1/*
2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3 *
4 * (C) Copyright 2005, Intec Automation,
5 *		Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 *		Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 *		Jan Nikitenko <jan.nikitenko@gmail.com>
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27#include <linux/sched.h>
28#include <linux/delay.h>
29#include <linux/slab.h>
30#include <linux/module.h>
31#include <linux/bio.h>
32#include <linux/dma-mapping.h>
33#include <linux/crc7.h>
34#include <linux/crc-itu-t.h>
35#include <linux/scatterlist.h>
36
37#include <linux/mmc/host.h>
38#include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
39#include <linux/mmc/slot-gpio.h>
40
41#include <linux/spi/spi.h>
42#include <linux/spi/mmc_spi.h>
43
44#include <asm/unaligned.h>
45
46
47/* NOTES:
48 *
49 * - For now, we won't try to interoperate with a real mmc/sd/sdio
50 *   controller, although some of them do have hardware support for
51 *   SPI protocol.  The main reason for such configs would be mmc-ish
52 *   cards like DataFlash, which don't support that "native" protocol.
53 *
54 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
55 *   switch between driver stacks, and in any case if "native" mode
56 *   is available, it will be faster and hence preferable.
57 *
58 * - MMC depends on a different chipselect management policy than the
59 *   SPI interface currently supports for shared bus segments:  it needs
60 *   to issue multiple spi_message requests with the chipselect active,
61 *   using the results of one message to decide the next one to issue.
62 *
63 *   Pending updates to the programming interface, this driver expects
64 *   that it not share the bus with other drivers (precluding conflicts).
65 *
66 * - We tell the controller to keep the chipselect active from the
67 *   beginning of an mmc_host_ops.request until the end.  So beware
68 *   of SPI controller drivers that mis-handle the cs_change flag!
69 *
70 *   However, many cards seem OK with chipselect flapping up/down
71 *   during that time ... at least on unshared bus segments.
72 */
73
74
75/*
76 * Local protocol constants, internal to data block protocols.
77 */
78
79/* Response tokens used to ack each block written: */
80#define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
81#define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
82#define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
83#define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
84
85/* Read and write blocks start with these tokens and end with crc;
86 * on error, read tokens act like a subset of R2_SPI_* values.
87 */
88#define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
89#define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
90#define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
91
92#define MMC_SPI_BLOCKSIZE	512
93
94
95/* These fixed timeouts come from the latest SD specs, which say to ignore
96 * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
97 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
98 * reads which takes nowhere near that long.  Older cards may be able to use
99 * shorter timeouts ... but why bother?
100 */
101#define r1b_timeout		(HZ * 3)
102
103/* One of the critical speed parameters is the amount of data which may
104 * be transferred in one command. If this value is too low, the SD card
105 * controller has to do multiple partial block writes (argggh!). With
106 * today (2008) SD cards there is little speed gain if we transfer more
107 * than 64 KBytes at a time. So use this value until there is any indication
108 * that we should do more here.
109 */
110#define MMC_SPI_BLOCKSATONCE	128
111
112/****************************************************************************/
113
114/*
115 * Local Data Structures
116 */
117
118/* "scratch" is per-{command,block} data exchanged with the card */
119struct scratch {
120	u8			status[29];
121	u8			data_token;
122	__be16			crc_val;
123};
124
125struct mmc_spi_host {
126	struct mmc_host		*mmc;
127	struct spi_device	*spi;
128
129	unsigned char		power_mode;
130	u16			powerup_msecs;
131
132	struct mmc_spi_platform_data	*pdata;
133
134	/* for bulk data transfers */
135	struct spi_transfer	token, t, crc, early_status;
136	struct spi_message	m;
137
138	/* for status readback */
139	struct spi_transfer	status;
140	struct spi_message	readback;
141
142	/* underlying DMA-aware controller, or null */
143	struct device		*dma_dev;
144
145	/* buffer used for commands and for message "overhead" */
146	struct scratch		*data;
147	dma_addr_t		data_dma;
148
149	/* Specs say to write ones most of the time, even when the card
150	 * has no need to read its input data; and many cards won't care.
151	 * This is our source of those ones.
152	 */
153	void			*ones;
154	dma_addr_t		ones_dma;
155};
156
157
158/****************************************************************************/
159
160/*
161 * MMC-over-SPI protocol glue, used by the MMC stack interface
162 */
163
164static inline int mmc_cs_off(struct mmc_spi_host *host)
165{
166	/* chipselect will always be inactive after setup() */
167	return spi_setup(host->spi);
168}
169
170static int
171mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
172{
173	int status;
174
175	if (len > sizeof(*host->data)) {
176		WARN_ON(1);
177		return -EIO;
178	}
179
180	host->status.len = len;
181
182	if (host->dma_dev)
183		dma_sync_single_for_device(host->dma_dev,
184				host->data_dma, sizeof(*host->data),
185				DMA_FROM_DEVICE);
186
187	status = spi_sync_locked(host->spi, &host->readback);
188
189	if (host->dma_dev)
190		dma_sync_single_for_cpu(host->dma_dev,
191				host->data_dma, sizeof(*host->data),
192				DMA_FROM_DEVICE);
193
194	return status;
195}
196
197static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
198			unsigned n, u8 byte)
199{
200	u8		*cp = host->data->status;
201	unsigned long start = jiffies;
202
203	while (1) {
204		int		status;
205		unsigned	i;
206
207		status = mmc_spi_readbytes(host, n);
208		if (status < 0)
209			return status;
210
211		for (i = 0; i < n; i++) {
212			if (cp[i] != byte)
213				return cp[i];
214		}
215
216		if (time_is_before_jiffies(start + timeout))
217			break;
218
219		/* If we need long timeouts, we may release the CPU.
220		 * We use jiffies here because we want to have a relation
221		 * between elapsed time and the blocking of the scheduler.
222		 */
223		if (time_is_before_jiffies(start+1))
224			schedule();
225	}
226	return -ETIMEDOUT;
227}
228
229static inline int
230mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
231{
232	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
233}
234
235static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
236{
237	return mmc_spi_skip(host, timeout, 1, 0xff);
238}
239
240
241/*
242 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
243 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
244 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
245 *
246 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
247 * newer cards R7 (IF_COND).
