1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (���������������� ����������)
20 */
21
22/*
23 * UBI input/output sub-system.
24 *
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
87 */
88
89#include <linux/crc32.h>
90#include <linux/err.h>
91#include <linux/slab.h>
92#include "ubi.h"
93
94static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
95static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97			     const struct ubi_ec_hdr *ec_hdr);
98static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100			      const struct ubi_vid_hdr *vid_hdr);
101static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
102			    int offset, int len);
103
104/**
105 * ubi_io_read - read data from a physical eraseblock.
106 * @ubi: UBI device description object
107 * @buf: buffer where to store the read data
108 * @pnum: physical eraseblock number to read from
109 * @offset: offset within the physical eraseblock from where to read
110 * @len: how many bytes to read
111 *
112 * This function reads data from offset @offset of physical eraseblock @pnum
113 * and stores the read data in the @buf buffer. The following return codes are
114 * possible:
115 *
116 * o %0 if all the requested data were successfully read;
117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118 *   correctable bit-flips were detected; this is harmless but may indicate
119 *   that this eraseblock may become bad soon (but do not have to);
120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121 *   example it can be an ECC error in case of NAND; this most probably means
122 *   that the data is corrupted;
123 * o %-EIO if some I/O error occurred;
124 * o other negative error codes in case of other errors.
125 */
126int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
127		int len)
128{
129	int err, retries = 0;
130	size_t read;
131	loff_t addr;
132
133	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
134
135	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
136	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
137	ubi_assert(len > 0);
138
139	err = self_check_not_bad(ubi, pnum);
140	if (err)
141		return err;
142
143	/*
144	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
145	 * do not do this, the following may happen:
146	 * 1. The buffer contains data from previous operation, e.g., read from
147	 *    another PEB previously. The data looks like expected, e.g., if we
148	 *    just do not read anything and return - the caller would not
149	 *    notice this. E.g., if we are reading a VID header, the buffer may
150	 *    contain a valid VID header from another PEB.
151	 * 2. The driver is buggy and returns us success or -EBADMSG or
152	 *    -EUCLEAN, but it does not actually put any data to the buffer.
153	 *
154	 * This may confuse UBI or upper layers - they may think the buffer
155	 * contains valid data while in fact it is just old data. This is
156	 * especially possible because UBI (and UBIFS) relies on CRC, and
157	 * treats data as correct even in case of ECC errors if the CRC is
158	 * correct.
159	 *
160	 * Try to prevent this situation by changing the first byte of the
161	 * buffer.
162	 */
163	*((uint8_t *)buf) ^= 0xFF;
164
165	addr = (loff_t)pnum * ubi->peb_size + offset;
166retry:
167	err = mtd_read(ubi->mtd, addr, len, &read, buf);
168	if (err) {
169		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
170
171		if (mtd_is_bitflip(err)) {
172			/*
173			 * -EUCLEAN is reported if there was a bit-flip which
174			 * was corrected, so this is harmless.
175			 *
176			 * We do not report about it here unless debugging is
177			 * enabled. A corresponding message will be printed
178			 * later, when it is has been scrubbed.
179			 */
180			ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
181				pnum);
182			ubi_assert(len == read);
183			return UBI_IO_BITFLIPS;
184		}
185
186		if (retries++ < UBI_IO_RETRIES) {
187			ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
188				 err, errstr, len, pnum, offset, read);
189			yield();
190			goto retry;
191		}
192
193		ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
194			err, errstr, len, pnum, offset, read);
195		dump_stack();
196
197		/*
198		 * The driver should never return -EBADMSG if it failed to read
199		 * all the requested data. But some buggy drivers might do
200		 * this, so we change it to -EIO.
201		 */
202		if (read != len && mtd_is_eccerr(err)) {
203			ubi_assert(0);
204			err = -EIO;
205		}
206	} else {
207		ubi_assert(len == read);
208
209		if (ubi_dbg_is_bitflip(ubi)) {
210			dbg_gen("bit-flip (emulated)");
211			err = UBI_IO_BITFLIPS;
212		}
213	}
214
215	return err;
216}
217
218/**
219 * ubi_io_write - write data to a physical eraseblock.
220 * @ubi: UBI device description object
221 * @buf: buffer with the data to write
222 * @pnum: physical eraseblock number to write to
223 * @offset: offset within the physical eraseblock where to write
224 * @len: how many bytes to write
225 *
226 * This function writes @len bytes of data from buffer @buf to offset @offset
227 * of physical eraseblock @pnum. If all the data were successfully written,
228 * zero is returned. If an error occurred, this function returns a negative
229 * error code. If %-EIO is returned, the physical eraseblock most probably went
230 * bad.
231 *
232 * Note, in case of an error, it is possible that something was still written
233 * to the flash media, but may be some garbage.
