1/*
2 * AMD 10Gb Ethernet driver
3 *
4 * This file is available to you under your choice of the following two
5 * licenses:
6 *
7 * License 1: GPLv2
8 *
9 * Copyright (c) 2014 Advanced Micro Devices, Inc.
10 *
11 * This file is free software; you may copy, redistribute and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation, either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This file is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23 *
24 * This file incorporates work covered by the following copyright and
25 * permission notice:
26 *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27 *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28 *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29 *     and you.
30 *
31 *     The Software IS NOT an item of Licensed Software or Licensed Product
32 *     under any End User Software License Agreement or Agreement for Licensed
33 *     Product with Synopsys or any supplement thereto.  Permission is hereby
34 *     granted, free of charge, to any person obtaining a copy of this software
35 *     annotated with this license and the Software, to deal in the Software
36 *     without restriction, including without limitation the rights to use,
37 *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38 *     of the Software, and to permit persons to whom the Software is furnished
39 *     to do so, subject to the following conditions:
40 *
41 *     The above copyright notice and this permission notice shall be included
42 *     in all copies or substantial portions of the Software.
43 *
44 *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45 *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46 *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47 *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48 *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49 *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50 *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51 *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52 *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53 *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54 *     THE POSSIBILITY OF SUCH DAMAGE.
55 *
56 *
57 * License 2: Modified BSD
58 *
59 * Copyright (c) 2014 Advanced Micro Devices, Inc.
60 * All rights reserved.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions are met:
64 *     * Redistributions of source code must retain the above copyright
65 *       notice, this list of conditions and the following disclaimer.
66 *     * Redistributions in binary form must reproduce the above copyright
67 *       notice, this list of conditions and the following disclaimer in the
68 *       documentation and/or other materials provided with the distribution.
69 *     * Neither the name of Advanced Micro Devices, Inc. nor the
70 *       names of its contributors may be used to endorse or promote products
71 *       derived from this software without specific prior written permission.
72 *
73 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
74 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
77 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
78 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
80 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
81 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
82 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
83 *
84 * This file incorporates work covered by the following copyright and
85 * permission notice:
86 *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
87 *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
88 *     Inc. unless otherwise expressly agreed to in writing between Synopsys
89 *     and you.
90 *
91 *     The Software IS NOT an item of Licensed Software or Licensed Product
92 *     under any End User Software License Agreement or Agreement for Licensed
93 *     Product with Synopsys or any supplement thereto.  Permission is hereby
94 *     granted, free of charge, to any person obtaining a copy of this software
95 *     annotated with this license and the Software, to deal in the Software
96 *     without restriction, including without limitation the rights to use,
97 *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
98 *     of the Software, and to permit persons to whom the Software is furnished
99 *     to do so, subject to the following conditions:
100 *
101 *     The above copyright notice and this permission notice shall be included
102 *     in all copies or substantial portions of the Software.
103 *
104 *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
105 *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
106 *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
107 *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
108 *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
109 *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
110 *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
111 *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
112 *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
113 *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
114 *     THE POSSIBILITY OF SUCH DAMAGE.
115 */
116
117#include <linux/phy.h>
118#include <linux/mdio.h>
119#include <linux/clk.h>
120#include <linux/bitrev.h>
121#include <linux/crc32.h>
122
123#include "xgbe.h"
124#include "xgbe-common.h"
125
126static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
127				      unsigned int usec)
128{
129	unsigned long rate;
130	unsigned int ret;
131
132	DBGPR("-->xgbe_usec_to_riwt\n");
133
134	rate = pdata->sysclk_rate;
135
136	/*
137	 * Convert the input usec value to the watchdog timer value. Each
138	 * watchdog timer value is equivalent to 256 clock cycles.
139	 * Calculate the required value as:
140	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
141	 */
142	ret = (usec * (rate / 1000000)) / 256;
143
144	DBGPR("<--xgbe_usec_to_riwt\n");
145
146	return ret;
147}
148
149static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
150				      unsigned int riwt)
151{
152	unsigned long rate;
153	unsigned int ret;
154
155	DBGPR("-->xgbe_riwt_to_usec\n");
156
157	rate = pdata->sysclk_rate;
158
159	/*
160	 * Convert the input watchdog timer value to the usec value. Each
161	 * watchdog timer value is equivalent to 256 clock cycles.
162	 * Calculate the required value as:
163	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
164	 */
165	ret = (riwt * 256) / (rate / 1000000);
166
167	DBGPR("<--xgbe_riwt_to_usec\n");
168
169	return ret;
170}
171
172static int xgbe_config_pblx8(struct xgbe_prv_data *pdata)
173{
174	struct xgbe_channel *channel;
175	unsigned int i;
176
177	channel = pdata->channel;
178	for (i = 0; i < pdata->channel_count; i++, channel++)
179		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, PBLX8,
180				       pdata->pblx8);
181
182	return 0;
183}
184
185static int xgbe_get_tx_pbl_val(struct xgbe_prv_data *pdata)
186{
187	return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_TCR, PBL);
188}
189
190static int xgbe_config_tx_pbl_val(struct xgbe_prv_data *pdata)
191{
192	struct xgbe_channel *channel;
193	unsigned int i;
194
195	channel = pdata->channel;
196	for (i = 0; i < pdata->channel_count; i++, channel++) {
197		if (!channel->tx_ring)
198			break;
199
200		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, PBL,
201				       pdata->tx_pbl);
202	}
203
204	return 0;
205}
206
207static int xgbe_get_rx_pbl_val(struct xgbe_prv_data *pdata)
208{
209	return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_RCR, PBL);
210}
211
212static int xgbe_config_rx_pbl_val(struct xgbe_prv_data *pdata)
213{
214	struct xgbe_channel *channel;
215	unsigned int i;
216
217	channel = pdata->channel;
218	for (i = 0; i < pdata->channel_count; i++, channel++) {
219		if (!channel->rx_ring)
220			break;
221
222		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, PBL,
223				       pdata->rx_pbl);
224	}
225
226	return 0;
227}
228
229static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
230{
231	struct xgbe_channel *channel;
232	unsigned int i;
233
234	channel = pdata->channel;
235	for (i = 0; i < pdata->channel_count; i++, channel++) {
236		if (!channel->tx_ring)
237			break;
238
239		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, OSP,
240				       pdata->tx_osp_mode);
241	}
242
243	return 0;
244}
245
246static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
247{
248	unsigned int i;
249
250	for (i = 0; i < pdata->rx_q_count; i++)
251		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
252
253	return 0;
254}
255
256static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
257{
258	unsigned int i;
259
260	for (i = 0; i < pdata->tx_q_count; i++)
261		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
262
263	return 0;
264}
265
266static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
267				    unsigned int val)
268{
269	unsigned int i;
270
271	for (i = 0; i < pdata->rx_q_count; i++)
272		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
273
274	return 0;
275}
276
277static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
278				    unsigned int val)
279{
280	unsigned int i;
281
282	for (i = 0; i < pdata->tx_q_count; i++)
283		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
284
285	return 0;
286}
287
288static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
289{
290	struct xgbe_channel *channel;
291	unsigned int i;
292
293	channel = pdata->channel;
294	for (i = 0; i < pdata->channel_count; i++, channel++) {
295		if (!channel->rx_ring)
296			break;
297
298		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RIWT, RWT,
299				       pdata->rx_riwt);
300	}
301
302	return 0;
303}
304
305static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
306{
307	return 0;
308}
309
310static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
311{
312	struct xgbe_channel *channel;
313	unsigned int i;
314
315	channel = pdata->channel;
316	for (i = 0; i < pdata->channel_count; i++, channel++) {
317		if (!channel->rx_ring)
318			break;
319
320		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, RBSZ,
321				       pdata->rx_buf_size);
322	}
323}
324
325static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
326{
327	struct xgbe_channel *channel;
328	unsigned int i;
329
330	channel = pdata->channel;
331	for (i = 0; i < pdata->channel_count; i++, channel++) {
332		if (!channel->tx_ring)
333			break;
334
335		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, TSE, 1);
336	}
337}
338
339static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
340{
341	struct xgbe_channel *channel;
342	unsigned int i;
343
344	channel = pdata->channel;
345	for (i = 0; i < pdata->channel_count; i++, channel++) {
346		if (!channel->rx_ring)
347			break;
348
349		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, SPH, 1);
350	}
351
352	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
353}
354
355static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
356			      unsigned int index, unsigned int val)
357{
358	unsigned int wait;
359	int ret = 0;
360
361	mutex_lock(&pdata->rss_mutex);
362
363	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
364		ret = -EBUSY;
365		goto unlock;
366	}
367
368	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
369
370	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
371	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
372	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
373	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
374
375	wait = 1000;
376	while (wait--) {
377		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
378			goto unlock;
379
380		usleep_range(1000, 1500);
381	}
382
383	ret = -EBUSY;
384
385unlock:
386	mutex_unlock(&pdata->rss_mutex);
387
388	return ret;
389}
390
391static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
392{
393	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
394	unsigned int *key = (unsigned int *)&pdata->rss_key;
395	int ret;
396
397	while (key_regs--) {
398		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
399					 key_regs, *key++);
400		if (ret)
401			return ret;
402	}
403
404	return 0;
405}
406
407static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
408{
409	unsigned int i;
410	int ret;
411
412	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
413		ret = xgbe_write_rss_reg(pdata,
414					 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
415					 pdata->rss_table[i]);
416		if (ret)
417			return ret;
418	}
419
420	return 0;
421}
422
423static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
424{
425	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
426
427	return xgbe_write_rss_hash_key(pdata);
428}
429
430static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
431				     const u32 *table)
