1/*
2 *  linux/drivers/mmc/core/mmc.c
3 *
4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/of.h>
15#include <linux/slab.h>
16#include <linux/stat.h>
17#include <linux/pm_runtime.h>
18
19#include <linux/mmc/host.h>
20#include <linux/mmc/card.h>
21#include <linux/mmc/mmc.h>
22
23#include "core.h"
24#include "host.h"
25#include "bus.h"
26#include "mmc_ops.h"
27#include "sd_ops.h"
28
29static const unsigned int tran_exp[] = {
30	10000,		100000,		1000000,	10000000,
31	0,		0,		0,		0
32};
33
34static const unsigned char tran_mant[] = {
35	0,	10,	12,	13,	15,	20,	25,	30,
36	35,	40,	45,	50,	55,	60,	70,	80,
37};
38
39static const unsigned int tacc_exp[] = {
40	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
41};
42
43static const unsigned int tacc_mant[] = {
44	0,	10,	12,	13,	15,	20,	25,	30,
45	35,	40,	45,	50,	55,	60,	70,	80,
46};
47
48#define UNSTUFF_BITS(resp,start,size)					\
49	({								\
50		const int __size = size;				\
51		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
52		const int __off = 3 - ((start) / 32);			\
53		const int __shft = (start) & 31;			\
54		u32 __res;						\
55									\
56		__res = resp[__off] >> __shft;				\
57		if (__size + __shft > 32)				\
58			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
59		__res & __mask;						\
60	})
61
62/*
63 * Given the decoded CSD structure, decode the raw CID to our CID structure.
64 */
65static int mmc_decode_cid(struct mmc_card *card)
66{
67	u32 *resp = card->raw_cid;
68
69	/*
70	 * The selection of the format here is based upon published
71	 * specs from sandisk and from what people have reported.
72	 */
73	switch (card->csd.mmca_vsn) {
74	case 0: /* MMC v1.0 - v1.2 */
75	case 1: /* MMC v1.4 */
76		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
77		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
78		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
79		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
80		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
81		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
82		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
83		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
84		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
85		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
86		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
87		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
88		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
89		break;
90
91	case 2: /* MMC v2.0 - v2.2 */
92	case 3: /* MMC v3.1 - v3.3 */
93	case 4: /* MMC v4 */
94		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
95		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
96		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
97		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
98		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
99		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
100		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
101		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
102		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
103		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
104		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
105		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
106		break;
107
108	default:
109		pr_err("%s: card has unknown MMCA version %d\n",
110			mmc_hostname(card->host), card->csd.mmca_vsn);
111		return -EINVAL;
112	}
113
114	return 0;
115}
116
117static void mmc_set_erase_size(struct mmc_card *card)
118{
119	if (card->ext_csd.erase_group_def & 1)
120		card->erase_size = card->ext_csd.hc_erase_size;
121	else
122		card->erase_size = card->csd.erase_size;
123
124	mmc_init_erase(card);
125}
126
127/*
128 * Given a 128-bit response, decode to our card CSD structure.
129 */
130static int mmc_decode_csd(struct mmc_card *card)
131{
132	struct mmc_csd *csd = &card->csd;
133	unsigned int e, m, a, b;
134	u32 *resp = card->raw_csd;
135
136	/*
137	 * We only understand CSD structure v1.1 and v1.2.
138	 * v1.2 has extra information in bits 15, 11 and 10.
139	 * We also support eMMC v4.4 & v4.41.
140	 */
141	csd->structure = UNSTUFF_BITS(resp, 126, 2);
142	if (csd->structure == 0) {
143		pr_err("%s: unrecognised CSD structure version %d\n",
144			mmc_hostname(card->host), csd->structure);
145		return -EINVAL;
146	}
147
148	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
149	m = UNSTUFF_BITS(resp, 115, 4);
150	e = UNSTUFF_BITS(resp, 112, 3);
151	csd->tacc_ns	 = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
152	csd->tacc_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
153
154	m = UNSTUFF_BITS(resp, 99, 4);
155	e = UNSTUFF_BITS(resp, 96, 3);
156	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
157	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
158
159	e = UNSTUFF_BITS(resp, 47, 3);
160	m = UNSTUFF_BITS(resp, 62, 12);
161	csd->capacity	  = (1 + m) << (e + 2);
162
163	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
164	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
165	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
166	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
167	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
168	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
169	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
170	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
171
172	if (csd->write_blkbits >= 9) {
173		a = UNSTUFF_BITS(resp, 42, 5);
174		b = UNSTUFF_BITS(resp, 37, 5);
175		csd->erase_size = (a + 1) * (b + 1);
176		csd->erase_size <<= csd->write_blkbits - 9;
177	}
178
179	return 0;
180}
181
182static void mmc_select_card_type(struct mmc_card *card)
183{
184	struct mmc_host *host = card->host;
185	u8 card_type = card->ext_csd.raw_card_type;
186	u32 caps = host->caps, caps2 = host->caps2;
187	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
188	unsigned int avail_type = 0;
189
190	if (caps & MMC_CAP_MMC_HIGHSPEED &&
191	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
192		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
193		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
194	}
195
196	if (caps & MMC_CAP_MMC_HIGHSPEED &&
197	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
198		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
199		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
200	}
201
202	if (caps & MMC_CAP_1_8V_DDR &&
203	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
204		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
205		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
206	}
207
208	if (caps & MMC_CAP_1_2V_DDR &&
209	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
210		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
211		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
212	}
213
214	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
215	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
216		hs200_max_dtr = MMC_HS200_MAX_DTR;
217		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
218	}
219
220	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
221	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
222		hs200_max_dtr = MMC_HS200_MAX_DTR;
223		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
224	}
225
226	if (caps2 & MMC_CAP2_HS400_1_8V &&
227	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
228		hs200_max_dtr = MMC_HS200_MAX_DTR;
229		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
230	}
231
232	if (caps2 & MMC_CAP2_HS400_1_2V &&
233	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
234		hs200_max_dtr = MMC_HS200_MAX_DTR;
235		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
236	}
237
238	card->ext_csd.hs_max_dtr = hs_max_dtr;
239	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
240	card->mmc_avail_type = avail_type;
241}
242
243static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
244{
245	u8 hc_erase_grp_sz, hc_wp_grp_sz;
246
247	/*
248	 * Disable these attributes by default
249	 */
250	card->ext_csd.enhanced_area_offset = -EINVAL;
251	card->ext_csd.enhanced_area_size = -EINVAL;
252
253	/*
254	 * Enhanced area feature support -- check whether the eMMC
255	 * card has the Enhanced area enabled.  If so, export enhanced
256	 * area offset and size to user by adding sysfs interface.
