1/*
2 * Afatech AF9013 demodulator driver
3 *
4 * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
5 * Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
6 *
7 * Thanks to Afatech who kindly provided information.
8 *
9 *    This program is free software; you can redistribute it and/or modify
10 *    it under the terms of the GNU General Public License as published by
11 *    the Free Software Foundation; either version 2 of the License, or
12 *    (at your option) any later version.
13 *
14 *    This program is distributed in the hope that it will be useful,
15 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *    GNU General Public License for more details.
18 *
19 *    You should have received a copy of the GNU General Public License
20 *    along with this program; if not, write to the Free Software
21 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 *
23 */
24
25#include "af9013_priv.h"
26
27/* Max transfer size done by I2C transfer functions */
28#define MAX_XFER_SIZE  64
29
30struct af9013_state {
31	struct i2c_adapter *i2c;
32	struct dvb_frontend fe;
33	struct af9013_config config;
34
35	/* tuner/demod RF and IF AGC limits used for signal strength calc */
36	u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
37	u16 signal_strength;
38	u32 ber;
39	u32 ucblocks;
40	u16 snr;
41	u32 bandwidth_hz;
42	enum fe_status fe_status;
43	unsigned long set_frontend_jiffies;
44	unsigned long read_status_jiffies;
45	bool first_tune;
46	bool i2c_gate_state;
47	unsigned int statistics_step:3;
48	struct delayed_work statistics_work;
49};
50
51/* write multiple registers */
52static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
53	const u8 *val, int len)
54{
55	int ret;
56	u8 buf[MAX_XFER_SIZE];
57	struct i2c_msg msg[1] = {
58		{
59			.addr = priv->config.i2c_addr,
60			.flags = 0,
61			.len = 3 + len,
62			.buf = buf,
63		}
64	};
65
66	if (3 + len > sizeof(buf)) {
67		dev_warn(&priv->i2c->dev,
68			 "%s: i2c wr reg=%04x: len=%d is too big!\n",
69			 KBUILD_MODNAME, reg, len);
70		return -EINVAL;
71	}
72
73	buf[0] = (reg >> 8) & 0xff;
74	buf[1] = (reg >> 0) & 0xff;
75	buf[2] = mbox;
76	memcpy(&buf[3], val, len);
77
78	ret = i2c_transfer(priv->i2c, msg, 1);
79	if (ret == 1) {
80		ret = 0;
81	} else {
82		dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%04x " \
83				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
84		ret = -EREMOTEIO;
85	}
86	return ret;
87}
88
89/* read multiple registers */
90static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
91	u8 *val, int len)
92{
93	int ret;
94	u8 buf[3];
95	struct i2c_msg msg[2] = {
96		{
97			.addr = priv->config.i2c_addr,
98			.flags = 0,
99			.len = 3,
100			.buf = buf,
101		}, {
102			.addr = priv->config.i2c_addr,
103			.flags = I2C_M_RD,
104			.len = len,
105			.buf = val,
106		}
107	};
108
109	buf[0] = (reg >> 8) & 0xff;
110	buf[1] = (reg >> 0) & 0xff;
111	buf[2] = mbox;
112
113	ret = i2c_transfer(priv->i2c, msg, 2);
114	if (ret == 2) {
115		ret = 0;
116	} else {
117		dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%04x " \
118				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
119		ret = -EREMOTEIO;
120	}
121	return ret;
122}
123
124/* write multiple registers */
125static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val,
126	int len)
127{
128	int ret, i;
129	u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0);
130
131	if ((priv->config.ts_mode == AF9013_TS_USB) &&
132		((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
133		mbox |= ((len - 1) << 2);
134		ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len);
135	} else {
136		for (i = 0; i < len; i++) {
137			ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1);
138			if (ret)
139				goto err;
140		}
141	}
142
143err:
144	return 0;
145}
146
147/* read multiple registers */
148static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len)
149{
150	int ret, i;
151	u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0);
152
153	if ((priv->config.ts_mode == AF9013_TS_USB) &&
154		((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
155		mbox |= ((len - 1) << 2);
156		ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len);
157	} else {
158		for (i = 0; i < len; i++) {
159			ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1);
160			if (ret)
161				goto err;
162		}
163	}
164
165err:
166	return 0;
167}
168
169/* write single register */
170static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val)
171{
172	return af9013_wr_regs(priv, reg, &val, 1);
173}
174
175/* read single register */
176static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val)