432{
433	unsigned int i;
434
435	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
436		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
437
438	return xgbe_write_rss_lookup_table(pdata);
439}
440
441static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
442{
443	int ret;
444
445	if (!pdata->hw_feat.rss)
446		return -EOPNOTSUPP;
447
448	/* Program the hash key */
449	ret = xgbe_write_rss_hash_key(pdata);
450	if (ret)
451		return ret;
452
453	/* Program the lookup table */
454	ret = xgbe_write_rss_lookup_table(pdata);
455	if (ret)
456		return ret;
457
458	/* Set the RSS options */
459	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
460
461	/* Enable RSS */
462	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
463
464	return 0;
465}
466
467static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
468{
469	if (!pdata->hw_feat.rss)
470		return -EOPNOTSUPP;
471
472	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
473
474	return 0;
475}
476
477static void xgbe_config_rss(struct xgbe_prv_data *pdata)
478{
479	int ret;
480
481	if (!pdata->hw_feat.rss)
482		return;
483
484	if (pdata->netdev->features & NETIF_F_RXHASH)
485		ret = xgbe_enable_rss(pdata);
486	else
487		ret = xgbe_disable_rss(pdata);
488
489	if (ret)
490		netdev_err(pdata->netdev,
491			   "error configuring RSS, RSS disabled\n");
492}
493
494static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
495{
496	unsigned int max_q_count, q_count;
497	unsigned int reg, reg_val;
498	unsigned int i;
499
500	/* Clear MTL flow control */
501	for (i = 0; i < pdata->rx_q_count; i++)
502		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
503
504	/* Clear MAC flow control */
505	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
506	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
507	reg = MAC_Q0TFCR;
508	for (i = 0; i < q_count; i++) {
509		reg_val = XGMAC_IOREAD(pdata, reg);
510		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
511		XGMAC_IOWRITE(pdata, reg, reg_val);
512
513		reg += MAC_QTFCR_INC;
514	}
515
516	return 0;
517}
518
519static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
520{
521	unsigned int max_q_count, q_count;
522	unsigned int reg, reg_val;
523	unsigned int i;
524
525	/* Set MTL flow control */
526	for (i = 0; i < pdata->rx_q_count; i++)
527		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 1);
528
529	/* Set MAC flow control */
530	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
531	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
532	reg = MAC_Q0TFCR;
533	for (i = 0; i < q_count; i++) {
534		reg_val = XGMAC_IOREAD(pdata, reg);
535
536		/* Enable transmit flow control */
537		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
538		/* Set pause time */
539		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
540
541		XGMAC_IOWRITE(pdata, reg, reg_val);
542
543		reg += MAC_QTFCR_INC;
544	}
545
546	return 0;
547}
548
549static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
550{
551	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
552
553	return 0;
554}
555
556static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
557{
558	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
559
560	return 0;
561}
562
563static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
564{
565	struct ieee_pfc *pfc = pdata->pfc;
566
567	if (pdata->tx_pause || (pfc && pfc->pfc_en))
568		xgbe_enable_tx_flow_control(pdata);
569	else
570		xgbe_disable_tx_flow_control(pdata);
571
572	return 0;
573}
574
575static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
576{
577	struct ieee_pfc *pfc = pdata->pfc;
578
579	if (pdata->rx_pause || (pfc && pfc->pfc_en))
580		xgbe_enable_rx_flow_control(pdata);
581	else
582		xgbe_disable_rx_flow_control(pdata);
583
584	return 0;
585}
586
587static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
588{
589	struct ieee_pfc *pfc = pdata->pfc;
590
591	xgbe_config_tx_flow_control(pdata);
592	xgbe_config_rx_flow_control(pdata);
593
594	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
595			   (pfc && pfc->pfc_en) ? 1 : 0);
596}
597
598static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
599{
600	struct xgbe_channel *channel;
601	unsigned int dma_ch_isr, dma_ch_ier;
602	unsigned int i;
603
604	channel = pdata->channel;
605	for (i = 0; i < pdata->channel_count; i++, channel++) {
606		/* Clear all the interrupts which are set */
607		dma_ch_isr = XGMAC_DMA_IOREAD(channel, DMA_CH_SR);
608		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr);
609
610		/* Clear all interrupt enable bits */
611		dma_ch_ier = 0;
612
613		/* Enable following interrupts
614		 *   NIE  - Normal Interrupt Summary Enable
615		 *   AIE  - Abnormal Interrupt Summary Enable
616		 *   FBEE - Fatal Bus Error Enable
617		 */
618		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, NIE, 1);
619		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, AIE, 1);
620		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1);
621
622		if (channel->tx_ring) {
623			/* Enable the following Tx interrupts
624			 *   TIE  - Transmit Interrupt Enable (unless using
625			 *          per channel interrupts)
626			 */
627			if (!pdata->per_channel_irq)
628				XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
629		}
630		if (channel->rx_ring) {
631			/* Enable following Rx interrupts
632			 *   RBUE - Receive Buffer Unavailable Enable
633			 *   RIE  - Receive Interrupt Enable (unless using
634			 *          per channel interrupts)
635			 */
636			XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
637			if (!pdata->per_channel_irq)
638				XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
639		}
640
641		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
642	}
643}
644
645static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
646{
647	unsigned int mtl_q_isr;
648	unsigned int q_count, i;
649
650	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
651	for (i = 0; i < q_count; i++) {
652		/* Clear all the interrupts which are set */
653		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
654		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
655
656		/* No MTL interrupts to be enabled */
657		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
658	}
659}
660
661static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
662{
663	unsigned int mac_ier = 0;
664
665	/* Enable Timestamp interrupt */
666	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
667
668	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
669
670	/* Enable all counter interrupts */
671	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
672	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
673}
674
675static int xgbe_set_gmii_speed(struct xgbe_prv_data *pdata)
676{
677	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0x3)
678		return 0;
679
680	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0x3);
681
682	return 0;
683}
684
685static int xgbe_set_gmii_2500_speed(struct xgbe_prv_data *pdata)
686{
687	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0x2)
688		return 0;
689
690	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0x2);
691
692	return 0;
693}
694
695static int xgbe_set_xgmii_speed(struct xgbe_prv_data *pdata)
696{
697	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0)
698		return 0;
699
700	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0);
701
702	return 0;
703}
704
705static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
706				     unsigned int enable)
707{
708	unsigned int val = enable ? 1 : 0;
709
710	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
711		return 0;
712
713	netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
714		  enable ? "entering" : "leaving");
715	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
716
717	return 0;
718}
719
720static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
721				       unsigned int enable)
722{
723	unsigned int val = enable ? 1 : 0;
724
725	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
726		return 0;
727
728	netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
729		  enable ? "entering" : "leaving");
730	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
731
732	return 0;
733}
734
735static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
736			     struct netdev_hw_addr *ha, unsigned int *mac_reg)
737{
738	unsigned int mac_addr_hi, mac_addr_lo;
739	u8 *mac_addr;
740
741	mac_addr_lo = 0;
742	mac_addr_hi = 0;
743
744	if (ha) {
745		mac_addr = (u8 *)&mac_addr_lo;
746		mac_addr[0] = ha->addr[0];
747		mac_addr[1] = ha->addr[1];
748		mac_addr[2] = ha->addr[2];
749		mac_addr[3] = ha->addr[3];
750		mac_addr = (u8 *)&mac_addr_hi;
751		mac_addr[0] = ha->addr[4];
752		mac_addr[1] = ha->addr[5];
753
754		netif_dbg(pdata, drv, pdata->netdev,
755			  "adding mac address %pM at %#x\n",
756			  ha->addr, *mac_reg);
757
758		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
759	}
760
761	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
762	*mac_reg += MAC_MACA_INC;
763	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
764	*mac_reg += MAC_MACA_INC;
765}
766
767static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
768{
769	struct net_device *netdev = pdata->netdev;
770	struct netdev_hw_addr *ha;
771	unsigned int mac_reg;
772	unsigned int addn_macs;
773
774	mac_reg = MAC_MACA1HR;
775	addn_macs = pdata->hw_feat.addn_mac;
776
777	if (netdev_uc_count(netdev) > addn_macs) {
778		xgbe_set_promiscuous_mode(pdata, 1);
779	} else {
780		netdev_for_each_uc_addr(ha, netdev) {
781			xgbe_set_mac_reg(pdata, ha, &mac_reg);
782			addn_macs--;
783		}
784
785		if (netdev_mc_count(netdev) > addn_macs) {
786			xgbe_set_all_multicast_mode(pdata, 1);
787		} else {
788			netdev_for_each_mc_addr(ha, netdev) {
789				xgbe_set_mac_reg(pdata, ha, &mac_reg);
790				addn_macs--;
791			}
792		}
793	}
794
795	/* Clear remaining additional MAC address entries */
796	while (addn_macs--)
797		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
798}
799
800static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
801{
802	struct net_device *netdev = pdata->netdev;
803	struct netdev_hw_addr *ha;
804	unsigned int hash_reg;
805	unsigned int hash_table_shift, hash_table_count;
806	u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
807	u32 crc;
808	unsigned int i;
809
810	hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
811	hash_table_count = pdata->hw_feat.hash_table_size / 32;
812	memset(hash_table, 0, sizeof(hash_table));
813
814	/* Build the MAC Hash Table register values */
815	netdev_for_each_uc_addr(ha, netdev) {
816		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
817		crc >>= hash_table_shift;
818		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
819	}
820
821	netdev_for_each_mc_addr(ha, netdev) {
822		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
823		crc >>= hash_table_shift;
824		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
825	}
826
827	/* Set the MAC Hash Table registers */
828	hash_reg = MAC_HTR0;
829	for (i = 0; i < hash_table_count; i++) {
830		XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
831		hash_reg += MAC_HTR_INC;
832	}
833}
834
835static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
836{
837	if (pdata->hw_feat.hash_table_size)
838		xgbe_set_mac_hash_table(pdata);
839	else
840		xgbe_set_mac_addn_addrs(pdata);
841
842	return 0;
843}
844
845static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr)
846{
847	unsigned int mac_addr_hi, mac_addr_lo;
848
849	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
850	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
851		      (addr[1] <<  8) | (addr[0] <<  0);
852
853	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
854	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
855
856	return 0;
857}
858
859static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
860{
861	struct net_device *netdev = pdata->netdev;
862	unsigned int pr_mode, am_mode;
863
864	pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
865	am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
866
867	xgbe_set_promiscuous_mode(pdata, pr_mode);
868	xgbe_set_all_multicast_mode(pdata, am_mode);
869
870	xgbe_add_mac_addresses(pdata);
871
872	return 0;
873}
874
875static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
876			      int mmd_reg)
877{
878	unsigned int mmd_address;
879	int mmd_data;
880
881	if (mmd_reg & MII_ADDR_C45)
882		mmd_address = mmd_reg & ~MII_ADDR_C45;
883	else
884		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
885
886	/* The PCS registers are accessed using mmio. The underlying APB3
887	 * management interface uses indirect addressing to access the MMD
888	 * register sets. This requires accessing of the PCS register in two
889	 * phases, an address phase and a data phase.
