1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob ��stergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 *      - bitmap marked during normal i/o
19 *      - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34#include <linux/slab.h>
35#include <linux/delay.h>
36#include <linux/blkdev.h>
37#include <linux/module.h>
38#include <linux/seq_file.h>
39#include <linux/ratelimit.h>
40#include "md.h"
41#include "raid1.h"
42#include "bitmap.h"
43
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define	NR_RAID1_BIOS 256
48
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error.  To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context.  So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
68
69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70			  sector_t bi_sector);
71static void lower_barrier(struct r1conf *conf);
72
73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74{
75	struct pool_info *pi = data;
76	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78	/* allocate a r1bio with room for raid_disks entries in the bios array */
79	return kzalloc(size, gfp_flags);
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84	kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
88#define RESYNC_DEPTH 32
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96
97static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98{
99	struct pool_info *pi = data;
100	struct r1bio *r1_bio;
101	struct bio *bio;
102	int need_pages;
103	int i, j;
104
105	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106	if (!r1_bio)
107		return NULL;
108
109	/*
110	 * Allocate bios : 1 for reading, n-1 for writing
111	 */
112	for (j = pi->raid_disks ; j-- ; ) {
113		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114		if (!bio)
115			goto out_free_bio;
116		r1_bio->bios[j] = bio;
117	}
118	/*
119	 * Allocate RESYNC_PAGES data pages and attach them to
120	 * the first bio.
121	 * If this is a user-requested check/repair, allocate
122	 * RESYNC_PAGES for each bio.
123	 */
124	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125		need_pages = pi->raid_disks;
126	else
127		need_pages = 1;
128	for (j = 0; j < need_pages; j++) {
129		bio = r1_bio->bios[j];
130		bio->bi_vcnt = RESYNC_PAGES;
131
132		if (bio_alloc_pages(bio, gfp_flags))
133			goto out_free_pages;
134	}
135	/* If not user-requests, copy the page pointers to all bios */
136	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137		for (i=0; i<RESYNC_PAGES ; i++)
138			for (j=1; j<pi->raid_disks; j++)
139				r1_bio->bios[j]->bi_io_vec[i].bv_page =
140					r1_bio->bios[0]->bi_io_vec[i].bv_page;
141	}
142
143	r1_bio->master_bio = NULL;
144
145	return r1_bio;
146
147out_free_pages:
148	while (--j >= 0) {
149		struct bio_vec *bv;
150
151		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152			__free_page(bv->bv_page);
153	}
154
155out_free_bio:
156	while (++j < pi->raid_disks)
157		bio_put(r1_bio->bios[j]);
158	r1bio_pool_free(r1_bio, data);
159	return NULL;
160}
161
162static void r1buf_pool_free(void *__r1_bio, void *data)
163{
164	struct pool_info *pi = data;
165	int i,j;
166	struct r1bio *r1bio = __r1_bio;
167
168	for (i = 0; i < RESYNC_PAGES; i++)
169		for (j = pi->raid_disks; j-- ;) {
170			if (j == 0 ||
171			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
172			    r1bio->bios[0]->bi_io_vec[i].bv_page)
173				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
174		}
175	for (i=0 ; i < pi->raid_disks; i++)
176		bio_put(r1bio->bios[i]);
177
178	r1bio_pool_free(r1bio, data);
179}
180
181static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
182{
183	int i;
184
185	for (i = 0; i < conf->raid_disks * 2; i++) {
186		struct bio **bio = r1_bio->bios + i;
187		if (!BIO_SPECIAL(*bio))
188			bio_put(*bio);
189		*bio = NULL;
190	}
191}
192
193static void free_r1bio(struct r1bio *r1_bio)
194{
195	struct r1conf *conf = r1_bio->mddev->private;
196
197	put_all_bios(conf, r1_bio);
198	mempool_free(r1_bio, conf->r1bio_pool);
199}
200
201static void put_buf(struct r1bio *r1_bio)
202{
203	struct r1conf *conf = r1_bio->mddev->private;
204	int i;
205
206	for (i = 0; i < conf->raid_disks * 2; i++) {
207		struct bio *bio = r1_bio->bios[i];
208		if (bio->bi_end_io)
209			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210	}
211
212	mempool_free(r1_bio, conf->r1buf_pool);
213
214	lower_barrier(conf);
215}
216
217static void reschedule_retry(struct r1bio *r1_bio)
218{
219	unsigned long flags;
220	struct mddev *mddev = r1_bio->mddev;
221	struct r1conf *conf = mddev->private;
222
223	spin_lock_irqsave(&conf->device_lock, flags);
224	list_add(&r1_bio->retry_list, &conf->retry_list);
225	conf->nr_queued ++;
226	spin_unlock_irqrestore(&conf->device_lock, flags);
227
228	wake_up(&conf->wait_barrier);
229	md_wakeup_thread(mddev->thread);
230}
231
232/*
233 * raid_end_bio_io() is called when we have finished servicing a mirrored
234 * operation and are ready to return a success/failure code to the buffer
235 * cache layer.
