1/*
2 * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
3 * multifunction chip.  Currently works with the Omnivision OV7670
4 * sensor.
5 *
6 * The data sheet for this device can be found at:
7 *    http://www.marvell.com/products/pc_connectivity/88alp01/
8 *
9 * Copyright 2006-11 One Laptop Per Child Association, Inc.
10 * Copyright 2006-11 Jonathan Corbet <corbet@lwn.net>
11 *
12 * Written by Jonathan Corbet, corbet@lwn.net.
13 *
14 * v4l2_device/v4l2_subdev conversion by:
15 * Copyright (C) 2009 Hans Verkuil <hverkuil@xs4all.nl>
16 *
17 * This file may be distributed under the terms of the GNU General
18 * Public License, version 2.
19 */
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/init.h>
23#include <linux/pci.h>
24#include <linux/i2c.h>
25#include <linux/interrupt.h>
26#include <linux/spinlock.h>
27#include <linux/slab.h>
28#include <linux/videodev2.h>
29#include <media/v4l2-device.h>
30#include <linux/device.h>
31#include <linux/wait.h>
32#include <linux/delay.h>
33#include <linux/io.h>
34
35#include "mcam-core.h"
36
37#define CAFE_VERSION 0x000002
38
39
40/*
41 * Parameters.
42 */
43MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
44MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
45MODULE_LICENSE("GPL");
46MODULE_SUPPORTED_DEVICE("Video");
47
48
49
50
51struct cafe_camera {
52	int registered;			/* Fully initialized? */
53	struct mcam_camera mcam;
54	struct pci_dev *pdev;
55	wait_queue_head_t smbus_wait;	/* Waiting on i2c events */
56};
57
58/*
59 * Most of the camera controller registers are defined in mcam-core.h,
60 * but the Cafe platform has some additional registers of its own;
61 * they are described here.
62 */
63
64/*
65 * "General purpose register" has a couple of GPIOs used for sensor
66 * power and reset on OLPC XO 1.0 systems.
67 */
68#define REG_GPR		0xb4
69#define	  GPR_C1EN	  0x00000020	/* Pad 1 (power down) enable */
70#define	  GPR_C0EN	  0x00000010	/* Pad 0 (reset) enable */
71#define	  GPR_C1	  0x00000002	/* Control 1 value */
72/*
73 * Control 0 is wired to reset on OLPC machines.  For ov7x sensors,
74 * it is active low.
75 */
76#define	  GPR_C0	  0x00000001	/* Control 0 value */
77
78/*
79 * These registers control the SMBUS module for communicating
80 * with the sensor.
81 */
82#define REG_TWSIC0	0xb8	/* TWSI (smbus) control 0 */
83#define	  TWSIC0_EN	  0x00000001	/* TWSI enable */
84#define	  TWSIC0_MODE	  0x00000002	/* 1 = 16-bit, 0 = 8-bit */
85#define	  TWSIC0_SID	  0x000003fc	/* Slave ID */
86/*
87 * Subtle trickery: the slave ID field starts with bit 2.  But the
88 * Linux i2c stack wants to treat the bottommost bit as a separate
89 * read/write bit, which is why slave ID's are usually presented
90 * >>1.  For consistency with that behavior, we shift over three
91 * bits instead of two.
