the current counter value */
4527	val1 = (val & mask) >> shift;
4528
4529	/* clear bit of that PF */
4530	val1 &= ~(1 << bp->pf_num);
4531
4532	/* clear the old value */
4533	val &= ~mask;
4534
4535	/* set the new one */
4536	val |= ((val1 << shift) & mask);
4537
4538	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4539	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4540	return val1 != 0;
4541}
4542
4543/*
4544 * Read the load status for the current engine.
4545 *
4546 * should be run under rtnl lock
4547 */
4548static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4549{
4550	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4551			     BNX2X_PATH0_LOAD_CNT_MASK);
4552	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4553			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4554	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4555
4556	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4557
4558	val = (val & mask) >> shift;
4559
4560	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4561	   engine, val);
4562
4563	return val != 0;
4564}
4565
4566static void _print_parity(struct bnx2x *bp, u32 reg)
4567{
4568	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4569}
4570
4571static void _print_next_block(int idx, const char *blk)
4572{
4573	pr_cont("%s%s", idx ? ", " : "", blk);
4574}
4575
4576static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4577					    int *par_num, bool print)
4578{
4579	u32 cur_bit;
4580	bool res;
4581	int i;
4582
4583	res = false;
4584
4585	for (i = 0; sig; i++) {
4586		cur_bit = (0x1UL << i);
4587		if (sig & cur_bit) {
4588			res |= true; /* Each bit is real error! */
4589
4590			if (print) {
4591				switch (cur_bit) {
4592				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4593					_print_next_block((*par_num)++, "BRB");
4594					_print_parity(bp,
4595						      BRB1_REG_BRB1_PRTY_STS);
4596					break;
4597				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4598					_print_next_block((*par_num)++,
4599							  "PARSER");
4600					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4601					break;
4602				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4603					_print_next_block((*par_num)++, "TSDM");
4604					_print_parity(bp,
4605						      TSDM_REG_TSDM_PRTY_STS);
4606					break;
4607				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4608					_print_next_block((*par_num)++,
4609							  "SEARCHER");
4610					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4611					break;
4612				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4613					_print_next_block((*par_num)++, "TCM");
4614					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4615					break;
4616				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4617					_print_next_block((*par_num)++,
4618							  "TSEMI");
4619					_print_parity(bp,
4620						      TSEM_REG_TSEM_PRTY_STS_0);
4621					_print_parity(bp,
4622						      TSEM_REG_TSEM_PRTY_STS_1);
4623					break;
4624				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4625					_print_next_block((*par_num)++, "XPB");
4626					_print_parity(bp, GRCBASE_XPB +
4627							  PB_REG_PB_PRTY_STS);
4628					break;
4629				}
4630			}
4631
4632			/* Clear the bit */
4633			sig &= ~cur_bit;
4634		}
4635	}
4636
4637	return res;
4638}
4639
4640static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4641					    int *par_num, bool *global,
4642					    bool print)
4643{
4644	u32 cur_bit;
4645	bool res;
4646	int i;
4647
4648	res = false;
4649
4650	for (i = 0; sig; i++) {
4651		cur_bit = (0x1UL << i);
4652		if (sig & cur_bit) {
4653			res |= true; /* Each bit is real error! */
4654			switch (cur_bit) {
4655			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4656				if (print) {
4657					_print_next_block((*par_num)++, "PBF");
4658					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4659				}
4660				break;
4661			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4662				if (print) {
4663					_print_next_block((*par_num)++, "QM");
4664					_print_parity(bp, QM_REG_QM_PRTY_STS);
4665				}
4666				break;
4667			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4668				if (print) {
4669					_print_next_block((*par_num)++, "TM");
4670					_print_parity(bp, TM_REG_TM_PRTY_STS);
4671				}
4672				break;
4673			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4674				if (print) {
4675					_print_next_block((*par_num)++, "XSDM");
4676					_print_parity(bp,
4677						      XSDM_REG_XSDM_PRTY_STS);
4678				}
4679				break;
4680			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4681				if (print) {
4682					_print_next_block((*par_num)++, "XCM");
4683					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4684				}
4685				break;
4686			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4687				if (print) {
4688					_print_next_block((*par_num)++,
4689							  "XSEMI");
4690					_print_parity(bp,
4691						      XSEM_REG_XSEM_PRTY_STS_0);
4692					_print_parity(bp,
4693						      XSEM_REG_XSEM_PRTY_STS_1);
4694				}
4695				break;
4696			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4697				if (print) {
4698					_print_next_block((*par_num)++,
4699							  "DOORBELLQ");
4700					_print_parity(bp,
4701						      DORQ_REG_DORQ_PRTY_STS);
4702				}
4703				break;
4704			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4705				if (print) {
4706					_print_next_block((*par_num)++, "NIG");
4707					if (CHIP_IS_E1x(bp)) {
4708						_print_parity(bp,
4709							NIG_REG_NIG_PRTY_STS);
4710					} else {
4711						_print_parity(bp,
4712							NIG_REG_NIG_PRTY_STS_0);
4713						_print_parity(bp,
4714							NIG_REG_NIG_PRTY_STS_1);
4715					}
4716				}
4717				break;
4718			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4719				if (print)
4720					_print_next_block((*par_num)++,
4721							  "VAUX PCI CORE");
4722				*global = true;
4723				break;
4724			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4725				if (print) {
4726					_print_next_block((*par_num)++,
4727							  "DEBUG");
4728					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4729				}
4730				break;
4731			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4732				if (print) {
4733					_print_next_block((*par_num)++, "USDM");
4734					_print_parity(bp,
4735						      USDM_REG_USDM_PRTY_STS);
4736				}
4737				break;
4738			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4739				if (print) {
4740					_print_next_block((*par_num)++, "UCM");
4741					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4742				}
4743				break;
4744			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4745				if (print) {
4746					_print_next_block((*par_num)++,
4747							  "USEMI");
4748					_print_parity(bp,
4749						      USEM_REG_USEM_PRTY_STS_0);
4750					_print_parity(bp,
4751						      USEM_REG_USEM_PRTY_STS_1);
4752				}
4753				break;
4754			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4755				if (print) {
4756					_print_next_block((*par_num)++, "UPB");
4757					_print_parity(bp, GRCBASE_UPB +
4758							  PB_REG_PB_PRTY_STS);
4759				}
4760				break;
4761			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4762				if (print) {
4763					_print_next_block((*par_num)++, "CSDM");
4764					_print_parity(bp,
4765						      CSDM_REG_CSDM_PRTY_STS);
4766				}
4767				break;
4768			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4769				if (print) {
4770					_print_next_block((*par_num)++, "CCM");
4771					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4772				}
4773				break;
4774			}
4775
4776			/* Clear the bit */
4777			sig &= ~cur_bit;
4778		}
4779	}
4780
4781	return res;
4782}
4783
4784static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4785					    int *par_num, bool print)
4786{
4787	u32 cur_bit;
4788	bool res;
4789	int i;
4790
4791	res = false;
4792
4793	for (i = 0; sig; i++) {
4794		cur_bit = (0x1UL << i);
4795		if (sig & cur_bit) {
4796			res = true; /* Each bit is real error! */
4797			if (print) {
4798				switch (cur_bit) {
4799				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4800					_print_next_block((*par_num)++,
4801							  "CSEMI");
4802					_print_parity(bp,
4803						      CSEM_REG_CSEM_PRTY_STS_0);
4804					_print_parity(bp,
4805						      CSEM_REG_CSEM_PRTY_STS_1);
4806					break;
4807				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4808					_print_next_block((*par_num)++, "PXP");
4809					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4810					_print_parity(bp,
4811						      PXP2_REG_PXP2_PRTY_STS_0);
4812					_print_parity(bp,
4813						      PXP2_REG_PXP2_PRTY_STS_1);
4814					break;
4815				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4816					_print_next_block((*par_num)++,
4817							  "PXPPCICLOCKCLIENT");
4818					break;
4819				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4820					_print_next_block((*par_num)++, "CFC");
4821					_print_parity(bp,
4822						      CFC_REG_CFC_PRTY_STS);
4823					break;
4824				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4825					_print_next_block((*par_num)++, "CDU");
4826					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4827					break;
4828				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4829					_print_next_block((*par_num)++, "DMAE");
4830					_print_parity(bp,
4831						      DMAE_REG_DMAE_PRTY_STS);
4832					break;
4833				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4834					_print_next_block((*par_num)++, "IGU");
4835					if (CHIP_IS_E1x(bp))
4836						_print_parity(bp,
4837							HC_REG_HC_PRTY_STS);
4838					else
4839						_print_parity(bp,
4840							IGU_REG_IGU_PRTY_STS);
4841					break;
4842				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4843					_print_next_block((*par_num)++, "MISC");
4844					_print_parity(bp,
4845						      MISC_REG_MISC_PRTY_STS);
4846					break;
4847				}
4848			}
4849
4850			/* Clear the bit */
4851			sig &= ~cur_bit;
4852		}
4853	}
4854
4855	return res;
4856}
4857
4858static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4859					    int *par_num, bool *global,
4860					    bool print)
4861{
4862	bool res = false;
4863	u32 cur_bit;
4864	int i;
4865
4866	for (i = 0; sig; i++) {
4867		cur_bit = (0x1UL << i);
4868		if (sig & cur_bit) {
4869			switch (cur_bit) {
4870			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4871				if (print)
4872					_print_next_block((*par_num)++,
4873							  "MCP ROM");
4874				*global = true;
4875				res = true;
4876				break;
4877			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4878				if (print)
4879					_print_next_block((*par_num)++,
4880							  "MCP UMP RX");
4881				*global = true;
4882				res = true;
4883				break;
4884			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4885				if (print)
4886					_print_next_block((*par_num)++,
4887							  "MCP UMP TX");
4888				*global = true;
4889				res = true;
4890				break;
4891			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4892				(*par_num)++;
4893				/* clear latched SCPAD PATIRY from MCP */
4894				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4895				       1UL << 10);
4896				break;
4897			}
4898
4899			/* Clear the bit */
4900			sig &= ~cur_bit;
4901		}
4902	}
4903
4904	return res;
4905}
4906
4907static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4908					    int *par_num, bool print)
4909{
4910	u32 cur_bit;
4911	bool res;
4912	int i;
4913
4914	res = false;
4915
4916	for (i = 0; sig; i++) {
4917		cur_bit = (0x1UL << i);
4918		if (sig & cur_bit) {
4919			res = true; /* Each bit is real error! */
4920			if (print) {
4921				switch (cur_bit) {
4922				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4923					_print_next_block((*par_num)++,
4924							  "PGLUE_B");
4925					_print_parity(bp,
4926						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4927					break;
4928				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4929					_print_next_block((*par_num)++, "ATC");
4930					_print_parity(bp,
4931						      ATC_REG_ATC_PRTY_STS);
4932					break;
4933				}
4934			}
4935			/* Clear the bit */
4936			sig &= ~cur_bit;
4937		}
4938	}
4939
4940	return res;
4941}
4942
4943static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4944			      u32 *sig)
4945{
4946	bool res = false;
4947
4948	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4949	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4950	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4951	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4952	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4953		int par_num = 0;
4954
4955		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4956				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4957			  sig[0] & HW_PRTY_ASSERT_SET_0,
4958			  sig[1] & HW_PRTY_ASSERT_SET_1,
4959			  sig[2] & HW_PRTY_ASSERT_SET_2,
4960			  sig[3] & HW_PRTY_ASSERT_SET_3,
4961			  sig[4] & HW_PRTY_ASSERT_SET_4);
4962		if (print) {
4963			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4964			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4965			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4966			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4967			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4968				netdev_err(bp->dev,
4969					   "Parity errors detected in blocks: ");
4970			} else {
4971				print = false;
4972			}
4973		}
4974		res |= bnx2x_check_blocks_with_parity0(bp,
4975			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4976		res |= bnx2x_check_blocks_with_parity1(bp,
4977			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4978		res |= bnx2x_check_blocks_with_parity2(bp,
4979			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4980		res |= bnx2x_check_blocks_with_parity3(bp,
4981			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4982		res |= bnx2x_check_blocks_with_parity4(bp,
4983			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4984
4985		if (print)
4986			pr_cont("\n");
4987	}
4988
4989	return res;
4990}
4991
4992/**
4993 * bnx2x_chk_parity_attn - checks for parity attentions.
4994 *
4995 * @bp:		driver handle
4996 * @global:	true if there was a global attention
4997 * @print:	show parity attention in syslog
4998 */
4999bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5000{
5001	struct attn_route attn = { {0} };
5002	int port = BP_PORT(bp);
5003
5004	attn.sig[0] = REG_RD(bp,
5005		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5006			     port*4);
5007	attn.sig[1] = REG_RD(bp,
5008		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5009			     port*4);
5010	attn.sig[2] = REG_RD(bp,
5011		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5012			     port*4);
5013	attn.sig[3] = REG_RD(bp,
5014		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5015			     port*4);
5016	/* Since MCP attentions can't be disabled inside the block, we need to
5017	 * read AEU registers to see whether they're currently disabled
5018	 */
5019	attn.sig[3] &= ((REG_RD(bp,
5020				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5021				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5022			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5023			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5024
5025	if (!CHIP_IS_E1x(bp))
5026		attn.sig[4] = REG_RD(bp,
5027			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5028				     port*4);
5029
5030	return bnx2x_parity_attn(bp, global, print, attn.sig);
5031}
5032
5033static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5034{
5035	u32 val;
5036	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5037
5038		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5039		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5040		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5041			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5042		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5043			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5044		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5045			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5046		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5047			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5048		if (val &
5049		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5050			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5051		if (val &
5052		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5053			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5054		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5055			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5056		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5057			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5058		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5059			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5060	}
5061	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5062		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5063		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5064		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5065			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5066		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5067			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5068		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5069			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5070		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5071			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5072		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5073			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5074		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5075			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5076	}
5077
5078	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5079		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5080		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5081		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5082		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5083	}
5084}
5085
5086static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5087{
5088	struct attn_route attn, *group_mask;
5089	int port = BP_PORT(bp);
5090	int index;
5091	u32 reg_addr;
5092	u32 val;
5093	u32 aeu_mask;
5094	bool global = false;
5095
5096	/* need to take HW lock because MCP or other port might also
5097	   try to handle this event */
5098	bnx2x_acquire_alr(bp);
5099
5100	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5101#ifndef BNX2X_STOP_ON_ERROR
5102		bp->recovery_state = BNX2X_RECOVERY_INIT;
5103		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5104		/* Disable HW interrupts */
5105		bnx2x_int_disable(bp);
5106		/* In case of parity errors don't handle attentions so that
5107		 * other function would "see" parity errors.
5108		 */
5109#else
5110		bnx2x_panic();
5111#endif
5112		bnx2x_release_alr(bp);
5113		return;
5114	}
5115
5116	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5117	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5118	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5119	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5120	if (!CHIP_IS_E1x(bp))
5121		attn.sig[4] =
5122		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5123	else
5124		attn.sig[4] = 0;
5125
5126	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5127	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5128
5129	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5130		if (deasserted & (1 << index)) {
5131			group_mask = &bp->attn_group[index];
5132
5133			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5134			   index,
5135			   group_mask->sig[0], group_mask->sig[1],
5136			   group_mask->sig[2], group_mask->sig[3],
5137			   group_mask->sig[4]);
5138
5139			bnx2x_attn_int_deasserted4(bp,
5140					attn.sig[4] & group_mask->sig[4]);
5141			bnx2x_attn_int_deasserted3(bp,
5142					attn.sig[3] & group_mask->sig[3]);
5143			bnx2x_attn_int_deasserted1(bp,
5144					attn.sig[1] & group_mask->sig[1]);
5145			bnx2x_attn_int_deasserted2(bp,
5146					attn.sig[2] & group_mask->sig[2]);
5147			bnx2x_attn_int_deasserted0(bp,
5148					attn.sig[0] & group_mask->sig[0]);
5149		}
5150	}
5151
5152	bnx2x_release_alr(bp);
5153
5154	if (bp->common.int_block == INT_BLOCK_HC)
5155		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5156			    COMMAND_REG_ATTN_BITS_CLR);
5157	else
5158		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5159
5160	val = ~deasserted;
5161	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5162	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5163	REG_WR(bp, reg_addr, val);
5164
5165	if (~bp->attn_state & deasserted)
5166		BNX2X_ERR("IGU ERROR\n");
5167
5168	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5169			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5170
5171	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5172	aeu_mask = REG_RD(bp, reg_addr);
5173
5174	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5175	   aeu_mask, deasserted);
5176	aeu_mask |= (deasserted & 0x3ff);
5177	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5178
5179	REG_WR(bp, reg_addr, aeu_mask);
5180	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5181
5182	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5183	bp->attn_state &= ~deasserted;
5184	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5185}
5186
5187static void bnx2x_attn_int(struct bnx2x *bp)
5188{
5189	/* read local copy of bits */
5190	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5191								attn_bits);
5192	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5193								attn_bits_ack);
5194	u32 attn_state = bp->attn_state;
5195
5196	/* look for changed bits */
5197	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5198	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5199
5200	DP(NETIF_MSG_HW,
5201	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5202	   attn_bits, attn_ack, asserted, deasserted);
5203
5204	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5205		BNX2X_ERR("BAD attention state\n");
5206
5207	/* handle bits that were raised */
5208	if (asserted)
5209		bnx2x_attn_int_asserted(bp, asserted);
5210
5211	if (deasserted)
5212		bnx2x_attn_int_deasserted(bp, deasserted);
5213}
5214
5215void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5216		      u16 index, u8 op, u8 update)
5217{
5218	u32 igu_addr = bp->igu_base_addr;
5219	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5220	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5221			     igu_addr);
5222}
5223
5224static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5225{
5226	/* No memory barriers */
5227	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5228	mmiowb(); /* keep prod updates ordered */
5229}
5230
5231static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5232				      union event_ring_elem *elem)
5233{
5234	u8 err = elem->message.error;
5235
5236	if (!bp->cnic_eth_dev.starting_cid  ||
5237	    (cid < bp->cnic_eth_dev.starting_cid &&
5238	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5239		return 1;
5240
5241	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5242
5243	if (unlikely(err)) {
5244
5245		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5246			  cid);
5247		bnx2x_panic_dump(bp, false);
5248	}
5249	bnx2x_cnic_cfc_comp(bp, cid, err);
5250	return 0;
5251}
5252
5253static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5254{
5255	struct bnx2x_mcast_ramrod_params rparam;
5256	int rc;
5257
5258	memset(&rparam, 0, sizeof(rparam));
5259
5260	rparam.mcast_obj = &bp->mcast_obj;
5261
5262	netif_addr_lock_bh(bp->dev);
5263
5264	/* Clear pending state for the last command */
5265	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5266
5267	/* If there are pending mcast commands - send them */
5268	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5269		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5270		if (rc < 0)
5271			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5272				  rc);
5273	}
5274
5275	netif_addr_unlock_bh(bp->dev);
5276}
5277
5278static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5279					    union event_ring_elem *elem)
5280{
5281	unsigned long ramrod_flags = 0;
5282	int rc = 0;
5283	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5284	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5285
5286	/* Always push next commands out, don't wait here */
5287	__set_bit(RAMROD_CONT, &ramrod_flags);
5288
5289	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5290			    >> BNX2X_SWCID_SHIFT) {
5291	case BNX2X_FILTER_MAC_PENDING:
5292		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5293		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5294			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5295		else
5296			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5297
5298		break;
5299	case BNX2X_FILTER_VLAN_PENDING:
5300		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5301		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5302		break;
5303	case BNX2X_FILTER_MCAST_PENDING:
5304		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5305		/* This is only relevant for 57710 where multicast MACs are
5306		 * configured as unicast MACs using the same ramrod.
5307		 */
5308		bnx2x_handle_mcast_eqe(bp);
5309		return;
5310	default:
5311		BNX2X_ERR("Unsupported classification command: %d\n",
5312			  elem->message.data.eth_event.echo);
5313		return;
5314	}
5315
5316	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5317
5318	if (rc < 0)
5319		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5320	else if (rc > 0)
5321		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5322}
5323
5324static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5325
5326static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5327{
5328	netif_addr_lock_bh(bp->dev);
5329
5330	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5331
5332	/* Send rx_mode command again if was requested */
5333	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5334		bnx2x_set_storm_rx_mode(bp);
5335	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5336				    &bp->sp_state))
5337		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5338	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5339				    &bp->sp_state))
5340		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5341
5342	netif_addr_unlock_bh(bp->dev);
5343}
5344
5345static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5346					      union event_ring_elem *elem)
5347{
5348	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5349		DP(BNX2X_MSG_SP,
5350		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5351		   elem->message.data.vif_list_event.func_bit_map);
5352		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5353			elem->message.data.vif_list_event.func_bit_map);
5354	} else if (elem->message.data.vif_list_event.echo ==
5355		   VIF_LIST_RULE_SET) {
5356		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5357		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5358	}
5359}
5360
5361/* called with rtnl_lock */
5362static void bnx2x_after_function_update(struct bnx2x *bp)
5363{
5364	int q, rc;
5365	struct bnx2x_fastpath *fp;
5366	struct bnx2x_queue_state_params queue_params = {NULL};
5367	struct bnx2x_queue_update_params *q_update_params =
5368		&queue_params.params.update;
5369
5370	/* Send Q update command with afex vlan removal values for all Qs */
5371	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5372
5373	/* set silent vlan removal values according to vlan mode */
5374	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5375		  &q_update_params->update_flags);
5376	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5377		  &q_update_params->update_flags);
5378	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5379
5380	/* in access mode mark mask and value are 0 to strip all vlans */
5381	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5382		q_update_params->silent_removal_value = 0;
5383		q_update_params->silent_removal_mask = 0;
5384	} else {
5385		q_update_params->silent_removal_value =
5386			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5387		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5388	}
5389
5390	for_each_eth_queue(bp, q) {
5391		/* Set the appropriate Queue object */
5392		fp = &bp->fp[q];
5393		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5394
5395		/* send the ramrod */
5396		rc = bnx2x_queue_state_change(bp, &queue_params);
5397		if (rc < 0)
5398			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5399				  q);
5400	}
5401
5402	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5403		fp = &bp->fp[FCOE_IDX(bp)];
5404		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5405
5406		/* clear pending completion bit */
5407		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5408
5409		/* mark latest Q bit */
5410		smp_mb__before_atomic();
5411		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5412		smp_mb__after_atomic();
5413
5414		/* send Q update ramrod for FCoE Q */
5415		rc = bnx2x_queue_state_change(bp, &queue_params);
5416		if (rc < 0)
5417			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5418				  q);
5419	} else {
5420		/* If no FCoE ring - ACK MCP now */
5421		bnx2x_link_report(bp);
5422		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5423	}
5424}
5425
5426static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5427	struct bnx2x *bp, u32 cid)
5428{
5429	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5430
5431	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5432		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5433	else
5434		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5435}
5436
5437static void bnx2x_eq_int(struct bnx2x *bp)
5438{
5439	u16 hw_cons, sw_cons, sw_prod;
5440	union event_ring_elem *elem;
5441	u8 echo;
5442	u32 cid;
5443	u8 opcode;
5444	int rc, spqe_cnt = 0;
5445	struct bnx2x_queue_sp_obj *q_obj;
5446	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5447	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5448
5449	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5450
5451	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5452	 * when we get the next-page we need to adjust so the loop
5453	 * condition below will be met. The next element is the size of a
5454	 * regular element and hence incrementing by 1
5455	 */
5456	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5457		hw_cons++;
5458
5459	/* This function may never run in parallel with itself for a
5460	 * specific bp, thus there is no need in "paired" read memory
5461	 * barrier here.
5462	 */
5463	sw_cons = bp->eq_cons;
5464	sw_prod = bp->eq_prod;
5465
5466	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5467			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5468
5469	for (; sw_cons != hw_cons;
5470	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5471
5472		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5473
5474		rc = bnx2x_iov_eq_sp_event(bp, elem);
5475		if (!rc) {
5476			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5477			   rc);
5478			goto next_spqe;
5479		}
5480
5481		/* elem CID originates from FW; actually LE */
5482		cid = SW_CID((__force __le32)
5483			     elem->message.data.cfc_del_event.cid);
5484		opcode = elem->message.opcode;
5485
5486		/* handle eq element */
5487		switch (opcode) {
5488		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5489			bnx2x_vf_mbx_schedule(bp,
5490					      &elem->message.data.vf_pf_event);
5491			continue;
5492
5493		case EVENT_RING_OPCODE_STAT_QUERY:
5494			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5495			       "got statistics comp event %d\n",
5496			       bp->stats_comp++);
5497			/* nothing to do with stats comp */
5498			goto next_spqe;
5499
5500		case EVENT_RING_OPCODE_CFC_DEL:
5501			/* handle according to cid range */
5502			/*
5503			 * we may want to verify here that the bp state is
5504			 * HALTING
5505			 */
5506			DP(BNX2X_MSG_SP,
5507			   "got delete ramrod for MULTI[%d]\n", cid);
5508
5509			if (CNIC_LOADED(bp) &&
5510			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5511				goto next_spqe;
5512
5513			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5514
5515			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5516				break;
5517
5518			goto next_spqe;
5519
5520		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5521			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5522			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5523			if (f_obj->complete_cmd(bp, f_obj,
5524						BNX2X_F_CMD_TX_STOP))
5525				break;
5526			goto next_spqe;
5527
5528		case EVENT_RING_OPCODE_START_TRAFFIC:
5529			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5530			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5531			if (f_obj->complete_cmd(bp, f_obj,
5532						BNX2X_F_CMD_TX_START))
5533				break;
5534			goto next_spqe;
5535
5536		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5537			echo = elem->message.data.function_update_event.echo;
5538			if (echo == SWITCH_UPDATE) {
5539				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5540				   "got FUNC_SWITCH_UPDATE ramrod\n");
5541				if (f_obj->complete_cmd(
5542					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5543					break;
5544
5545			} else {
5546				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5547
5548				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5549				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5550				f_obj->complete_cmd(bp, f_obj,
5551						    BNX2X_F_CMD_AFEX_UPDATE);
5552
5553				/* We will perform the Queues update from
5554				 * sp_rtnl task as all Queue SP operations
5555				 * should run under rtnl_lock.
5556				 */
5557				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5558			}
5559
5560			goto next_spqe;
5561
5562		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5563			f_obj->complete_cmd(bp, f_obj,
5564					    BNX2X_F_CMD_AFEX_VIFLISTS);
5565			bnx2x_after_afex_vif_lists(bp, elem);
5566			goto next_spqe;
5567		case EVENT_RING_OPCODE_FUNCTION_START:
5568			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5569			   "got FUNC_START ramrod\n");
5570			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5571				break;
5572
5573			goto next_spqe;
5574
5575		case EVENT_RING_OPCODE_FUNCTION_STOP:
5576			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5577			   "got FUNC_STOP ramrod\n");
5578			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5579				break;
5580
5581			goto next_spqe;
5582
5583		case EVENT_RING_OPCODE_SET_TIMESYNC:
5584			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5585			   "got set_timesync ramrod completion\n");
5586			if (f_obj->complete_cmd(bp, f_obj,
5587						BNX2X_F_CMD_SET_TIMESYNC))
5588				break;
5589			goto next_spqe;
5590		}
5591
5592		switch (opcode | bp->state) {
5593		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5594		      BNX2X_STATE_OPEN):
5595		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5596		      BNX2X_STATE_OPENING_WAIT4_PORT):
5597		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5598		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5599			cid = elem->message.data.eth_event.echo &
5600				BNX2X_SWCID_MASK;
5601			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5602			   cid);
5603			rss_raw->clear_pending(rss_raw);
5604			break;
5605
5606		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5607		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5608		case (EVENT_RING_OPCODE_SET_MAC |
5609		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5610		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5611		      BNX2X_STATE_OPEN):
5612		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5613		      BNX2X_STATE_DIAG):
5614		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5615		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5616			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5617			bnx2x_handle_classification_eqe(bp, elem);
5618			break;
5619
5620		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5621		      BNX2X_STATE_OPEN):
5622		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5623		      BNX2X_STATE_DIAG):
5624		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5625		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5626			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5627			bnx2x_handle_mcast_eqe(bp);
5628			break;
5629
5630		case (EVENT_RING_OPCODE_FILTERS_RULES |
5631		      BNX2X_STATE_OPEN):
5632		case (EVENT_RING_OPCODE_FILTERS_RULES |
5633		      BNX2X_STATE_DIAG):
5634		case (EVENT_RING_OPCODE_FILTERS_RULES |
5635		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5636			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5637			bnx2x_handle_rx_mode_eqe(bp);
5638			break;
5639		default:
5640			/* unknown event log error and continue */
5641			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5642				  elem->message.opcode, bp->state);
5643		}
5644next_spqe:
5645		spqe_cnt++;
5646	} /* for */
5647
5648	smp_mb__before_atomic();
5649	atomic_add(spqe_cnt, &bp->eq_spq_left);
5650
5651	bp->eq_cons = sw_cons;
5652	bp->eq_prod = sw_prod;
5653	/* Make sure that above mem writes were issued towards the memory */
5654	smp_wmb();
5655
5656	/* update producer */
5657	bnx2x_update_eq_prod(bp, bp->eq_prod);
5658}
5659
5660static void bnx2x_sp_task(struct work_struct *work)
5661{
5662	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5663
5664	DP(BNX2X_MSG_SP, "sp task invoked\n");
5665
5666	/* make sure the atomic interrupt_occurred has been written */
5667	smp_rmb();
5668	if (atomic_read(&bp->interrupt_occurred)) {
5669
5670		/* what work needs to be performed? */
5671		u16 status = bnx2x_update_dsb_idx(bp);
5672
5673		DP(BNX2X_MSG_SP, "status %x\n", status);
5674		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5675		atomic_set(&bp->interrupt_occurred, 0);
5676
5677		/* HW attentions */
5678		if (status & BNX2X_DEF_SB_ATT_IDX) {
5679			bnx2x_attn_int(bp);
5680			status &= ~BNX2X_DEF_SB_ATT_IDX;
5681		}
5682
5683		/* SP events: STAT_QUERY and others */
5684		if (status & BNX2X_DEF_SB_IDX) {
5685			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5686
5687		if (FCOE_INIT(bp) &&
5688			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5689				/* Prevent local bottom-halves from running as
5690				 * we are going to change the local NAPI list.
5691				 */
5692				local_bh_disable();
5693				napi_schedule(&bnx2x_fcoe(bp, napi));
5694				local_bh_enable();
5695			}
5696
5697			/* Handle EQ completions */
5698			bnx2x_eq_int(bp);
5699			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5700				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5701
5702			status &= ~BNX2X_DEF_SB_IDX;
5703		}
5704
5705		/* if status is non zero then perhaps something went wrong */
5706		if (unlikely(status))
5707			DP(BNX2X_MSG_SP,
5708			   "got an unknown interrupt! (status 0x%x)\n", status);
5709
5710		/* ack status block only if something was actually handled */
5711		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5712			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5713	}
5714
5715	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5716	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5717			       &bp->sp_state)) {
5718		bnx2x_link_report(bp);
5719		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5720	}
5721}
5722
5723irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5724{
5725	struct net_device *dev = dev_instance;
5726	struct bnx2x *bp = netdev_priv(dev);
5727
5728	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5729		     IGU_INT_DISABLE, 0);
5730
5731#ifdef BNX2X_STOP_ON_ERROR
5732	if (unlikely(bp->panic))
5733		return IRQ_HANDLED;
5734#endif
5735
5736	if (CNIC_LOADED(bp)) {
5737		struct cnic_ops *c_ops;
5738
5739		rcu_read_lock();
5740		c_ops = rcu_dereference(bp->cnic_ops);
5741		if (c_ops)
5742			c_ops->cnic_handler(bp->cnic_data, NULL);
5743		rcu_read_unlock();
5744	}
5745
5746	/* schedule sp task to perform default status block work, ack
5747	 * attentions and enable interrupts.
5748	 */
5749	bnx2x_schedule_sp_task(bp);
5750
5751	return IRQ_HANDLED;
5752}
5753
5754/* end of slow path */
5755
5756void bnx2x_drv_pulse(struct bnx2x *bp)
5757{
5758	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5759		 bp->fw_drv_pulse_wr_seq);
5760}
5761
5762static void bnx2x_timer(unsigned long data)
5763{
5764	struct bnx2x *bp = (struct bnx2x *) data;
5765
5766	if (!netif_running(bp->dev))
5767		return;
5768
5769	if (IS_PF(bp) &&
5770	    !BP_NOMCP(bp)) {
5771		int mb_idx = BP_FW_MB_IDX(bp);
5772		u16 drv_pulse;
5773		u16 mcp_pulse;
5774
5775		++bp->fw_drv_pulse_wr_seq;
5776		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5777		drv_pulse = bp->fw_drv_pulse_wr_seq;
5778		bnx2x_drv_pulse(bp);
5779
5780		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5781			     MCP_PULSE_SEQ_MASK);
5782		/* The delta between driver pulse and mcp response
5783		 * should not get too big. If the MFW is more than 5 pulses
5784		 * behind, we should worry about it enough to generate an error
5785		 * log.