177{
178	return af9013_rd_regs(priv, reg, val, 1);
179}
180
181static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
182	u8 len)
183{
184	u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0);
185	return af9013_wr_regs_i2c(state, mbox, reg, val, len);
186}
187
188static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos,
189	int len, u8 val)
190{
191	int ret;
192	u8 tmp, mask;
193
194	/* no need for read if whole reg is written */
195	if (len != 8) {
196		ret = af9013_rd_reg(state, reg, &tmp);
197		if (ret)
198			return ret;
199
200		mask = (0xff >> (8 - len)) << pos;
201		val <<= pos;
202		tmp &= ~mask;
203		val |= tmp;
204	}
205
206	return af9013_wr_reg(state, reg, val);
207}
208
209static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos,
210	int len, u8 *val)
211{
212	int ret;
213	u8 tmp;
214
215	ret = af9013_rd_reg(state, reg, &tmp);
216	if (ret)
217		return ret;
218
219	*val = (tmp >> pos);
220	*val &= (0xff >> (8 - len));
221
222	return 0;
223}
224
225static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
226{
227	int ret;
228	u8 pos;
229	u16 addr;
230
231	dev_dbg(&state->i2c->dev, "%s: gpio=%d gpioval=%02x\n",
232			__func__, gpio, gpioval);
233
234	/*
235	 * GPIO0 & GPIO1 0xd735
236	 * GPIO2 & GPIO3 0xd736
237	 */
238
239	switch (gpio) {
240	case 0:
241	case 1:
242		addr = 0xd735;
243		break;
244	case 2:
245	case 3:
246		addr = 0xd736;
247		break;
248
249	default:
250		dev_err(&state->i2c->dev, "%s: invalid gpio=%d\n",
251				KBUILD_MODNAME, gpio);
252		ret = -EINVAL;
253		goto err;
254	}
255
256	switch (gpio) {
257	case 0:
258	case 2:
259		pos = 0;
260		break;
261	case 1:
262	case 3:
263	default:
264		pos = 4;
265		break;
266	}
267
268	ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval);
269	if (ret)
270		goto err;
271
272	return ret;
273err:
274	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
275	return ret;
276}
277
278static u32 af9013_div(struct af9013_state *state, u32 a, u32 b, u32 x)
279{
280	u32 r = 0, c = 0, i;
281
282	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
283
284	if (a > b) {
285		c = a / b;
286		a = a - c * b;
287	}
288
289	for (i = 0; i < x; i++) {
290		if (a >= b) {
291			r += 1;
292			a -= b;
293		}
294		a <<= 1;
295		r <<= 1;
296	}
297	r = (c << (u32)x) + r;
298
299	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
300			__func__, a, b, x, r, r);
301
302	return r;
303}
304
305static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
306{
307	int ret, i;
308	u8 tmp;
309
310	dev_dbg(&state->i2c->dev, "%s: onoff=%d\n", __func__, onoff);
311
312	/* enable reset */
313	ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1);
314	if (ret)
315		goto err;
316
317	/* start reset mechanism */
318	ret = af9013_wr_reg(state, 0xaeff, 1);
319	if (ret)
320		goto err;
321
322	/* wait reset performs */
323	for (i = 0; i < 150; i++) {
324		ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp);
325		if (ret)
326			goto err;
327
328		if (tmp)
329			break; /* reset done */
330
331		usleep_range(5000, 25000);
332	}
333
334	if (!tmp)
335		return -ETIMEDOUT;
336
337	if (onoff) {
338		/* clear reset */
339		ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0);
340		if (ret)
341			goto err;
342
343		/* disable reset */
344		ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0);
345
346		/* power on */
347		ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0);
348	} else {
349		/* power off */
350		ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1);
351	}
352
353	return ret;
354err:
355	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
356	return ret;
357}
358
359static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
360{
361	struct af9013_state *state = fe->demodulator_priv;
362	int ret;
363
364	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
365
366	/* reset and start BER counter */
367	ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1);
368	if (ret)
369		goto err;
370
371	return ret;
372err:
373	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
374	return ret;
375}
376
377static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
378{
379	struct af9013_state *state = fe->demodulator_priv;
380	int ret;
381	u8 buf[5];
382
383	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
384
385	/* check if error bit count is ready */
386	ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]);
387	if (ret)
388		goto err;
389
390	if (!buf[0]) {
391		dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
392		return 0;
393	}
394
395	ret = af9013_rd_regs(state, 0xd387, buf, 5);
396	if (ret)