234 */
235int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
236		 int len)
237{
238	int err;
239	size_t written;
240	loff_t addr;
241
242	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
243
244	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
245	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
246	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
247	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
248
249	if (ubi->ro_mode) {
250		ubi_err(ubi, "read-only mode");
251		return -EROFS;
252	}
253
254	err = self_check_not_bad(ubi, pnum);
255	if (err)
256		return err;
257
258	/* The area we are writing to has to contain all 0xFF bytes */
259	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
260	if (err)
261		return err;
262
263	if (offset >= ubi->leb_start) {
264		/*
265		 * We write to the data area of the physical eraseblock. Make
266		 * sure it has valid EC and VID headers.
267		 */
268		err = self_check_peb_ec_hdr(ubi, pnum);
269		if (err)
270			return err;
271		err = self_check_peb_vid_hdr(ubi, pnum);
272		if (err)
273			return err;
274	}
275
276	if (ubi_dbg_is_write_failure(ubi)) {
277		ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
278			len, pnum, offset);
279		dump_stack();
280		return -EIO;
281	}
282
283	addr = (loff_t)pnum * ubi->peb_size + offset;
284	err = mtd_write(ubi->mtd, addr, len, &written, buf);
285	if (err) {
286		ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
287			err, len, pnum, offset, written);
288		dump_stack();
289		ubi_dump_flash(ubi, pnum, offset, len);
290	} else
291		ubi_assert(written == len);
292
293	if (!err) {
294		err = self_check_write(ubi, buf, pnum, offset, len);
295		if (err)
296			return err;
297
298		/*
299		 * Since we always write sequentially, the rest of the PEB has
300		 * to contain only 0xFF bytes.
301		 */
302		offset += len;
303		len = ubi->peb_size - offset;
304		if (len)
305			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
306	}
307
308	return err;
309}
310
311/**
312 * erase_callback - MTD erasure call-back.
313 * @ei: MTD erase information object.
314 *
315 * Note, even though MTD erase interface is asynchronous, all the current
316 * implementations are synchronous anyway.
317 */
318static void erase_callback(struct erase_info *ei)
319{
320	wake_up_interruptible((wait_queue_head_t *)ei->priv);
321}
322
323/**
324 * do_sync_erase - synchronously erase a physical eraseblock.
325 * @ubi: UBI device description object
326 * @pnum: the physical eraseblock number to erase
327 *
328 * This function synchronously erases physical eraseblock @pnum and returns
329 * zero in case of success and a negative error code in case of failure. If
330 * %-EIO is returned, the physical eraseblock most probably went bad.
331 */
332static int do_sync_erase(struct ubi_device *ubi, int pnum)
333{
334	int err, retries = 0;
335	struct erase_info ei;
336	wait_queue_head_t wq;
337
338	dbg_io("erase PEB %d", pnum);
339	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
340
341	if (ubi->ro_mode) {
342		ubi_err(ubi, "read-only mode");
343		return -EROFS;
344	}
345
346retry:
347	init_waitqueue_head(&wq);
348	memset(&ei, 0, sizeof(struct erase_info));
349
350	ei.mtd      = ubi->mtd;
351	ei.addr     = (loff_t)pnum * ubi->peb_size;
352	ei.len      = ubi->peb_size;
353	ei.callback = erase_callback;
354	ei.priv     = (unsigned long)&wq;
355
356	err = mtd_erase(ubi->mtd, &ei);
357	if (err) {
358		if (retries++ < UBI_IO_RETRIES) {
359			ubi_warn(ubi, "error %d while erasing PEB %d, retry",
360				 err, pnum);
361			yield();
362			goto retry;
363		}
364		ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
365		dump_stack();
366		return err;
367	}
368
369	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
370					   ei.state == MTD_ERASE_FAILED);
371	if (err) {
372		ubi_err(ubi, "interrupted PEB %d erasure", pnum);
373		return -EINTR;
374	}
375
376	if (ei.state == MTD_ERASE_FAILED) {
377		if (retries++ < UBI_IO_RETRIES) {
378			ubi_warn(ubi, "error while erasing PEB %d, retry",
379				 pnum);
380			yield();
381			goto retry;
382		}
383		ubi_err(ubi, "cannot erase PEB %d", pnum);
384		dump_stack();
385		return -EIO;
386	}
387
388	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
389	if (err)
390		return err;
391
392	if (ubi_dbg_is_erase_failure(ubi)) {
393		ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
394		return -EIO;
395	}
396
397	return 0;
398}
399
400/* Patterns to write to a physical eraseblock when torturing it */
401static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
402
403/**
404 * torture_peb - test a supposedly bad physical eraseblock.
405 * @ubi: UBI device description object
406 * @pnum: the physical eraseblock number to test
407 *
408 * This function returns %-EIO if the physical eraseblock did not pass the
409 * test, a positive number of erase operations done if the test was
410 * successfully passed, and other negative error codes in case of other errors.
