1
2/*
3 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
4 *
5 * Author: Abraham vd Merwe <abraham@2d3d.co.za>
6 *
7 * Copyright (c) 2001, 2d3D, Inc.
8 *
9 * This code is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * References:
14 *
15 *    [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
16 *           - Order Number: 290644-005
17 *           - January 2000
18 *
19 *    [2] MTD internal API documentation
20 *           - http://www.linux-mtd.infradead.org/
21 *
22 * Limitations:
23 *
24 *    Even though this driver is written for 3 Volt Fast Boot
25 *    Block Flash Memory, it is rather specific to LART. With
26 *    Minor modifications, notably the without data/address line
27 *    mangling and different bus settings, etc. it should be
28 *    trivial to adapt to other platforms.
29 *
30 *    If somebody would sponsor me a different board, I'll
31 *    adapt the driver (:
32 */
33
34/* debugging */
35//#define LART_DEBUG
36
37#include <linux/kernel.h>
38#include <linux/module.h>
39#include <linux/types.h>
40#include <linux/init.h>
41#include <linux/errno.h>
42#include <linux/string.h>
43#include <linux/mtd/mtd.h>
44#include <linux/mtd/partitions.h>
45
46#ifndef CONFIG_SA1100_LART
47#error This is for LART architecture only
48#endif
49
50static char module_name[] = "lart";
51
52/*
53 * These values is specific to 28Fxxxx3 flash memory.
54 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
55 */
56#define FLASH_BLOCKSIZE_PARAM		(4096 * BUSWIDTH)
57#define FLASH_NUMBLOCKS_16m_PARAM	8
58#define FLASH_NUMBLOCKS_8m_PARAM	8
59
60/*
61 * These values is specific to 28Fxxxx3 flash memory.
62 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
63 */
64#define FLASH_BLOCKSIZE_MAIN		(32768 * BUSWIDTH)
65#define FLASH_NUMBLOCKS_16m_MAIN	31
66#define FLASH_NUMBLOCKS_8m_MAIN		15
67
68/*
69 * These values are specific to LART
70 */
71
72/* general */
73#define BUSWIDTH			4				/* don't change this - a lot of the code _will_ break if you change this */
74#define FLASH_OFFSET		0xe8000000		/* see linux/arch/arm/mach-sa1100/lart.c */
75
76/* blob */
77#define NUM_BLOB_BLOCKS		FLASH_NUMBLOCKS_16m_PARAM
78#define BLOB_START			0x00000000
79#define BLOB_LEN			(NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
80
81/* kernel */
82#define NUM_KERNEL_BLOCKS	7
83#define KERNEL_START		(BLOB_START + BLOB_LEN)
84#define KERNEL_LEN			(NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
85
86/* initial ramdisk */
87#define NUM_INITRD_BLOCKS	24
88#define INITRD_START		(KERNEL_START + KERNEL_LEN)
89#define INITRD_LEN			(NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
90
91/*
92 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
93 */
94#define READ_ARRAY			0x00FF00FF		/* Read Array/Reset */
95#define READ_ID_CODES		0x00900090		/* Read Identifier Codes */
96#define ERASE_SETUP			0x00200020		/* Block Erase */
97#define ERASE_CONFIRM		0x00D000D0		/* Block Erase and Program Resume */
98#define PGM_SETUP			0x00400040		/* Program */
99#define STATUS_READ			0x00700070		/* Read Status Register */
100#define STATUS_CLEAR		0x00500050		/* Clear Status Register */
101#define STATUS_BUSY			0x00800080		/* Write State Machine Status (WSMS) */
102#define STATUS_ERASE_ERR	0x00200020		/* Erase Status (ES) */
103#define STATUS_PGM_ERR		0x00100010		/* Program Status (PS) */
104
105/*
106 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
107 */
108#define FLASH_MANUFACTURER			0x00890089
109#define FLASH_DEVICE_8mbit_TOP		0x88f188f1
110#define FLASH_DEVICE_8mbit_BOTTOM	0x88f288f2
111#define FLASH_DEVICE_16mbit_TOP		0x88f388f3
112#define FLASH_DEVICE_16mbit_BOTTOM	0x88f488f4
113
114/***************************************************************************************************/
115
116/*