248 */
249
250static char *maptype(struct mmc_command *cmd)
251{
252	switch (mmc_spi_resp_type(cmd)) {
253	case MMC_RSP_SPI_R1:	return "R1";
254	case MMC_RSP_SPI_R1B:	return "R1B";
255	case MMC_RSP_SPI_R2:	return "R2/R5";
256	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
257	default:		return "?";
258	}
259}
260
261/* return zero, else negative errno after setting cmd->error */
262static int mmc_spi_response_get(struct mmc_spi_host *host,
263		struct mmc_command *cmd, int cs_on)
264{
265	u8	*cp = host->data->status;
266	u8	*end = cp + host->t.len;
267	int	value = 0;
268	int	bitshift;
269	u8 	leftover = 0;
270	unsigned short rotator;
271	int 	i;
272	char	tag[32];
273
274	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
275		cmd->opcode, maptype(cmd));
276
277	/* Except for data block reads, the whole response will already
278	 * be stored in the scratch buffer.  It's somewhere after the
279	 * command and the first byte we read after it.  We ignore that
280	 * first byte.  After STOP_TRANSMISSION command it may include
281	 * two data bits, but otherwise it's all ones.
282	 */
283	cp += 8;
284	while (cp < end && *cp == 0xff)
285		cp++;
286
287	/* Data block reads (R1 response types) may need more data... */
288	if (cp == end) {
289		cp = host->data->status;
290		end = cp+1;
291
292		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
293		 * status byte ... and we already scanned 2 bytes.
294		 *
295		 * REVISIT block read paths use nasty byte-at-a-time I/O
296		 * so it can always DMA directly into the target buffer.
297		 * It'd probably be better to memcpy() the first chunk and
298		 * avoid extra i/o calls...
299		 *
300		 * Note we check for more than 8 bytes, because in practice,
301		 * some SD cards are slow...
302		 */
303		for (i = 2; i < 16; i++) {
304			value = mmc_spi_readbytes(host, 1);
305			if (value < 0)
306				goto done;
307			if (*cp != 0xff)
308				goto checkstatus;
309		}
310		value = -ETIMEDOUT;
311		goto done;
312	}
313
314checkstatus:
315	bitshift = 0;
316	if (*cp & 0x80)	{
317		/* Houston, we have an ugly card with a bit-shifted response */
318		rotator = *cp++ << 8;
319		/* read the next byte */
320		if (cp == end) {
321			value = mmc_spi_readbytes(host, 1);
322			if (value < 0)
323				goto done;
324			cp = host->data->status;
325			end = cp+1;
326		}
327		rotator |= *cp++;
328		while (rotator & 0x8000) {
329			bitshift++;
330			rotator <<= 1;
331		}
332		cmd->resp[0] = rotator >> 8;
333		leftover = rotator;
334	} else {
335		cmd->resp[0] = *cp++;
336	}
337	cmd->error = 0;
338
339	/* Status byte: the entire seven-bit R1 response.  */
340	if (cmd->resp[0] != 0) {
341		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
342				& cmd->resp[0])
343			value = -EFAULT; /* Bad address */
344		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
345			value = -ENOSYS; /* Function not implemented */
346		else if (R1_SPI_COM_CRC & cmd->resp[0])
347			value = -EILSEQ; /* Illegal byte sequence */
348		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
349				& cmd->resp[0])
350			value = -EIO;    /* I/O error */
351		/* else R1_SPI_IDLE, "it's resetting" */
352	}
353
354	switch (mmc_spi_resp_type(cmd)) {
355
356	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
357	 * and less-common stuff like various erase operations.
358	 */
359	case MMC_RSP_SPI_R1B:
360		/* maybe we read all the busy tokens already */
361		while (cp < end && *cp == 0)
362			cp++;
363		if (cp == end)
364			mmc_spi_wait_unbusy(host, r1b_timeout);
365		break;
366
367	/* SPI R2 == R1 + second status byte; SEND_STATUS
368	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
369	 */
370	case MMC_RSP_SPI_R2:
371		/* read the next byte */
372		if (cp == end) {
373			value = mmc_spi_readbytes(host, 1);
374			if (value < 0)
375				goto done;
376			cp = host->data->status;
377			end = cp+1;
378		}
379		if (bitshift) {
380			rotator = leftover << 8;
381			rotator |= *cp << bitshift;
382			cmd->resp[0] |= (rotator & 0xFF00);
383		} else {
384			cmd->resp[0] |= *cp << 8;
385		}
386		break;
387
388	/* SPI R3, R4, or R7 == R1 + 4 bytes */
389	case MMC_RSP_SPI_R3:
390		rotator = leftover << 8;
391		cmd->resp[1] = 0;
392		for (i = 0; i < 4; i++) {
393			cmd->resp[1] <<= 8;
394			/* read the next byte */
395			if (cp == end) {
396				value = mmc_spi_readbytes(host, 1);
397				if (value < 0)
398					goto done;
399				cp = host->data->status;
400				end = cp+1;
401			}
402			if (bitshift) {
403				rotator |= *cp++ << bitshift;
404				cmd->resp[1] |= (rotator >> 8);
405				rotator <<= 8;
406			} else {
407				cmd->resp[1] |= *cp++;
408			}
409		}
410		break;
411
412	/* SPI R1 == just one status byte */
413	case MMC_RSP_SPI_R1:
414		break;
415
416	default:
417		dev_dbg(&host->spi->dev, "bad response type %04x\n",
418				mmc_spi_resp_type(cmd));
419		if (value >= 0)
420			value = -EINVAL;
421		goto done;
422	}
423
424	if (value < 0)
425		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
426			tag, cmd->resp[0], cmd->resp[1]);
427
428	/* disable chipselect on errors and some success cases */
429	if (value >= 0 && cs_on)
430		return value;
431done:
432	if (value < 0)
433		cmd->error = value;
434	mmc_cs_off(host);
435	return value;
436}
437
438/* Issue command and read its response.
439 * Returns zero on success, negative for error.
440 *
441 * On error, caller must cope with mmc core retry mechanism.  That
442 * means immediate low-level resubmit, which affects the bus lock...
