1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3	Written 1998-2000 by Donald Becker.
4
5	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6	send all bug reports to me, and not to Donald Becker, as this code
7	has been heavily modified from Donald's original version.
8
9	This software may be used and distributed according to the terms of
10	the GNU General Public License (GPL), incorporated herein by reference.
11	Drivers based on or derived from this code fall under the GPL and must
12	retain the authorship, copyright and license notice.  This file is not
13	a complete program and may only be used when the entire operating
14	system is licensed under the GPL.
15
16	The information below comes from Donald Becker's original driver:
17
18	The author may be reached as becker@scyld.com, or C/O
19	Scyld Computing Corporation
20	410 Severn Ave., Suite 210
21	Annapolis MD 21403
22
23	Support and updates available at
24	http://www.scyld.com/network/starfire.html
25	[link no longer provides useful info -jgarzik]
26
27*/
28
29#define DRV_NAME	"starfire"
30#define DRV_VERSION	"2.1"
31#define DRV_RELDATE	"July  6, 2008"
32
33#include <linux/interrupt.h>
34#include <linux/module.h>
35#include <linux/kernel.h>
36#include <linux/pci.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/init.h>
40#include <linux/delay.h>
41#include <linux/crc32.h>
42#include <linux/ethtool.h>
43#include <linux/mii.h>
44#include <linux/if_vlan.h>
45#include <linux/mm.h>
46#include <linux/firmware.h>
47#include <asm/processor.h>		/* Processor type for cache alignment. */
48#include <asm/uaccess.h>
49#include <asm/io.h>
50
51/*
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
54 */
55#define HAS_BROKEN_FIRMWARE
56
57/*
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 */
60#ifdef HAS_BROKEN_FIRMWARE
61#define PADDING_MASK 3
62#endif
63
64/*
65 * Define this if using the driver with the zero-copy patch
66 */
67#define ZEROCOPY
68
69#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70#define VLAN_SUPPORT
71#endif
72
73/* The user-configurable values.
74   These may be modified when a driver module is loaded.*/
75
76/* Used for tuning interrupt latency vs. overhead. */
77static int intr_latency;
78static int small_frames;
79
80static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
81static int max_interrupt_work = 20;
82static int mtu;
83/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84   The Starfire has a 512 element hash table based on the Ethernet CRC. */
85static const int multicast_filter_limit = 512;
86/* Whether to do TCP/UDP checksums in hardware */
87static int enable_hw_cksum = 1;
88
89#define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
90/*
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
93 *
94 * NOTE:
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * 23/10/2000 - Jes
99 *
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
102 * penalty. -Ion
103 */
104#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105static int rx_copybreak = PKT_BUF_SZ;
106#else
107static int rx_copybreak /* = 0 */;
108#endif
109
110/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111#ifdef __sparc__
112#define DMA_BURST_SIZE 64
113#else
114#define DMA_BURST_SIZE 128
115#endif
116
117/* Operational parameters that are set at compile time. */
118
119/* The "native" ring sizes are either 256 or 2048.
120   However in some modes a descriptor may be marked to wrap the ring earlier.
121*/
122#define RX_RING_SIZE	256
123#define TX_RING_SIZE	32
124/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
125#define DONE_Q_SIZE	1024
126/* All queues must be aligned on a 256-byte boundary */
127#define QUEUE_ALIGN	256
128
129#if RX_RING_SIZE > 256
130#define RX_Q_ENTRIES Rx2048QEntries
131#else
132#define RX_Q_ENTRIES Rx256QEntries
133#endif
134
135/* Operational parameters that usually are not changed. */
136/* Time in jiffies before concluding the transmitter is hung. */
137#define TX_TIMEOUT	(2 * HZ)
138
139#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
140/* 64-bit dma_addr_t */
141#define ADDR_64BITS	/* This chip uses 64 bit addresses. */
142#define netdrv_addr_t __le64
143#define cpu_to_dma(x) cpu_to_le64(x)
144#define dma_to_cpu(x) le64_to_cpu(x)
145#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149#define RX_DESC_ADDR_SIZE RxDescAddr64bit
150#else  /* 32-bit dma_addr_t */
151#define netdrv_addr_t __le32
152#define cpu_to_dma(x) cpu_to_le32(x)
153#define dma_to_cpu(x) le32_to_cpu(x)
154#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158#define RX_DESC_ADDR_SIZE RxDescAddr32bit
159#endif
160
161#define skb_first_frag_len(skb)	skb_headlen(skb)
162#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
163
164/* Firmware names */
165#define FIRMWARE_RX	"adaptec/starfire_rx.bin"
166#define FIRMWARE_TX	"adaptec/starfire_tx.bin"
167
168/* These identify the driver base version and may not be removed. */
169static const char version[] =
170KERN_INFO "starfire.c:v1.03 7/26/2000  Written by Donald Becker <becker@scyld.com>\n"
171" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
172
173MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175MODULE_LICENSE("GPL");
176MODULE_VERSION(DRV_VERSION);
177MODULE_FIRMWARE(FIRMWARE_RX);
178MODULE_FIRMWARE(FIRMWARE_TX);
179
180module_param(max_interrupt_work, int, 0);
181module_param(mtu, int, 0);
182module_param(debug, int, 0);
183module_param(rx_copybreak, int, 0);
184module_param(intr_latency, int, 0);
185module_param(small_frames, int, 0);
186module_param(enable_hw_cksum, int, 0);
187MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
188MODULE_PARM_DESC(mtu, "MTU (all boards)");
189MODULE_PARM_DESC(debug, "Debug level (0-6)");
190MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
191MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
192MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
193MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
194
195/*
196				Theory of Operation
197
198I. Board Compatibility
199
200This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
201
202II. Board-specific settings
203
204III. Driver operation
205
206IIIa. Ring buffers
207
208The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
209ring sizes are set fixed by the hardware, but may optionally be wrapped
210earlier by the END bit in the descriptor.
211This driver uses that hardware queue size for the Rx ring, where a large
212number of entries has no ill effect beyond increases the potential backlog.
213The Tx ring is wrapped with the END bit, since a large hardware Tx queue
214disables the queue layer priority ordering and we have no mechanism to
215utilize the hardware two-level priority queue.  When modifying the
216RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
217levels.
218
219IIIb/c. Transmit/Receive Structure
220
221See the Adaptec manual for the many possible structures, and options for
222each structure.  There are far too many to document all of them here.
223
224For transmit this driver uses type 0/1 transmit descriptors (depending
225on the 32/64 bitness of the architecture), and relies on automatic
226minimum-length padding.  It does not use the completion queue
227consumer index, but instead checks for non-zero status entries.
228
229For receive this driver uses type 2/3 receive descriptors.  The driver
230allocates full frame size skbuffs for the Rx ring buffers, so all frames
231should fit in a single descriptor.  The driver does not use the completion
232queue consumer index, but instead checks for non-zero status entries.
233
234When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
235is allocated and the frame is copied to the new skbuff.  When the incoming
236frame is larger, the skbuff is passed directly up the protocol stack.
237Buffers consumed this way are replaced by newly allocated skbuffs in a later
238phase of receive.
239
240A notable aspect of operation is that unaligned buffers are not permitted by
241the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
242isn't longword aligned, which may cause problems on some machine
243e.g. Alphas and IA64. For these architectures, the driver is forced to copy
244the frame into a new skbuff unconditionally. Copied frames are put into the
245skbuff at an offset of "+2", thus 16-byte aligning the IP header.
246
247IIId. Synchronization
248
249The driver runs as two independent, single-threaded flows of control.  One
250is the send-packet routine, which enforces single-threaded use by the
251dev->tbusy flag.  The other thread is the interrupt handler, which is single
252threaded by the hardware and interrupt handling software.