117 * The data line mapping on LART is as follows:
118 *
119 *   	 U2  CPU |   U3  CPU
120 *   	 -------------------
121 *   	  0  20  |   0   12
122 *   	  1  22  |   1   14
123 *   	  2  19  |   2   11
124 *   	  3  17  |   3   9
125 *   	  4  24  |   4   0
126 *   	  5  26  |   5   2
127 *   	  6  31  |   6   7
128 *   	  7  29  |   7   5
129 *   	  8  21  |   8   13
130 *   	  9  23  |   9   15
131 *   	  10 18  |   10  10
132 *   	  11 16  |   11  8
133 *   	  12 25  |   12  1
134 *   	  13 27  |   13  3
135 *   	  14 30  |   14  6
136 *   	  15 28  |   15  4
137 */
138
139/* Mangle data (x) */
140#define DATA_TO_FLASH(x)				\
141	(									\
142		(((x) & 0x08009000) >> 11)	+	\
143		(((x) & 0x00002000) >> 10)	+	\
144		(((x) & 0x04004000) >> 8)	+	\
145		(((x) & 0x00000010) >> 4)	+	\
146		(((x) & 0x91000820) >> 3)	+	\
147		(((x) & 0x22080080) >> 2)	+	\
148		((x) & 0x40000400)			+	\
149		(((x) & 0x00040040) << 1)	+	\
150		(((x) & 0x00110000) << 4)	+	\
151		(((x) & 0x00220100) << 5)	+	\
152		(((x) & 0x00800208) << 6)	+	\
153		(((x) & 0x00400004) << 9)	+	\
154		(((x) & 0x00000001) << 12)	+	\
155		(((x) & 0x00000002) << 13)		\
156	)
157
158/* Unmangle data (x) */
159#define FLASH_TO_DATA(x)				\
160	(									\
161		(((x) & 0x00010012) << 11)	+	\
162		(((x) & 0x00000008) << 10)	+	\
163		(((x) & 0x00040040) << 8)	+	\
164		(((x) & 0x00000001) << 4)	+	\
165		(((x) & 0x12200104) << 3)	+	\
166		(((x) & 0x08820020) << 2)	+	\
167		((x) & 0x40000400)			+	\
168		(((x) & 0x00080080) >> 1)	+	\
169		(((x) & 0x01100000) >> 4)	+	\
170		(((x) & 0x04402000) >> 5)	+	\
171		(((x) & 0x20008200) >> 6)	+	\
172		(((x) & 0x80000800) >> 9)	+	\
173		(((x) & 0x00001000) >> 12)	+	\
174		(((x) & 0x00004000) >> 13)		\
175	)
176
177/*
178 * The address line mapping on LART is as follows:
179 *
180 *   	 U3  CPU |   U2  CPU
181 *   	 -------------------
182 *   	  0  2   |   0   2
183 *   	  1  3   |   1   3
184 *   	  2  9   |   2   9
185 *   	  3  13  |   3   8
186 *   	  4  8   |   4   7
187 *   	  5  12  |   5   6
188 *   	  6  11  |   6   5
189 *   	  7  10  |   7   4
190 *   	  8  4   |   8   10
191 *   	  9  5   |   9   11
192 *   	 10  6   |   10  12
193 *   	 11  7   |   11  13
194 *
195 *   	 BOOT BLOCK BOUNDARY
196 *
197 *   	 12  15  |   12  15
198 *   	 13  14  |   13  14
199 *   	 14  16  |   14  16
200 *
201 *   	 MAIN BLOCK BOUNDARY
202 *
203 *   	 15  17  |   15  18
204 *   	 16  18  |   16  17
205 *   	 17  20  |   17  20
206 *   	 18  19  |   18  19
207 *   	 19  21  |   19  21
208 *
209 * As we can see from above, the addresses aren't mangled across
210 * block boundaries, so we don't need to worry about address
211 * translations except for sending/reading commands during
212 * initialization
213 */
214
215/* Mangle address (x) on chip U2 */
216#define ADDR_TO_FLASH_U2(x)				\
217	(									\
218		(((x) & 0x00000f00) >> 4)	+	\
219		(((x) & 0x00042000) << 1)	+	\
220		(((x) & 0x0009c003) << 2)	+	\
221		(((x) & 0x00021080) << 3)	+	\
222		(((x) & 0x00000010) << 4)	+	\
223		(((x) & 0x00000040) << 5)	+	\
224		(((x) & 0x00000024) << 7)	+	\
225		(((x) & 0x00000008) << 10)		\
226	)
227
228/* Unmangle address (x) on chip U2 */
229#define FLASH_U2_TO_ADDR(x)				\
230	(									\
231		(((x) << 4) & 0x00000f00)	+	\
232		(((x) >> 1) & 0x00042000)	+	\
233		(((x) >> 2) & 0x0009c003)	+	\
234		(((x) >> 3) & 0x00021080)	+	\
235		(((x) >> 4) & 0x00000010)	+	\
236		(((x) >> 5) & 0x00000040)	+	\
237		(((x) >> 7) & 0x00000024)	+	\
238		(((x) >> 10) & 0x00000008)		\
239	)
240
241/* Mangle address (x) on chip U3 */
242#define ADDR_TO_FLASH_U3(x)				\
243	(									\
244		(((x) & 0x00000080) >> 3)	+	\
245		(((x) & 0x00000040) >> 1)	+	\
246		(((x) & 0x00052020) << 1)	+	\
247		(((x) & 0x00084f03) << 2)	+	\