890	 *
891	 * The mmio interface is based on 32-bit offsets and values. All
892	 * register offsets must therefore be adjusted by left shifting the
893	 * offset 2 bits and reading 32 bits of data.
894	 */
895	mutex_lock(&pdata->xpcs_mutex);
896	XPCS_IOWRITE(pdata, PCS_MMD_SELECT << 2, mmd_address >> 8);
897	mmd_data = XPCS_IOREAD(pdata, (mmd_address & 0xff) << 2);
898	mutex_unlock(&pdata->xpcs_mutex);
899
900	return mmd_data;
901}
902
903static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
904				int mmd_reg, int mmd_data)
905{
906	unsigned int mmd_address;
907
908	if (mmd_reg & MII_ADDR_C45)
909		mmd_address = mmd_reg & ~MII_ADDR_C45;
910	else
911		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
912
913	/* The PCS registers are accessed using mmio. The underlying APB3
914	 * management interface uses indirect addressing to access the MMD
915	 * register sets. This requires accessing of the PCS register in two
916	 * phases, an address phase and a data phase.
917	 *
918	 * The mmio interface is based on 32-bit offsets and values. All
919	 * register offsets must therefore be adjusted by left shifting the
920	 * offset 2 bits and reading 32 bits of data.
921	 */
922	mutex_lock(&pdata->xpcs_mutex);
923	XPCS_IOWRITE(pdata, PCS_MMD_SELECT << 2, mmd_address >> 8);
924	XPCS_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
925	mutex_unlock(&pdata->xpcs_mutex);
926}
927
928static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
929{
930	return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
931}
932
933static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
934{
935	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
936
937	return 0;
938}
939
940static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
941{
942	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
943
944	return 0;
945}
946
947static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
948{
949	/* Put the VLAN tag in the Rx descriptor */
950	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
951
952	/* Don't check the VLAN type */
953	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
954
955	/* Check only C-TAG (0x8100) packets */
956	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
957
958	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
959	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
960
961	/* Enable VLAN tag stripping */
962	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
963
964	return 0;
965}
966
967static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
968{
969	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
970
971	return 0;
972}
973
974static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
975{
976	/* Enable VLAN filtering */
977	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
978
979	/* Enable VLAN Hash Table filtering */
980	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
981
982	/* Disable VLAN tag inverse matching */
983	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
984
985	/* Only filter on the lower 12-bits of the VLAN tag */
986	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
987
988	/* In order for the VLAN Hash Table filtering to be effective,
989	 * the VLAN tag identifier in the VLAN Tag Register must not
990	 * be zero.  Set the VLAN tag identifier to "1" to enable the
991	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
992	 * 1 will always pass filtering.
993	 */
994	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
995
996	return 0;
997}
998
999static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
1000{
1001	/* Disable VLAN filtering */
1002	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
1003
1004	return 0;
1005}
1006
1007#ifndef CRCPOLY_LE
1008#define CRCPOLY_LE 0xedb88320
1009#endif
1010static u32 xgbe_vid_crc32_le(__le16 vid_le)
1011{
1012	u32 poly = CRCPOLY_LE;
1013	u32 crc = ~0;
1014	u32 temp = 0;
1015	unsigned char *data = (unsigned char *)&vid_le;
1016	unsigned char data_byte = 0;
1017	int i, bits;
1018
1019	bits = get_bitmask_order(VLAN_VID_MASK);
1020	for (i = 0; i < bits; i++) {
1021		if ((i % 8) == 0)
1022			data_byte = data[i / 8];
1023
1024		temp = ((crc & 1) ^ data_byte) & 1;
1025		crc >>= 1;
1026		data_byte >>= 1;
1027
1028		if (temp)
1029			crc ^= poly;
1030	}
1031
1032	return crc;
1033}
1034
1035static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
1036{
1037	u32 crc;
1038	u16 vid;
1039	__le16 vid_le;
1040	u16 vlan_hash_table = 0;
1041
1042	/* Generate the VLAN Hash Table value */
1043	for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
1044		/* Get the CRC32 value of the VLAN ID */
1045		vid_le = cpu_to_le16(vid);
1046		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
1047
1048		vlan_hash_table |= (1 << crc);
1049	}
1050
1051	/* Set the VLAN Hash Table filtering register */
1052	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
1053
1054	return 0;
1055}
1056
1057static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1058{
1059	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1060
1061	/* Reset the Tx descriptor
1062	 *   Set buffer 1 (lo) address to zero
1063	 *   Set buffer 1 (hi) address to zero
1064	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1065	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1066	 */
1067	rdesc->desc0 = 0;
1068	rdesc->desc1 = 0;
1069	rdesc->desc2 = 0;
1070	rdesc->desc3 = 0;
1071
1072	/* Make sure ownership is written to the descriptor */
1073	dma_wmb();
1074}
1075
1076static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1077{
1078	struct xgbe_ring *ring = channel->tx_ring;
1079	struct xgbe_ring_data *rdata;
1080	int i;
1081	int start_index = ring->cur;
1082
1083	DBGPR("-->tx_desc_init\n");
1084
1085	/* Initialze all descriptors */
1086	for (i = 0; i < ring->rdesc_count; i++) {
1087		rdata = XGBE_GET_DESC_DATA(ring, i);
1088
1089		/* Initialize Tx descriptor */
1090		xgbe_tx_desc_reset(rdata);
1091	}
1092
1093	/* Update the total number of Tx descriptors */
1094	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1095
1096	/* Update the starting address of descriptor ring */
1097	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1098	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1099			  upper_32_bits(rdata->rdesc_dma));
1100	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1101			  lower_32_bits(rdata->rdesc_dma));
1102
1103	DBGPR("<--tx_desc_init\n");
1104}
1105
1106static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1107			       struct xgbe_ring_data *rdata, unsigned int index)
1108{
1109	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1110	unsigned int rx_usecs = pdata->rx_usecs;
1111	unsigned int rx_frames = pdata->rx_frames;
1112	unsigned int inte;
1113	dma_addr_t hdr_dma, buf_dma;
1114
1115	if (!rx_usecs && !rx_frames) {
1116		/* No coalescing, interrupt for every descriptor */
1117		inte = 1;
1118	} else {
1119		/* Set interrupt based on Rx frame coalescing setting */
1120		if (rx_frames && !((index + 1) % rx_frames))
1121			inte = 1;
1122		else
1123			inte = 0;
1124	}
1125
1126	/* Reset the Rx descriptor
1127	 *   Set buffer 1 (lo) address to header dma address (lo)
1128	 *   Set buffer 1 (hi) address to header dma address (hi)
1129	 *   Set buffer 2 (lo) address to buffer dma address (lo)
1130	 *   Set buffer 2 (hi) address to buffer dma address (hi) and
1131	 *     set control bits OWN and INTE
1132	 */
1133	hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1134	buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1135	rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1136	rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1137	rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1138	rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1139
1140	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1141
1142	/* Since the Rx DMA engine is likely running, make sure everything
1143	 * is written to the descriptor(s) before setting the OWN bit
1144	 * for the descriptor
1145	 */
1146	dma_wmb();
1147
1148	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1149
1150	/* Make sure ownership is written to the descriptor */
1151	dma_wmb();
1152}
1153
1154static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1155{
1156	struct xgbe_prv_data *pdata = channel->pdata;
1157	struct xgbe_ring *ring = channel->rx_ring;
1158	struct xgbe_ring_data *rdata;
1159	unsigned int start_index = ring->cur;
1160	unsigned int i;
1161
1162	DBGPR("-->rx_desc_init\n");
1163
1164	/* Initialize all descriptors */
1165	for (i = 0; i < ring->rdesc_count; i++) {
1166		rdata = XGBE_GET_DESC_DATA(ring, i);
1167
1168		/* Initialize Rx descriptor */
1169		xgbe_rx_desc_reset(pdata, rdata, i);
1170	}
1171
1172	/* Update the total number of Rx descriptors */
1173	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1174
1175	/* Update the starting address of descriptor ring */
1176	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1177	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1178			  upper_32_bits(rdata->rdesc_dma));
1179	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1180			  lower_32_bits(rdata->rdesc_dma));
1181
1182	/* Update the Rx Descriptor Tail Pointer */
1183	rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1184	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1185			  lower_32_bits(rdata->rdesc_dma));
1186
1187	DBGPR("<--rx_desc_init\n");
1188}
1189
1190static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1191				      unsigned int addend)
1192{
1193	/* Set the addend register value and tell the device */
1194	XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1195	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1196
1197	/* Wait for addend update to complete */
1198	while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1199		udelay(5);
1200}
1201
1202static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1203				 unsigned int nsec)
1204{
1205	/* Set the time values and tell the device */
1206	XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1207	XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1208	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1209
1210	/* Wait for time update to complete */
1211	while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1212		udelay(5);
1213}
1214
1215static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1216{
1217	u64 nsec;
1218
1219	nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1220	nsec *= NSEC_PER_SEC;
1221	nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1222
1223	return nsec;
1224}
1225
1226static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1227{
1228	unsigned int tx_snr;
1229	u64 nsec;
1230