253
254The send packet thread has partial control over the Tx ring and the netif_queue
255status. If the number of free Tx slots in the ring falls below a certain number
256(currently hardcoded to 4), it signals the upper layer to stop the queue.
257
258The interrupt handler has exclusive control over the Rx ring and records stats
259from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
260empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
261number of free Tx slow is above the threshold, it signals the upper layer to
262restart the queue.
263
264IV. Notes
265
266IVb. References
267
268The Adaptec Starfire manuals, available only from Adaptec.
269http://www.scyld.com/expert/100mbps.html
270http://www.scyld.com/expert/NWay.html
271
272IVc. Errata
273
274- StopOnPerr is broken, don't enable
275- Hardware ethernet padding exposes random data, perform software padding
276  instead (unverified -- works correctly for all the hardware I have)
277
278*/
279
280
281
282enum chip_capability_flags {CanHaveMII=1, };
283
284enum chipset {
285	CH_6915 = 0,
286};
287
288static const struct pci_device_id starfire_pci_tbl[] = {
289	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
290	{ 0, }
291};
292MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
293
294/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
295static const struct chip_info {
296	const char *name;
297	int drv_flags;
298} netdrv_tbl[] = {
299	{ "Adaptec Starfire 6915", CanHaveMII },
300};
301
302
303/* Offsets to the device registers.
304   Unlike software-only systems, device drivers interact with complex hardware.
305   It's not useful to define symbolic names for every register bit in the
306   device.  The name can only partially document the semantics and make
307   the driver longer and more difficult to read.
308   In general, only the important configuration values or bits changed
309   multiple times should be defined symbolically.
310*/
311enum register_offsets {
312	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
313	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
314	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
315	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
316	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
317	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
318	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
319	TxThreshold=0x500B0,
320	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
321	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
322	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
323	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
324	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
325	TxMode=0x55000, VlanType=0x55064,
326	PerfFilterTable=0x56000, HashTable=0x56100,
327	TxGfpMem=0x58000, RxGfpMem=0x5a000,
328};
329
330/*
331 * Bits in the interrupt status/mask registers.
332 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
333 * enables all the interrupt sources that are or'ed into those status bits.
334 */
335enum intr_status_bits {
336	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
337	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
338	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
339	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
340	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
341	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
342	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
343	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
344	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
345	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
346	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
347	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
348	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
349	IntrTxGfp=0x02, IntrPCIPad=0x01,
350	/* not quite bits */
351	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
352	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
353	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
354};
355
356/* Bits in the RxFilterMode register. */
357enum rx_mode_bits {
358	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
359	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
360	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
361	WakeupOnGFP=0x0800,
362};
363
364/* Bits in the TxMode register */
365enum tx_mode_bits {
366	MiiSoftReset=0x8000, MIILoopback=0x4000,
367	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
368	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
369};
370
371/* Bits in the TxDescCtrl register. */
372enum tx_ctrl_bits {
373	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
374	TxDescSpace128=0x30, TxDescSpace256=0x40,
375	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
376	TxDescType3=0x03, TxDescType4=0x04,
377	TxNoDMACompletion=0x08,
378	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
379	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
380	TxDMABurstSizeShift=8,
381};
382
383/* Bits in the RxDescQCtrl register. */
384enum rx_ctrl_bits {
385	RxBufferLenShift=16, RxMinDescrThreshShift=0,
386	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
387	Rx2048QEntries=0x4000, Rx256QEntries=0,
388	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
389	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
390	RxDescSpace4=0x000, RxDescSpace8=0x100,
391	RxDescSpace16=0x200, RxDescSpace32=0x300,
392	RxDescSpace64=0x400, RxDescSpace128=0x500,
393	RxConsumerWrEn=0x80,
394};
395
396/* Bits in the RxDMACtrl register. */
397enum rx_dmactrl_bits {
398	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
399	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
400	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
401	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
402	RxChecksumRejectTCPOnly=0x01000000,
403	RxCompletionQ2Enable=0x800000,
404	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
405	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
406	RxDMAQ2NonIP=0x400000,
407	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
408	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
409	RxBurstSizeShift=0,
410};
411
412/* Bits in the RxCompletionAddr register */
413enum rx_compl_bits {
414	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
415	RxComplProducerWrEn=0x40,
416	RxComplType0=0x00, RxComplType1=0x10,
417	RxComplType2=0x20, RxComplType3=0x30,
418	RxComplThreshShift=0,
419};
420
421/* Bits in the TxCompletionAddr register */
422enum tx_compl_bits {
423	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
424	TxComplProducerWrEn=0x40,
425	TxComplIntrStatus=0x20,
426	CommonQueueMode=0x10,
427	TxComplThreshShift=0,
428};
429
430/* Bits in the GenCtrl register */
431enum gen_ctrl_bits {
432	RxEnable=0x05, TxEnable=0x0a,
433	RxGFPEnable=0x10, TxGFPEnable=0x20,
434};
435
436/* Bits in the IntrTimerCtrl register */
437enum intr_ctrl_bits {
438	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
439	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
440	IntrLatencyMask=0x1f,
441};
442
443/* The Rx and Tx buffer descriptors. */
444struct starfire_rx_desc {
445	netdrv_addr_t rxaddr;
446};
447enum rx_desc_bits {
448	RxDescValid=1, RxDescEndRing=2,
449};
450
451/* Completion queue entry. */
452struct short_rx_done_desc {
453	__le32 status;			/* Low 16 bits is length. */
454};
455struct basic_rx_done_desc {
456	__le32 status;			/* Low 16 bits is length. */
457	__le16 vlanid;
458	__le16 status2;
459};
460struct csum_rx_done_desc {
461	__le32 status;			/* Low 16 bits is length. */
462	__le16 csum;			/* Partial checksum */
463	__le16 status2;
464};
465struct full_rx_done_desc {
466	__le32 status;			/* Low 16 bits is length. */
467	__le16 status3;
468	__le16 status2;