397		goto err;
398
399	state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
400	state->ucblocks += (buf[4] << 8) | buf[3];
401
402	return ret;
403err:
404	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
405	return ret;
406}
407
408static int af9013_statistics_snr_start(struct dvb_frontend *fe)
409{
410	struct af9013_state *state = fe->demodulator_priv;
411	int ret;
412
413	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
414
415	/* start SNR meas */
416	ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1);
417	if (ret)
418		goto err;
419
420	return ret;
421err:
422	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
423	return ret;
424}
425
426static int af9013_statistics_snr_result(struct dvb_frontend *fe)
427{
428	struct af9013_state *state = fe->demodulator_priv;
429	int ret, i, len;
430	u8 buf[3], tmp;
431	u32 snr_val;
432	const struct af9013_snr *uninitialized_var(snr_lut);
433
434	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
435
436	/* check if SNR ready */
437	ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp);
438	if (ret)
439		goto err;
440
441	if (!tmp) {
442		dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
443		return 0;
444	}
445
446	/* read value */
447	ret = af9013_rd_regs(state, 0xd2e3, buf, 3);
448	if (ret)
449		goto err;
450
451	snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
452
453	/* read current modulation */
454	ret = af9013_rd_reg(state, 0xd3c1, &tmp);
455	if (ret)
456		goto err;
457
458	switch ((tmp >> 6) & 3) {
459	case 0:
460		len = ARRAY_SIZE(qpsk_snr_lut);
461		snr_lut = qpsk_snr_lut;
462		break;
463	case 1:
464		len = ARRAY_SIZE(qam16_snr_lut);
465		snr_lut = qam16_snr_lut;
466		break;
467	case 2:
468		len = ARRAY_SIZE(qam64_snr_lut);
469		snr_lut = qam64_snr_lut;
470		break;
471	default:
472		goto err;
473	}
474
475	for (i = 0; i < len; i++) {
476		tmp = snr_lut[i].snr;
477
478		if (snr_val < snr_lut[i].val)
479			break;
480	}
481	state->snr = tmp * 10; /* dB/10 */
482
483	return ret;
484err:
485	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
486	return ret;
487}
488
489static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
490{
491	struct af9013_state *state = fe->demodulator_priv;
492	int ret = 0;
493	u8 buf[2], rf_gain, if_gain;
494	int signal_strength;
495
496	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
497
498	if (!state->signal_strength_en)
499		return 0;
500
501	ret = af9013_rd_regs(state, 0xd07c, buf, 2);
502	if (ret)
503		goto err;
504
505	rf_gain = buf[0];
506	if_gain = buf[1];
507
508	signal_strength = (0xffff / \
509		(9 * (state->rf_50 + state->if_50) - \
510		11 * (state->rf_80 + state->if_80))) * \
511		(10 * (rf_gain + if_gain) - \
512		11 * (state->rf_80 + state->if_80));
513	if (signal_strength < 0)
514		signal_strength = 0;
515	else if (signal_strength > 0xffff)
516		signal_strength = 0xffff;
517
518	state->signal_strength = signal_strength;
519
520	return ret;
521err:
522	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
523	return ret;
524}
525
526static void af9013_statistics_work(struct work_struct *work)
527{
528	struct af9013_state *state = container_of(work,
529		struct af9013_state, statistics_work.work);
530	unsigned int next_msec;
531
532	/* update only signal strength when demod is not locked */
533	if (!(state->fe_status & FE_HAS_LOCK)) {
534		state->statistics_step = 0;
535		state->ber = 0;
536		state->snr = 0;
537	}
538
539	switch (state->statistics_step) {
540	default:
541		state->statistics_step = 0;
542	case 0:
543		af9013_statistics_signal_strength(&state->fe);
544		state->statistics_step++;
545		next_msec = 300;
546		break;
547	case 1:
548		af9013_statistics_snr_start(&state->fe);
549		state->statistics_step++;
550		next_msec = 200;
551		break;
552	case 2:
553		af9013_statistics_ber_unc_start(&state->fe);
554		state->statistics_step++;
555		next_msec = 1000;
556		break;
557	case 3:
558		af9013_statistics_snr_result(&state->fe);
559		state->statistics_step++;
560		next_msec = 400;
561		break;
562	case 4:
563		af9013_statistics_ber_unc_result(&state->fe);
564		state->statistics_step++;
565		next_msec = 100;
566		break;
567	}
568
569	schedule_delayed_work(&state->statistics_work,
570		msecs_to_jiffies(next_msec));
571}
572
573static int af9013_get_tune_settings(struct dvb_frontend *fe,
574	struct dvb_frontend_tune_settings *fesettings)
575{
576	fesettings->min_delay_ms = 800;
577	fesettings->step_size = 0;
578	fesettings->max_drift = 0;
579
580	return 0;
581}
582
583static int af9013_set_frontend(struct dvb_frontend *fe)
584{
585	struct af9013_state *state = fe->demodulator_priv;