411 */
412static int torture_peb(struct ubi_device *ubi, int pnum)
413{
414	int err, i, patt_count;
415
416	ubi_msg(ubi, "run torture test for PEB %d", pnum);
417	patt_count = ARRAY_SIZE(patterns);
418	ubi_assert(patt_count > 0);
419
420	mutex_lock(&ubi->buf_mutex);
421	for (i = 0; i < patt_count; i++) {
422		err = do_sync_erase(ubi, pnum);
423		if (err)
424			goto out;
425
426		/* Make sure the PEB contains only 0xFF bytes */
427		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
428		if (err)
429			goto out;
430
431		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
432		if (err == 0) {
433			ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
434				pnum);
435			err = -EIO;
436			goto out;
437		}
438
439		/* Write a pattern and check it */
440		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
441		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
442		if (err)
443			goto out;
444
445		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
446		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
447		if (err)
448			goto out;
449
450		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
451					ubi->peb_size);
452		if (err == 0) {
453			ubi_err(ubi, "pattern %x checking failed for PEB %d",
454				patterns[i], pnum);
455			err = -EIO;
456			goto out;
457		}
458	}
459
460	err = patt_count;
461	ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
462
463out:
464	mutex_unlock(&ubi->buf_mutex);
465	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
466		/*
467		 * If a bit-flip or data integrity error was detected, the test
468		 * has not passed because it happened on a freshly erased
469		 * physical eraseblock which means something is wrong with it.
470		 */
471		ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
472			pnum);
473		err = -EIO;
474	}
475	return err;
476}
477
478/**
479 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
480 * @ubi: UBI device description object
481 * @pnum: physical eraseblock number to prepare
482 *
483 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
484 * algorithm: the PEB is first filled with zeroes, then it is erased. And
485 * filling with zeroes starts from the end of the PEB. This was observed with
486 * Spansion S29GL512N NOR flash.
487 *
488 * This means that in case of a power cut we may end up with intact data at the
489 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
490 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
491 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
492 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
493 *
494 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
495 * magic numbers in order to invalidate them and prevent the failures. Returns
496 * zero in case of success and a negative error code in case of failure.
497 */
498static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
499{
500	int err;
501	size_t written;
502	loff_t addr;
503	uint32_t data = 0;
504	struct ubi_ec_hdr ec_hdr;
505
506	/*
507	 * Note, we cannot generally define VID header buffers on stack,
508	 * because of the way we deal with these buffers (see the header
509	 * comment in this file). But we know this is a NOR-specific piece of
510	 * code, so we can do this. But yes, this is error-prone and we should
511	 * (pre-)allocate VID header buffer instead.
512	 */
513	struct ubi_vid_hdr vid_hdr;
514
515	/*
516	 * If VID or EC is valid, we have to corrupt them before erasing.
517	 * It is important to first invalidate the EC header, and then the VID
518	 * header. Otherwise a power cut may lead to valid EC header and
519	 * invalid VID header, in which case UBI will treat this PEB as
520	 * corrupted and will try to preserve it, and print scary warnings.
521	 */
522	addr = (loff_t)pnum * ubi->peb_size;
523	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
524	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
525	    err != UBI_IO_FF){
526		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
527		if(err)
528			goto error;
529	}
530
531	err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
532	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
533	    err != UBI_IO_FF){
534		addr += ubi->vid_hdr_aloffset;
535		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
536		if (err)
537			goto error;
538	}
539	return 0;
540
541error:
542	/*
543	 * The PEB contains a valid VID or EC header, but we cannot invalidate
544	 * it. Supposedly the flash media or the driver is screwed up, so
545	 * return an error.
546	 */
547	ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
548	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
549	return -EIO;
550}
551
552/**
553 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
554 * @ubi: UBI device description object
555 * @pnum: physical eraseblock number to erase
556 * @torture: if this physical eraseblock has to be tortured
557 *
558 * This function synchronously erases physical eraseblock @pnum. If @torture
559 * flag is not zero, the physical eraseblock is checked by means of writing
560 * different patterns to it and reading them back. If the torturing is enabled,
561 * the physical eraseblock is erased more than once.
562 *
563 * This function returns the number of erasures made in case of success, %-EIO
564 * if the erasure failed or the torturing test failed, and other negative error
565 * codes in case of other errors. Note, %-EIO means that the physical
566 * eraseblock is bad.