5786		 */
5787		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5788			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5789				  drv_pulse, mcp_pulse);
5790	}
5791
5792	if (bp->state == BNX2X_STATE_OPEN)
5793		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5794
5795	/* sample pf vf bulletin board for new posts from pf */
5796	if (IS_VF(bp))
5797		bnx2x_timer_sriov(bp);
5798
5799	mod_timer(&bp->timer, jiffies + bp->current_interval);
5800}
5801
5802/* end of Statistics */
5803
5804/* nic init */
5805
5806/*
5807 * nic init service functions
5808 */
5809
5810static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5811{
5812	u32 i;
5813	if (!(len%4) && !(addr%4))
5814		for (i = 0; i < len; i += 4)
5815			REG_WR(bp, addr + i, fill);
5816	else
5817		for (i = 0; i < len; i++)
5818			REG_WR8(bp, addr + i, fill);
5819}
5820
5821/* helper: writes FP SP data to FW - data_size in dwords */
5822static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5823				int fw_sb_id,
5824				u32 *sb_data_p,
5825				u32 data_size)
5826{
5827	int index;
5828	for (index = 0; index < data_size; index++)
5829		REG_WR(bp, BAR_CSTRORM_INTMEM +
5830			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5831			sizeof(u32)*index,
5832			*(sb_data_p + index));
5833}
5834
5835static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5836{
5837	u32 *sb_data_p;
5838	u32 data_size = 0;
5839	struct hc_status_block_data_e2 sb_data_e2;
5840	struct hc_status_block_data_e1x sb_data_e1x;
5841
5842	/* disable the function first */
5843	if (!CHIP_IS_E1x(bp)) {
5844		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5845		sb_data_e2.common.state = SB_DISABLED;
5846		sb_data_e2.common.p_func.vf_valid = false;
5847		sb_data_p = (u32 *)&sb_data_e2;
5848		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5849	} else {
5850		memset(&sb_data_e1x, 0,
5851		       sizeof(struct hc_status_block_data_e1x));
5852		sb_data_e1x.common.state = SB_DISABLED;
5853		sb_data_e1x.common.p_func.vf_valid = false;
5854		sb_data_p = (u32 *)&sb_data_e1x;
5855		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5856	}
5857	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5858
5859	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5860			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5861			CSTORM_STATUS_BLOCK_SIZE);
5862	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5863			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5864			CSTORM_SYNC_BLOCK_SIZE);
5865}
5866
5867/* helper:  writes SP SB data to FW */
5868static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5869		struct hc_sp_status_block_data *sp_sb_data)
5870{
5871	int func = BP_FUNC(bp);
5872	int i;
5873	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5874		REG_WR(bp, BAR_CSTRORM_INTMEM +
5875			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5876			i*sizeof(u32),
5877			*((u32 *)sp_sb_data + i));
5878}
5879
5880static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5881{
5882	int func = BP_FUNC(bp);
5883	struct hc_sp_status_block_data sp_sb_data;
5884	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5885
5886	sp_sb_data.state = SB_DISABLED;
5887	sp_sb_data.p_func.vf_valid = false;
5888
5889	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5890
5891	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5892			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5893			CSTORM_SP_STATUS_BLOCK_SIZE);
5894	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5895			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5896			CSTORM_SP_SYNC_BLOCK_SIZE);
5897}
5898
5899static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5900					   int igu_sb_id, int igu_seg_id)
5901{
5902	hc_sm->igu_sb_id = igu_sb_id;
5903	hc_sm->igu_seg_id = igu_seg_id;
5904	hc_sm->timer_value = 0xFF;
5905	hc_sm->time_to_expire = 0xFFFFFFFF;
5906}
5907
5908/* allocates state machine ids. */
5909static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5910{
5911	/* zero out state machine indices */
5912	/* rx indices */
5913	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5914
5915	/* tx indices */
5916	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5917	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5918	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5919	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5920
5921	/* map indices */
5922	/* rx indices */
5923	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5924		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5925
5926	/* tx indices */
5927	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5928		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5929	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5930		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5931	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5932		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5933	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5934		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5935}
5936
5937void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5938			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5939{
5940	int igu_seg_id;
5941
5942	struct hc_status_block_data_e2 sb_data_e2;
5943	struct hc_status_block_data_e1x sb_data_e1x;
5944	struct hc_status_block_sm  *hc_sm_p;
5945	int data_size;
5946	u32 *sb_data_p;
5947
5948	if (CHIP_INT_MODE_IS_BC(bp))
5949		igu_seg_id = HC_SEG_ACCESS_NORM;
5950	else
5951		igu_seg_id = IGU_SEG_ACCESS_NORM;
5952
5953	bnx2x_zero_fp_sb(bp, fw_sb_id);
5954
5955	if (!CHIP_IS_E1x(bp)) {
5956		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5957		sb_data_e2.common.state = SB_ENABLED;
5958		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5959		sb_data_e2.common.p_func.vf_id = vfid;
5960		sb_data_e2.common.p_func.vf_valid = vf_valid;
5961		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5962		sb_data_e2.common.same_igu_sb_1b = true;
5963		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5964		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5965		hc_sm_p = sb_data_e2.common.state_machine;
5966		sb_data_p = (u32 *)&sb_data_e2;
5967		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5968		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5969	} else {
5970		memset(&sb_data_e1x, 0,
5971		       sizeof(struct hc_status_block_data_e1x));
5972		sb_data_e1x.common.state = SB_ENABLED;
5973		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5974		sb_data_e1x.common.p_func.vf_id = 0xff;
5975		sb_data_e1x.common.p_func.vf_valid = false;
5976		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5977		sb_data_e1x.common.same_igu_sb_1b = true;
5978		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5979		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5980		hc_sm_p = sb_data_e1x.common.state_machine;
5981		sb_data_p = (u32 *)&sb_data_e1x;
5982		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5983		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5984	}
5985
5986	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5987				       igu_sb_id, igu_seg_id);
5988	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5989				       igu_sb_id, igu_seg_id);
5990
5991	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5992
5993	/* write indices to HW - PCI guarantees endianity of regpairs */
5994	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5995}
5996
5997static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5998				     u16 tx_usec, u16 rx_usec)
5999{
6000	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6001				    false, rx_usec);
6002	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6003				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6004				       tx_usec);
6005	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6006				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6007				       tx_usec);
6008	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6009				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6010				       tx_usec);
6011}
6012
6013static void bnx2x_init_def_sb(struct bnx2x *bp)
6014{
6015	struct host_sp_status_block *def_sb = bp->def_status_blk;
6016	dma_addr_t mapping = bp->def_status_blk_mapping;
6017	int igu_sp_sb_index;
6018	int igu_seg_id;
6019	int port = BP_PORT(bp);
6020	int func = BP_FUNC(bp);
6021	int reg_offset, reg_offset_en5;
6022	u64 section;
6023	int index;
6024	struct hc_sp_status_block_data sp_sb_data;
6025	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6026
6027	if (CHIP_INT_MODE_IS_BC(bp)) {
6028		igu_sp_sb_index = DEF_SB_IGU_ID;
6029		igu_seg_id = HC_SEG_ACCESS_DEF;
6030	} else {
6031		igu_sp_sb_index = bp->igu_dsb_id;
6032		igu_seg_id = IGU_SEG_ACCESS_DEF;
6033	}
6034
6035	/* ATTN */
6036	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6037					    atten_status_block);
6038	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6039
6040	bp->attn_state = 0;
6041
6042	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6043			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6044	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6045				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6046	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6047		int sindex;
6048		/* take care of sig[0]..sig[4] */
6049		for (sindex = 0; sindex < 4; sindex++)
6050			bp->attn_group[index].sig[sindex] =
6051			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6052
6053		if (!CHIP_IS_E1x(bp))
6054			/*
6055			 * enable5 is separate from the rest of the registers,
6056			 * and therefore the address skip is 4
6057			 * and not 16 between the different groups
6058			 */
6059			bp->attn_group[index].sig[4] = REG_RD(bp,
6060					reg_offset_en5 + 0x4*index);
6061		else
6062			bp->attn_group[index].sig[4] = 0;
6063	}
6064
6065	if (bp->common.int_block == INT_BLOCK_HC) {
6066		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6067				     HC_REG_ATTN_MSG0_ADDR_L);
6068
6069		REG_WR(bp, reg_offset, U64_LO(section));
6070		REG_WR(bp, reg_offset + 4, U64_HI(section));
6071	} else if (!CHIP_IS_E1x(bp)) {
6072		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6073		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6074	}
6075
6076	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6077					    sp_sb);
6078
6079	bnx2x_zero_sp_sb(bp);
6080
6081	/* PCI guarantees endianity of regpairs */
6082	sp_sb_data.state		= SB_ENABLED;
6083	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6084	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6085	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6086	sp_sb_data.igu_seg_id		= igu_seg_id;
6087	sp_sb_data.p_func.pf_id		= func;
6088	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6089	sp_sb_data.p_func.vf_id		= 0xff;
6090
6091	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6092
6093	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6094}
6095
6096void bnx2x_update_coalesce(struct bnx2x *bp)
6097{
6098	int i;
6099
6100	for_each_eth_queue(bp, i)
6101		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6102					 bp->tx_ticks, bp->rx_ticks);
6103}
6104
6105static void bnx2x_init_sp_ring(struct bnx2x *bp)
6106{
6107	spin_lock_init(&bp->spq_lock);
6108	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6109
6110	bp->spq_prod_idx = 0;
6111	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6112	bp->spq_prod_bd = bp->spq;
6113	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6114}
6115
6116static void bnx2x_init_eq_ring(struct bnx2x *bp)
6117{
6118	int i;
6119	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6120		union event_ring_elem *elem =
6121			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6122
6123		elem->next_page.addr.hi =
6124			cpu_to_le32(U64_HI(bp->eq_mapping +
6125				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6126		elem->next_page.addr.lo =
6127			cpu_to_le32(U64_LO(bp->eq_mapping +
6128				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6129	}
6130	bp->eq_cons = 0;
6131	bp->eq_prod = NUM_EQ_DESC;
6132	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6133	/* we want a warning message before it gets wrought... */
6134	atomic_set(&bp->eq_spq_left,
6135		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6136}
6137
6138/* called with netif_addr_lock_bh() */
6139static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6140			       unsigned long rx_mode_flags,
6141			       unsigned long rx_accept_flags,
6142			       unsigned long tx_accept_flags,
6143			       unsigned long ramrod_flags)
6144{
6145	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6146	int rc;
6147
6148	memset(&ramrod_param, 0, sizeof(ramrod_param));
6149
6150	/* Prepare ramrod parameters */
6151	ramrod_param.cid = 0;
6152	ramrod_param.cl_id = cl_id;
6153	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6154	ramrod_param.func_id = BP_FUNC(bp);
6155
6156	ramrod_param.pstate = &bp->sp_state;
6157	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6158
6159	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6160	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6161
6162	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6163
6164	ramrod_param.ramrod_flags = ramrod_flags;
6165	ramrod_param.rx_mode_flags = rx_mode_flags;
6166
6167	ramrod_param.rx_accept_flags = rx_accept_flags;
6168	ramrod_param.tx_accept_flags = tx_accept_flags;
6169
6170	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6171	if (rc < 0) {
6172		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6173		return rc;
6174	}
6175
6176	return 0;
6177}
6178
6179static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6180				   unsigned long *rx_accept_flags,
6181				   unsigned long *tx_accept_flags)
6182{
6183	/* Clear the flags first */
6184	*rx_accept_flags = 0;
6185	*tx_accept_flags = 0;
6186
6187	switch (rx_mode) {
6188	case BNX2X_RX_MODE_NONE:
6189		/*
6190		 * 'drop all' supersedes any accept flags that may have been
6191		 * passed to the function.
6192		 */
6193		break;
6194	case BNX2X_RX_MODE_NORMAL:
6195		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6196		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6197		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6198
6199		/* internal switching mode */
6200		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6201		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6202		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6203
6204		if (bp->accept_any_vlan) {
6205			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6206			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6207		}
6208
6209		break;
6210	case BNX2X_RX_MODE_ALLMULTI:
6211		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6212		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6213		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6214
6215		/* internal switching mode */
6216		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6217		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6218		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6219
6220		if (bp->accept_any_vlan) {
6221			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6222			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6223		}
6224
6225		break;
6226	case BNX2X_RX_MODE_PROMISC:
6227		/* According to definition of SI mode, iface in promisc mode
6228		 * should receive matched and unmatched (in resolution of port)
6229		 * unicast packets.
6230		 */
6231		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6232		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6233		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6234		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6235
6236		/* internal switching mode */
6237		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6238		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6239
6240		if (IS_MF_SI(bp))
6241			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6242		else
6243			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6244
6245		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6246		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6247
6248		break;
6249	default:
6250		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6251		return -EINVAL;
6252	}
6253
6254	return 0;
6255}
6256
6257/* called with netif_addr_lock_bh() */
6258static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6259{
6260	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6261	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6262	int rc;
6263
6264	if (!NO_FCOE(bp))
6265		/* Configure rx_mode of FCoE Queue */
6266		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6267
6268	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6269				     &tx_accept_flags);
6270	if (rc)
6271		return rc;
6272
6273	__set_bit(RAMROD_RX, &ramrod_flags);
6274	__set_bit(RAMROD_TX, &ramrod_flags);
6275
6276	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6277				   rx_accept_flags, tx_accept_flags,
6278				   ramrod_flags);
6279}
6280
6281static void bnx2x_init_internal_common(struct bnx2x *bp)
6282{
6283	int i;
6284
6285	/* Zero this manually as its initialization is
6286	   currently missing in the initTool */
6287	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6288		REG_WR(bp, BAR_USTRORM_INTMEM +
6289		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6290	if (!CHIP_IS_E1x(bp)) {
6291		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6292			CHIP_INT_MODE_IS_BC(bp) ?
6293			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6294	}
6295}
6296
6297static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6298{
6299	switch (load_code) {
6300	case FW_MSG_CODE_DRV_LOAD_COMMON:
6301	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6302		bnx2x_init_internal_common(bp);
6303		/* no break */
6304
6305	case FW_MSG_CODE_DRV_LOAD_PORT:
6306		/* nothing to do */
6307		/* no break */
6308
6309	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6310		/* internal memory per function is
6311		   initialized inside bnx2x_pf_init */
6312		break;
6313
6314	default:
6315		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6316		break;
6317	}
6318}
6319
6320static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6321{
6322	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6323}
6324
6325static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6326{
6327	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6328}
6329
6330static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6331{
6332	if (CHIP_IS_E1x(fp->bp))
6333		return BP_L_ID(fp->bp) + fp->index;
6334	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6335		return bnx2x_fp_igu_sb_id(fp);
6336}
6337
6338static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6339{
6340	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6341	u8 cos;
6342	unsigned long q_type = 0;
6343	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6344	fp->rx_queue = fp_idx;
6345	fp->cid = fp_idx;
6346	fp->cl_id = bnx2x_fp_cl_id(fp);
6347	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6348	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6349	/* qZone id equals to FW (per path) client id */
6350	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6351
6352	/* init shortcut */
6353	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6354
6355	/* Setup SB indices */
6356	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6357
6358	/* Configure Queue State object */
6359	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6360	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6361
6362	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6363
6364	/* init tx data */
6365	for_each_cos_in_tx_queue(fp, cos) {
6366		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6367				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6368				  FP_COS_TO_TXQ(fp, cos, bp),
6369				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6370		cids[cos] = fp->txdata_ptr[cos]->cid;
6371	}
6372
6373	/* nothing more for vf to do here */
6374	if (IS_VF(bp))
6375		return;
6376
6377	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6378		      fp->fw_sb_id, fp->igu_sb_id);
6379	bnx2x_update_fpsb_idx(fp);
6380	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6381			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6382			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6383
6384	/**
6385	 * Configure classification DBs: Always enable Tx switching
6386	 */
6387	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6388
6389	DP(NETIF_MSG_IFUP,
6390	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6391	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6392	   fp->igu_sb_id);
6393}
6394
6395static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6396{
6397	int i;
6398
6399	for (i = 1; i <= NUM_TX_RINGS; i++) {
6400		struct eth_tx_next_bd *tx_next_bd =
6401			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6402
6403		tx_next_bd->addr_hi =
6404			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6405				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6406		tx_next_bd->addr_lo =
6407			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6408				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6409	}
6410
6411	*txdata->tx_cons_sb = cpu_to_le16(0);
6412
6413	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6414	txdata->tx_db.data.zero_fill1 = 0;
6415	txdata->tx_db.data.prod = 0;
6416
6417	txdata->tx_pkt_prod = 0;
6418	txdata->tx_pkt_cons = 0;
6419	txdata->tx_bd_prod = 0;
6420	txdata->tx_bd_cons = 0;
6421	txdata->tx_pkt = 0;
6422}
6423
6424static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6425{
6426	int i;
6427
6428	for_each_tx_queue_cnic(bp, i)
6429		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6430}
6431
6432static void bnx2x_init_tx_rings(struct bnx2x *bp)
6433{
6434	int i;
6435	u8 cos;
6436
6437	for_each_eth_queue(bp, i)
6438		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6439			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6440}
6441
6442static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6443{
6444	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6445	unsigned long q_type = 0;
6446
6447	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6448	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6449						     BNX2X_FCOE_ETH_CL_ID_IDX);
6450	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6451	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6452	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6453	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6454	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6455			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6456			  fp);
6457
6458	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6459
6460	/* qZone id equals to FW (per path) client id */
6461	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6462	/* init shortcut */
6463	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6464		bnx2x_rx_ustorm_prods_offset(fp);
6465
6466	/* Configure Queue State object */
6467	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6468	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6469
6470	/* No multi-CoS for FCoE L2 client */
6471	BUG_ON(fp->max_cos != 1);
6472
6473	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6474			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6475			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6476
6477	DP(NETIF_MSG_IFUP,
6478	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6479	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6480	   fp->igu_sb_id);
6481}
6482
6483void bnx2x_nic_init_cnic(struct bnx2x *bp)
6484{
6485	if (!NO_FCOE(bp))
6486		bnx2x_init_fcoe_fp(bp);
6487
6488	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6489		      BNX2X_VF_ID_INVALID, false,
6490		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6491
6492	/* ensure status block indices were read */
6493	rmb();
6494	bnx2x_init_rx_rings_cnic(bp);
6495	bnx2x_init_tx_rings_cnic(bp);
6496
6497	/* flush all */
6498	mb();
6499	mmiowb();
6500}
6501
6502void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6503{
6504	int i;
6505
6506	/* Setup NIC internals and enable interrupts */
6507	for_each_eth_queue(bp, i)
6508		bnx2x_init_eth_fp(bp, i);
6509
6510	/* ensure status block indices were read */
6511	rmb();
6512	bnx2x_init_rx_rings(bp);
6513	bnx2x_init_tx_rings(bp);
6514
6515	if (IS_PF(bp)) {
6516		/* Initialize MOD_ABS interrupts */
6517		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6518				       bp->common.shmem_base,
6519				       bp->common.shmem2_base, BP_PORT(bp));
6520
6521		/* initialize the default status block and sp ring */
6522		bnx2x_init_def_sb(bp);
6523		bnx2x_update_dsb_idx(bp);
6524		bnx2x_init_sp_ring(bp);
6525	} else {
6526		bnx2x_memset_stats(bp);
6527	}
6528}
6529
6530void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6531{
6532	bnx2x_init_eq_ring(bp);
6533	bnx2x_init_internal(bp, load_code);
6534	bnx2x_pf_init(bp);
6535	bnx2x_stats_init(bp);
6536
6537	/* flush all before enabling interrupts */
6538	mb();
6539	mmiowb();
6540
6541	bnx2x_int_enable(bp);
6542
6543	/* Check for SPIO5 */
6544	bnx2x_attn_int_deasserted0(bp,
6545		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6546				   AEU_INPUTS_ATTN_BITS_SPIO5);
6547}
6548
6549/* gzip service functions */
6550static int bnx2x_gunzip_init(struct bnx2x *bp)
6551{
6552	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6553					    &bp->gunzip_mapping, GFP_KERNEL);
6554	if (bp->gunzip_buf  == NULL)
6555		goto gunzip_nomem1;
6556
6557	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6558	if (bp->strm  == NULL)
6559		goto gunzip_nomem2;
6560
6561	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6562	if (bp->strm->workspace == NULL)
6563		goto gunzip_nomem3;
6564
6565	return 0;
6566
6567gunzip_nomem3:
6568	kfree(bp->strm);
6569	bp->strm = NULL;
6570
6571gunzip_nomem2:
6572	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6573			  bp->gunzip_mapping);
6574	bp->gunzip_buf = NULL;
6575
6576gunzip_nomem1:
6577	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6578	return -ENOMEM;
6579}
6580
6581static void bnx2x_gunzip_end(struct bnx2x *bp)
6582{
6583	if (bp->strm) {
6584		vfree(bp->strm->workspace);
6585		kfree(bp->strm);
6586		bp->strm = NULL;
6587	}
6588
6589	if (bp->gunzip_buf) {
6590		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6591				  bp->gunzip_mapping);
6592		bp->gunzip_buf = NULL;
6593	}
6594}
6595
6596static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6597{
6598	int n, rc;
6599
6600	/* check gzip header */
6601	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6602		BNX2X_ERR("Bad gzip header\n");
6603		return -EINVAL;
6604	}
6605
6606	n = 10;
6607
6608#define FNAME				0x8
6609
6610	if (zbuf[3] & FNAME)
6611		while ((zbuf[n++] != 0) && (n < len));
6612
6613	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6614	bp->strm->avail_in = len - n;
6615	bp->strm->next_out = bp->gunzip_buf;
6616	bp->strm->avail_out = FW_BUF_SIZE;
6617
6618	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6619	if (rc != Z_OK)
6620		return rc;
6621
6622	rc = zlib_inflate(bp->strm, Z_FINISH);
6623	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6624		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6625			   bp->strm->msg);
6626
6627	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6628	if (bp->gunzip_outlen & 0x3)
6629		netdev_err(bp->dev,
6630			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6631				bp->gunzip_outlen);
6632	bp->gunzip_outlen >>= 2;
6633
6634	zlib_inflateEnd(bp->strm);
6635
6636	if (rc == Z_STREAM_END)
6637		return 0;
6638
6639	return rc;
6640}
6641
6642/* nic load/unload */
6643
6644/*
6645 * General service functions
6646 */
6647
6648/* send a NIG loopback debug packet */
6649static void bnx2x_lb_pckt(struct bnx2x *bp)
6650{
6651	u32 wb_write[3];
6652
6653	/* Ethernet source and destination addresses */
6654	wb_write[0] = 0x55555555;
6655	wb_write[1] = 0x55555555;
6656	wb_write[2] = 0x20;		/* SOP */
6657	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6658
6659	/* NON-IP protocol */
6660	wb_write[0] = 0x09000000;
6661	wb_write[1] = 0x55555555;
6662	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6663	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6664}
6665
6666/* some of the internal memories
6667 * are not directly readable from the driver
6668 * to test them we send debug packets
6669 */
6670static int bnx2x_int_mem_test(struct bnx2x *bp)
6671{
6672	int factor;
6673	int count, i;
6674	u32 val = 0;
6675
6676	if (CHIP_REV_IS_FPGA(bp))
6677		factor = 120;
6678	else if (CHIP_REV_IS_EMUL(bp))
6679		factor = 200;
6680	else
6681		factor = 1;
6682
6683	/* Disable inputs of parser neighbor blocks */
6684	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6685	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6686	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6687	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6688
6689	/*  Write 0 to parser credits for CFC search request */
6690	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6691
6692	/* send Ethernet packet */
6693	bnx2x_lb_pckt(bp);
6694
6695	/* TODO do i reset NIG statistic? */
6696	/* Wait until NIG register shows 1 packet of size 0x10 */
6697	count = 1000 * factor;
6698	while (count) {
6699
6700		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6701		val = *bnx2x_sp(bp, wb_data[0]);
6702		if (val == 0x10)
6703			break;
6704
6705		usleep_range(10000, 20000);
6706		count--;
6707	}
6708	if (val != 0x10) {
6709		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6710		return -1;
6711	}
6712
6713	/* Wait until PRS register shows 1 packet */
6714	count = 1000 * factor;
6715	while (count) {
6716		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6717		if (val == 1)
6718			break;
6719
6720		usleep_range(10000, 20000);
6721		count--;
6722	}
6723	if (val != 0x1) {
6724		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6725		return -2;
6726	}
6727
6728	/* Reset and init BRB, PRS */
6729	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6730	msleep(50);
6731	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6732	msleep(50);
6733	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6734	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6735
6736	DP(NETIF_MSG_HW, "part2\n");
6737
6738	/* Disable inputs of parser neighbor blocks */
6739	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6740	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6741	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6742	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6743
6744	/* Write 0 to parser credits for CFC search request */
6745	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6746
6747	/* send 10 Ethernet packets */
6748	for (i = 0; i < 10; i++)
6749		bnx2x_lb_pckt(bp);
6750
6751	/* Wait until NIG register shows 10 + 1
6752	   packets of size 11*0x10 = 0xb0 */
6753	count = 1000 * factor;
6754	while (count) {
6755
6756		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6757		val = *bnx2x_sp(bp, wb_data[0]);
6758		if (val == 0xb0)
6759			break;
6760
6761		usleep_range(10000, 20000);
6762		count--;
6763	}
6764	if (val != 0xb0) {
6765		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6766		return -3;
6767	}
6768
6769	/* Wait until PRS register shows 2 packets */
6770	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6771	if (val != 2)
6772		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6773
6774	/* Write 1 to parser credits for CFC search request */
6775	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6776
6777	/* Wait until PRS register shows 3 packets */
6778	msleep(10 * factor);
6779	/* Wait until NIG register shows 1 packet of size 0x10 */
6780	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6781	if (val != 3)
6782		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6783
6784	/* clear NIG EOP FIFO */
6785	for (i = 0; i < 11; i++)
6786		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6787	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6788	if (val != 1) {
6789		BNX2X_ERR("clear of NIG failed\n");
6790		return -4;
6791	}
6792
6793	/* Reset and init BRB, PRS, NIG */
6794	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6795	msleep(50);
6796	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6797	msleep(50);
6798	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6799	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6800	if (!CNIC_SUPPORT(bp))
6801		/* set NIC mode */
6802		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6803
6804	/* Enable inputs of parser neighbor blocks */
6805	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6806	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6807	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6808	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6809
6810	DP(NETIF_MSG_HW, "done\n");
6811
6812	return 0; /* OK */
6813}
6814
6815static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6816{
6817	u32 val;
6818
6819	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6820	if (!CHIP_IS_E1x(bp))
6821		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6822	else
6823		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6824	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6825	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6826	/*
6827	 * mask read length error interrupts in brb for parser
6828	 * (parsing unit and 'checksum and crc' unit)
6829	 * these errors are legal (PU reads fixed length and CAC can cause
6830	 * read length error on truncated packets)
6831	 */
6832	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6833	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6834	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6835	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6836	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6837	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6838/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6839/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6840	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6841	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6842	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6843/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6844/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6845	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6846	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6847	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6848	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6849/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6850/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6851
6852	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6853		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6854		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6855	if (!CHIP_IS_E1x(bp))
6856		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6857			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6858	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6859
6860	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6861	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6862	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6863/*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6864
6865	if (!CHIP_IS_E1x(bp))
6866		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6867		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6868
6869	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6870	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6871/*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6872	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6873}
6874
6875static void bnx2x_reset_common(struct bnx2x *bp)
6876{
6877	u32 val = 0x1400;
6878
6879	/* reset_common */
6880	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6881	       0xd3ffff7f);
6882
6883	if (CHIP_IS_E3(bp)) {
6884		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6885		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6886	}
6887
6888	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6889}
6890
6891static void bnx2x_setup_dmae(struct bnx2x *bp)
6892{
6893	bp->dmae_ready = 0;
6894	spin_lock_init(&bp->dmae_lock);
6895}
6896
6897static void bnx2x_init_pxp(struct bnx2x *bp)
6898{
6899	u16 devctl;
6900	int r_order, w_order;
6901
6902	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6903	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6904	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6905	if (bp->mrrs == -1)
6906		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6907	else {
6908		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6909		r_order = bp->mrrs;
6910	}
6911
6912	bnx2x_init_pxp_arb(bp, r_order, w_order);
6913}
6914
6915static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6916{
6917	int is_required;
6918	u32 val;
6919	int port;
6920
6921	if (BP_NOMCP(bp))
6922		return;
6923
6924	is_required = 0;
6925	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6926	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6927
6928	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6929		is_required = 1;
6930
6931	/*
6932	 * The fan failure mechanism is usually related to the PHY type since
6933	 * the power consumption of the board is affected by the PHY. Currently,
6934	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6935	 */
6936	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6937		for (port = PORT_0; port < PORT_MAX; port++) {
6938			is_required |=
6939				bnx2x_fan_failure_det_req(
6940					bp,
6941					bp->common.shmem_base,
6942					bp->common.shmem2_base,
6943					port);
6944		}
6945
6946	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6947
6948	if (is_required == 0)
6949		return;
6950
6951	/* Fan failure is indicated by SPIO 5 */
6952	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6953
6954	/* set to active low mode */
6955	val = REG_RD(bp, MISC_REG_SPIO_INT);
6956	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6957	REG_WR(bp, MISC_REG_SPIO_INT, val);
6958
6959	/* enable interrupt to signal the IGU */
6960	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6961	val |= MISC_SPIO_SPIO5;
6962	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6963}
6964
6965void bnx2x_pf_disable(struct bnx2x *bp)
6966{
6967	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6968	val &= ~IGU_PF_CONF_FUNC_EN;
6969
6970	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6971	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6972	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6973}
6974
6975static void bnx2x__common_init_phy(struct bnx2x *bp)
6976{
6977	u32 shmem_base[2], shmem2_base[2];
6978	/* Avoid common init in case MFW supports LFA */
6979	if (SHMEM2_RD(bp, size) >
6980	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6981		return;
6982	shmem_base[0] =  bp->common.shmem_base;
6983	shmem2_base[0] = bp->common.shmem2_base;
6984	if (!CHIP_IS_E1x(bp)) {
6985		shmem_base[1] =
6986			SHMEM2_RD(bp, other_shmem_base_addr);
6987		shmem2_base[1] =
6988			SHMEM2_RD(bp, other_shmem2_base_addr);
6989	}
6990	bnx2x_acquire_phy_lock(bp);
6991	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6992			      bp->common.chip_id);
6993	bnx2x_release_phy_lock(bp);
6994}
6995
6996static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6997{
6998	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6999	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7000	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7001	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7002	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7003
7004	/* make sure this value is 0 */
7005	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7006
7007	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7008	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7009	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7010	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7011}
7012
7013static void bnx2x_set_endianity(struct bnx2x *bp)
7014{
7015#ifdef __BIG_ENDIAN
7016	bnx2x_config_endianity(bp, 1);
7017#else
7018	bnx2x_config_endianity(bp, 0);
7019#endif
7020}
7021
7022static void bnx2x_reset_endianity(struct bnx2x *bp)
7023{
7024	bnx2x_config_endianity(bp, 0);
7025}
7026
7027/**
7028 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7029 *
7030 * @bp:		driver handle
7031 */
7032static int bnx2x_init_hw_common(struct bnx2x *bp)
7033{
7034	u32 val;
7035
7036	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7037
7038	/*
7039	 * take the RESET lock to protect undi_unload flow from accessing
7040	 * registers while we're resetting the chip
7041	 */
7042	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7043
7044	bnx2x_reset_common(bp);
7045	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7046
7047	val = 0xfffc;
7048	if (CHIP_IS_E3(bp)) {
7049		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7050		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7051	}
7052	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7053
7054	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7055
7056	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7057
7058	if (!CHIP_IS_E1x(bp)) {
7059		u8 abs_func_id;
7060
7061		/**
7062		 * 4-port mode or 2-port mode we need to turn of master-enable
7063		 * for everyone, after that, turn it back on for self.
7064		 * so, we disregard multi-function or not, and always disable
7065		 * for all functions on the given path, this means 0,2,4,6 for
7066		 * path 0 and 1,3,5,7 for path 1
7067		 */
7068		for (abs_func_id = BP_PATH(bp);
7069		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7070			if (abs_func_id == BP_ABS_FUNC(bp)) {
7071				REG_WR(bp,
7072				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7073				    1);
7074				continue;
7075			}
7076
7077			bnx2x_pretend_func(bp, abs_func_id);
7078			/* clear pf enable */
7079			bnx2x_pf_disable(bp);
7080			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7081		}
7082	}
7083
7084	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7085	if (CHIP_IS_E1(bp)) {
7086		/* enable HW interrupt from PXP on USDM overflow
7087		   bit 16 on INT_MASK_0 */
7088		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7089	}
7090
7091	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7092	bnx2x_init_pxp(bp);
7093	bnx2x_set_endianity(bp);
7094	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7095
7096	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7097		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7098
7099	/* let the HW do it's magic ... */
7100	msleep(100);
7101	/* finish PXP init */
7102	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7103	if (val != 1) {
7104		BNX2X_ERR("PXP2 CFG failed\n");
7105		return -EBUSY;
7106	}
7107	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7108	if (val != 1) {
7109		BNX2X_ERR("PXP2 RD_INIT failed\n");
7110		return -EBUSY;
7111	}
7112
7113	/* Timers bug workaround E2 only. We need to set the entire ILT to
7114	 * have entries with value "0" and valid bit on.
7115	 * This needs to be done by the first PF that is loaded in a path
7116	 * (i.e. common phase)
7117	 */
7118	if (!CHIP_IS_E1x(bp)) {
7119/* In E2 there is a bug in the timers block that can cause function 6 / 7
7120 * (i.e. vnic3) to start even if it is marked as "scan-off".
7121 * This occurs when a different function (func2,3) is being marked
7122 * as "scan-off". Real-life scenario for example: if a driver is being
7123 * load-unloaded while func6,7 are down. This will cause the timer to access
7124 * the ilt, translate to a logical address and send a request to read/write.
7125 * Since the ilt for the function that is down is not valid, this will cause
7126 * a translation error which is unrecoverable.
7127 * The Workaround is intended to make sure that when this happens nothing fatal
7128 * will occur. The workaround:
7129 *	1.  First PF driver which loads on a path will:
7130 *		a.  After taking the chip out of reset, by using pretend,
7131 *		    it will write "0" to the following registers of
7132 *		    the other vnics.
7133 *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7134 *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7135 *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7136 *		    And for itself it will write '1' to
7137 *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7138 *		    dmae-operations (writing to pram for example.)
7139 *		    note: can be done for only function 6,7 but cleaner this
7140 *			  way.
7141 *		b.  Write zero+valid to the entire ILT.
7142 *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7143 *		    VNIC3 (of that port). The range allocated will be the
7144 *		    entire ILT. This is needed to prevent  ILT range error.
7145 *	2.  Any PF driver load flow:
7146 *		a.  ILT update with the physical addresses of the allocated
7147 *		    logical pages.
7148 *		b.  Wait 20msec. - note that this timeout is needed to make
7149 *		    sure there are no requests in one of the PXP internal
7150 *		    queues with "old" ILT addresses.
7151 *		c.  PF enable in the PGLC.
7152 *		d.  Clear the was_error of the PF in the PGLC. (could have
7153 *		    occurred while driver was down)
7154 *		e.  PF enable in the CFC (WEAK + STRONG)
7155 *		f.  Timers scan enable
7156 *	3.  PF driver unload flow:
7157 *		a.  Clear the Timers scan_en.
7158 *		b.  Polling for scan_on=0 for that PF.
7159 *		c.  Clear the PF enable bit in the PXP.
7160 *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7161 *		e.  Write zero+valid to all ILT entries (The valid bit must
7162 *		    stay set)
7163 *		f.  If this is VNIC 3 of a port then also init
7164 *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7165 *		    to the last entry in the ILT.
7166 *
7167 *	Notes:
7168 *	Currently the PF error in the PGLC is non recoverable.
7169 *	In the future the there will be a recovery routine for this error.
7170 *	Currently attention is masked.
7171 *	Having an MCP lock on the load/unload process does not guarantee that
7172 *	there is no Timer disable during Func6/7 enable. This is because the
7173 *	Timers scan is currently being cleared by the MCP on FLR.
7174 *	Step 2.d can be done only for PF6/7 and the driver can also check if
7175 *	there is error before clearing it. But the flow above is simpler and
7176 *	more general.
7177 *	All ILT entries are written by zero+valid and not just PF6/7
7178 *	ILT entries since in the future the ILT entries allocation for
7179 *	PF-s might be dynamic.