586	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
587	int ret, i, sampling_freq;
588	bool auto_mode, spec_inv;
589	u8 buf[6];
590	u32 if_frequency, freq_cw;
591
592	dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
593			__func__, c->frequency, c->bandwidth_hz);
594
595	/* program tuner */
596	if (fe->ops.tuner_ops.set_params)
597		fe->ops.tuner_ops.set_params(fe);
598
599	/* program CFOE coefficients */
600	if (c->bandwidth_hz != state->bandwidth_hz) {
601		for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
602			if (coeff_lut[i].clock == state->config.clock &&
603				coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
604				break;
605			}
606		}
607
608		/* Return an error if can't find bandwidth or the right clock */
609		if (i == ARRAY_SIZE(coeff_lut))
610			return -EINVAL;
611
612		ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val,
613			sizeof(coeff_lut[i].val));
614	}
615
616	/* program frequency control */
617	if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
618		/* get used IF frequency */
619		if (fe->ops.tuner_ops.get_if_frequency)
620			fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
621		else
622			if_frequency = state->config.if_frequency;
623
624		dev_dbg(&state->i2c->dev, "%s: if_frequency=%d\n",
625				__func__, if_frequency);
626
627		sampling_freq = if_frequency;
628
629		while (sampling_freq > (state->config.clock / 2))
630			sampling_freq -= state->config.clock;
631
632		if (sampling_freq < 0) {
633			sampling_freq *= -1;
634			spec_inv = state->config.spec_inv;
635		} else {
636			spec_inv = !state->config.spec_inv;
637		}
638
639		freq_cw = af9013_div(state, sampling_freq, state->config.clock,
640				23);
641
642		if (spec_inv)
643			freq_cw = 0x800000 - freq_cw;
644
645		buf[0] = (freq_cw >>  0) & 0xff;
646		buf[1] = (freq_cw >>  8) & 0xff;
647		buf[2] = (freq_cw >> 16) & 0x7f;
648
649		freq_cw = 0x800000 - freq_cw;
650
651		buf[3] = (freq_cw >>  0) & 0xff;
652		buf[4] = (freq_cw >>  8) & 0xff;
653		buf[5] = (freq_cw >> 16) & 0x7f;
654
655		ret = af9013_wr_regs(state, 0xd140, buf, 3);
656		if (ret)
657			goto err;
658
659		ret = af9013_wr_regs(state, 0x9be7, buf, 6);
660		if (ret)
661			goto err;
662	}
663
664	/* clear TPS lock flag */
665	ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1);
666	if (ret)
667		goto err;
668
669	/* clear MPEG2 lock flag */
670	ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0);
671	if (ret)
672		goto err;
673
674	/* empty channel function */
675	ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0);
676	if (ret)
677		goto err;
678
679	/* empty DVB-T channel function */
680	ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0);
681	if (ret)
682		goto err;
683
684	/* transmission parameters */
685	auto_mode = false;
686	memset(buf, 0, 3);
687
688	switch (c->transmission_mode) {
689	case TRANSMISSION_MODE_AUTO:
690		auto_mode = true;
691		break;
692	case TRANSMISSION_MODE_2K:
693		break;
694	case TRANSMISSION_MODE_8K:
695		buf[0] |= (1 << 0);
696		break;
697	default:
698		dev_dbg(&state->i2c->dev, "%s: invalid transmission_mode\n",
699				__func__);
700		auto_mode = true;
701	}
702
703	switch (c->guard_interval) {
704	case GUARD_INTERVAL_AUTO:
705		auto_mode = true;
706		break;
707	case GUARD_INTERVAL_1_32:
708		break;
709	case GUARD_INTERVAL_1_16:
710		buf[0] |= (1 << 2);
711		break;
712	case GUARD_INTERVAL_1_8:
713		buf[0] |= (2 << 2);
714		break;
715	case GUARD_INTERVAL_1_4:
716		buf[0] |= (3 << 2);
717		break;
718	default:
719		dev_dbg(&state->i2c->dev, "%s: invalid guard_interval\n",
720				__func__);
721		auto_mode = true;
722	}
723
724	switch (c->hierarchy) {
725	case HIERARCHY_AUTO:
726		auto_mode = true;
727		break;
728	case HIERARCHY_NONE:
729		break;
730	case HIERARCHY_1:
731		buf[0] |= (1 << 4);
732		break;
733	case HIERARCHY_2:
734		buf[0] |= (2 << 4);
735		break;
736	case HIERARCHY_4:
737		buf[0] |= (3 << 4);
738		break;
739	default:
740		dev_dbg(&state->i2c->dev, "%s: invalid hierarchy\n", __func__);
741		auto_mode = true;
742	}
743
744	switch (c->modulation) {
745	case QAM_AUTO:
746		auto_mode = true;
747		break;
748	case QPSK:
749		break;
750	case QAM_16:
751		buf[1] |= (1 << 6);
752		break;
753	case QAM_64:
754		buf[1] |= (2 << 6);
755		break;
756	default:
757		dev_dbg(&state->i2c->dev, "%s: invalid modulation\n", __func__);
758		auto_mode = true;
759	}
760
761	/* Use HP. How and which case we can switch to LP? */
762	buf[1] |= (1 << 4);
763
764	switch (c->code_rate_HP) {
765	case FEC_AUTO:
766		auto_mode = true;
767		break;
768	case FEC_1_2:
769		break;
770	case FEC_2_3:
771		buf[2] |= (1 << 0);
772		break;
773	case FEC_3_4:
774		buf[2] |= (2 << 0);
775		break;
776	case FEC_5_6:
777		buf[2] |= (3 << 0);
778		break;
779	case FEC_7_8:
780		buf[2] |= (4 << 0);
781		break;
782	default:
783		dev_dbg(&state->i2c->dev, "%s: invalid code_rate_HP\n",
784				__func__);
785		auto_mode = true;
786	}
787
788	switch (c->code_rate_LP) {
789	case FEC_AUTO:
790		auto_mode = true;
791		break;
792	case FEC_1_2:
793		break;
794	case FEC_2_3:
795		buf[2] |= (1 << 3);
796		break;
797	case FEC_3_4:
798		buf[2] |= (2 << 3);
799		break;
800	case FEC_5_6:
801		buf[2] |= (3 << 3);
802		break;
803	case FEC_7_8:
804		buf[2] |= (4 << 3);
805		break;
806	case FEC_NONE:
807		break;
808	default:
809		dev_dbg(&state->i2c->dev, "%s: invalid code_rate_LP\n",
810				__func__);
811		auto_mode = true;
812	}
813
814	switch (c->bandwidth_hz) {
815	case 6000000:
816		break;
817	case 7000000:
818		buf[1] |= (1 << 2);
819		break;
820	case 8000000:
821		buf[1] |= (2 << 2);
822		break;
823	default:
824		dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
825				__func__);
826		ret = -EINVAL;
827		goto err;
828	}
829
830	ret = af9013_wr_regs(state, 0xd3c0, buf, 3);
831	if (ret)
832		goto err;
833
834	if (auto_mode) {
835		/* clear easy mode flag */
836		ret = af9013_wr_reg(state, 0xaefd, 0);
837		if (ret)
838			goto err;
839
840		dev_dbg(&state->i2c->dev, "%s: auto params\n", __func__);
841	} else {
842		/* set easy mode flag */
843		ret = af9013_wr_reg(state, 0xaefd, 1);
844		if (ret)
845			goto err;
846
847		ret = af9013_wr_reg(state, 0xaefe, 0);
848		if (ret)
849			goto err;
850
851		dev_dbg(&state->i2c->dev, "%s: manual params\n", __func__);
852	}
853
854	/* tune */
855	ret = af9013_wr_reg(state, 0xffff, 0);
856	if (ret)
857		goto err;
858
859	state->bandwidth_hz = c->bandwidth_hz;
860	state->set_frontend_jiffies = jiffies;
861	state->first_tune = false;
862
863	return ret;
864err:
865	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
866	return ret;
867}
868
869static int af9013_get_frontend(struct dvb_frontend *fe)
870{
871	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
872	struct af9013_state *state = fe->demodulator_priv;
873	int ret;
874	u8 buf[3];
875
876	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
877
878	ret = af9013_rd_regs(state, 0xd3c0, buf, 3);
879	if (ret)
880		goto err;
881
882	switch ((buf[1] >> 6) & 3) {
883	case 0:
884		c->modulation = QPSK;
885		break;
886	case 1:
887		c->modulation = QAM_16;
888		break;
889	case 2:
890		c->modulation = QAM_64;
891		break;
892	}
893
894	switch ((buf[0] >> 0) & 3) {
895	case 0:
896		c->transmission_mode = TRANSMISSION_MODE_2K;
897		break;
898	case 1:
899		c->transmission_mode = TRANSMISSION_MODE_8K;
900	}
901
902	switch ((buf[0] >> 2) & 3) {
903	case 0:
904		c->guard_interval = GUARD_INTERVAL_1_32;
905		break;
906	case 1:
907		c->guard_interval = GUARD_INTERVAL_1_16;
908		break;
909	case 2:
910		c->guard_interval = GUARD_INTERVAL_1_8;
911		break;
912	case 3:
913		c->guard_interval = GUARD_INTERVAL_1_4;
914		break;
915	}
916
917	switch ((buf[0] >> 4) & 7) {
918	case 0:
919		c->hierarchy = HIERARCHY_NONE;
920		break;
921	case 1:
922		c->hierarchy = HIERARCHY_1;
923		break;
924	case 2:
925		c->hierarchy = HIERARCHY_2;
926		break;
927	case 3:
928		c->hierarchy = HIERARCHY_4;
929		break;
930	}
931
932	switch ((buf[2] >> 0) & 7) {
933	case 0:
934		c->code_rate_HP = FEC_1_2;
935		break;
936	case 1:
937		c->code_rate_HP = FEC_2_3;
938		break;
939	case 2:
940		c->code_rate_HP = FEC_3_4;
941		break;
942	case 3:
943		c->code_rate_HP = FEC_5_6;
944		break;
945	case 4:
946		c->code_rate_HP = FEC_7_8;
947		break;
948	}
949
950	switch ((buf[2] >> 3) & 7) {
951	case 0:
952		c->code_rate_LP = FEC_1_2;
953		break;
954	case 1:
955		c->code_rate_LP = FEC_2_3;
956		break;
957	case 2:
958		c->code_rate_LP = FEC_3_4;
959		break;
960	case 3:
961		c->code_rate_LP = FEC_5_6;
962		break;
963	case 4:
964		c->code_rate_LP = FEC_7_8;
965		break;
966	}
967
968	switch ((buf[1] >> 2) & 3) {
969	case 0:
970		c->bandwidth_hz = 6000000;
971		break;
972	case 1:
973		c->bandwidth_hz = 7000000;
974		break;
975	case 2:
976		c->bandwidth_hz = 8000000;
977		break;
978	}
979
980	return ret;
981err:
982	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
983	return ret;
984}
985
986static int af9013_read_status(struct dvb_frontend *fe, enum fe_status *status)
987{
988	struct af9013_state *state = fe->demodulator_priv;
989	int ret;
990	u8 tmp;
991
992	/*
993	 * Return status from the cache if it is younger than 2000ms with the
994	 * exception of last tune is done during 4000ms.