1231	tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1232	if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1233		return 0;
1234
1235	nsec = XGMAC_IOREAD(pdata, MAC_TXSSR);
1236	nsec *= NSEC_PER_SEC;
1237	nsec += tx_snr;
1238
1239	return nsec;
1240}
1241
1242static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1243			       struct xgbe_ring_desc *rdesc)
1244{
1245	u64 nsec;
1246
1247	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1248	    !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1249		nsec = le32_to_cpu(rdesc->desc1);
1250		nsec <<= 32;
1251		nsec |= le32_to_cpu(rdesc->desc0);
1252		if (nsec != 0xffffffffffffffffULL) {
1253			packet->rx_tstamp = nsec;
1254			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1255				       RX_TSTAMP, 1);
1256		}
1257	}
1258}
1259
1260static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1261			      unsigned int mac_tscr)
1262{
1263	/* Set one nano-second accuracy */
1264	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1265
1266	/* Set fine timestamp update */
1267	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1268
1269	/* Overwrite earlier timestamps */
1270	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1271
1272	XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1273
1274	/* Exit if timestamping is not enabled */
1275	if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1276		return 0;
1277
1278	/* Initialize time registers */
1279	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1280	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1281	xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1282	xgbe_set_tstamp_time(pdata, 0, 0);
1283
1284	/* Initialize the timecounter */
1285	timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1286			 ktime_to_ns(ktime_get_real()));
1287
1288	return 0;
1289}
1290
1291static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
1292{
1293	struct ieee_ets *ets = pdata->ets;
1294	unsigned int total_weight, min_weight, weight;
1295	unsigned int i;
1296
1297	if (!ets)
1298		return;
1299
1300	/* Set Tx to deficit weighted round robin scheduling algorithm (when
1301	 * traffic class is using ETS algorithm)
1302	 */
1303	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
1304
1305	/* Set Traffic Class algorithms */
1306	total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
1307	min_weight = total_weight / 100;
1308	if (!min_weight)
1309		min_weight = 1;
1310
1311	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1312		switch (ets->tc_tsa[i]) {
1313		case IEEE_8021QAZ_TSA_STRICT:
1314			netif_dbg(pdata, drv, pdata->netdev,
1315				  "TC%u using SP\n", i);
1316			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1317					       MTL_TSA_SP);
1318			break;
1319		case IEEE_8021QAZ_TSA_ETS:
1320			weight = total_weight * ets->tc_tx_bw[i] / 100;
1321			weight = clamp(weight, min_weight, total_weight);
1322
1323			netif_dbg(pdata, drv, pdata->netdev,
1324				  "TC%u using DWRR (weight %u)\n", i, weight);
1325			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1326					       MTL_TSA_ETS);
1327			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
1328					       weight);
1329			break;
1330		}
1331	}
1332}
1333
1334static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
1335{
1336	struct ieee_pfc *pfc = pdata->pfc;
1337	struct ieee_ets *ets = pdata->ets;
1338	unsigned int mask, reg, reg_val;
1339	unsigned int tc, prio;
1340
1341	if (!pfc || !ets)
1342		return;
1343
1344	for (tc = 0; tc < pdata->hw_feat.tc_cnt; tc++) {
1345		mask = 0;
1346		for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
1347			if ((pfc->pfc_en & (1 << prio)) &&
1348			    (ets->prio_tc[prio] == tc))
1349				mask |= (1 << prio);
1350		}
1351		mask &= 0xff;
1352
1353		netif_dbg(pdata, drv, pdata->netdev, "TC%u PFC mask=%#x\n",
1354			  tc, mask);
1355		reg = MTL_TCPM0R + (MTL_TCPM_INC * (tc / MTL_TCPM_TC_PER_REG));
1356		reg_val = XGMAC_IOREAD(pdata, reg);
1357
1358		reg_val &= ~(0xff << ((tc % MTL_TCPM_TC_PER_REG) << 3));
1359		reg_val |= (mask << ((tc % MTL_TCPM_TC_PER_REG) << 3));
1360
1361		XGMAC_IOWRITE(pdata, reg, reg_val);
1362	}
1363
1364	xgbe_config_flow_control(pdata);
1365}
1366
1367static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1368			       struct xgbe_ring *ring)
1369{
1370	struct xgbe_prv_data *pdata = channel->pdata;
1371	struct xgbe_ring_data *rdata;
1372
1373	/* Make sure everything is written before the register write */
1374	wmb();
1375
1376	/* Issue a poll command to Tx DMA by writing address
1377	 * of next immediate free descriptor */
1378	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1379	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1380			  lower_32_bits(rdata->rdesc_dma));
1381
1382	/* Start the Tx timer */
1383	if (pdata->tx_usecs && !channel->tx_timer_active) {
1384		channel->tx_timer_active = 1;
1385		mod_timer(&channel->tx_timer,
1386			  jiffies + usecs_to_jiffies(pdata->tx_usecs));
1387	}
1388
1389	ring->tx.xmit_more = 0;
1390}
1391
1392static void xgbe_dev_xmit(struct xgbe_channel *channel)
1393{
1394	struct xgbe_prv_data *pdata = channel->pdata;
1395	struct xgbe_ring *ring = channel->tx_ring;
1396	struct xgbe_ring_data *rdata;
1397	struct xgbe_ring_desc *rdesc;
1398	struct xgbe_packet_data *packet = &ring->packet_data;
1399	unsigned int csum, tso, vlan;
1400	unsigned int tso_context, vlan_context;
1401	unsigned int tx_set_ic;
1402	int start_index = ring->cur;
1403	int cur_index = ring->cur;
1404	int i;
1405
1406	DBGPR("-->xgbe_dev_xmit\n");
1407
1408	csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1409			      CSUM_ENABLE);
1410	tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1411			     TSO_ENABLE);
1412	vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1413			      VLAN_CTAG);
1414
1415	if (tso && (packet->mss != ring->tx.cur_mss))
1416		tso_context = 1;
1417	else
1418		tso_context = 0;
1419
1420	if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1421		vlan_context = 1;
1422	else
1423		vlan_context = 0;
1424
1425	/* Determine if an interrupt should be generated for this Tx:
1426	 *   Interrupt:
1427	 *     - Tx frame count exceeds the frame count setting
1428	 *     - Addition of Tx frame count to the frame count since the
1429	 *       last interrupt was set exceeds the frame count setting
1430	 *   No interrupt:
1431	 *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1432	 *     - Addition of Tx frame count to the frame count since the
1433	 *       last interrupt was set does not exceed the frame count setting
1434	 */
1435	ring->coalesce_count += packet->tx_packets;
1436	if (!pdata->tx_frames)
1437		tx_set_ic = 0;
1438	else if (packet->tx_packets > pdata->tx_frames)
1439		tx_set_ic = 1;
1440	else if ((ring->coalesce_count % pdata->tx_frames) <
1441		 packet->tx_packets)
1442		tx_set_ic = 1;
1443	else
1444		tx_set_ic = 0;
1445
1446	rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1447	rdesc = rdata->rdesc;
1448
1449	/* Create a context descriptor if this is a TSO packet */
1450	if (tso_context || vlan_context) {
1451		if (tso_context) {
1452			netif_dbg(pdata, tx_queued, pdata->netdev,
1453				  "TSO context descriptor, mss=%u\n",
1454				  packet->mss);
1455
1456			/* Set the MSS size */
1457			XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1458					  MSS, packet->mss);
1459
1460			/* Mark it as a CONTEXT descriptor */
1461			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1462					  CTXT, 1);
1463
1464			/* Indicate this descriptor contains the MSS */
1465			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1466					  TCMSSV, 1);
1467
1468			ring->tx.cur_mss = packet->mss;
1469		}
1470
1471		if (vlan_context) {
1472			netif_dbg(pdata, tx_queued, pdata->netdev,
1473				  "VLAN context descriptor, ctag=%u\n",
1474				  packet->vlan_ctag);
1475
1476			/* Mark it as a CONTEXT descriptor */
1477			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1478					  CTXT, 1);
1479
1480			/* Set the VLAN tag */
1481			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1482					  VT, packet->vlan_ctag);
1483
1484			/* Indicate this descriptor contains the VLAN tag */
1485			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1486					  VLTV, 1);
1487
1488			ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1489		}
1490
1491		cur_index++;
1492		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1493		rdesc = rdata->rdesc;
1494	}
1495
1496	/* Update buffer address (for TSO this is the header) */
1497	rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1498	rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1499
1500	/* Update the buffer length */
1501	XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1502			  rdata->skb_dma_len);
1503
1504	/* VLAN tag insertion check */
1505	if (vlan)
1506		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1507				  TX_NORMAL_DESC2_VLAN_INSERT);
1508
1509	/* Timestamp enablement check */
1510	if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1511		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1512
1513	/* Mark it as First Descriptor */
1514	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1515
1516	/* Mark it as a NORMAL descriptor */
1517	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1518
1519	/* Set OWN bit if not the first descriptor */
1520	if (cur_index != start_index)
1521		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1522
1523	if (tso) {
1524		/* Enable TSO */
1525		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1526		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1527				  packet->tcp_payload_len);
1528		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1529				  packet->tcp_header_len / 4);
1530
1531		pdata->ext_stats.tx_tso_packets++;
1532	} else {
1533		/* Enable CRC and Pad Insertion */
1534		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1535
1536		/* Enable HW CSUM */
1537		if (csum)
1538			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1539					  CIC, 0x3);
1540
1541		/* Set the total length to be transmitted */
1542		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1543				  packet->length);
1544	}
1545
1546	for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1547		cur_index++;
1548		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1549		rdesc = rdata->rdesc;
1550
1551		/* Update buffer address */
1552		rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1553		rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1554
1555		/* Update the buffer length */
1556		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1557				  rdata->skb_dma_len);
1558
1559		/* Set OWN bit */
1560		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1561
1562		/* Mark it as NORMAL descriptor */