443 */
444static int
445mmc_spi_command_send(struct mmc_spi_host *host,
446		struct mmc_request *mrq,
447		struct mmc_command *cmd, int cs_on)
448{
449	struct scratch		*data = host->data;
450	u8			*cp = data->status;
451	int			status;
452	struct spi_transfer	*t;
453
454	/* We can handle most commands (except block reads) in one full
455	 * duplex I/O operation before either starting the next transfer
456	 * (data block or command) or else deselecting the card.
457	 *
458	 * First, write 7 bytes:
459	 *  - an all-ones byte to ensure the card is ready
460	 *  - opcode byte (plus start and transmission bits)
461	 *  - four bytes of big-endian argument
462	 *  - crc7 (plus end bit) ... always computed, it's cheap
463	 *
464	 * We init the whole buffer to all-ones, which is what we need
465	 * to write while we're reading (later) response data.
466	 */
467	memset(cp, 0xff, sizeof(data->status));
468
469	cp[1] = 0x40 | cmd->opcode;
470	put_unaligned_be32(cmd->arg, cp+2);
471	cp[6] = crc7_be(0, cp+1, 5) | 0x01;
472	cp += 7;
473
474	/* Then, read up to 13 bytes (while writing all-ones):
475	 *  - N(CR) (== 1..8) bytes of all-ones
476	 *  - status byte (for all response types)
477	 *  - the rest of the response, either:
478	 *      + nothing, for R1 or R1B responses
479	 *	+ second status byte, for R2 responses
480	 *	+ four data bytes, for R3 and R7 responses
481	 *
482	 * Finally, read some more bytes ... in the nice cases we know in
483	 * advance how many, and reading 1 more is always OK:
484	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
485	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
486	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
487	 *
488	 * So in those cases one full duplex I/O of at most 21 bytes will
489	 * handle the whole command, leaving the card ready to receive a
490	 * data block or new command.  We do that whenever we can, shaving
491	 * CPU and IRQ costs (especially when using DMA or FIFOs).
492	 *
493	 * There are two other cases, where it's not generally practical
494	 * to rely on a single I/O:
495	 *
496	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
497	 *
498	 *    In this case we can *try* to fit it into one I/O, then
499	 *    maybe read more data later.
500	 *
501	 *  - Data block reads are more troublesome, since a variable
502	 *    number of padding bytes precede the token and data.
503	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
504	 *      + N(AC) (== 1..many) bytes of all-ones
505	 *
506	 *    In this case we currently only have minimal speedups here:
507	 *    when N(CR) == 1 we can avoid I/O in response_get().
508	 */
509	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
510		cp += 2;	/* min(N(CR)) + status */
511		/* R1 */
512	} else {
513		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
514		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
515			cp++;
516		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
517			cp += 4;
518		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
519			cp = data->status + sizeof(data->status);
520		/* else:  R1 (most commands) */
521	}
522
523	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
524		cmd->opcode, maptype(cmd));
525
526	/* send command, leaving chipselect active */
527	spi_message_init(&host->m);
528
529	t = &host->t;
530	memset(t, 0, sizeof(*t));
531	t->tx_buf = t->rx_buf = data->status;
532	t->tx_dma = t->rx_dma = host->data_dma;
533	t->len = cp - data->status;
534	t->cs_change = 1;
535	spi_message_add_tail(t, &host->m);
536
537	if (host->dma_dev) {
538		host->m.is_dma_mapped = 1;
539		dma_sync_single_for_device(host->dma_dev,
540				host->data_dma, sizeof(*host->data),
541				DMA_BIDIRECTIONAL);
542	}
543	status = spi_sync_locked(host->spi, &host->m);
544
545	if (host->dma_dev)
546		dma_sync_single_for_cpu(host->dma_dev,
547				host->data_dma, sizeof(*host->data),
548				DMA_BIDIRECTIONAL);
549	if (status < 0) {
550		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
551		cmd->error = status;
552		return status;
553	}
554
555	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
556	return mmc_spi_response_get(host, cmd, cs_on);
557}
558
559/* Build data message with up to four separate transfers.  For TX, we
560 * start by writing the data token.  And in most cases, we finish with
561 * a status transfer.
562 *
563 * We always provide TX data for data and CRC.  The MMC/SD protocol
564 * requires us to write ones; but Linux defaults to writing zeroes;
565 * so we explicitly initialize it to all ones on RX paths.
566 *
567 * We also handle DMA mapping, so the underlying SPI controller does
568 * not need to (re)do it for each message.
569 */
570static void
571mmc_spi_setup_data_message(
572	struct mmc_spi_host	*host,
573	int			multiple,
574	enum dma_data_direction	direction)
575{
576	struct spi_transfer	*t;
577	struct scratch		*scratch = host->data;
578	dma_addr_t		dma = host->data_dma;
579
580	spi_message_init(&host->m);
581	if (dma)
582		host->m.is_dma_mapped = 1;
583
584	/* for reads, readblock() skips 0xff bytes before finding
585	 * the token; for writes, this transfer issues that token.
586	 */
587	if (direction == DMA_TO_DEVICE) {
588		t = &host->token;
589		memset(t, 0, sizeof(*t));
590		t->len = 1;
591		if (multiple)
592			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
593		else
594			scratch->data_token = SPI_TOKEN_SINGLE;
595		t->tx_buf = &scratch->data_token;
596		if (dma)
597			t->tx_dma = dma + offsetof(struct scratch, data_token);
598		spi_message_add_tail(t, &host->m);
599	}
600
601	/* Body of transfer is buffer, then CRC ...
602	 * either TX-only, or RX with TX-ones.