567 */
568int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
569{
570	int err, ret = 0;
571
572	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
573
574	err = self_check_not_bad(ubi, pnum);
575	if (err != 0)
576		return err;
577
578	if (ubi->ro_mode) {
579		ubi_err(ubi, "read-only mode");
580		return -EROFS;
581	}
582
583	if (ubi->nor_flash) {
584		err = nor_erase_prepare(ubi, pnum);
585		if (err)
586			return err;
587	}
588
589	if (torture) {
590		ret = torture_peb(ubi, pnum);
591		if (ret < 0)
592			return ret;
593	}
594
595	err = do_sync_erase(ubi, pnum);
596	if (err)
597		return err;
598
599	return ret + 1;
600}
601
602/**
603 * ubi_io_is_bad - check if a physical eraseblock is bad.
604 * @ubi: UBI device description object
605 * @pnum: the physical eraseblock number to check
606 *
607 * This function returns a positive number if the physical eraseblock is bad,
608 * zero if not, and a negative error code if an error occurred.
609 */
610int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
611{
612	struct mtd_info *mtd = ubi->mtd;
613
614	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
615
616	if (ubi->bad_allowed) {
617		int ret;
618
619		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
620		if (ret < 0)
621			ubi_err(ubi, "error %d while checking if PEB %d is bad",
622				ret, pnum);
623		else if (ret)
624			dbg_io("PEB %d is bad", pnum);
625		return ret;
626	}
627
628	return 0;
629}
630
631/**
632 * ubi_io_mark_bad - mark a physical eraseblock as bad.
633 * @ubi: UBI device description object
634 * @pnum: the physical eraseblock number to mark
635 *
636 * This function returns zero in case of success and a negative error code in
637 * case of failure.
638 */
639int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
640{
641	int err;
642	struct mtd_info *mtd = ubi->mtd;
643
644	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
645
646	if (ubi->ro_mode) {
647		ubi_err(ubi, "read-only mode");
648		return -EROFS;
649	}
650
651	if (!ubi->bad_allowed)
652		return 0;
653
654	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
655	if (err)
656		ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
657	return err;
658}
659
660/**
661 * validate_ec_hdr - validate an erase counter header.
662 * @ubi: UBI device description object
663 * @ec_hdr: the erase counter header to check
664 *
665 * This function returns zero if the erase counter header is OK, and %1 if
666 * not.
667 */
668static int validate_ec_hdr(const struct ubi_device *ubi,
669			   const struct ubi_ec_hdr *ec_hdr)
670{
671	long long ec;
672	int vid_hdr_offset, leb_start;
673
674	ec = be64_to_cpu(ec_hdr->ec);
675	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
676	leb_start = be32_to_cpu(ec_hdr->data_offset);
677
678	if (ec_hdr->version != UBI_VERSION) {
679		ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
680			UBI_VERSION, (int)ec_hdr->version);
681		goto bad;
682	}
683
684	if (vid_hdr_offset != ubi->vid_hdr_offset) {
685		ubi_err(ubi, "bad VID header offset %d, expected %d",
686			vid_hdr_offset, ubi->vid_hdr_offset);
687		goto bad;
688	}
689
690	if (leb_start != ubi->leb_start) {
691		ubi_err(ubi, "bad data offset %d, expected %d",
692			leb_start, ubi->leb_start);
693		goto bad;
694	}
695
696	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
697		ubi_err(ubi, "bad erase counter %lld", ec);
698		goto bad;
699	}
700
701	return 0;
702
703bad:
704	ubi_err(ubi, "bad EC header");
705	ubi_dump_ec_hdr(ec_hdr);
706	dump_stack();
707	return 1;
708}
709
710/**
711 * ubi_io_read_ec_hdr - read and check an erase counter header.
712 * @ubi: UBI device description object
713 * @pnum: physical eraseblock to read from
714 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
715 * header
716 * @verbose: be verbose if the header is corrupted or was not found
717 *
718 * This function reads erase counter header from physical eraseblock @pnum and
719 * stores it in @ec_hdr. This function also checks CRC checksum of the read
720 * erase counter header. The following codes may be returned:
721 *
722 * o %0 if the CRC checksum is correct and the header was successfully read;
723 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
724 *   and corrected by the flash driver; this is harmless but may indicate that
725 *   this eraseblock may become bad soon (but may be not);
726 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
727 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
728 *   a data integrity error (uncorrectable ECC error in case of NAND);
729 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
730 * o a negative error code in case of failure.
731 */
732int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
733		       struct ubi_ec_hdr *ec_hdr, int verbose)
734{
735	int err, read_err;
736	uint32_t crc, magic, hdr_crc;
737
738	dbg_io("read EC header from PEB %d", pnum);
739	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
740
741	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
742	if (read_err) {
743		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
744			return read_err;
745
746		/*
747		 * We read all the data, but either a correctable bit-flip
748		 * occurred, or MTD reported a data integrity error
749		 * (uncorrectable ECC error in case of NAND). The former is
750		 * harmless, the later may mean that the read data is
751		 * corrupted. But we have a CRC check-sum and we will detect
752		 * this. If the EC header is still OK, we just report this as
753		 * there was a bit-flip, to force scrubbing.