469	__le16 vlanid;
470	__le16 csum;			/* partial checksum */
471	__le32 timestamp;
472};
473/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
474#ifdef VLAN_SUPPORT
475typedef struct full_rx_done_desc rx_done_desc;
476#define RxComplType RxComplType3
477#else  /* not VLAN_SUPPORT */
478typedef struct csum_rx_done_desc rx_done_desc;
479#define RxComplType RxComplType2
480#endif /* not VLAN_SUPPORT */
481
482enum rx_done_bits {
483	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
484};
485
486/* Type 1 Tx descriptor. */
487struct starfire_tx_desc_1 {
488	__le32 status;			/* Upper bits are status, lower 16 length. */
489	__le32 addr;
490};
491
492/* Type 2 Tx descriptor. */
493struct starfire_tx_desc_2 {
494	__le32 status;			/* Upper bits are status, lower 16 length. */
495	__le32 reserved;
496	__le64 addr;
497};
498
499#ifdef ADDR_64BITS
500typedef struct starfire_tx_desc_2 starfire_tx_desc;
501#define TX_DESC_TYPE TxDescType2
502#else  /* not ADDR_64BITS */
503typedef struct starfire_tx_desc_1 starfire_tx_desc;
504#define TX_DESC_TYPE TxDescType1
505#endif /* not ADDR_64BITS */
506#define TX_DESC_SPACING TxDescSpaceUnlim
507
508enum tx_desc_bits {
509	TxDescID=0xB0000000,
510	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
511	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
512};
513struct tx_done_desc {
514	__le32 status;			/* timestamp, index. */
515#if 0
516	__le32 intrstatus;		/* interrupt status */
517#endif
518};
519
520struct rx_ring_info {
521	struct sk_buff *skb;
522	dma_addr_t mapping;
523};
524struct tx_ring_info {
525	struct sk_buff *skb;
526	dma_addr_t mapping;
527	unsigned int used_slots;
528};
529
530#define PHY_CNT		2
531struct netdev_private {
532	/* Descriptor rings first for alignment. */
533	struct starfire_rx_desc *rx_ring;
534	starfire_tx_desc *tx_ring;
535	dma_addr_t rx_ring_dma;
536	dma_addr_t tx_ring_dma;
537	/* The addresses of rx/tx-in-place skbuffs. */
538	struct rx_ring_info rx_info[RX_RING_SIZE];
539	struct tx_ring_info tx_info[TX_RING_SIZE];
540	/* Pointers to completion queues (full pages). */
541	rx_done_desc *rx_done_q;
542	dma_addr_t rx_done_q_dma;
543	unsigned int rx_done;
544	struct tx_done_desc *tx_done_q;
545	dma_addr_t tx_done_q_dma;
546	unsigned int tx_done;
547	struct napi_struct napi;
548	struct net_device *dev;
549	struct pci_dev *pci_dev;
550#ifdef VLAN_SUPPORT
551	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
552#endif
553	void *queue_mem;
554	dma_addr_t queue_mem_dma;
555	size_t queue_mem_size;
556
557	/* Frequently used values: keep some adjacent for cache effect. */
558	spinlock_t lock;
559	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
560	unsigned int cur_tx, dirty_tx, reap_tx;
561	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
562	/* These values keep track of the transceiver/media in use. */
563	int speed100;			/* Set if speed == 100MBit. */
564	u32 tx_mode;
565	u32 intr_timer_ctrl;
566	u8 tx_threshold;
567	/* MII transceiver section. */
568	struct mii_if_info mii_if;		/* MII lib hooks/info */
569	int phy_cnt;			/* MII device addresses. */
570	unsigned char phys[PHY_CNT];	/* MII device addresses. */
571	void __iomem *base;
572};
573
574
575static int	mdio_read(struct net_device *dev, int phy_id, int location);
576static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
577static int	netdev_open(struct net_device *dev);
578static void	check_duplex(struct net_device *dev);
579static void	tx_timeout(struct net_device *dev);
580static void	init_ring(struct net_device *dev);
581static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
582static irqreturn_t intr_handler(int irq, void *dev_instance);
583static void	netdev_error(struct net_device *dev, int intr_status);
584static int	__netdev_rx(struct net_device *dev, int *quota);
585static int	netdev_poll(struct napi_struct *napi, int budget);
586static void	refill_rx_ring(struct net_device *dev);
587static void	netdev_error(struct net_device *dev, int intr_status);
588static void	set_rx_mode(struct net_device *dev);
589static struct net_device_stats *get_stats(struct net_device *dev);
590static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
591static int	netdev_close(struct net_device *dev);
592static void	netdev_media_change(struct net_device *dev);
593static const struct ethtool_ops ethtool_ops;
594
595
596#ifdef VLAN_SUPPORT
597static int netdev_vlan_rx_add_vid(struct net_device *dev,
598				  __be16 proto, u16 vid)
599{
600	struct netdev_private *np = netdev_priv(dev);
601
602	spin_lock(&np->lock);
603	if (debug > 1)
604		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
605	set_bit(vid, np->active_vlans);
606	set_rx_mode(dev);
607	spin_unlock(&np->lock);
608
609	return 0;
610}
611
612static int netdev_vlan_rx_kill_vid(struct net_device *dev,
613				   __be16 proto, u16 vid)
614{
615	struct netdev_private *np = netdev_priv(dev);
616
617	spin_lock(&np->lock);
618	if (debug > 1)
619		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
620	clear_bit(vid, np->active_vlans);
621	set_rx_mode(dev);
622	spin_unlock(&np->lock);
623
624	return 0;
625}
626#endif /* VLAN_SUPPORT */
627
628
629static const struct net_device_ops netdev_ops = {
630	.ndo_open		= netdev_open,
631	.ndo_stop		= netdev_close,
632	.ndo_start_xmit		= start_tx,
633	.ndo_tx_timeout		= tx_timeout,
634	.ndo_get_stats		= get_stats,
635	.ndo_set_rx_mode	= set_rx_mode,
636	.ndo_do_ioctl		= netdev_ioctl,
637	.ndo_change_mtu		= eth_change_mtu,
638	.ndo_set_mac_address	= eth_mac_addr,
639	.ndo_validate_addr	= eth_validate_addr,
640#ifdef VLAN_SUPPORT
641	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
642	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
643#endif
644};
645
646static int starfire_init_one(struct pci_dev *pdev,
647			     const struct pci_device_id *ent)
648{
649	struct device *d = &pdev->dev;
650	struct netdev_private *np;
651	int i, irq, chip_idx = ent->driver_data;
652	struct net_device *dev;
653	long ioaddr;
654	void __iomem *base;
655	int drv_flags, io_size;
656	int boguscnt;
657
658/* when built into the kernel, we only print version if device is found */
659#ifndef MODULE
660	static int printed_version;
661	if (!printed_version++)
662		printk(version);
663#endif
664
665	if (pci_enable_device (pdev))
666		return -EIO;
667
668	ioaddr = pci_resource_start(pdev, 0);
669	io_size = pci_resource_len(pdev, 0);
670	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
671		dev_err(d, "no PCI MEM resources, aborting\n");
672		return -ENODEV;
673	}
674
675	dev = alloc_etherdev(sizeof(*np));
676	if (!dev)
677		return -ENOMEM;
678
679	SET_NETDEV_DEV(dev, &pdev->dev);
680
681	irq = pdev->irq;
682
683	if (pci_request_regions (pdev, DRV_NAME)) {
684		dev_err(d, "cannot reserve PCI resources, aborting\n");
685		goto err_out_free_netdev;
686	}
687
688	base = ioremap(ioaddr, io_size);
689	if (!base) {
690		dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
691			io_size, ioaddr);
692		goto err_out_free_res;
693	}
694
695	pci_set_master(pdev);
696
697	/* enable MWI -- it vastly improves Rx performance on sparc64 */
698	pci_try_set_mwi(pdev);
699
700#ifdef ZEROCOPY
701	/* Starfire can do TCP/UDP checksumming */
702	if (enable_hw_cksum)
703		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
704#endif /* ZEROCOPY */
705
706#ifdef VLAN_SUPPORT
707	dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
708#endif /* VLAN_RX_KILL_VID */
709#ifdef ADDR_64BITS
710	dev->features |= NETIF_F_HIGHDMA;
711#endif /* ADDR_64BITS */
712
713	/* Serial EEPROM reads are hidden by the hardware. */
714	for (i = 0; i < 6; i++)
715		dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
716
717#if ! defined(final_version) /* Dump the EEPROM contents during development. */
718	if (debug > 4)
719		for (i = 0; i < 0x20; i++)