603	 */
604	t = &host->t;
605	memset(t, 0, sizeof(*t));
606	t->tx_buf = host->ones;
607	t->tx_dma = host->ones_dma;
608	/* length and actual buffer info are written later */
609	spi_message_add_tail(t, &host->m);
610
611	t = &host->crc;
612	memset(t, 0, sizeof(*t));
613	t->len = 2;
614	if (direction == DMA_TO_DEVICE) {
615		/* the actual CRC may get written later */
616		t->tx_buf = &scratch->crc_val;
617		if (dma)
618			t->tx_dma = dma + offsetof(struct scratch, crc_val);
619	} else {
620		t->tx_buf = host->ones;
621		t->tx_dma = host->ones_dma;
622		t->rx_buf = &scratch->crc_val;
623		if (dma)
624			t->rx_dma = dma + offsetof(struct scratch, crc_val);
625	}
626	spi_message_add_tail(t, &host->m);
627
628	/*
629	 * A single block read is followed by N(EC) [0+] all-ones bytes
630	 * before deselect ... don't bother.
631	 *
632	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
633	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
634	 * collect that single byte, so readblock() doesn't need to.
635	 *
636	 * For a write, the one-byte data response follows immediately, then
637	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
638	 * Then single block reads may deselect, and multiblock ones issue
639	 * the next token (next data block, or STOP_TRAN).  We can try to
640	 * minimize I/O ops by using a single read to collect end-of-busy.
641	 */
642	if (multiple || direction == DMA_TO_DEVICE) {
643		t = &host->early_status;
644		memset(t, 0, sizeof(*t));
645		t->len = (direction == DMA_TO_DEVICE)
646				? sizeof(scratch->status)
647				: 1;
648		t->tx_buf = host->ones;
649		t->tx_dma = host->ones_dma;
650		t->rx_buf = scratch->status;
651		if (dma)
652			t->rx_dma = dma + offsetof(struct scratch, status);
653		t->cs_change = 1;
654		spi_message_add_tail(t, &host->m);
655	}
656}
657
658/*
659 * Write one block:
660 *  - caller handled preceding N(WR) [1+] all-ones bytes
661 *  - data block
662 *	+ token
663 *	+ data bytes
664 *	+ crc16
665 *  - an all-ones byte ... card writes a data-response byte
666 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
667 *
668 * Return negative errno, else success.
669 */
670static int
671mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
672	unsigned long timeout)
673{
674	struct spi_device	*spi = host->spi;
675	int			status, i;
676	struct scratch		*scratch = host->data;
677	u32			pattern;
678
679	if (host->mmc->use_spi_crc)
680		scratch->crc_val = cpu_to_be16(
681				crc_itu_t(0, t->tx_buf, t->len));
682	if (host->dma_dev)
683		dma_sync_single_for_device(host->dma_dev,
684				host->data_dma, sizeof(*scratch),
685				DMA_BIDIRECTIONAL);
686
687	status = spi_sync_locked(spi, &host->m);
688
689	if (status != 0) {
690		dev_dbg(&spi->dev, "write error (%d)\n", status);
691		return status;
692	}
693
694	if (host->dma_dev)
695		dma_sync_single_for_cpu(host->dma_dev,
696				host->data_dma, sizeof(*scratch),
697				DMA_BIDIRECTIONAL);
698
699	/*
700	 * Get the transmission data-response reply.  It must follow
701	 * immediately after the data block we transferred.  This reply
702	 * doesn't necessarily tell whether the write operation succeeded;
703	 * it just says if the transmission was ok and whether *earlier*
704	 * writes succeeded; see the standard.
705	 *
706	 * In practice, there are (even modern SDHC-)cards which are late
707	 * in sending the response, and miss the time frame by a few bits,
708	 * so we have to cope with this situation and check the response
709	 * bit-by-bit. Arggh!!!
710	 */
711	pattern = get_unaligned_be32(scratch->status);
712
713	/* First 3 bit of pattern are undefined */
714	pattern |= 0xE0000000;
715
716	/* left-adjust to leading 0 bit */
717	while (pattern & 0x80000000)
718		pattern <<= 1;
719	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
720	pattern >>= 27;
721
722	switch (pattern) {
723	case SPI_RESPONSE_ACCEPTED:
724		status = 0;
725		break;
726	case SPI_RESPONSE_CRC_ERR:
727		/* host shall then issue MMC_STOP_TRANSMISSION */
728		status = -EILSEQ;
729		break;
730	case SPI_RESPONSE_WRITE_ERR:
731		/* host shall then issue MMC_STOP_TRANSMISSION,
732		 * and should MMC_SEND_STATUS to sort it out
733		 */
734		status = -EIO;
735		break;
736	default:
737		status = -EPROTO;
738		break;
739	}
740	if (status != 0) {
741		dev_dbg(&spi->dev, "write error %02x (%d)\n",
742			scratch->status[0], status);
743		return status;
744	}
745
746	t->tx_buf += t->len;
747	if (host->dma_dev)
748		t->tx_dma += t->len;
749
750	/* Return when not busy.  If we didn't collect that status yet,
751	 * we'll need some more I/O.
752	 */
753	for (i = 4; i < sizeof(scratch->status); i++) {
754		/* card is non-busy if the most recent bit is 1 */
755		if (scratch->status[i] & 0x01)
756			return 0;
757	}
758	return mmc_spi_wait_unbusy(host, timeout);
759}
760
761/*
762 * Read one block:
763 *  - skip leading all-ones bytes ... either
764 *      + N(AC) [1..f(clock,CSD)] usually, else
765 *      + N(CX) [0..8] when reading CSD or CID
766 *  - data block
767 *	+ token ... if error token, no data or crc
768 *	+ data bytes
769 *	+ crc16
770 *
771 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
772 * before dropping chipselect.
773 *
774 * For multiblock reads, caller either reads the next block or issues a
775 * STOP_TRANSMISSION command.
776 */
777static int
778mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
779	unsigned long timeout)
780{
781	struct spi_device	*spi = host->spi;
782	int			status;
783	struct scratch		*scratch = host->data;
784	unsigned int 		bitshift;
785	u8			leftover;
786
787	/* At least one SD card sends an all-zeroes byte when N(CX)
788	 * applies, before the all-ones bytes ... just cope with that.
789	 */
790	status = mmc_spi_readbytes(host, 1);
791	if (status < 0)
792		return status;
793	status = scratch->status[0];
794	if (status == 0xff || status == 0)
795		status = mmc_spi_readtoken(host, timeout);
796
797	if (status < 0) {
798		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
799		return status;
800	}
801
802	/* The token may be bit-shifted...