754		 */
755	}
756
757	magic = be32_to_cpu(ec_hdr->magic);
758	if (magic != UBI_EC_HDR_MAGIC) {
759		if (mtd_is_eccerr(read_err))
760			return UBI_IO_BAD_HDR_EBADMSG;
761
762		/*
763		 * The magic field is wrong. Let's check if we have read all
764		 * 0xFF. If yes, this physical eraseblock is assumed to be
765		 * empty.
766		 */
767		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
768			/* The physical eraseblock is supposedly empty */
769			if (verbose)
770				ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
771					 pnum);
772			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
773				pnum);
774			if (!read_err)
775				return UBI_IO_FF;
776			else
777				return UBI_IO_FF_BITFLIPS;
778		}
779
780		/*
781		 * This is not a valid erase counter header, and these are not
782		 * 0xFF bytes. Report that the header is corrupted.
783		 */
784		if (verbose) {
785			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
786				 pnum, magic, UBI_EC_HDR_MAGIC);
787			ubi_dump_ec_hdr(ec_hdr);
788		}
789		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
790			pnum, magic, UBI_EC_HDR_MAGIC);
791		return UBI_IO_BAD_HDR;
792	}
793
794	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
795	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
796
797	if (hdr_crc != crc) {
798		if (verbose) {
799			ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
800				 pnum, crc, hdr_crc);
801			ubi_dump_ec_hdr(ec_hdr);
802		}
803		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
804			pnum, crc, hdr_crc);
805
806		if (!read_err)
807			return UBI_IO_BAD_HDR;
808		else
809			return UBI_IO_BAD_HDR_EBADMSG;
810	}
811
812	/* And of course validate what has just been read from the media */
813	err = validate_ec_hdr(ubi, ec_hdr);
814	if (err) {
815		ubi_err(ubi, "validation failed for PEB %d", pnum);
816		return -EINVAL;
817	}
818
819	/*
820	 * If there was %-EBADMSG, but the header CRC is still OK, report about
821	 * a bit-flip to force scrubbing on this PEB.
822	 */
823	return read_err ? UBI_IO_BITFLIPS : 0;
824}
825
826/**
827 * ubi_io_write_ec_hdr - write an erase counter header.
828 * @ubi: UBI device description object
829 * @pnum: physical eraseblock to write to
830 * @ec_hdr: the erase counter header to write
831 *
832 * This function writes erase counter header described by @ec_hdr to physical
833 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
834 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
835 * field.
836 *
837 * This function returns zero in case of success and a negative error code in
838 * case of failure. If %-EIO is returned, the physical eraseblock most probably
839 * went bad.
840 */
841int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
842			struct ubi_ec_hdr *ec_hdr)
843{
844	int err;
845	uint32_t crc;
846
847	dbg_io("write EC header to PEB %d", pnum);
848	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
849
850	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
851	ec_hdr->version = UBI_VERSION;
852	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
853	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
854	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
855	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
856	ec_hdr->hdr_crc = cpu_to_be32(crc);
857
858	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
859	if (err)
860		return err;
861
862	if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
863		return -EROFS;
864
865	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
866	return err;
867}
868
869/**
870 * validate_vid_hdr - validate a volume identifier header.
871 * @ubi: UBI device description object
872 * @vid_hdr: the volume identifier header to check
873 *
874 * This function checks that data stored in the volume identifier header
875 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
876 */
877static int validate_vid_hdr(const struct ubi_device *ubi,
878			    const struct ubi_vid_hdr *vid_hdr)
879{
880	int vol_type = vid_hdr->vol_type;
881	int copy_flag = vid_hdr->copy_flag;
882	int vol_id = be32_to_cpu(vid_hdr->vol_id);
883	int lnum = be32_to_cpu(vid_hdr->lnum);
884	int compat = vid_hdr->compat;
885	int data_size = be32_to_cpu(vid_hdr->data_size);
886	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
887	int data_pad = be32_to_cpu(vid_hdr->data_pad);
888	int data_crc = be32_to_cpu(vid_hdr->data_crc);
889	int usable_leb_size = ubi->leb_size - data_pad;
890
891	if (copy_flag != 0 && copy_flag != 1) {
892		ubi_err(ubi, "bad copy_flag");
893		goto bad;
894	}
895
896	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
897	    data_pad < 0) {
898		ubi_err(ubi, "negative values");
899		goto bad;
900	}
901
902	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
903		ubi_err(ubi, "bad vol_id");
904		goto bad;
905	}
906
907	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
908		ubi_err(ubi, "bad compat");
909		goto bad;
910	}
911
912	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
913	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
914	    compat != UBI_COMPAT_REJECT) {
915		ubi_err(ubi, "bad compat");
916		goto bad;
917	}
918
919	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
920		ubi_err(ubi, "bad vol_type");
921		goto bad;
922	}
923
924	if (data_pad >= ubi->leb_size / 2) {
925		ubi_err(ubi, "bad data_pad");
926		goto bad;
927	}
928
929	if (data_size > ubi->leb_size) {
930		ubi_err(ubi, "bad data_size");
931		goto bad;
932	}
933
934	if (vol_type == UBI_VID_STATIC) {
935		/*
936		 * Although from high-level point of view static volumes may
937		 * contain zero bytes of data, but no VID headers can contain
938		 * zero at these fields, because they empty volumes do not have
939		 * mapped logical eraseblocks.