1563		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1564
1565		/* Enable HW CSUM */
1566		if (csum)
1567			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1568					  CIC, 0x3);
1569	}
1570
1571	/* Set LAST bit for the last descriptor */
1572	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1573
1574	/* Set IC bit based on Tx coalescing settings */
1575	if (tx_set_ic)
1576		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1577
1578	/* Save the Tx info to report back during cleanup */
1579	rdata->tx.packets = packet->tx_packets;
1580	rdata->tx.bytes = packet->tx_bytes;
1581
1582	/* In case the Tx DMA engine is running, make sure everything
1583	 * is written to the descriptor(s) before setting the OWN bit
1584	 * for the first descriptor
1585	 */
1586	dma_wmb();
1587
1588	/* Set OWN bit for the first descriptor */
1589	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1590	rdesc = rdata->rdesc;
1591	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1592
1593	if (netif_msg_tx_queued(pdata))
1594		xgbe_dump_tx_desc(pdata, ring, start_index,
1595				  packet->rdesc_count, 1);
1596
1597	/* Make sure ownership is written to the descriptor */
1598	smp_wmb();
1599
1600	ring->cur = cur_index + 1;
1601	if (!packet->skb->xmit_more ||
1602	    netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1603						   channel->queue_index)))
1604		xgbe_tx_start_xmit(channel, ring);
1605	else
1606		ring->tx.xmit_more = 1;
1607
1608	DBGPR("  %s: descriptors %u to %u written\n",
1609	      channel->name, start_index & (ring->rdesc_count - 1),
1610	      (ring->cur - 1) & (ring->rdesc_count - 1));
1611
1612	DBGPR("<--xgbe_dev_xmit\n");
1613}
1614
1615static int xgbe_dev_read(struct xgbe_channel *channel)
1616{
1617	struct xgbe_prv_data *pdata = channel->pdata;
1618	struct xgbe_ring *ring = channel->rx_ring;
1619	struct xgbe_ring_data *rdata;
1620	struct xgbe_ring_desc *rdesc;
1621	struct xgbe_packet_data *packet = &ring->packet_data;
1622	struct net_device *netdev = pdata->netdev;
1623	unsigned int err, etlt, l34t;
1624
1625	DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1626
1627	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1628	rdesc = rdata->rdesc;
1629
1630	/* Check for data availability */
1631	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1632		return 1;
1633
1634	/* Make sure descriptor fields are read after reading the OWN bit */
1635	dma_rmb();
1636
1637	if (netif_msg_rx_status(pdata))
1638		xgbe_dump_rx_desc(pdata, ring, ring->cur);
1639
1640	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1641		/* Timestamp Context Descriptor */
1642		xgbe_get_rx_tstamp(packet, rdesc);
1643
1644		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1645			       CONTEXT, 1);
1646		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1647			       CONTEXT_NEXT, 0);
1648		return 0;
1649	}
1650
1651	/* Normal Descriptor, be sure Context Descriptor bit is off */
1652	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1653
1654	/* Indicate if a Context Descriptor is next */
1655	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1656		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1657			       CONTEXT_NEXT, 1);
1658
1659	/* Get the header length */
1660	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1661		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1662						      RX_NORMAL_DESC2, HL);
1663		if (rdata->rx.hdr_len)
1664			pdata->ext_stats.rx_split_header_packets++;
1665	}
1666
1667	/* Get the RSS hash */
1668	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1669		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1670			       RSS_HASH, 1);
1671
1672		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1673
1674		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1675		switch (l34t) {
1676		case RX_DESC3_L34T_IPV4_TCP:
1677		case RX_DESC3_L34T_IPV4_UDP:
1678		case RX_DESC3_L34T_IPV6_TCP:
1679		case RX_DESC3_L34T_IPV6_UDP:
1680			packet->rss_hash_type = PKT_HASH_TYPE_L4;
1681			break;
1682		default:
1683			packet->rss_hash_type = PKT_HASH_TYPE_L3;
1684		}
1685	}
1686
1687	/* Get the packet length */
1688	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1689
1690	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
1691		/* Not all the data has been transferred for this packet */
1692		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1693			       INCOMPLETE, 1);
1694		return 0;
1695	}
1696
1697	/* This is the last of the data for this packet */
1698	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1699		       INCOMPLETE, 0);
1700
1701	/* Set checksum done indicator as appropriate */
1702	if (netdev->features & NETIF_F_RXCSUM)
1703		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1704			       CSUM_DONE, 1);
1705
1706	/* Check for errors (only valid in last descriptor) */
1707	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
1708	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
1709	netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
1710
1711	if (!err || !etlt) {
1712		/* No error if err is 0 or etlt is 0 */
1713		if ((etlt == 0x09) &&
1714		    (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1715			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1716				       VLAN_CTAG, 1);
1717			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
1718							      RX_NORMAL_DESC0,
1719							      OVT);
1720			netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
1721				  packet->vlan_ctag);
1722		}
1723	} else {
1724		if ((etlt == 0x05) || (etlt == 0x06))
1725			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1726				       CSUM_DONE, 0);
1727		else
1728			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
1729				       FRAME, 1);
1730	}
1731
1732	DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
1733	      ring->cur & (ring->rdesc_count - 1), ring->cur);
1734
1735	return 0;
1736}
1737
1738static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
1739{
1740	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
1741	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
1742}
1743
1744static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
1745{
1746	/* Rx and Tx share LD bit, so check TDES3.LD bit */
1747	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
1748}
1749
1750static int xgbe_enable_int(struct xgbe_channel *channel,
1751			   enum xgbe_int int_id)
1752{
1753	unsigned int dma_ch_ier;
1754
1755	dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER);
1756
1757	switch (int_id) {
1758	case XGMAC_INT_DMA_CH_SR_TI:
1759		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
1760		break;
1761	case XGMAC_INT_DMA_CH_SR_TPS:
1762		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 1);
1763		break;
1764	case XGMAC_INT_DMA_CH_SR_TBU:
1765		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 1);
1766		break;
1767	case XGMAC_INT_DMA_CH_SR_RI:
1768		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
1769		break;
1770	case XGMAC_INT_DMA_CH_SR_RBU:
1771		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
1772		break;
1773	case XGMAC_INT_DMA_CH_SR_RPS:
1774		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 1);
1775		break;
1776	case XGMAC_INT_DMA_CH_SR_TI_RI:
1777		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
1778		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
1779		break;
1780	case XGMAC_INT_DMA_CH_SR_FBE:
1781		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1);
1782		break;
1783	case XGMAC_INT_DMA_ALL:
1784		dma_ch_ier |= channel->saved_ier;
1785		break;
1786	default:
1787		return -1;
1788	}
1789
1790	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
1791
1792	return 0;
1793}
1794
1795static int xgbe_disable_int(struct xgbe_channel *channel,
1796			    enum xgbe_int int_id)
1797{
1798	unsigned int dma_ch_ier;
1799
1800	dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER);
1801
1802	switch (int_id) {
1803	case XGMAC_INT_DMA_CH_SR_TI:
1804		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0);
1805		break;
1806	case XGMAC_INT_DMA_CH_SR_TPS:
1807		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 0);
1808		break;
1809	case XGMAC_INT_DMA_CH_SR_TBU:
1810		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 0);
1811		break;
1812	case XGMAC_INT_DMA_CH_SR_RI:
1813		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0);
1814		break;
1815	case XGMAC_INT_DMA_CH_SR_RBU:
1816		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 0);
1817		break;
1818	case XGMAC_INT_DMA_CH_SR_RPS:
1819		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 0);
1820		break;
1821	case XGMAC_INT_DMA_CH_SR_TI_RI:
1822		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0);
1823		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0);
1824		break;
1825	case XGMAC_INT_DMA_CH_SR_FBE:
1826		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 0);
1827		break;
1828	case XGMAC_INT_DMA_ALL:
1829		channel->saved_ier = dma_ch_ier & XGBE_DMA_INTERRUPT_MASK;
1830		dma_ch_ier &= ~XGBE_DMA_INTERRUPT_MASK;
1831		break;
1832	default:
1833		return -1;
1834	}
1835
1836	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
1837
1838	return 0;
1839}
1840
1841static int xgbe_exit(struct xgbe_prv_data *pdata)
1842{
1843	unsigned int count = 2000;
1844
1845	DBGPR("-->xgbe_exit\n");
1846
1847	/* Issue a software reset */
1848	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
1849	usleep_range(10, 15);
1850
1851	/* Poll Until Poll Condition */
1852	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
1853		usleep_range(500, 600);
1854
1855	if (!count)
1856		return -EBUSY;
1857
1858	DBGPR("<--xgbe_exit\n");
1859
1860	return 0;
1861}
1862
1863static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
1864{
1865	unsigned int i, count;
1866
1867	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
1868		return 0;
1869
1870	for (i = 0; i < pdata->tx_q_count; i++)
1871		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
1872
1873	/* Poll Until Poll Condition */
1874	for (i = 0; i < pdata->tx_q_count; i++) {
1875		count = 2000;
1876		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
1877							MTL_Q_TQOMR, FTQ))
1878			usleep_range(500, 600);
1879
1880		if (!count)
1881			return -EBUSY;
1882	}
1883
1884	return 0;
1885}
1886
1887static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
1888{
1889	/* Set enhanced addressing mode */
1890	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, EAME, 1);
1891
1892	/* Set the System Bus mode */
1893	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, UNDEF, 1);
1894	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, BLEN_256, 1);
1895}
1896
1897static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
1898{