720			printk("%2.2x%s",
721			       (unsigned int)readb(base + EEPROMCtrl + i),
722			       i % 16 != 15 ? " " : "\n");
723#endif
724
725	/* Issue soft reset */
726	writel(MiiSoftReset, base + TxMode);
727	udelay(1000);
728	writel(0, base + TxMode);
729
730	/* Reset the chip to erase previous misconfiguration. */
731	writel(1, base + PCIDeviceConfig);
732	boguscnt = 1000;
733	while (--boguscnt > 0) {
734		udelay(10);
735		if ((readl(base + PCIDeviceConfig) & 1) == 0)
736			break;
737	}
738	if (boguscnt == 0)
739		printk("%s: chipset reset never completed!\n", dev->name);
740	/* wait a little longer */
741	udelay(1000);
742
743	np = netdev_priv(dev);
744	np->dev = dev;
745	np->base = base;
746	spin_lock_init(&np->lock);
747	pci_set_drvdata(pdev, dev);
748
749	np->pci_dev = pdev;
750
751	np->mii_if.dev = dev;
752	np->mii_if.mdio_read = mdio_read;
753	np->mii_if.mdio_write = mdio_write;
754	np->mii_if.phy_id_mask = 0x1f;
755	np->mii_if.reg_num_mask = 0x1f;
756
757	drv_flags = netdrv_tbl[chip_idx].drv_flags;
758
759	np->speed100 = 1;
760
761	/* timer resolution is 128 * 0.8us */
762	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
763		Timer10X | EnableIntrMasking;
764
765	if (small_frames > 0) {
766		np->intr_timer_ctrl |= SmallFrameBypass;
767		switch (small_frames) {
768		case 1 ... 64:
769			np->intr_timer_ctrl |= SmallFrame64;
770			break;
771		case 65 ... 128:
772			np->intr_timer_ctrl |= SmallFrame128;
773			break;
774		case 129 ... 256:
775			np->intr_timer_ctrl |= SmallFrame256;
776			break;
777		default:
778			np->intr_timer_ctrl |= SmallFrame512;
779			if (small_frames > 512)
780				printk("Adjusting small_frames down to 512\n");
781			break;
782		}
783	}
784
785	dev->netdev_ops = &netdev_ops;
786	dev->watchdog_timeo = TX_TIMEOUT;
787	dev->ethtool_ops = &ethtool_ops;
788
789	netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
790
791	if (mtu)
792		dev->mtu = mtu;
793
794	if (register_netdev(dev))
795		goto err_out_cleardev;
796
797	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
798	       dev->name, netdrv_tbl[chip_idx].name, base,
799	       dev->dev_addr, irq);
800
801	if (drv_flags & CanHaveMII) {
802		int phy, phy_idx = 0;
803		int mii_status;
804		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
805			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
806			mdelay(100);
807			boguscnt = 1000;
808			while (--boguscnt > 0)
809				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
810					break;
811			if (boguscnt == 0) {
812				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
813				continue;
814			}
815			mii_status = mdio_read(dev, phy, MII_BMSR);
816			if (mii_status != 0) {
817				np->phys[phy_idx++] = phy;
818				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
819				printk(KERN_INFO "%s: MII PHY found at address %d, status "
820					   "%#4.4x advertising %#4.4x.\n",
821					   dev->name, phy, mii_status, np->mii_if.advertising);
822				/* there can be only one PHY on-board */
823				break;
824			}
825		}
826		np->phy_cnt = phy_idx;
827		if (np->phy_cnt > 0)
828			np->mii_if.phy_id = np->phys[0];
829		else
830			memset(&np->mii_if, 0, sizeof(np->mii_if));
831	}
832
833	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
834	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
835	return 0;
836
837err_out_cleardev:
838	iounmap(base);
839err_out_free_res:
840	pci_release_regions (pdev);
841err_out_free_netdev:
842	free_netdev(dev);
843	return -ENODEV;
844}
845
846
847/* Read the MII Management Data I/O (MDIO) interfaces. */
848static int mdio_read(struct net_device *dev, int phy_id, int location)
849{
850	struct netdev_private *np = netdev_priv(dev);
851	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
852	int result, boguscnt=1000;
853	/* ??? Should we add a busy-wait here? */
854	do {
855		result = readl(mdio_addr);
856	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
857	if (boguscnt == 0)
858		return 0;
859	if ((result & 0xffff) == 0xffff)
860		return 0;
861	return result & 0xffff;
862}
863
864
865static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
866{
867	struct netdev_private *np = netdev_priv(dev);
868	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
869	writel(value, mdio_addr);
870	/* The busy-wait will occur before a read. */
871}
872
873
874static int netdev_open(struct net_device *dev)
875{
876	const struct firmware *fw_rx, *fw_tx;
877	const __be32 *fw_rx_data, *fw_tx_data;
878	struct netdev_private *np = netdev_priv(dev);
879	void __iomem *ioaddr = np->base;
880	const int irq = np->pci_dev->irq;
881	int i, retval;
882	size_t tx_size, rx_size;
883	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
884
885	/* Do we ever need to reset the chip??? */
886
887	retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
888	if (retval)
889		return retval;
890
891	/* Disable the Rx and Tx, and reset the chip. */
892	writel(0, ioaddr + GenCtrl);
893	writel(1, ioaddr + PCIDeviceConfig);
894	if (debug > 1)
895		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
896		       dev->name, irq);
897
898	/* Allocate the various queues. */
899	if (!np->queue_mem) {
900		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
901		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
902		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
903		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
904		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
905		np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
906		if (np->queue_mem == NULL) {
907			free_irq(irq, dev);
908			return -ENOMEM;
909		}
910
911		np->tx_done_q     = np->queue_mem;
912		np->tx_done_q_dma = np->queue_mem_dma;
913		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
914		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
915		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
916		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
917		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
918		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
919	}
920
921	/* Start with no carrier, it gets adjusted later */
922	netif_carrier_off(dev);
923	init_ring(dev);
924	/* Set the size of the Rx buffers. */
925	writel((np->rx_buf_sz << RxBufferLenShift) |
926	       (0 << RxMinDescrThreshShift) |
927	       RxPrefetchMode | RxVariableQ |
928	       RX_Q_ENTRIES |
929	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
930	       RxDescSpace4,
931	       ioaddr + RxDescQCtrl);
932
933	/* Set up the Rx DMA controller. */
934	writel(RxChecksumIgnore |
935	       (0 << RxEarlyIntThreshShift) |
936	       (6 << RxHighPrioThreshShift) |
937	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
938	       ioaddr + RxDMACtrl);
939
940	/* Set Tx descriptor */
941	writel((2 << TxHiPriFIFOThreshShift) |
942	       (0 << TxPadLenShift) |
943	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
944	       TX_DESC_Q_ADDR_SIZE |
945	       TX_DESC_SPACING | TX_DESC_TYPE,
946	       ioaddr + TxDescCtrl);
947
948	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
949	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
950	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
951	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
952	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
953
954	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
955	writel(np->rx_done_q_dma |
956	       RxComplType |
957	       (0 << RxComplThreshShift),
958	       ioaddr + RxCompletionAddr);
959
960	if (debug > 1)
961		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
962
963	/* Fill both the Tx SA register and the Rx perfect filter. */
964	for (i = 0; i < 6; i++)
965		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
966	/* The first entry is special because it bypasses the VLAN filter.