7180 */
7181		struct ilt_client_info ilt_cli;
7182		struct bnx2x_ilt ilt;
7183		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7184		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7185
7186		/* initialize dummy TM client */
7187		ilt_cli.start = 0;
7188		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7189		ilt_cli.client_num = ILT_CLIENT_TM;
7190
7191		/* Step 1: set zeroes to all ilt page entries with valid bit on
7192		 * Step 2: set the timers first/last ilt entry to point
7193		 * to the entire range to prevent ILT range error for 3rd/4th
7194		 * vnic	(this code assumes existence of the vnic)
7195		 *
7196		 * both steps performed by call to bnx2x_ilt_client_init_op()
7197		 * with dummy TM client
7198		 *
7199		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7200		 * and his brother are split registers
7201		 */
7202		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7203		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7204		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7205
7206		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7207		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7208		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7209	}
7210
7211	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7212	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7213
7214	if (!CHIP_IS_E1x(bp)) {
7215		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7216				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7217		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7218
7219		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7220
7221		/* let the HW do it's magic ... */
7222		do {
7223			msleep(200);
7224			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7225		} while (factor-- && (val != 1));
7226
7227		if (val != 1) {
7228			BNX2X_ERR("ATC_INIT failed\n");
7229			return -EBUSY;
7230		}
7231	}
7232
7233	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7234
7235	bnx2x_iov_init_dmae(bp);
7236
7237	/* clean the DMAE memory */
7238	bp->dmae_ready = 1;
7239	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7240
7241	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7242
7243	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7244
7245	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7246
7247	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7248
7249	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7250	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7251	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7252	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7253
7254	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7255
7256	/* QM queues pointers table */
7257	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7258
7259	/* soft reset pulse */
7260	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7261	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7262
7263	if (CNIC_SUPPORT(bp))
7264		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7265
7266	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7267
7268	if (!CHIP_REV_IS_SLOW(bp))
7269		/* enable hw interrupt from doorbell Q */
7270		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7271
7272	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7273
7274	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7275	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7276
7277	if (!CHIP_IS_E1(bp))
7278		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7279
7280	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7281		if (IS_MF_AFEX(bp)) {
7282			/* configure that VNTag and VLAN headers must be
7283			 * received in afex mode
7284			 */
7285			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7286			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7287			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7288			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7289			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7290		} else {
7291			/* Bit-map indicating which L2 hdrs may appear
7292			 * after the basic Ethernet header
7293			 */
7294			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7295			       bp->path_has_ovlan ? 7 : 6);
7296		}
7297	}
7298
7299	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7300	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7301	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7302	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7303
7304	if (!CHIP_IS_E1x(bp)) {
7305		/* reset VFC memories */
7306		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7307			   VFC_MEMORIES_RST_REG_CAM_RST |
7308			   VFC_MEMORIES_RST_REG_RAM_RST);
7309		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7310			   VFC_MEMORIES_RST_REG_CAM_RST |
7311			   VFC_MEMORIES_RST_REG_RAM_RST);
7312
7313		msleep(20);
7314	}
7315
7316	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7317	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7318	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7319	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7320
7321	/* sync semi rtc */
7322	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7323	       0x80000000);
7324	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7325	       0x80000000);
7326
7327	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7328	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7329	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7330
7331	if (!CHIP_IS_E1x(bp)) {
7332		if (IS_MF_AFEX(bp)) {
7333			/* configure that VNTag and VLAN headers must be
7334			 * sent in afex mode
7335			 */
7336			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7337			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7338			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7339			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7340			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7341		} else {
7342			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7343			       bp->path_has_ovlan ? 7 : 6);
7344		}
7345	}
7346
7347	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7348
7349	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7350
7351	if (CNIC_SUPPORT(bp)) {
7352		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7353		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7354		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7355		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7356		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7357		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7358		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7359		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7360		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7361		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7362	}
7363	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7364
7365	if (sizeof(union cdu_context) != 1024)
7366		/* we currently assume that a context is 1024 bytes */
7367		dev_alert(&bp->pdev->dev,
7368			  "please adjust the size of cdu_context(%ld)\n",
7369			  (long)sizeof(union cdu_context));
7370
7371	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7372	val = (4 << 24) + (0 << 12) + 1024;
7373	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7374
7375	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7376	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7377	/* enable context validation interrupt from CFC */
7378	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7379
7380	/* set the thresholds to prevent CFC/CDU race */
7381	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7382
7383	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7384
7385	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7386		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7387
7388	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7389	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7390
7391	/* Reset PCIE errors for debug */
7392	REG_WR(bp, 0x2814, 0xffffffff);
7393	REG_WR(bp, 0x3820, 0xffffffff);
7394
7395	if (!CHIP_IS_E1x(bp)) {
7396		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7397			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7398				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7399		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7400			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7401				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7402				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7403		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7404			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7405				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7406				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7407	}
7408
7409	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7410	if (!CHIP_IS_E1(bp)) {
7411		/* in E3 this done in per-port section */
7412		if (!CHIP_IS_E3(bp))
7413			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7414	}
7415	if (CHIP_IS_E1H(bp))
7416		/* not applicable for E2 (and above ...) */
7417		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7418
7419	if (CHIP_REV_IS_SLOW(bp))
7420		msleep(200);
7421
7422	/* finish CFC init */
7423	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7424	if (val != 1) {
7425		BNX2X_ERR("CFC LL_INIT failed\n");
7426		return -EBUSY;
7427	}
7428	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7429	if (val != 1) {
7430		BNX2X_ERR("CFC AC_INIT failed\n");
7431		return -EBUSY;
7432	}
7433	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7434	if (val != 1) {
7435		BNX2X_ERR("CFC CAM_INIT failed\n");
7436		return -EBUSY;
7437	}
7438	REG_WR(bp, CFC_REG_DEBUG0, 0);
7439
7440	if (CHIP_IS_E1(bp)) {
7441		/* read NIG statistic
7442		   to see if this is our first up since powerup */
7443		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7444		val = *bnx2x_sp(bp, wb_data[0]);
7445
7446		/* do internal memory self test */
7447		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7448			BNX2X_ERR("internal mem self test failed\n");
7449			return -EBUSY;
7450		}
7451	}
7452
7453	bnx2x_setup_fan_failure_detection(bp);
7454
7455	/* clear PXP2 attentions */
7456	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7457
7458	bnx2x_enable_blocks_attention(bp);
7459	bnx2x_enable_blocks_parity(bp);
7460
7461	if (!BP_NOMCP(bp)) {
7462		if (CHIP_IS_E1x(bp))
7463			bnx2x__common_init_phy(bp);
7464	} else
7465		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7466
7467	if (SHMEM2_HAS(bp, netproc_fw_ver))
7468		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7469
7470	return 0;
7471}
7472
7473/**
7474 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7475 *
7476 * @bp:		driver handle
7477 */
7478static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7479{
7480	int rc = bnx2x_init_hw_common(bp);
7481
7482	if (rc)
7483		return rc;
7484
7485	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7486	if (!BP_NOMCP(bp))
7487		bnx2x__common_init_phy(bp);
7488
7489	return 0;
7490}
7491
7492static int bnx2x_init_hw_port(struct bnx2x *bp)
7493{
7494	int port = BP_PORT(bp);
7495	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7496	u32 low, high;
7497	u32 val, reg;
7498
7499	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7500
7501	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7502
7503	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7504	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7505	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7506
7507	/* Timers bug workaround: disables the pf_master bit in pglue at
7508	 * common phase, we need to enable it here before any dmae access are
7509	 * attempted. Therefore we manually added the enable-master to the
7510	 * port phase (it also happens in the function phase)
7511	 */
7512	if (!CHIP_IS_E1x(bp))
7513		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7514
7515	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7516	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7517	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7518	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7519
7520	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7521	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7522	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7523	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7524
7525	/* QM cid (connection) count */
7526	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7527
7528	if (CNIC_SUPPORT(bp)) {
7529		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7530		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7531		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7532	}
7533
7534	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7535
7536	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7537
7538	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7539
7540		if (IS_MF(bp))
7541			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7542		else if (bp->dev->mtu > 4096) {
7543			if (bp->flags & ONE_PORT_FLAG)
7544				low = 160;
7545			else {
7546				val = bp->dev->mtu;
7547				/* (24*1024 + val*4)/256 */
7548				low = 96 + (val/64) +
7549						((val % 64) ? 1 : 0);
7550			}
7551		} else
7552			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7553		high = low + 56;	/* 14*1024/256 */
7554		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7555		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7556	}
7557
7558	if (CHIP_MODE_IS_4_PORT(bp))
7559		REG_WR(bp, (BP_PORT(bp) ?
7560			    BRB1_REG_MAC_GUARANTIED_1 :
7561			    BRB1_REG_MAC_GUARANTIED_0), 40);
7562
7563	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7564	if (CHIP_IS_E3B0(bp)) {
7565		if (IS_MF_AFEX(bp)) {
7566			/* configure headers for AFEX mode */
7567			REG_WR(bp, BP_PORT(bp) ?
7568			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7569			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7570			REG_WR(bp, BP_PORT(bp) ?
7571			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7572			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7573			REG_WR(bp, BP_PORT(bp) ?
7574			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7575			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7576		} else {
7577			/* Ovlan exists only if we are in multi-function +
7578			 * switch-dependent mode, in switch-independent there
7579			 * is no ovlan headers
7580			 */
7581			REG_WR(bp, BP_PORT(bp) ?
7582			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7583			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7584			       (bp->path_has_ovlan ? 7 : 6));
7585		}
7586	}
7587
7588	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7589	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7590	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7591	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7592
7593	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7594	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7595	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7596	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7597
7598	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7599	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7600
7601	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7602
7603	if (CHIP_IS_E1x(bp)) {
7604		/* configure PBF to work without PAUSE mtu 9000 */
7605		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7606
7607		/* update threshold */
7608		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7609		/* update init credit */
7610		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7611
7612		/* probe changes */
7613		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7614		udelay(50);
7615		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7616	}
7617
7618	if (CNIC_SUPPORT(bp))
7619		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7620
7621	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7622	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7623
7624	if (CHIP_IS_E1(bp)) {
7625		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7626		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7627	}
7628	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7629
7630	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7631
7632	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7633	/* init aeu_mask_attn_func_0/1:
7634	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7635	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7636	 *             bits 4-7 are used for "per vn group attention" */
7637	val = IS_MF(bp) ? 0xF7 : 0x7;
7638	/* Enable DCBX attention for all but E1 */
7639	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7640	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7641
7642	/* SCPAD_PARITY should NOT trigger close the gates */
7643	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7644	REG_WR(bp, reg,
7645	       REG_RD(bp, reg) &
7646	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7647
7648	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7649	REG_WR(bp, reg,
7650	       REG_RD(bp, reg) &
7651	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7652
7653	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7654
7655	if (!CHIP_IS_E1x(bp)) {
7656		/* Bit-map indicating which L2 hdrs may appear after the
7657		 * basic Ethernet header
7658		 */
7659		if (IS_MF_AFEX(bp))
7660			REG_WR(bp, BP_PORT(bp) ?
7661			       NIG_REG_P1_HDRS_AFTER_BASIC :
7662			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7663		else
7664			REG_WR(bp, BP_PORT(bp) ?
7665			       NIG_REG_P1_HDRS_AFTER_BASIC :
7666			       NIG_REG_P0_HDRS_AFTER_BASIC,
7667			       IS_MF_SD(bp) ? 7 : 6);
7668
7669		if (CHIP_IS_E3(bp))
7670			REG_WR(bp, BP_PORT(bp) ?
7671				   NIG_REG_LLH1_MF_MODE :
7672				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7673	}
7674	if (!CHIP_IS_E3(bp))
7675		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7676
7677	if (!CHIP_IS_E1(bp)) {
7678		/* 0x2 disable mf_ov, 0x1 enable */
7679		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7680		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7681
7682		if (!CHIP_IS_E1x(bp)) {
7683			val = 0;
7684			switch (bp->mf_mode) {
7685			case MULTI_FUNCTION_SD:
7686				val = 1;
7687				break;
7688			case MULTI_FUNCTION_SI:
7689			case MULTI_FUNCTION_AFEX:
7690				val = 2;
7691				break;
7692			}
7693
7694			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7695						  NIG_REG_LLH0_CLS_TYPE), val);
7696		}
7697		{
7698			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7699			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7700			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7701		}
7702	}
7703
7704	/* If SPIO5 is set to generate interrupts, enable it for this port */
7705	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7706	if (val & MISC_SPIO_SPIO5) {
7707		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7708				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7709		val = REG_RD(bp, reg_addr);
7710		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7711		REG_WR(bp, reg_addr, val);
7712	}
7713
7714	return 0;
7715}
7716
7717static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7718{
7719	int reg;
7720	u32 wb_write[2];
7721
7722	if (CHIP_IS_E1(bp))
7723		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7724	else
7725		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7726
7727	wb_write[0] = ONCHIP_ADDR1(addr);
7728	wb_write[1] = ONCHIP_ADDR2(addr);
7729	REG_WR_DMAE(bp, reg, wb_write, 2);
7730}
7731
7732void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7733{
7734	u32 data, ctl, cnt = 100;
7735	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7736	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7737	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7738	u32 sb_bit =  1 << (idu_sb_id%32);
7739	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7740	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7741
7742	/* Not supported in BC mode */
7743	if (CHIP_INT_MODE_IS_BC(bp))
7744		return;
7745
7746	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7747			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7748		IGU_REGULAR_CLEANUP_SET				|
7749		IGU_REGULAR_BCLEANUP;
7750
7751	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7752	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7753	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7754
7755	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7756			 data, igu_addr_data);
7757	REG_WR(bp, igu_addr_data, data);
7758	mmiowb();
7759	barrier();
7760	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7761			  ctl, igu_addr_ctl);
7762	REG_WR(bp, igu_addr_ctl, ctl);
7763	mmiowb();
7764	barrier();
7765
7766	/* wait for clean up to finish */
7767	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7768		msleep(20);
7769
7770	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7771		DP(NETIF_MSG_HW,
7772		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7773			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7774	}
7775}
7776
7777static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7778{
7779	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7780}
7781
7782static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7783{
7784	u32 i, base = FUNC_ILT_BASE(func);
7785	for (i = base; i < base + ILT_PER_FUNC; i++)
7786		bnx2x_ilt_wr(bp, i, 0);
7787}
7788
7789static void bnx2x_init_searcher(struct bnx2x *bp)
7790{
7791	int port = BP_PORT(bp);
7792	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7793	/* T1 hash bits value determines the T1 number of entries */
7794	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7795}
7796
7797static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7798{
7799	int rc;
7800	struct bnx2x_func_state_params func_params = {NULL};
7801	struct bnx2x_func_switch_update_params *switch_update_params =
7802		&func_params.params.switch_update;
7803
7804	/* Prepare parameters for function state transitions */
7805	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7806	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7807
7808	func_params.f_obj = &bp->func_obj;
7809	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7810
7811	/* Function parameters */
7812	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7813		  &switch_update_params->changes);
7814	if (suspend)
7815		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7816			  &switch_update_params->changes);
7817
7818	rc = bnx2x_func_state_change(bp, &func_params);
7819
7820	return rc;
7821}
7822
7823static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7824{
7825	int rc, i, port = BP_PORT(bp);
7826	int vlan_en = 0, mac_en[NUM_MACS];
7827
7828	/* Close input from network */
7829	if (bp->mf_mode == SINGLE_FUNCTION) {
7830		bnx2x_set_rx_filter(&bp->link_params, 0);
7831	} else {
7832		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7833				   NIG_REG_LLH0_FUNC_EN);
7834		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7835			  NIG_REG_LLH0_FUNC_EN, 0);
7836		for (i = 0; i < NUM_MACS; i++) {
7837			mac_en[i] = REG_RD(bp, port ?
7838					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7839					      4 * i) :
7840					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7841					      4 * i));
7842			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7843					      4 * i) :
7844				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7845		}
7846	}
7847
7848	/* Close BMC to host */
7849	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7850	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7851
7852	/* Suspend Tx switching to the PF. Completion of this ramrod
7853	 * further guarantees that all the packets of that PF / child
7854	 * VFs in BRB were processed by the Parser, so it is safe to
7855	 * change the NIC_MODE register.
7856	 */
7857	rc = bnx2x_func_switch_update(bp, 1);
7858	if (rc) {
7859		BNX2X_ERR("Can't suspend tx-switching!\n");
7860		return rc;
7861	}
7862
7863	/* Change NIC_MODE register */
7864	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7865
7866	/* Open input from network */
7867	if (bp->mf_mode == SINGLE_FUNCTION) {
7868		bnx2x_set_rx_filter(&bp->link_params, 1);
7869	} else {
7870		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7871			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7872		for (i = 0; i < NUM_MACS; i++) {
7873			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7874					      4 * i) :
7875				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7876				  mac_en[i]);
7877		}
7878	}
7879
7880	/* Enable BMC to host */
7881	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7882	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7883
7884	/* Resume Tx switching to the PF */
7885	rc = bnx2x_func_switch_update(bp, 0);
7886	if (rc) {
7887		BNX2X_ERR("Can't resume tx-switching!\n");
7888		return rc;
7889	}
7890
7891	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7892	return 0;
7893}
7894
7895int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7896{
7897	int rc;
7898
7899	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7900
7901	if (CONFIGURE_NIC_MODE(bp)) {
7902		/* Configure searcher as part of function hw init */
7903		bnx2x_init_searcher(bp);
7904
7905		/* Reset NIC mode */
7906		rc = bnx2x_reset_nic_mode(bp);
7907		if (rc)
7908			BNX2X_ERR("Can't change NIC mode!\n");
7909		return rc;
7910	}
7911
7912	return 0;
7913}
7914
7915/* previous driver DMAE transaction may have occurred when pre-boot stage ended
7916 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7917 * the addresses of the transaction, resulting in was-error bit set in the pci
7918 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7919 * to clear the interrupt which detected this from the pglueb and the was done
7920 * bit
7921 */
7922static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7923{
7924	if (!CHIP_IS_E1x(bp))
7925		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7926		       1 << BP_ABS_FUNC(bp));
7927}
7928
7929static int bnx2x_init_hw_func(struct bnx2x *bp)
7930{
7931	int port = BP_PORT(bp);
7932	int func = BP_FUNC(bp);
7933	int init_phase = PHASE_PF0 + func;
7934	struct bnx2x_ilt *ilt = BP_ILT(bp);
7935	u16 cdu_ilt_start;
7936	u32 addr, val;
7937	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7938	int i, main_mem_width, rc;
7939
7940	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7941
7942	/* FLR cleanup - hmmm */
7943	if (!CHIP_IS_E1x(bp)) {
7944		rc = bnx2x_pf_flr_clnup(bp);
7945		if (rc) {
7946			bnx2x_fw_dump(bp);
7947			return rc;
7948		}
7949	}
7950
7951	/* set MSI reconfigure capability */
7952	if (bp->common.int_block == INT_BLOCK_HC) {
7953		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7954		val = REG_RD(bp, addr);
7955		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7956		REG_WR(bp, addr, val);
7957	}
7958
7959	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7960	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7961
7962	ilt = BP_ILT(bp);
7963	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7964
7965	if (IS_SRIOV(bp))
7966		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7967	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7968
7969	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7970	 * those of the VFs, so start line should be reset
7971	 */
7972	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7973	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7974		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7975		ilt->lines[cdu_ilt_start + i].page_mapping =
7976			bp->context[i].cxt_mapping;
7977		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7978	}
7979
7980	bnx2x_ilt_init_op(bp, INITOP_SET);
7981
7982	if (!CONFIGURE_NIC_MODE(bp)) {
7983		bnx2x_init_searcher(bp);
7984		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7985		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7986	} else {
7987		/* Set NIC mode */
7988		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7989		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7990	}
7991
7992	if (!CHIP_IS_E1x(bp)) {
7993		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7994
7995		/* Turn on a single ISR mode in IGU if driver is going to use
7996		 * INT#x or MSI
7997		 */
7998		if (!(bp->flags & USING_MSIX_FLAG))
7999			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8000		/*
8001		 * Timers workaround bug: function init part.
8002		 * Need to wait 20msec after initializing ILT,
8003		 * needed to make sure there are no requests in
8004		 * one of the PXP internal queues with "old" ILT addresses
8005		 */
8006		msleep(20);
8007		/*
8008		 * Master enable - Due to WB DMAE writes performed before this
8009		 * register is re-initialized as part of the regular function
8010		 * init
8011		 */
8012		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8013		/* Enable the function in IGU */
8014		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8015	}
8016
8017	bp->dmae_ready = 1;
8018
8019	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8020
8021	bnx2x_clean_pglue_errors(bp);
8022
8023	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8024	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8025	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8026	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8027	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8028	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8029	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8030	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8031	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8032	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8033	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8034	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8035	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8036
8037	if (!CHIP_IS_E1x(bp))
8038		REG_WR(bp, QM_REG_PF_EN, 1);
8039
8040	if (!CHIP_IS_E1x(bp)) {
8041		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8042		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8043		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8044		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8045	}
8046	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8047
8048	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8049	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8050	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8051
8052	bnx2x_iov_init_dq(bp);
8053
8054	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8055	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8056	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8057	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8058	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8059	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8060	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8061	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8062	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8063	if (!CHIP_IS_E1x(bp))
8064		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8065
8066	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8067
8068	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8069
8070	if (!CHIP_IS_E1x(bp))
8071		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8072
8073	if (IS_MF(bp)) {
8074		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8075			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8076			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8077			       bp->mf_ov);
8078		}
8079	}
8080
8081	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8082
8083	/* HC init per function */
8084	if (bp->common.int_block == INT_BLOCK_HC) {
8085		if (CHIP_IS_E1H(bp)) {
8086			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8087
8088			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8089			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8090		}
8091		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8092
8093	} else {
8094		int num_segs, sb_idx, prod_offset;
8095
8096		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8097
8098		if (!CHIP_IS_E1x(bp)) {
8099			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8100			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8101		}
8102
8103		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8104
8105		if (!CHIP_IS_E1x(bp)) {
8106			int dsb_idx = 0;
8107			/**
8108			 * Producer memory:
8109			 * E2 mode: address 0-135 match to the mapping memory;
8110			 * 136 - PF0 default prod; 137 - PF1 default prod;
8111			 * 138 - PF2 default prod; 139 - PF3 default prod;
8112			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8113			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8114			 * 144-147 reserved.
8115			 *
8116			 * E1.5 mode - In backward compatible mode;
8117			 * for non default SB; each even line in the memory
8118			 * holds the U producer and each odd line hold
8119			 * the C producer. The first 128 producers are for
8120			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8121			 * producers are for the DSB for each PF.
8122			 * Each PF has five segments: (the order inside each
8123			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8124			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8125			 * 144-147 attn prods;
8126			 */
8127			/* non-default-status-blocks */
8128			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8129				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8130			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8131				prod_offset = (bp->igu_base_sb + sb_idx) *
8132					num_segs;
8133
8134				for (i = 0; i < num_segs; i++) {
8135					addr = IGU_REG_PROD_CONS_MEMORY +
8136							(prod_offset + i) * 4;
8137					REG_WR(bp, addr, 0);
8138				}
8139				/* send consumer update with value 0 */
8140				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8141					     USTORM_ID, 0, IGU_INT_NOP, 1);
8142				bnx2x_igu_clear_sb(bp,
8143						   bp->igu_base_sb + sb_idx);
8144			}
8145
8146			/* default-status-blocks */
8147			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8148				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8149
8150			if (CHIP_MODE_IS_4_PORT(bp))
8151				dsb_idx = BP_FUNC(bp);
8152			else
8153				dsb_idx = BP_VN(bp);
8154
8155			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8156				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8157				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8158
8159			/*
8160			 * igu prods come in chunks of E1HVN_MAX (4) -
8161			 * does not matters what is the current chip mode
8162			 */
8163			for (i = 0; i < (num_segs * E1HVN_MAX);
8164			     i += E1HVN_MAX) {
8165				addr = IGU_REG_PROD_CONS_MEMORY +
8166							(prod_offset + i)*4;
8167				REG_WR(bp, addr, 0);
8168			}
8169			/* send consumer update with 0 */
8170			if (CHIP_INT_MODE_IS_BC(bp)) {
8171				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8172					     USTORM_ID, 0, IGU_INT_NOP, 1);
8173				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8174					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8175				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8176					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8177				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8178					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8179				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8180					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8181			} else {
8182				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8183					     USTORM_ID, 0, IGU_INT_NOP, 1);
8184				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8185					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8186			}
8187			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8188
8189			/* !!! These should become driver const once
8190			   rf-tool supports split-68 const */
8191			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8192			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8193			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8194			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8195			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8196			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8197		}
8198	}
8199
8200	/* Reset PCIE errors for debug */
8201	REG_WR(bp, 0x2114, 0xffffffff);
8202	REG_WR(bp, 0x2120, 0xffffffff);
8203
8204	if (CHIP_IS_E1x(bp)) {
8205		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8206		main_mem_base = HC_REG_MAIN_MEMORY +
8207				BP_PORT(bp) * (main_mem_size * 4);
8208		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8209		main_mem_width = 8;
8210
8211		val = REG_RD(bp, main_mem_prty_clr);
8212		if (val)
8213			DP(NETIF_MSG_HW,
8214			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8215			   val);
8216
8217		/* Clear "false" parity errors in MSI-X table */
8218		for (i = main_mem_base;
8219		     i < main_mem_base + main_mem_size * 4;
8220		     i += main_mem_width) {
8221			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8222			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8223					 i, main_mem_width / 4);
8224		}
8225		/* Clear HC parity attention */
8226		REG_RD(bp, main_mem_prty_clr);
8227	}
8228
8229#ifdef BNX2X_STOP_ON_ERROR
8230	/* Enable STORMs SP logging */
8231	REG_WR8(bp, BAR_USTRORM_INTMEM +
8232	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8233	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8234	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8235	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8236	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8237	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8238	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8239#endif
8240
8241	bnx2x_phy_probe(&bp->link_params);
8242
8243	return 0;
8244}
8245
8246void bnx2x_free_mem_cnic(struct bnx2x *bp)
8247{
8248	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8249
8250	if (!CHIP_IS_E1x(bp))
8251		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8252			       sizeof(struct host_hc_status_block_e2));
8253	else
8254		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8255			       sizeof(struct host_hc_status_block_e1x));
8256
8257	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8258}
8259
8260void bnx2x_free_mem(struct bnx2x *bp)
8261{
8262	int i;
8263
8264	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8265		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8266
8267	if (IS_VF(bp))
8268		return;
8269
8270	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8271		       sizeof(struct host_sp_status_block));
8272
8273	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8274		       sizeof(struct bnx2x_slowpath));
8275
8276	for (i = 0; i < L2_ILT_LINES(bp); i++)
8277		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8278			       bp->context[i].size);
8279	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8280
8281	BNX2X_FREE(bp->ilt->lines);
8282
8283	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8284
8285	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8286		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8287
8288	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8289
8290	bnx2x_iov_free_mem(bp);
8291}
8292
8293int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8294{
8295	if (!CHIP_IS_E1x(bp)) {
8296		/* size = the status block + ramrod buffers */
8297		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8298						    sizeof(struct host_hc_status_block_e2));
8299		if (!bp->cnic_sb.e2_sb)
8300			goto alloc_mem_err;
8301	} else {
8302		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8303						     sizeof(struct host_hc_status_block_e1x));
8304		if (!bp->cnic_sb.e1x_sb)
8305			goto alloc_mem_err;
8306	}
8307
8308	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8309		/* allocate searcher T2 table, as it wasn't allocated before */
8310		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8311		if (!bp->t2)
8312			goto alloc_mem_err;
8313	}
8314
8315	/* write address to which L5 should insert its values */
8316	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8317		&bp->slowpath->drv_info_to_mcp;
8318
8319	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8320		goto alloc_mem_err;
8321
8322	return 0;
8323
8324alloc_mem_err:
8325	bnx2x_free_mem_cnic(bp);
8326	BNX2X_ERR("Can't allocate memory\n");
8327	return -ENOMEM;
8328}
8329
8330int bnx2x_alloc_mem(struct bnx2x *bp)
8331{
8332	int i, allocated, context_size;
8333
8334	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8335		/* allocate searcher T2 table */
8336		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8337		if (!bp->t2)
8338			goto alloc_mem_err;
8339	}
8340
8341	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8342					     sizeof(struct host_sp_status_block));
8343	if (!bp->def_status_blk)
8344		goto alloc_mem_err;
8345
8346	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8347				       sizeof(struct bnx2x_slowpath));
8348	if (!bp->slowpath)
8349		goto alloc_mem_err;
8350
8351	/* Allocate memory for CDU context:
8352	 * This memory is allocated separately and not in the generic ILT
8353	 * functions because CDU differs in few aspects:
8354	 * 1. There are multiple entities allocating memory for context -
8355	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8356	 * its own ILT lines.
8357	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8358	 * for the other ILT clients), to be efficient we want to support
8359	 * allocation of sub-page-size in the last entry.
8360	 * 3. Context pointers are used by the driver to pass to FW / update
8361	 * the context (for the other ILT clients the pointers are used just to
8362	 * free the memory during unload).
8363	 */
8364	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8365
8366	for (i = 0, allocated = 0; allocated < context_size; i++) {
8367		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8368					  (context_size - allocated));
8369		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8370						      bp->context[i].size);
8371		if (!bp->context[i].vcxt)
8372			goto alloc_mem_err;
8373		allocated += bp->context[i].size;
8374	}
8375	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8376				 GFP_KERNEL);
8377	if (!bp->ilt->lines)
8378		goto alloc_mem_err;
8379
8380	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8381		goto alloc_mem_err;
8382
8383	if (bnx2x_iov_alloc_mem(bp))
8384		goto alloc_mem_err;
8385
8386	/* Slow path ring */
8387	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8388	if (!bp->spq)
8389		goto alloc_mem_err;
8390
8391	/* EQ */
8392	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8393				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8394	if (!bp->eq_ring)
8395		goto alloc_mem_err;
8396
8397	return 0;
8398
8399alloc_mem_err:
8400	bnx2x_free_mem(bp);
8401	BNX2X_ERR("Can't allocate memory\n");
8402	return -ENOMEM;
8403}
8404
8405/*
8406 * Init service functions
8407 */
8408
8409int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8410		      struct bnx2x_vlan_mac_obj *obj, bool set,
8411		      int mac_type, unsigned long *ramrod_flags)
8412{
8413	int rc;
8414	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8415
8416	memset(&ramrod_param, 0, sizeof(ramrod_param));
8417
8418	/* Fill general parameters */
8419	ramrod_param.vlan_mac_obj = obj;
8420	ramrod_param.ramrod_flags = *ramrod_flags;
8421
8422	/* Fill a user request section if needed */
8423	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8424		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8425
8426		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8427
8428		/* Set the command: ADD or DEL */
8429		if (set)
8430			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8431		else
8432			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8433	}
8434
8435	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8436
8437	if (rc == -EEXIST) {
8438		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8439		/* do not treat adding same MAC as error */
8440		rc = 0;
8441	} else if (rc < 0)
8442		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8443
8444	return rc;
8445}
8446
8447int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8448		       struct bnx2x_vlan_mac_obj *obj, bool set,
8449		       unsigned long *ramrod_flags)
8450{
8451	int rc;
8452	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8453
8454	memset(&ramrod_param, 0, sizeof(ramrod_param));
8455
8456	/* Fill general parameters */
8457	ramrod_param.vlan_mac_obj = obj;
8458	ramrod_param.ramrod_flags = *ramrod_flags;
8459
8460	/* Fill a user request section if needed */
8461	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8462		ramrod_param.user_req.u.vlan.vlan = vlan;
8463		/* Set the command: ADD or DEL */
8464		if (set)
8465			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8466		else
8467			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8468	}
8469
8470	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8471
8472	if (rc == -EEXIST) {
8473		/* Do not treat adding same vlan as error. */
8474		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8475		rc = 0;
8476	} else if (rc < 0) {
8477		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8478	}
8479
8480	return rc;
8481}
8482
8483int bnx2x_del_all_macs(struct bnx2x *bp,
8484		       struct bnx2x_vlan_mac_obj *mac_obj,
8485		       int mac_type, bool wait_for_comp)
8486{
8487	int rc;
8488	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8489
8490	/* Wait for completion of requested */
8491	if (wait_for_comp)
8492		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8493
8494	/* Set the mac type of addresses we want to clear */
8495	__set_bit(mac_type, &vlan_mac_flags);
8496
8497	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8498	if (rc < 0)
8499		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8500
8501	return rc;
8502}
8503
8504int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8505{
8506	if (IS_PF(bp)) {
8507		unsigned long ramrod_flags = 0;
8508
8509		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8510		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8511		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8512					 &bp->sp_objs->mac_obj, set,
8513					 BNX2X_ETH_MAC, &ramrod_flags);
8514	} else { /* vf */
8515		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8516					     bp->fp->index, set);
8517	}
8518}
8519
8520int bnx2x_setup_leading(struct bnx2x *bp)
8521{
8522	if (IS_PF(bp))
8523		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8524	else /* VF */
8525		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8526}
8527
8528/**
8529 * bnx2x_set_int_mode - configure interrupt mode
8530 *
8531 * @bp:		driver handle
8532 *
8533 * In case of MSI-X it will also try to enable MSI-X.
8534 */
8535int bnx2x_set_int_mode(struct bnx2x *bp)
8536{
8537	int rc = 0;
8538
8539	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8540		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8541		return -EINVAL;
8542	}
8543
8544	switch (int_mode) {
8545	case BNX2X_INT_MODE_MSIX:
8546		/* attempt to enable msix */
8547		rc = bnx2x_enable_msix(bp);
8548
8549		/* msix attained */
8550		if (!rc)
8551			return 0;
8552
8553		/* vfs use only msix */
8554		if (rc && IS_VF(bp))
8555			return rc;
8556
8557		/* failed to enable multiple MSI-X */
8558		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8559			       bp->num_queues,
8560			       1 + bp->num_cnic_queues);
8561
8562		/* falling through... */
8563	case BNX2X_INT_MODE_MSI:
8564		bnx2x_enable_msi(bp);
8565
8566		/* falling through... */
8567	case BNX2X_INT_MODE_INTX:
8568		bp->num_ethernet_queues = 1;
8569		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8570		BNX2X_DEV_INFO("set number of queues to 1\n");
8571		break;
8572	default:
8573		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8574		return -EINVAL;
8575	}
8576	return 0;
8577}
8578
8579/* must be called prior to any HW initializations */
8580static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8581{
8582	if (IS_SRIOV(bp))
8583		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8584	return L2_ILT_LINES(bp);
8585}
8586
8587void bnx2x_ilt_set_info(struct bnx2x *bp)
8588{
8589	struct ilt_client_info *ilt_client;
8590	struct bnx2x_ilt *ilt = BP_ILT(bp);
8591	u16 line = 0;
8592
8593	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8594	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8595
8596	/* CDU */
8597	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8598	ilt_client->client_num = ILT_CLIENT_CDU;
8599	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8600	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8601	ilt_client->start = line;
8602	line += bnx2x_cid_ilt_lines(bp);
8603
8604	if (CNIC_SUPPORT(bp))
8605		line += CNIC_ILT_LINES;
8606	ilt_client->end = line - 1;
8607
8608	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8609	   ilt_client->start,
8610	   ilt_client->end,
8611	   ilt_client->page_size,
8612	   ilt_client->flags,
8613	   ilog2(ilt_client->page_size >> 12));
8614
8615	/* QM */
8616	if (QM_INIT(bp->qm_cid_count)) {
8617		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8618		ilt_client->client_num = ILT_CLIENT_QM;
8619		ilt_client->page_size = QM_ILT_PAGE_SZ;
8620		ilt_client->flags = 0;
8621		ilt_client->start = line;
8622
8623		/* 4 bytes for each cid */
8624		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8625							 QM_ILT_PAGE_SZ);
8626
8627		ilt_client->end = line - 1;
8628
8629		DP(NETIF_MSG_IFUP,
8630		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8631		   ilt_client->start,
8632		   ilt_client->end,
8633		   ilt_client->page_size,
8634		   ilt_client->flags,
8635		   ilog2(ilt_client->page_size >> 12));
8636	}
8637
8638	if (CNIC_SUPPORT(bp)) {
8639		/* SRC */
8640		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8641		ilt_client->client_num = ILT_CLIENT_SRC;
8642		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8643		ilt_client->flags = 0;
8644		ilt_client->start = line;
8645		line += SRC_ILT_LINES;
8646		ilt_client->end = line - 1;
8647
8648		DP(NETIF_MSG_IFUP,
8649		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8650		   ilt_client->start,
8651		   ilt_client->end,
8652		   ilt_client->page_size,
8653		   ilt_client->flags,
8654		   ilog2(ilt_client->page_size >> 12));
8655
8656		/* TM */
8657		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8658		ilt_client->client_num = ILT_CLIENT_TM;
8659		ilt_client->page_size = TM_ILT_PAGE_SZ;
8660		ilt_client->flags = 0;
8661		ilt_client->start = line;
8662		line += TM_ILT_LINES;
8663		ilt_client->end = line - 1;
8664
8665		DP(NETIF_MSG_IFUP,
8666		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8667		   ilt_client->start,
8668		   ilt_client->end,
8669		   ilt_client->page_size,
8670		   ilt_client->flags,
8671		   ilog2(ilt_client->page_size >> 12));
8672	}
8673
8674	BUG_ON(line > ILT_MAX_LINES);
8675}
8676
8677/**
8678 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8679 *
8680 * @bp:			driver handle
8681 * @fp:			pointer to fastpath
8682 * @init_params:	pointer to parameters structure
8683 *
8684 * parameters configured:
8685 *      - HC configuration
8686 *      - Queue's CDU context
8687 */
8688static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8689	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8690{
8691	u8 cos;
8692	int cxt_index, cxt_offset;
8693
8694	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8695	if (!IS_FCOE_FP(fp)) {
8696		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8697		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8698
8699		/* If HC is supported, enable host coalescing in the transition
8700		 * to INIT state.
8701		 */
8702		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8703		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8704
8705		/* HC rate */
8706		init_params->rx.hc_rate = bp->rx_ticks ?
8707			(1000000 / bp->rx_ticks) : 0;
8708		init_params->tx.hc_rate = bp->tx_ticks ?
8709			(1000000 / bp->tx_ticks) : 0;
8710
8711		/* FW SB ID */
8712		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8713			fp->fw_sb_id;
8714
8715		/*
8716		 * CQ index among the SB indices: FCoE clients uses the default
8717		 * SB, therefore it's different.