248		(((x) & 0x00029010) << 3)	+	\
249		(((x) & 0x00000008) << 5)	+	\
250		(((x) & 0x00000004) << 7)		\
251	)
252
253/* Unmangle address (x) on chip U3 */
254#define FLASH_U3_TO_ADDR(x)				\
255	(									\
256		(((x) << 3) & 0x00000080)	+	\
257		(((x) << 1) & 0x00000040)	+	\
258		(((x) >> 1) & 0x00052020)	+	\
259		(((x) >> 2) & 0x00084f03)	+	\
260		(((x) >> 3) & 0x00029010)	+	\
261		(((x) >> 5) & 0x00000008)	+	\
262		(((x) >> 7) & 0x00000004)		\
263	)
264
265/***************************************************************************************************/
266
267static __u8 read8 (__u32 offset)
268{
269   volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
270#ifdef LART_DEBUG
271   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data);
272#endif
273   return (*data);
274}
275
276static __u32 read32 (__u32 offset)
277{
278   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
279#ifdef LART_DEBUG
280   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data);
281#endif
282   return (*data);
283}
284
285static void write32 (__u32 x,__u32 offset)
286{
287   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
288   *data = x;
289#ifdef LART_DEBUG
290   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data);
291#endif
292}
293
294/***************************************************************************************************/
295
296/*
297 * Probe for 16mbit flash memory on a LART board without doing
298 * too much damage. Since we need to write 1 dword to memory,
299 * we're f**cked if this happens to be DRAM since we can't
300 * restore the memory (otherwise we might exit Read Array mode).
301 *
302 * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
303 */
304static int flash_probe (void)
305{
306   __u32 manufacturer,devtype;
307
308   /* setup "Read Identifier Codes" mode */
309   write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
310
311   /* probe U2. U2/U3 returns the same data since the first 3
312	* address lines is mangled in the same way */
313   manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
314   devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
315
316   /* put the flash back into command mode */
317   write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
318
319   return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM));
320}
321
322/*
323 * Erase one block of flash memory at offset ``offset'' which is any
324 * address within the block which should be erased.
325 *
326 * Returns 1 if successful, 0 otherwise.
327 */
328static inline int erase_block (__u32 offset)
329{
330   __u32 status;
331
332#ifdef LART_DEBUG
333   printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset);
334#endif
335
336   /* erase and confirm */
337   write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
338   write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
339
340   /* wait for block erase to finish */
341   do
342	 {
343		write32 (DATA_TO_FLASH (STATUS_READ),offset);
344		status = FLASH_TO_DATA (read32 (offset));
345	 }
346   while ((~status & STATUS_BUSY) != 0);
347
348   /* put the flash back into command mode */
349   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
350
351   /* was the erase successful? */
352   if ((status & STATUS_ERASE_ERR))
353	 {
354		printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
355		return (0);
356	 }
357
358   return (1);
359}
360
361static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
362{
363   __u32 addr,len;
364   int i,first;
365
366#ifdef LART_DEBUG
367   printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len);
368#endif
369
370   /*
371	* check that both start and end of the requested erase are
372	* aligned with the erasesize at the appropriate addresses.