940		 */
941		if (used_ebs == 0) {
942			ubi_err(ubi, "zero used_ebs");
943			goto bad;
944		}
945		if (data_size == 0) {
946			ubi_err(ubi, "zero data_size");
947			goto bad;
948		}
949		if (lnum < used_ebs - 1) {
950			if (data_size != usable_leb_size) {
951				ubi_err(ubi, "bad data_size");
952				goto bad;
953			}
954		} else if (lnum == used_ebs - 1) {
955			if (data_size == 0) {
956				ubi_err(ubi, "bad data_size at last LEB");
957				goto bad;
958			}
959		} else {
960			ubi_err(ubi, "too high lnum");
961			goto bad;
962		}
963	} else {
964		if (copy_flag == 0) {
965			if (data_crc != 0) {
966				ubi_err(ubi, "non-zero data CRC");
967				goto bad;
968			}
969			if (data_size != 0) {
970				ubi_err(ubi, "non-zero data_size");
971				goto bad;
972			}
973		} else {
974			if (data_size == 0) {
975				ubi_err(ubi, "zero data_size of copy");
976				goto bad;
977			}
978		}
979		if (used_ebs != 0) {
980			ubi_err(ubi, "bad used_ebs");
981			goto bad;
982		}
983	}
984
985	return 0;
986
987bad:
988	ubi_err(ubi, "bad VID header");
989	ubi_dump_vid_hdr(vid_hdr);
990	dump_stack();
991	return 1;
992}
993
994/**
995 * ubi_io_read_vid_hdr - read and check a volume identifier header.
996 * @ubi: UBI device description object
997 * @pnum: physical eraseblock number to read from
998 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
999 * identifier header
1000 * @verbose: be verbose if the header is corrupted or wasn't found
1001 *
1002 * This function reads the volume identifier header from physical eraseblock
1003 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
1004 * volume identifier header. The error codes are the same as in
1005 * 'ubi_io_read_ec_hdr()'.
1006 *
1007 * Note, the implementation of this function is also very similar to
1008 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1009 */
1010int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1011			struct ubi_vid_hdr *vid_hdr, int verbose)
1012{
1013	int err, read_err;
1014	uint32_t crc, magic, hdr_crc;
1015	void *p;
1016
1017	dbg_io("read VID header from PEB %d", pnum);
1018	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1019
1020	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1021	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1022			  ubi->vid_hdr_alsize);
1023	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1024		return read_err;
1025
1026	magic = be32_to_cpu(vid_hdr->magic);
1027	if (magic != UBI_VID_HDR_MAGIC) {
1028		if (mtd_is_eccerr(read_err))
1029			return UBI_IO_BAD_HDR_EBADMSG;
1030
1031		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1032			if (verbose)
1033				ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
1034					 pnum);
1035			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1036				pnum);
1037			if (!read_err)
1038				return UBI_IO_FF;
1039			else
1040				return UBI_IO_FF_BITFLIPS;
1041		}
1042
1043		if (verbose) {
1044			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
1045				 pnum, magic, UBI_VID_HDR_MAGIC);
1046			ubi_dump_vid_hdr(vid_hdr);
1047		}
1048		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1049			pnum, magic, UBI_VID_HDR_MAGIC);
1050		return UBI_IO_BAD_HDR;
1051	}
1052
1053	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1054	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1055
1056	if (hdr_crc != crc) {
1057		if (verbose) {
1058			ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1059				 pnum, crc, hdr_crc);
1060			ubi_dump_vid_hdr(vid_hdr);
1061		}
1062		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1063			pnum, crc, hdr_crc);
1064		if (!read_err)
1065			return UBI_IO_BAD_HDR;
1066		else
1067			return UBI_IO_BAD_HDR_EBADMSG;
1068	}
1069
1070	err = validate_vid_hdr(ubi, vid_hdr);
1071	if (err) {
1072		ubi_err(ubi, "validation failed for PEB %d", pnum);
1073		return -EINVAL;
1074	}
1075
1076	return read_err ? UBI_IO_BITFLIPS : 0;
1077}
1078
1079/**
1080 * ubi_io_write_vid_hdr - write a volume identifier header.