803	 * the first 0-bit precedes the data stream.
804	 */
805	bitshift = 7;
806	while (status & 0x80) {
807		status <<= 1;
808		bitshift--;
809	}
810	leftover = status << 1;
811
812	if (host->dma_dev) {
813		dma_sync_single_for_device(host->dma_dev,
814				host->data_dma, sizeof(*scratch),
815				DMA_BIDIRECTIONAL);
816		dma_sync_single_for_device(host->dma_dev,
817				t->rx_dma, t->len,
818				DMA_FROM_DEVICE);
819	}
820
821	status = spi_sync_locked(spi, &host->m);
822
823	if (host->dma_dev) {
824		dma_sync_single_for_cpu(host->dma_dev,
825				host->data_dma, sizeof(*scratch),
826				DMA_BIDIRECTIONAL);
827		dma_sync_single_for_cpu(host->dma_dev,
828				t->rx_dma, t->len,
829				DMA_FROM_DEVICE);
830	}
831
832	if (bitshift) {
833		/* Walk through the data and the crc and do
834		 * all the magic to get byte-aligned data.
835		 */
836		u8 *cp = t->rx_buf;
837		unsigned int len;
838		unsigned int bitright = 8 - bitshift;
839		u8 temp;
840		for (len = t->len; len; len--) {
841			temp = *cp;
842			*cp++ = leftover | (temp >> bitshift);
843			leftover = temp << bitright;
844		}
845		cp = (u8 *) &scratch->crc_val;
846		temp = *cp;
847		*cp++ = leftover | (temp >> bitshift);
848		leftover = temp << bitright;
849		temp = *cp;
850		*cp = leftover | (temp >> bitshift);
851	}
852
853	if (host->mmc->use_spi_crc) {
854		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
855
856		be16_to_cpus(&scratch->crc_val);
857		if (scratch->crc_val != crc) {
858			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
859					"computed=0x%04x len=%d\n",
860					scratch->crc_val, crc, t->len);
861			return -EILSEQ;
862		}
863	}
864
865	t->rx_buf += t->len;
866	if (host->dma_dev)
867		t->rx_dma += t->len;
868
869	return 0;
870}
871
872/*
873 * An MMC/SD data stage includes one or more blocks, optional CRCs,
874 * and inline handshaking.  That handhaking makes it unlike most
875 * other SPI protocol stacks.
876 */
877static void
878mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
879		struct mmc_data *data, u32 blk_size)
880{
881	struct spi_device	*spi = host->spi;
882	struct device		*dma_dev = host->dma_dev;
883	struct spi_transfer	*t;
884	enum dma_data_direction	direction;
885	struct scatterlist	*sg;
886	unsigned		n_sg;
887	int			multiple = (data->blocks > 1);
888	u32			clock_rate;
889	unsigned long		timeout;
890
891	if (data->flags & MMC_DATA_READ)
892		direction = DMA_FROM_DEVICE;
893	else
894		direction = DMA_TO_DEVICE;
895	mmc_spi_setup_data_message(host, multiple, direction);
896	t = &host->t;
897
898	if (t->speed_hz)
899		clock_rate = t->speed_hz;
900	else
901		clock_rate = spi->max_speed_hz;
902
903	timeout = data->timeout_ns +
904		  data->timeout_clks * 1000000 / clock_rate;
905	timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
906
907	/* Handle scatterlist segments one at a time, with synch for
908	 * each 512-byte block
909	 */
910	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
911		int			status = 0;
912		dma_addr_t		dma_addr = 0;
913		void			*kmap_addr;
914		unsigned		length = sg->length;
915		enum dma_data_direction	dir = direction;
916
917		/* set up dma mapping for controller drivers that might
918		 * use DMA ... though they may fall back to PIO
919		 */
920		if (dma_dev) {
921			/* never invalidate whole *shared* pages ... */
922			if ((sg->offset != 0 || length != PAGE_SIZE)
923					&& dir == DMA_FROM_DEVICE)
924				dir = DMA_BIDIRECTIONAL;
925
926			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
927						PAGE_SIZE, dir);
928			if (direction == DMA_TO_DEVICE)
929				t->tx_dma = dma_addr + sg->offset;
930			else
931				t->rx_dma = dma_addr + sg->offset;
932		}
933
934		/* allow pio too; we don't allow highmem */
935		kmap_addr = kmap(sg_page(sg));
936		if (direction == DMA_TO_DEVICE)
937			t->tx_buf = kmap_addr + sg->offset;
938		else
939			t->rx_buf = kmap_addr + sg->offset;
940
941		/* transfer each block, and update request status */
942		while (length) {
943			t->len = min(length, blk_size);
944
945			dev_dbg(&host->spi->dev,
946				"    mmc_spi: %s block, %d bytes\n",
947				(direction == DMA_TO_DEVICE)
948				? "write"
949				: "read",
950				t->len);
951
952			if (direction == DMA_TO_DEVICE)
953				status = mmc_spi_writeblock(host, t, timeout);
954			else
955				status = mmc_spi_readblock(host, t, timeout);
956			if (status < 0)
957				break;
958
959			data->bytes_xfered += t->len;
960			length -= t->len;
961
962			if (!multiple)
963				break;
964		}
965
966		/* discard mappings */
967		if (direction == DMA_FROM_DEVICE)
968			flush_kernel_dcache_page(sg_page(sg));
969		kunmap(sg_page(sg));
970		if (dma_dev)
971			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
972
973		if (status < 0) {
974			data->error = status;
975			dev_dbg(&spi->dev, "%s status %d\n",
976				(direction == DMA_TO_DEVICE)
977					? "write" : "read",
978				status);
979			break;
980		}
981	}
982
983	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
984	 * can be issued before multiblock writes.  Unlike its more widely
985	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
986	 * that can affect the STOP_TRAN logic.   Complete (and current)
987	 * MMC specs should sort that out before Linux starts using CMD23.
988	 */
989	if (direction == DMA_TO_DEVICE && multiple) {
990		struct scratch	*scratch = host->data;
991		int		tmp;
992		const unsigned	statlen = sizeof(scratch->status);
993
994		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
995
996		/* Tweak the per-block message we set up earlier by morphing
997		 * it to hold single buffer with the token followed by some
998		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
999		 * "not busy any longer" status, and leave chip selected.