995	 */
996	if (time_is_after_jiffies(
997		state->read_status_jiffies + msecs_to_jiffies(2000)) &&
998		time_is_before_jiffies(
999		state->set_frontend_jiffies + msecs_to_jiffies(4000))
1000	) {
1001			*status = state->fe_status;
1002			return 0;
1003	} else {
1004		*status = 0;
1005	}
1006
1007	/* MPEG2 lock */
1008	ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp);
1009	if (ret)
1010		goto err;
1011
1012	if (tmp)
1013		*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
1014			FE_HAS_SYNC | FE_HAS_LOCK;
1015
1016	if (!*status) {
1017		/* TPS lock */
1018		ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp);
1019		if (ret)
1020			goto err;
1021
1022		if (tmp)
1023			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
1024				FE_HAS_VITERBI;
1025	}
1026
1027	state->fe_status = *status;
1028	state->read_status_jiffies = jiffies;
1029
1030	return ret;
1031err:
1032	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1033	return ret;
1034}
1035
1036static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
1037{
1038	struct af9013_state *state = fe->demodulator_priv;
1039	*snr = state->snr;
1040	return 0;
1041}
1042
1043static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1044{
1045	struct af9013_state *state = fe->demodulator_priv;
1046	*strength = state->signal_strength;
1047	return 0;
1048}
1049
1050static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
1051{
1052	struct af9013_state *state = fe->demodulator_priv;
1053	*ber = state->ber;
1054	return 0;
1055}
1056
1057static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1058{
1059	struct af9013_state *state = fe->demodulator_priv;
1060	*ucblocks = state->ucblocks;
1061	return 0;
1062}
1063
1064static int af9013_init(struct dvb_frontend *fe)
1065{
1066	struct af9013_state *state = fe->demodulator_priv;
1067	int ret, i, len;
1068	u8 buf[3], tmp;
1069	u32 adc_cw;
1070	const struct af9013_reg_bit *init;
1071
1072	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
1073
1074	/* power on */
1075	ret = af9013_power_ctrl(state, 1);
1076	if (ret)
1077		goto err;
1078
1079	/* enable ADC */
1080	ret = af9013_wr_reg(state, 0xd73a, 0xa4);
1081	if (ret)
1082		goto err;
1083
1084	/* write API version to firmware */
1085	ret = af9013_wr_regs(state, 0x9bf2, state->config.api_version, 4);
1086	if (ret)
1087		goto err;
1088
1089	/* program ADC control */
1090	switch (state->config.clock) {
1091	case 28800000: /* 28.800 MHz */
1092		tmp = 0;
1093		break;
1094	case 20480000: /* 20.480 MHz */
1095		tmp = 1;
1096		break;
1097	case 28000000: /* 28.000 MHz */
1098		tmp = 2;
1099		break;
1100	case 25000000: /* 25.000 MHz */
1101		tmp = 3;
1102		break;
1103	default:
1104		dev_err(&state->i2c->dev, "%s: invalid clock\n",
1105				KBUILD_MODNAME);
1106		return -EINVAL;
1107	}
1108
1109	adc_cw = af9013_div(state, state->config.clock, 1000000ul, 19);
1110	buf[0] = (adc_cw >>  0) & 0xff;
1111	buf[1] = (adc_cw >>  8) & 0xff;
1112	buf[2] = (adc_cw >> 16) & 0xff;
1113
1114	ret = af9013_wr_regs(state, 0xd180, buf, 3);
1115	if (ret)
1116		goto err;
1117
1118	ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp);
1119	if (ret)
1120		goto err;
1121
1122	/* set I2C master clock */
1123	ret = af9013_wr_reg(state, 0xd416, 0x14);
1124	if (ret)
1125		goto err;
1126
1127	/* set 16 embx */
1128	ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1);
1129	if (ret)
1130		goto err;
1131
1132	/* set no trigger */
1133	ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0);
1134	if (ret)
1135		goto err;
1136
1137	/* set read-update bit for constellation */
1138	ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1);
1139	if (ret)
1140		goto err;
1141
1142	/* settings for mp2if */
1143	if (state->config.ts_mode == AF9013_TS_USB) {
1144		/* AF9015 split PSB to 1.5k + 0.5k */
1145		ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1);
1146		if (ret)
1147			goto err;
1148	} else {
1149		/* AF9013 change the output bit to data7 */
1150		ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1);
1151		if (ret)
1152			goto err;
1153
1154		/* AF9013 set mpeg to full speed */
1155		ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1);
1156		if (ret)
1157			goto err;
1158	}
1159
1160	ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1);
1161	if (ret)
1162		goto err;
1163
1164	/* load OFSM settings */
1165	dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
1166	len = ARRAY_SIZE(ofsm_init);
1167	init = ofsm_init;
1168	for (i = 0; i < len; i++) {
1169		ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1170			init[i].len, init[i].val);
1171		if (ret)
1172			goto err;
1173	}
1174
1175	/* load tuner specific settings */
1176	dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
1177			__func__);
1178	switch (state->config.tuner) {
1179	case AF9013_TUNER_MXL5003D:
1180		len = ARRAY_SIZE(tuner_init_mxl5003d);
1181		init = tuner_init_mxl5003d;
1182		break;
1183	case AF9013_TUNER_MXL5005D:
1184	case AF9013_TUNER_MXL5005R:
1185	case AF9013_TUNER_MXL5007T:
1186		len = ARRAY_SIZE(tuner_init_mxl5005);
1187		init = tuner_init_mxl5005;
1188		break;