8718		 */
8719		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8720		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8721	}
8722
8723	/* set maximum number of COSs supported by this queue */
8724	init_params->max_cos = fp->max_cos;
8725
8726	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8727	    fp->index, init_params->max_cos);
8728
8729	/* set the context pointers queue object */
8730	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8731		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8732		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8733				ILT_PAGE_CIDS);
8734		init_params->cxts[cos] =
8735			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8736	}
8737}
8738
8739static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8740			struct bnx2x_queue_state_params *q_params,
8741			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8742			int tx_index, bool leading)
8743{
8744	memset(tx_only_params, 0, sizeof(*tx_only_params));
8745
8746	/* Set the command */
8747	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8748
8749	/* Set tx-only QUEUE flags: don't zero statistics */
8750	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8751
8752	/* choose the index of the cid to send the slow path on */
8753	tx_only_params->cid_index = tx_index;
8754
8755	/* Set general TX_ONLY_SETUP parameters */
8756	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8757
8758	/* Set Tx TX_ONLY_SETUP parameters */
8759	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8760
8761	DP(NETIF_MSG_IFUP,
8762	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8763	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8764	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8765	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8766
8767	/* send the ramrod */
8768	return bnx2x_queue_state_change(bp, q_params);
8769}
8770
8771/**
8772 * bnx2x_setup_queue - setup queue
8773 *
8774 * @bp:		driver handle
8775 * @fp:		pointer to fastpath
8776 * @leading:	is leading
8777 *
8778 * This function performs 2 steps in a Queue state machine
8779 *      actually: 1) RESET->INIT 2) INIT->SETUP
8780 */
8781
8782int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8783		       bool leading)
8784{
8785	struct bnx2x_queue_state_params q_params = {NULL};
8786	struct bnx2x_queue_setup_params *setup_params =
8787						&q_params.params.setup;
8788	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8789						&q_params.params.tx_only;
8790	int rc;
8791	u8 tx_index;
8792
8793	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8794
8795	/* reset IGU state skip FCoE L2 queue */
8796	if (!IS_FCOE_FP(fp))
8797		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8798			     IGU_INT_ENABLE, 0);
8799
8800	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8801	/* We want to wait for completion in this context */
8802	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8803
8804	/* Prepare the INIT parameters */
8805	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8806
8807	/* Set the command */
8808	q_params.cmd = BNX2X_Q_CMD_INIT;
8809
8810	/* Change the state to INIT */
8811	rc = bnx2x_queue_state_change(bp, &q_params);
8812	if (rc) {
8813		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8814		return rc;
8815	}
8816
8817	DP(NETIF_MSG_IFUP, "init complete\n");
8818
8819	/* Now move the Queue to the SETUP state... */
8820	memset(setup_params, 0, sizeof(*setup_params));
8821
8822	/* Set QUEUE flags */
8823	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8824
8825	/* Set general SETUP parameters */
8826	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8827				FIRST_TX_COS_INDEX);
8828
8829	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8830			    &setup_params->rxq_params);
8831
8832	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8833			   FIRST_TX_COS_INDEX);
8834
8835	/* Set the command */
8836	q_params.cmd = BNX2X_Q_CMD_SETUP;
8837
8838	if (IS_FCOE_FP(fp))
8839		bp->fcoe_init = true;
8840
8841	/* Change the state to SETUP */
8842	rc = bnx2x_queue_state_change(bp, &q_params);
8843	if (rc) {
8844		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8845		return rc;
8846	}
8847
8848	/* loop through the relevant tx-only indices */
8849	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8850	      tx_index < fp->max_cos;
8851	      tx_index++) {
8852
8853		/* prepare and send tx-only ramrod*/
8854		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8855					  tx_only_params, tx_index, leading);
8856		if (rc) {
8857			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8858				  fp->index, tx_index);
8859			return rc;
8860		}
8861	}
8862
8863	return rc;
8864}
8865
8866static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8867{
8868	struct bnx2x_fastpath *fp = &bp->fp[index];
8869	struct bnx2x_fp_txdata *txdata;
8870	struct bnx2x_queue_state_params q_params = {NULL};
8871	int rc, tx_index;
8872
8873	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8874
8875	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8876	/* We want to wait for completion in this context */
8877	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8878
8879	/* close tx-only connections */
8880	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8881	     tx_index < fp->max_cos;
8882	     tx_index++){
8883
8884		/* ascertain this is a normal queue*/
8885		txdata = fp->txdata_ptr[tx_index];
8886
8887		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8888							txdata->txq_index);
8889
8890		/* send halt terminate on tx-only connection */
8891		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8892		memset(&q_params.params.terminate, 0,
8893		       sizeof(q_params.params.terminate));
8894		q_params.params.terminate.cid_index = tx_index;
8895
8896		rc = bnx2x_queue_state_change(bp, &q_params);
8897		if (rc)
8898			return rc;
8899
8900		/* send halt terminate on tx-only connection */
8901		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8902		memset(&q_params.params.cfc_del, 0,
8903		       sizeof(q_params.params.cfc_del));
8904		q_params.params.cfc_del.cid_index = tx_index;
8905		rc = bnx2x_queue_state_change(bp, &q_params);
8906		if (rc)
8907			return rc;
8908	}
8909	/* Stop the primary connection: */
8910	/* ...halt the connection */
8911	q_params.cmd = BNX2X_Q_CMD_HALT;
8912	rc = bnx2x_queue_state_change(bp, &q_params);
8913	if (rc)
8914		return rc;
8915
8916	/* ...terminate the connection */
8917	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8918	memset(&q_params.params.terminate, 0,
8919	       sizeof(q_params.params.terminate));
8920	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8921	rc = bnx2x_queue_state_change(bp, &q_params);
8922	if (rc)
8923		return rc;
8924	/* ...delete cfc entry */
8925	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8926	memset(&q_params.params.cfc_del, 0,
8927	       sizeof(q_params.params.cfc_del));
8928	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8929	return bnx2x_queue_state_change(bp, &q_params);
8930}
8931
8932static void bnx2x_reset_func(struct bnx2x *bp)
8933{
8934	int port = BP_PORT(bp);
8935	int func = BP_FUNC(bp);
8936	int i;
8937
8938	/* Disable the function in the FW */
8939	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8940	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8941	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8942	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8943
8944	/* FP SBs */
8945	for_each_eth_queue(bp, i) {
8946		struct bnx2x_fastpath *fp = &bp->fp[i];
8947		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8948			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8949			   SB_DISABLED);
8950	}
8951
8952	if (CNIC_LOADED(bp))
8953		/* CNIC SB */
8954		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8955			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8956			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8957
8958	/* SP SB */
8959	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8960		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8961		SB_DISABLED);
8962
8963	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8964		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8965		       0);
8966
8967	/* Configure IGU */
8968	if (bp->common.int_block == INT_BLOCK_HC) {
8969		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8970		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8971	} else {
8972		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8973		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8974	}
8975
8976	if (CNIC_LOADED(bp)) {
8977		/* Disable Timer scan */
8978		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8979		/*
8980		 * Wait for at least 10ms and up to 2 second for the timers
8981		 * scan to complete
8982		 */
8983		for (i = 0; i < 200; i++) {
8984			usleep_range(10000, 20000);
8985			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8986				break;
8987		}
8988	}
8989	/* Clear ILT */
8990	bnx2x_clear_func_ilt(bp, func);
8991
8992	/* Timers workaround bug for E2: if this is vnic-3,
8993	 * we need to set the entire ilt range for this timers.
8994	 */
8995	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8996		struct ilt_client_info ilt_cli;
8997		/* use dummy TM client */
8998		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8999		ilt_cli.start = 0;
9000		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9001		ilt_cli.client_num = ILT_CLIENT_TM;
9002
9003		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9004	}
9005
9006	/* this assumes that reset_port() called before reset_func()*/
9007	if (!CHIP_IS_E1x(bp))
9008		bnx2x_pf_disable(bp);
9009
9010	bp->dmae_ready = 0;
9011}
9012
9013static void bnx2x_reset_port(struct bnx2x *bp)
9014{
9015	int port = BP_PORT(bp);
9016	u32 val;
9017
9018	/* Reset physical Link */
9019	bnx2x__link_reset(bp);
9020
9021	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9022
9023	/* Do not rcv packets to BRB */
9024	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9025	/* Do not direct rcv packets that are not for MCP to the BRB */
9026	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9027			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9028
9029	/* Configure AEU */
9030	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9031
9032	msleep(100);
9033	/* Check for BRB port occupancy */
9034	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9035	if (val)
9036		DP(NETIF_MSG_IFDOWN,
9037		   "BRB1 is not empty  %d blocks are occupied\n", val);
9038
9039	/* TODO: Close Doorbell port? */
9040}
9041
9042static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9043{
9044	struct bnx2x_func_state_params func_params = {NULL};
9045
9046	/* Prepare parameters for function state transitions */
9047	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9048
9049	func_params.f_obj = &bp->func_obj;
9050	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9051
9052	func_params.params.hw_init.load_phase = load_code;
9053
9054	return bnx2x_func_state_change(bp, &func_params);
9055}
9056
9057static int bnx2x_func_stop(struct bnx2x *bp)
9058{
9059	struct bnx2x_func_state_params func_params = {NULL};
9060	int rc;
9061
9062	/* Prepare parameters for function state transitions */
9063	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9064	func_params.f_obj = &bp->func_obj;
9065	func_params.cmd = BNX2X_F_CMD_STOP;
9066
9067	/*
9068	 * Try to stop the function the 'good way'. If fails (in case
9069	 * of a parity error during bnx2x_chip_cleanup()) and we are
9070	 * not in a debug mode, perform a state transaction in order to
9071	 * enable further HW_RESET transaction.
9072	 */
9073	rc = bnx2x_func_state_change(bp, &func_params);
9074	if (rc) {
9075#ifdef BNX2X_STOP_ON_ERROR
9076		return rc;
9077#else
9078		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9079		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9080		return bnx2x_func_state_change(bp, &func_params);
9081#endif
9082	}
9083
9084	return 0;
9085}
9086
9087/**
9088 * bnx2x_send_unload_req - request unload mode from the MCP.
9089 *
9090 * @bp:			driver handle
9091 * @unload_mode:	requested function's unload mode
9092 *
9093 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9094 */
9095u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9096{
9097	u32 reset_code = 0;
9098	int port = BP_PORT(bp);
9099
9100	/* Select the UNLOAD request mode */
9101	if (unload_mode == UNLOAD_NORMAL)
9102		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9103
9104	else if (bp->flags & NO_WOL_FLAG)
9105		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9106
9107	else if (bp->wol) {
9108		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9109		u8 *mac_addr = bp->dev->dev_addr;
9110		struct pci_dev *pdev = bp->pdev;
9111		u32 val;
9112		u16 pmc;
9113
9114		/* The mac address is written to entries 1-4 to
9115		 * preserve entry 0 which is used by the PMF
9116		 */
9117		u8 entry = (BP_VN(bp) + 1)*8;
9118
9119		val = (mac_addr[0] << 8) | mac_addr[1];
9120		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9121
9122		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9123		      (mac_addr[4] << 8) | mac_addr[5];
9124		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9125
9126		/* Enable the PME and clear the status */
9127		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9128		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9129		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9130
9131		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9132
9133	} else
9134		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9135
9136	/* Send the request to the MCP */
9137	if (!BP_NOMCP(bp))
9138		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9139	else {
9140		int path = BP_PATH(bp);
9141
9142		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9143		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9144		   bnx2x_load_count[path][2]);
9145		bnx2x_load_count[path][0]--;
9146		bnx2x_load_count[path][1 + port]--;
9147		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9148		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9149		   bnx2x_load_count[path][2]);
9150		if (bnx2x_load_count[path][0] == 0)
9151			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9152		else if (bnx2x_load_count[path][1 + port] == 0)
9153			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9154		else
9155			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9156	}
9157
9158	return reset_code;
9159}
9160
9161/**
9162 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9163 *
9164 * @bp:		driver handle
9165 * @keep_link:		true iff link should be kept up
9166 */
9167void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9168{
9169	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9170
9171	/* Report UNLOAD_DONE to MCP */
9172	if (!BP_NOMCP(bp))
9173		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9174}
9175
9176static int bnx2x_func_wait_started(struct bnx2x *bp)
9177{
9178	int tout = 50;
9179	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9180
9181	if (!bp->port.pmf)
9182		return 0;
9183
9184	/*
9185	 * (assumption: No Attention from MCP at this stage)
9186	 * PMF probably in the middle of TX disable/enable transaction
9187	 * 1. Sync IRS for default SB
9188	 * 2. Sync SP queue - this guarantees us that attention handling started
9189	 * 3. Wait, that TX disable/enable transaction completes
9190	 *
9191	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9192	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9193	 * received completion for the transaction the state is TX_STOPPED.
9194	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9195	 * transaction.
9196	 */
9197
9198	/* make sure default SB ISR is done */
9199	if (msix)
9200		synchronize_irq(bp->msix_table[0].vector);
9201	else
9202		synchronize_irq(bp->pdev->irq);
9203
9204	flush_workqueue(bnx2x_wq);
9205	flush_workqueue(bnx2x_iov_wq);
9206
9207	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9208				BNX2X_F_STATE_STARTED && tout--)
9209		msleep(20);
9210
9211	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9212						BNX2X_F_STATE_STARTED) {
9213#ifdef BNX2X_STOP_ON_ERROR
9214		BNX2X_ERR("Wrong function state\n");
9215		return -EBUSY;
9216#else
9217		/*
9218		 * Failed to complete the transaction in a "good way"
9219		 * Force both transactions with CLR bit
9220		 */
9221		struct bnx2x_func_state_params func_params = {NULL};
9222
9223		DP(NETIF_MSG_IFDOWN,
9224		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9225
9226		func_params.f_obj = &bp->func_obj;
9227		__set_bit(RAMROD_DRV_CLR_ONLY,
9228					&func_params.ramrod_flags);
9229
9230		/* STARTED-->TX_ST0PPED */
9231		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9232		bnx2x_func_state_change(bp, &func_params);
9233
9234		/* TX_ST0PPED-->STARTED */
9235		func_params.cmd = BNX2X_F_CMD_TX_START;
9236		return bnx2x_func_state_change(bp, &func_params);
9237#endif
9238	}
9239
9240	return 0;
9241}
9242
9243static void bnx2x_disable_ptp(struct bnx2x *bp)
9244{
9245	int port = BP_PORT(bp);
9246
9247	/* Disable sending PTP packets to host */
9248	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9249	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9250
9251	/* Reset PTP event detection rules */
9252	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9253	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9254	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9255	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9256	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9257	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9258	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9259	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9260
9261	/* Disable the PTP feature */
9262	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9263	       NIG_REG_P0_PTP_EN, 0x0);
9264}
9265
9266/* Called during unload, to stop PTP-related stuff */
9267static void bnx2x_stop_ptp(struct bnx2x *bp)
9268{
9269	/* Cancel PTP work queue. Should be done after the Tx queues are
9270	 * drained to prevent additional scheduling.
9271	 */
9272	cancel_work_sync(&bp->ptp_task);
9273
9274	if (bp->ptp_tx_skb) {
9275		dev_kfree_skb_any(bp->ptp_tx_skb);
9276		bp->ptp_tx_skb = NULL;
9277	}
9278
9279	/* Disable PTP in HW */
9280	bnx2x_disable_ptp(bp);
9281
9282	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9283}
9284
9285void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9286{
9287	int port = BP_PORT(bp);
9288	int i, rc = 0;
9289	u8 cos;
9290	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9291	u32 reset_code;
9292
9293	/* Wait until tx fastpath tasks complete */
9294	for_each_tx_queue(bp, i) {
9295		struct bnx2x_fastpath *fp = &bp->fp[i];
9296
9297		for_each_cos_in_tx_queue(fp, cos)
9298			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9299#ifdef BNX2X_STOP_ON_ERROR
9300		if (rc)
9301			return;
9302#endif
9303	}
9304
9305	/* Give HW time to discard old tx messages */
9306	usleep_range(1000, 2000);
9307
9308	/* Clean all ETH MACs */
9309	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9310				false);
9311	if (rc < 0)
9312		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9313
9314	/* Clean up UC list  */
9315	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9316				true);
9317	if (rc < 0)
9318		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9319			  rc);
9320
9321	/* Disable LLH */
9322	if (!CHIP_IS_E1(bp))
9323		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9324
9325	/* Set "drop all" (stop Rx).
9326	 * We need to take a netif_addr_lock() here in order to prevent
9327	 * a race between the completion code and this code.
9328	 */
9329	netif_addr_lock_bh(bp->dev);
9330	/* Schedule the rx_mode command */
9331	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9332		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9333	else
9334		bnx2x_set_storm_rx_mode(bp);
9335
9336	/* Cleanup multicast configuration */
9337	rparam.mcast_obj = &bp->mcast_obj;
9338	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9339	if (rc < 0)
9340		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9341
9342	netif_addr_unlock_bh(bp->dev);
9343
9344	bnx2x_iov_chip_cleanup(bp);
9345
9346	/*
9347	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9348	 * this function should perform FUNC, PORT or COMMON HW
9349	 * reset.
9350	 */
9351	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9352
9353	/*
9354	 * (assumption: No Attention from MCP at this stage)
9355	 * PMF probably in the middle of TX disable/enable transaction
9356	 */
9357	rc = bnx2x_func_wait_started(bp);
9358	if (rc) {
9359		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9360#ifdef BNX2X_STOP_ON_ERROR
9361		return;
9362#endif
9363	}
9364
9365	/* Close multi and leading connections
9366	 * Completions for ramrods are collected in a synchronous way
9367	 */
9368	for_each_eth_queue(bp, i)
9369		if (bnx2x_stop_queue(bp, i))
9370#ifdef BNX2X_STOP_ON_ERROR
9371			return;
9372#else
9373			goto unload_error;
9374#endif
9375
9376	if (CNIC_LOADED(bp)) {
9377		for_each_cnic_queue(bp, i)
9378			if (bnx2x_stop_queue(bp, i))
9379#ifdef BNX2X_STOP_ON_ERROR
9380				return;
9381#else
9382				goto unload_error;
9383#endif
9384	}
9385
9386	/* If SP settings didn't get completed so far - something
9387	 * very wrong has happen.
9388	 */
9389	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9390		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9391
9392#ifndef BNX2X_STOP_ON_ERROR
9393unload_error:
9394#endif
9395	rc = bnx2x_func_stop(bp);
9396	if (rc) {
9397		BNX2X_ERR("Function stop failed!\n");
9398#ifdef BNX2X_STOP_ON_ERROR
9399		return;
9400#endif
9401	}
9402
9403	/* stop_ptp should be after the Tx queues are drained to prevent
9404	 * scheduling to the cancelled PTP work queue. It should also be after
9405	 * function stop ramrod is sent, since as part of this ramrod FW access
9406	 * PTP registers.
9407	 */
9408	if (bp->flags & PTP_SUPPORTED)
9409		bnx2x_stop_ptp(bp);
9410
9411	/* Disable HW interrupts, NAPI */
9412	bnx2x_netif_stop(bp, 1);
9413	/* Delete all NAPI objects */
9414	bnx2x_del_all_napi(bp);
9415	if (CNIC_LOADED(bp))
9416		bnx2x_del_all_napi_cnic(bp);
9417
9418	/* Release IRQs */
9419	bnx2x_free_irq(bp);
9420
9421	/* Reset the chip */
9422	rc = bnx2x_reset_hw(bp, reset_code);
9423	if (rc)
9424		BNX2X_ERR("HW_RESET failed\n");
9425
9426	/* Report UNLOAD_DONE to MCP */
9427	bnx2x_send_unload_done(bp, keep_link);
9428}
9429
9430void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9431{
9432	u32 val;
9433
9434	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9435
9436	if (CHIP_IS_E1(bp)) {
9437		int port = BP_PORT(bp);
9438		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9439			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9440
9441		val = REG_RD(bp, addr);
9442		val &= ~(0x300);
9443		REG_WR(bp, addr, val);
9444	} else {
9445		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9446		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9447			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9448		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9449	}
9450}
9451
9452/* Close gates #2, #3 and #4: */
9453static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9454{
9455	u32 val;
9456
9457	/* Gates #2 and #4a are closed/opened for "not E1" only */
9458	if (!CHIP_IS_E1(bp)) {
9459		/* #4 */
9460		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9461		/* #2 */
9462		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9463	}
9464
9465	/* #3 */
9466	if (CHIP_IS_E1x(bp)) {
9467		/* Prevent interrupts from HC on both ports */
9468		val = REG_RD(bp, HC_REG_CONFIG_1);
9469		REG_WR(bp, HC_REG_CONFIG_1,
9470		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9471		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9472
9473		val = REG_RD(bp, HC_REG_CONFIG_0);
9474		REG_WR(bp, HC_REG_CONFIG_0,
9475		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9476		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9477	} else {
9478		/* Prevent incoming interrupts in IGU */
9479		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9480
9481		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9482		       (!close) ?
9483		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9484		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9485	}
9486
9487	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9488		close ? "closing" : "opening");
9489	mmiowb();
9490}
9491
9492#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9493
9494static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9495{
9496	/* Do some magic... */
9497	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9498	*magic_val = val & SHARED_MF_CLP_MAGIC;
9499	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9500}
9501
9502/**
9503 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9504 *
9505 * @bp:		driver handle
9506 * @magic_val:	old value of the `magic' bit.
9507 */
9508static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9509{
9510	/* Restore the `magic' bit value... */
9511	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9512	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9513		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9514}
9515
9516/**
9517 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9518 *
9519 * @bp:		driver handle
9520 * @magic_val:	old value of 'magic' bit.
9521 *
9522 * Takes care of CLP configurations.
9523 */
9524static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9525{
9526	u32 shmem;
9527	u32 validity_offset;
9528
9529	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9530
9531	/* Set `magic' bit in order to save MF config */
9532	if (!CHIP_IS_E1(bp))
9533		bnx2x_clp_reset_prep(bp, magic_val);
9534
9535	/* Get shmem offset */
9536	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9537	validity_offset =
9538		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9539
9540	/* Clear validity map flags */
9541	if (shmem > 0)
9542		REG_WR(bp, shmem + validity_offset, 0);
9543}
9544
9545#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9546#define MCP_ONE_TIMEOUT  100    /* 100 ms */
9547
9548/**
9549 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9550 *
9551 * @bp:	driver handle
9552 */
9553static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9554{
9555	/* special handling for emulation and FPGA,
9556	   wait 10 times longer */
9557	if (CHIP_REV_IS_SLOW(bp))
9558		msleep(MCP_ONE_TIMEOUT*10);
9559	else
9560		msleep(MCP_ONE_TIMEOUT);
9561}
9562
9563/*
9564 * initializes bp->common.shmem_base and waits for validity signature to appear
9565 */
9566static int bnx2x_init_shmem(struct bnx2x *bp)
9567{
9568	int cnt = 0;
9569	u32 val = 0;
9570
9571	do {
9572		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9573		if (bp->common.shmem_base) {
9574			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9575			if (val & SHR_MEM_VALIDITY_MB)
9576				return 0;
9577		}
9578
9579		bnx2x_mcp_wait_one(bp);
9580
9581	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9582
9583	BNX2X_ERR("BAD MCP validity signature\n");
9584
9585	return -ENODEV;
9586}
9587
9588static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9589{
9590	int rc = bnx2x_init_shmem(bp);
9591
9592	/* Restore the `magic' bit value */
9593	if (!CHIP_IS_E1(bp))
9594		bnx2x_clp_reset_done(bp, magic_val);
9595
9596	return rc;
9597}
9598
9599static void bnx2x_pxp_prep(struct bnx2x *bp)
9600{
9601	if (!CHIP_IS_E1(bp)) {
9602		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9603		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9604		mmiowb();
9605	}
9606}
9607
9608/*
9609 * Reset the whole chip except for:
9610 *      - PCIE core
9611 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9612 *              one reset bit)
9613 *      - IGU
9614 *      - MISC (including AEU)
9615 *      - GRC
9616 *      - RBCN, RBCP
9617 */
9618static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9619{
9620	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9621	u32 global_bits2, stay_reset2;
9622
9623	/*
9624	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9625	 * (per chip) blocks.
9626	 */
9627	global_bits2 =
9628		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9629		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9630
9631	/* Don't reset the following blocks.
9632	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9633	 *            reset, as in 4 port device they might still be owned
9634	 *            by the MCP (there is only one leader per path).
9635	 */
9636	not_reset_mask1 =
9637		MISC_REGISTERS_RESET_REG_1_RST_HC |
9638		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9639		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9640
9641	not_reset_mask2 =
9642		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9643		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9644		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9645		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9646		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9647		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9648		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9649		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9650		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9651		MISC_REGISTERS_RESET_REG_2_PGLC |
9652		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9653		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9654		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9655		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9656		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9657		MISC_REGISTERS_RESET_REG_2_UMAC1;
9658
9659	/*
9660	 * Keep the following blocks in reset:
9661	 *  - all xxMACs are handled by the bnx2x_link code.
9662	 */
9663	stay_reset2 =
9664		MISC_REGISTERS_RESET_REG_2_XMAC |
9665		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9666
9667	/* Full reset masks according to the chip */
9668	reset_mask1 = 0xffffffff;
9669
9670	if (CHIP_IS_E1(bp))
9671		reset_mask2 = 0xffff;
9672	else if (CHIP_IS_E1H(bp))
9673		reset_mask2 = 0x1ffff;
9674	else if (CHIP_IS_E2(bp))
9675		reset_mask2 = 0xfffff;
9676	else /* CHIP_IS_E3 */
9677		reset_mask2 = 0x3ffffff;
9678
9679	/* Don't reset global blocks unless we need to */
9680	if (!global)
9681		reset_mask2 &= ~global_bits2;
9682
9683	/*
9684	 * In case of attention in the QM, we need to reset PXP
9685	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9686	 * because otherwise QM reset would release 'close the gates' shortly
9687	 * before resetting the PXP, then the PSWRQ would send a write
9688	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9689	 * read the payload data from PSWWR, but PSWWR would not
9690	 * respond. The write queue in PGLUE would stuck, dmae commands
9691	 * would not return. Therefore it's important to reset the second
9692	 * reset register (containing the
9693	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9694	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9695	 * bit).
9696	 */
9697	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9698	       reset_mask2 & (~not_reset_mask2));
9699
9700	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9701	       reset_mask1 & (~not_reset_mask1));
9702
9703	barrier();
9704	mmiowb();
9705
9706	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9707	       reset_mask2 & (~stay_reset2));
9708
9709	barrier();
9710	mmiowb();
9711
9712	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9713	mmiowb();
9714}
9715
9716/**
9717 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9718 * It should get cleared in no more than 1s.
9719 *
9720 * @bp:	driver handle
9721 *
9722 * It should get cleared in no more than 1s. Returns 0 if
9723 * pending writes bit gets cleared.
9724 */
9725static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9726{
9727	u32 cnt = 1000;
9728	u32 pend_bits = 0;
9729
9730	do {
9731		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9732
9733		if (pend_bits == 0)
9734			break;
9735
9736		usleep_range(1000, 2000);
9737	} while (cnt-- > 0);
9738
9739	if (cnt <= 0) {
9740		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9741			  pend_bits);
9742		return -EBUSY;
9743	}
9744
9745	return 0;
9746}
9747
9748static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9749{
9750	int cnt = 1000;
9751	u32 val = 0;
9752	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9753	u32 tags_63_32 = 0;
9754
9755	/* Empty the Tetris buffer, wait for 1s */
9756	do {
9757		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9758		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9759		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9760		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9761		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9762		if (CHIP_IS_E3(bp))
9763			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9764
9765		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9766		    ((port_is_idle_0 & 0x1) == 0x1) &&
9767		    ((port_is_idle_1 & 0x1) == 0x1) &&
9768		    (pgl_exp_rom2 == 0xffffffff) &&
9769		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9770			break;
9771		usleep_range(1000, 2000);
9772	} while (cnt-- > 0);
9773
9774	if (cnt <= 0) {
9775		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9776		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9777			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9778			  pgl_exp_rom2);
9779		return -EAGAIN;
9780	}
9781
9782	barrier();
9783
9784	/* Close gates #2, #3 and #4 */
9785	bnx2x_set_234_gates(bp, true);
9786
9787	/* Poll for IGU VQs for 57712 and newer chips */
9788	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9789		return -EAGAIN;
9790
9791	/* TBD: Indicate that "process kill" is in progress to MCP */
9792
9793	/* Clear "unprepared" bit */
9794	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9795	barrier();
9796
9797	/* Make sure all is written to the chip before the reset */
9798	mmiowb();
9799
9800	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9801	 * PSWHST, GRC and PSWRD Tetris buffer.
9802	 */
9803	usleep_range(1000, 2000);
9804
9805	/* Prepare to chip reset: */
9806	/* MCP */
9807	if (global)
9808		bnx2x_reset_mcp_prep(bp, &val);
9809
9810	/* PXP */
9811	bnx2x_pxp_prep(bp);
9812	barrier();
9813
9814	/* reset the chip */
9815	bnx2x_process_kill_chip_reset(bp, global);
9816	barrier();
9817
9818	/* clear errors in PGB */
9819	if (!CHIP_IS_E1x(bp))
9820		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9821
9822	/* Recover after reset: */
9823	/* MCP */
9824	if (global && bnx2x_reset_mcp_comp(bp, val))
9825		return -EAGAIN;
9826
9827	/* TBD: Add resetting the NO_MCP mode DB here */
9828
9829	/* Open the gates #2, #3 and #4 */
9830	bnx2x_set_234_gates(bp, false);
9831
9832	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9833	 * reset state, re-enable attentions. */
9834
9835	return 0;
9836}
9837
9838static int bnx2x_leader_reset(struct bnx2x *bp)
9839{
9840	int rc = 0;
9841	bool global = bnx2x_reset_is_global(bp);
9842	u32 load_code;
9843
9844	/* if not going to reset MCP - load "fake" driver to reset HW while
9845	 * driver is owner of the HW
9846	 */
9847	if (!global && !BP_NOMCP(bp)) {
9848		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9849					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9850		if (!load_code) {
9851			BNX2X_ERR("MCP response failure, aborting\n");
9852			rc = -EAGAIN;
9853			goto exit_leader_reset;
9854		}
9855		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9856		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9857			BNX2X_ERR("MCP unexpected resp, aborting\n");
9858			rc = -EAGAIN;
9859			goto exit_leader_reset2;
9860		}
9861		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9862		if (!load_code) {
9863			BNX2X_ERR("MCP response failure, aborting\n");
9864			rc = -EAGAIN;
9865			goto exit_leader_reset2;
9866		}
9867	}
9868
9869	/* Try to recover after the failure */
9870	if (bnx2x_process_kill(bp, global)) {
9871		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9872			  BP_PATH(bp));
9873		rc = -EAGAIN;
9874		goto exit_leader_reset2;
9875	}
9876
9877	/*
9878	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9879	 * state.
9880	 */
9881	bnx2x_set_reset_done(bp);
9882	if (global)
9883		bnx2x_clear_reset_global(bp);
9884
9885exit_leader_reset2:
9886	/* unload "fake driver" if it was loaded */
9887	if (!global && !BP_NOMCP(bp)) {
9888		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9889		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9890	}
9891exit_leader_reset:
9892	bp->is_leader = 0;
9893	bnx2x_release_leader_lock(bp);
9894	smp_mb();
9895	return rc;
9896}
9897
9898static void bnx2x_recovery_failed(struct bnx2x *bp)
9899{
9900	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9901
9902	/* Disconnect this device */
9903	netif_device_detach(bp->dev);
9904
9905	/*
9906	 * Block ifup for all function on this engine until "process kill"
9907	 * or power cycle.
9908	 */
9909	bnx2x_set_reset_in_progress(bp);
9910
9911	/* Shut down the power */
9912	bnx2x_set_power_state(bp, PCI_D3hot);
9913
9914	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9915
9916	smp_mb();
9917}
9918
9919/*
9920 * Assumption: runs under rtnl lock. This together with the fact
9921 * that it's called only from bnx2x_sp_rtnl() ensure that it
9922 * will never be called when netif_running(bp->dev) is false.
9923 */
9924static void bnx2x_parity_recover(struct bnx2x *bp)
9925{
9926	bool global = false;
9927	u32 error_recovered, error_unrecovered;
9928	bool is_parity;
9929
9930	DP(NETIF_MSG_HW, "Handling parity\n");
9931	while (1) {
9932		switch (bp->recovery_state) {
9933		case BNX2X_RECOVERY_INIT:
9934			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9935			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9936			WARN_ON(!is_parity);
9937
9938			/* Try to get a LEADER_LOCK HW lock */
9939			if (bnx2x_trylock_leader_lock(bp)) {
9940				bnx2x_set_reset_in_progress(bp);
9941				/*
9942				 * Check if there is a global attention and if
9943				 * there was a global attention, set the global
9944				 * reset bit.
9945				 */
9946
9947				if (global)
9948					bnx2x_set_reset_global(bp);
9949
9950				bp->is_leader = 1;
9951			}
9952
9953			/* Stop the driver */
9954			/* If interface has been removed - break */
9955			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9956				return;
9957
9958			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9959
9960			/* Ensure "is_leader", MCP command sequence and
9961			 * "recovery_state" update values are seen on other
9962			 * CPUs.
9963			 */
9964			smp_mb();
9965			break;
9966
9967		case BNX2X_RECOVERY_WAIT:
9968			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9969			if (bp->is_leader) {
9970				int other_engine = BP_PATH(bp) ? 0 : 1;
9971				bool other_load_status =
9972					bnx2x_get_load_status(bp, other_engine);
9973				bool load_status =
9974					bnx2x_get_load_status(bp, BP_PATH(bp));
9975				global = bnx2x_reset_is_global(bp);
9976
9977				/*
9978				 * In case of a parity in a global block, let
9979				 * the first leader that performs a
9980				 * leader_reset() reset the global blocks in
9981				 * order to clear global attentions. Otherwise
9982				 * the gates will remain closed for that
9983				 * engine.
9984				 */
9985				if (load_status ||
9986				    (global && other_load_status)) {
9987					/* Wait until all other functions get
9988					 * down.
9989					 */
9990					schedule_delayed_work(&bp->sp_rtnl_task,
9991								HZ/10);
9992					return;
9993				} else {
9994					/* If all other functions got down -
9995					 * try to bring the chip back to
9996					 * normal. In any case it's an exit
9997					 * point for a leader.
9998					 */
9999					if (bnx2x_leader_reset(bp)) {
10000						bnx2x_recovery_failed(bp);
10001						return;
10002					}
10003
10004					/* If we are here, means that the
10005					 * leader has succeeded and doesn't
10006					 * want to be a leader any more. Try
10007					 * to continue as a none-leader.
10008					 */
10009					break;
10010				}
10011			} else { /* non-leader */
10012				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10013					/* Try to get a LEADER_LOCK HW lock as
10014					 * long as a former leader may have
10015					 * been unloaded by the user or
10016					 * released a leadership by another
10017					 * reason.
10018					 */
10019					if (bnx2x_trylock_leader_lock(bp)) {
10020						/* I'm a leader now! Restart a
10021						 * switch case.
10022						 */
10023						bp->is_leader = 1;
10024						break;
10025					}
10026
10027					schedule_delayed_work(&bp->sp_rtnl_task,
10028								HZ/10);
10029					return;
10030
10031				} else {
10032					/*
10033					 * If there was a global attention, wait
10034					 * for it to be cleared.
10035					 */
10036					if (bnx2x_reset_is_global(bp)) {
10037						schedule_delayed_work(
10038							&bp->sp_rtnl_task,
10039							HZ/10);
10040						return;
10041					}
10042
10043					error_recovered =
10044					  bp->eth_stats.recoverable_error;
10045					error_unrecovered =
10046					  bp->eth_stats.unrecoverable_error;
10047					bp->recovery_state =
10048						BNX2X_RECOVERY_NIC_LOADING;
10049					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10050						error_unrecovered++;
10051						netdev_err(bp->dev,
10052							   "Recovery failed. Power cycle needed\n");
10053						/* Disconnect this device */
10054						netif_device_detach(bp->dev);
10055						/* Shut down the power */
10056						bnx2x_set_power_state(
10057							bp, PCI_D3hot);
10058						smp_mb();
10059					} else {
10060						bp->recovery_state =
10061							BNX2X_RECOVERY_DONE;
10062						error_recovered++;
10063						smp_mb();
10064					}
10065					bp->eth_stats.recoverable_error =
10066						error_recovered;
10067					bp->eth_stats.unrecoverable_error =
10068						error_unrecovered;
10069
10070					return;
10071				}
10072			}
10073		default:
10074			return;
10075		}
10076	}
10077}
10078
10079#ifdef CONFIG_BNX2X_VXLAN
10080static int bnx2x_vxlan_port_update(struct bnx2x *bp, u16 port)
10081{
10082	struct bnx2x_func_switch_update_params *switch_update_params;
10083	struct bnx2x_func_state_params func_params = {NULL};
10084	int rc;
10085
10086	switch_update_params = &func_params.params.switch_update;
10087
10088	/* Prepare parameters for function state transitions */
10089	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10090	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10091
10092	func_params.f_obj = &bp->func_obj;
10093	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10094
10095	/* Function parameters */
10096	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10097		  &switch_update_params->changes);
10098	switch_update_params->vxlan_dst_port = port;
10099	rc = bnx2x_func_state_change(bp, &func_params);
10100	if (rc)
10101		BNX2X_ERR("failed to change vxlan dst port to %d (rc = 0x%x)\n",
10102			  port, rc);
10103	return rc;
10104}
10105
10106static void __bnx2x_add_vxlan_port(struct bnx2x *bp, u16 port)
10107{
10108	if (!netif_running(bp->dev))
10109		return;
10110
10111	if (bp->vxlan_dst_port_count && bp->vxlan_dst_port == port) {
10112		bp->vxlan_dst_port_count++;
10113		return;
10114	}
10115
10116	if (bp->vxlan_dst_port_count || !IS_PF(bp)) {
10117		DP(BNX2X_MSG_SP, "Vxlan destination port limit reached\n");
10118		return;
10119	}
10120
10121	bp->vxlan_dst_port = port;
10122	bp->vxlan_dst_port_count = 1;
10123	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_ADD_VXLAN_PORT, 0);
10124}
10125
10126static void bnx2x_add_vxlan_port(struct net_device *netdev,
10127				 sa_family_t sa_family, __be16 port)
10128{
10129	struct bnx2x *bp = netdev_priv(netdev);
10130	u16 t_port = ntohs(port);
10131
10132	__bnx2x_add_vxlan_port(bp, t_port);
10133}
10134
10135static void __bnx2x_del_vxlan_port(struct bnx2x *bp, u16 port)
10136{
10137	if (!bp->vxlan_dst_port_count || bp->vxlan_dst_port != port ||
10138	    !IS_PF(bp)) {
10139		DP(BNX2X_MSG_SP, "Invalid vxlan port\n");
10140		return;
10141	}
10142	bp->vxlan_dst_port_count--;
10143	if (bp->vxlan_dst_port_count)
10144		return;
10145
10146	if (netif_running(bp->dev)) {
10147		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_DEL_VXLAN_PORT, 0);
10148	} else {
10149		bp->vxlan_dst_port = 0;
10150		netdev_info(bp->dev, "Deleted vxlan dest port %d", port);
10151	}
10152}
10153
10154static void bnx2x_del_vxlan_port(struct net_device *netdev,
10155				 sa_family_t sa_family, __be16 port)
10156{
10157	struct bnx2x *bp = netdev_priv(netdev);
10158	u16 t_port = ntohs(port);
10159
10160	__bnx2x_del_vxlan_port(bp, t_port);
10161}
10162#endif
10163
10164static int bnx2x_close(struct net_device *dev);
10165
10166/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10167 * scheduled on a general queue in order to prevent a dead lock.