1000		 */
1001		INIT_LIST_HEAD(&host->m.transfers);
1002		list_add(&host->early_status.transfer_list,
1003				&host->m.transfers);
1004
1005		memset(scratch->status, 0xff, statlen);
1006		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1007
1008		host->early_status.tx_buf = host->early_status.rx_buf;
1009		host->early_status.tx_dma = host->early_status.rx_dma;
1010		host->early_status.len = statlen;
1011
1012		if (host->dma_dev)
1013			dma_sync_single_for_device(host->dma_dev,
1014					host->data_dma, sizeof(*scratch),
1015					DMA_BIDIRECTIONAL);
1016
1017		tmp = spi_sync_locked(spi, &host->m);
1018
1019		if (host->dma_dev)
1020			dma_sync_single_for_cpu(host->dma_dev,
1021					host->data_dma, sizeof(*scratch),
1022					DMA_BIDIRECTIONAL);
1023
1024		if (tmp < 0) {
1025			if (!data->error)
1026				data->error = tmp;
1027			return;
1028		}
1029
1030		/* Ideally we collected "not busy" status with one I/O,
1031		 * avoiding wasteful byte-at-a-time scanning... but more
1032		 * I/O is often needed.
1033		 */
1034		for (tmp = 2; tmp < statlen; tmp++) {
1035			if (scratch->status[tmp] != 0)
1036				return;
1037		}
1038		tmp = mmc_spi_wait_unbusy(host, timeout);
1039		if (tmp < 0 && !data->error)
1040			data->error = tmp;
1041	}
1042}
1043
1044/****************************************************************************/
1045
1046/*
1047 * MMC driver implementation -- the interface to the MMC stack
1048 */
1049
1050static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1051{
1052	struct mmc_spi_host	*host = mmc_priv(mmc);
1053	int			status = -EINVAL;
1054	int			crc_retry = 5;
1055	struct mmc_command	stop;
1056
1057#ifdef DEBUG
1058	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
1059	{
1060		struct mmc_command	*cmd;
1061		int			invalid = 0;
1062
1063		cmd = mrq->cmd;
1064		if (!mmc_spi_resp_type(cmd)) {
1065			dev_dbg(&host->spi->dev, "bogus command\n");
1066			cmd->error = -EINVAL;
1067			invalid = 1;
1068		}
1069
1070		cmd = mrq->stop;
1071		if (cmd && !mmc_spi_resp_type(cmd)) {
1072			dev_dbg(&host->spi->dev, "bogus STOP command\n");
1073			cmd->error = -EINVAL;
1074			invalid = 1;
1075		}
1076
1077		if (invalid) {
1078			dump_stack();
1079			mmc_request_done(host->mmc, mrq);
1080			return;
1081		}
1082	}
1083#endif
1084
1085	/* request exclusive bus access */
1086	spi_bus_lock(host->spi->master);
1087
1088crc_recover:
1089	/* issue command; then optionally data and stop */
1090	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1091	if (status == 0 && mrq->data) {
1092		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1093
1094		/*
1095		 * The SPI bus is not always reliable for large data transfers.
1096		 * If an occasional crc error is reported by the SD device with
1097		 * data read/write over SPI, it may be recovered by repeating
1098		 * the last SD command again. The retry count is set to 5 to
1099		 * ensure the driver passes stress tests.
1100		 */
1101		if (mrq->data->error == -EILSEQ && crc_retry) {
1102			stop.opcode = MMC_STOP_TRANSMISSION;
1103			stop.arg = 0;
1104			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1105			status = mmc_spi_command_send(host, mrq, &stop, 0);
1106			crc_retry--;
1107			mrq->data->error = 0;
1108			goto crc_recover;
1109		}
1110
1111		if (mrq->stop)
1112			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1113		else
1114			mmc_cs_off(host);
1115	}
1116
1117	/* release the bus */
1118	spi_bus_unlock(host->spi->master);
1119
1120	mmc_request_done(host->mmc, mrq);
1121}
1122
1123/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1124 *
1125 * NOTE that here we can't know that the card has just been powered up;
1126 * not all MMC/SD sockets support power switching.
1127 *
1128 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1129 * this doesn't seem to do the right thing at all...
1130 */
1131static void mmc_spi_initsequence(struct mmc_spi_host *host)
1132{
1133	/* Try to be very sure any previous command has completed;
1134	 * wait till not-busy, skip debris from any old commands.
1135	 */
1136	mmc_spi_wait_unbusy(host, r1b_timeout);
1137	mmc_spi_readbytes(host, 10);
1138
1139	/*
1140	 * Do a burst with chipselect active-high.  We need to do this to
1141	 * meet the requirement of 74 clock cycles with both chipselect
1142	 * and CMD (MOSI) high before CMD0 ... after the card has been
1143	 * powered up to Vdd(min), and so is ready to take commands.
1144	 *
1145	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1146	 * while most others don't seem to care.
1147	 *
1148	 * Note that this is one of the places MMC/SD plays games with the
1149	 * SPI protocol.  Another is that when chipselect is released while
1150	 * the card returns BUSY status, the clock must issue several cycles
1151	 * with chipselect high before the card will stop driving its output.
1152	 */
1153	host->spi->mode |= SPI_CS_HIGH;
1154	if (spi_setup(host->spi) != 0) {
1155		/* Just warn; most cards work without it. */
1156		dev_warn(&host->spi->dev,
1157				"can't change chip-select polarity\n");
1158		host->spi->mode &= ~SPI_CS_HIGH;
1159	} else {
1160		mmc_spi_readbytes(host, 18);
1161
1162		host->spi->mode &= ~SPI_CS_HIGH;
1163		if (spi_setup(host->spi) != 0) {
1164			/* Wot, we can't get the same setup we had before? */
1165			dev_err(&host->spi->dev,
1166					"can't restore chip-select polarity\n");
1167		}
1168	}
1169}
1170
1171static char *mmc_powerstring(u8 power_mode)
1172{
1173	switch (power_mode) {
1174	case MMC_POWER_OFF: return "off";
1175	case MMC_POWER_UP:  return "up";
1176	case MMC_POWER_ON:  return "on";
1177	}
1178	return "?";
1179}
1180
1181static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1182{
1183	struct mmc_spi_host *host = mmc_priv(mmc);
1184
1185	if (host->power_mode != ios->power_mode) {
1186		int		canpower;
1187
1188		canpower = host->pdata && host->pdata->setpower;
1189
1190		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1191				mmc_powerstring(ios->power_mode),
1192				ios->vdd,
1193				canpower ? ", can switch" : "");
1194
1195		/* switch power on/off if possible, accounting for
1196		 * max 250msec powerup time if needed.