257	 */
258	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
259	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
260		if (card->ext_csd.partition_setting_completed) {
261			hc_erase_grp_sz =
262				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
263			hc_wp_grp_sz =
264				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
265
266			/*
267			 * calculate the enhanced data area offset, in bytes
268			 */
269			card->ext_csd.enhanced_area_offset =
270				(((unsigned long long)ext_csd[139]) << 24) +
271				(((unsigned long long)ext_csd[138]) << 16) +
272				(((unsigned long long)ext_csd[137]) << 8) +
273				(((unsigned long long)ext_csd[136]));
274			if (mmc_card_blockaddr(card))
275				card->ext_csd.enhanced_area_offset <<= 9;
276			/*
277			 * calculate the enhanced data area size, in kilobytes
278			 */
279			card->ext_csd.enhanced_area_size =
280				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
281				ext_csd[140];
282			card->ext_csd.enhanced_area_size *=
283				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
284			card->ext_csd.enhanced_area_size <<= 9;
285		} else {
286			pr_warn("%s: defines enhanced area without partition setting complete\n",
287				mmc_hostname(card->host));
288		}
289	}
290}
291
292static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
293{
294	int idx;
295	u8 hc_erase_grp_sz, hc_wp_grp_sz;
296	unsigned int part_size;
297
298	/*
299	 * General purpose partition feature support --
300	 * If ext_csd has the size of general purpose partitions,
301	 * set size, part_cfg, partition name in mmc_part.
302	 */
303	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
304	    EXT_CSD_PART_SUPPORT_PART_EN) {
305		hc_erase_grp_sz =
306			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
307		hc_wp_grp_sz =
308			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
309
310		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
311			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
312			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
313			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
314				continue;
315			if (card->ext_csd.partition_setting_completed == 0) {
316				pr_warn("%s: has partition size defined without partition complete\n",
317					mmc_hostname(card->host));
318				break;
319			}
320			part_size =
321				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
322				<< 16) +
323				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
324				<< 8) +
325				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
326			part_size *= (size_t)(hc_erase_grp_sz *
327				hc_wp_grp_sz);
328			mmc_part_add(card, part_size << 19,
329				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
330				"gp%d", idx, false,
331				MMC_BLK_DATA_AREA_GP);
332		}
333	}
334}
335
336/* Minimum partition switch timeout in milliseconds */
337#define MMC_MIN_PART_SWITCH_TIME	300
338
339/*
340 * Decode extended CSD.
341 */
342static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
343{
344	int err = 0, idx;
345	unsigned int part_size;
346	struct device_node *np;
347	bool broken_hpi = false;
348
349	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
350	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
351	if (card->csd.structure == 3) {
352		if (card->ext_csd.raw_ext_csd_structure > 2) {
353			pr_err("%s: unrecognised EXT_CSD structure "
354				"version %d\n", mmc_hostname(card->host),
355					card->ext_csd.raw_ext_csd_structure);
356			err = -EINVAL;
357			goto out;
358		}
359	}
360
361	np = mmc_of_find_child_device(card->host, 0);
362	if (np && of_device_is_compatible(np, "mmc-card"))
363		broken_hpi = of_property_read_bool(np, "broken-hpi");
364	of_node_put(np);
365
366	/*
367	 * The EXT_CSD format is meant to be forward compatible. As long
368	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
369	 * are authorized, see JEDEC JESD84-B50 section B.8.
370	 */
371	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
372
373	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
374	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
375	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
376	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
377	if (card->ext_csd.rev >= 2) {
378		card->ext_csd.sectors =
379			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
380			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
381			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
382			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
383
384		/* Cards with density > 2GiB are sector addressed */
385		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
386			mmc_card_set_blockaddr(card);
387	}
388
389	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
390	mmc_select_card_type(card);
391
392	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
393	card->ext_csd.raw_erase_timeout_mult =
394		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
395	card->ext_csd.raw_hc_erase_grp_size =
396		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
397	if (card->ext_csd.rev >= 3) {
398		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
399		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
400
401		/* EXT_CSD value is in units of 10ms, but we store in ms */
402		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
403		/* Some eMMC set the value too low so set a minimum */
404		if (card->ext_csd.part_time &&
405		    card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
406			card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
407
408		/* Sleep / awake timeout in 100ns units */
409		if (sa_shift > 0 && sa_shift <= 0x17)
410			card->ext_csd.sa_timeout =
411					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
412		card->ext_csd.erase_group_def =
413			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
414		card->ext_csd.hc_erase_timeout = 300 *
415			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
416		card->ext_csd.hc_erase_size =
417			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
418
419		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
420
421		/*
422		 * There are two boot regions of equal size, defined in
423		 * multiples of 128K.
424		 */
425		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
426			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
427				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
428				mmc_part_add(card, part_size,
429					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
430					"boot%d", idx, true,
431					MMC_BLK_DATA_AREA_BOOT);
432			}
433		}
434	}
435
436	card->ext_csd.raw_hc_erase_gap_size =
437		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
438	card->ext_csd.raw_sec_trim_mult =
439		ext_csd[EXT_CSD_SEC_TRIM_MULT];
440	card->ext_csd.raw_sec_erase_mult =
441		ext_csd[EXT_CSD_SEC_ERASE_MULT];
442	card->ext_csd.raw_sec_feature_support =
443		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
444	card->ext_csd.raw_trim_mult =
445		ext_csd[EXT_CSD_TRIM_MULT];
446	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
447	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
448	if (card->ext_csd.rev >= 4) {
449		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
450		    EXT_CSD_PART_SETTING_COMPLETED)
451			card->ext_csd.partition_setting_completed = 1;
452		else
453			card->ext_csd.partition_setting_completed = 0;
454
455		mmc_manage_enhanced_area(card, ext_csd);
456
457		mmc_manage_gp_partitions(card, ext_csd);
458
459		card->ext_csd.sec_trim_mult =
460			ext_csd[EXT_CSD_SEC_TRIM_MULT];
461		card->ext_csd.sec_erase_mult =
462			ext_csd[EXT_CSD_SEC_ERASE_MULT];
463		card->ext_csd.sec_feature_support =
464			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
465		card->ext_csd.trim_timeout = 300 *
466			ext_csd[EXT_CSD_TRIM_MULT];
467
468		/*
469		 * Note that the call to mmc_part_add above defaults to read
470		 * only. If this default assumption is changed, the call must
471		 * take into account the value of boot_locked below.
472		 */
473		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
474		card->ext_csd.boot_ro_lockable = true;
475
476		/* Save power class values */
477		card->ext_csd.raw_pwr_cl_52_195 =
478			ext_csd[EXT_CSD_PWR_CL_52_195];
479		card->ext_csd.raw_pwr_cl_26_195 =
480			ext_csd[EXT_CSD_PWR_CL_26_195];
481		card->ext_csd.raw_pwr_cl_52_360 =
482			ext_csd[EXT_CSD_PWR_CL_52_360];
483		card->ext_csd.raw_pwr_cl_26_360 =
484			ext_csd[EXT_CSD_PWR_CL_26_360];
485		card->ext_csd.raw_pwr_cl_200_195 =
486			ext_csd[EXT_CSD_PWR_CL_200_195];
487		card->ext_csd.raw_pwr_cl_200_360 =
488			ext_csd[EXT_CSD_PWR_CL_200_360];
489		card->ext_csd.raw_pwr_cl_ddr_52_195 =
490			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
491		card->ext_csd.raw_pwr_cl_ddr_52_360 =
492			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
493		card->ext_csd.raw_pwr_cl_ddr_200_360 =
494			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
495	}
496
497	if (card->ext_csd.rev >= 5) {
498		/* Adjust production date as per JEDEC JESD84-B451 */
499		if (card->cid.year < 2010)
500			card->cid.year += 16;
501
502		/* check whether the eMMC card supports BKOPS */
503		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
504			card->ext_csd.bkops = 1;
505			card->ext_csd.man_bkops_en =
506					(ext_csd[EXT_CSD_BKOPS_EN] &
507						EXT_CSD_MANUAL_BKOPS_MASK);
508			card->ext_csd.raw_bkops_status =
509				ext_csd[EXT_CSD_BKOPS_STATUS];
510			if (!card->ext_csd.man_bkops_en)
511				pr_info("%s: MAN_BKOPS_EN bit is not set\n",
512					mmc_hostname(card->host));
513		}
514
515		/* check whether the eMMC card supports HPI */
516		if (!broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
517			card->ext_csd.hpi = 1;
518			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
519				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
520			else
521				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
522			/*
523			 * Indicate the maximum timeout to close
524			 * a command interrupted by HPI
525			 */
526			card->ext_csd.out_of_int_time =
527				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
528		}
529
530		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
531		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
532
533		/*
534		 * RPMB regions are defined in multiples of 128K.