373	*
374	* skip all erase regions which are ended before the start of
375	* the requested erase. Actually, to save on the calculations,
376	* we skip to the first erase region which starts after the
377	* start of the requested erase, and then go back one.
378	*/
379   for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
380   i--;
381
382   /*
383	* ok, now i is pointing at the erase region in which this
384	* erase request starts. Check the start of the requested
385	* erase range is aligned with the erase size which is in
386	* effect here.
387	*/
388   if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1)))
389      return -EINVAL;
390
391   /* Remember the erase region we start on */
392   first = i;
393
394   /*
395	* next, check that the end of the requested erase is aligned
396	* with the erase region at that address.
397	*
398	* as before, drop back one to point at the region in which
399	* the address actually falls
400	*/
401   for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
402   i--;
403
404   /* is the end aligned on a block boundary? */
405   if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)))
406      return -EINVAL;
407
408   addr = instr->addr;
409   len = instr->len;
410
411   i = first;
412
413   /* now erase those blocks */
414   while (len)
415	 {
416		if (!erase_block (addr))
417		  {
418			 instr->state = MTD_ERASE_FAILED;
419			 return (-EIO);
420		  }
421
422		addr += mtd->eraseregions[i].erasesize;
423		len -= mtd->eraseregions[i].erasesize;
424
425		if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
426	 }
427
428   instr->state = MTD_ERASE_DONE;
429   mtd_erase_callback(instr);
430
431   return (0);
432}
433
434static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
435{
436#ifdef LART_DEBUG
437   printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len);
438#endif
439
440   /* we always read len bytes */
441   *retlen = len;
442
443   /* first, we read bytes until we reach a dword boundary */
444   if (from & (BUSWIDTH - 1))
445	 {
446		int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
447
448		while (len && gap--) *buf++ = read8 (from++), len--;
449	 }
450
451   /* now we read dwords until we reach a non-dword boundary */
452   while (len >= BUSWIDTH)
453	 {
454		*((__u32 *) buf) = read32 (from);
455
456		buf += BUSWIDTH;
457		from += BUSWIDTH;
458		len -= BUSWIDTH;
459	 }
460
461   /* top up the last unaligned bytes */
462   if (len & (BUSWIDTH - 1))
463	 while (len--) *buf++ = read8 (from++);
464
465   return (0);
466}
467
468/*
469 * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
470 * must be 32 bits, i.e. it must be on a dword boundary.
471 *
472 * Returns 1 if successful, 0 otherwise.
473 */
474static inline int write_dword (__u32 offset,__u32 x)
475{
476   __u32 status;
477
478#ifdef LART_DEBUG
479   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x);
480#endif
481
482   /* setup writing */
483   write32 (DATA_TO_FLASH (PGM_SETUP),offset);
484
485   /* write the data */
486   write32 (x,offset);
487
488   /* wait for the write to finish */
489   do
490	 {
491		write32 (DATA_TO_FLASH (STATUS_READ),offset);
492		status = FLASH_TO_DATA (read32 (offset));
493	 }
494   while ((~status & STATUS_BUSY) != 0);
495
496   /* put the flash back into command mode */
497   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
498
499   /* was the write successful? */
500   if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
501	 {
502		printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
503		return (0);
504	 }
505
506   return (1);
507}
508
509static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
510{
511   __u8 tmp[4];
512   int i,n;
513
514#ifdef LART_DEBUG
515   printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len);
516#endif
517
518   /* sanity checks */
519   if (!len) return (0);
520
521   /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
522   if (to & (BUSWIDTH - 1))
523	 {
524		__u32 aligned = to & ~(BUSWIDTH - 1);
525		int gap = to - aligned;
526
527		i = n = 0;
528
529		while (gap--) tmp[i++] = 0xFF;
530		while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--;
531		while (i < BUSWIDTH) tmp[i++] = 0xFF;
532
533		if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
534
535		to += n;
536		buf += n;
537		*retlen += n;
538	 }
539