1197		 */
1198		if (canpower) {
1199			switch (ios->power_mode) {
1200			case MMC_POWER_OFF:
1201			case MMC_POWER_UP:
1202				host->pdata->setpower(&host->spi->dev,
1203						ios->vdd);
1204				if (ios->power_mode == MMC_POWER_UP)
1205					msleep(host->powerup_msecs);
1206			}
1207		}
1208
1209		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1210		if (ios->power_mode == MMC_POWER_ON)
1211			mmc_spi_initsequence(host);
1212
1213		/* If powering down, ground all card inputs to avoid power
1214		 * delivery from data lines!  On a shared SPI bus, this
1215		 * will probably be temporary; 6.4.2 of the simplified SD
1216		 * spec says this must last at least 1msec.
1217		 *
1218		 *   - Clock low means CPOL 0, e.g. mode 0
1219		 *   - MOSI low comes from writing zero
1220		 *   - Chipselect is usually active low...
1221		 */
1222		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1223			int mres;
1224			u8 nullbyte = 0;
1225
1226			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1227			mres = spi_setup(host->spi);
1228			if (mres < 0)
1229				dev_dbg(&host->spi->dev,
1230					"switch to SPI mode 0 failed\n");
1231
1232			if (spi_write(host->spi, &nullbyte, 1) < 0)
1233				dev_dbg(&host->spi->dev,
1234					"put spi signals to low failed\n");
1235
1236			/*
1237			 * Now clock should be low due to spi mode 0;
1238			 * MOSI should be low because of written 0x00;
1239			 * chipselect should be low (it is active low)
1240			 * power supply is off, so now MMC is off too!
1241			 *
1242			 * FIXME no, chipselect can be high since the
1243			 * device is inactive and SPI_CS_HIGH is clear...
1244			 */
1245			msleep(10);
1246			if (mres == 0) {
1247				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1248				mres = spi_setup(host->spi);
1249				if (mres < 0)
1250					dev_dbg(&host->spi->dev,
1251						"switch back to SPI mode 3"
1252						" failed\n");
1253			}
1254		}
1255
1256		host->power_mode = ios->power_mode;
1257	}
1258
1259	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1260		int		status;
1261
1262		host->spi->max_speed_hz = ios->clock;
1263		status = spi_setup(host->spi);
1264		dev_dbg(&host->spi->dev,
1265			"mmc_spi:  clock to %d Hz, %d\n",
1266			host->spi->max_speed_hz, status);
1267	}
1268}
1269
1270static const struct mmc_host_ops mmc_spi_ops = {
1271	.request	= mmc_spi_request,
1272	.set_ios	= mmc_spi_set_ios,
1273	.get_ro		= mmc_gpio_get_ro,
1274	.get_cd		= mmc_gpio_get_cd,
1275};
1276
1277
1278/****************************************************************************/
1279
1280/*
1281 * SPI driver implementation
1282 */
1283
1284static irqreturn_t
1285mmc_spi_detect_irq(int irq, void *mmc)
1286{
1287	struct mmc_spi_host *host = mmc_priv(mmc);
1288	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1289
1290	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1291	return IRQ_HANDLED;
1292}
1293
1294static int mmc_spi_probe(struct spi_device *spi)
1295{
1296	void			*ones;
1297	struct mmc_host		*mmc;
1298	struct mmc_spi_host	*host;
1299	int			status;
1300	bool			has_ro = false;
1301
1302	/* We rely on full duplex transfers, mostly to reduce
1303	 * per-transfer overheads (by making fewer transfers).
1304	 */
1305	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1306		return -EINVAL;
1307
1308	/* MMC and SD specs only seem to care that sampling is on the
1309	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1310	 * should be legit.  We'll use mode 0 since the steady state is 0,
1311	 * which is appropriate for hotplugging, unless the platform data
1312	 * specify mode 3 (if hardware is not compatible to mode 0).
1313	 */
1314	if (spi->mode != SPI_MODE_3)
1315		spi->mode = SPI_MODE_0;
1316	spi->bits_per_word = 8;
1317
1318	status = spi_setup(spi);
1319	if (status < 0) {
1320		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1321				spi->mode, spi->max_speed_hz / 1000,
1322				status);
1323		return status;
1324	}
1325
1326	/* We need a supply of ones to transmit.  This is the only time
1327	 * the CPU touches these, so cache coherency isn't a concern.
1328	 *
1329	 * NOTE if many systems use more than one MMC-over-SPI connector
1330	 * it'd save some memory to share this.  That's evidently rare.
1331	 */
1332	status = -ENOMEM;
1333	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1334	if (!ones)
1335		goto nomem;
1336	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1337
1338	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1339	if (!mmc)
1340		goto nomem;
1341
1342	mmc->ops = &mmc_spi_ops;
1343	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1344	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1345	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1346	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1347
1348	mmc->caps = MMC_CAP_SPI;
1349
1350	/* SPI doesn't need the lowspeed device identification thing for
1351	 * MMC or SD cards, since it never comes up in open drain mode.
1352	 * That's good; some SPI masters can't handle very low speeds!
1353	 *
1354	 * However, low speed SDIO cards need not handle over 400 KHz;
1355	 * that's the only reason not to use a few MHz for f_min (until
1356	 * the upper layer reads the target frequency from the CSD).