967	   Don't use it. */
968	writew(0, ioaddr + PerfFilterTable);
969	writew(0, ioaddr + PerfFilterTable + 4);
970	writew(0, ioaddr + PerfFilterTable + 8);
971	for (i = 1; i < 16; i++) {
972		__be16 *eaddrs = (__be16 *)dev->dev_addr;
973		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
974		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
975		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
976		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
977	}
978
979	/* Initialize other registers. */
980	/* Configure the PCI bus bursts and FIFO thresholds. */
981	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
982	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
983	udelay(1000);
984	writel(np->tx_mode, ioaddr + TxMode);
985	np->tx_threshold = 4;
986	writel(np->tx_threshold, ioaddr + TxThreshold);
987
988	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
989
990	napi_enable(&np->napi);
991
992	netif_start_queue(dev);
993
994	if (debug > 1)
995		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
996	set_rx_mode(dev);
997
998	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
999	check_duplex(dev);
1000
1001	/* Enable GPIO interrupts on link change */
1002	writel(0x0f00ff00, ioaddr + GPIOCtrl);
1003
1004	/* Set the interrupt mask */
1005	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1006	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1007	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1008	       ioaddr + IntrEnable);
1009	/* Enable PCI interrupts. */
1010	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1011	       ioaddr + PCIDeviceConfig);
1012
1013#ifdef VLAN_SUPPORT
1014	/* Set VLAN type to 802.1q */
1015	writel(ETH_P_8021Q, ioaddr + VlanType);
1016#endif /* VLAN_SUPPORT */
1017
1018	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1019	if (retval) {
1020		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1021		       FIRMWARE_RX);
1022		goto out_init;
1023	}
1024	if (fw_rx->size % 4) {
1025		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1026		       fw_rx->size, FIRMWARE_RX);
1027		retval = -EINVAL;
1028		goto out_rx;
1029	}
1030	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1031	if (retval) {
1032		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1033		       FIRMWARE_TX);
1034		goto out_rx;
1035	}
1036	if (fw_tx->size % 4) {
1037		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1038		       fw_tx->size, FIRMWARE_TX);
1039		retval = -EINVAL;
1040		goto out_tx;
1041	}
1042	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1043	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1044	rx_size = fw_rx->size / 4;
1045	tx_size = fw_tx->size / 4;
1046
1047	/* Load Rx/Tx firmware into the frame processors */
1048	for (i = 0; i < rx_size; i++)
1049		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1050	for (i = 0; i < tx_size; i++)
1051		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1052	if (enable_hw_cksum)
1053		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1054		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1055	else
1056		/* Enable the Rx and Tx units only. */
1057		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1058
1059	if (debug > 1)
1060		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1061		       dev->name);
1062
1063out_tx:
1064	release_firmware(fw_tx);
1065out_rx:
1066	release_firmware(fw_rx);
1067out_init:
1068	if (retval)
1069		netdev_close(dev);
1070	return retval;
1071}
1072
1073
1074static void check_duplex(struct net_device *dev)
1075{
1076	struct netdev_private *np = netdev_priv(dev);
1077	u16 reg0;
1078	int silly_count = 1000;
1079
1080	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1081	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1082	udelay(500);
1083	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1084		/* do nothing */;
1085	if (!silly_count) {
1086		printk("%s: MII reset failed!\n", dev->name);
1087		return;
1088	}
1089
1090	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1091
1092	if (!np->mii_if.force_media) {
1093		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1094	} else {
1095		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1096		if (np->speed100)
1097			reg0 |= BMCR_SPEED100;
1098		if (np->mii_if.full_duplex)
1099			reg0 |= BMCR_FULLDPLX;
1100		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1101		       dev->name,
1102		       np->speed100 ? "100" : "10",
1103		       np->mii_if.full_duplex ? "full" : "half");
1104	}
1105	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1106}
1107
1108
1109static void tx_timeout(struct net_device *dev)
1110{
1111	struct netdev_private *np = netdev_priv(dev);
1112	void __iomem *ioaddr = np->base;
1113	int old_debug;
1114
1115	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1116	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1117
1118	/* Perhaps we should reinitialize the hardware here. */
1119
1120	/*
1121	 * Stop and restart the interface.
1122	 * Cheat and increase the debug level temporarily.
1123	 */
1124	old_debug = debug;
1125	debug = 2;
1126	netdev_close(dev);
1127	netdev_open(dev);
1128	debug = old_debug;
1129
1130	/* Trigger an immediate transmit demand. */
1131
1132	dev->trans_start = jiffies; /* prevent tx timeout */
1133	dev->stats.tx_errors++;
1134	netif_wake_queue(dev);
1135}
1136
1137
1138/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1139static void init_ring(struct net_device *dev)
1140{
1141	struct netdev_private *np = netdev_priv(dev);
1142	int i;
1143
1144	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1145	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1146
1147	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1148
1149	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1150	for (i = 0; i < RX_RING_SIZE; i++) {
1151		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1152		np->rx_info[i].skb = skb;
1153		if (skb == NULL)
1154			break;
1155		np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1156		/* Grrr, we cannot offset to correctly align the IP header. */
1157		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1158	}
1159	writew(i - 1, np->base + RxDescQIdx);
1160	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1161
1162	/* Clear the remainder of the Rx buffer ring. */
1163	for (  ; i < RX_RING_SIZE; i++) {
1164		np->rx_ring[i].rxaddr = 0;
1165		np->rx_info[i].skb = NULL;
1166		np->rx_info[i].mapping = 0;
1167	}
1168	/* Mark the last entry as wrapping the ring. */
1169	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1170
1171	/* Clear the completion rings. */
1172	for (i = 0; i < DONE_Q_SIZE; i++) {
1173		np->rx_done_q[i].status = 0;
1174		np->tx_done_q[i].status = 0;
1175	}
1176
1177	for (i = 0; i < TX_RING_SIZE; i++)
1178		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1179}
1180
1181
1182static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1183{
1184	struct netdev_private *np = netdev_priv(dev);
1185	unsigned int entry;
1186	u32 status;
1187	int i;
1188
1189	/*
1190	 * be cautious here, wrapping the queue has weird semantics
1191	 * and we may not have enough slots even when it seems we do.
1192	 */
1193	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1194		netif_stop_queue(dev);
1195		return NETDEV_TX_BUSY;
1196	}
1197
1198#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1199	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1200		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1201			return NETDEV_TX_OK;
1202	}
1203#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1204
1205	entry = np->cur_tx % TX_RING_SIZE;
1206	for (i = 0; i < skb_num_frags(skb); i++) {
1207		int wrap_ring = 0;
1208		status = TxDescID;
1209
1210		if (i == 0) {
1211			np->tx_info[entry].skb = skb;
1212			status |= TxCRCEn;
1213			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1214				status |= TxRingWrap;
1215				wrap_ring = 1;
1216			}
1217			if (np->reap_tx) {
1218				status |= TxDescIntr;
1219				np->reap_tx = 0;
1220			}
1221			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1222				status |= TxCalTCP;
1223				dev->stats.tx_compressed++;
1224			}
1225			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1226
1227			np->tx_info[entry].mapping =
1228				pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1229		} else {
1230			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1231			status |= skb_frag_size(this_frag);
1232			np->tx_info[entry].mapping =
1233				pci_map_single(np->pci_dev,
1234					       skb_frag_address(this_frag),
1235					       skb_frag_size(this_frag),
1236					       PCI_DMA_TODEVICE);
1237		}
1238
1239		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1240		np->tx_ring[entry].status = cpu_to_le32(status);
1241		if (debug > 3)
1242			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1243			       dev->name, np->cur_tx, np->dirty_tx,
1244			       entry, status);
1245		if (wrap_ring) {
1246			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1247			np->cur_tx += np->tx_info[entry].used_slots;
1248			entry = 0;
1249		} else {
1250			np->tx_info[entry].used_slots = 1;
1251			np->cur_tx += np->tx_info[entry].used_slots;
1252			entry++;
1253		}
1254		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1255		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1256			np->reap_tx = 1;
1257	}
1258
1259	/* Non-x86: explicitly flush descriptor cache lines here. */
1260	/* Ensure all descriptors are written back before the transmit is
1261	   initiated. - Jes */
1262	wmb();
1263
1264	/* Update the producer index. */
1265	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1266
1267	/* 4 is arbitrary, but should be ok */
1268	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1269		netif_stop_queue(dev);
1270
1271	return NETDEV_TX_OK;
1272}
1273
1274
1275/* The interrupt handler does all of the Rx thread work and cleans up
1276   after the Tx thread. */
1277static irqreturn_t intr_handler(int irq, void *dev_instance)
1278{
1279	struct net_device *dev = dev_instance;
1280	struct netdev_private *np = netdev_priv(dev);
1281	void __iomem *ioaddr = np->base;
1282	int boguscnt = max_interrupt_work;
1283	int consumer;
1284	int tx_status;
1285	int handled = 0;
1286
1287	do {
1288		u32 intr_status = readl(ioaddr + IntrClear);
1289
1290		if (debug > 4)
1291			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1292			       dev->name, intr_status);
1293
1294		if (intr_status == 0 || intr_status == (u32) -1)
1295			break;
1296
1297		handled = 1;
1298
1299		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1300			u32 enable;
1301
1302			if (likely(napi_schedule_prep(&np->napi))) {
1303				__napi_schedule(&np->napi);
1304				enable = readl(ioaddr + IntrEnable);
1305				enable &= ~(IntrRxDone | IntrRxEmpty);
1306				writel(enable, ioaddr + IntrEnable);
1307				/* flush PCI posting buffers */
1308				readl(ioaddr + IntrEnable);
1309			} else {
1310				/* Paranoia check */
1311				enable = readl(ioaddr + IntrEnable);
1312				if (enable & (IntrRxDone | IntrRxEmpty)) {
1313					printk(KERN_INFO
1314					       "%s: interrupt while in poll!\n",
1315					       dev->name);
1316					enable &= ~(IntrRxDone | IntrRxEmpty);
1317					writel(enable, ioaddr + IntrEnable);
1318				}
1319			}
1320		}
1321
1322		/* Scavenge the skbuff list based on the Tx-done queue.