535		 */
536		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
537		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
538			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
539				EXT_CSD_PART_CONFIG_ACC_RPMB,
540				"rpmb", 0, false,
541				MMC_BLK_DATA_AREA_RPMB);
542		}
543	}
544
545	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
546	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
547		card->erased_byte = 0xFF;
548	else
549		card->erased_byte = 0x0;
550
551	/* eMMC v4.5 or later */
552	if (card->ext_csd.rev >= 6) {
553		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
554
555		card->ext_csd.generic_cmd6_time = 10 *
556			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
557		card->ext_csd.power_off_longtime = 10 *
558			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
559
560		card->ext_csd.cache_size =
561			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
562			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
563			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
564			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
565
566		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
567			card->ext_csd.data_sector_size = 4096;
568		else
569			card->ext_csd.data_sector_size = 512;
570
571		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
572		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
573			card->ext_csd.data_tag_unit_size =
574			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
575			(card->ext_csd.data_sector_size);
576		} else {
577			card->ext_csd.data_tag_unit_size = 0;
578		}
579
580		card->ext_csd.max_packed_writes =
581			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
582		card->ext_csd.max_packed_reads =
583			ext_csd[EXT_CSD_MAX_PACKED_READS];
584	} else {
585		card->ext_csd.data_sector_size = 512;
586	}
587
588	/* eMMC v5 or later */
589	if (card->ext_csd.rev >= 7) {
590		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
591		       MMC_FIRMWARE_LEN);
592		card->ext_csd.ffu_capable =
593			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
594			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
595	}
596out:
597	return err;
598}
599
600static int mmc_read_ext_csd(struct mmc_card *card)
601{
602	u8 *ext_csd;
603	int err;
604
605	if (!mmc_can_ext_csd(card))
606		return 0;
607
608	err = mmc_get_ext_csd(card, &ext_csd);
609	if (err) {
610		/* If the host or the card can't do the switch,
611		 * fail more gracefully. */
612		if ((err != -EINVAL)
613		 && (err != -ENOSYS)
614		 && (err != -EFAULT))
615			return err;
616
617		/*
618		 * High capacity cards should have this "magic" size
619		 * stored in their CSD.
620		 */
621		if (card->csd.capacity == (4096 * 512)) {
622			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
623				mmc_hostname(card->host));
624		} else {
625			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
626				mmc_hostname(card->host));
627			err = 0;
628		}
629
630		return err;
631	}
632
633	err = mmc_decode_ext_csd(card, ext_csd);
634	kfree(ext_csd);
635	return err;
636}
637
638static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
639{
640	u8 *bw_ext_csd;
641	int err;
642
643	if (bus_width == MMC_BUS_WIDTH_1)
644		return 0;
645
646	err = mmc_get_ext_csd(card, &bw_ext_csd);
647	if (err)
648		return err;
649
650	/* only compare read only fields */
651	err = !((card->ext_csd.raw_partition_support ==
652			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
653		(card->ext_csd.raw_erased_mem_count ==
654			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
655		(card->ext_csd.rev ==
656			bw_ext_csd[EXT_CSD_REV]) &&
657		(card->ext_csd.raw_ext_csd_structure ==
658			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
659		(card->ext_csd.raw_card_type ==
660			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
661		(card->ext_csd.raw_s_a_timeout ==
662			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
663		(card->ext_csd.raw_hc_erase_gap_size ==
664			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
665		(card->ext_csd.raw_erase_timeout_mult ==
666			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
667		(card->ext_csd.raw_hc_erase_grp_size ==
668			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
669		(card->ext_csd.raw_sec_trim_mult ==
670			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
671		(card->ext_csd.raw_sec_erase_mult ==
672			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
673		(card->ext_csd.raw_sec_feature_support ==
674			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
675		(card->ext_csd.raw_trim_mult ==
676			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
677		(card->ext_csd.raw_sectors[0] ==
678			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
679		(card->ext_csd.raw_sectors[1] ==
680			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
681		(card->ext_csd.raw_sectors[2] ==
682			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
683		(card->ext_csd.raw_sectors[3] ==
684			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
685		(card->ext_csd.raw_pwr_cl_52_195 ==
686			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
687		(card->ext_csd.raw_pwr_cl_26_195 ==
688			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
689		(card->ext_csd.raw_pwr_cl_52_360 ==
690			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
691		(card->ext_csd.raw_pwr_cl_26_360 ==
692			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
693		(card->ext_csd.raw_pwr_cl_200_195 ==
694			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
695		(card->ext_csd.raw_pwr_cl_200_360 ==
696			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
697		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
698			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
699		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
700			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
701		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
702			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
703
704	if (err)
705		err = -EINVAL;
706
707	kfree(bw_ext_csd);
708	return err;
709}
710
711MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
712	card->raw_cid[2], card->raw_cid[3]);
713MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
714	card->raw_csd[2], card->raw_csd[3]);
715MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
716MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
717MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
718MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
719MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
720MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
721MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
722MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
723MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
724MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
725MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
726		card->ext_csd.enhanced_area_offset);
727MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
728MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
729MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
730
731static ssize_t mmc_fwrev_show(struct device *dev,
732			      struct device_attribute *attr,
733			      char *buf)
734{
735	struct mmc_card *card = mmc_dev_to_card(dev);
736
737	if (card->ext_csd.rev < 7) {
738		return sprintf(buf, "0x%x\n", card->cid.fwrev);
739	} else {
740		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
741			       card->ext_csd.fwrev);
742	}
743}
744
745static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
746
747static struct attribute *mmc_std_attrs[] = {
748	&dev_attr_cid.attr,
749	&dev_attr_csd.attr,
750	&dev_attr_date.attr,
751	&dev_attr_erase_size.attr,
752	&dev_attr_preferred_erase_size.attr,
753	&dev_attr_fwrev.attr,
754	&dev_attr_ffu_capable.attr,
755	&dev_attr_hwrev.attr,
756	&dev_attr_manfid.attr,
757	&dev_attr_name.attr,
758	&dev_attr_oemid.attr,
759	&dev_attr_prv.attr,
760	&dev_attr_serial.attr,
761	&dev_attr_enhanced_area_offset.attr,
762	&dev_attr_enhanced_area_size.attr,
763	&dev_attr_raw_rpmb_size_mult.attr,
764	&dev_attr_rel_sectors.attr,
765	NULL,
766};
767ATTRIBUTE_GROUPS(mmc_std);
768
769static struct device_type mmc_type = {
770	.groups = mmc_std_groups,
771};
772
773/*
774 * Select the PowerClass for the current bus width
775 * If power class is defined for 4/8 bit bus in the
776 * extended CSD register, select it by executing the
777 * mmc_switch command.