1899	unsigned int arcache, awcache;
1900
1901	arcache = 0;
1902	XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRC, pdata->arcache);
1903	XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRD, pdata->axdomain);
1904	XGMAC_SET_BITS(arcache, DMA_AXIARCR, TEC, pdata->arcache);
1905	XGMAC_SET_BITS(arcache, DMA_AXIARCR, TED, pdata->axdomain);
1906	XGMAC_SET_BITS(arcache, DMA_AXIARCR, THC, pdata->arcache);
1907	XGMAC_SET_BITS(arcache, DMA_AXIARCR, THD, pdata->axdomain);
1908	XGMAC_IOWRITE(pdata, DMA_AXIARCR, arcache);
1909
1910	awcache = 0;
1911	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWC, pdata->awcache);
1912	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWD, pdata->axdomain);
1913	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPC, pdata->awcache);
1914	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPD, pdata->axdomain);
1915	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHC, pdata->awcache);
1916	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHD, pdata->axdomain);
1917	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDC, pdata->awcache);
1918	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDD, pdata->axdomain);
1919	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, awcache);
1920}
1921
1922static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
1923{
1924	unsigned int i;
1925
1926	/* Set Tx to weighted round robin scheduling algorithm */
1927	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
1928
1929	/* Set Tx traffic classes to use WRR algorithm with equal weights */
1930	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1931		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1932				       MTL_TSA_ETS);
1933		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
1934	}
1935
1936	/* Set Rx to strict priority algorithm */
1937	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
1938}
1939
1940static unsigned int xgbe_calculate_per_queue_fifo(unsigned int fifo_size,
1941						  unsigned int queue_count)
1942{
1943	unsigned int q_fifo_size;
1944	unsigned int p_fifo;
1945
1946	/* Calculate the configured fifo size */
1947	q_fifo_size = 1 << (fifo_size + 7);
1948
1949	/* The configured value may not be the actual amount of fifo RAM */
1950	q_fifo_size = min_t(unsigned int, XGBE_FIFO_MAX, q_fifo_size);
1951
1952	q_fifo_size = q_fifo_size / queue_count;
1953
1954	/* Each increment in the queue fifo size represents 256 bytes of
1955	 * fifo, with 0 representing 256 bytes. Distribute the fifo equally
1956	 * between the queues.
1957	 */
1958	p_fifo = q_fifo_size / 256;
1959	if (p_fifo)
1960		p_fifo--;
1961
1962	return p_fifo;
1963}
1964
1965static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
1966{
1967	unsigned int fifo_size;
1968	unsigned int i;
1969
1970	fifo_size = xgbe_calculate_per_queue_fifo(pdata->hw_feat.tx_fifo_size,
1971						  pdata->tx_q_count);
1972
1973	for (i = 0; i < pdata->tx_q_count; i++)
1974		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo_size);
1975
1976	netif_info(pdata, drv, pdata->netdev,
1977		   "%d Tx hardware queues, %d byte fifo per queue\n",
1978		   pdata->tx_q_count, ((fifo_size + 1) * 256));
1979}
1980
1981static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
1982{
1983	unsigned int fifo_size;
1984	unsigned int i;
1985
1986	fifo_size = xgbe_calculate_per_queue_fifo(pdata->hw_feat.rx_fifo_size,
1987						  pdata->rx_q_count);
1988
1989	for (i = 0; i < pdata->rx_q_count; i++)
1990		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo_size);
1991
1992	netif_info(pdata, drv, pdata->netdev,
1993		   "%d Rx hardware queues, %d byte fifo per queue\n",
1994		   pdata->rx_q_count, ((fifo_size + 1) * 256));
1995}
1996
1997static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
1998{
1999	unsigned int qptc, qptc_extra, queue;
2000	unsigned int prio_queues;
2001	unsigned int ppq, ppq_extra, prio;
2002	unsigned int mask;
2003	unsigned int i, j, reg, reg_val;
2004
2005	/* Map the MTL Tx Queues to Traffic Classes
2006	 *   Note: Tx Queues >= Traffic Classes
2007	 */
2008	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2009	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2010
2011	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2012		for (j = 0; j < qptc; j++) {
2013			netif_dbg(pdata, drv, pdata->netdev,
2014				  "TXq%u mapped to TC%u\n", queue, i);
2015			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2016					       Q2TCMAP, i);
2017			pdata->q2tc_map[queue++] = i;
2018		}
2019
2020		if (i < qptc_extra) {
2021			netif_dbg(pdata, drv, pdata->netdev,
2022				  "TXq%u mapped to TC%u\n", queue, i);
2023			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2024					       Q2TCMAP, i);
2025			pdata->q2tc_map[queue++] = i;
2026		}
2027	}
2028
2029	/* Map the 8 VLAN priority values to available MTL Rx queues */
2030	prio_queues = min_t(unsigned int, IEEE_8021QAZ_MAX_TCS,
2031			    pdata->rx_q_count);
2032	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2033	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2034
2035	reg = MAC_RQC2R;
2036	reg_val = 0;
2037	for (i = 0, prio = 0; i < prio_queues;) {
2038		mask = 0;
2039		for (j = 0; j < ppq; j++) {
2040			netif_dbg(pdata, drv, pdata->netdev,
2041				  "PRIO%u mapped to RXq%u\n", prio, i);
2042			mask |= (1 << prio);
2043			pdata->prio2q_map[prio++] = i;
2044		}
2045
2046		if (i < ppq_extra) {
2047			netif_dbg(pdata, drv, pdata->netdev,
2048				  "PRIO%u mapped to RXq%u\n", prio, i);
2049			mask |= (1 << prio);
2050			pdata->prio2q_map[prio++] = i;
2051		}
2052
2053		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2054
2055		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2056			continue;
2057
2058		XGMAC_IOWRITE(pdata, reg, reg_val);
2059		reg += MAC_RQC2_INC;
2060		reg_val = 0;
2061	}
2062
2063	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2064	reg = MTL_RQDCM0R;
2065	reg_val = 0;
2066	for (i = 0; i < pdata->rx_q_count;) {
2067		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2068
2069		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2070			continue;
2071
2072		XGMAC_IOWRITE(pdata, reg, reg_val);
2073
2074		reg += MTL_RQDCM_INC;
2075		reg_val = 0;
2076	}
2077}
2078
2079static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2080{
2081	unsigned int i;
2082
2083	for (i = 0; i < pdata->rx_q_count; i++) {
2084		/* Activate flow control when less than 4k left in fifo */
2085		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA, 2);
2086
2087		/* De-activate flow control when more than 6k left in fifo */
2088		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD, 4);
2089	}
2090}
2091
2092static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2093{
2094	xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2095
2096	/* Filtering is done using perfect filtering and hash filtering */
2097	if (pdata->hw_feat.hash_table_size) {
2098		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2099		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2100		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2101	}
2102}
2103
2104static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2105{
2106	unsigned int val;
2107
2108	val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2109
2110	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2111}
2112
2113static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2114{
2115	switch (pdata->phy_speed) {
2116	case SPEED_10000:
2117		xgbe_set_xgmii_speed(pdata);
2118		break;
2119
2120	case SPEED_2500:
2121		xgbe_set_gmii_2500_speed(pdata);
2122		break;
2123
2124	case SPEED_1000:
2125		xgbe_set_gmii_speed(pdata);
2126		break;
2127	}
2128}
2129
2130static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2131{
2132	if (pdata->netdev->features & NETIF_F_RXCSUM)
2133		xgbe_enable_rx_csum(pdata);
2134	else
2135		xgbe_disable_rx_csum(pdata);
2136}
2137
2138static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2139{
2140	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2141	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2142	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2143
2144	/* Set the current VLAN Hash Table register value */
2145	xgbe_update_vlan_hash_table(pdata);
2146
2147	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2148		xgbe_enable_rx_vlan_filtering(pdata);
2149	else
2150		xgbe_disable_rx_vlan_filtering(pdata);
2151
2152	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2153		xgbe_enable_rx_vlan_stripping(pdata);
2154	else
2155		xgbe_disable_rx_vlan_stripping(pdata);
2156}
2157
2158static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2159{
2160	bool read_hi;
2161	u64 val;
2162
2163	switch (reg_lo) {
2164	/* These registers are always 64 bit */
2165	case MMC_TXOCTETCOUNT_GB_LO:
2166	case MMC_TXOCTETCOUNT_G_LO:
2167	case MMC_RXOCTETCOUNT_GB_LO:
2168	case MMC_RXOCTETCOUNT_G_LO:
2169		read_hi = true;
2170		break;
2171
2172	default:
2173		read_hi = false;
2174	}
2175
2176	val = XGMAC_IOREAD(pdata, reg_lo);
2177
2178	if (read_hi)
2179		val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2180
2181	return val;
2182}
2183
2184static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2185{
2186	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2187	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2188
2189	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2190		stats->txoctetcount_gb +=
2191			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2192
2193	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2194		stats->txframecount_gb +=
2195			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2196
2197	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2198		stats->txbroadcastframes_g +=
2199			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2200
2201	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2202		stats->txmulticastframes_g +=
2203			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2204
2205	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2206		stats->tx64octets_gb +=
2207			xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2208
2209	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2210		stats->tx65to127octets_gb +=
2211			xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2212
2213	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2214		stats->tx128to255octets_gb +=
2215			xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2216
2217	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2218		stats->tx256to511octets_gb +=
2219			xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2220
2221	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2222		stats->tx512to1023octets_gb +=
2223			xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2224