10168 */
10169static void bnx2x_sp_rtnl_task(struct work_struct *work)
10170{
10171	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10172#ifdef CONFIG_BNX2X_VXLAN
10173	u16 port;
10174#endif
10175
10176	rtnl_lock();
10177
10178	if (!netif_running(bp->dev)) {
10179		rtnl_unlock();
10180		return;
10181	}
10182
10183	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10184#ifdef BNX2X_STOP_ON_ERROR
10185		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10186			  "you will need to reboot when done\n");
10187		goto sp_rtnl_not_reset;
10188#endif
10189		/*
10190		 * Clear all pending SP commands as we are going to reset the
10191		 * function anyway.
10192		 */
10193		bp->sp_rtnl_state = 0;
10194		smp_mb();
10195
10196		bnx2x_parity_recover(bp);
10197
10198		rtnl_unlock();
10199		return;
10200	}
10201
10202	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10203#ifdef BNX2X_STOP_ON_ERROR
10204		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10205			  "you will need to reboot when done\n");
10206		goto sp_rtnl_not_reset;
10207#endif
10208
10209		/*
10210		 * Clear all pending SP commands as we are going to reset the
10211		 * function anyway.
10212		 */
10213		bp->sp_rtnl_state = 0;
10214		smp_mb();
10215
10216		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10217		bnx2x_nic_load(bp, LOAD_NORMAL);
10218
10219		rtnl_unlock();
10220		return;
10221	}
10222#ifdef BNX2X_STOP_ON_ERROR
10223sp_rtnl_not_reset:
10224#endif
10225	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10226		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10227	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10228		bnx2x_after_function_update(bp);
10229	/*
10230	 * in case of fan failure we need to reset id if the "stop on error"
10231	 * debug flag is set, since we trying to prevent permanent overheating
10232	 * damage
10233	 */
10234	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10235		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10236		netif_device_detach(bp->dev);
10237		bnx2x_close(bp->dev);
10238		rtnl_unlock();
10239		return;
10240	}
10241
10242	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10243		DP(BNX2X_MSG_SP,
10244		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10245		bnx2x_vfpf_set_mcast(bp->dev);
10246	}
10247	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10248			       &bp->sp_rtnl_state)){
10249		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10250			bnx2x_tx_disable(bp);
10251			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10252		}
10253	}
10254
10255	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10256		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10257		bnx2x_set_rx_mode_inner(bp);
10258	}
10259
10260	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10261			       &bp->sp_rtnl_state))
10262		bnx2x_pf_set_vfs_vlan(bp);
10263
10264	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10265		bnx2x_dcbx_stop_hw_tx(bp);
10266		bnx2x_dcbx_resume_hw_tx(bp);
10267	}
10268
10269	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10270			       &bp->sp_rtnl_state))
10271		bnx2x_update_mng_version(bp);
10272
10273#ifdef CONFIG_BNX2X_VXLAN
10274	port = bp->vxlan_dst_port;
10275	if (test_and_clear_bit(BNX2X_SP_RTNL_ADD_VXLAN_PORT,
10276			       &bp->sp_rtnl_state)) {
10277		if (!bnx2x_vxlan_port_update(bp, port))
10278			netdev_info(bp->dev, "Added vxlan dest port %d", port);
10279		else
10280			bp->vxlan_dst_port = 0;
10281	}
10282
10283	if (test_and_clear_bit(BNX2X_SP_RTNL_DEL_VXLAN_PORT,
10284			       &bp->sp_rtnl_state)) {
10285		if (!bnx2x_vxlan_port_update(bp, 0)) {
10286			netdev_info(bp->dev,
10287				    "Deleted vxlan dest port %d", port);
10288			bp->vxlan_dst_port = 0;
10289			vxlan_get_rx_port(bp->dev);
10290		}
10291	}
10292#endif
10293
10294	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10295	 * can be called from other contexts as well)
10296	 */
10297	rtnl_unlock();
10298
10299	/* enable SR-IOV if applicable */
10300	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10301					       &bp->sp_rtnl_state)) {
10302		bnx2x_disable_sriov(bp);
10303		bnx2x_enable_sriov(bp);
10304	}
10305}
10306
10307static void bnx2x_period_task(struct work_struct *work)
10308{
10309	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10310
10311	if (!netif_running(bp->dev))
10312		goto period_task_exit;
10313
10314	if (CHIP_REV_IS_SLOW(bp)) {
10315		BNX2X_ERR("period task called on emulation, ignoring\n");
10316		goto period_task_exit;
10317	}
10318
10319	bnx2x_acquire_phy_lock(bp);
10320	/*
10321	 * The barrier is needed to ensure the ordering between the writing to
10322	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10323	 * the reading here.
10324	 */
10325	smp_mb();
10326	if (bp->port.pmf) {
10327		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10328
10329		/* Re-queue task in 1 sec */
10330		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10331	}
10332
10333	bnx2x_release_phy_lock(bp);
10334period_task_exit:
10335	return;
10336}
10337
10338/*
10339 * Init service functions
10340 */
10341
10342static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10343{
10344	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10345	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10346	return base + (BP_ABS_FUNC(bp)) * stride;
10347}
10348
10349static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10350					 u8 port, u32 reset_reg,
10351					 struct bnx2x_mac_vals *vals)
10352{
10353	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10354	u32 base_addr;
10355
10356	if (!(mask & reset_reg))
10357		return false;
10358
10359	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10360	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10361	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10362	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10363	REG_WR(bp, vals->umac_addr[port], 0);
10364
10365	return true;
10366}
10367
10368static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10369					struct bnx2x_mac_vals *vals)
10370{
10371	u32 val, base_addr, offset, mask, reset_reg;
10372	bool mac_stopped = false;
10373	u8 port = BP_PORT(bp);
10374
10375	/* reset addresses as they also mark which values were changed */
10376	memset(vals, 0, sizeof(*vals));
10377
10378	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10379
10380	if (!CHIP_IS_E3(bp)) {
10381		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10382		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10383		if ((mask & reset_reg) && val) {
10384			u32 wb_data[2];
10385			BNX2X_DEV_INFO("Disable bmac Rx\n");
10386			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10387						: NIG_REG_INGRESS_BMAC0_MEM;
10388			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10389						: BIGMAC_REGISTER_BMAC_CONTROL;
10390
10391			/*
10392			 * use rd/wr since we cannot use dmae. This is safe
10393			 * since MCP won't access the bus due to the request
10394			 * to unload, and no function on the path can be
10395			 * loaded at this time.
10396			 */
10397			wb_data[0] = REG_RD(bp, base_addr + offset);
10398			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10399			vals->bmac_addr = base_addr + offset;
10400			vals->bmac_val[0] = wb_data[0];
10401			vals->bmac_val[1] = wb_data[1];
10402			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10403			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10404			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10405		}
10406		BNX2X_DEV_INFO("Disable emac Rx\n");
10407		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10408		vals->emac_val = REG_RD(bp, vals->emac_addr);
10409		REG_WR(bp, vals->emac_addr, 0);
10410		mac_stopped = true;
10411	} else {
10412		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10413			BNX2X_DEV_INFO("Disable xmac Rx\n");
10414			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10415			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10416			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10417			       val & ~(1 << 1));
10418			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10419			       val | (1 << 1));
10420			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10421			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10422			REG_WR(bp, vals->xmac_addr, 0);
10423			mac_stopped = true;
10424		}
10425
10426		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10427							    reset_reg, vals);
10428		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10429							    reset_reg, vals);
10430	}
10431
10432	if (mac_stopped)
10433		msleep(20);
10434}
10435
10436#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10437#define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10438					0x1848 + ((f) << 4))
10439#define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10440#define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10441#define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10442
10443#define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10444#define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10445#define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10446
10447static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10448{
10449	/* UNDI marks its presence in DORQ -
10450	 * it initializes CID offset for normal bell to 0x7
10451	 */
10452	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10453	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10454		return false;
10455
10456	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10457		BNX2X_DEV_INFO("UNDI previously loaded\n");
10458		return true;
10459	}
10460
10461	return false;
10462}
10463
10464static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10465{
10466	u16 rcq, bd;
10467	u32 addr, tmp_reg;
10468
10469	if (BP_FUNC(bp) < 2)
10470		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10471	else
10472		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10473
10474	tmp_reg = REG_RD(bp, addr);
10475	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10476	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10477
10478	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10479	REG_WR(bp, addr, tmp_reg);
10480
10481	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10482		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10483}
10484
10485static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10486{
10487	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10488				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10489	if (!rc) {
10490		BNX2X_ERR("MCP response failure, aborting\n");
10491		return -EBUSY;
10492	}
10493
10494	return 0;
10495}
10496
10497static struct bnx2x_prev_path_list *
10498		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10499{
10500	struct bnx2x_prev_path_list *tmp_list;
10501
10502	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10503		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10504		    bp->pdev->bus->number == tmp_list->bus &&
10505		    BP_PATH(bp) == tmp_list->path)
10506			return tmp_list;
10507
10508	return NULL;
10509}
10510
10511static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10512{
10513	struct bnx2x_prev_path_list *tmp_list;
10514	int rc;
10515
10516	rc = down_interruptible(&bnx2x_prev_sem);
10517	if (rc) {
10518		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10519		return rc;
10520	}
10521
10522	tmp_list = bnx2x_prev_path_get_entry(bp);
10523	if (tmp_list) {
10524		tmp_list->aer = 1;
10525		rc = 0;
10526	} else {
10527		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10528			  BP_PATH(bp));
10529	}
10530
10531	up(&bnx2x_prev_sem);
10532
10533	return rc;
10534}
10535
10536static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10537{
10538	struct bnx2x_prev_path_list *tmp_list;
10539	bool rc = false;
10540
10541	if (down_trylock(&bnx2x_prev_sem))
10542		return false;
10543
10544	tmp_list = bnx2x_prev_path_get_entry(bp);
10545	if (tmp_list) {
10546		if (tmp_list->aer) {
10547			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10548			   BP_PATH(bp));
10549		} else {
10550			rc = true;
10551			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10552				       BP_PATH(bp));
10553		}
10554	}
10555
10556	up(&bnx2x_prev_sem);
10557
10558	return rc;
10559}
10560
10561bool bnx2x_port_after_undi(struct bnx2x *bp)
10562{
10563	struct bnx2x_prev_path_list *entry;
10564	bool val;
10565
10566	down(&bnx2x_prev_sem);
10567
10568	entry = bnx2x_prev_path_get_entry(bp);
10569	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10570
10571	up(&bnx2x_prev_sem);
10572
10573	return val;
10574}
10575
10576static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10577{
10578	struct bnx2x_prev_path_list *tmp_list;
10579	int rc;
10580
10581	rc = down_interruptible(&bnx2x_prev_sem);
10582	if (rc) {
10583		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10584		return rc;
10585	}
10586
10587	/* Check whether the entry for this path already exists */
10588	tmp_list = bnx2x_prev_path_get_entry(bp);
10589	if (tmp_list) {
10590		if (!tmp_list->aer) {
10591			BNX2X_ERR("Re-Marking the path.\n");
10592		} else {
10593			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10594			   BP_PATH(bp));
10595			tmp_list->aer = 0;
10596		}
10597		up(&bnx2x_prev_sem);
10598		return 0;
10599	}
10600	up(&bnx2x_prev_sem);
10601
10602	/* Create an entry for this path and add it */
10603	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10604	if (!tmp_list) {
10605		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10606		return -ENOMEM;
10607	}
10608
10609	tmp_list->bus = bp->pdev->bus->number;
10610	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10611	tmp_list->path = BP_PATH(bp);
10612	tmp_list->aer = 0;
10613	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10614
10615	rc = down_interruptible(&bnx2x_prev_sem);
10616	if (rc) {
10617		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10618		kfree(tmp_list);
10619	} else {
10620		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10621		   BP_PATH(bp));
10622		list_add(&tmp_list->list, &bnx2x_prev_list);
10623		up(&bnx2x_prev_sem);
10624	}
10625
10626	return rc;
10627}
10628
10629static int bnx2x_do_flr(struct bnx2x *bp)
10630{
10631	struct pci_dev *dev = bp->pdev;
10632
10633	if (CHIP_IS_E1x(bp)) {
10634		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10635		return -EINVAL;
10636	}
10637
10638	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10639	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10640		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10641			  bp->common.bc_ver);
10642		return -EINVAL;
10643	}
10644
10645	if (!pci_wait_for_pending_transaction(dev))
10646		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10647
10648	BNX2X_DEV_INFO("Initiating FLR\n");
10649	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10650
10651	return 0;
10652}
10653
10654static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10655{
10656	int rc;
10657
10658	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10659
10660	/* Test if previous unload process was already finished for this path */
10661	if (bnx2x_prev_is_path_marked(bp))
10662		return bnx2x_prev_mcp_done(bp);
10663
10664	BNX2X_DEV_INFO("Path is unmarked\n");
10665
10666	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10667	if (bnx2x_prev_is_after_undi(bp))
10668		goto out;
10669
10670	/* If function has FLR capabilities, and existing FW version matches
10671	 * the one required, then FLR will be sufficient to clean any residue
10672	 * left by previous driver
10673	 */
10674	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10675
10676	if (!rc) {
10677		/* fw version is good */
10678		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10679		rc = bnx2x_do_flr(bp);
10680	}
10681
10682	if (!rc) {
10683		/* FLR was performed */
10684		BNX2X_DEV_INFO("FLR successful\n");
10685		return 0;
10686	}
10687
10688	BNX2X_DEV_INFO("Could not FLR\n");
10689
10690out:
10691	/* Close the MCP request, return failure*/
10692	rc = bnx2x_prev_mcp_done(bp);
10693	if (!rc)
10694		rc = BNX2X_PREV_WAIT_NEEDED;
10695
10696	return rc;
10697}
10698
10699static int bnx2x_prev_unload_common(struct bnx2x *bp)
10700{
10701	u32 reset_reg, tmp_reg = 0, rc;
10702	bool prev_undi = false;
10703	struct bnx2x_mac_vals mac_vals;
10704
10705	/* It is possible a previous function received 'common' answer,
10706	 * but hasn't loaded yet, therefore creating a scenario of
10707	 * multiple functions receiving 'common' on the same path.
10708	 */
10709	BNX2X_DEV_INFO("Common unload Flow\n");
10710
10711	memset(&mac_vals, 0, sizeof(mac_vals));
10712
10713	if (bnx2x_prev_is_path_marked(bp))
10714		return bnx2x_prev_mcp_done(bp);
10715
10716	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10717
10718	/* Reset should be performed after BRB is emptied */
10719	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10720		u32 timer_count = 1000;
10721
10722		/* Close the MAC Rx to prevent BRB from filling up */
10723		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10724
10725		/* close LLH filters for both ports towards the BRB */
10726		bnx2x_set_rx_filter(&bp->link_params, 0);
10727		bp->link_params.port ^= 1;
10728		bnx2x_set_rx_filter(&bp->link_params, 0);
10729		bp->link_params.port ^= 1;
10730
10731		/* Check if the UNDI driver was previously loaded */
10732		if (bnx2x_prev_is_after_undi(bp)) {
10733			prev_undi = true;
10734			/* clear the UNDI indication */
10735			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10736			/* clear possible idle check errors */
10737			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10738		}
10739		if (!CHIP_IS_E1x(bp))
10740			/* block FW from writing to host */
10741			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10742
10743		/* wait until BRB is empty */
10744		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10745		while (timer_count) {
10746			u32 prev_brb = tmp_reg;
10747
10748			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10749			if (!tmp_reg)
10750				break;
10751
10752			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10753
10754			/* reset timer as long as BRB actually gets emptied */
10755			if (prev_brb > tmp_reg)
10756				timer_count = 1000;
10757			else
10758				timer_count--;
10759
10760			/* If UNDI resides in memory, manually increment it */
10761			if (prev_undi)
10762				bnx2x_prev_unload_undi_inc(bp, 1);
10763
10764			udelay(10);
10765		}
10766
10767		if (!timer_count)
10768			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10769	}
10770
10771	/* No packets are in the pipeline, path is ready for reset */
10772	bnx2x_reset_common(bp);
10773
10774	if (mac_vals.xmac_addr)
10775		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10776	if (mac_vals.umac_addr[0])
10777		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10778	if (mac_vals.umac_addr[1])
10779		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10780	if (mac_vals.emac_addr)
10781		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10782	if (mac_vals.bmac_addr) {
10783		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10784		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10785	}
10786
10787	rc = bnx2x_prev_mark_path(bp, prev_undi);
10788	if (rc) {
10789		bnx2x_prev_mcp_done(bp);
10790		return rc;
10791	}
10792
10793	return bnx2x_prev_mcp_done(bp);
10794}
10795
10796static int bnx2x_prev_unload(struct bnx2x *bp)
10797{
10798	int time_counter = 10;
10799	u32 rc, fw, hw_lock_reg, hw_lock_val;
10800	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10801
10802	/* clear hw from errors which may have resulted from an interrupted
10803	 * dmae transaction.
10804	 */
10805	bnx2x_clean_pglue_errors(bp);
10806
10807	/* Release previously held locks */
10808	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10809		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10810		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10811
10812	hw_lock_val = REG_RD(bp, hw_lock_reg);
10813	if (hw_lock_val) {
10814		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10815			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10816			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10817			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10818		}
10819
10820		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10821		REG_WR(bp, hw_lock_reg, 0xffffffff);
10822	} else
10823		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10824
10825	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10826		BNX2X_DEV_INFO("Release previously held alr\n");
10827		bnx2x_release_alr(bp);
10828	}
10829
10830	do {
10831		int aer = 0;
10832		/* Lock MCP using an unload request */
10833		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10834		if (!fw) {
10835			BNX2X_ERR("MCP response failure, aborting\n");
10836			rc = -EBUSY;
10837			break;
10838		}
10839
10840		rc = down_interruptible(&bnx2x_prev_sem);
10841		if (rc) {
10842			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10843				  rc);
10844		} else {
10845			/* If Path is marked by EEH, ignore unload status */
10846			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10847				 bnx2x_prev_path_get_entry(bp)->aer);
10848			up(&bnx2x_prev_sem);
10849		}
10850
10851		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10852			rc = bnx2x_prev_unload_common(bp);
10853			break;
10854		}
10855
10856		/* non-common reply from MCP might require looping */
10857		rc = bnx2x_prev_unload_uncommon(bp);
10858		if (rc != BNX2X_PREV_WAIT_NEEDED)
10859			break;
10860
10861		msleep(20);
10862	} while (--time_counter);
10863
10864	if (!time_counter || rc) {
10865		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10866		rc = -EPROBE_DEFER;
10867	}
10868
10869	/* Mark function if its port was used to boot from SAN */
10870	if (bnx2x_port_after_undi(bp))
10871		bp->link_params.feature_config_flags |=
10872			FEATURE_CONFIG_BOOT_FROM_SAN;
10873
10874	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10875
10876	return rc;
10877}
10878
10879static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10880{
10881	u32 val, val2, val3, val4, id, boot_mode;
10882	u16 pmc;
10883
10884	/* Get the chip revision id and number. */
10885	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10886	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10887	id = ((val & 0xffff) << 16);
10888	val = REG_RD(bp, MISC_REG_CHIP_REV);
10889	id |= ((val & 0xf) << 12);
10890
10891	/* Metal is read from PCI regs, but we can't access >=0x400 from
10892	 * the configuration space (so we need to reg_rd)
10893	 */
10894	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10895	id |= (((val >> 24) & 0xf) << 4);
10896	val = REG_RD(bp, MISC_REG_BOND_ID);
10897	id |= (val & 0xf);
10898	bp->common.chip_id = id;
10899
10900	/* force 57811 according to MISC register */
10901	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10902		if (CHIP_IS_57810(bp))
10903			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10904				(bp->common.chip_id & 0x0000FFFF);
10905		else if (CHIP_IS_57810_MF(bp))
10906			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10907				(bp->common.chip_id & 0x0000FFFF);
10908		bp->common.chip_id |= 0x1;
10909	}
10910
10911	/* Set doorbell size */
10912	bp->db_size = (1 << BNX2X_DB_SHIFT);
10913
10914	if (!CHIP_IS_E1x(bp)) {
10915		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10916		if ((val & 1) == 0)
10917			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10918		else
10919			val = (val >> 1) & 1;
10920		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10921						       "2_PORT_MODE");
10922		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10923						 CHIP_2_PORT_MODE;
10924
10925		if (CHIP_MODE_IS_4_PORT(bp))
10926			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10927		else
10928			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10929	} else {
10930		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10931		bp->pfid = bp->pf_num;			/* 0..7 */
10932	}
10933
10934	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10935
10936	bp->link_params.chip_id = bp->common.chip_id;
10937	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10938
10939	val = (REG_RD(bp, 0x2874) & 0x55);
10940	if ((bp->common.chip_id & 0x1) ||
10941	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10942		bp->flags |= ONE_PORT_FLAG;
10943		BNX2X_DEV_INFO("single port device\n");
10944	}
10945
10946	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10947	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10948				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10949	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10950		       bp->common.flash_size, bp->common.flash_size);
10951
10952	bnx2x_init_shmem(bp);
10953
10954	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10955					MISC_REG_GENERIC_CR_1 :
10956					MISC_REG_GENERIC_CR_0));
10957
10958	bp->link_params.shmem_base = bp->common.shmem_base;
10959	bp->link_params.shmem2_base = bp->common.shmem2_base;
10960	if (SHMEM2_RD(bp, size) >
10961	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10962		bp->link_params.lfa_base =
10963		REG_RD(bp, bp->common.shmem2_base +
10964		       (u32)offsetof(struct shmem2_region,
10965				     lfa_host_addr[BP_PORT(bp)]));
10966	else
10967		bp->link_params.lfa_base = 0;
10968	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10969		       bp->common.shmem_base, bp->common.shmem2_base);
10970
10971	if (!bp->common.shmem_base) {
10972		BNX2X_DEV_INFO("MCP not active\n");
10973		bp->flags |= NO_MCP_FLAG;
10974		return;
10975	}
10976
10977	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10978	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10979
10980	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10981					SHARED_HW_CFG_LED_MODE_MASK) >>
10982				       SHARED_HW_CFG_LED_MODE_SHIFT);
10983
10984	bp->link_params.feature_config_flags = 0;
10985	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10986	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10987		bp->link_params.feature_config_flags |=
10988				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10989	else
10990		bp->link_params.feature_config_flags &=
10991				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10992
10993	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10994	bp->common.bc_ver = val;
10995	BNX2X_DEV_INFO("bc_ver %X\n", val);
10996	if (val < BNX2X_BC_VER) {
10997		/* for now only warn
10998		 * later we might need to enforce this */
10999		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11000			  BNX2X_BC_VER, val);
11001	}
11002	bp->link_params.feature_config_flags |=
11003				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11004				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11005
11006	bp->link_params.feature_config_flags |=
11007		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11008		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11009	bp->link_params.feature_config_flags |=
11010		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11011		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11012	bp->link_params.feature_config_flags |=
11013		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11014		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11015
11016	bp->link_params.feature_config_flags |=
11017		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11018		FEATURE_CONFIG_MT_SUPPORT : 0;
11019
11020	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11021			BC_SUPPORTS_PFC_STATS : 0;
11022
11023	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11024			BC_SUPPORTS_FCOE_FEATURES : 0;
11025
11026	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11027			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11028
11029	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11030			BC_SUPPORTS_RMMOD_CMD : 0;
11031
11032	boot_mode = SHMEM_RD(bp,
11033			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11034			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11035	switch (boot_mode) {
11036	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11037		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11038		break;
11039	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11040		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11041		break;
11042	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11043		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11044		break;
11045	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11046		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11047		break;
11048	}
11049
11050	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11051	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11052
11053	BNX2X_DEV_INFO("%sWoL capable\n",
11054		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11055
11056	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11057	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11058	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11059	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11060
11061	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11062		 val, val2, val3, val4);
11063}
11064
11065#define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11066#define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11067
11068static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11069{
11070	int pfid = BP_FUNC(bp);
11071	int igu_sb_id;
11072	u32 val;
11073	u8 fid, igu_sb_cnt = 0;
11074
11075	bp->igu_base_sb = 0xff;
11076	if (CHIP_INT_MODE_IS_BC(bp)) {
11077		int vn = BP_VN(bp);
11078		igu_sb_cnt = bp->igu_sb_cnt;
11079		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11080			FP_SB_MAX_E1x;
11081
11082		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11083			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11084
11085		return 0;
11086	}
11087
11088	/* IGU in normal mode - read CAM */
11089	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11090	     igu_sb_id++) {
11091		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11092		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11093			continue;
11094		fid = IGU_FID(val);
11095		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11096			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11097				continue;
11098			if (IGU_VEC(val) == 0)
11099				/* default status block */
11100				bp->igu_dsb_id = igu_sb_id;
11101			else {
11102				if (bp->igu_base_sb == 0xff)
11103					bp->igu_base_sb = igu_sb_id;
11104				igu_sb_cnt++;
11105			}
11106		}
11107	}
11108
11109#ifdef CONFIG_PCI_MSI
11110	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11111	 * optional that number of CAM entries will not be equal to the value
11112	 * advertised in PCI.
11113	 * Driver should use the minimal value of both as the actual status
11114	 * block count
11115	 */
11116	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11117#endif
11118
11119	if (igu_sb_cnt == 0) {
11120		BNX2X_ERR("CAM configuration error\n");
11121		return -EINVAL;
11122	}
11123
11124	return 0;
11125}
11126
11127static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11128{
11129	int cfg_size = 0, idx, port = BP_PORT(bp);
11130
11131	/* Aggregation of supported attributes of all external phys */
11132	bp->port.supported[0] = 0;
11133	bp->port.supported[1] = 0;
11134	switch (bp->link_params.num_phys) {
11135	case 1:
11136		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11137		cfg_size = 1;
11138		break;
11139	case 2:
11140		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11141		cfg_size = 1;
11142		break;
11143	case 3:
11144		if (bp->link_params.multi_phy_config &
11145		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11146			bp->port.supported[1] =
11147				bp->link_params.phy[EXT_PHY1].supported;
11148			bp->port.supported[0] =
11149				bp->link_params.phy[EXT_PHY2].supported;
11150		} else {
11151			bp->port.supported[0] =
11152				bp->link_params.phy[EXT_PHY1].supported;
11153			bp->port.supported[1] =
11154				bp->link_params.phy[EXT_PHY2].supported;
11155		}
11156		cfg_size = 2;
11157		break;
11158	}
11159
11160	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11161		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11162			   SHMEM_RD(bp,
11163			   dev_info.port_hw_config[port].external_phy_config),
11164			   SHMEM_RD(bp,
11165			   dev_info.port_hw_config[port].external_phy_config2));
11166			return;
11167	}
11168
11169	if (CHIP_IS_E3(bp))
11170		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11171	else {
11172		switch (switch_cfg) {
11173		case SWITCH_CFG_1G:
11174			bp->port.phy_addr = REG_RD(
11175				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11176			break;
11177		case SWITCH_CFG_10G:
11178			bp->port.phy_addr = REG_RD(
11179				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11180			break;
11181		default:
11182			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11183				  bp->port.link_config[0]);
11184			return;
11185		}
11186	}
11187	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11188	/* mask what we support according to speed_cap_mask per configuration */
11189	for (idx = 0; idx < cfg_size; idx++) {
11190		if (!(bp->link_params.speed_cap_mask[idx] &
11191				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11192			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11193
11194		if (!(bp->link_params.speed_cap_mask[idx] &
11195				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11196			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11197
11198		if (!(bp->link_params.speed_cap_mask[idx] &
11199				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11200			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11201
11202		if (!(bp->link_params.speed_cap_mask[idx] &
11203				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11204			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11205
11206		if (!(bp->link_params.speed_cap_mask[idx] &
11207					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11208			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11209						     SUPPORTED_1000baseT_Full);
11210
11211		if (!(bp->link_params.speed_cap_mask[idx] &
11212					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11213			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11214
11215		if (!(bp->link_params.speed_cap_mask[idx] &
11216					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11217			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11218
11219		if (!(bp->link_params.speed_cap_mask[idx] &
11220					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11221			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11222	}
11223
11224	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11225		       bp->port.supported[1]);
11226}
11227
11228static void bnx2x_link_settings_requested(struct bnx2x *bp)
11229{
11230	u32 link_config, idx, cfg_size = 0;
11231	bp->port.advertising[0] = 0;
11232	bp->port.advertising[1] = 0;
11233	switch (bp->link_params.num_phys) {
11234	case 1:
11235	case 2:
11236		cfg_size = 1;
11237		break;
11238	case 3:
11239		cfg_size = 2;
11240		break;
11241	}
11242	for (idx = 0; idx < cfg_size; idx++) {
11243		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11244		link_config = bp->port.link_config[idx];
11245		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11246		case PORT_FEATURE_LINK_SPEED_AUTO:
11247			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11248				bp->link_params.req_line_speed[idx] =
11249					SPEED_AUTO_NEG;
11250				bp->port.advertising[idx] |=
11251					bp->port.supported[idx];
11252				if (bp->link_params.phy[EXT_PHY1].type ==
11253				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11254					bp->port.advertising[idx] |=
11255					(SUPPORTED_100baseT_Half |
11256					 SUPPORTED_100baseT_Full);
11257			} else {
11258				/* force 10G, no AN */
11259				bp->link_params.req_line_speed[idx] =
11260					SPEED_10000;
11261				bp->port.advertising[idx] |=
11262					(ADVERTISED_10000baseT_Full |
11263					 ADVERTISED_FIBRE);
11264				continue;
11265			}
11266			break;
11267
11268		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11269			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11270				bp->link_params.req_line_speed[idx] =
11271					SPEED_10;
11272				bp->port.advertising[idx] |=
11273					(ADVERTISED_10baseT_Full |
11274					 ADVERTISED_TP);
11275			} else {
11276				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11277					    link_config,
11278				    bp->link_params.speed_cap_mask[idx]);
11279				return;
11280			}
11281			break;
11282
11283		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11284			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11285				bp->link_params.req_line_speed[idx] =
11286					SPEED_10;
11287				bp->link_params.req_duplex[idx] =
11288					DUPLEX_HALF;
11289				bp->port.advertising[idx] |=
11290					(ADVERTISED_10baseT_Half |
11291					 ADVERTISED_TP);
11292			} else {
11293				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11294					    link_config,
11295					  bp->link_params.speed_cap_mask[idx]);
11296				return;
11297			}
11298			break;
11299
11300		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11301			if (bp->port.supported[idx] &
11302			    SUPPORTED_100baseT_Full) {
11303				bp->link_params.req_line_speed[idx] =
11304					SPEED_100;
11305				bp->port.advertising[idx] |=
11306					(ADVERTISED_100baseT_Full |
11307					 ADVERTISED_TP);
11308			} else {
11309				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11310					    link_config,
11311					  bp->link_params.speed_cap_mask[idx]);
11312				return;
11313			}
11314			break;
11315
11316		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11317			if (bp->port.supported[idx] &
11318			    SUPPORTED_100baseT_Half) {
11319				bp->link_params.req_line_speed[idx] =
11320								SPEED_100;
11321				bp->link_params.req_duplex[idx] =
11322								DUPLEX_HALF;
11323				bp->port.advertising[idx] |=
11324					(ADVERTISED_100baseT_Half |
11325					 ADVERTISED_TP);
11326			} else {
11327				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11328				    link_config,
11329				    bp->link_params.speed_cap_mask[idx]);
11330				return;
11331			}
11332			break;
11333
11334		case PORT_FEATURE_LINK_SPEED_1G:
11335			if (bp->port.supported[idx] &
11336			    SUPPORTED_1000baseT_Full) {
11337				bp->link_params.req_line_speed[idx] =
11338					SPEED_1000;
11339				bp->port.advertising[idx] |=
11340					(ADVERTISED_1000baseT_Full |
11341					 ADVERTISED_TP);
11342			} else if (bp->port.supported[idx] &
11343				   SUPPORTED_1000baseKX_Full) {
11344				bp->link_params.req_line_speed[idx] =
11345					SPEED_1000;
11346				bp->port.advertising[idx] |=
11347					ADVERTISED_1000baseKX_Full;
11348			} else {
11349				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11350				    link_config,
11351				    bp->link_params.speed_cap_mask[idx]);
11352				return;
11353			}
11354			break;
11355
11356		case PORT_FEATURE_LINK_SPEED_2_5G:
11357			if (bp->port.supported[idx] &
11358			    SUPPORTED_2500baseX_Full) {
11359				bp->link_params.req_line_speed[idx] =
11360					SPEED_2500;
11361				bp->port.advertising[idx] |=
11362					(ADVERTISED_2500baseX_Full |
11363						ADVERTISED_TP);
11364			} else {
11365				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11366				    link_config,
11367				    bp->link_params.speed_cap_mask[idx]);
11368				return;
11369			}
11370			break;
11371
11372		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11373			if (bp->port.supported[idx] &
11374			    SUPPORTED_10000baseT_Full) {
11375				bp->link_params.req_line_speed[idx] =
11376					SPEED_10000;
11377				bp->port.advertising[idx] |=
11378					(ADVERTISED_10000baseT_Full |
11379						ADVERTISED_FIBRE);
11380			} else if (bp->port.supported[idx] &
11381				   SUPPORTED_10000baseKR_Full) {
11382				bp->link_params.req_line_speed[idx] =
11383					SPEED_10000;
11384				bp->port.advertising[idx] |=
11385					(ADVERTISED_10000baseKR_Full |
11386						ADVERTISED_FIBRE);
11387			} else {
11388				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11389				    link_config,
11390				    bp->link_params.speed_cap_mask[idx]);
11391				return;
11392			}
11393			break;
11394		case PORT_FEATURE_LINK_SPEED_20G:
11395			bp->link_params.req_line_speed[idx] = SPEED_20000;
11396
11397			break;
11398		default:
11399			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11400				  link_config);
11401				bp->link_params.req_line_speed[idx] =
11402							SPEED_AUTO_NEG;
11403				bp->port.advertising[idx] =
11404						bp->port.supported[idx];
11405			break;
11406		}
11407
11408		bp->link_params.req_flow_ctrl[idx] = (link_config &
11409					 PORT_FEATURE_FLOW_CONTROL_MASK);
11410		if (bp->link_params.req_flow_ctrl[idx] ==
11411		    BNX2X_FLOW_CTRL_AUTO) {
11412			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11413				bp->link_params.req_flow_ctrl[idx] =
11414							BNX2X_FLOW_CTRL_NONE;
11415			else
11416				bnx2x_set_requested_fc(bp);
11417		}
11418
11419		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11420			       bp->link_params.req_line_speed[idx],
11421			       bp->link_params.req_duplex[idx],
11422			       bp->link_params.req_flow_ctrl[idx],
11423			       bp->port.advertising[idx]);
11424	}
11425}
11426
11427static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11428{
11429	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11430	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11431	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11432	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11433}
11434
11435static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11436{
11437	int port = BP_PORT(bp);
11438	u32 config;
11439	u32 ext_phy_type, ext_phy_config, eee_mode;
11440
11441	bp->link_params.bp = bp;
11442	bp->link_params.port = port;
11443
11444	bp->link_params.lane_config =
11445		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11446
11447	bp->link_params.speed_cap_mask[0] =
11448		SHMEM_RD(bp,
11449			 dev_info.port_hw_config[port].speed_capability_mask) &
11450		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11451	bp->link_params.speed_cap_mask[1] =
11452		SHMEM_RD(bp,
11453			 dev_info.port_hw_config[port].speed_capability_mask2) &
11454		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11455	bp->port.link_config[0] =
11456		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11457
11458	bp->port.link_config[1] =
11459		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11460
11461	bp->link_params.multi_phy_config =
11462		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11463	/* If the device is capable of WoL, set the default state according
11464	 * to the HW
11465	 */
11466	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11467	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11468		   (config & PORT_FEATURE_WOL_ENABLED));
11469
11470	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11471	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11472		bp->flags |= NO_ISCSI_FLAG;
11473	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11474	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11475		bp->flags |= NO_FCOE_FLAG;
11476
11477	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11478		       bp->link_params.lane_config,
11479		       bp->link_params.speed_cap_mask[0],
11480		       bp->port.link_config[0]);
11481
11482	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11483				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11484	bnx2x_phy_probe(&bp->link_params);
11485	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11486
11487	bnx2x_link_settings_requested(bp);
11488
11489	/*
11490	 * If connected directly, work with the internal PHY, otherwise, work
11491	 * with the external PHY
11492	 */
11493	ext_phy_config =
11494		SHMEM_RD(bp,
11495			 dev_info.port_hw_config[port].external_phy_config);
11496	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11497	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11498		bp->mdio.prtad = bp->port.phy_addr;
11499
11500	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11501		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11502		bp->mdio.prtad =
11503			XGXS_EXT_PHY_ADDR(ext_phy_config);
11504
11505	/* Configure link feature according to nvram value */
11506	eee_mode = (((SHMEM_RD(bp, dev_info.