778 */
779static int __mmc_select_powerclass(struct mmc_card *card,
780				   unsigned int bus_width)
781{
782	struct mmc_host *host = card->host;
783	struct mmc_ext_csd *ext_csd = &card->ext_csd;
784	unsigned int pwrclass_val = 0;
785	int err = 0;
786
787	switch (1 << host->ios.vdd) {
788	case MMC_VDD_165_195:
789		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
790			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
791		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
792			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
793				ext_csd->raw_pwr_cl_52_195 :
794				ext_csd->raw_pwr_cl_ddr_52_195;
795		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
796			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
797		break;
798	case MMC_VDD_27_28:
799	case MMC_VDD_28_29:
800	case MMC_VDD_29_30:
801	case MMC_VDD_30_31:
802	case MMC_VDD_31_32:
803	case MMC_VDD_32_33:
804	case MMC_VDD_33_34:
805	case MMC_VDD_34_35:
806	case MMC_VDD_35_36:
807		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
808			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
809		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
810			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
811				ext_csd->raw_pwr_cl_52_360 :
812				ext_csd->raw_pwr_cl_ddr_52_360;
813		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
814			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
815				ext_csd->raw_pwr_cl_ddr_200_360 :
816				ext_csd->raw_pwr_cl_200_360;
817		break;
818	default:
819		pr_warn("%s: Voltage range not supported for power class\n",
820			mmc_hostname(host));
821		return -EINVAL;
822	}
823
824	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
825		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
826				EXT_CSD_PWR_CL_8BIT_SHIFT;
827	else
828		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
829				EXT_CSD_PWR_CL_4BIT_SHIFT;
830
831	/* If the power class is different from the default value */
832	if (pwrclass_val > 0) {
833		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
834				 EXT_CSD_POWER_CLASS,
835				 pwrclass_val,
836				 card->ext_csd.generic_cmd6_time);
837	}
838
839	return err;
840}
841
842static int mmc_select_powerclass(struct mmc_card *card)
843{
844	struct mmc_host *host = card->host;
845	u32 bus_width, ext_csd_bits;
846	int err, ddr;
847
848	/* Power class selection is supported for versions >= 4.0 */
849	if (!mmc_can_ext_csd(card))
850		return 0;
851
852	bus_width = host->ios.bus_width;
853	/* Power class values are defined only for 4/8 bit bus */
854	if (bus_width == MMC_BUS_WIDTH_1)
855		return 0;
856
857	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
858	if (ddr)
859		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
860			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
861	else
862		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
863			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
864
865	err = __mmc_select_powerclass(card, ext_csd_bits);
866	if (err)
867		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
868			mmc_hostname(host), 1 << bus_width, ddr);
869
870	return err;
871}
872
873/*
874 * Set the bus speed for the selected speed mode.
875 */
876static void mmc_set_bus_speed(struct mmc_card *card)
877{
878	unsigned int max_dtr = (unsigned int)-1;
879
880	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
881	     max_dtr > card->ext_csd.hs200_max_dtr)
882		max_dtr = card->ext_csd.hs200_max_dtr;
883	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
884		max_dtr = card->ext_csd.hs_max_dtr;
885	else if (max_dtr > card->csd.max_dtr)
886		max_dtr = card->csd.max_dtr;
887
888	mmc_set_clock(card->host, max_dtr);
889}
890
891/*
892 * Select the bus width amoung 4-bit and 8-bit(SDR).
893 * If the bus width is changed successfully, return the selected width value.
894 * Zero is returned instead of error value if the wide width is not supported.
895 */
896static int mmc_select_bus_width(struct mmc_card *card)
897{
898	static unsigned ext_csd_bits[] = {
899		EXT_CSD_BUS_WIDTH_8,
900		EXT_CSD_BUS_WIDTH_4,
901	};
902	static unsigned bus_widths[] = {
903		MMC_BUS_WIDTH_8,
904		MMC_BUS_WIDTH_4,
905	};
906	struct mmc_host *host = card->host;
907	unsigned idx, bus_width = 0;
908	int err = 0;
909
910	if (!mmc_can_ext_csd(card) ||
911	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
912		return 0;
913
914	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
915
916	/*
917	 * Unlike SD, MMC cards dont have a configuration register to notify
918	 * supported bus width. So bus test command should be run to identify
919	 * the supported bus width or compare the ext csd values of current
920	 * bus width and ext csd values of 1 bit mode read earlier.
921	 */
922	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
923		/*
924		 * Host is capable of 8bit transfer, then switch
925		 * the device to work in 8bit transfer mode. If the
926		 * mmc switch command returns error then switch to
927		 * 4bit transfer mode. On success set the corresponding
928		 * bus width on the host.
929		 */
930		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
931				 EXT_CSD_BUS_WIDTH,
932				 ext_csd_bits[idx],
933				 card->ext_csd.generic_cmd6_time);
934		if (err)
935			continue;
936
937		bus_width = bus_widths[idx];
938		mmc_set_bus_width(host, bus_width);
939
940		/*
941		 * If controller can't handle bus width test,
942		 * compare ext_csd previously read in 1 bit mode
943		 * against ext_csd at new bus width
944		 */
945		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
946			err = mmc_compare_ext_csds(card, bus_width);
947		else
948			err = mmc_bus_test(card, bus_width);
949
950		if (!err) {
951			err = bus_width;
952			break;
953		} else {
954			pr_warn("%s: switch to bus width %d failed\n",
955				mmc_hostname(host), ext_csd_bits[idx]);
956		}
957	}
958
959	return err;
960}
961
962/*
963 * Switch to the high-speed mode
964 */
965static int mmc_select_hs(struct mmc_card *card)
966{
967	int err;
968
969	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
970			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
971			   card->ext_csd.generic_cmd6_time,
972			   true, true, true);
973	if (!err)
974		mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
975
976	return err;
977}
978
979/*
980 * Activate wide bus and DDR if supported.
981 */
982static int mmc_select_hs_ddr(struct mmc_card *card)
983{
984	struct mmc_host *host = card->host;
985	u32 bus_width, ext_csd_bits;
986	int err = 0;
987
988	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
989		return 0;
990
991	bus_width = host->ios.bus_width;
992	if (bus_width == MMC_BUS_WIDTH_1)
993		return 0;
994
995	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
996		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
997
998	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
999			EXT_CSD_BUS_WIDTH,
1000			ext_csd_bits,
1001			card->ext_csd.generic_cmd6_time);
1002	if (err) {
1003		pr_err("%s: switch to bus width %d ddr failed\n",
1004			mmc_hostname(host), 1 << bus_width);
1005		return err;
1006	}
1007
1008	/*
1009	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1010	 * signaling.
1011	 *
1012	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1013	 *
1014	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1015	 * in the JEDEC spec for DDR.
1016	 *
1017	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1018	 * host controller can support this, like some of the SDHCI
1019	 * controller which connect to an eMMC device. Some of these
1020	 * host controller still needs to use 1.8v vccq for supporting
1021	 * DDR mode.
1022	 *
1023	 * So the sequence will be:
1024	 * if (host and device can both support 1.2v IO)
1025	 *	use 1.2v IO;
1026	 * else if (host and device can both support 1.8v IO)
1027	 *	use 1.8v IO;
1028	 * so if host and device can only support 3.3v IO, this is the
1029	 * last choice.