1081 * @ubi: UBI device description object
1082 * @pnum: the physical eraseblock number to write to
1083 * @vid_hdr: the volume identifier header to write
1084 *
1085 * This function writes the volume identifier header described by @vid_hdr to
1086 * physical eraseblock @pnum. This function automatically fills the
1087 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1088 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1089 *
1090 * This function returns zero in case of success and a negative error code in
1091 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1092 * bad.
1093 */
1094int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1095			 struct ubi_vid_hdr *vid_hdr)
1096{
1097	int err;
1098	uint32_t crc;
1099	void *p;
1100
1101	dbg_io("write VID header to PEB %d", pnum);
1102	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1103
1104	err = self_check_peb_ec_hdr(ubi, pnum);
1105	if (err)
1106		return err;
1107
1108	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1109	vid_hdr->version = UBI_VERSION;
1110	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1111	vid_hdr->hdr_crc = cpu_to_be32(crc);
1112
1113	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1114	if (err)
1115		return err;
1116
1117	if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1118		return -EROFS;
1119
1120	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1121	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1122			   ubi->vid_hdr_alsize);
1123	return err;
1124}
1125
1126/**
1127 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1128 * @ubi: UBI device description object
1129 * @pnum: physical eraseblock number to check
1130 *
1131 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1132 * it is bad and a negative error code if an error occurred.
1133 */
1134static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1135{
1136	int err;
1137
1138	if (!ubi_dbg_chk_io(ubi))
1139		return 0;
1140
1141	err = ubi_io_is_bad(ubi, pnum);
1142	if (!err)
1143		return err;
1144
1145	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1146	dump_stack();
1147	return err > 0 ? -EINVAL : err;
1148}
1149
1150/**
1151 * self_check_ec_hdr - check if an erase counter header is all right.
1152 * @ubi: UBI device description object
1153 * @pnum: physical eraseblock number the erase counter header belongs to
1154 * @ec_hdr: the erase counter header to check
1155 *
1156 * This function returns zero if the erase counter header contains valid
1157 * values, and %-EINVAL if not.
1158 */
1159static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1160			     const struct ubi_ec_hdr *ec_hdr)
1161{
1162	int err;
1163	uint32_t magic;
1164
1165	if (!ubi_dbg_chk_io(ubi))
1166		return 0;
1167
1168	magic = be32_to_cpu(ec_hdr->magic);
1169	if (magic != UBI_EC_HDR_MAGIC) {
1170		ubi_err(ubi, "bad magic %#08x, must be %#08x",
1171			magic, UBI_EC_HDR_MAGIC);
1172		goto fail;
1173	}
1174
1175	err = validate_ec_hdr(ubi, ec_hdr);
1176	if (err) {
1177		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1178		goto fail;
1179	}
1180
1181	return 0;
1182
1183fail:
1184	ubi_dump_ec_hdr(ec_hdr);
1185	dump_stack();
1186	return -EINVAL;
1187}
1188
1189/**
1190 * self_check_peb_ec_hdr - check erase counter header.
1191 * @ubi: UBI device description object
1192 * @pnum: the physical eraseblock number to check
1193 *
1194 * This function returns zero if the erase counter header is all right and and
1195 * a negative error code if not or if an error occurred.
1196 */
1197static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1198{
1199	int err;
1200	uint32_t crc, hdr_crc;
1201	struct ubi_ec_hdr *ec_hdr;
1202
1203	if (!ubi_dbg_chk_io(ubi))
1204		return 0;
1205
1206	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1207	if (!ec_hdr)
1208		return -ENOMEM;
1209
1210	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1211	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1212		goto exit;
1213
1214	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1215	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1216	if (hdr_crc != crc) {
1217		ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1218			crc, hdr_crc);
1219		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1220		ubi_dump_ec_hdr(ec_hdr);
1221		dump_stack();
1222		err = -EINVAL;
1223		goto exit;
1224	}
1225
1226	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1227
1228exit:
1229	kfree(ec_hdr);
1230	return err;
1231}
1232
1233/**
1234 * self_check_vid_hdr - check that a volume identifier header is all right.
1235 * @ubi: UBI device description object
1236 * @pnum: physical eraseblock number the volume identifier header belongs to
1237 * @vid_hdr: the volume identifier header to check
1238 *
1239 * This function returns zero if the volume identifier header is all right, and
1240 * %-EINVAL if not.