92 */
93#define	  TWSIC0_SID_SHIFT 3
94#define	  TWSIC0_CLKDIV	  0x0007fc00	/* Clock divider */
95#define	  TWSIC0_MASKACK  0x00400000	/* Mask ack from sensor */
96#define	  TWSIC0_OVMAGIC  0x00800000	/* Make it work on OV sensors */
97
98#define REG_TWSIC1	0xbc	/* TWSI control 1 */
99#define	  TWSIC1_DATA	  0x0000ffff	/* Data to/from camchip */
100#define	  TWSIC1_ADDR	  0x00ff0000	/* Address (register) */
101#define	  TWSIC1_ADDR_SHIFT 16
102#define	  TWSIC1_READ	  0x01000000	/* Set for read op */
103#define	  TWSIC1_WSTAT	  0x02000000	/* Write status */
104#define	  TWSIC1_RVALID	  0x04000000	/* Read data valid */
105#define	  TWSIC1_ERROR	  0x08000000	/* Something screwed up */
106
107/*
108 * Here's the weird global control registers
109 */
110#define REG_GL_CSR     0x3004  /* Control/status register */
111#define	  GCSR_SRS	 0x00000001	/* SW Reset set */
112#define	  GCSR_SRC	 0x00000002	/* SW Reset clear */
113#define	  GCSR_MRS	 0x00000004	/* Master reset set */
114#define	  GCSR_MRC	 0x00000008	/* HW Reset clear */
115#define	  GCSR_CCIC_EN	 0x00004000    /* CCIC Clock enable */
116#define REG_GL_IMASK   0x300c  /* Interrupt mask register */
117#define	  GIMSK_CCIC_EN		 0x00000004    /* CCIC Interrupt enable */
118
119#define REG_GL_FCR	0x3038	/* GPIO functional control register */
120#define	  GFCR_GPIO_ON	  0x08		/* Camera GPIO enabled */
121#define REG_GL_GPIOR	0x315c	/* GPIO register */
122#define	  GGPIO_OUT		0x80000	/* GPIO output */
123#define	  GGPIO_VAL		0x00008	/* Output pin value */
124
125#define REG_LEN		       (REG_GL_IMASK + 4)
126
127
128/*
129 * Debugging and related.
130 */
131#define cam_err(cam, fmt, arg...) \
132	dev_err(&(cam)->pdev->dev, fmt, ##arg);
133#define cam_warn(cam, fmt, arg...) \
134	dev_warn(&(cam)->pdev->dev, fmt, ##arg);
135
136/* -------------------------------------------------------------------- */
137/*
138 * The I2C/SMBUS interface to the camera itself starts here.  The
139 * controller handles SMBUS itself, presenting a relatively simple register
140 * interface; all we have to do is to tell it where to route the data.
141 */
142#define CAFE_SMBUS_TIMEOUT (HZ)  /* generous */
143
144static inline struct cafe_camera *to_cam(struct v4l2_device *dev)
145{
146	struct mcam_camera *m = container_of(dev, struct mcam_camera, v4l2_dev);
147	return container_of(m, struct cafe_camera, mcam);
148}
149
150
151static int cafe_smbus_write_done(struct mcam_camera *mcam)
152{
153	unsigned long flags;
154	int c1;
155
156	/*
157	 * We must delay after the interrupt, or the controller gets confused
158	 * and never does give us good status.  Fortunately, we don't do this
159	 * often.
160	 */
161	udelay(20);
162	spin_lock_irqsave(&mcam->dev_lock, flags);
163	c1 = mcam_reg_read(mcam, REG_TWSIC1);
164	spin_unlock_irqrestore(&mcam->dev_lock, flags);
165	return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT;
166}
167
168static int cafe_smbus_write_data(struct cafe_camera *cam,
169		u16 addr, u8 command, u8 value)
170{
171	unsigned int rval;
172	unsigned long flags;
173	struct mcam_camera *mcam = &cam->mcam;
174
175	spin_lock_irqsave(&mcam->dev_lock, flags);
176	rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
177	rval |= TWSIC0_OVMAGIC;  /* Make OV sensors work */
178	/*
179	 * Marvell sez set clkdiv to all 1's for now.
180	 */
181	rval |= TWSIC0_CLKDIV;
182	mcam_reg_write(mcam, REG_TWSIC0, rval);
183	(void) mcam_reg_read(mcam, REG_TWSIC1); /* force write */
184	rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
185	mcam_reg_write(mcam, REG_TWSIC1, rval);
186	spin_unlock_irqrestore(&mcam->dev_lock, flags);
187
188	/* Unfortunately, reading TWSIC1 too soon after sending a command
189	 * causes the device to die.