1030	 *
1031	 * WARNING: eMMC rules are NOT the same as SD DDR
1032	 */
1033	err = -EINVAL;
1034	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V)
1035		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1036
1037	if (err && (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V))
1038		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1039
1040	/* make sure vccq is 3.3v after switching disaster */
1041	if (err)
1042		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1043
1044	if (!err)
1045		mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1046
1047	return err;
1048}
1049
1050/* Caller must hold re-tuning */
1051static int mmc_switch_status(struct mmc_card *card)
1052{
1053	u32 status;
1054	int err;
1055
1056	err = mmc_send_status(card, &status);
1057	if (err)
1058		return err;
1059
1060	return mmc_switch_status_error(card->host, status);
1061}
1062
1063static int mmc_select_hs400(struct mmc_card *card)
1064{
1065	struct mmc_host *host = card->host;
1066	bool send_status = true;
1067	unsigned int max_dtr;
1068	int err = 0;
1069	u8 val;
1070
1071	/*
1072	 * HS400 mode requires 8-bit bus width
1073	 */
1074	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1075	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1076		return 0;
1077
1078	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1079		send_status = false;
1080
1081	/* Reduce frequency to HS frequency */
1082	max_dtr = card->ext_csd.hs_max_dtr;
1083	mmc_set_clock(host, max_dtr);
1084
1085	/* Switch card to HS mode */
1086	val = EXT_CSD_TIMING_HS;
1087	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1088			   EXT_CSD_HS_TIMING, val,
1089			   card->ext_csd.generic_cmd6_time,
1090			   true, send_status, true);
1091	if (err) {
1092		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1093			mmc_hostname(host), err);
1094		return err;
1095	}
1096
1097	/* Set host controller to HS timing */
1098	mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1099
1100	if (!send_status) {
1101		err = mmc_switch_status(card);
1102		if (err)
1103			goto out_err;
1104	}
1105
1106	/* Switch card to DDR */
1107	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1108			 EXT_CSD_BUS_WIDTH,
1109			 EXT_CSD_DDR_BUS_WIDTH_8,
1110			 card->ext_csd.generic_cmd6_time);
1111	if (err) {
1112		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1113			mmc_hostname(host), err);
1114		return err;
1115	}
1116
1117	/* Switch card to HS400 */
1118	val = EXT_CSD_TIMING_HS400 |
1119	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1120	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1121			   EXT_CSD_HS_TIMING, val,
1122			   card->ext_csd.generic_cmd6_time,
1123			   true, send_status, true);
1124	if (err) {
1125		pr_err("%s: switch to hs400 failed, err:%d\n",
1126			 mmc_hostname(host), err);
1127		return err;
1128	}
1129
1130	/* Set host controller to HS400 timing and frequency */
1131	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1132	mmc_set_bus_speed(card);
1133
1134	if (!send_status) {
1135		err = mmc_switch_status(card);
1136		if (err)
1137			goto out_err;
1138	}
1139
1140	return 0;
1141
1142out_err:
1143	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1144	       __func__, err);
1145	return err;
1146}
1147
1148int mmc_hs200_to_hs400(struct mmc_card *card)
1149{
1150	return mmc_select_hs400(card);
1151}
1152
1153int mmc_hs400_to_hs200(struct mmc_card *card)
1154{
1155	struct mmc_host *host = card->host;
1156	bool send_status = true;
1157	unsigned int max_dtr;
1158	int err;
1159	u8 val;
1160
1161	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1162		send_status = false;
1163
1164	/* Reduce frequency to HS */
1165	max_dtr = card->ext_csd.hs_max_dtr;
1166	mmc_set_clock(host, max_dtr);
1167
1168	/* Switch HS400 to HS DDR */
1169	val = EXT_CSD_TIMING_HS;
1170	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1171			   val, card->ext_csd.generic_cmd6_time,
1172			   true, send_status, true);
1173	if (err)
1174		goto out_err;
1175
1176	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1177
1178	if (!send_status) {
1179		err = mmc_switch_status(card);
1180		if (err)
1181			goto out_err;
1182	}
1183
1184	/* Switch HS DDR to HS */
1185	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1186			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1187			   true, send_status, true);
1188	if (err)
1189		goto out_err;
1190
1191	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1192
1193	if (!send_status) {
1194		err = mmc_switch_status(card);
1195		if (err)
1196			goto out_err;
1197	}
1198
1199	/* Switch HS to HS200 */
1200	val = EXT_CSD_TIMING_HS200 |
1201	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1202	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1203			   val, card->ext_csd.generic_cmd6_time, true,
1204			   send_status, true);
1205	if (err)
1206		goto out_err;
1207
1208	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1209
1210	if (!send_status) {
1211		err = mmc_switch_status(card);
1212		if (err)
1213			goto out_err;
1214	}
1215
1216	mmc_set_bus_speed(card);
1217
1218	return 0;
1219
1220out_err:
1221	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1222	       __func__, err);
1223	return err;
1224}
1225
1226static void mmc_select_driver_type(struct mmc_card *card)
1227{
1228	int card_drv_type, drive_strength, drv_type;
1229
1230	card_drv_type = card->ext_csd.raw_driver_strength |
1231			mmc_driver_type_mask(0);
1232
1233	drive_strength = mmc_select_drive_strength(card,
1234						   card->ext_csd.hs200_max_dtr,
1235						   card_drv_type, &drv_type);
1236
1237	card->drive_strength = drive_strength;
1238
1239	if (drv_type)
1240		mmc_set_driver_type(card->host, drv_type);
1241}
1242
1243/*
1244 * For device supporting HS200 mode, the following sequence
1245 * should be done before executing the tuning process.
1246 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1247 * 2. switch to HS200 mode
1248 * 3. set the clock to > 52Mhz and <=200MHz
1249 */
1250static int mmc_select_hs200(struct mmc_card *card)
1251{
1252	struct mmc_host *host = card->host;
1253	bool send_status = true;
1254	unsigned int old_timing;
1255	int err = -EINVAL;
1256	u8 val;
1257
1258	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1259		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1260
1261	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1262		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1263
1264	/* If fails try again during next card power cycle */
1265	if (err)
1266		goto err;
1267
1268	mmc_select_driver_type(card);
1269
1270	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1271		send_status = false;
1272
1273	/*
1274	 * Set the bus width(4 or 8) with host's support and
1275	 * switch to HS200 mode if bus width is set successfully.
1276	 */
1277	err = mmc_select_bus_width(card);
1278	if (!IS_ERR_VALUE(err)) {
1279		val = EXT_CSD_TIMING_HS200 |
1280		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1281		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1282				   EXT_CSD_HS_TIMING, val,
1283				   card->ext_csd.generic_cmd6_time,
1284				   true, send_status, true);
1285		if (err)
1286			goto err;
1287		old_timing = host->ios.timing;
1288		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1289		if (!send_status) {
1290			err = mmc_switch_status(card);
1291			/*
1292			 * mmc_select_timing() assumes timing has not changed if
1293			 * it is a switch error.
1294			 */
1295			if (err == -EBADMSG)
1296				mmc_set_timing(host, old_timing);
1297		}
1298	}
1299err:
1300	if (err)
1301		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1302		       __func__, err);
1303	return err;
1304}
1305
1306/*
1307 * Activate High Speed or HS200 mode if supported.