1189	case AF9013_TUNER_ENV77H11D5:
1190		len = ARRAY_SIZE(tuner_init_env77h11d5);
1191		init = tuner_init_env77h11d5;
1192		break;
1193	case AF9013_TUNER_MT2060:
1194		len = ARRAY_SIZE(tuner_init_mt2060);
1195		init = tuner_init_mt2060;
1196		break;
1197	case AF9013_TUNER_MC44S803:
1198		len = ARRAY_SIZE(tuner_init_mc44s803);
1199		init = tuner_init_mc44s803;
1200		break;
1201	case AF9013_TUNER_QT1010:
1202	case AF9013_TUNER_QT1010A:
1203		len = ARRAY_SIZE(tuner_init_qt1010);
1204		init = tuner_init_qt1010;
1205		break;
1206	case AF9013_TUNER_MT2060_2:
1207		len = ARRAY_SIZE(tuner_init_mt2060_2);
1208		init = tuner_init_mt2060_2;
1209		break;
1210	case AF9013_TUNER_TDA18271:
1211	case AF9013_TUNER_TDA18218:
1212		len = ARRAY_SIZE(tuner_init_tda18271);
1213		init = tuner_init_tda18271;
1214		break;
1215	case AF9013_TUNER_UNKNOWN:
1216	default:
1217		len = ARRAY_SIZE(tuner_init_unknown);
1218		init = tuner_init_unknown;
1219		break;
1220	}
1221
1222	for (i = 0; i < len; i++) {
1223		ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1224			init[i].len, init[i].val);
1225		if (ret)
1226			goto err;
1227	}
1228
1229	/* TS mode */
1230	ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->config.ts_mode);
1231	if (ret)
1232		goto err;
1233
1234	/* enable lock led */
1235	ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1);
1236	if (ret)
1237		goto err;
1238
1239	/* check if we support signal strength */
1240	if (!state->signal_strength_en) {
1241		ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1,
1242			&state->signal_strength_en);
1243		if (ret)
1244			goto err;
1245	}
1246
1247	/* read values needed for signal strength calculation */
1248	if (state->signal_strength_en && !state->rf_50) {
1249		ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50);
1250		if (ret)
1251			goto err;
1252
1253		ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80);
1254		if (ret)
1255			goto err;
1256
1257		ret = af9013_rd_reg(state, 0x9be2, &state->if_50);
1258		if (ret)
1259			goto err;
1260
1261		ret = af9013_rd_reg(state, 0x9be4, &state->if_80);
1262		if (ret)
1263			goto err;
1264	}
1265
1266	/* SNR */
1267	ret = af9013_wr_reg(state, 0xd2e2, 1);
1268	if (ret)
1269		goto err;
1270
1271	/* BER / UCB */
1272	buf[0] = (10000 >> 0) & 0xff;
1273	buf[1] = (10000 >> 8) & 0xff;
1274	ret = af9013_wr_regs(state, 0xd385, buf, 2);
1275	if (ret)
1276		goto err;
1277
1278	/* enable FEC monitor */
1279	ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1);
1280	if (ret)
1281		goto err;
1282
1283	state->first_tune = true;
1284	schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
1285
1286	return ret;
1287err:
1288	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1289	return ret;
1290}
1291
1292static int af9013_sleep(struct dvb_frontend *fe)
1293{
1294	struct af9013_state *state = fe->demodulator_priv;
1295	int ret;
1296
1297	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
1298
1299	/* stop statistics polling */
1300	cancel_delayed_work_sync(&state->statistics_work);
1301
1302	/* disable lock led */
1303	ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0);
1304	if (ret)
1305		goto err;
1306
1307	/* power off */
1308	ret = af9013_power_ctrl(state, 0);
1309	if (ret)
1310		goto err;
1311
1312	return ret;
1313err:
1314	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1315	return ret;
1316}
1317
1318static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
1319{
1320	int ret;
1321	struct af9013_state *state = fe->demodulator_priv;
1322
1323	dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
1324
1325	/* gate already open or close */
1326	if (state->i2c_gate_state == enable)
1327		return 0;
1328
1329	if (state->config.ts_mode == AF9013_TS_USB)
1330		ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable);
1331	else
1332		ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable);
1333	if (ret)
1334		goto err;
1335
1336	state->i2c_gate_state = enable;
1337
1338	return ret;
1339err:
1340	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1341	return ret;
1342}
1343
1344static void af9013_release(struct dvb_frontend *fe)
1345{
1346	struct af9013_state *state = fe->demodulator_priv;
1347	kfree(state);
1348}
1349
1350static struct dvb_frontend_ops af9013_ops;
1351
1352static int af9013_download_firmware(struct af9013_state *state)
1353{
1354	int i, len, remaining, ret;
1355	const struct firmware *fw;
1356	u16 checksum = 0;
1357	u8 val;
1358	u8 fw_params[4];
1359	u8 *fw_file = AF9013_FIRMWARE;
1360
1361	msleep(100);
1362	/* check whether firmware is already running */
1363	ret = af9013_rd_reg(state, 0x98be, &val);
1364	if (ret)
1365		goto err;
1366	else
1367		dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
1368				__func__, val);
1369
1370	if (val == 0x0c) /* fw is running, no need for download */
1371		goto exit;
1372
1373	dev_info(&state->i2c->dev, "%s: found a '%s' in cold state, will try " \
1374			"to load a firmware\n",
1375			KBUILD_MODNAME, af9013_ops.info.name);
1376
1377	/* request the firmware, this will block and timeout */
1378	ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