190	 * Use a busy-wait because we often send a large quantity of small
191	 * commands at-once; using msleep() would cause a lot of context
192	 * switches which take longer than 2ms, resulting in a noticeable
193	 * boot-time and capture-start delays.
194	 */
195	mdelay(2);
196
197	/*
198	 * Another sad fact is that sometimes, commands silently complete but
199	 * cafe_smbus_write_done() never becomes aware of this.
200	 * This happens at random and appears to possible occur with any
201	 * command.
202	 * We don't understand why this is. We work around this issue
203	 * with the timeout in the wait below, assuming that all commands
204	 * complete within the timeout.
205	 */
206	wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(mcam),
207			CAFE_SMBUS_TIMEOUT);
208
209	spin_lock_irqsave(&mcam->dev_lock, flags);
210	rval = mcam_reg_read(mcam, REG_TWSIC1);
211	spin_unlock_irqrestore(&mcam->dev_lock, flags);
212
213	if (rval & TWSIC1_WSTAT) {
214		cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr,
215				command, value);
216		return -EIO;
217	}
218	if (rval & TWSIC1_ERROR) {
219		cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr,
220				command, value);
221		return -EIO;
222	}
223	return 0;
224}
225
226
227
228static int cafe_smbus_read_done(struct mcam_camera *mcam)
229{
230	unsigned long flags;
231	int c1;
232
233	/*
234	 * We must delay after the interrupt, or the controller gets confused
235	 * and never does give us good status.  Fortunately, we don't do this
236	 * often.
237	 */
238	udelay(20);
239	spin_lock_irqsave(&mcam->dev_lock, flags);
240	c1 = mcam_reg_read(mcam, REG_TWSIC1);
241	spin_unlock_irqrestore(&mcam->dev_lock, flags);
242	return c1 & (TWSIC1_RVALID|TWSIC1_ERROR);
243}
244
245
246
247static int cafe_smbus_read_data(struct cafe_camera *cam,
248		u16 addr, u8 command, u8 *value)
249{
250	unsigned int rval;
251	unsigned long flags;
252	struct mcam_camera *mcam = &cam->mcam;
253
254	spin_lock_irqsave(&mcam->dev_lock, flags);
255	rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
256	rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
257	/*
258	 * Marvel sez set clkdiv to all 1's for now.
259	 */
260	rval |= TWSIC0_CLKDIV;
261	mcam_reg_write(mcam, REG_TWSIC0, rval);
262	(void) mcam_reg_read(mcam, REG_TWSIC1); /* force write */
263	rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
264	mcam_reg_write(mcam, REG_TWSIC1, rval);
265	spin_unlock_irqrestore(&mcam->dev_lock, flags);
266
267	wait_event_timeout(cam->smbus_wait,
268			cafe_smbus_read_done(mcam), CAFE_SMBUS_TIMEOUT);
269	spin_lock_irqsave(&mcam->dev_lock, flags);
270	rval = mcam_reg_read(mcam, REG_TWSIC1);
271	spin_unlock_irqrestore(&mcam->dev_lock, flags);
272
273	if (rval & TWSIC1_ERROR) {
274		cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command);
275		return -EIO;
276	}
277	if (!(rval & TWSIC1_RVALID)) {
278		cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr,
279				command);
280		return -EIO;
281	}
282	*value = rval & 0xff;
283	return 0;
284}
285
286/*
287 * Perform a transfer over SMBUS.  This thing is called under
288 * the i2c bus lock, so we shouldn't race with ourselves...
289 */
290static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
291		unsigned short flags, char rw, u8 command,
292		int size, union i2c_smbus_data *data)
293{
294	struct cafe_camera *cam = i2c_get_adapdata(adapter);
295	int ret = -EINVAL;
296
297	/*
298	 * This interface would appear to only do byte data ops.  OK
299	 * it can do word too, but the cam chip has no use for that.