1308 */
1309static int mmc_select_timing(struct mmc_card *card)
1310{
1311	int err = 0;
1312
1313	if (!mmc_can_ext_csd(card))
1314		goto bus_speed;
1315
1316	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1317		err = mmc_select_hs200(card);
1318	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1319		err = mmc_select_hs(card);
1320
1321	if (err && err != -EBADMSG)
1322		return err;
1323
1324	if (err) {
1325		pr_warn("%s: switch to %s failed\n",
1326			mmc_card_hs(card) ? "high-speed" :
1327			(mmc_card_hs200(card) ? "hs200" : ""),
1328			mmc_hostname(card->host));
1329		err = 0;
1330	}
1331
1332bus_speed:
1333	/*
1334	 * Set the bus speed to the selected bus timing.
1335	 * If timing is not selected, backward compatible is the default.
1336	 */
1337	mmc_set_bus_speed(card);
1338	return err;
1339}
1340
1341/*
1342 * Execute tuning sequence to seek the proper bus operating
1343 * conditions for HS200 and HS400, which sends CMD21 to the device.
1344 */
1345static int mmc_hs200_tuning(struct mmc_card *card)
1346{
1347	struct mmc_host *host = card->host;
1348
1349	/*
1350	 * Timing should be adjusted to the HS400 target
1351	 * operation frequency for tuning process
1352	 */
1353	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1354	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1355		if (host->ops->prepare_hs400_tuning)
1356			host->ops->prepare_hs400_tuning(host, &host->ios);
1357
1358	return mmc_execute_tuning(card);
1359}
1360
1361/*
1362 * Handle the detection and initialisation of a card.
1363 *
1364 * In the case of a resume, "oldcard" will contain the card
1365 * we're trying to reinitialise.
1366 */
1367static int mmc_init_card(struct mmc_host *host, u32 ocr,
1368	struct mmc_card *oldcard)
1369{
1370	struct mmc_card *card;
1371	int err;
1372	u32 cid[4];
1373	u32 rocr;
1374
1375	BUG_ON(!host);
1376	WARN_ON(!host->claimed);
1377
1378	/* Set correct bus mode for MMC before attempting init */
1379	if (!mmc_host_is_spi(host))
1380		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1381
1382	/*
1383	 * Since we're changing the OCR value, we seem to
1384	 * need to tell some cards to go back to the idle
1385	 * state.  We wait 1ms to give cards time to
1386	 * respond.
1387	 * mmc_go_idle is needed for eMMC that are asleep
1388	 */
1389	mmc_go_idle(host);
1390
1391	/* The extra bit indicates that we support high capacity */
1392	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1393	if (err)
1394		goto err;
1395
1396	/*
1397	 * For SPI, enable CRC as appropriate.
1398	 */
1399	if (mmc_host_is_spi(host)) {
1400		err = mmc_spi_set_crc(host, use_spi_crc);
1401		if (err)
1402			goto err;
1403	}
1404
1405	/*
1406	 * Fetch CID from card.
1407	 */
1408	if (mmc_host_is_spi(host))
1409		err = mmc_send_cid(host, cid);
1410	else
1411		err = mmc_all_send_cid(host, cid);
1412	if (err)
1413		goto err;
1414
1415	if (oldcard) {
1416		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1417			err = -ENOENT;
1418			goto err;
1419		}
1420
1421		card = oldcard;
1422	} else {
1423		/*
1424		 * Allocate card structure.
1425		 */
1426		card = mmc_alloc_card(host, &mmc_type);
1427		if (IS_ERR(card)) {
1428			err = PTR_ERR(card);
1429			goto err;
1430		}
1431
1432		card->ocr = ocr;
1433		card->type = MMC_TYPE_MMC;
1434		card->rca = 1;
1435		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1436	}
1437
1438	/*
1439	 * Call the optional HC's init_card function to handle quirks.
1440	 */
1441	if (host->ops->init_card)
1442		host->ops->init_card(host, card);
1443
1444	/*
1445	 * For native busses:  set card RCA and quit open drain mode.
1446	 */
1447	if (!mmc_host_is_spi(host)) {
1448		err = mmc_set_relative_addr(card);
1449		if (err)
1450			goto free_card;
1451
1452		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1453	}
1454
1455	if (!oldcard) {
1456		/*
1457		 * Fetch CSD from card.
1458		 */
1459		err = mmc_send_csd(card, card->raw_csd);
1460		if (err)
1461			goto free_card;
1462
1463		err = mmc_decode_csd(card);
1464		if (err)
1465			goto free_card;
1466		err = mmc_decode_cid(card);
1467		if (err)
1468			goto free_card;
1469	}
1470
1471	/*
1472	 * handling only for cards supporting DSR and hosts requesting
1473	 * DSR configuration
1474	 */
1475	if (card->csd.dsr_imp && host->dsr_req)
1476		mmc_set_dsr(host);
1477
1478	/*
1479	 * Select card, as all following commands rely on that.
1480	 */
1481	if (!mmc_host_is_spi(host)) {
1482		err = mmc_select_card(card);
1483		if (err)
1484			goto free_card;
1485	}
1486
1487	if (!oldcard) {
1488		/* Read extended CSD. */
1489		err = mmc_read_ext_csd(card);
1490		if (err)
1491			goto free_card;
1492
1493		/* If doing byte addressing, check if required to do sector
1494		 * addressing.  Handle the case of <2GB cards needing sector
1495		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1496		 * ocr register has bit 30 set for sector addressing.
1497		 */
1498		if (!(mmc_card_blockaddr(card)) && (rocr & (1<<30)))
1499			mmc_card_set_blockaddr(card);
1500
1501		/* Erase size depends on CSD and Extended CSD */
1502		mmc_set_erase_size(card);
1503	}
1504
1505	/*
1506	 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
1507	 * bit.  This bit will be lost every time after a reset or power off.
1508	 */
1509	if (card->ext_csd.partition_setting_completed ||
1510	    (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) {
1511		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1512				 EXT_CSD_ERASE_GROUP_DEF, 1,
1513				 card->ext_csd.generic_cmd6_time);
1514
1515		if (err && err != -EBADMSG)
1516			goto free_card;
1517
1518		if (err) {
1519			err = 0;
1520			/*
1521			 * Just disable enhanced area off & sz
1522			 * will try to enable ERASE_GROUP_DEF
1523			 * during next time reinit
1524			 */
1525			card->ext_csd.enhanced_area_offset = -EINVAL;
1526			card->ext_csd.enhanced_area_size = -EINVAL;
1527		} else {
1528			card->ext_csd.erase_group_def = 1;
1529			/*
1530			 * enable ERASE_GRP_DEF successfully.