2225	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2226		stats->tx1024tomaxoctets_gb +=
2227			xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2228
2229	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2230		stats->txunicastframes_gb +=
2231			xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2232
2233	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2234		stats->txmulticastframes_gb +=
2235			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2236
2237	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2238		stats->txbroadcastframes_g +=
2239			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2240
2241	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2242		stats->txunderflowerror +=
2243			xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2244
2245	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2246		stats->txoctetcount_g +=
2247			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2248
2249	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2250		stats->txframecount_g +=
2251			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2252
2253	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2254		stats->txpauseframes +=
2255			xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2256
2257	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2258		stats->txvlanframes_g +=
2259			xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2260}
2261
2262static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2263{
2264	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2265	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2266
2267	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2268		stats->rxframecount_gb +=
2269			xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2270
2271	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2272		stats->rxoctetcount_gb +=
2273			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2274
2275	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2276		stats->rxoctetcount_g +=
2277			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2278
2279	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2280		stats->rxbroadcastframes_g +=
2281			xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2282
2283	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2284		stats->rxmulticastframes_g +=
2285			xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2286
2287	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2288		stats->rxcrcerror +=
2289			xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2290
2291	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
2292		stats->rxrunterror +=
2293			xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2294
2295	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
2296		stats->rxjabbererror +=
2297			xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2298
2299	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
2300		stats->rxundersize_g +=
2301			xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2302
2303	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
2304		stats->rxoversize_g +=
2305			xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2306
2307	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
2308		stats->rx64octets_gb +=
2309			xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2310
2311	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
2312		stats->rx65to127octets_gb +=
2313			xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2314
2315	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
2316		stats->rx128to255octets_gb +=
2317			xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2318
2319	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
2320		stats->rx256to511octets_gb +=
2321			xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2322
2323	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
2324		stats->rx512to1023octets_gb +=
2325			xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2326
2327	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
2328		stats->rx1024tomaxoctets_gb +=
2329			xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2330
2331	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
2332		stats->rxunicastframes_g +=
2333			xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2334
2335	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
2336		stats->rxlengtherror +=
2337			xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2338
2339	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
2340		stats->rxoutofrangetype +=
2341			xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2342
2343	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
2344		stats->rxpauseframes +=
2345			xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2346
2347	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
2348		stats->rxfifooverflow +=
2349			xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2350
2351	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
2352		stats->rxvlanframes_gb +=
2353			xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2354
2355	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
2356		stats->rxwatchdogerror +=
2357			xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2358}
2359
2360static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
2361{
2362	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2363
2364	/* Freeze counters */
2365	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
2366
2367	stats->txoctetcount_gb +=
2368		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2369
2370	stats->txframecount_gb +=
2371		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2372
2373	stats->txbroadcastframes_g +=
2374		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2375
2376	stats->txmulticastframes_g +=
2377		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2378
2379	stats->tx64octets_gb +=
2380		xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2381
2382	stats->tx65to127octets_gb +=
2383		xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2384
2385	stats->tx128to255octets_gb +=
2386		xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2387
2388	stats->tx256to511octets_gb +=
2389		xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2390
2391	stats->tx512to1023octets_gb +=
2392		xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2393
2394	stats->tx1024tomaxoctets_gb +=
2395		xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2396
2397	stats->txunicastframes_gb +=
2398		xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2399
2400	stats->txmulticastframes_gb +=
2401		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2402
2403	stats->txbroadcastframes_g +=
2404		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2405
2406	stats->txunderflowerror +=
2407		xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2408
2409	stats->txoctetcount_g +=
2410		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2411
2412	stats->txframecount_g +=
2413		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2414
2415	stats->txpauseframes +=
2416		xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2417
2418	stats->txvlanframes_g +=
2419		xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2420
2421	stats->rxframecount_gb +=
2422		xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2423
2424	stats->rxoctetcount_gb +=
2425		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2426
2427	stats->rxoctetcount_g +=
2428		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2429
2430	stats->rxbroadcastframes_g +=
2431		xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2432
2433	stats->rxmulticastframes_g +=
2434		xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2435
2436	stats->rxcrcerror +=
2437		xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2438
2439	stats->rxrunterror +=
2440		xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2441
2442	stats->rxjabbererror +=
2443		xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2444
2445	stats->rxundersize_g +=
2446		xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2447
2448	stats->rxoversize_g +=
2449		xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2450
2451	stats->rx64octets_gb +=
2452		xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2453
2454	stats->rx65to127octets_gb +=
2455		xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2456
2457	stats->rx128to255octets_gb +=
2458		xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2459
2460	stats->rx256to511octets_gb +=
2461		xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2462
2463	stats->rx512to1023octets_gb +=
2464		xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2465
2466	stats->rx1024tomaxoctets_gb +=
2467		xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2468
2469	stats->rxunicastframes_g +=
2470		xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2471
2472	stats->rxlengtherror +=
2473		xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2474
2475	stats->rxoutofrangetype +=
2476		xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2477
2478	stats->rxpauseframes +=
2479		xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2480
2481	stats->rxfifooverflow +=
2482		xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2483
2484	stats->rxvlanframes_gb +=
2485		xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2486
2487	stats->rxwatchdogerror +=
2488		xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2489
2490	/* Un-freeze counters */
2491	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
2492}
2493
2494static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
2495{
2496	/* Set counters to reset on read */
2497	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
2498
2499	/* Reset the counters */
2500	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
2501}
2502
2503static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
2504				 struct xgbe_channel *channel)
2505{
2506	unsigned int tx_dsr, tx_pos, tx_qidx;
2507	unsigned int tx_status;
2508	unsigned long tx_timeout;
2509
2510	/* Calculate the status register to read and the position within */
2511	if (channel->queue_index < DMA_DSRX_FIRST_QUEUE) {
2512		tx_dsr = DMA_DSR0;
2513		tx_pos = (channel->queue_index * DMA_DSR_Q_WIDTH) +
2514			 DMA_DSR0_TPS_START;
2515	} else {
2516		tx_qidx = channel->queue_index - DMA_DSRX_FIRST_QUEUE;
2517
2518		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
2519		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
2520			 DMA_DSRX_TPS_START;
2521	}
2522
2523	/* The Tx engine cannot be stopped if it is actively processing
2524	 * descriptors. Wait for the Tx engine to enter the stopped or
2525	 * suspended state.  Don't wait forever though...