1379	if (ret) {
1380		dev_info(&state->i2c->dev, "%s: did not find the firmware " \
1381			"file. (%s) Please see linux/Documentation/dvb/ for " \
1382			"more details on firmware-problems. (%d)\n",
1383			KBUILD_MODNAME, fw_file, ret);
1384		goto err;
1385	}
1386
1387	dev_info(&state->i2c->dev, "%s: downloading firmware from file '%s'\n",
1388			KBUILD_MODNAME, fw_file);
1389
1390	/* calc checksum */
1391	for (i = 0; i < fw->size; i++)
1392		checksum += fw->data[i];
1393
1394	fw_params[0] = checksum >> 8;
1395	fw_params[1] = checksum & 0xff;
1396	fw_params[2] = fw->size >> 8;
1397	fw_params[3] = fw->size & 0xff;
1398
1399	/* write fw checksum & size */
1400	ret = af9013_write_ofsm_regs(state, 0x50fc,
1401		fw_params, sizeof(fw_params));
1402	if (ret)
1403		goto err_release;
1404
1405	#define FW_ADDR 0x5100 /* firmware start address */
1406	#define LEN_MAX 16 /* max packet size */
1407	for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
1408		len = remaining;
1409		if (len > LEN_MAX)
1410			len = LEN_MAX;
1411
1412		ret = af9013_write_ofsm_regs(state,
1413			FW_ADDR + fw->size - remaining,
1414			(u8 *) &fw->data[fw->size - remaining], len);
1415		if (ret) {
1416			dev_err(&state->i2c->dev,
1417					"%s: firmware download failed=%d\n",
1418					KBUILD_MODNAME, ret);
1419			goto err_release;
1420		}
1421	}
1422
1423	/* request boot firmware */
1424	ret = af9013_wr_reg(state, 0xe205, 1);
1425	if (ret)
1426		goto err_release;
1427
1428	for (i = 0; i < 15; i++) {
1429		msleep(100);
1430
1431		/* check firmware status */
1432		ret = af9013_rd_reg(state, 0x98be, &val);
1433		if (ret)
1434			goto err_release;
1435
1436		dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
1437				__func__, val);
1438
1439		if (val == 0x0c || val == 0x04) /* success or fail */
1440			break;
1441	}
1442
1443	if (val == 0x04) {
1444		dev_err(&state->i2c->dev, "%s: firmware did not run\n",
1445				KBUILD_MODNAME);
1446		ret = -ENODEV;
1447	} else if (val != 0x0c) {
1448		dev_err(&state->i2c->dev, "%s: firmware boot timeout\n",
1449				KBUILD_MODNAME);
1450		ret = -ENODEV;
1451	}
1452
1453err_release:
1454	release_firmware(fw);
1455err:
1456exit:
1457	if (!ret)
1458		dev_info(&state->i2c->dev, "%s: found a '%s' in warm state\n",
1459				KBUILD_MODNAME, af9013_ops.info.name);
1460	return ret;
1461}
1462
1463struct dvb_frontend *af9013_attach(const struct af9013_config *config,
1464	struct i2c_adapter *i2c)
1465{
1466	int ret;
1467	struct af9013_state *state = NULL;
1468	u8 buf[4], i;
1469
1470	/* allocate memory for the internal state */
1471	state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
1472	if (state == NULL)
1473		goto err;
1474
1475	/* setup the state */
1476	state->i2c = i2c;
1477	memcpy(&state->config, config, sizeof(struct af9013_config));
1478
1479	/* download firmware */
1480	if (state->config.ts_mode != AF9013_TS_USB) {
1481		ret = af9013_download_firmware(state);
1482		if (ret)
1483			goto err;
1484	}
1485
1486	/* firmware version */
1487	ret = af9013_rd_regs(state, 0x5103, buf, 4);
1488	if (ret)
1489		goto err;
1490
1491	dev_info(&state->i2c->dev, "%s: firmware version %d.%d.%d.%d\n",
1492			KBUILD_MODNAME, buf[0], buf[1], buf[2], buf[3]);
1493
1494	/* set GPIOs */
1495	for (i = 0; i < sizeof(state->config.gpio); i++) {
1496		ret = af9013_set_gpio(state, i, state->config.gpio[i]);
1497		if (ret)
1498			goto err;
1499	}
1500
1501	/* create dvb_frontend */
1502	memcpy(&state->fe.ops, &af9013_ops,
1503		sizeof(struct dvb_frontend_ops));
1504	state->fe.demodulator_priv = state;
1505
1506	INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
1507
1508	return &state->fe;
1509err:
1510	kfree(state);
1511	return NULL;
1512}
1513EXPORT_SYMBOL(af9013_attach);
1514
1515static struct dvb_frontend_ops af9013_ops = {
1516	.delsys = { SYS_DVBT },
1517	.info = {
1518		.name = "Afatech AF9013",
1519		.frequency_min = 174000000,
1520		.frequency_max = 862000000,
1521		.frequency_stepsize = 250000,
1522		.frequency_tolerance = 0,
1523		.caps =	FE_CAN_FEC_1_2 |
1524			FE_CAN_FEC_2_3 |
1525			FE_CAN_FEC_3_4 |
1526			FE_CAN_FEC_5_6 |
1527			FE_CAN_FEC_7_8 |
1528			FE_CAN_FEC_AUTO |
1529			FE_CAN_QPSK |
1530			FE_CAN_QAM_16 |
1531			FE_CAN_QAM_64 |
1532			FE_CAN_QAM_AUTO |
1533			FE_CAN_TRANSMISSION_MODE_AUTO |
1534			FE_CAN_GUARD_INTERVAL_AUTO |
1535			FE_CAN_HIERARCHY_AUTO |
1536			FE_CAN_RECOVER |
1537			FE_CAN_MUTE_TS
1538	},
1539
1540	.release = af9013_release,
1541
1542	.init = af9013_init,
1543	.sleep = af9013_sleep,
1544
1545	.get_tune_settings = af9013_get_tune_settings,
1546	.set_frontend = af9013_set_frontend,
1547	.get_frontend = af9013_get_frontend,
1548
1549	.read_status = af9013_read_status,
1550	.read_snr = af9013_read_snr,
1551	.read_signal_strength = af9013_read_signal_strength,
1552	.read_ber = af9013_read_ber,
1553	.read_ucblocks = af9013_read_ucblocks,
1554
1555	.i2c_gate_ctrl = af9013_i2c_gate_ctrl,
1556};
1557
1558MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1559MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
1560MODULE_LICENSE("GPL");
1561MODULE_FIRMWARE(AF9013_FIRMWARE);
1562