1531			 * This will affect the erase size, so
1532			 * here need to reset erase size
1533			 */
1534			mmc_set_erase_size(card);
1535		}
1536	}
1537
1538	/*
1539	 * Ensure eMMC user default partition is enabled
1540	 */
1541	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1542		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1543		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1544				 card->ext_csd.part_config,
1545				 card->ext_csd.part_time);
1546		if (err && err != -EBADMSG)
1547			goto free_card;
1548	}
1549
1550	/*
1551	 * Enable power_off_notification byte in the ext_csd register
1552	 */
1553	if (card->ext_csd.rev >= 6) {
1554		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1555				 EXT_CSD_POWER_OFF_NOTIFICATION,
1556				 EXT_CSD_POWER_ON,
1557				 card->ext_csd.generic_cmd6_time);
1558		if (err && err != -EBADMSG)
1559			goto free_card;
1560
1561		/*
1562		 * The err can be -EBADMSG or 0,
1563		 * so check for success and update the flag
1564		 */
1565		if (!err)
1566			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1567	}
1568
1569	/*
1570	 * Select timing interface
1571	 */
1572	err = mmc_select_timing(card);
1573	if (err)
1574		goto free_card;
1575
1576	if (mmc_card_hs200(card)) {
1577		err = mmc_hs200_tuning(card);
1578		if (err)
1579			goto free_card;
1580
1581		err = mmc_select_hs400(card);
1582		if (err)
1583			goto free_card;
1584	} else if (mmc_card_hs(card)) {
1585		/* Select the desired bus width optionally */
1586		err = mmc_select_bus_width(card);
1587		if (!IS_ERR_VALUE(err)) {
1588			err = mmc_select_hs_ddr(card);
1589			if (err)
1590				goto free_card;
1591		}
1592	}
1593
1594	/*
1595	 * Choose the power class with selected bus interface
1596	 */
1597	mmc_select_powerclass(card);
1598
1599	/*
1600	 * Enable HPI feature (if supported)
1601	 */
1602	if (card->ext_csd.hpi) {
1603		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1604				EXT_CSD_HPI_MGMT, 1,
1605				card->ext_csd.generic_cmd6_time);
1606		if (err && err != -EBADMSG)
1607			goto free_card;
1608		if (err) {
1609			pr_warn("%s: Enabling HPI failed\n",
1610				mmc_hostname(card->host));
1611			err = 0;
1612		} else
1613			card->ext_csd.hpi_en = 1;
1614	}
1615
1616	/*
1617	 * If cache size is higher than 0, this indicates
1618	 * the existence of cache and it can be turned on.
1619	 */
1620	if (card->ext_csd.cache_size > 0) {
1621		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1622				EXT_CSD_CACHE_CTRL, 1,
1623				card->ext_csd.generic_cmd6_time);
1624		if (err && err != -EBADMSG)
1625			goto free_card;
1626
1627		/*
1628		 * Only if no error, cache is turned on successfully.
1629		 */
1630		if (err) {
1631			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1632				mmc_hostname(card->host), err);
1633			card->ext_csd.cache_ctrl = 0;
1634			err = 0;
1635		} else {
1636			card->ext_csd.cache_ctrl = 1;
1637		}
1638	}
1639
1640	/*
1641	 * The mandatory minimum values are defined for packed command.
1642	 * read: 5, write: 3
1643	 */
1644	if (card->ext_csd.max_packed_writes >= 3 &&
1645	    card->ext_csd.max_packed_reads >= 5 &&
1646	    host->caps2 & MMC_CAP2_PACKED_CMD) {
1647		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1648				EXT_CSD_EXP_EVENTS_CTRL,
1649				EXT_CSD_PACKED_EVENT_EN,
1650				card->ext_csd.generic_cmd6_time);
1651		if (err && err != -EBADMSG)
1652			goto free_card;
1653		if (err) {
1654			pr_warn("%s: Enabling packed event failed\n",
1655				mmc_hostname(card->host));
1656			card->ext_csd.packed_event_en = 0;
1657			err = 0;
1658		} else {
1659			card->ext_csd.packed_event_en = 1;
1660		}
1661	}
1662
1663	if (!oldcard)
1664		host->card = card;
1665
1666	return 0;
1667
1668free_card:
1669	if (!oldcard)
1670		mmc_remove_card(card);
1671err:
1672	return err;
1673}
1674
1675static int mmc_can_sleep(struct mmc_card *card)
1676{
1677	return (card && card->ext_csd.rev >= 3);
1678}
1679
1680static int mmc_sleep(struct mmc_host *host)
1681{
1682	struct mmc_command cmd = {0};
1683	struct mmc_card *card = host->card;
1684	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1685	int err;
1686
1687	/* Re-tuning can't be done once the card is deselected */
1688	mmc_retune_hold(host);
1689
1690	err = mmc_deselect_cards(host);
1691	if (err)
1692		goto out_release;
1693
1694	cmd.opcode = MMC_SLEEP_AWAKE;
1695	cmd.arg = card->rca << 16;
1696	cmd.arg |= 1 << 15;
1697
1698	/*
1699	 * If the max_busy_timeout of the host is specified, validate it against
1700	 * the sleep cmd timeout. A failure means we need to prevent the host
1701	 * from doing hw busy detection, which is done by converting to a R1
1702	 * response instead of a R1B.
1703	 */
1704	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1705		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1706	} else {
1707		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1708		cmd.busy_timeout = timeout_ms;
1709	}
1710
1711	err = mmc_wait_for_cmd(host, &cmd, 0);
1712	if (err)
1713		goto out_release;
1714
1715	/*
1716	 * If the host does not wait while the card signals busy, then we will
1717	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1718	 * SEND_STATUS command to poll the status because that command (and most
1719	 * others) is invalid while the card sleeps.
1720	 */
1721	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1722		mmc_delay(timeout_ms);
1723
1724out_release:
1725	mmc_retune_release(host);
1726	return err;
1727}
1728
1729static int mmc_can_poweroff_notify(const struct mmc_card *card)
1730{
1731	return card &&
1732		mmc_card_mmc(card) &&
1733		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1734}
1735
1736static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1737{
1738	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1739	int err;
1740
1741	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1742	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1743		timeout = card->ext_csd.power_off_longtime;
1744
1745	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1746			EXT_CSD_POWER_OFF_NOTIFICATION,
1747			notify_type, timeout, true, false, false);
1748	if (err)
1749		pr_err("%s: Power Off Notification timed out, %u\n",
1750		       mmc_hostname(card->host), timeout);
1751
1752	/* Disable the power off notification after the switch operation. */
1753	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1754
1755	return err;
1756}
1757
1758/*
1759 * Host is being removed. Free up the current card.
1760 */
1761static void mmc_remove(struct mmc_host *host)
1762{
1763	BUG_ON(!host);
1764	BUG_ON(!host->card);
1765
1766	mmc_remove_card(host->card);
1767	host->card = NULL;
1768}
1769
1770/*
1771 * Card detection - card is alive.
1772 */
1773static int mmc_alive(struct mmc_host *host)
1774{
1775	return mmc_send_status(host->card, NULL);
1776}
1777
1778/*
1779 * Card detection callback from host.
1780 */
1781static void mmc_detect(struct mmc_host *host)
1782{
1783	int err;
1784
1785	BUG_ON(!host);
1786	BUG_ON(!host->card);
1787
1788	mmc_get_card(host->card);
1789
1790	/*
1791	 * Just check if our card has been removed.