300	 */
301	if (size != I2C_SMBUS_BYTE_DATA) {
302		cam_err(cam, "funky xfer size %d\n", size);
303		return -EINVAL;
304	}
305
306	if (rw == I2C_SMBUS_WRITE)
307		ret = cafe_smbus_write_data(cam, addr, command, data->byte);
308	else if (rw == I2C_SMBUS_READ)
309		ret = cafe_smbus_read_data(cam, addr, command, &data->byte);
310	return ret;
311}
312
313
314static void cafe_smbus_enable_irq(struct cafe_camera *cam)
315{
316	unsigned long flags;
317
318	spin_lock_irqsave(&cam->mcam.dev_lock, flags);
319	mcam_reg_set_bit(&cam->mcam, REG_IRQMASK, TWSIIRQS);
320	spin_unlock_irqrestore(&cam->mcam.dev_lock, flags);
321}
322
323static u32 cafe_smbus_func(struct i2c_adapter *adapter)
324{
325	return I2C_FUNC_SMBUS_READ_BYTE_DATA  |
326	       I2C_FUNC_SMBUS_WRITE_BYTE_DATA;
327}
328
329static struct i2c_algorithm cafe_smbus_algo = {
330	.smbus_xfer = cafe_smbus_xfer,
331	.functionality = cafe_smbus_func
332};
333
334static int cafe_smbus_setup(struct cafe_camera *cam)
335{
336	struct i2c_adapter *adap;
337	int ret;
338
339	adap = kzalloc(sizeof(*adap), GFP_KERNEL);
340	if (adap == NULL)
341		return -ENOMEM;
342	adap->owner = THIS_MODULE;
343	adap->algo = &cafe_smbus_algo;
344	strcpy(adap->name, "cafe_ccic");
345	adap->dev.parent = &cam->pdev->dev;
346	i2c_set_adapdata(adap, cam);
347	ret = i2c_add_adapter(adap);
348	if (ret) {
349		printk(KERN_ERR "Unable to register cafe i2c adapter\n");
350		kfree(adap);
351		return ret;
352	}
353
354	cam->mcam.i2c_adapter = adap;
355	cafe_smbus_enable_irq(cam);
356	return 0;
357}
358
359static void cafe_smbus_shutdown(struct cafe_camera *cam)
360{
361	i2c_del_adapter(cam->mcam.i2c_adapter);
362	kfree(cam->mcam.i2c_adapter);
363}
364
365
366/*
367 * Controller-level stuff
368 */
369
370static void cafe_ctlr_init(struct mcam_camera *mcam)
371{
372	unsigned long flags;
373
374	spin_lock_irqsave(&mcam->dev_lock, flags);
375	/*
376	 * Added magic to bring up the hardware on the B-Test board
377	 */
378	mcam_reg_write(mcam, 0x3038, 0x8);
379	mcam_reg_write(mcam, 0x315c, 0x80008);
380	/*
381	 * Go through the dance needed to wake the device up.
382	 * Note that these registers are global and shared
383	 * with the NAND and SD devices.  Interaction between the
384	 * three still needs to be examined.
385	 */
386	mcam_reg_write(mcam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */
387	mcam_reg_write(mcam, REG_GL_CSR, GCSR_SRC|GCSR_MRC);
388	mcam_reg_write(mcam, REG_GL_CSR, GCSR_SRC|GCSR_MRS);
389	/*
390	 * Here we must wait a bit for the controller to come around.
391	 */
392	spin_unlock_irqrestore(&mcam->dev_lock, flags);
393	msleep(5);
394	spin_lock_irqsave(&mcam->dev_lock, flags);
395
396	mcam_reg_write(mcam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC);
397	mcam_reg_set_bit(mcam, REG_GL_IMASK, GIMSK_CCIC_EN);
398	/*
399	 * Mask all interrupts.