11507		      port_feature_config[port].eee_power_mode)) &
11508		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11509		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11510	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11511		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11512					   EEE_MODE_ENABLE_LPI |
11513					   EEE_MODE_OUTPUT_TIME;
11514	} else {
11515		bp->link_params.eee_mode = 0;
11516	}
11517}
11518
11519void bnx2x_get_iscsi_info(struct bnx2x *bp)
11520{
11521	u32 no_flags = NO_ISCSI_FLAG;
11522	int port = BP_PORT(bp);
11523	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11524				drv_lic_key[port].max_iscsi_conn);
11525
11526	if (!CNIC_SUPPORT(bp)) {
11527		bp->flags |= no_flags;
11528		return;
11529	}
11530
11531	/* Get the number of maximum allowed iSCSI connections */
11532	bp->cnic_eth_dev.max_iscsi_conn =
11533		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11534		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11535
11536	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11537		       bp->cnic_eth_dev.max_iscsi_conn);
11538
11539	/*
11540	 * If maximum allowed number of connections is zero -
11541	 * disable the feature.
11542	 */
11543	if (!bp->cnic_eth_dev.max_iscsi_conn)
11544		bp->flags |= no_flags;
11545}
11546
11547static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11548{
11549	/* Port info */
11550	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11551		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11552	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11553		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11554
11555	/* Node info */
11556	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11557		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11558	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11559		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11560}
11561
11562static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11563{
11564	u8 count = 0;
11565
11566	if (IS_MF(bp)) {
11567		u8 fid;
11568
11569		/* iterate over absolute function ids for this path: */
11570		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11571			if (IS_MF_SD(bp)) {
11572				u32 cfg = MF_CFG_RD(bp,
11573						    func_mf_config[fid].config);
11574
11575				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11576				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11577					    FUNC_MF_CFG_PROTOCOL_FCOE))
11578					count++;
11579			} else {
11580				u32 cfg = MF_CFG_RD(bp,
11581						    func_ext_config[fid].
11582								      func_cfg);
11583
11584				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11585				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11586					count++;
11587			}
11588		}
11589	} else { /* SF */
11590		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11591
11592		for (port = 0; port < port_cnt; port++) {
11593			u32 lic = SHMEM_RD(bp,
11594					   drv_lic_key[port].max_fcoe_conn) ^
11595				  FW_ENCODE_32BIT_PATTERN;
11596			if (lic)
11597				count++;
11598		}
11599	}
11600
11601	return count;
11602}
11603
11604static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11605{
11606	int port = BP_PORT(bp);
11607	int func = BP_ABS_FUNC(bp);
11608	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11609				drv_lic_key[port].max_fcoe_conn);
11610	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11611
11612	if (!CNIC_SUPPORT(bp)) {
11613		bp->flags |= NO_FCOE_FLAG;
11614		return;
11615	}
11616
11617	/* Get the number of maximum allowed FCoE connections */
11618	bp->cnic_eth_dev.max_fcoe_conn =
11619		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11620		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11621
11622	/* Calculate the number of maximum allowed FCoE tasks */
11623	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11624
11625	/* check if FCoE resources must be shared between different functions */
11626	if (num_fcoe_func)
11627		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11628
11629	/* Read the WWN: */
11630	if (!IS_MF(bp)) {
11631		/* Port info */
11632		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11633			SHMEM_RD(bp,
11634				 dev_info.port_hw_config[port].
11635				 fcoe_wwn_port_name_upper);
11636		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11637			SHMEM_RD(bp,
11638				 dev_info.port_hw_config[port].
11639				 fcoe_wwn_port_name_lower);
11640
11641		/* Node info */
11642		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11643			SHMEM_RD(bp,
11644				 dev_info.port_hw_config[port].
11645				 fcoe_wwn_node_name_upper);
11646		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11647			SHMEM_RD(bp,
11648				 dev_info.port_hw_config[port].
11649				 fcoe_wwn_node_name_lower);
11650	} else if (!IS_MF_SD(bp)) {
11651		/* Read the WWN info only if the FCoE feature is enabled for
11652		 * this function.
11653		 */
11654		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11655			bnx2x_get_ext_wwn_info(bp, func);
11656	} else {
11657		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11658			bnx2x_get_ext_wwn_info(bp, func);
11659	}
11660
11661	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11662
11663	/*
11664	 * If maximum allowed number of connections is zero -
11665	 * disable the feature.
11666	 */
11667	if (!bp->cnic_eth_dev.max_fcoe_conn)
11668		bp->flags |= NO_FCOE_FLAG;
11669}
11670
11671static void bnx2x_get_cnic_info(struct bnx2x *bp)
11672{
11673	/*
11674	 * iSCSI may be dynamically disabled but reading
11675	 * info here we will decrease memory usage by driver
11676	 * if the feature is disabled for good
11677	 */
11678	bnx2x_get_iscsi_info(bp);
11679	bnx2x_get_fcoe_info(bp);
11680}
11681
11682static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11683{
11684	u32 val, val2;
11685	int func = BP_ABS_FUNC(bp);
11686	int port = BP_PORT(bp);
11687	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11688	u8 *fip_mac = bp->fip_mac;
11689
11690	if (IS_MF(bp)) {
11691		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11692		 * FCoE MAC then the appropriate feature should be disabled.
11693		 * In non SD mode features configuration comes from struct
11694		 * func_ext_config.
11695		 */
11696		if (!IS_MF_SD(bp)) {
11697			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11698			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11699				val2 = MF_CFG_RD(bp, func_ext_config[func].
11700						 iscsi_mac_addr_upper);
11701				val = MF_CFG_RD(bp, func_ext_config[func].
11702						iscsi_mac_addr_lower);
11703				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11704				BNX2X_DEV_INFO
11705					("Read iSCSI MAC: %pM\n", iscsi_mac);
11706			} else {
11707				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11708			}
11709
11710			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11711				val2 = MF_CFG_RD(bp, func_ext_config[func].
11712						 fcoe_mac_addr_upper);
11713				val = MF_CFG_RD(bp, func_ext_config[func].
11714						fcoe_mac_addr_lower);
11715				bnx2x_set_mac_buf(fip_mac, val, val2);
11716				BNX2X_DEV_INFO
11717					("Read FCoE L2 MAC: %pM\n", fip_mac);
11718			} else {
11719				bp->flags |= NO_FCOE_FLAG;
11720			}
11721
11722			bp->mf_ext_config = cfg;
11723
11724		} else { /* SD MODE */
11725			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11726				/* use primary mac as iscsi mac */
11727				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11728
11729				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11730				BNX2X_DEV_INFO
11731					("Read iSCSI MAC: %pM\n", iscsi_mac);
11732			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11733				/* use primary mac as fip mac */
11734				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11735				BNX2X_DEV_INFO("SD FCoE MODE\n");
11736				BNX2X_DEV_INFO
11737					("Read FIP MAC: %pM\n", fip_mac);
11738			}
11739		}
11740
11741		/* If this is a storage-only interface, use SAN mac as
11742		 * primary MAC. Notice that for SD this is already the case,
11743		 * as the SAN mac was copied from the primary MAC.
11744		 */
11745		if (IS_MF_FCOE_AFEX(bp))
11746			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11747	} else {
11748		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11749				iscsi_mac_upper);
11750		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11751			       iscsi_mac_lower);
11752		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11753
11754		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11755				fcoe_fip_mac_upper);
11756		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11757			       fcoe_fip_mac_lower);
11758		bnx2x_set_mac_buf(fip_mac, val, val2);
11759	}
11760
11761	/* Disable iSCSI OOO if MAC configuration is invalid. */
11762	if (!is_valid_ether_addr(iscsi_mac)) {
11763		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11764		eth_zero_addr(iscsi_mac);
11765	}
11766
11767	/* Disable FCoE if MAC configuration is invalid. */
11768	if (!is_valid_ether_addr(fip_mac)) {
11769		bp->flags |= NO_FCOE_FLAG;
11770		eth_zero_addr(bp->fip_mac);
11771	}
11772}
11773
11774static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11775{
11776	u32 val, val2;
11777	int func = BP_ABS_FUNC(bp);
11778	int port = BP_PORT(bp);
11779
11780	/* Zero primary MAC configuration */
11781	eth_zero_addr(bp->dev->dev_addr);
11782
11783	if (BP_NOMCP(bp)) {
11784		BNX2X_ERROR("warning: random MAC workaround active\n");
11785		eth_hw_addr_random(bp->dev);
11786	} else if (IS_MF(bp)) {
11787		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11788		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11789		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11790		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11791			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11792
11793		if (CNIC_SUPPORT(bp))
11794			bnx2x_get_cnic_mac_hwinfo(bp);
11795	} else {
11796		/* in SF read MACs from port configuration */
11797		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11798		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11799		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11800
11801		if (CNIC_SUPPORT(bp))
11802			bnx2x_get_cnic_mac_hwinfo(bp);
11803	}
11804
11805	if (!BP_NOMCP(bp)) {
11806		/* Read physical port identifier from shmem */
11807		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11808		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11809		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11810		bp->flags |= HAS_PHYS_PORT_ID;
11811	}
11812
11813	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11814
11815	if (!is_valid_ether_addr(bp->dev->dev_addr))
11816		dev_err(&bp->pdev->dev,
11817			"bad Ethernet MAC address configuration: %pM\n"
11818			"change it manually before bringing up the appropriate network interface\n",
11819			bp->dev->dev_addr);
11820}
11821
11822static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11823{
11824	int tmp;
11825	u32 cfg;
11826
11827	if (IS_VF(bp))
11828		return false;
11829
11830	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11831		/* Take function: tmp = func */
11832		tmp = BP_ABS_FUNC(bp);
11833		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11834		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11835	} else {
11836		/* Take port: tmp = port */
11837		tmp = BP_PORT(bp);
11838		cfg = SHMEM_RD(bp,
11839			       dev_info.port_hw_config[tmp].generic_features);
11840		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11841	}
11842	return cfg;
11843}
11844
11845static void validate_set_si_mode(struct bnx2x *bp)
11846{
11847	u8 func = BP_ABS_FUNC(bp);
11848	u32 val;
11849
11850	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11851
11852	/* check for legal mac (upper bytes) */
11853	if (val != 0xffff) {
11854		bp->mf_mode = MULTI_FUNCTION_SI;
11855		bp->mf_config[BP_VN(bp)] =
11856			MF_CFG_RD(bp, func_mf_config[func].config);
11857	} else
11858		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11859}
11860
11861static int bnx2x_get_hwinfo(struct bnx2x *bp)
11862{
11863	int /*abs*/func = BP_ABS_FUNC(bp);
11864	int vn, mfw_vn;
11865	u32 val = 0, val2 = 0;
11866	int rc = 0;
11867
11868	/* Validate that chip access is feasible */
11869	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11870		dev_err(&bp->pdev->dev,
11871			"Chip read returns all Fs. Preventing probe from continuing\n");
11872		return -EINVAL;
11873	}
11874
11875	bnx2x_get_common_hwinfo(bp);
11876
11877	/*
11878	 * initialize IGU parameters
11879	 */
11880	if (CHIP_IS_E1x(bp)) {
11881		bp->common.int_block = INT_BLOCK_HC;
11882
11883		bp->igu_dsb_id = DEF_SB_IGU_ID;
11884		bp->igu_base_sb = 0;
11885	} else {
11886		bp->common.int_block = INT_BLOCK_IGU;
11887
11888		/* do not allow device reset during IGU info processing */
11889		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11890
11891		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11892
11893		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11894			int tout = 5000;
11895
11896			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11897
11898			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11899			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11900			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11901
11902			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11903				tout--;
11904				usleep_range(1000, 2000);
11905			}
11906
11907			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11908				dev_err(&bp->pdev->dev,
11909					"FORCING Normal Mode failed!!!\n");
11910				bnx2x_release_hw_lock(bp,
11911						      HW_LOCK_RESOURCE_RESET);
11912				return -EPERM;
11913			}
11914		}
11915
11916		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11917			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11918			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11919		} else
11920			BNX2X_DEV_INFO("IGU Normal Mode\n");
11921
11922		rc = bnx2x_get_igu_cam_info(bp);
11923		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11924		if (rc)
11925			return rc;
11926	}
11927
11928	/*
11929	 * set base FW non-default (fast path) status block id, this value is
11930	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11931	 * determine the id used by the FW.
11932	 */
11933	if (CHIP_IS_E1x(bp))
11934		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11935	else /*
11936	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11937	      * the same queue are indicated on the same IGU SB). So we prefer
11938	      * FW and IGU SBs to be the same value.
11939	      */
11940		bp->base_fw_ndsb = bp->igu_base_sb;
11941
11942	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11943		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11944		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11945
11946	/*
11947	 * Initialize MF configuration
11948	 */
11949
11950	bp->mf_ov = 0;
11951	bp->mf_mode = 0;
11952	bp->mf_sub_mode = 0;
11953	vn = BP_VN(bp);
11954	mfw_vn = BP_FW_MB_IDX(bp);
11955
11956	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11957		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11958			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11959			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11960
11961		if (SHMEM2_HAS(bp, mf_cfg_addr))
11962			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11963		else
11964			bp->common.mf_cfg_base = bp->common.shmem_base +
11965				offsetof(struct shmem_region, func_mb) +
11966				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11967		/*
11968		 * get mf configuration:
11969		 * 1. Existence of MF configuration
11970		 * 2. MAC address must be legal (check only upper bytes)
11971		 *    for  Switch-Independent mode;
11972		 *    OVLAN must be legal for Switch-Dependent mode
11973		 * 3. SF_MODE configures specific MF mode
11974		 */
11975		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11976			/* get mf configuration */
11977			val = SHMEM_RD(bp,
11978				       dev_info.shared_feature_config.config);
11979			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11980
11981			switch (val) {
11982			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11983				validate_set_si_mode(bp);
11984				break;
11985			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11986				if ((!CHIP_IS_E1x(bp)) &&
11987				    (MF_CFG_RD(bp, func_mf_config[func].
11988					       mac_upper) != 0xffff) &&
11989				    (SHMEM2_HAS(bp,
11990						afex_driver_support))) {
11991					bp->mf_mode = MULTI_FUNCTION_AFEX;
11992					bp->mf_config[vn] = MF_CFG_RD(bp,
11993						func_mf_config[func].config);
11994				} else {
11995					BNX2X_DEV_INFO("can not configure afex mode\n");
11996				}
11997				break;
11998			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11999				/* get OV configuration */
12000				val = MF_CFG_RD(bp,
12001					func_mf_config[FUNC_0].e1hov_tag);
12002				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12003
12004				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12005					bp->mf_mode = MULTI_FUNCTION_SD;
12006					bp->mf_config[vn] = MF_CFG_RD(bp,
12007						func_mf_config[func].config);
12008				} else
12009					BNX2X_DEV_INFO("illegal OV for SD\n");
12010				break;
12011			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12012				bp->mf_mode = MULTI_FUNCTION_SD;
12013				bp->mf_sub_mode = SUB_MF_MODE_BD;
12014				bp->mf_config[vn] =
12015					MF_CFG_RD(bp,
12016						  func_mf_config[func].config);
12017
12018				if (SHMEM2_HAS(bp, mtu_size)) {
12019					int mtu_idx = BP_FW_MB_IDX(bp);
12020					u16 mtu_size;
12021					u32 mtu;
12022
12023					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12024					mtu_size = (u16)mtu;
12025					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12026					   mtu_size, mtu);
12027
12028					/* if valid: update device mtu */
12029					if (((mtu_size + ETH_HLEN) >=
12030					     ETH_MIN_PACKET_SIZE) &&
12031					    (mtu_size <=
12032					     ETH_MAX_JUMBO_PACKET_SIZE))
12033						bp->dev->mtu = mtu_size;
12034				}
12035				break;
12036			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12037				bp->mf_mode = MULTI_FUNCTION_SD;
12038				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12039				bp->mf_config[vn] =
12040					MF_CFG_RD(bp,
12041						  func_mf_config[func].config);
12042				break;
12043			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12044				bp->mf_config[vn] = 0;
12045				break;
12046			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12047				val2 = SHMEM_RD(bp,
12048					dev_info.shared_hw_config.config_3);
12049				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12050				switch (val2) {
12051				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12052					validate_set_si_mode(bp);
12053					bp->mf_sub_mode =
12054							SUB_MF_MODE_NPAR1_DOT_5;
12055					break;
12056				default:
12057					/* Unknown configuration */
12058					bp->mf_config[vn] = 0;
12059					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12060						       val);
12061				}
12062				break;
12063			default:
12064				/* Unknown configuration: reset mf_config */
12065				bp->mf_config[vn] = 0;
12066				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12067			}
12068		}
12069
12070		BNX2X_DEV_INFO("%s function mode\n",
12071			       IS_MF(bp) ? "multi" : "single");
12072
12073		switch (bp->mf_mode) {
12074		case MULTI_FUNCTION_SD:
12075			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12076			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12077			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12078				bp->mf_ov = val;
12079				bp->path_has_ovlan = true;
12080
12081				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12082					       func, bp->mf_ov, bp->mf_ov);
12083			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12084				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12085				dev_err(&bp->pdev->dev,
12086					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12087					func);
12088				bp->path_has_ovlan = true;
12089			} else {
12090				dev_err(&bp->pdev->dev,
12091					"No valid MF OV for func %d, aborting\n",
12092					func);
12093				return -EPERM;
12094			}
12095			break;
12096		case MULTI_FUNCTION_AFEX:
12097			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12098			break;
12099		case MULTI_FUNCTION_SI:
12100			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12101				       func);
12102			break;
12103		default:
12104			if (vn) {
12105				dev_err(&bp->pdev->dev,
12106					"VN %d is in a single function mode, aborting\n",
12107					vn);
12108				return -EPERM;
12109			}
12110			break;
12111		}
12112
12113		/* check if other port on the path needs ovlan:
12114		 * Since MF configuration is shared between ports
12115		 * Possible mixed modes are only
12116		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12117		 */
12118		if (CHIP_MODE_IS_4_PORT(bp) &&
12119		    !bp->path_has_ovlan &&
12120		    !IS_MF(bp) &&
12121		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12122			u8 other_port = !BP_PORT(bp);
12123			u8 other_func = BP_PATH(bp) + 2*other_port;
12124			val = MF_CFG_RD(bp,
12125					func_mf_config[other_func].e1hov_tag);
12126			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12127				bp->path_has_ovlan = true;
12128		}
12129	}
12130
12131	/* adjust igu_sb_cnt to MF for E1H */
12132	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12133		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12134
12135	/* port info */
12136	bnx2x_get_port_hwinfo(bp);
12137
12138	/* Get MAC addresses */
12139	bnx2x_get_mac_hwinfo(bp);
12140
12141	bnx2x_get_cnic_info(bp);
12142
12143	return rc;
12144}
12145
12146static void bnx2x_read_fwinfo(struct bnx2x *bp)
12147{
12148	int cnt, i, block_end, rodi;
12149	char vpd_start[BNX2X_VPD_LEN+1];
12150	char str_id_reg[VENDOR_ID_LEN+1];
12151	char str_id_cap[VENDOR_ID_LEN+1];
12152	char *vpd_data;
12153	char *vpd_extended_data = NULL;
12154	u8 len;
12155
12156	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12157	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12158
12159	if (cnt < BNX2X_VPD_LEN)
12160		goto out_not_found;
12161
12162	/* VPD RO tag should be first tag after identifier string, hence
12163	 * we should be able to find it in first BNX2X_VPD_LEN chars
12164	 */
12165	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12166			     PCI_VPD_LRDT_RO_DATA);
12167	if (i < 0)
12168		goto out_not_found;
12169
12170	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12171		    pci_vpd_lrdt_size(&vpd_start[i]);
12172
12173	i += PCI_VPD_LRDT_TAG_SIZE;
12174
12175	if (block_end > BNX2X_VPD_LEN) {
12176		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12177		if (vpd_extended_data  == NULL)
12178			goto out_not_found;
12179
12180		/* read rest of vpd image into vpd_extended_data */
12181		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12182		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12183				   block_end - BNX2X_VPD_LEN,
12184				   vpd_extended_data + BNX2X_VPD_LEN);
12185		if (cnt < (block_end - BNX2X_VPD_LEN))
12186			goto out_not_found;
12187		vpd_data = vpd_extended_data;
12188	} else
12189		vpd_data = vpd_start;
12190
12191	/* now vpd_data holds full vpd content in both cases */
12192
12193	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12194				   PCI_VPD_RO_KEYWORD_MFR_ID);
12195	if (rodi < 0)
12196		goto out_not_found;
12197
12198	len = pci_vpd_info_field_size(&vpd_data[rodi]);
12199
12200	if (len != VENDOR_ID_LEN)
12201		goto out_not_found;
12202
12203	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12204
12205	/* vendor specific info */
12206	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12207	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12208	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12209	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12210
12211		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12212						PCI_VPD_RO_KEYWORD_VENDOR0);
12213		if (rodi >= 0) {
12214			len = pci_vpd_info_field_size(&vpd_data[rodi]);
12215
12216			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12217
12218			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12219				memcpy(bp->fw_ver, &vpd_data[rodi], len);
12220				bp->fw_ver[len] = ' ';
12221			}
12222		}
12223		kfree(vpd_extended_data);
12224		return;
12225	}
12226out_not_found:
12227	kfree(vpd_extended_data);
12228	return;
12229}
12230
12231static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12232{
12233	u32 flags = 0;
12234
12235	if (CHIP_REV_IS_FPGA(bp))
12236		SET_FLAGS(flags, MODE_FPGA);
12237	else if (CHIP_REV_IS_EMUL(bp))
12238		SET_FLAGS(flags, MODE_EMUL);
12239	else
12240		SET_FLAGS(flags, MODE_ASIC);
12241
12242	if (CHIP_MODE_IS_4_PORT(bp))
12243		SET_FLAGS(flags, MODE_PORT4);
12244	else
12245		SET_FLAGS(flags, MODE_PORT2);
12246
12247	if (CHIP_IS_E2(bp))
12248		SET_FLAGS(flags, MODE_E2);
12249	else if (CHIP_IS_E3(bp)) {
12250		SET_FLAGS(flags, MODE_E3);
12251		if (CHIP_REV(bp) == CHIP_REV_Ax)
12252			SET_FLAGS(flags, MODE_E3_A0);
12253		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12254			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12255	}
12256
12257	if (IS_MF(bp)) {
12258		SET_FLAGS(flags, MODE_MF);
12259		switch (bp->mf_mode) {
12260		case MULTI_FUNCTION_SD:
12261			SET_FLAGS(flags, MODE_MF_SD);
12262			break;
12263		case MULTI_FUNCTION_SI:
12264			SET_FLAGS(flags, MODE_MF_SI);
12265			break;
12266		case MULTI_FUNCTION_AFEX:
12267			SET_FLAGS(flags, MODE_MF_AFEX);
12268			break;
12269		}
12270	} else
12271		SET_FLAGS(flags, MODE_SF);
12272
12273#if defined(__LITTLE_ENDIAN)
12274	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12275#else /*(__BIG_ENDIAN)*/
12276	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12277#endif
12278	INIT_MODE_FLAGS(bp) = flags;
12279}
12280
12281static int bnx2x_init_bp(struct bnx2x *bp)
12282{
12283	int func;
12284	int rc;
12285
12286	mutex_init(&bp->port.phy_mutex);
12287	mutex_init(&bp->fw_mb_mutex);
12288	mutex_init(&bp->drv_info_mutex);
12289	sema_init(&bp->stats_lock, 1);
12290	bp->drv_info_mng_owner = false;
12291	INIT_LIST_HEAD(&bp->vlan_reg);
12292
12293	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12294	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12295	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12296	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12297	if (IS_PF(bp)) {
12298		rc = bnx2x_get_hwinfo(bp);
12299		if (rc)
12300			return rc;
12301	} else {
12302		eth_zero_addr(bp->dev->dev_addr);
12303	}
12304
12305	bnx2x_set_modes_bitmap(bp);
12306
12307	rc = bnx2x_alloc_mem_bp(bp);
12308	if (rc)
12309		return rc;
12310
12311	bnx2x_read_fwinfo(bp);
12312
12313	func = BP_FUNC(bp);
12314
12315	/* need to reset chip if undi was active */
12316	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12317		/* init fw_seq */
12318		bp->fw_seq =
12319			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12320							DRV_MSG_SEQ_NUMBER_MASK;
12321		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12322
12323		rc = bnx2x_prev_unload(bp);
12324		if (rc) {
12325			bnx2x_free_mem_bp(bp);
12326			return rc;
12327		}
12328	}
12329
12330	if (CHIP_REV_IS_FPGA(bp))
12331		dev_err(&bp->pdev->dev, "FPGA detected\n");
12332
12333	if (BP_NOMCP(bp) && (func == 0))
12334		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12335
12336	bp->disable_tpa = disable_tpa;
12337	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12338	/* Reduce memory usage in kdump environment by disabling TPA */
12339	bp->disable_tpa |= is_kdump_kernel();
12340
12341	/* Set TPA flags */
12342	if (bp->disable_tpa) {
12343		bp->dev->hw_features &= ~NETIF_F_LRO;
12344		bp->dev->features &= ~NETIF_F_LRO;
12345	}
12346
12347	if (CHIP_IS_E1(bp))
12348		bp->dropless_fc = 0;
12349	else
12350		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12351
12352	bp->mrrs = mrrs;
12353
12354	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12355	if (IS_VF(bp))
12356		bp->rx_ring_size = MAX_RX_AVAIL;
12357
12358	/* make sure that the numbers are in the right granularity */
12359	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12360	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12361
12362	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12363
12364	init_timer(&bp->timer);
12365	bp->timer.expires = jiffies + bp->current_interval;
12366	bp->timer.data = (unsigned long) bp;
12367	bp->timer.function = bnx2x_timer;
12368
12369	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12370	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12371	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12372	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
12373		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12374		bnx2x_dcbx_init_params(bp);
12375	} else {
12376		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12377	}
12378
12379	if (CHIP_IS_E1x(bp))
12380		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12381	else
12382		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12383
12384	/* multiple tx priority */
12385	if (IS_VF(bp))
12386		bp->max_cos = 1;
12387	else if (CHIP_IS_E1x(bp))
12388		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12389	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12390		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12391	else if (CHIP_IS_E3B0(bp))
12392		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12393	else
12394		BNX2X_ERR("unknown chip %x revision %x\n",
12395			  CHIP_NUM(bp), CHIP_REV(bp));
12396	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12397
12398	/* We need at least one default status block for slow-path events,
12399	 * second status block for the L2 queue, and a third status block for
12400	 * CNIC if supported.
12401	 */
12402	if (IS_VF(bp))
12403		bp->min_msix_vec_cnt = 1;
12404	else if (CNIC_SUPPORT(bp))
12405		bp->min_msix_vec_cnt = 3;
12406	else /* PF w/o cnic */
12407		bp->min_msix_vec_cnt = 2;
12408	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12409
12410	bp->dump_preset_idx = 1;
12411
12412	if (CHIP_IS_E3B0(bp))
12413		bp->flags |= PTP_SUPPORTED;
12414
12415	return rc;
12416}
12417
12418/****************************************************************************
12419* General service functions
12420****************************************************************************/
12421
12422/*
12423 * net_device service functions
12424 */
12425
12426/* called with rtnl_lock */
12427static int bnx2x_open(struct net_device *dev)
12428{
12429	struct bnx2x *bp = netdev_priv(dev);
12430	int rc;
12431
12432	bp->stats_init = true;
12433
12434	netif_carrier_off(dev);
12435
12436	bnx2x_set_power_state(bp, PCI_D0);
12437
12438	/* If parity had happen during the unload, then attentions
12439	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12440	 * want the first function loaded on the current engine to
12441	 * complete the recovery.
12442	 * Parity recovery is only relevant for PF driver.
12443	 */
12444	if (IS_PF(bp)) {
12445		int other_engine = BP_PATH(bp) ? 0 : 1;
12446		bool other_load_status, load_status;
12447		bool global = false;
12448
12449		other_load_status = bnx2x_get_load_status(bp, other_engine);
12450		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12451		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12452		    bnx2x_chk_parity_attn(bp, &global, true)) {
12453			do {
12454				/* If there are attentions and they are in a
12455				 * global blocks, set the GLOBAL_RESET bit
12456				 * regardless whether it will be this function
12457				 * that will complete the recovery or not.
12458				 */
12459				if (global)
12460					bnx2x_set_reset_global(bp);
12461
12462				/* Only the first function on the current
12463				 * engine should try to recover in open. In case
12464				 * of attentions in global blocks only the first
12465				 * in the chip should try to recover.
12466				 */
12467				if ((!load_status &&
12468				     (!global || !other_load_status)) &&
12469				      bnx2x_trylock_leader_lock(bp) &&
12470				      !bnx2x_leader_reset(bp)) {
12471					netdev_info(bp->dev,
12472						    "Recovered in open\n");
12473					break;
12474				}
12475
12476				/* recovery has failed... */
12477				bnx2x_set_power_state(bp, PCI_D3hot);
12478				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12479
12480				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12481					  "If you still see this message after a few retries then power cycle is required.\n");
12482
12483				return -EAGAIN;
12484			} while (0);
12485		}
12486	}
12487
12488	bp->recovery_state = BNX2X_RECOVERY_DONE;
12489	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12490	if (rc)
12491		return rc;
12492
12493#ifdef CONFIG_BNX2X_VXLAN
12494	if (IS_PF(bp))
12495		vxlan_get_rx_port(dev);
12496#endif
12497
12498	return 0;
12499}
12500
12501/* called with rtnl_lock */
12502static int bnx2x_close(struct net_device *dev)
12503{
12504	struct bnx2x *bp = netdev_priv(dev);
12505
12506	/* Unload the driver, release IRQs */
12507	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12508
12509	return 0;
12510}
12511
12512static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12513				      struct bnx2x_mcast_ramrod_params *p)
12514{
12515	int mc_count = netdev_mc_count(bp->dev);
12516	struct bnx2x_mcast_list_elem *mc_mac =
12517		kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12518	struct netdev_hw_addr *ha;
12519
12520	if (!mc_mac)
12521		return -ENOMEM;
12522
12523	INIT_LIST_HEAD(&p->mcast_list);
12524
12525	netdev_for_each_mc_addr(ha, bp->dev) {
12526		mc_mac->mac = bnx2x_mc_addr(ha);
12527		list_add_tail(&mc_mac->link, &p->mcast_list);
12528		mc_mac++;
12529	}
12530
12531	p->mcast_list_len = mc_count;
12532
12533	return 0;
12534}
12535
12536static void bnx2x_free_mcast_macs_list(
12537	struct bnx2x_mcast_ramrod_params *p)
12538{
12539	struct bnx2x_mcast_list_elem *mc_mac =
12540		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12541				 link);
12542
12543	WARN_ON(!mc_mac);
12544	kfree(mc_mac);
12545}
12546
12547/**
12548 * bnx2x_set_uc_list - configure a new unicast MACs list.
12549 *
12550 * @bp: driver handle
12551 *
12552 * We will use zero (0) as a MAC type for these MACs.
12553 */
12554static int bnx2x_set_uc_list(struct bnx2x *bp)
12555{
12556	int rc;
12557	struct net_device *dev = bp->dev;
12558	struct netdev_hw_addr *ha;
12559	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12560	unsigned long ramrod_flags = 0;
12561
12562	/* First schedule a cleanup up of old configuration */
12563	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12564	if (rc < 0) {
12565		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12566		return rc;
12567	}
12568
12569	netdev_for_each_uc_addr(ha, dev) {
12570		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12571				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12572		if (rc == -EEXIST) {
12573			DP(BNX2X_MSG_SP,
12574			   "Failed to schedule ADD operations: %d\n", rc);
12575			/* do not treat adding same MAC as error */
12576			rc = 0;
12577
12578		} else if (rc < 0) {
12579
12580			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12581				  rc);
12582			return rc;
12583		}
12584	}
12585
12586	/* Execute the pending commands */
12587	__set_bit(RAMROD_CONT, &ramrod_flags);
12588	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12589				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12590}
12591
12592static int bnx2x_set_mc_list(struct bnx2x *bp)
12593{
12594	struct net_device *dev = bp->dev;
12595	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12596	int rc = 0;
12597
12598	rparam.mcast_obj = &bp->mcast_obj;
12599
12600	/* first, clear all configured multicast MACs */
12601	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12602	if (rc < 0) {
12603		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12604		return rc;
12605	}
12606
12607	/* then, configure a new MACs list */
12608	if (netdev_mc_count(dev)) {
12609		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12610		if (rc) {
12611			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12612				  rc);
12613			return rc;
12614		}
12615
12616		/* Now add the new MACs */
12617		rc = bnx2x_config_mcast(bp, &rparam,
12618					BNX2X_MCAST_CMD_ADD);
12619		if (rc < 0)
12620			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12621				  rc);
12622
12623		bnx2x_free_mcast_macs_list(&rparam);
12624	}
12625
12626	return rc;
12627}
12628
12629/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12630static void bnx2x_set_rx_mode(struct net_device *dev)
12631{
12632	struct bnx2x *bp = netdev_priv(dev);
12633
12634	if (bp->state != BNX2X_STATE_OPEN) {
12635		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12636		return;
12637	} else {
12638		/* Schedule an SP task to handle rest of change */
12639		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12640				       NETIF_MSG_IFUP);
12641	}
12642}
12643
12644void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12645{
12646	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12647
12648	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12649
12650	netif_addr_lock_bh(bp->dev);
12651
12652	if (bp->dev->flags & IFF_PROMISC) {
12653		rx_mode = BNX2X_RX_MODE_PROMISC;
12654	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12655		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12656		    CHIP_IS_E1(bp))) {
12657		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12658	} else {
12659		if (IS_PF(bp)) {
12660			/* some multicasts */
12661			if (bnx2x_set_mc_list(bp) < 0)
12662				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12663
12664			/* release bh lock, as bnx2x_set_uc_list might sleep */
12665			netif_addr_unlock_bh(bp->dev);
12666			if (bnx2x_set_uc_list(bp) < 0)
12667				rx_mode = BNX2X_RX_MODE_PROMISC;
12668			netif_addr_lock_bh(bp->dev);
12669		} else {
12670			/* configuring mcast to a vf involves sleeping (when we
12671			 * wait for the pf's response).