540   /* now we write dwords until we reach a non-dword boundary */
541   while (len >= BUSWIDTH)
542	 {
543		if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
544
545		to += BUSWIDTH;
546		buf += BUSWIDTH;
547		*retlen += BUSWIDTH;
548		len -= BUSWIDTH;
549	 }
550
551   /* top up the last unaligned bytes, padded with 0xFF.... */
552   if (len & (BUSWIDTH - 1))
553	 {
554		i = n = 0;
555
556		while (len--) tmp[i++] = buf[n++];
557		while (i < BUSWIDTH) tmp[i++] = 0xFF;
558
559		if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
560
561		*retlen += n;
562	 }
563
564   return (0);
565}
566
567/***************************************************************************************************/
568
569static struct mtd_info mtd;
570
571static struct mtd_erase_region_info erase_regions[] = {
572	/* parameter blocks */
573	{
574		.offset		= 0x00000000,
575		.erasesize	= FLASH_BLOCKSIZE_PARAM,
576		.numblocks	= FLASH_NUMBLOCKS_16m_PARAM,
577	},
578	/* main blocks */
579	{
580		.offset	 = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
581		.erasesize	= FLASH_BLOCKSIZE_MAIN,
582		.numblocks	= FLASH_NUMBLOCKS_16m_MAIN,
583	}
584};
585
586static struct mtd_partition lart_partitions[] = {
587	/* blob */
588	{
589		.name	= "blob",
590		.offset	= BLOB_START,
591		.size	= BLOB_LEN,
592	},
593	/* kernel */
594	{
595		.name	= "kernel",
596		.offset	= KERNEL_START,		/* MTDPART_OFS_APPEND */
597		.size	= KERNEL_LEN,
598	},
599	/* initial ramdisk / file system */
600	{
601		.name	= "file system",
602		.offset	= INITRD_START,		/* MTDPART_OFS_APPEND */
603		.size	= INITRD_LEN,		/* MTDPART_SIZ_FULL */
604	}
605};
606#define NUM_PARTITIONS ARRAY_SIZE(lart_partitions)
607
608static int __init lart_flash_init (void)
609{
610   int result;
611   memset (&mtd,0,sizeof (mtd));
612   printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
613   printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
614   if (!flash_probe ())
615	 {
616		printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
617		return (-ENXIO);
618	 }
619   printk ("%s: This looks like a LART board to me.\n",module_name);
620   mtd.name = module_name;
621   mtd.type = MTD_NORFLASH;
622   mtd.writesize = 1;
623   mtd.writebufsize = 4;
624   mtd.flags = MTD_CAP_NORFLASH;
625   mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
626   mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
627   mtd.numeraseregions = ARRAY_SIZE(erase_regions);
628   mtd.eraseregions = erase_regions;
629   mtd._erase = flash_erase;
630   mtd._read = flash_read;
631   mtd._write = flash_write;
632   mtd.owner = THIS_MODULE;
633
634#ifdef LART_DEBUG
635   printk (KERN_DEBUG
636		   "mtd.name = %s\n"
637		   "mtd.size = 0x%.8x (%uM)\n"
638		   "mtd.erasesize = 0x%.8x (%uK)\n"
639		   "mtd.numeraseregions = %d\n",
640		   mtd.name,
641		   mtd.size,mtd.size / (1024*1024),
642		   mtd.erasesize,mtd.erasesize / 1024,
643		   mtd.numeraseregions);
644
645   if (mtd.numeraseregions)
646	 for (result = 0; result < mtd.numeraseregions; result++)
647	   printk (KERN_DEBUG
648			   "\n\n"
649			   "mtd.eraseregions[%d].offset = 0x%.8x\n"
650			   "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
651			   "mtd.eraseregions[%d].numblocks = %d\n",
652			   result,mtd.eraseregions[result].offset,
653			   result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
654			   result,mtd.eraseregions[result].numblocks);
655
656   printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));
657
658   for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
659	 printk (KERN_DEBUG
660			 "\n\n"
661			 "lart_partitions[%d].name = %s\n"
662			 "lart_partitions[%d].offset = 0x%.8x\n"
663			 "lart_partitions[%d].size = 0x%.8x (%uK)\n",
664			 result,lart_partitions[result].name,
665			 result,lart_partitions[result].offset,
666			 result,lart_partitions[result].size,lart_partitions[result].size / 1024);
667#endif
668
669   result = mtd_device_register(&mtd, lart_partitions,
670                                ARRAY_SIZE(lart_partitions));
671
672   return (result);
673}
674
675static void __exit lart_flash_exit (void)
676{
677   mtd_device_unregister(&mtd);
678}
679
680module_init (lart_flash_init);
681module_exit (lart_flash_exit);
682
683MODULE_LICENSE("GPL");
684MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
685MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");
686