2526	 */
2527	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
2528	while (time_before(jiffies, tx_timeout)) {
2529		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
2530		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
2531		if ((tx_status == DMA_TPS_STOPPED) ||
2532		    (tx_status == DMA_TPS_SUSPENDED))
2533			break;
2534
2535		usleep_range(500, 1000);
2536	}
2537
2538	if (!time_before(jiffies, tx_timeout))
2539		netdev_info(pdata->netdev,
2540			    "timed out waiting for Tx DMA channel %u to stop\n",
2541			    channel->queue_index);
2542}
2543
2544static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
2545{
2546	struct xgbe_channel *channel;
2547	unsigned int i;
2548
2549	/* Enable each Tx DMA channel */
2550	channel = pdata->channel;
2551	for (i = 0; i < pdata->channel_count; i++, channel++) {
2552		if (!channel->tx_ring)
2553			break;
2554
2555		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1);
2556	}
2557
2558	/* Enable each Tx queue */
2559	for (i = 0; i < pdata->tx_q_count; i++)
2560		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
2561				       MTL_Q_ENABLED);
2562
2563	/* Enable MAC Tx */
2564	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2565}
2566
2567static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
2568{
2569	struct xgbe_channel *channel;
2570	unsigned int i;
2571
2572	/* Prepare for Tx DMA channel stop */
2573	channel = pdata->channel;
2574	for (i = 0; i < pdata->channel_count; i++, channel++) {
2575		if (!channel->tx_ring)
2576			break;
2577
2578		xgbe_prepare_tx_stop(pdata, channel);
2579	}
2580
2581	/* Disable MAC Tx */
2582	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2583
2584	/* Disable each Tx queue */
2585	for (i = 0; i < pdata->tx_q_count; i++)
2586		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
2587
2588	/* Disable each Tx DMA channel */
2589	channel = pdata->channel;
2590	for (i = 0; i < pdata->channel_count; i++, channel++) {
2591		if (!channel->tx_ring)
2592			break;
2593
2594		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0);
2595	}
2596}
2597
2598static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
2599{
2600	struct xgbe_channel *channel;
2601	unsigned int reg_val, i;
2602
2603	/* Enable each Rx DMA channel */
2604	channel = pdata->channel;
2605	for (i = 0; i < pdata->channel_count; i++, channel++) {
2606		if (!channel->rx_ring)
2607			break;
2608
2609		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1);
2610	}
2611
2612	/* Enable each Rx queue */
2613	reg_val = 0;
2614	for (i = 0; i < pdata->rx_q_count; i++)
2615		reg_val |= (0x02 << (i << 1));
2616	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
2617
2618	/* Enable MAC Rx */
2619	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
2620	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
2621	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
2622	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
2623}
2624
2625static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
2626{
2627	struct xgbe_channel *channel;
2628	unsigned int i;
2629
2630	/* Disable MAC Rx */
2631	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
2632	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
2633	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
2634	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
2635
2636	/* Disable each Rx queue */
2637	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
2638
2639	/* Disable each Rx DMA channel */
2640	channel = pdata->channel;
2641	for (i = 0; i < pdata->channel_count; i++, channel++) {
2642		if (!channel->rx_ring)
2643			break;
2644
2645		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0);
2646	}
2647}
2648
2649static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
2650{
2651	struct xgbe_channel *channel;
2652	unsigned int i;
2653
2654	/* Enable each Tx DMA channel */
2655	channel = pdata->channel;
2656	for (i = 0; i < pdata->channel_count; i++, channel++) {
2657		if (!channel->tx_ring)
2658			break;
2659
2660		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1);
2661	}
2662
2663	/* Enable MAC Tx */
2664	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2665}
2666
2667static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
2668{
2669	struct xgbe_channel *channel;
2670	unsigned int i;
2671
2672	/* Prepare for Tx DMA channel stop */
2673	channel = pdata->channel;
2674	for (i = 0; i < pdata->channel_count; i++, channel++) {
2675		if (!channel->tx_ring)
2676			break;
2677
2678		xgbe_prepare_tx_stop(pdata, channel);
2679	}
2680
2681	/* Disable MAC Tx */
2682	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2683
2684	/* Disable each Tx DMA channel */
2685	channel = pdata->channel;
2686	for (i = 0; i < pdata->channel_count; i++, channel++) {
2687		if (!channel->tx_ring)
2688			break;
2689
2690		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0);
2691	}
2692}
2693
2694static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
2695{
2696	struct xgbe_channel *channel;
2697	unsigned int i;
2698
2699	/* Enable each Rx DMA channel */
2700	channel = pdata->channel;
2701	for (i = 0; i < pdata->channel_count; i++, channel++) {
2702		if (!channel->rx_ring)
2703			break;
2704
2705		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1);
2706	}
2707}
2708
2709static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
2710{
2711	struct xgbe_channel *channel;
2712	unsigned int i;
2713
2714	/* Disable each Rx DMA channel */
2715	channel = pdata->channel;
2716	for (i = 0; i < pdata->channel_count; i++, channel++) {
2717		if (!channel->rx_ring)
2718			break;
2719
2720		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0);
2721	}
2722}
2723
2724static int xgbe_init(struct xgbe_prv_data *pdata)
2725{
2726	struct xgbe_desc_if *desc_if = &pdata->desc_if;
2727	int ret;
2728
2729	DBGPR("-->xgbe_init\n");
2730
2731	/* Flush Tx queues */
2732	ret = xgbe_flush_tx_queues(pdata);
2733	if (ret)
2734		return ret;
2735
2736	/*
2737	 * Initialize DMA related features
2738	 */
2739	xgbe_config_dma_bus(pdata);
2740	xgbe_config_dma_cache(pdata);
2741	xgbe_config_osp_mode(pdata);
2742	xgbe_config_pblx8(pdata);
2743	xgbe_config_tx_pbl_val(pdata);
2744	xgbe_config_rx_pbl_val(pdata);
2745	xgbe_config_rx_coalesce(pdata);
2746	xgbe_config_tx_coalesce(pdata);
2747	xgbe_config_rx_buffer_size(pdata);
2748	xgbe_config_tso_mode(pdata);
2749	xgbe_config_sph_mode(pdata);
2750	xgbe_config_rss(pdata);
2751	desc_if->wrapper_tx_desc_init(pdata);
2752	desc_if->wrapper_rx_desc_init(pdata);
2753	xgbe_enable_dma_interrupts(pdata);
2754
2755	/*
2756	 * Initialize MTL related features
2757	 */
2758	xgbe_config_mtl_mode(pdata);
2759	xgbe_config_queue_mapping(pdata);
2760	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
2761	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
2762	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
2763	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
2764	xgbe_config_tx_fifo_size(pdata);
2765	xgbe_config_rx_fifo_size(pdata);
2766	xgbe_config_flow_control_threshold(pdata);
2767	/*TODO: Error Packet and undersized good Packet forwarding enable
2768		(FEP and FUP)
2769	 */
2770	xgbe_config_dcb_tc(pdata);
2771	xgbe_config_dcb_pfc(pdata);
2772	xgbe_enable_mtl_interrupts(pdata);
2773
2774	/*
2775	 * Initialize MAC related features
2776	 */
2777	xgbe_config_mac_address(pdata);
2778	xgbe_config_rx_mode(pdata);
2779	xgbe_config_jumbo_enable(pdata);
2780	xgbe_config_flow_control(pdata);
2781	xgbe_config_mac_speed(pdata);
2782	xgbe_config_checksum_offload(pdata);
2783	xgbe_config_vlan_support(pdata);
2784	xgbe_config_mmc(pdata);
2785	xgbe_enable_mac_interrupts(pdata);
2786
2787	DBGPR("<--xgbe_init\n");
2788
2789	return 0;
2790}
2791
2792void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
2793{
2794	DBGPR("-->xgbe_init_function_ptrs\n");
2795
2796	hw_if->tx_complete = xgbe_tx_complete;
2797
2798	hw_if->set_mac_address = xgbe_set_mac_address;
2799	hw_if->config_rx_mode = xgbe_config_rx_mode;
2800
2801	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
2802	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
2803
2804	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
2805	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
2806	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
2807	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
2808	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
2809
2810	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
2811	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
2812
2813	hw_if->set_gmii_speed = xgbe_set_gmii_speed;
2814	hw_if->set_gmii_2500_speed = xgbe_set_gmii_2500_speed;
2815	hw_if->set_xgmii_speed = xgbe_set_xgmii_speed;
2816
2817	hw_if->enable_tx = xgbe_enable_tx;
2818	hw_if->disable_tx = xgbe_disable_tx;
2819	hw_if->enable_rx = xgbe_enable_rx;
2820	hw_if->disable_rx = xgbe_disable_rx;
2821
2822	hw_if->powerup_tx = xgbe_powerup_tx;
2823	hw_if->powerdown_tx = xgbe_powerdown_tx;
2824	hw_if->powerup_rx = xgbe_powerup_rx;
2825	hw_if->powerdown_rx = xgbe_powerdown_rx;
2826
2827	hw_if->dev_xmit = xgbe_dev_xmit;
2828	hw_if->dev_read = xgbe_dev_read;
2829	hw_if->enable_int = xgbe_enable_int;
2830	hw_if->disable_int = xgbe_disable_int;
2831	hw_if->init = xgbe_init;
2832	hw_if->exit = xgbe_exit;
2833
2834	/* Descriptor related Sequences have to be initialized here */
2835	hw_if->tx_desc_init = xgbe_tx_desc_init;
2836	hw_if->rx_desc_init = xgbe_rx_desc_init;
2837	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
2838	hw_if->rx_desc_reset = xgbe_rx_desc_reset;
2839	hw_if->is_last_desc = xgbe_is_last_desc;
2840	hw_if->is_context_desc = xgbe_is_context_desc;
2841	hw_if->tx_start_xmit = xgbe_tx_start_xmit;
2842
2843	/* For FLOW ctrl */
2844	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
2845	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
2846
2847	/* For RX coalescing */
2848	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
2849	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
2850	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
2851	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
2852
2853	/* For RX and TX threshold config */
2854	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
2855	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
2856
2857	/* For RX and TX Store and Forward Mode config */
2858	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
2859	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
2860
2861	/* For TX DMA Operating on Second Frame config */
2862	hw_if->config_osp_mode = xgbe_config_osp_mode;
2863
2864	/* For RX and TX PBL config */
2865	hw_if->config_rx_pbl_val = xgbe_config_rx_pbl_val;
2866	hw_if->get_rx_pbl_val = xgbe_get_rx_pbl_val;
2867	hw_if->config_tx_pbl_val = xgbe_config_tx_pbl_val;
2868	hw_if->get_tx_pbl_val = xgbe_get_tx_pbl_val;
2869	hw_if->config_pblx8 = xgbe_config_pblx8;
2870
2871	/* For MMC statistics support */
2872	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
2873	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
2874	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
2875
2876	/* For PTP config */
2877	hw_if->config_tstamp = xgbe_config_tstamp;
2878	hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
2879	hw_if->set_tstamp_time = xgbe_set_tstamp_time;
2880	hw_if->get_tstamp_time = xgbe_get_tstamp_time;
2881	hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
2882
2883	/* For Data Center Bridging config */
2884	hw_if->config_dcb_tc = xgbe_config_dcb_tc;
2885	hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
2886
2887	/* For Receive Side Scaling */
2888	hw_if->enable_rss = xgbe_enable_rss;
2889	hw_if->disable_rss = xgbe_disable_rss;
2890	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
2891	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
2892
2893	DBGPR("<--xgbe_init_function_ptrs\n");
2894}
2895