1792	 */
1793	err = _mmc_detect_card_removed(host);
1794
1795	mmc_put_card(host->card);
1796
1797	if (err) {
1798		mmc_remove(host);
1799
1800		mmc_claim_host(host);
1801		mmc_detach_bus(host);
1802		mmc_power_off(host);
1803		mmc_release_host(host);
1804	}
1805}
1806
1807static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1808{
1809	int err = 0;
1810	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1811					EXT_CSD_POWER_OFF_LONG;
1812
1813	BUG_ON(!host);
1814	BUG_ON(!host->card);
1815
1816	mmc_claim_host(host);
1817
1818	if (mmc_card_suspended(host->card))
1819		goto out;
1820
1821	if (mmc_card_doing_bkops(host->card)) {
1822		err = mmc_stop_bkops(host->card);
1823		if (err)
1824			goto out;
1825	}
1826
1827	err = mmc_flush_cache(host->card);
1828	if (err)
1829		goto out;
1830
1831	if (mmc_can_poweroff_notify(host->card) &&
1832		((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1833		err = mmc_poweroff_notify(host->card, notify_type);
1834	else if (mmc_can_sleep(host->card))
1835		err = mmc_sleep(host);
1836	else if (!mmc_host_is_spi(host))
1837		err = mmc_deselect_cards(host);
1838
1839	if (!err) {
1840		mmc_power_off(host);
1841		mmc_card_set_suspended(host->card);
1842	}
1843out:
1844	mmc_release_host(host);
1845	return err;
1846}
1847
1848/*
1849 * Suspend callback
1850 */
1851static int mmc_suspend(struct mmc_host *host)
1852{
1853	int err;
1854
1855	err = _mmc_suspend(host, true);
1856	if (!err) {
1857		pm_runtime_disable(&host->card->dev);
1858		pm_runtime_set_suspended(&host->card->dev);
1859	}
1860
1861	return err;
1862}
1863
1864/*
1865 * This function tries to determine if the same card is still present
1866 * and, if so, restore all state to it.
1867 */
1868static int _mmc_resume(struct mmc_host *host)
1869{
1870	int err = 0;
1871
1872	BUG_ON(!host);
1873	BUG_ON(!host->card);
1874
1875	mmc_claim_host(host);
1876
1877	if (!mmc_card_suspended(host->card))
1878		goto out;
1879
1880	mmc_power_up(host, host->card->ocr);
1881	err = mmc_init_card(host, host->card->ocr, host->card);
1882	mmc_card_clr_suspended(host->card);
1883
1884out:
1885	mmc_release_host(host);
1886	return err;
1887}
1888
1889/*
1890 * Shutdown callback
1891 */
1892static int mmc_shutdown(struct mmc_host *host)
1893{
1894	int err = 0;
1895
1896	/*
1897	 * In a specific case for poweroff notify, we need to resume the card
1898	 * before we can shutdown it properly.
1899	 */
1900	if (mmc_can_poweroff_notify(host->card) &&
1901		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
1902		err = _mmc_resume(host);
1903
1904	if (!err)
1905		err = _mmc_suspend(host, false);
1906
1907	return err;
1908}
1909
1910/*
1911 * Callback for resume.
1912 */
1913static int mmc_resume(struct mmc_host *host)
1914{
1915	int err = 0;
1916
1917	if (!(host->caps & MMC_CAP_RUNTIME_RESUME)) {
1918		err = _mmc_resume(host);
1919		pm_runtime_set_active(&host->card->dev);
1920		pm_runtime_mark_last_busy(&host->card->dev);
1921	}
1922	pm_runtime_enable(&host->card->dev);
1923
1924	return err;
1925}
1926
1927/*
1928 * Callback for runtime_suspend.
1929 */
1930static int mmc_runtime_suspend(struct mmc_host *host)
1931{
1932	int err;
1933
1934	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1935		return 0;
1936
1937	err = _mmc_suspend(host, true);
1938	if (err)
1939		pr_err("%s: error %d doing aggressive suspend\n",
1940			mmc_hostname(host), err);
1941
1942	return err;
1943}
1944
1945/*
1946 * Callback for runtime_resume.
1947 */
1948static int mmc_runtime_resume(struct mmc_host *host)
1949{
1950	int err;
1951
1952	if (!(host->caps & (MMC_CAP_AGGRESSIVE_PM | MMC_CAP_RUNTIME_RESUME)))
1953		return 0;
1954
1955	err = _mmc_resume(host);
1956	if (err)
1957		pr_err("%s: error %d doing aggressive resume\n",
1958			mmc_hostname(host), err);
1959
1960	return 0;
1961}
1962
1963int mmc_can_reset(struct mmc_card *card)
1964{
1965	u8 rst_n_function;
1966
1967	rst_n_function = card->ext_csd.rst_n_function;
1968	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1969		return 0;
1970	return 1;
1971}
1972EXPORT_SYMBOL(mmc_can_reset);
1973
1974static int mmc_reset(struct mmc_host *host)
1975{
1976	struct mmc_card *card = host->card;
1977
1978	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1979		return -EOPNOTSUPP;
1980
1981	if (!mmc_can_reset(card))
1982		return -EOPNOTSUPP;
1983
1984	mmc_set_clock(host, host->f_init);
1985
1986	host->ops->hw_reset(host);
1987
1988	/* Set initial state and call mmc_set_ios */
1989	mmc_set_initial_state(host);
1990
1991	return mmc_init_card(host, card->ocr, card);
1992}
1993
1994static const struct mmc_bus_ops mmc_ops = {
1995	.remove = mmc_remove,
1996	.detect = mmc_detect,
1997	.suspend = mmc_suspend,
1998	.resume = mmc_resume,
1999	.runtime_suspend = mmc_runtime_suspend,
2000	.runtime_resume = mmc_runtime_resume,
2001	.alive = mmc_alive,
2002	.shutdown = mmc_shutdown,
2003	.reset = mmc_reset,
2004};
2005
2006/*
2007 * Starting point for MMC card init.
2008 */
2009int mmc_attach_mmc(struct mmc_host *host)
2010{
2011	int err;
2012	u32 ocr, rocr;
2013
2014	BUG_ON(!host);
2015	WARN_ON(!host->claimed);
2016
2017	/* Set correct bus mode for MMC before attempting attach */
2018	if (!mmc_host_is_spi(host))
2019		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2020
2021	err = mmc_send_op_cond(host, 0, &ocr);
2022	if (err)
2023		return err;
2024
2025	mmc_attach_bus(host, &mmc_ops);
2026	if (host->ocr_avail_mmc)
2027		host->ocr_avail = host->ocr_avail_mmc;
2028
2029	/*
2030	 * We need to get OCR a different way for SPI.
2031	 */
2032	if (mmc_host_is_spi(host)) {
2033		err = mmc_spi_read_ocr(host, 1, &ocr);
2034		if (err)
2035			goto err;
2036	}
2037
2038	rocr = mmc_select_voltage(host, ocr);
2039
2040	/*
2041	 * Can we support the voltage of the card?
2042	 */
2043	if (!rocr) {
2044		err = -EINVAL;
2045		goto err;
2046	}
2047
2048	/*
2049	 * Detect and init the card.
2050	 */
2051	err = mmc_init_card(host, rocr, NULL);
2052	if (err)
2053		goto err;
2054
2055	mmc_release_host(host);
2056	err = mmc_add_card(host->card);
2057	if (err)
2058		goto remove_card;
2059
2060	mmc_claim_host(host);
2061	return 0;
2062
2063remove_card:
2064	mmc_remove_card(host->card);
2065	mmc_claim_host(host);
2066	host->card = NULL;
2067err:
2068	mmc_detach_bus(host);
2069
2070	pr_err("%s: error %d whilst initialising MMC card\n",
2071		mmc_hostname(host), err);
2072
2073	return err;
2074}
2075