1323		   There are redundant checks here that may be cleaned up
1324		   after the driver has proven to be reliable. */
1325		consumer = readl(ioaddr + TxConsumerIdx);
1326		if (debug > 3)
1327			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1328			       dev->name, consumer);
1329
1330		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1331			if (debug > 3)
1332				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1333				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1334			if ((tx_status & 0xe0000000) == 0xa0000000) {
1335				dev->stats.tx_packets++;
1336			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1337				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1338				struct sk_buff *skb = np->tx_info[entry].skb;
1339				np->tx_info[entry].skb = NULL;
1340				pci_unmap_single(np->pci_dev,
1341						 np->tx_info[entry].mapping,
1342						 skb_first_frag_len(skb),
1343						 PCI_DMA_TODEVICE);
1344				np->tx_info[entry].mapping = 0;
1345				np->dirty_tx += np->tx_info[entry].used_slots;
1346				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1347				{
1348					int i;
1349					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1350						pci_unmap_single(np->pci_dev,
1351								 np->tx_info[entry].mapping,
1352								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1353								 PCI_DMA_TODEVICE);
1354						np->dirty_tx++;
1355						entry++;
1356					}
1357				}
1358
1359				dev_kfree_skb_irq(skb);
1360			}
1361			np->tx_done_q[np->tx_done].status = 0;
1362			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1363		}
1364		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1365
1366		if (netif_queue_stopped(dev) &&
1367		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1368			/* The ring is no longer full, wake the queue. */
1369			netif_wake_queue(dev);
1370		}
1371
1372		/* Stats overflow */
1373		if (intr_status & IntrStatsMax)
1374			get_stats(dev);
1375
1376		/* Media change interrupt. */
1377		if (intr_status & IntrLinkChange)
1378			netdev_media_change(dev);
1379
1380		/* Abnormal error summary/uncommon events handlers. */
1381		if (intr_status & IntrAbnormalSummary)
1382			netdev_error(dev, intr_status);
1383
1384		if (--boguscnt < 0) {
1385			if (debug > 1)
1386				printk(KERN_WARNING "%s: Too much work at interrupt, "
1387				       "status=%#8.8x.\n",
1388				       dev->name, intr_status);
1389			break;
1390		}
1391	} while (1);
1392
1393	if (debug > 4)
1394		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1395		       dev->name, (int) readl(ioaddr + IntrStatus));
1396	return IRQ_RETVAL(handled);
1397}
1398
1399
1400/*
1401 * This routine is logically part of the interrupt/poll handler, but separated
1402 * for clarity and better register allocation.
1403 */
1404static int __netdev_rx(struct net_device *dev, int *quota)
1405{
1406	struct netdev_private *np = netdev_priv(dev);
1407	u32 desc_status;
1408	int retcode = 0;
1409
1410	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1411	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1412		struct sk_buff *skb;
1413		u16 pkt_len;
1414		int entry;
1415		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1416
1417		if (debug > 4)
1418			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1419		if (!(desc_status & RxOK)) {
1420			/* There was an error. */
1421			if (debug > 2)
1422				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1423			dev->stats.rx_errors++;
1424			if (desc_status & RxFIFOErr)
1425				dev->stats.rx_fifo_errors++;
1426			goto next_rx;
1427		}
1428
1429		if (*quota <= 0) {	/* out of rx quota */
1430			retcode = 1;
1431			goto out;
1432		}
1433		(*quota)--;
1434
1435		pkt_len = desc_status;	/* Implicitly Truncate */
1436		entry = (desc_status >> 16) & 0x7ff;
1437
1438		if (debug > 4)
1439			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1440		/* Check if the packet is long enough to accept without copying
1441		   to a minimally-sized skbuff. */
1442		if (pkt_len < rx_copybreak &&
1443		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1444			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1445			pci_dma_sync_single_for_cpu(np->pci_dev,
1446						    np->rx_info[entry].mapping,
1447						    pkt_len, PCI_DMA_FROMDEVICE);
1448			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1449			pci_dma_sync_single_for_device(np->pci_dev,
1450						       np->rx_info[entry].mapping,
1451						       pkt_len, PCI_DMA_FROMDEVICE);
1452			skb_put(skb, pkt_len);
1453		} else {
1454			pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1455			skb = np->rx_info[entry].skb;
1456			skb_put(skb, pkt_len);
1457			np->rx_info[entry].skb = NULL;
1458			np->rx_info[entry].mapping = 0;
1459		}
1460#ifndef final_version			/* Remove after testing. */
1461		/* You will want this info for the initial debug. */
1462		if (debug > 5) {
1463			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1464			       skb->data, skb->data + 6,
1465			       skb->data[12], skb->data[13]);
1466		}
1467#endif
1468
1469		skb->protocol = eth_type_trans(skb, dev);
1470#ifdef VLAN_SUPPORT
1471		if (debug > 4)
1472			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1473#endif
1474		if (le16_to_cpu(desc->status2) & 0x0100) {
1475			skb->ip_summed = CHECKSUM_UNNECESSARY;
1476			dev->stats.rx_compressed++;
1477		}
1478		/*
1479		 * This feature doesn't seem to be working, at least
1480		 * with the two firmware versions I have. If the GFP sees
1481		 * an IP fragment, it either ignores it completely, or reports
1482		 * "bad checksum" on it.
1483		 *
1484		 * Maybe I missed something -- corrections are welcome.