1241 */
1242static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1243			      const struct ubi_vid_hdr *vid_hdr)
1244{
1245	int err;
1246	uint32_t magic;
1247
1248	if (!ubi_dbg_chk_io(ubi))
1249		return 0;
1250
1251	magic = be32_to_cpu(vid_hdr->magic);
1252	if (magic != UBI_VID_HDR_MAGIC) {
1253		ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1254			magic, pnum, UBI_VID_HDR_MAGIC);
1255		goto fail;
1256	}
1257
1258	err = validate_vid_hdr(ubi, vid_hdr);
1259	if (err) {
1260		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1261		goto fail;
1262	}
1263
1264	return err;
1265
1266fail:
1267	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1268	ubi_dump_vid_hdr(vid_hdr);
1269	dump_stack();
1270	return -EINVAL;
1271
1272}
1273
1274/**
1275 * self_check_peb_vid_hdr - check volume identifier header.
1276 * @ubi: UBI device description object
1277 * @pnum: the physical eraseblock number to check
1278 *
1279 * This function returns zero if the volume identifier header is all right,
1280 * and a negative error code if not or if an error occurred.
1281 */
1282static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1283{
1284	int err;
1285	uint32_t crc, hdr_crc;
1286	struct ubi_vid_hdr *vid_hdr;
1287	void *p;
1288
1289	if (!ubi_dbg_chk_io(ubi))
1290		return 0;
1291
1292	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1293	if (!vid_hdr)
1294		return -ENOMEM;
1295
1296	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1297	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1298			  ubi->vid_hdr_alsize);
1299	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1300		goto exit;
1301
1302	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1303	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1304	if (hdr_crc != crc) {
1305		ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1306			pnum, crc, hdr_crc);
1307		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1308		ubi_dump_vid_hdr(vid_hdr);
1309		dump_stack();
1310		err = -EINVAL;
1311		goto exit;
1312	}
1313
1314	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1315
1316exit:
1317	ubi_free_vid_hdr(ubi, vid_hdr);
1318	return err;
1319}
1320
1321/**
1322 * self_check_write - make sure write succeeded.
1323 * @ubi: UBI device description object
1324 * @buf: buffer with data which were written
1325 * @pnum: physical eraseblock number the data were written to
1326 * @offset: offset within the physical eraseblock the data were written to
1327 * @len: how many bytes were written
1328 *
1329 * This functions reads data which were recently written and compares it with
1330 * the original data buffer - the data have to match. Returns zero if the data
1331 * match and a negative error code if not or in case of failure.
1332 */
1333static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1334			    int offset, int len)
1335{
1336	int err, i;
1337	size_t read;
1338	void *buf1;
1339	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1340
1341	if (!ubi_dbg_chk_io(ubi))
1342		return 0;
1343
1344	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1345	if (!buf1) {
1346		ubi_err(ubi, "cannot allocate memory to check writes");
1347		return 0;
1348	}
1349
1350	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1351	if (err && !mtd_is_bitflip(err))
1352		goto out_free;
1353
1354	for (i = 0; i < len; i++) {
1355		uint8_t c = ((uint8_t *)buf)[i];
1356		uint8_t c1 = ((uint8_t *)buf1)[i];
1357		int dump_len;
1358
1359		if (c == c1)
1360			continue;
1361
1362		ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1363			pnum, offset, len);
1364		ubi_msg(ubi, "data differ at position %d", i);
1365		dump_len = max_t(int, 128, len - i);
1366		ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1367			i, i + dump_len);
1368		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1369			       buf + i, dump_len, 1);
1370		ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1371			i, i + dump_len);
1372		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1373			       buf1 + i, dump_len, 1);
1374		dump_stack();
1375		err = -EINVAL;
1376		goto out_free;
1377	}
1378
1379	vfree(buf1);
1380	return 0;
1381
1382out_free:
1383	vfree(buf1);
1384	return err;
1385}
1386
1387/**
1388 * ubi_self_check_all_ff - check that a region of flash is empty.
1389 * @ubi: UBI device description object
1390 * @pnum: the physical eraseblock number to check
1391 * @offset: the starting offset within the physical eraseblock to check
1392 * @len: the length of the region to check
1393 *
1394 * This function returns zero if only 0xFF bytes are present at offset
1395 * @offset of the physical eraseblock @pnum, and a negative error code if not
1396 * or if an error occurred.
1397 */
1398int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1399{
1400	size_t read;
1401	int err;
1402	void *buf;
1403	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1404
1405	if (!ubi_dbg_chk_io(ubi))
1406		return 0;
1407
1408	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1409	if (!buf) {
1410		ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1411		return 0;
1412	}
1413
1414	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1415	if (err && !mtd_is_bitflip(err)) {
1416		ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1417			err, len, pnum, offset, read);
1418		goto error;
1419	}
1420
1421	err = ubi_check_pattern(buf, 0xFF, len);
1422	if (err == 0) {
1423		ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1424			pnum, offset, len);
1425		goto fail;
1426	}
1427
1428	vfree(buf);
1429	return 0;
1430
1431fail:
1432	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1433	ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1434	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1435	err = -EINVAL;
1436error:
1437	dump_stack();
1438	vfree(buf);
1439	return err;
1440}
1441