236 */
237static void call_bio_endio(struct r1bio *r1_bio)
238{
239	struct bio *bio = r1_bio->master_bio;
240	int done;
241	struct r1conf *conf = r1_bio->mddev->private;
242	sector_t start_next_window = r1_bio->start_next_window;
243	sector_t bi_sector = bio->bi_iter.bi_sector;
244
245	if (bio->bi_phys_segments) {
246		unsigned long flags;
247		spin_lock_irqsave(&conf->device_lock, flags);
248		bio->bi_phys_segments--;
249		done = (bio->bi_phys_segments == 0);
250		spin_unlock_irqrestore(&conf->device_lock, flags);
251		/*
252		 * make_request() might be waiting for
253		 * bi_phys_segments to decrease
254		 */
255		wake_up(&conf->wait_barrier);
256	} else
257		done = 1;
258
259	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
260		bio->bi_error = -EIO;
261
262	if (done) {
263		bio_endio(bio);
264		/*
265		 * Wake up any possible resync thread that waits for the device
266		 * to go idle.
267		 */
268		allow_barrier(conf, start_next_window, bi_sector);
269	}
270}
271
272static void raid_end_bio_io(struct r1bio *r1_bio)
273{
274	struct bio *bio = r1_bio->master_bio;
275
276	/* if nobody has done the final endio yet, do it now */
277	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
278		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
280			 (unsigned long long) bio->bi_iter.bi_sector,
281			 (unsigned long long) bio_end_sector(bio) - 1);
282
283		call_bio_endio(r1_bio);
284	}
285	free_r1bio(r1_bio);
286}
287
288/*
289 * Update disk head position estimator based on IRQ completion info.
290 */
291static inline void update_head_pos(int disk, struct r1bio *r1_bio)
292{
293	struct r1conf *conf = r1_bio->mddev->private;
294
295	conf->mirrors[disk].head_position =
296		r1_bio->sector + (r1_bio->sectors);
297}
298
299/*
300 * Find the disk number which triggered given bio
301 */
302static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
303{
304	int mirror;
305	struct r1conf *conf = r1_bio->mddev->private;
306	int raid_disks = conf->raid_disks;
307
308	for (mirror = 0; mirror < raid_disks * 2; mirror++)
309		if (r1_bio->bios[mirror] == bio)
310			break;
311
312	BUG_ON(mirror == raid_disks * 2);
313	update_head_pos(mirror, r1_bio);
314
315	return mirror;
316}
317
318static void raid1_end_read_request(struct bio *bio)
319{
320	int uptodate = !bio->bi_error;
321	struct r1bio *r1_bio = bio->bi_private;
322	int mirror;
323	struct r1conf *conf = r1_bio->mddev->private;
324
325	mirror = r1_bio->read_disk;
326	/*
327	 * this branch is our 'one mirror IO has finished' event handler:
328	 */
329	update_head_pos(mirror, r1_bio);
330
331	if (uptodate)
332		set_bit(R1BIO_Uptodate, &r1_bio->state);
333	else {
334		/* If all other devices have failed, we want to return
335		 * the error upwards rather than fail the last device.