12672			 */
12673			bnx2x_schedule_sp_rtnl(bp,
12674					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12675		}
12676	}
12677
12678	bp->rx_mode = rx_mode;
12679	/* handle ISCSI SD mode */
12680	if (IS_MF_ISCSI_ONLY(bp))
12681		bp->rx_mode = BNX2X_RX_MODE_NONE;
12682
12683	/* Schedule the rx_mode command */
12684	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12685		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12686		netif_addr_unlock_bh(bp->dev);
12687		return;
12688	}
12689
12690	if (IS_PF(bp)) {
12691		bnx2x_set_storm_rx_mode(bp);
12692		netif_addr_unlock_bh(bp->dev);
12693	} else {
12694		/* VF will need to request the PF to make this change, and so
12695		 * the VF needs to release the bottom-half lock prior to the
12696		 * request (as it will likely require sleep on the VF side)
12697		 */
12698		netif_addr_unlock_bh(bp->dev);
12699		bnx2x_vfpf_storm_rx_mode(bp);
12700	}
12701}
12702
12703/* called with rtnl_lock */
12704static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12705			   int devad, u16 addr)
12706{
12707	struct bnx2x *bp = netdev_priv(netdev);
12708	u16 value;
12709	int rc;
12710
12711	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12712	   prtad, devad, addr);
12713
12714	/* The HW expects different devad if CL22 is used */
12715	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12716
12717	bnx2x_acquire_phy_lock(bp);
12718	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12719	bnx2x_release_phy_lock(bp);
12720	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12721
12722	if (!rc)
12723		rc = value;
12724	return rc;
12725}
12726
12727/* called with rtnl_lock */
12728static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12729			    u16 addr, u16 value)
12730{
12731	struct bnx2x *bp = netdev_priv(netdev);
12732	int rc;
12733
12734	DP(NETIF_MSG_LINK,
12735	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12736	   prtad, devad, addr, value);
12737
12738	/* The HW expects different devad if CL22 is used */
12739	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12740
12741	bnx2x_acquire_phy_lock(bp);
12742	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12743	bnx2x_release_phy_lock(bp);
12744	return rc;
12745}
12746
12747/* called with rtnl_lock */
12748static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12749{
12750	struct bnx2x *bp = netdev_priv(dev);
12751	struct mii_ioctl_data *mdio = if_mii(ifr);
12752
12753	if (!netif_running(dev))
12754		return -EAGAIN;
12755
12756	switch (cmd) {
12757	case SIOCSHWTSTAMP:
12758		return bnx2x_hwtstamp_ioctl(bp, ifr);
12759	default:
12760		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12761		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12762		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12763	}
12764}
12765
12766#ifdef CONFIG_NET_POLL_CONTROLLER
12767static void poll_bnx2x(struct net_device *dev)
12768{
12769	struct bnx2x *bp = netdev_priv(dev);
12770	int i;
12771
12772	for_each_eth_queue(bp, i) {
12773		struct bnx2x_fastpath *fp = &bp->fp[i];
12774		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12775	}
12776}
12777#endif
12778
12779static int bnx2x_validate_addr(struct net_device *dev)
12780{
12781	struct bnx2x *bp = netdev_priv(dev);
12782
12783	/* query the bulletin board for mac address configured by the PF */
12784	if (IS_VF(bp))
12785		bnx2x_sample_bulletin(bp);
12786
12787	if (!is_valid_ether_addr(dev->dev_addr)) {
12788		BNX2X_ERR("Non-valid Ethernet address\n");
12789		return -EADDRNOTAVAIL;
12790	}
12791	return 0;
12792}
12793
12794static int bnx2x_get_phys_port_id(struct net_device *netdev,
12795				  struct netdev_phys_item_id *ppid)
12796{
12797	struct bnx2x *bp = netdev_priv(netdev);
12798
12799	if (!(bp->flags & HAS_PHYS_PORT_ID))
12800		return -EOPNOTSUPP;
12801
12802	ppid->id_len = sizeof(bp->phys_port_id);
12803	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12804
12805	return 0;
12806}
12807
12808static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12809					      struct net_device *dev,
12810					      netdev_features_t features)
12811{
12812	features = vlan_features_check(skb, features);
12813	return vxlan_features_check(skb, features);
12814}
12815
12816static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12817{
12818	int rc;
12819
12820	if (IS_PF(bp)) {
12821		unsigned long ramrod_flags = 0;
12822
12823		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12824		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12825					add, &ramrod_flags);
12826	} else {
12827		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12828	}
12829
12830	return rc;
12831}
12832
12833int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12834{
12835	struct bnx2x_vlan_entry *vlan;
12836	int rc = 0;
12837
12838	if (!bp->vlan_cnt) {
12839		DP(NETIF_MSG_IFUP, "No need to re-configure vlan filters\n");
12840		return 0;
12841	}
12842
12843	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12844		/* Prepare for cleanup in case of errors */
12845		if (rc) {
12846			vlan->hw = false;
12847			continue;
12848		}
12849
12850		if (!vlan->hw)
12851			continue;
12852
12853		DP(NETIF_MSG_IFUP, "Re-configuring vlan 0x%04x\n", vlan->vid);
12854
12855		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12856		if (rc) {
12857			BNX2X_ERR("Unable to configure VLAN %d\n", vlan->vid);
12858			vlan->hw = false;
12859			rc = -EINVAL;
12860			continue;
12861		}
12862	}
12863
12864	return rc;
12865}
12866
12867static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12868{
12869	struct bnx2x *bp = netdev_priv(dev);
12870	struct bnx2x_vlan_entry *vlan;
12871	bool hw = false;
12872	int rc = 0;
12873
12874	if (!netif_running(bp->dev)) {
12875		DP(NETIF_MSG_IFUP,
12876		   "Ignoring VLAN configuration the interface is down\n");
12877		return -EFAULT;
12878	}
12879
12880	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12881
12882	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12883	if (!vlan)
12884		return -ENOMEM;
12885
12886	bp->vlan_cnt++;
12887	if (bp->vlan_cnt > bp->vlan_credit && !bp->accept_any_vlan) {
12888		DP(NETIF_MSG_IFUP, "Accept all VLAN raised\n");
12889		bp->accept_any_vlan = true;
12890		if (IS_PF(bp))
12891			bnx2x_set_rx_mode_inner(bp);
12892		else
12893			bnx2x_vfpf_storm_rx_mode(bp);
12894	} else if (bp->vlan_cnt <= bp->vlan_credit) {
12895		rc = __bnx2x_vlan_configure_vid(bp, vid, true);
12896		hw = true;
12897	}
12898
12899	vlan->vid = vid;
12900	vlan->hw = hw;
12901
12902	if (!rc) {
12903		list_add(&vlan->link, &bp->vlan_reg);
12904	} else {
12905		bp->vlan_cnt--;
12906		kfree(vlan);
12907	}
12908
12909	DP(NETIF_MSG_IFUP, "Adding VLAN result %d\n", rc);
12910
12911	return rc;
12912}
12913
12914static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12915{
12916	struct bnx2x *bp = netdev_priv(dev);
12917	struct bnx2x_vlan_entry *vlan;
12918	int rc = 0;
12919
12920	if (!netif_running(bp->dev)) {
12921		DP(NETIF_MSG_IFUP,
12922		   "Ignoring VLAN configuration the interface is down\n");
12923		return -EFAULT;
12924	}
12925
12926	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12927
12928	if (!bp->vlan_cnt) {
12929		BNX2X_ERR("Unable to kill VLAN %d\n", vid);
12930		return -EINVAL;
12931	}
12932
12933	list_for_each_entry(vlan, &bp->vlan_reg, link)
12934		if (vlan->vid == vid)
12935			break;
12936
12937	if (vlan->vid != vid) {
12938		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12939		return -EINVAL;
12940	}
12941
12942	if (vlan->hw)
12943		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12944
12945	list_del(&vlan->link);
12946	kfree(vlan);
12947
12948	bp->vlan_cnt--;
12949
12950	if (bp->vlan_cnt <= bp->vlan_credit && bp->accept_any_vlan) {
12951		/* Configure all non-configured entries */
12952		list_for_each_entry(vlan, &bp->vlan_reg, link) {
12953			if (vlan->hw)
12954				continue;
12955
12956			rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12957			if (rc) {
12958				BNX2X_ERR("Unable to config VLAN %d\n",
12959					  vlan->vid);
12960				continue;
12961			}
12962			DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n",
12963			   vlan->vid);
12964			vlan->hw = true;
12965		}
12966		DP(NETIF_MSG_IFUP, "Accept all VLAN Removed\n");
12967		bp->accept_any_vlan = false;
12968		if (IS_PF(bp))
12969			bnx2x_set_rx_mode_inner(bp);
12970		else
12971			bnx2x_vfpf_storm_rx_mode(bp);
12972	}
12973
12974	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
12975
12976	return rc;
12977}
12978
12979static const struct net_device_ops bnx2x_netdev_ops = {
12980	.ndo_open		= bnx2x_open,
12981	.ndo_stop		= bnx2x_close,
12982	.ndo_start_xmit		= bnx2x_start_xmit,
12983	.ndo_select_queue	= bnx2x_select_queue,
12984	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12985	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12986	.ndo_validate_addr	= bnx2x_validate_addr,
12987	.ndo_do_ioctl		= bnx2x_ioctl,
12988	.ndo_change_mtu		= bnx2x_change_mtu,
12989	.ndo_fix_features	= bnx2x_fix_features,
12990	.ndo_set_features	= bnx2x_set_features,
12991	.ndo_tx_timeout		= bnx2x_tx_timeout,
12992	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
12993	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
12994#ifdef CONFIG_NET_POLL_CONTROLLER
12995	.ndo_poll_controller	= poll_bnx2x,
12996#endif
12997	.ndo_setup_tc		= bnx2x_setup_tc,
12998#ifdef CONFIG_BNX2X_SRIOV
12999	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13000	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13001	.ndo_get_vf_config	= bnx2x_get_vf_config,
13002#endif
13003#ifdef NETDEV_FCOE_WWNN
13004	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13005#endif
13006
13007#ifdef CONFIG_NET_RX_BUSY_POLL
13008	.ndo_busy_poll		= bnx2x_low_latency_recv,
13009#endif
13010	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13011	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13012	.ndo_features_check	= bnx2x_features_check,
13013#ifdef CONFIG_BNX2X_VXLAN
13014	.ndo_add_vxlan_port	= bnx2x_add_vxlan_port,
13015	.ndo_del_vxlan_port	= bnx2x_del_vxlan_port,
13016#endif
13017};
13018
13019static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13020{
13021	struct device *dev = &bp->pdev->dev;
13022
13023	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13024	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13025		dev_err(dev, "System does not support DMA, aborting\n");
13026		return -EIO;
13027	}
13028
13029	return 0;
13030}
13031
13032static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13033{
13034	if (bp->flags & AER_ENABLED) {
13035		pci_disable_pcie_error_reporting(bp->pdev);
13036		bp->flags &= ~AER_ENABLED;
13037	}
13038}
13039
13040static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13041			  struct net_device *dev, unsigned long board_type)
13042{
13043	int rc;
13044	u32 pci_cfg_dword;
13045	bool chip_is_e1x = (board_type == BCM57710 ||
13046			    board_type == BCM57711 ||
13047			    board_type == BCM57711E);
13048
13049	SET_NETDEV_DEV(dev, &pdev->dev);
13050
13051	bp->dev = dev;
13052	bp->pdev = pdev;
13053
13054	rc = pci_enable_device(pdev);
13055	if (rc) {
13056		dev_err(&bp->pdev->dev,
13057			"Cannot enable PCI device, aborting\n");
13058		goto err_out;
13059	}
13060
13061	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13062		dev_err(&bp->pdev->dev,
13063			"Cannot find PCI device base address, aborting\n");
13064		rc = -ENODEV;
13065		goto err_out_disable;
13066	}
13067
13068	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13069		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13070		rc = -ENODEV;
13071		goto err_out_disable;
13072	}
13073
13074	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13075	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13076	    PCICFG_REVESION_ID_ERROR_VAL) {
13077		pr_err("PCI device error, probably due to fan failure, aborting\n");
13078		rc = -ENODEV;
13079		goto err_out_disable;
13080	}
13081
13082	if (atomic_read(&pdev->enable_cnt) == 1) {
13083		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13084		if (rc) {
13085			dev_err(&bp->pdev->dev,
13086				"Cannot obtain PCI resources, aborting\n");
13087			goto err_out_disable;
13088		}
13089
13090		pci_set_master(pdev);
13091		pci_save_state(pdev);
13092	}
13093
13094	if (IS_PF(bp)) {
13095		if (!pdev->pm_cap) {
13096			dev_err(&bp->pdev->dev,
13097				"Cannot find power management capability, aborting\n");
13098			rc = -EIO;
13099			goto err_out_release;
13100		}
13101	}
13102
13103	if (!pci_is_pcie(pdev)) {
13104		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13105		rc = -EIO;
13106		goto err_out_release;
13107	}
13108
13109	rc = bnx2x_set_coherency_mask(bp);
13110	if (rc)
13111		goto err_out_release;
13112
13113	dev->mem_start = pci_resource_start(pdev, 0);
13114	dev->base_addr = dev->mem_start;
13115	dev->mem_end = pci_resource_end(pdev, 0);
13116
13117	dev->irq = pdev->irq;
13118
13119	bp->regview = pci_ioremap_bar(pdev, 0);
13120	if (!bp->regview) {
13121		dev_err(&bp->pdev->dev,
13122			"Cannot map register space, aborting\n");
13123		rc = -ENOMEM;
13124		goto err_out_release;
13125	}
13126
13127	/* In E1/E1H use pci device function given by kernel.
13128	 * In E2/E3 read physical function from ME register since these chips
13129	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13130	 * (depending on hypervisor).
13131	 */
13132	if (chip_is_e1x) {
13133		bp->pf_num = PCI_FUNC(pdev->devfn);
13134	} else {
13135		/* chip is E2/3*/
13136		pci_read_config_dword(bp->pdev,
13137				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13138		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13139				  ME_REG_ABS_PF_NUM_SHIFT);
13140	}
13141	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13142
13143	/* clean indirect addresses */
13144	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13145			       PCICFG_VENDOR_ID_OFFSET);
13146
13147	/* Set PCIe reset type to fundamental for EEH recovery */
13148	pdev->needs_freset = 1;
13149
13150	/* AER (Advanced Error reporting) configuration */
13151	rc = pci_enable_pcie_error_reporting(pdev);
13152	if (!rc)
13153		bp->flags |= AER_ENABLED;
13154	else
13155		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13156
13157	/*
13158	 * Clean the following indirect addresses for all functions since it
13159	 * is not used by the driver.
13160	 */
13161	if (IS_PF(bp)) {
13162		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13163		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13164		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13165		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13166
13167		if (chip_is_e1x) {
13168			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13169			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13170			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13171			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13172		}
13173
13174		/* Enable internal target-read (in case we are probed after PF
13175		 * FLR). Must be done prior to any BAR read access. Only for
13176		 * 57712 and up
13177		 */
13178		if (!chip_is_e1x)
13179			REG_WR(bp,
13180			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13181	}
13182
13183	dev->watchdog_timeo = TX_TIMEOUT;
13184
13185	dev->netdev_ops = &bnx2x_netdev_ops;
13186	bnx2x_set_ethtool_ops(bp, dev);
13187
13188	dev->priv_flags |= IFF_UNICAST_FLT;
13189
13190	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13191		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13192		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
13193		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13194	if (!chip_is_e1x) {
13195		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
13196				    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
13197		dev->hw_enc_features =
13198			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13199			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13200			NETIF_F_GSO_IPIP |
13201			NETIF_F_GSO_SIT |
13202			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
13203	}
13204
13205	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13206		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13207
13208	/* VF with OLD Hypervisor or old PF do not support filtering */
13209	if (IS_PF(bp)) {
13210		if (chip_is_e1x)
13211			bp->accept_any_vlan = true;
13212		else
13213			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13214#ifdef CONFIG_BNX2X_SRIOV
13215	} else if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13216		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13217#endif
13218	}
13219
13220	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13221	dev->features |= NETIF_F_HIGHDMA;
13222
13223	/* Add Loopback capability to the device */
13224	dev->hw_features |= NETIF_F_LOOPBACK;
13225
13226#ifdef BCM_DCBNL
13227	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13228#endif
13229
13230	/* get_port_hwinfo() will set prtad and mmds properly */
13231	bp->mdio.prtad = MDIO_PRTAD_NONE;
13232	bp->mdio.mmds = 0;
13233	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13234	bp->mdio.dev = dev;
13235	bp->mdio.mdio_read = bnx2x_mdio_read;
13236	bp->mdio.mdio_write = bnx2x_mdio_write;
13237
13238	return 0;
13239
13240err_out_release:
13241	if (atomic_read(&pdev->enable_cnt) == 1)
13242		pci_release_regions(pdev);
13243
13244err_out_disable:
13245	pci_disable_device(pdev);
13246
13247err_out:
13248	return rc;
13249}
13250
13251static int bnx2x_check_firmware(struct bnx2x *bp)
13252{
13253	const struct firmware *firmware = bp->firmware;
13254	struct bnx2x_fw_file_hdr *fw_hdr;
13255	struct bnx2x_fw_file_section *sections;
13256	u32 offset, len, num_ops;
13257	__be16 *ops_offsets;
13258	int i;
13259	const u8 *fw_ver;
13260
13261	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13262		BNX2X_ERR("Wrong FW size\n");
13263		return -EINVAL;
13264	}
13265
13266	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13267	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13268
13269	/* Make sure none of the offsets and sizes make us read beyond
13270	 * the end of the firmware data */
13271	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13272		offset = be32_to_cpu(sections[i].offset);
13273		len = be32_to_cpu(sections[i].len);
13274		if (offset + len > firmware->size) {
13275			BNX2X_ERR("Section %d length is out of bounds\n", i);
13276			return -EINVAL;
13277		}
13278	}
13279
13280	/* Likewise for the init_ops offsets */
13281	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13282	ops_offsets = (__force __be16 *)(firmware->data + offset);
13283	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13284
13285	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13286		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13287			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13288			return -EINVAL;
13289		}
13290	}
13291
13292	/* Check FW version */
13293	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13294	fw_ver = firmware->data + offset;
13295	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13296	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13297	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13298	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13299		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13300		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13301		       BCM_5710_FW_MAJOR_VERSION,
13302		       BCM_5710_FW_MINOR_VERSION,
13303		       BCM_5710_FW_REVISION_VERSION,
13304		       BCM_5710_FW_ENGINEERING_VERSION);
13305		return -EINVAL;
13306	}
13307
13308	return 0;
13309}
13310
13311static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13312{
13313	const __be32 *source = (const __be32 *)_source;
13314	u32 *target = (u32 *)_target;
13315	u32 i;
13316
13317	for (i = 0; i < n/4; i++)
13318		target[i] = be32_to_cpu(source[i]);
13319}
13320
13321/*
13322   Ops array is stored in the following format:
13323   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13324 */
13325static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13326{
13327	const __be32 *source = (const __be32 *)_source;
13328	struct raw_op *target = (struct raw_op *)_target;
13329	u32 i, j, tmp;
13330
13331	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13332		tmp = be32_to_cpu(source[j]);
13333		target[i].op = (tmp >> 24) & 0xff;
13334		target[i].offset = tmp & 0xffffff;
13335		target[i].raw_data = be32_to_cpu(source[j + 1]);
13336	}
13337}
13338
13339/* IRO array is stored in the following format:
13340 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13341 */
13342static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13343{
13344	const __be32 *source = (const __be32 *)_source;
13345	struct iro *target = (struct iro *)_target;
13346	u32 i, j, tmp;
13347
13348	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13349		target[i].base = be32_to_cpu(source[j]);
13350		j++;
13351		tmp = be32_to_cpu(source[j]);
13352		target[i].m1 = (tmp >> 16) & 0xffff;
13353		target[i].m2 = tmp & 0xffff;
13354		j++;
13355		tmp = be32_to_cpu(source[j]);
13356		target[i].m3 = (tmp >> 16) & 0xffff;
13357		target[i].size = tmp & 0xffff;
13358		j++;
13359	}
13360}
13361
13362static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13363{
13364	const __be16 *source = (const __be16 *)_source;
13365	u16 *target = (u16 *)_target;
13366	u32 i;
13367
13368	for (i = 0; i < n/2; i++)
13369		target[i] = be16_to_cpu(source[i]);
13370}
13371
13372#define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13373do {									\
13374	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13375	bp->arr = kmalloc(len, GFP_KERNEL);				\
13376	if (!bp->arr)							\
13377		goto lbl;						\
13378	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13379	     (u8 *)bp->arr, len);					\
13380} while (0)
13381
13382static int bnx2x_init_firmware(struct bnx2x *bp)
13383{
13384	const char *fw_file_name;
13385	struct bnx2x_fw_file_hdr *fw_hdr;
13386	int rc;
13387
13388	if (bp->firmware)
13389		return 0;
13390
13391	if (CHIP_IS_E1(bp))
13392		fw_file_name = FW_FILE_NAME_E1;
13393	else if (CHIP_IS_E1H(bp))
13394		fw_file_name = FW_FILE_NAME_E1H;
13395	else if (!CHIP_IS_E1x(bp))
13396		fw_file_name = FW_FILE_NAME_E2;
13397	else {
13398		BNX2X_ERR("Unsupported chip revision\n");
13399		return -EINVAL;
13400	}
13401	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13402
13403	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13404	if (rc) {
13405		BNX2X_ERR("Can't load firmware file %s\n",
13406			  fw_file_name);
13407		goto request_firmware_exit;
13408	}
13409
13410	rc = bnx2x_check_firmware(bp);
13411	if (rc) {
13412		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13413		goto request_firmware_exit;
13414	}
13415
13416	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13417
13418	/* Initialize the pointers to the init arrays */
13419	/* Blob */
13420	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13421
13422	/* Opcodes */
13423	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13424
13425	/* Offsets */
13426	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13427			    be16_to_cpu_n);
13428
13429	/* STORMs firmware */
13430	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13431			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13432	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13433			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13434	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13435			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13436	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13437			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13438	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13439			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13440	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13441			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13442	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13443			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13444	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13445			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13446	/* IRO */
13447	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13448
13449	return 0;
13450
13451iro_alloc_err:
13452	kfree(bp->init_ops_offsets);
13453init_offsets_alloc_err:
13454	kfree(bp->init_ops);
13455init_ops_alloc_err:
13456	kfree(bp->init_data);
13457request_firmware_exit:
13458	release_firmware(bp->firmware);
13459	bp->firmware = NULL;
13460
13461	return rc;
13462}
13463
13464static void bnx2x_release_firmware(struct bnx2x *bp)
13465{
13466	kfree(bp->init_ops_offsets);
13467	kfree(bp->init_ops);
13468	kfree(bp->init_data);
13469	release_firmware(bp->firmware);
13470	bp->firmware = NULL;
13471}
13472
13473static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13474	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13475	.init_hw_cmn      = bnx2x_init_hw_common,
13476	.init_hw_port     = bnx2x_init_hw_port,
13477	.init_hw_func     = bnx2x_init_hw_func,
13478
13479	.reset_hw_cmn     = bnx2x_reset_common,
13480	.reset_hw_port    = bnx2x_reset_port,
13481	.reset_hw_func    = bnx2x_reset_func,
13482
13483	.gunzip_init      = bnx2x_gunzip_init,
13484	.gunzip_end       = bnx2x_gunzip_end,
13485
13486	.init_fw          = bnx2x_init_firmware,
13487	.release_fw       = bnx2x_release_firmware,
13488};
13489
13490void bnx2x__init_func_obj(struct bnx2x *bp)
13491{
13492	/* Prepare DMAE related driver resources */
13493	bnx2x_setup_dmae(bp);
13494
13495	bnx2x_init_func_obj(bp, &bp->func_obj,
13496			    bnx2x_sp(bp, func_rdata),
13497			    bnx2x_sp_mapping(bp, func_rdata),
13498			    bnx2x_sp(bp, func_afex_rdata),
13499			    bnx2x_sp_mapping(bp, func_afex_rdata),
13500			    &bnx2x_func_sp_drv);
13501}
13502
13503/* must be called after sriov-enable */
13504static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13505{
13506	int cid_count = BNX2X_L2_MAX_CID(bp);
13507
13508	if (IS_SRIOV(bp))
13509		cid_count += BNX2X_VF_CIDS;
13510
13511	if (CNIC_SUPPORT(bp))
13512		cid_count += CNIC_CID_MAX;
13513
13514	return roundup(cid_count, QM_CID_ROUND);
13515}
13516
13517/**
13518 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13519 *
13520 * @dev:	pci device
13521 *
13522 */
13523static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13524{
13525	int index;
13526	u16 control = 0;
13527
13528	/*
13529	 * If MSI-X is not supported - return number of SBs needed to support
13530	 * one fast path queue: one FP queue + SB for CNIC
13531	 */
13532	if (!pdev->msix_cap) {
13533		dev_info(&pdev->dev, "no msix capability found\n");
13534		return 1 + cnic_cnt;
13535	}
13536	dev_info(&pdev->dev, "msix capability found\n");
13537
13538	/*
13539	 * The value in the PCI configuration space is the index of the last
13540	 * entry, namely one less than the actual size of the table, which is
13541	 * exactly what we want to return from this function: number of all SBs
13542	 * without the default SB.
13543	 * For VFs there is no default SB, then we return (index+1).
13544	 */
13545	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13546
13547	index = control & PCI_MSIX_FLAGS_QSIZE;
13548
13549	return index;
13550}
13551
13552static int set_max_cos_est(int chip_id)
13553{
13554	switch (chip_id) {
13555	case BCM57710:
13556	case BCM57711:
13557	case BCM57711E:
13558		return BNX2X_MULTI_TX_COS_E1X;
13559	case BCM57712:
13560	case BCM57712_MF:
13561		return BNX2X_MULTI_TX_COS_E2_E3A0;
13562	case BCM57800:
13563	case BCM57800_MF:
13564	case BCM57810:
13565	case BCM57810_MF:
13566	case BCM57840_4_10:
13567	case BCM57840_2_20:
13568	case BCM57840_O:
13569	case BCM57840_MFO:
13570	case BCM57840_MF:
13571	case BCM57811:
13572	case BCM57811_MF:
13573		return BNX2X_MULTI_TX_COS_E3B0;
13574	case BCM57712_VF:
13575	case BCM57800_VF:
13576	case BCM57810_VF:
13577	case BCM57840_VF:
13578	case BCM57811_VF:
13579		return 1;
13580	default:
13581		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13582		return -ENODEV;
13583	}
13584}
13585
13586static int set_is_vf(int chip_id)
13587{
13588	switch (chip_id) {
13589	case BCM57712_VF:
13590	case BCM57800_VF:
13591	case BCM57810_VF:
13592	case BCM57840_VF:
13593	case BCM57811_VF:
13594		return true;
13595	default:
13596		return false;
13597	}
13598}
13599
13600/* nig_tsgen registers relative address */
13601#define tsgen_ctrl 0x0
13602#define tsgen_freecount 0x10
13603#define tsgen_synctime_t0 0x20
13604#define tsgen_offset_t0 0x28
13605#define tsgen_drift_t0 0x30
13606#define tsgen_synctime_t1 0x58
13607#define tsgen_offset_t1 0x60
13608#define tsgen_drift_t1 0x68
13609
13610/* FW workaround for setting drift */
13611static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13612					  int best_val, int best_period)
13613{
13614	struct bnx2x_func_state_params func_params = {NULL};
13615	struct bnx2x_func_set_timesync_params *set_timesync_params =
13616		&func_params.params.set_timesync;
13617
13618	/* Prepare parameters for function state transitions */
13619	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13620	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13621
13622	func_params.f_obj = &bp->func_obj;
13623	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13624
13625	/* Function parameters */
13626	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13627	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13628	set_timesync_params->add_sub_drift_adjust_value =
13629		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13630	set_timesync_params->drift_adjust_value = best_val;
13631	set_timesync_params->drift_adjust_period = best_period;
13632
13633	return bnx2x_func_state_change(bp, &func_params);
13634}
13635
13636static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13637{
13638	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13639	int rc;
13640	int drift_dir = 1;
13641	int val, period, period1, period2, dif, dif1, dif2;
13642	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13643
13644	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13645
13646	if (!netif_running(bp->dev)) {
13647		DP(BNX2X_MSG_PTP,
13648		   "PTP adjfreq called while the interface is down\n");
13649		return -EFAULT;
13650	}
13651
13652	if (ppb < 0) {
13653		ppb = -ppb;
13654		drift_dir = 0;
13655	}
13656
13657	if (ppb == 0) {
13658		best_val = 1;
13659		best_period = 0x1FFFFFF;
13660	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13661		best_val = 31;
13662		best_period = 1;
13663	} else {
13664		/* Changed not to allow val = 8, 16, 24 as these values
13665		 * are not supported in workaround.
13666		 */
13667		for (val = 0; val <= 31; val++) {
13668			if ((val & 0x7) == 0)
13669				continue;
13670			period1 = val * 1000000 / ppb;
13671			period2 = period1 + 1;
13672			if (period1 != 0)
13673				dif1 = ppb - (val * 1000000 / period1);
13674			else
13675				dif1 = BNX2X_MAX_PHC_DRIFT;
13676			if (dif1 < 0)
13677				dif1 = -dif1;
13678			dif2 = ppb - (val * 1000000 / period2);
13679			if (dif2 < 0)
13680				dif2 = -dif2;
13681			dif = (dif1 < dif2) ? dif1 : dif2;
13682			period = (dif1 < dif2) ? period1 : period2;
13683			if (dif < best_dif) {
13684				best_dif = dif;
13685				best_val = val;
13686				best_period = period;
13687			}
13688		}
13689	}
13690
13691	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13692					    best_period);
13693	if (rc) {
13694		BNX2X_ERR("Failed to set drift\n");
13695		return -EFAULT;
13696	}
13697
13698	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13699	   best_period);
13700
13701	return 0;
13702}
13703
13704static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13705{
13706	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13707
13708	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13709
13710	timecounter_adjtime(&bp->timecounter, delta);
13711
13712	return 0;
13713}
13714
13715static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13716{
13717	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13718	u64 ns;
13719
13720	ns = timecounter_read(&bp->timecounter);
13721
13722	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13723
13724	*ts = ns_to_timespec64(ns);
13725
13726	return 0;
13727}
13728
13729static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13730			     const struct timespec64 *ts)
13731{
13732	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13733	u64 ns;
13734
13735	ns = timespec64_to_ns(ts);
13736
13737	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13738
13739	/* Re-init the timecounter */
13740	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13741
13742	return 0;
13743}
13744
13745/* Enable (or disable) ancillary features of the phc subsystem */
13746static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13747			    struct ptp_clock_request *rq, int on)
13748{
13749	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13750
13751	BNX2X_ERR("PHC ancillary features are not supported\n");
13752	return -ENOTSUPP;
13753}
13754
13755static void bnx2x_register_phc(struct bnx2x *bp)
13756{
13757	/* Fill the ptp_clock_info struct and register PTP clock*/
13758	bp->ptp_clock_info.owner = THIS_MODULE;
13759	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13760	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13761	bp->ptp_clock_info.n_alarm = 0;
13762	bp->ptp_clock_info.n_ext_ts = 0;
13763	bp->ptp_clock_info.n_per_out = 0;
13764	bp->ptp_clock_info.pps = 0;
13765	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13766	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13767	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13768	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13769	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13770
13771	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13772	if (IS_ERR(bp->ptp_clock)) {
13773		bp->ptp_clock = NULL;
13774		BNX2X_ERR("PTP clock registeration failed\n");
13775	}
13776}
13777
13778static int bnx2x_init_one(struct pci_dev *pdev,
13779				    const struct pci_device_id *ent)
13780{
13781	struct net_device *dev = NULL;
13782	struct bnx2x *bp;
13783	enum pcie_link_width pcie_width;
13784	enum pci_bus_speed pcie_speed;
13785	int rc, max_non_def_sbs;
13786	int rx_count, tx_count, rss_count, doorbell_size;
13787	int max_cos_est;
13788	bool is_vf;
13789	int cnic_cnt;
13790
13791	/* Management FW 'remembers' living interfaces. Allow it some time
13792	 * to forget previously living interfaces, allowing a proper re-load.
13793	 */
13794	if (is_kdump_kernel()) {
13795		ktime_t now = ktime_get_boottime();
13796		ktime_t fw_ready_time = ktime_set(5, 0);
13797
13798		if (ktime_before(now, fw_ready_time))
13799			msleep(ktime_ms_delta(fw_ready_time, now));
13800	}
13801
13802	/* An estimated maximum supported CoS number according to the chip
13803	 * version.
13804	 * We will try to roughly estimate the maximum number of CoSes this chip
13805	 * may support in order to minimize the memory allocated for Tx
13806	 * netdev_queue's. This number will be accurately calculated during the
13807	 * initialization of bp->max_cos based on the chip versions AND chip
13808	 * revision in the bnx2x_init_bp().
13809	 */
13810	max_cos_est = set_max_cos_est(ent->driver_data);
13811	if (max_cos_est < 0)
13812		return max_cos_est;
13813	is_vf = set_is_vf(ent->driver_data);
13814	cnic_cnt = is_vf ? 0 : 1;
13815
13816	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13817
13818	/* add another SB for VF as it has no default SB */
13819	max_non_def_sbs += is_vf ? 1 : 0;
13820
13821	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13822	rss_count = max_non_def_sbs - cnic_cnt;
13823
13824	if (rss_count < 1)
13825		return -EINVAL;
13826
13827	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13828	rx_count = rss_count + cnic_cnt;
13829
13830	/* Maximum number of netdev Tx queues:
13831	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13832	 */
13833	tx_count = rss_count * max_cos_est + cnic_cnt;
13834
13835	/* dev zeroed in init_etherdev */
13836	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13837	if (!dev)
13838		return -ENOMEM;
13839
13840	bp = netdev_priv(dev);
13841
13842	bp->flags = 0;
13843	if (is_vf)
13844		bp->flags |= IS_VF_FLAG;
13845
13846	bp->igu_sb_cnt = max_non_def_sbs;
13847	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13848	bp->msg_enable = debug;
13849	bp->cnic_support = cnic_cnt;
13850	bp->cnic_probe = bnx2x_cnic_probe;
13851
13852	pci_set_drvdata(pdev, dev);
13853
13854	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13855	if (rc < 0) {
13856		free_netdev(dev);
13857		return rc;
13858	}
13859
13860	BNX2X_DEV_INFO("This is a %s function\n",
13861		       IS_PF(bp) ? "physical" : "virtual");
13862	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13863	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13864	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13865		       tx_count, rx_count);
13866
13867	rc = bnx2x_init_bp(bp);
13868	if (rc)
13869		goto init_one_exit;
13870
13871	/* Map doorbells here as we need the real value of bp->max_cos which
13872	 * is initialized in bnx2x_init_bp() to determine the number of
13873	 * l2 connections.
13874	 */
13875	if (IS_VF(bp)) {
13876		bp->doorbells = bnx2x_vf_doorbells(bp);
13877		rc = bnx2x_vf_pci_alloc(bp);
13878		if (rc)
13879			goto init_one_exit;
13880	} else {
13881		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13882		if (doorbell_size > pci_resource_len(pdev, 2)) {
13883			dev_err(&bp->pdev->dev,
13884				"Cannot map doorbells, bar size too small, aborting\n");
13885			rc = -ENOMEM;
13886			goto init_one_exit;
13887		}
13888		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13889						doorbell_size);
13890	}
13891	if (!bp->doorbells) {
13892		dev_err(&bp->pdev->dev,
13893			"Cannot map doorbell space, aborting\n");
13894		rc = -ENOMEM;
13895		goto init_one_exit;
13896	}
13897
13898	if (IS_VF(bp)) {
13899		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13900		if (rc)
13901			goto init_one_exit;
13902	}
13903
13904	/* Enable SRIOV if capability found in configuration space */
13905	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13906	if (rc)
13907		goto init_one_exit;
13908
13909	/* calc qm_cid_count */
13910	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13911	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13912
13913	/* disable FCOE L2 queue for E1x*/
13914	if (CHIP_IS_E1x(bp))
13915		bp->flags |= NO_FCOE_FLAG;
13916
13917	/* Set bp->num_queues for MSI-X mode*/
13918	bnx2x_set_num_queues(bp);
13919
13920	/* Configure interrupt mode: try to enable MSI-X/MSI if
13921	 * needed.
13922	 */
13923	rc = bnx2x_set_int_mode(bp);
13924	if (rc) {
13925		dev_err(&pdev->dev, "Cannot set interrupts\n");
13926		goto init_one_exit;
13927	}
13928	BNX2X_DEV_INFO("set interrupts successfully\n");
13929
13930	/* register the net device */
13931	rc = register_netdev(dev);
13932	if (rc) {
13933		dev_err(&pdev->dev, "Cannot register net device\n");
13934		goto init_one_exit;
13935	}
13936	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13937
13938	if (!NO_FCOE(bp)) {
13939		/* Add storage MAC address */
13940		rtnl_lock();
13941		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13942		rtnl_unlock();
13943	}
13944	if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13945	    pcie_speed == PCI_SPEED_UNKNOWN ||
13946	    pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13947		BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13948	else
13949		BNX2X_DEV_INFO(
13950		       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13951		       board_info[ent->driver_data].name,
13952		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13953		       pcie_width,
13954		       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13955		       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13956		       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13957		       "Unknown",
13958		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13959
13960	bnx2x_register_phc(bp);
13961
13962	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
13963		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
13964
13965	return 0;
13966
13967init_one_exit:
13968	bnx2x_disable_pcie_error_reporting(bp);
13969
13970	if (bp->regview)
13971		iounmap(bp->regview);
13972
13973	if (IS_PF(bp) && bp->doorbells)
13974		iounmap(bp->doorbells);
13975
13976	free_netdev(dev);
13977
13978	if (atomic_read(&pdev->enable_cnt) == 1)
13979		pci_release_regions(pdev);
13980
13981	pci_disable_device(pdev);
13982
13983	return rc;
13984}
13985
13986static void __bnx2x_remove(struct pci_dev *pdev,
13987			   struct net_device *dev,
13988			   struct bnx2x *bp,
13989			   bool remove_netdev)
13990{
13991	if (bp->ptp_clock) {
13992		ptp_clock_unregister(bp->ptp_clock);
13993		bp->ptp_clock = NULL;
13994	}
13995
13996	/* Delete storage MAC address */
13997	if (!NO_FCOE(bp)) {
13998		rtnl_lock();
13999		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14000		rtnl_unlock();
14001	}
14002
14003#ifdef BCM_DCBNL
14004	/* Delete app tlvs from dcbnl */
14005	bnx2x_dcbnl_update_applist(bp, true);
14006#endif
14007
14008	if (IS_PF(bp) &&
14009	    !BP_NOMCP(bp) &&
14010	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14011		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14012
14013	/* Close the interface - either directly or implicitly */
14014	if (remove_netdev) {
14015		unregister_netdev(dev);
14016	} else {
14017		rtnl_lock();
14018		dev_close(dev);
14019		rtnl_unlock();
14020	}
14021
14022	bnx2x_iov_remove_one(bp);
14023
14024	/* Power on: we can't let PCI layer write to us while we are in D3 */
14025	if (IS_PF(bp)) {
14026		bnx2x_set_power_state(bp, PCI_D0);
14027		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14028
14029		/* Set endianity registers to reset values in case next driver
14030		 * boots in different endianty environment.