400	 */
401	mcam_reg_write(mcam, REG_IRQMASK, 0);
402	spin_unlock_irqrestore(&mcam->dev_lock, flags);
403}
404
405
406static int cafe_ctlr_power_up(struct mcam_camera *mcam)
407{
408	/*
409	 * Part one of the sensor dance: turn the global
410	 * GPIO signal on.
411	 */
412	mcam_reg_write(mcam, REG_GL_FCR, GFCR_GPIO_ON);
413	mcam_reg_write(mcam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL);
414	/*
415	 * Put the sensor into operational mode (assumes OLPC-style
416	 * wiring).  Control 0 is reset - set to 1 to operate.
417	 * Control 1 is power down, set to 0 to operate.
418	 */
419	mcam_reg_write(mcam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */
420	mcam_reg_write(mcam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0);
421
422	return 0;
423}
424
425static void cafe_ctlr_power_down(struct mcam_camera *mcam)
426{
427	mcam_reg_write(mcam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1);
428	mcam_reg_write(mcam, REG_GL_FCR, GFCR_GPIO_ON);
429	mcam_reg_write(mcam, REG_GL_GPIOR, GGPIO_OUT);
430}
431
432
433
434/*
435 * The platform interrupt handler.
436 */
437static irqreturn_t cafe_irq(int irq, void *data)
438{
439	struct cafe_camera *cam = data;
440	struct mcam_camera *mcam = &cam->mcam;
441	unsigned int irqs, handled;
442
443	spin_lock(&mcam->dev_lock);
444	irqs = mcam_reg_read(mcam, REG_IRQSTAT);
445	handled = cam->registered && mccic_irq(mcam, irqs);
446	if (irqs & TWSIIRQS) {
447		mcam_reg_write(mcam, REG_IRQSTAT, TWSIIRQS);
448		wake_up(&cam->smbus_wait);
449		handled = 1;
450	}
451	spin_unlock(&mcam->dev_lock);
452	return IRQ_RETVAL(handled);
453}
454
455
456/* -------------------------------------------------------------------------- */
457/*
458 * PCI interface stuff.
459 */
460
461static int cafe_pci_probe(struct pci_dev *pdev,
462		const struct pci_device_id *id)
463{
464	int ret;
465	struct cafe_camera *cam;
466	struct mcam_camera *mcam;
467
468	/*
469	 * Start putting together one of our big camera structures.
470	 */
471	ret = -ENOMEM;
472	cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL);
473	if (cam == NULL)
474		goto out;
475	cam->pdev = pdev;
476	mcam = &cam->mcam;
477	mcam->chip_id = MCAM_CAFE;
478	spin_lock_init(&mcam->dev_lock);
479	init_waitqueue_head(&cam->smbus_wait);
480	mcam->plat_power_up = cafe_ctlr_power_up;
481	mcam->plat_power_down = cafe_ctlr_power_down;
482	mcam->dev = &pdev->dev;
483	snprintf(mcam->bus_info, sizeof(mcam->bus_info), "PCI:%s", pci_name(pdev));
484	/*
485	 * Set the clock speed for the XO 1; I don't believe this
486	 * driver has ever run anywhere else.
487	 */
488	mcam->clock_speed = 45;
489	mcam->use_smbus = 1;
490	/*
491	 * Vmalloc mode for buffers is traditional with this driver.
492	 * We *might* be able to run DMA_contig, especially on a system
493	 * with CMA in it.
494	 */
495	mcam->buffer_mode = B_vmalloc;
496	/*
497	 * Get set up on the PCI bus.
498	 */
499	ret = pci_enable_device(pdev);
500	if (ret)
501		goto out_free;
502	pci_set_master(pdev);
503
504	ret = -EIO;
505	mcam->regs = pci_iomap(pdev, 0, 0);
506	if (!mcam->regs) {
507		printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n");
508		goto out_disable;
509	}
510	mcam->regs_size = pci_resource_len(pdev, 0);
511	ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam);
512	if (ret)
513		goto out_iounmap;
514
515	/*
516	 * Initialize the controller and leave it powered up.  It will
517	 * stay that way until the sensor driver shows up.