336		 * Here we redefine "uptodate" to mean "Don't want to retry"
337		 */
338		unsigned long flags;
339		spin_lock_irqsave(&conf->device_lock, flags);
340		if (r1_bio->mddev->degraded == conf->raid_disks ||
341		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
342		     test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
343			uptodate = 1;
344		spin_unlock_irqrestore(&conf->device_lock, flags);
345	}
346
347	if (uptodate) {
348		raid_end_bio_io(r1_bio);
349		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
350	} else {
351		/*
352		 * oops, read error:
353		 */
354		char b[BDEVNAME_SIZE];
355		printk_ratelimited(
356			KERN_ERR "md/raid1:%s: %s: "
357			"rescheduling sector %llu\n",
358			mdname(conf->mddev),
359			bdevname(conf->mirrors[mirror].rdev->bdev,
360				 b),
361			(unsigned long long)r1_bio->sector);
362		set_bit(R1BIO_ReadError, &r1_bio->state);
363		reschedule_retry(r1_bio);
364		/* don't drop the reference on read_disk yet */
365	}
366}
367
368static void close_write(struct r1bio *r1_bio)
369{
370	/* it really is the end of this request */
371	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
372		/* free extra copy of the data pages */
373		int i = r1_bio->behind_page_count;
374		while (i--)
375			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
376		kfree(r1_bio->behind_bvecs);
377		r1_bio->behind_bvecs = NULL;
378	}
379	/* clear the bitmap if all writes complete successfully */
380	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
381			r1_bio->sectors,
382			!test_bit(R1BIO_Degraded, &r1_bio->state),
383			test_bit(R1BIO_BehindIO, &r1_bio->state));
384	md_write_end(r1_bio->mddev);
385}
386
387static void r1_bio_write_done(struct r1bio *r1_bio)
388{
389	if (!atomic_dec_and_test(&r1_bio->remaining))
390		return;
391
392	if (test_bit(R1BIO_WriteError, &r1_bio->state))
393		reschedule_retry(r1_bio);
394	else {
395		close_write(r1_bio);
396		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
397			reschedule_retry(r1_bio);
398		else
399			raid_end_bio_io(r1_bio);
400	}
401}
402
403static void raid1_end_write_request(struct bio *bio)
404{
405	struct r1bio *r1_bio = bio->bi_private;
406	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
407	struct r1conf *conf = r1_bio->mddev->private;
408	struct bio *to_put = NULL;
409
410	mirror = find_bio_disk(r1_bio, bio);
411
412	/*
413	 * 'one mirror IO has finished' event handler:
414	 */
415	if (bio->bi_error) {
416		set_bit(WriteErrorSeen,
417			&conf->mirrors[mirror].rdev->flags);
418		if (!test_and_set_bit(WantReplacement,
419				      &conf->mirrors[mirror].rdev->flags))
420			set_bit(MD_RECOVERY_NEEDED, &
421				conf->mddev->recovery);
422
423		set_bit(R1BIO_WriteError, &r1_bio->state);
424	} else {
425		/*
426		 * Set R1BIO_Uptodate in our master bio, so that we
427		 * will return a good error code for to the higher
428		 * levels even if IO on some other mirrored buffer
429		 * fails.
430		 *
431		 * The 'master' represents the composite IO operation
432		 * to user-side. So if something waits for IO, then it
433		 * will wait for the 'master' bio.
434		 */
435		sector_t first_bad;
436		int bad_sectors;
437
438		r1_bio->bios[mirror] = NULL;
439		to_put = bio;
440		/*
441		 * Do not set R1BIO_Uptodate if the current device is
442		 * rebuilding or Faulty. This is because we cannot use
443		 * such device for properly reading the data back (we could
444		 * potentially use it, if the current write would have felt
445		 * before rdev->recovery_offset, but for simplicity we don't
446		 * check this here.