14031		 */
14032		bnx2x_reset_endianity(bp);
14033	}
14034
14035	/* Disable MSI/MSI-X */
14036	bnx2x_disable_msi(bp);
14037
14038	/* Power off */
14039	if (IS_PF(bp))
14040		bnx2x_set_power_state(bp, PCI_D3hot);
14041
14042	/* Make sure RESET task is not scheduled before continuing */
14043	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14044
14045	/* send message via vfpf channel to release the resources of this vf */
14046	if (IS_VF(bp))
14047		bnx2x_vfpf_release(bp);
14048
14049	/* Assumes no further PCIe PM changes will occur */
14050	if (system_state == SYSTEM_POWER_OFF) {
14051		pci_wake_from_d3(pdev, bp->wol);
14052		pci_set_power_state(pdev, PCI_D3hot);
14053	}
14054
14055	bnx2x_disable_pcie_error_reporting(bp);
14056	if (remove_netdev) {
14057		if (bp->regview)
14058			iounmap(bp->regview);
14059
14060		/* For vfs, doorbells are part of the regview and were unmapped
14061		 * along with it. FW is only loaded by PF.
14062		 */
14063		if (IS_PF(bp)) {
14064			if (bp->doorbells)
14065				iounmap(bp->doorbells);
14066
14067			bnx2x_release_firmware(bp);
14068		} else {
14069			bnx2x_vf_pci_dealloc(bp);
14070		}
14071		bnx2x_free_mem_bp(bp);
14072
14073		free_netdev(dev);
14074
14075		if (atomic_read(&pdev->enable_cnt) == 1)
14076			pci_release_regions(pdev);
14077
14078		pci_disable_device(pdev);
14079	}
14080}
14081
14082static void bnx2x_remove_one(struct pci_dev *pdev)
14083{
14084	struct net_device *dev = pci_get_drvdata(pdev);
14085	struct bnx2x *bp;
14086
14087	if (!dev) {
14088		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14089		return;
14090	}
14091	bp = netdev_priv(dev);
14092
14093	__bnx2x_remove(pdev, dev, bp, true);
14094}
14095
14096static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14097{
14098	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14099
14100	bp->rx_mode = BNX2X_RX_MODE_NONE;
14101
14102	if (CNIC_LOADED(bp))
14103		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14104
14105	/* Stop Tx */
14106	bnx2x_tx_disable(bp);
14107	/* Delete all NAPI objects */
14108	bnx2x_del_all_napi(bp);
14109	if (CNIC_LOADED(bp))
14110		bnx2x_del_all_napi_cnic(bp);
14111	netdev_reset_tc(bp->dev);
14112
14113	del_timer_sync(&bp->timer);
14114	cancel_delayed_work_sync(&bp->sp_task);
14115	cancel_delayed_work_sync(&bp->period_task);
14116
14117	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14118		bp->stats_state = STATS_STATE_DISABLED;
14119		up(&bp->stats_lock);
14120	}
14121
14122	bnx2x_save_statistics(bp);
14123
14124	netif_carrier_off(bp->dev);
14125
14126	return 0;
14127}
14128
14129/**
14130 * bnx2x_io_error_detected - called when PCI error is detected
14131 * @pdev: Pointer to PCI device
14132 * @state: The current pci connection state
14133 *
14134 * This function is called after a PCI bus error affecting
14135 * this device has been detected.
14136 */
14137static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14138						pci_channel_state_t state)
14139{
14140	struct net_device *dev = pci_get_drvdata(pdev);
14141	struct bnx2x *bp = netdev_priv(dev);
14142
14143	rtnl_lock();
14144
14145	BNX2X_ERR("IO error detected\n");
14146
14147	netif_device_detach(dev);
14148
14149	if (state == pci_channel_io_perm_failure) {
14150		rtnl_unlock();
14151		return PCI_ERS_RESULT_DISCONNECT;
14152	}
14153
14154	if (netif_running(dev))
14155		bnx2x_eeh_nic_unload(bp);
14156
14157	bnx2x_prev_path_mark_eeh(bp);
14158
14159	pci_disable_device(pdev);
14160
14161	rtnl_unlock();
14162
14163	/* Request a slot reset */
14164	return PCI_ERS_RESULT_NEED_RESET;
14165}
14166
14167/**
14168 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14169 * @pdev: Pointer to PCI device
14170 *
14171 * Restart the card from scratch, as if from a cold-boot.
14172 */
14173static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14174{
14175	struct net_device *dev = pci_get_drvdata(pdev);
14176	struct bnx2x *bp = netdev_priv(dev);
14177	int i;
14178
14179	rtnl_lock();
14180	BNX2X_ERR("IO slot reset initializing...\n");
14181	if (pci_enable_device(pdev)) {
14182		dev_err(&pdev->dev,
14183			"Cannot re-enable PCI device after reset\n");
14184		rtnl_unlock();
14185		return PCI_ERS_RESULT_DISCONNECT;
14186	}
14187
14188	pci_set_master(pdev);
14189	pci_restore_state(pdev);
14190	pci_save_state(pdev);
14191
14192	if (netif_running(dev))
14193		bnx2x_set_power_state(bp, PCI_D0);
14194
14195	if (netif_running(dev)) {
14196		BNX2X_ERR("IO slot reset --> driver unload\n");
14197
14198		/* MCP should have been reset; Need to wait for validity */
14199		bnx2x_init_shmem(bp);
14200
14201		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14202			u32 v;
14203
14204			v = SHMEM2_RD(bp,
14205				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14206			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14207				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14208		}
14209		bnx2x_drain_tx_queues(bp);
14210		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14211		bnx2x_netif_stop(bp, 1);
14212		bnx2x_free_irq(bp);
14213
14214		/* Report UNLOAD_DONE to MCP */
14215		bnx2x_send_unload_done(bp, true);
14216
14217		bp->sp_state = 0;
14218		bp->port.pmf = 0;
14219
14220		bnx2x_prev_unload(bp);
14221
14222		/* We should have reseted the engine, so It's fair to
14223		 * assume the FW will no longer write to the bnx2x driver.
14224		 */
14225		bnx2x_squeeze_objects(bp);
14226		bnx2x_free_skbs(bp);
14227		for_each_rx_queue(bp, i)
14228			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14229		bnx2x_free_fp_mem(bp);
14230		bnx2x_free_mem(bp);
14231
14232		bp->state = BNX2X_STATE_CLOSED;
14233	}
14234
14235	rtnl_unlock();
14236
14237	/* If AER, perform cleanup of the PCIe registers */
14238	if (bp->flags & AER_ENABLED) {
14239		if (pci_cleanup_aer_uncorrect_error_status(pdev))
14240			BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
14241		else
14242			DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
14243	}
14244
14245	return PCI_ERS_RESULT_RECOVERED;
14246}
14247
14248/**
14249 * bnx2x_io_resume - called when traffic can start flowing again
14250 * @pdev: Pointer to PCI device
14251 *
14252 * This callback is called when the error recovery driver tells us that
14253 * its OK to resume normal operation.
14254 */
14255static void bnx2x_io_resume(struct pci_dev *pdev)
14256{
14257	struct net_device *dev = pci_get_drvdata(pdev);
14258	struct bnx2x *bp = netdev_priv(dev);
14259
14260	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14261		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14262		return;
14263	}
14264
14265	rtnl_lock();
14266
14267	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14268							DRV_MSG_SEQ_NUMBER_MASK;
14269
14270	if (netif_running(dev))
14271		bnx2x_nic_load(bp, LOAD_NORMAL);
14272
14273	netif_device_attach(dev);
14274
14275	rtnl_unlock();
14276}
14277
14278static const struct pci_error_handlers bnx2x_err_handler = {
14279	.error_detected = bnx2x_io_error_detected,
14280	.slot_reset     = bnx2x_io_slot_reset,
14281	.resume         = bnx2x_io_resume,
14282};
14283
14284static void bnx2x_shutdown(struct pci_dev *pdev)
14285{
14286	struct net_device *dev = pci_get_drvdata(pdev);
14287	struct bnx2x *bp;
14288
14289	if (!dev)
14290		return;
14291
14292	bp = netdev_priv(dev);
14293	if (!bp)
14294		return;
14295
14296	rtnl_lock();
14297	netif_device_detach(dev);
14298	rtnl_unlock();
14299
14300	/* Don't remove the netdevice, as there are scenarios which will cause
14301	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14302	 * rootfs is mounted from SAN.
14303	 */
14304	__bnx2x_remove(pdev, dev, bp, false);
14305}
14306
14307static struct pci_driver bnx2x_pci_driver = {
14308	.name        = DRV_MODULE_NAME,
14309	.id_table    = bnx2x_pci_tbl,
14310	.probe       = bnx2x_init_one,
14311	.remove      = bnx2x_remove_one,
14312	.suspend     = bnx2x_suspend,
14313	.resume      = bnx2x_resume,
14314	.err_handler = &bnx2x_err_handler,
14315#ifdef CONFIG_BNX2X_SRIOV
14316	.sriov_configure = bnx2x_sriov_configure,
14317#endif
14318	.shutdown    = bnx2x_shutdown,
14319};
14320
14321static int __init bnx2x_init(void)
14322{
14323	int ret;
14324
14325	pr_info("%s", version);
14326
14327	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14328	if (bnx2x_wq == NULL) {
14329		pr_err("Cannot create workqueue\n");
14330		return -ENOMEM;
14331	}
14332	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14333	if (!bnx2x_iov_wq) {
14334		pr_err("Cannot create iov workqueue\n");
14335		destroy_workqueue(bnx2x_wq);
14336		return -ENOMEM;
14337	}
14338
14339	ret = pci_register_driver(&bnx2x_pci_driver);
14340	if (ret) {
14341		pr_err("Cannot register driver\n");
14342		destroy_workqueue(bnx2x_wq);
14343		destroy_workqueue(bnx2x_iov_wq);
14344	}
14345	return ret;
14346}
14347
14348static void __exit bnx2x_cleanup(void)
14349{
14350	struct list_head *pos, *q;
14351
14352	pci_unregister_driver(&bnx2x_pci_driver);
14353
14354	destroy_workqueue(bnx2x_wq);
14355	destroy_workqueue(bnx2x_iov_wq);
14356
14357	/* Free globally allocated resources */
14358	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14359		struct bnx2x_prev_path_list *tmp =
14360			list_entry(pos, struct bnx2x_prev_path_list, list);
14361		list_del(pos);
14362		kfree(tmp);
14363	}
14364}
14365
14366void bnx2x_notify_link_changed(struct bnx2x *bp)
14367{
14368	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14369}
14370
14371module_init(bnx2x_init);
14372module_exit(bnx2x_cleanup);
14373
14374/**
14375 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14376 *
14377 * @bp:		driver handle
14378 * @set:	set or clear the CAM entry
14379 *
14380 * This function will wait until the ramrod completion returns.
14381 * Return 0 if success, -ENODEV if ramrod doesn't return.
14382 */
14383static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14384{
14385	unsigned long ramrod_flags = 0;
14386
14387	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14388	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14389				 &bp->iscsi_l2_mac_obj, true,
14390				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14391}
14392
14393/* count denotes the number of new completions we have seen */
14394static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14395{
14396	struct eth_spe *spe;
14397	int cxt_index, cxt_offset;
14398
14399#ifdef BNX2X_STOP_ON_ERROR
14400	if (unlikely(bp->panic))
14401		return;
14402#endif
14403
14404	spin_lock_bh(&bp->spq_lock);
14405	BUG_ON(bp->cnic_spq_pending < count);
14406	bp->cnic_spq_pending -= count;
14407
14408	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14409		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14410				& SPE_HDR_CONN_TYPE) >>
14411				SPE_HDR_CONN_TYPE_SHIFT;
14412		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14413				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14414
14415		/* Set validation for iSCSI L2 client before sending SETUP
14416		 *  ramrod
14417		 */
14418		if (type == ETH_CONNECTION_TYPE) {
14419			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14420				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14421					ILT_PAGE_CIDS;
14422				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14423					(cxt_index * ILT_PAGE_CIDS);
14424				bnx2x_set_ctx_validation(bp,
14425					&bp->context[cxt_index].
14426							 vcxt[cxt_offset].eth,
14427					BNX2X_ISCSI_ETH_CID(bp));
14428			}
14429		}
14430
14431		/*
14432		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14433		 * and in the air. We also check that number of outstanding
14434		 * COMMON ramrods is not more than the EQ and SPQ can
14435		 * accommodate.
14436		 */
14437		if (type == ETH_CONNECTION_TYPE) {
14438			if (!atomic_read(&bp->cq_spq_left))
14439				break;
14440			else
14441				atomic_dec(&bp->cq_spq_left);
14442		} else if (type == NONE_CONNECTION_TYPE) {
14443			if (!atomic_read(&bp->eq_spq_left))
14444				break;
14445			else
14446				atomic_dec(&bp->eq_spq_left);
14447		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14448			   (type == FCOE_CONNECTION_TYPE)) {
14449			if (bp->cnic_spq_pending >=
14450			    bp->cnic_eth_dev.max_kwqe_pending)
14451				break;
14452			else
14453				bp->cnic_spq_pending++;
14454		} else {
14455			BNX2X_ERR("Unknown SPE type: %d\n", type);
14456			bnx2x_panic();
14457			break;
14458		}
14459
14460		spe = bnx2x_sp_get_next(bp);
14461		*spe = *bp->cnic_kwq_cons;
14462
14463		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14464		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14465
14466		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14467			bp->cnic_kwq_cons = bp->cnic_kwq;
14468		else
14469			bp->cnic_kwq_cons++;
14470	}
14471	bnx2x_sp_prod_update(bp);
14472	spin_unlock_bh(&bp->spq_lock);
14473}
14474
14475static int bnx2x_cnic_sp_queue(struct net_device *dev,
14476			       struct kwqe_16 *kwqes[], u32 count)
14477{
14478	struct bnx2x *bp = netdev_priv(dev);
14479	int i;
14480
14481#ifdef BNX2X_STOP_ON_ERROR
14482	if (unlikely(bp->panic)) {
14483		BNX2X_ERR("Can't post to SP queue while panic\n");
14484		return -EIO;
14485	}
14486#endif
14487
14488	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14489	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14490		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14491		return -EAGAIN;
14492	}
14493
14494	spin_lock_bh(&bp->spq_lock);
14495
14496	for (i = 0; i < count; i++) {
14497		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14498
14499		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14500			break;
14501
14502		*bp->cnic_kwq_prod = *spe;
14503
14504		bp->cnic_kwq_pending++;
14505
14506		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14507		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14508		   spe->data.update_data_addr.hi,
14509		   spe->data.update_data_addr.lo,
14510		   bp->cnic_kwq_pending);
14511
14512		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14513			bp->cnic_kwq_prod = bp->cnic_kwq;
14514		else
14515			bp->cnic_kwq_prod++;
14516	}
14517
14518	spin_unlock_bh(&bp->spq_lock);
14519
14520	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14521		bnx2x_cnic_sp_post(bp, 0);
14522
14523	return i;
14524}
14525
14526static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14527{
14528	struct cnic_ops *c_ops;
14529	int rc = 0;
14530
14531	mutex_lock(&bp->cnic_mutex);
14532	c_ops = rcu_dereference_protected(bp->cnic_ops,
14533					  lockdep_is_held(&bp->cnic_mutex));
14534	if (c_ops)
14535		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14536	mutex_unlock(&bp->cnic_mutex);
14537
14538	return rc;
14539}
14540
14541static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14542{
14543	struct cnic_ops *c_ops;
14544	int rc = 0;
14545
14546	rcu_read_lock();
14547	c_ops = rcu_dereference(bp->cnic_ops);
14548	if (c_ops)
14549		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14550	rcu_read_unlock();
14551
14552	return rc;
14553}
14554
14555/*
14556 * for commands that have no data
14557 */
14558int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14559{
14560	struct cnic_ctl_info ctl = {0};
14561
14562	ctl.cmd = cmd;
14563
14564	return bnx2x_cnic_ctl_send(bp, &ctl);
14565}
14566
14567static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14568{
14569	struct cnic_ctl_info ctl = {0};
14570
14571	/* first we tell CNIC and only then we count this as a completion */
14572	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14573	ctl.data.comp.cid = cid;
14574	ctl.data.comp.error = err;
14575
14576	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14577	bnx2x_cnic_sp_post(bp, 0);
14578}
14579
14580/* Called with netif_addr_lock_bh() taken.
14581 * Sets an rx_mode config for an iSCSI ETH client.
14582 * Doesn't block.
14583 * Completion should be checked outside.
14584 */
14585static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14586{
14587	unsigned long accept_flags = 0, ramrod_flags = 0;
14588	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14589	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14590
14591	if (start) {
14592		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14593		 * because it's the only way for UIO Queue to accept
14594		 * multicasts (in non-promiscuous mode only one Queue per
14595		 * function will receive multicast packets (leading in our
14596		 * case).
14597		 */
14598		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14599		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14600		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14601		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14602
14603		/* Clear STOP_PENDING bit if START is requested */
14604		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14605
14606		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14607	} else
14608		/* Clear START_PENDING bit if STOP is requested */
14609		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14610
14611	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14612		set_bit(sched_state, &bp->sp_state);
14613	else {
14614		__set_bit(RAMROD_RX, &ramrod_flags);
14615		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14616				    ramrod_flags);
14617	}
14618}
14619
14620static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14621{
14622	struct bnx2x *bp = netdev_priv(dev);
14623	int rc = 0;
14624
14625	switch (ctl->cmd) {
14626	case DRV_CTL_CTXTBL_WR_CMD: {
14627		u32 index = ctl->data.io.offset;
14628		dma_addr_t addr = ctl->data.io.dma_addr;
14629
14630		bnx2x_ilt_wr(bp, index, addr);
14631		break;
14632	}
14633
14634	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14635		int count = ctl->data.credit.credit_count;
14636
14637		bnx2x_cnic_sp_post(bp, count);
14638		break;
14639	}
14640
14641	/* rtnl_lock is held.  */
14642	case DRV_CTL_START_L2_CMD: {
14643		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14644		unsigned long sp_bits = 0;
14645
14646		/* Configure the iSCSI classification object */
14647		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14648				   cp->iscsi_l2_client_id,
14649				   cp->iscsi_l2_cid, BP_FUNC(bp),
14650				   bnx2x_sp(bp, mac_rdata),
14651				   bnx2x_sp_mapping(bp, mac_rdata),
14652				   BNX2X_FILTER_MAC_PENDING,
14653				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14654				   &bp->macs_pool);
14655
14656		/* Set iSCSI MAC address */
14657		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14658		if (rc)
14659			break;
14660
14661		mmiowb();
14662		barrier();
14663
14664		/* Start accepting on iSCSI L2 ring */
14665
14666		netif_addr_lock_bh(dev);
14667		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14668		netif_addr_unlock_bh(dev);
14669
14670		/* bits to wait on */
14671		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14672		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14673
14674		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14675			BNX2X_ERR("rx_mode completion timed out!\n");
14676
14677		break;
14678	}
14679
14680	/* rtnl_lock is held.  */
14681	case DRV_CTL_STOP_L2_CMD: {
14682		unsigned long sp_bits = 0;
14683
14684		/* Stop accepting on iSCSI L2 ring */
14685		netif_addr_lock_bh(dev);
14686		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14687		netif_addr_unlock_bh(dev);
14688
14689		/* bits to wait on */
14690		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14691		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14692
14693		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14694			BNX2X_ERR("rx_mode completion timed out!\n");
14695
14696		mmiowb();
14697		barrier();
14698
14699		/* Unset iSCSI L2 MAC */
14700		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14701					BNX2X_ISCSI_ETH_MAC, true);
14702		break;
14703	}
14704	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14705		int count = ctl->data.credit.credit_count;
14706
14707		smp_mb__before_atomic();
14708		atomic_add(count, &bp->cq_spq_left);
14709		smp_mb__after_atomic();
14710		break;
14711	}
14712	case DRV_CTL_ULP_REGISTER_CMD: {
14713		int ulp_type = ctl->data.register_data.ulp_type;
14714
14715		if (CHIP_IS_E3(bp)) {
14716			int idx = BP_FW_MB_IDX(bp);
14717			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14718			int path = BP_PATH(bp);
14719			int port = BP_PORT(bp);
14720			int i;
14721			u32 scratch_offset;
14722			u32 *host_addr;
14723
14724			/* first write capability to shmem2 */
14725			if (ulp_type == CNIC_ULP_ISCSI)
14726				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14727			else if (ulp_type == CNIC_ULP_FCOE)
14728				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14729			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14730
14731			if ((ulp_type != CNIC_ULP_FCOE) ||
14732			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14733			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14734				break;
14735
14736			/* if reached here - should write fcoe capabilities */
14737			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14738			if (!scratch_offset)
14739				break;
14740			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14741						   fcoe_features[path][port]);
14742			host_addr = (u32 *) &(ctl->data.register_data.
14743					      fcoe_features);
14744			for (i = 0; i < sizeof(struct fcoe_capabilities);
14745			     i += 4)
14746				REG_WR(bp, scratch_offset + i,
14747				       *(host_addr + i/4));
14748		}
14749		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14750		break;
14751	}
14752
14753	case DRV_CTL_ULP_UNREGISTER_CMD: {
14754		int ulp_type = ctl->data.ulp_type;
14755
14756		if (CHIP_IS_E3(bp)) {
14757			int idx = BP_FW_MB_IDX(bp);
14758			u32 cap;
14759
14760			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14761			if (ulp_type == CNIC_ULP_ISCSI)
14762				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14763			else if (ulp_type == CNIC_ULP_FCOE)
14764				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14765			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14766		}
14767		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14768		break;
14769	}
14770
14771	default:
14772		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14773		rc = -EINVAL;
14774	}
14775
14776	/* For storage-only interfaces, change driver state */
14777	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14778		switch (ctl->drv_state) {
14779		case DRV_NOP:
14780			break;
14781		case DRV_ACTIVE:
14782			bnx2x_set_os_driver_state(bp,
14783						  OS_DRIVER_STATE_ACTIVE);
14784			break;
14785		case DRV_INACTIVE:
14786			bnx2x_set_os_driver_state(bp,
14787						  OS_DRIVER_STATE_DISABLED);
14788			break;
14789		case DRV_UNLOADED:
14790			bnx2x_set_os_driver_state(bp,
14791						  OS_DRIVER_STATE_NOT_LOADED);
14792			break;
14793		default:
14794		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14795		}
14796	}
14797
14798	return rc;
14799}
14800
14801static int bnx2x_get_fc_npiv(struct net_device *dev,
14802			     struct cnic_fc_npiv_tbl *cnic_tbl)
14803{
14804	struct bnx2x *bp = netdev_priv(dev);
14805	struct bdn_fc_npiv_tbl *tbl = NULL;
14806	u32 offset, entries;
14807	int rc = -EINVAL;
14808	int i;
14809
14810	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14811		goto out;
14812
14813	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14814
14815	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14816	if (!tbl) {
14817		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14818		goto out;
14819	}
14820
14821	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14822	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14823
14824	/* Read the table contents from nvram */
14825	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14826		BNX2X_ERR("Failed to read FC-NPIV table\n");
14827		goto out;
14828	}
14829
14830	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14831	 * the number of entries back to cpu endianness.
14832	 */
14833	entries = tbl->fc_npiv_cfg.num_of_npiv;
14834	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14835	tbl->fc_npiv_cfg.num_of_npiv = entries;
14836
14837	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14838		DP(BNX2X_MSG_MCP,
14839		   "No FC-NPIV table [valid, simply not present]\n");
14840		goto out;
14841	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14842		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14843			  tbl->fc_npiv_cfg.num_of_npiv);
14844		goto out;
14845	} else {
14846		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14847		   tbl->fc_npiv_cfg.num_of_npiv);
14848	}
14849
14850	/* Copy the data into cnic-provided struct */
14851	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14852	for (i = 0; i < cnic_tbl->count; i++) {
14853		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14854		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14855	}
14856
14857	rc = 0;
14858out:
14859	kfree(tbl);
14860	return rc;
14861}
14862
14863void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14864{
14865	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14866
14867	if (bp->flags & USING_MSIX_FLAG) {
14868		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14869		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14870		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14871	} else {
14872		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14873		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14874	}
14875	if (!CHIP_IS_E1x(bp))
14876		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14877	else
14878		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14879
14880	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14881	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14882	cp->irq_arr[1].status_blk = bp->def_status_blk;
14883	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14884	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14885
14886	cp->num_irq = 2;
14887}
14888
14889void bnx2x_setup_cnic_info(struct bnx2x *bp)
14890{
14891	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14892
14893	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14894			     bnx2x_cid_ilt_lines(bp);
14895	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14896	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14897	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14898
14899	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14900	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14901	   cp->iscsi_l2_cid);
14902
14903	if (NO_ISCSI_OOO(bp))
14904		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14905}
14906
14907static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14908			       void *data)
14909{
14910	struct bnx2x *bp = netdev_priv(dev);
14911	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14912	int rc;
14913
14914	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14915
14916	if (ops == NULL) {
14917		BNX2X_ERR("NULL ops received\n");
14918		return -EINVAL;
14919	}
14920
14921	if (!CNIC_SUPPORT(bp)) {
14922		BNX2X_ERR("Can't register CNIC when not supported\n");
14923		return -EOPNOTSUPP;
14924	}
14925
14926	if (!CNIC_LOADED(bp)) {
14927		rc = bnx2x_load_cnic(bp);
14928		if (rc) {
14929			BNX2X_ERR("CNIC-related load failed\n");
14930			return rc;
14931		}
14932	}
14933
14934	bp->cnic_enabled = true;
14935
14936	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14937	if (!bp->cnic_kwq)
14938		return -ENOMEM;
14939
14940	bp->cnic_kwq_cons = bp->cnic_kwq;
14941	bp->cnic_kwq_prod = bp->cnic_kwq;
14942	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14943
14944	bp->cnic_spq_pending = 0;
14945	bp->cnic_kwq_pending = 0;
14946
14947	bp->cnic_data = data;
14948
14949	cp->num_irq = 0;
14950	cp->drv_state |= CNIC_DRV_STATE_REGD;
14951	cp->iro_arr = bp->iro_arr;
14952
14953	bnx2x_setup_cnic_irq_info(bp);
14954
14955	rcu_assign_pointer(bp->cnic_ops, ops);
14956
14957	/* Schedule driver to read CNIC driver versions */
14958	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14959
14960	return 0;
14961}
14962
14963static int bnx2x_unregister_cnic(struct net_device *dev)
14964{
14965	struct bnx2x *bp = netdev_priv(dev);
14966	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14967
14968	mutex_lock(&bp->cnic_mutex);
14969	cp->drv_state = 0;
14970	RCU_INIT_POINTER(bp->cnic_ops, NULL);
14971	mutex_unlock(&bp->cnic_mutex);
14972	synchronize_rcu();
14973	bp->cnic_enabled = false;
14974	kfree(bp->cnic_kwq);
14975	bp->cnic_kwq = NULL;
14976
14977	return 0;
14978}
14979
14980static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14981{
14982	struct bnx2x *bp = netdev_priv(dev);
14983	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14984
14985	/* If both iSCSI and FCoE are disabled - return NULL in
14986	 * order to indicate CNIC that it should not try to work
14987	 * with this device.
14988	 */
14989	if (NO_ISCSI(bp) && NO_FCOE(bp))
14990		return NULL;
14991
14992	cp->drv_owner = THIS_MODULE;
14993	cp->chip_id = CHIP_ID(bp);
14994	cp->pdev = bp->pdev;
14995	cp->io_base = bp->regview;
14996	cp->io_base2 = bp->doorbells;
14997	cp->max_kwqe_pending = 8;
14998	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14999	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15000			     bnx2x_cid_ilt_lines(bp);
15001	cp->ctx_tbl_len = CNIC_ILT_LINES;
15002	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15003	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15004	cp->drv_ctl = bnx2x_drv_ctl;
15005	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15006	cp->drv_register_cnic = bnx2x_register_cnic;
15007	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15008	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15009	cp->iscsi_l2_client_id =
15010		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15011	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15012
15013	if (NO_ISCSI_OOO(bp))
15014		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15015
15016	if (NO_ISCSI(bp))
15017		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15018
15019	if (NO_FCOE(bp))
15020		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15021
15022	BNX2X_DEV_INFO(
15023		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15024	   cp->ctx_blk_size,
15025	   cp->ctx_tbl_offset,
15026	   cp->ctx_tbl_len,
15027	   cp->starting_cid);
15028	return cp;
15029}
15030
15031static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15032{
15033	struct bnx2x *bp = fp->bp;
15034	u32 offset = BAR_USTRORM_INTMEM;
15035
15036	if (IS_VF(bp))
15037		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15038	else if (!CHIP_IS_E1x(bp))
15039		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15040	else
15041		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15042
15043	return offset;
15044}
15045
15046/* called only on E1H or E2.
15047 * When pretending to be PF, the pretend value is the function number 0...7
15048 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15049 * combination
15050 */
15051int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15052{
15053	u32 pretend_reg;
15054
15055	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15056		return -1;
15057
15058	/* get my own pretend register */
15059	pretend_reg = bnx2x_get_pretend_reg(bp);
15060	REG_WR(bp, pretend_reg, pretend_func_val);
15061	REG_RD(bp, pretend_reg);
15062	return 0;
15063}
15064
15065static void bnx2x_ptp_task(struct work_struct *work)
15066{
15067	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15068	int port = BP_PORT(bp);
15069	u32 val_seq;
15070	u64 timestamp, ns;
15071	struct skb_shared_hwtstamps shhwtstamps;
15072
15073	/* Read Tx timestamp registers */
15074	val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15075			 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15076	if (val_seq & 0x10000) {
15077		/* There is a valid timestamp value */
15078		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15079				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15080		timestamp <<= 32;
15081		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15082				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15083		/* Reset timestamp register to allow new timestamp */
15084		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15085		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15086		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15087
15088		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15089		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15090		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15091		dev_kfree_skb_any(bp->ptp_tx_skb);
15092		bp->ptp_tx_skb = NULL;
15093
15094		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15095		   timestamp, ns);
15096	} else {
15097		DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15098		/* Reschedule to keep checking for a valid timestamp value */
15099		schedule_work(&bp->ptp_task);
15100	}
15101}
15102
15103void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15104{
15105	int port = BP_PORT(bp);
15106	u64 timestamp, ns;
15107
15108	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15109			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15110	timestamp <<= 32;
15111	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15112			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15113
15114	/* Reset timestamp register to allow new timestamp */
15115	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15116	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15117
15118	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15119
15120	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15121
15122	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15123	   timestamp, ns);
15124}
15125
15126/* Read the PHC */
15127static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15128{
15129	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15130	int port = BP_PORT(bp);
15131	u32 wb_data[2];
15132	u64 phc_cycles;
15133
15134	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15135		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15136	phc_cycles = wb_data[1];
15137	phc_cycles = (phc_cycles << 32) + wb_data[0];
15138
15139	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15140
15141	return phc_cycles;
15142}
15143
15144static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15145{
15146	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15147	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15148	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15149	bp->cyclecounter.shift = 1;
15150	bp->cyclecounter.mult = 1;
15151}
15152
15153static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15154{
15155	struct bnx2x_func_state_params func_params = {NULL};
15156	struct bnx2x_func_set_timesync_params *set_timesync_params =
15157		&func_params.params.set_timesync;
15158
15159	/* Prepare parameters for function state transitions */
15160	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15161	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15162
15163	func_params.f_obj = &bp->func_obj;
15164	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15165
15166	/* Function parameters */
15167	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15168	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15169
15170	return bnx2x_func_state_change(bp, &func_params);
15171}
15172
15173static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15174{
15175	struct bnx2x_queue_state_params q_params;
15176	int rc, i;
15177
15178	/* send queue update ramrod to enable PTP packets */
15179	memset(&q_params, 0, sizeof(q_params));
15180	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15181	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15182	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15183		  &q_params.params.update.update_flags);
15184	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15185		  &q_params.params.update.update_flags);
15186
15187	/* send the ramrod on all the queues of the PF */
15188	for_each_eth_queue(bp, i) {
15189		struct bnx2x_fastpath *fp = &bp->fp[i];
15190
15191		/* Set the appropriate Queue object */
15192		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15193
15194		/* Update the Queue state */
15195		rc = bnx2x_queue_state_change(bp, &q_params);
15196		if (rc) {
15197			BNX2X_ERR("Failed to enable PTP packets\n");
15198			return rc;
15199		}
15200	}
15201
15202	return 0;
15203}
15204
15205int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15206{
15207	int port = BP_PORT(bp);
15208	int rc;
15209
15210	if (!bp->hwtstamp_ioctl_called)
15211		return 0;
15212
15213	switch (bp->tx_type) {
15214	case HWTSTAMP_TX_ON:
15215		bp->flags |= TX_TIMESTAMPING_EN;
15216		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15217		       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15218		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15219		       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15220		break;
15221	case HWTSTAMP_TX_ONESTEP_SYNC:
15222		BNX2X_ERR("One-step timestamping is not supported\n");
15223		return -ERANGE;
15224	}
15225
15226	switch (bp->rx_filter) {
15227	case HWTSTAMP_FILTER_NONE:
15228		break;
15229	case HWTSTAMP_FILTER_ALL:
15230	case HWTSTAMP_FILTER_SOME:
15231		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15232		break;
15233	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15234	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15235	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15236		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15237		/* Initialize PTP detection for UDP/IPv4 events */
15238		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15239		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15240		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15241		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15242		break;
15243	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15244	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15245	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15246		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15247		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15248		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15249		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15250		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15251		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15252		break;
15253	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15254	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15255	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15256		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15257		/* Initialize PTP detection L2 events */
15258		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15259		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15260		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15261		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15262
15263		break;
15264	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15265	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15266	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15267		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15268		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15269		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15270		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15271		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15272		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15273		break;
15274	}
15275
15276	/* Indicate to FW that this PF expects recorded PTP packets */
15277	rc = bnx2x_enable_ptp_packets(bp);
15278	if (rc)
15279		return rc;
15280
15281	/* Enable sending PTP packets to host */
15282	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15283	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15284
15285	return 0;
15286}
15287
15288static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15289{
15290	struct hwtstamp_config config;
15291	int rc;
15292
15293	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15294
15295	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15296		return -EFAULT;
15297
15298	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15299	   config.tx_type, config.rx_filter);
15300
15301	if (config.flags) {
15302		BNX2X_ERR("config.flags is reserved for future use\n");
15303		return -EINVAL;
15304	}
15305
15306	bp->hwtstamp_ioctl_called = 1;
15307	bp->tx_type = config.tx_type;
15308	bp->rx_filter = config.rx_filter;
15309
15310	rc = bnx2x_configure_ptp_filters(bp);
15311	if (rc)
15312		return rc;
15313
15314	config.rx_filter = bp->rx_filter;
15315
15316	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15317		-EFAULT : 0;
15318}
15319
15320/* Configures HW for PTP */
15321static int bnx2x_configure_ptp(struct bnx2x *bp)
15322{
15323	int rc, port = BP_PORT(bp);
15324	u32 wb_data[2];
15325
15326	/* Reset PTP event detection rules - will be configured in the IOCTL */
15327	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15328	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15329	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15330	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15331	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15332	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15333	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15334	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15335
15336	/* Disable PTP packets to host - will be configured in the IOCTL*/
15337	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15338	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15339
15340	/* Enable the PTP feature */
15341	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15342	       NIG_REG_P0_PTP_EN, 0x3F);
15343
15344	/* Enable the free-running counter */
15345	wb_data[0] = 0;
15346	wb_data[1] = 0;
15347	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15348
15349	/* Reset drift register (offset register is not reset) */
15350	rc = bnx2x_send_reset_timesync_ramrod(bp);
15351	if (rc) {
15352		BNX2X_ERR("Failed to reset PHC drift register\n");
15353		return -EFAULT;
15354	}
15355
15356	/* Reset possibly old timestamps */
15357	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15358	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15359	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15360	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15361
15362	return 0;
15363}
15364
15365/* Called during load, to initialize PTP-related stuff */
15366void bnx2x_init_ptp(struct bnx2x *bp)
15367{
15368	int rc;
15369
15370	/* Configure PTP in HW */
15371	rc = bnx2x_configure_ptp(bp);
15372	if (rc) {
15373		BNX2X_ERR("Stopping PTP initialization\n");
15374		return;
15375	}
15376
15377	/* Init work queue for Tx timestamping */
15378	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15379
15380	/* Init cyclecounter and timecounter. This is done only in the first
15381	 * load. If done in every load, PTP application will fail when doing
15382	 * unload / load (e.g. MTU change) while it is running.
15383	 */
15384	if (!bp->timecounter_init_done) {
15385		bnx2x_init_cyclecounter(bp);
15386		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15387				 ktime_to_ns(ktime_get_real()));
15388		bp->timecounter_init_done = 1;
15389	}
15390
15391	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15392}
15393