518	 */
519	cafe_ctlr_init(mcam);
520	cafe_ctlr_power_up(mcam);
521	/*
522	 * Set up I2C/SMBUS communications.  We have to drop the mutex here
523	 * because the sensor could attach in this call chain, leading to
524	 * unsightly deadlocks.
525	 */
526	ret = cafe_smbus_setup(cam);
527	if (ret)
528		goto out_pdown;
529
530	ret = mccic_register(mcam);
531	if (ret == 0) {
532		cam->registered = 1;
533		return 0;
534	}
535
536	cafe_smbus_shutdown(cam);
537out_pdown:
538	cafe_ctlr_power_down(mcam);
539	free_irq(pdev->irq, cam);
540out_iounmap:
541	pci_iounmap(pdev, mcam->regs);
542out_disable:
543	pci_disable_device(pdev);
544out_free:
545	kfree(cam);
546out:
547	return ret;
548}
549
550
551/*
552 * Shut down an initialized device
553 */
554static void cafe_shutdown(struct cafe_camera *cam)
555{
556	mccic_shutdown(&cam->mcam);
557	cafe_smbus_shutdown(cam);
558	free_irq(cam->pdev->irq, cam);
559	pci_iounmap(cam->pdev, cam->mcam.regs);
560}
561
562
563static void cafe_pci_remove(struct pci_dev *pdev)
564{
565	struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
566	struct cafe_camera *cam = to_cam(v4l2_dev);
567
568	if (cam == NULL) {
569		printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev);
570		return;
571	}
572	cafe_shutdown(cam);
573	kfree(cam);
574}
575
576
577#ifdef CONFIG_PM
578/*
579 * Basic power management.
580 */
581static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state)
582{
583	struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
584	struct cafe_camera *cam = to_cam(v4l2_dev);
585	int ret;
586
587	ret = pci_save_state(pdev);
588	if (ret)
589		return ret;
590	mccic_suspend(&cam->mcam);
591	pci_disable_device(pdev);
592	return 0;
593}
594
595
596static int cafe_pci_resume(struct pci_dev *pdev)
597{
598	struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
599	struct cafe_camera *cam = to_cam(v4l2_dev);
600	int ret = 0;
601
602	pci_restore_state(pdev);
603	ret = pci_enable_device(pdev);
604
605	if (ret) {
606		cam_warn(cam, "Unable to re-enable device on resume!\n");
607		return ret;
608	}
609	cafe_ctlr_init(&cam->mcam);
610	return mccic_resume(&cam->mcam);
611}
612
613#endif  /* CONFIG_PM */
614
615static struct pci_device_id cafe_ids[] = {
616	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL,
617		     PCI_DEVICE_ID_MARVELL_88ALP01_CCIC) },
618	{ 0, }
619};
620
621MODULE_DEVICE_TABLE(pci, cafe_ids);
622
623static struct pci_driver cafe_pci_driver = {
624	.name = "cafe1000-ccic",
625	.id_table = cafe_ids,
626	.probe = cafe_pci_probe,
627	.remove = cafe_pci_remove,
628#ifdef CONFIG_PM
629	.suspend = cafe_pci_suspend,
630	.resume = cafe_pci_resume,
631#endif
632};
633
634
635
636
637static int __init cafe_init(void)
638{
639	int ret;
640
641	printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
642			CAFE_VERSION);
643	ret = pci_register_driver(&cafe_pci_driver);
644	if (ret) {
645		printk(KERN_ERR "Unable to register cafe_ccic driver\n");
646		goto out;
647	}
648	ret = 0;
649
650out:
651	return ret;
652}
653
654
655static void __exit cafe_exit(void)
656{
657	pci_unregister_driver(&cafe_pci_driver);
658}
659
660module_init(cafe_init);
661module_exit(cafe_exit);
662