1485		 * Until then, the printk stays. :-) -Ion
1486		 */
1487		else if (le16_to_cpu(desc->status2) & 0x0040) {
1488			skb->ip_summed = CHECKSUM_COMPLETE;
1489			skb->csum = le16_to_cpu(desc->csum);
1490			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1491		}
1492#ifdef VLAN_SUPPORT
1493		if (le16_to_cpu(desc->status2) & 0x0200) {
1494			u16 vlid = le16_to_cpu(desc->vlanid);
1495
1496			if (debug > 4) {
1497				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1498				       vlid);
1499			}
1500			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1501		}
1502#endif /* VLAN_SUPPORT */
1503		netif_receive_skb(skb);
1504		dev->stats.rx_packets++;
1505
1506	next_rx:
1507		np->cur_rx++;
1508		desc->status = 0;
1509		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1510	}
1511
1512	if (*quota == 0) {	/* out of rx quota */
1513		retcode = 1;
1514		goto out;
1515	}
1516	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1517
1518 out:
1519	refill_rx_ring(dev);
1520	if (debug > 5)
1521		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1522		       retcode, np->rx_done, desc_status);
1523	return retcode;
1524}
1525
1526static int netdev_poll(struct napi_struct *napi, int budget)
1527{
1528	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1529	struct net_device *dev = np->dev;
1530	u32 intr_status;
1531	void __iomem *ioaddr = np->base;
1532	int quota = budget;
1533
1534	do {
1535		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1536
1537		if (__netdev_rx(dev, &quota))
1538			goto out;
1539
1540		intr_status = readl(ioaddr + IntrStatus);
1541	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1542
1543	napi_complete(napi);
1544	intr_status = readl(ioaddr + IntrEnable);
1545	intr_status |= IntrRxDone | IntrRxEmpty;
1546	writel(intr_status, ioaddr + IntrEnable);
1547
1548 out:
1549	if (debug > 5)
1550		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1551		       budget - quota);
1552
1553	/* Restart Rx engine if stopped. */
1554	return budget - quota;
1555}
1556
1557static void refill_rx_ring(struct net_device *dev)
1558{
1559	struct netdev_private *np = netdev_priv(dev);
1560	struct sk_buff *skb;
1561	int entry = -1;
1562
1563	/* Refill the Rx ring buffers. */
1564	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1565		entry = np->dirty_rx % RX_RING_SIZE;
1566		if (np->rx_info[entry].skb == NULL) {
1567			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1568			np->rx_info[entry].skb = skb;
1569			if (skb == NULL)
1570				break;	/* Better luck next round. */
1571			np->rx_info[entry].mapping =
1572				pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1573			np->rx_ring[entry].rxaddr =
1574				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1575		}
1576		if (entry == RX_RING_SIZE - 1)
1577			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1578	}
1579	if (entry >= 0)
1580		writew(entry, np->base + RxDescQIdx);
1581}
1582
1583
1584static void netdev_media_change(struct net_device *dev)
1585{
1586	struct netdev_private *np = netdev_priv(dev);
1587	void __iomem *ioaddr = np->base;
1588	u16 reg0, reg1, reg4, reg5;
1589	u32 new_tx_mode;
1590	u32 new_intr_timer_ctrl;
1591
1592	/* reset status first */
1593	mdio_read(dev, np->phys[0], MII_BMCR);
1594	mdio_read(dev, np->phys[0], MII_BMSR);
1595
1596	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1597	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1598
1599	if (reg1 & BMSR_LSTATUS) {
1600		/* link is up */
1601		if (reg0 & BMCR_ANENABLE) {
1602			/* autonegotiation is enabled */
1603			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1604			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1605			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1606				np->speed100 = 1;
1607				np->mii_if.full_duplex = 1;
1608			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1609				np->speed100 = 1;
1610				np->mii_if.full_duplex = 0;
1611			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1612				np->speed100 = 0;
1613				np->mii_if.full_duplex = 1;
1614			} else {
1615				np->speed100 = 0;
1616				np->mii_if.full_duplex = 0;
1617			}
1618		} else {
1619			/* autonegotiation is disabled */
1620			if (reg0 & BMCR_SPEED100)
1621				np->speed100 = 1;
1622			else
1623				np->speed100 = 0;
1624			if (reg0 & BMCR_FULLDPLX)
1625				np->mii_if.full_duplex = 1;
1626			else
1627				np->mii_if.full_duplex = 0;
1628		}
1629		netif_carrier_on(dev);
1630		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1631		       dev->name,
1632		       np->speed100 ? "100" : "10",
1633		       np->mii_if.full_duplex ? "full" : "half");
1634
1635		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1636		if (np->mii_if.full_duplex)
1637			new_tx_mode |= FullDuplex;
1638		if (np->tx_mode != new_tx_mode) {
1639			np->tx_mode = new_tx_mode;
1640			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1641			udelay(1000);
1642			writel(np->tx_mode, ioaddr + TxMode);
1643		}
1644
1645		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1646		if (np->speed100)
1647			new_intr_timer_ctrl |= Timer10X;
1648		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1649			np->intr_timer_ctrl = new_intr_timer_ctrl;
1650			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1651		}
1652	} else {
1653		netif_carrier_off(dev);
1654		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1655	}
1656}
1657
1658
1659static void netdev_error(struct net_device *dev, int intr_status)
1660{
1661	struct netdev_private *np = netdev_priv(dev);
1662
1663	/* Came close to underrunning the Tx FIFO, increase threshold. */
1664	if (intr_status & IntrTxDataLow) {
1665		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1666			writel(++np->tx_threshold, np->base + TxThreshold);
1667			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1668			       dev->name, np->tx_threshold * 16);
1669		} else
1670			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1671	}
1672	if (intr_status & IntrRxGFPDead) {
1673		dev->stats.rx_fifo_errors++;
1674		dev->stats.rx_errors++;
1675	}
1676	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1677		dev->stats.tx_fifo_errors++;
1678		dev->stats.tx_errors++;
1679	}
1680	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1681		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1682		       dev->name, intr_status);
1683}
1684
1685
1686static struct net_device_stats *get_stats(struct net_device *dev)
1687{
1688	struct netdev_private *np = netdev_priv(dev);
1689	void __iomem *ioaddr = np->base;
1690
1691	/* This adapter architecture needs no SMP locks. */
1692	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1693	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1694	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1695	dev->stats.tx_aborted_errors =
1696		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1697	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1698	dev->stats.collisions =
1699		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1700
1701	/* The chip only need report frame silently dropped. */
1702	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1703	writew(0, ioaddr + RxDMAStatus);
1704	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1705	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1706	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1707	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1708
1709	return &dev->stats;
1710}
1711
1712#ifdef VLAN_SUPPORT
1713static u32 set_vlan_mode(struct netdev_private *np)
1714{
1715	u32 ret = VlanMode;
1716	u16 vid;
1717	void __iomem *filter_addr = np->base + HashTable + 8;
1718	int vlan_count = 0;
1719
1720	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1721		if (vlan_count == 32)
1722			break;
1723		writew(vid, filter_addr);
1724		filter_addr += 16;
1725		vlan_count++;
1726	}
1727	if (vlan_count == 32) {
1728		ret |= PerfectFilterVlan;
1729		while (vlan_count < 32) {
1730			writew(0, filter_addr);
1731			filter_addr += 16;
1732			vlan_count++;
1733		}
1734	}
1735	return ret;
1736}
1737#endif /* VLAN_SUPPORT */
1738
1739static void set_rx_mode(struct net_device *dev)
1740{
1741	struct netdev_private *np = netdev_priv(dev);
1742	void __iomem *ioaddr = np->base;
1743	u32 rx_mode = MinVLANPrio;
1744	struct netdev_hw_addr *ha;
1745	int i;
1746
1747#ifdef VLAN_SUPPORT
1748	rx_mode |= set_vlan_mode(np);
1749#endif /* VLAN_SUPPORT */
1750
1751	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1752		rx_mode |= AcceptAll;
1753	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1754		   (dev->flags & IFF_ALLMULTI)) {
1755		/* Too many to match, or accept all multicasts. */
1756		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1757	} else if (netdev_mc_count(dev) <= 14) {
1758		/* Use the 16 element perfect filter, skip first two entries. */