1357	 */
1358	mmc->f_min = 400000;
1359	mmc->f_max = spi->max_speed_hz;
1360
1361	host = mmc_priv(mmc);
1362	host->mmc = mmc;
1363	host->spi = spi;
1364
1365	host->ones = ones;
1366
1367	/* Platform data is used to hook up things like card sensing
1368	 * and power switching gpios.
1369	 */
1370	host->pdata = mmc_spi_get_pdata(spi);
1371	if (host->pdata)
1372		mmc->ocr_avail = host->pdata->ocr_mask;
1373	if (!mmc->ocr_avail) {
1374		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1375		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1376	}
1377	if (host->pdata && host->pdata->setpower) {
1378		host->powerup_msecs = host->pdata->powerup_msecs;
1379		if (!host->powerup_msecs || host->powerup_msecs > 250)
1380			host->powerup_msecs = 250;
1381	}
1382
1383	dev_set_drvdata(&spi->dev, mmc);
1384
1385	/* preallocate dma buffers */
1386	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1387	if (!host->data)
1388		goto fail_nobuf1;
1389
1390	if (spi->master->dev.parent->dma_mask) {
1391		struct device	*dev = spi->master->dev.parent;
1392
1393		host->dma_dev = dev;
1394		host->ones_dma = dma_map_single(dev, ones,
1395				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1396		host->data_dma = dma_map_single(dev, host->data,
1397				sizeof(*host->data), DMA_BIDIRECTIONAL);
1398
1399		/* REVISIT in theory those map operations can fail... */
1400
1401		dma_sync_single_for_cpu(host->dma_dev,
1402				host->data_dma, sizeof(*host->data),
1403				DMA_BIDIRECTIONAL);
1404	}
1405
1406	/* setup message for status/busy readback */
1407	spi_message_init(&host->readback);
1408	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1409
1410	spi_message_add_tail(&host->status, &host->readback);
1411	host->status.tx_buf = host->ones;
1412	host->status.tx_dma = host->ones_dma;
1413	host->status.rx_buf = &host->data->status;
1414	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1415	host->status.cs_change = 1;
1416
1417	/* register card detect irq */
1418	if (host->pdata && host->pdata->init) {
1419		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1420		if (status != 0)
1421			goto fail_glue_init;
1422	}
1423
1424	/* pass platform capabilities, if any */
1425	if (host->pdata) {
1426		mmc->caps |= host->pdata->caps;
1427		mmc->caps2 |= host->pdata->caps2;
1428	}
1429
1430	status = mmc_add_host(mmc);
1431	if (status != 0)
1432		goto fail_add_host;
1433
1434	if (host->pdata && host->pdata->flags & MMC_SPI_USE_CD_GPIO) {
1435		status = mmc_gpio_request_cd(mmc, host->pdata->cd_gpio,
1436					     host->pdata->cd_debounce);
1437		if (status != 0)
1438			goto fail_add_host;
1439
1440		/* The platform has a CD GPIO signal that may support
1441		 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1442		 * if polling is needed or not.
1443		 */
1444		mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1445		mmc_gpiod_request_cd_irq(mmc);
1446	}
1447
1448	if (host->pdata && host->pdata->flags & MMC_SPI_USE_RO_GPIO) {
1449		has_ro = true;
1450		status = mmc_gpio_request_ro(mmc, host->pdata->ro_gpio);
1451		if (status != 0)
1452			goto fail_add_host;
1453	}
1454
1455	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1456			dev_name(&mmc->class_dev),
1457			host->dma_dev ? "" : ", no DMA",
1458			has_ro ? "" : ", no WP",
1459			(host->pdata && host->pdata->setpower)
1460				? "" : ", no poweroff",
1461			(mmc->caps & MMC_CAP_NEEDS_POLL)
1462				? ", cd polling" : "");
1463	return 0;
1464
1465fail_add_host:
1466	mmc_remove_host (mmc);
1467fail_glue_init:
1468	if (host->dma_dev)
1469		dma_unmap_single(host->dma_dev, host->data_dma,
1470				sizeof(*host->data), DMA_BIDIRECTIONAL);
1471	kfree(host->data);
1472
1473fail_nobuf1:
1474	mmc_free_host(mmc);
1475	mmc_spi_put_pdata(spi);
1476	dev_set_drvdata(&spi->dev, NULL);
1477
1478nomem:
1479	kfree(ones);
1480	return status;
1481}
1482
1483
1484static int mmc_spi_remove(struct spi_device *spi)
1485{
1486	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1487	struct mmc_spi_host	*host;
1488
1489	if (mmc) {
1490		host = mmc_priv(mmc);
1491
1492		/* prevent new mmc_detect_change() calls */
1493		if (host->pdata && host->pdata->exit)
1494			host->pdata->exit(&spi->dev, mmc);
1495
1496		mmc_remove_host(mmc);
1497
1498		if (host->dma_dev) {
1499			dma_unmap_single(host->dma_dev, host->ones_dma,
1500				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1501			dma_unmap_single(host->dma_dev, host->data_dma,
1502				sizeof(*host->data), DMA_BIDIRECTIONAL);
1503		}
1504
1505		kfree(host->data);
1506		kfree(host->ones);
1507
1508		spi->max_speed_hz = mmc->f_max;
1509		mmc_free_host(mmc);
1510		mmc_spi_put_pdata(spi);
1511		dev_set_drvdata(&spi->dev, NULL);
1512	}
1513	return 0;
1514}
1515
1516static const struct of_device_id mmc_spi_of_match_table[] = {
1517	{ .compatible = "mmc-spi-slot", },
1518	{},
1519};
1520MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1521
1522static struct spi_driver mmc_spi_driver = {
1523	.driver = {
1524		.name =		"mmc_spi",
1525		.of_match_table = mmc_spi_of_match_table,
1526	},
1527	.probe =	mmc_spi_probe,
1528	.remove =	mmc_spi_remove,
1529};
1530
1531module_spi_driver(mmc_spi_driver);
1532
1533MODULE_AUTHOR("Mike Lavender, David Brownell, "
1534		"Hans-Peter Nilsson, Jan Nikitenko");
1535MODULE_DESCRIPTION("SPI SD/MMC host driver");
1536MODULE_LICENSE("GPL");
1537MODULE_ALIAS("spi:mmc_spi");
1538