1759		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1760		__be16 *eaddrs;
1761		netdev_for_each_mc_addr(ha, dev) {
1762			eaddrs = (__be16 *) ha->addr;
1763			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1764			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1765			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1766		}
1767		eaddrs = (__be16 *)dev->dev_addr;
1768		i = netdev_mc_count(dev) + 2;
1769		while (i++ < 16) {
1770			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1771			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1772			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1773		}
1774		rx_mode |= AcceptBroadcast|PerfectFilter;
1775	} else {
1776		/* Must use a multicast hash table. */
1777		void __iomem *filter_addr;
1778		__be16 *eaddrs;
1779		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1780
1781		memset(mc_filter, 0, sizeof(mc_filter));
1782		netdev_for_each_mc_addr(ha, dev) {
1783			/* The chip uses the upper 9 CRC bits
1784			   as index into the hash table */
1785			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1786			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1787
1788			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1789		}
1790		/* Clear the perfect filter list, skip first two entries. */
1791		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1792		eaddrs = (__be16 *)dev->dev_addr;
1793		for (i = 2; i < 16; i++) {
1794			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1795			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1796			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1797		}
1798		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1799			writew(mc_filter[i], filter_addr);
1800		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1801	}
1802	writel(rx_mode, ioaddr + RxFilterMode);
1803}
1804
1805static int check_if_running(struct net_device *dev)
1806{
1807	if (!netif_running(dev))
1808		return -EINVAL;
1809	return 0;
1810}
1811
1812static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1813{
1814	struct netdev_private *np = netdev_priv(dev);
1815	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1816	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1817	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1818}
1819
1820static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1821{
1822	struct netdev_private *np = netdev_priv(dev);
1823	spin_lock_irq(&np->lock);
1824	mii_ethtool_gset(&np->mii_if, ecmd);
1825	spin_unlock_irq(&np->lock);
1826	return 0;
1827}
1828
1829static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1830{
1831	struct netdev_private *np = netdev_priv(dev);
1832	int res;
1833	spin_lock_irq(&np->lock);
1834	res = mii_ethtool_sset(&np->mii_if, ecmd);
1835	spin_unlock_irq(&np->lock);
1836	check_duplex(dev);
1837	return res;
1838}
1839
1840static int nway_reset(struct net_device *dev)
1841{
1842	struct netdev_private *np = netdev_priv(dev);
1843	return mii_nway_restart(&np->mii_if);
1844}
1845
1846static u32 get_link(struct net_device *dev)
1847{
1848	struct netdev_private *np = netdev_priv(dev);
1849	return mii_link_ok(&np->mii_if);
1850}
1851
1852static u32 get_msglevel(struct net_device *dev)
1853{
1854	return debug;
1855}
1856
1857static void set_msglevel(struct net_device *dev, u32 val)
1858{
1859	debug = val;
1860}
1861
1862static const struct ethtool_ops ethtool_ops = {
1863	.begin = check_if_running,
1864	.get_drvinfo = get_drvinfo,
1865	.get_settings = get_settings,
1866	.set_settings = set_settings,
1867	.nway_reset = nway_reset,
1868	.get_link = get_link,
1869	.get_msglevel = get_msglevel,
1870	.set_msglevel = set_msglevel,
1871};
1872
1873static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1874{
1875	struct netdev_private *np = netdev_priv(dev);
1876	struct mii_ioctl_data *data = if_mii(rq);
1877	int rc;
1878
1879	if (!netif_running(dev))
1880		return -EINVAL;
1881
1882	spin_lock_irq(&np->lock);
1883	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1884	spin_unlock_irq(&np->lock);
1885
1886	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1887		check_duplex(dev);
1888
1889	return rc;
1890}
1891
1892static int netdev_close(struct net_device *dev)
1893{
1894	struct netdev_private *np = netdev_priv(dev);
1895	void __iomem *ioaddr = np->base;
1896	int i;
1897
1898	netif_stop_queue(dev);
1899
1900	napi_disable(&np->napi);
1901
1902	if (debug > 1) {
1903		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1904			   dev->name, (int) readl(ioaddr + IntrStatus));
1905		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1906		       dev->name, np->cur_tx, np->dirty_tx,
1907		       np->cur_rx, np->dirty_rx);
1908	}
1909
1910	/* Disable interrupts by clearing the interrupt mask. */
1911	writel(0, ioaddr + IntrEnable);
1912
1913	/* Stop the chip's Tx and Rx processes. */
1914	writel(0, ioaddr + GenCtrl);
1915	readl(ioaddr + GenCtrl);
1916
1917	if (debug > 5) {
1918		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1919		       (long long) np->tx_ring_dma);
1920		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1921			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1922			       i, le32_to_cpu(np->tx_ring[i].status),
1923			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1924			       le32_to_cpu(np->tx_done_q[i].status));
1925		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1926		       (long long) np->rx_ring_dma, np->rx_done_q);
1927		if (np->rx_done_q)
1928			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1929				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1930				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1931		}
1932	}
1933
1934	free_irq(np->pci_dev->irq, dev);
1935
1936	/* Free all the skbuffs in the Rx queue. */
1937	for (i = 0; i < RX_RING_SIZE; i++) {
1938		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1939		if (np->rx_info[i].skb != NULL) {
1940			pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1941			dev_kfree_skb(np->rx_info[i].skb);
1942		}
1943		np->rx_info[i].skb = NULL;
1944		np->rx_info[i].mapping = 0;
1945	}
1946	for (i = 0; i < TX_RING_SIZE; i++) {
1947		struct sk_buff *skb = np->tx_info[i].skb;
1948		if (skb == NULL)
1949			continue;
1950		pci_unmap_single(np->pci_dev,
1951				 np->tx_info[i].mapping,
1952				 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1953		np->tx_info[i].mapping = 0;
1954		dev_kfree_skb(skb);
1955		np->tx_info[i].skb = NULL;
1956	}
1957
1958	return 0;
1959}
1960
1961#ifdef CONFIG_PM
1962static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1963{
1964	struct net_device *dev = pci_get_drvdata(pdev);
1965
1966	if (netif_running(dev)) {
1967		netif_device_detach(dev);
1968		netdev_close(dev);
1969	}
1970
1971	pci_save_state(pdev);
1972	pci_set_power_state(pdev, pci_choose_state(pdev,state));
1973
1974	return 0;
1975}
1976
1977static int starfire_resume(struct pci_dev *pdev)
1978{
1979	struct net_device *dev = pci_get_drvdata(pdev);
1980
1981	pci_set_power_state(pdev, PCI_D0);
1982	pci_restore_state(pdev);
1983
1984	if (netif_running(dev)) {
1985		netdev_open(dev);
1986		netif_device_attach(dev);
1987	}
1988
1989	return 0;
1990}
1991#endif /* CONFIG_PM */
1992
1993
1994static void starfire_remove_one(struct pci_dev *pdev)
1995{
1996	struct net_device *dev = pci_get_drvdata(pdev);
1997	struct netdev_private *np = netdev_priv(dev);
1998
1999	BUG_ON(!dev);
2000
2001	unregister_netdev(dev);
2002
2003	if (np->queue_mem)
2004		pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2005
2006
2007	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2008	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2009	pci_disable_device(pdev);
2010
2011	iounmap(np->base);
2012	pci_release_regions(pdev);
2013
2014	free_netdev(dev);			/* Will also free np!! */
2015}
2016
2017
2018static struct pci_driver starfire_driver = {
2019	.name		= DRV_NAME,
2020	.probe		= starfire_init_one,
2021	.remove		= starfire_remove_one,
2022#ifdef CONFIG_PM
2023	.suspend	= starfire_suspend,
2024	.resume		= starfire_resume,
2025#endif /* CONFIG_PM */
2026	.id_table	= starfire_pci_tbl,
2027};
2028
2029
2030static int __init starfire_init (void)
2031{
2032/* when a module, this is printed whether or not devices are found in probe */
2033#ifdef MODULE
2034	printk(version);
2035
2036	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2037#endif
2038
2039	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2040
2041	return pci_register_driver(&starfire_driver);
2042}
2043
2044
2045static void __exit starfire_cleanup (void)
2046{
2047	pci_unregister_driver (&starfire_driver);
2048}
2049
2050
2051module_init(starfire_init);
2052module_exit(starfire_cleanup);
2053
2054
2055/*
2056 * Local variables:
2057 *  c-basic-offset: 8
2058 *  tab-width: 8
2059 * End:
2060 */
2061