447		 */
448		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
449		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
450			set_bit(R1BIO_Uptodate, &r1_bio->state);
451
452		/* Maybe we can clear some bad blocks. */
453		if (is_badblock(conf->mirrors[mirror].rdev,
454				r1_bio->sector, r1_bio->sectors,
455				&first_bad, &bad_sectors)) {
456			r1_bio->bios[mirror] = IO_MADE_GOOD;
457			set_bit(R1BIO_MadeGood, &r1_bio->state);
458		}
459	}
460
461	if (behind) {
462		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
463			atomic_dec(&r1_bio->behind_remaining);
464
465		/*
466		 * In behind mode, we ACK the master bio once the I/O
467		 * has safely reached all non-writemostly
468		 * disks. Setting the Returned bit ensures that this
469		 * gets done only once -- we don't ever want to return
470		 * -EIO here, instead we'll wait
471		 */
472		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
473		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
474			/* Maybe we can return now */
475			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
476				struct bio *mbio = r1_bio->master_bio;
477				pr_debug("raid1: behind end write sectors"
478					 " %llu-%llu\n",
479					 (unsigned long long) mbio->bi_iter.bi_sector,
480					 (unsigned long long) bio_end_sector(mbio) - 1);
481				call_bio_endio(r1_bio);
482			}
483		}
484	}
485	if (r1_bio->bios[mirror] == NULL)
486		rdev_dec_pending(conf->mirrors[mirror].rdev,
487				 conf->mddev);
488
489	/*
490	 * Let's see if all mirrored write operations have finished
491	 * already.
492	 */
493	r1_bio_write_done(r1_bio);
494
495	if (to_put)
496		bio_put(to_put);
497}
498
499/*
500 * This routine returns the disk from which the requested read should
501 * be done. There is a per-array 'next expected sequential IO' sector
502 * number - if this matches on the next IO then we use the last disk.
503 * There is also a per-disk 'last know head position' sector that is
504 * maintained from IRQ contexts, both the normal and the resync IO
505 * completion handlers update this position correctly. If there is no
506 * perfect sequential match then we pick the disk whose head is closest.
507 *
508 * If there are 2 mirrors in the same 2 devices, performance degrades
509 * because position is mirror, not device based.
510 *
511 * The rdev for the device selected will have nr_pending incremented.
512 */
513static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
514{
515	const sector_t this_sector = r1_bio->sector;
516	int sectors;
517	int best_good_sectors;
518	int best_disk, best_dist_disk, best_pending_disk;
519	int has_nonrot_disk;
520	int disk;
521	sector_t best_dist;
522	unsigned int min_pending;
523	struct md_rdev *rdev;
524	int choose_first;
525	int choose_next_idle;
526
527	rcu_read_lock();
528	/*
529	 * Check if we can balance. We can balance on the whole
530	 * device if no resync is going on, or below the resync window.
531	 * We take the first readable disk when above the resync window.
532	 */
533 retry:
534	sectors = r1_bio->sectors;
535	best_disk = -1;
536	best_dist_disk = -1;
537	best_dist = MaxSector;
538	best_pending_disk = -1;
539	min_pending = UINT_MAX;
540	best_good_sectors = 0;
541	has_nonrot_disk = 0;
542	choose_next_idle = 0;
543
544	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
545	    (mddev_is_clustered(conf->mddev) &&
546	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
547		    this_sector + sectors)))
548		choose_first = 1;
549	else
550		choose_first = 0;
551
552	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
553		sector_t dist;
554		sector_t first_bad;
555		int bad_sectors;
556		unsigned int pending;
557		bool nonrot;
558
559		rdev = rcu_dereference(conf->mirrors[disk].rdev);
560		if (r1_bio->bios[disk] == IO_BLOCKED
561		    || rdev == NULL
562		    || test_bit(Faulty, &rdev->flags))
563			continue;
564		if (!test_bit(In_sync, &rdev->flags) &&
565		    rdev->recovery_offset < this_sector + sectors)
566			continue;
567		if (test_bit(WriteMostly, &rdev->flags)) {
568			/* Don't balance among write-mostly, just
569			 * use the first as a last resort */
570			if (best_dist_disk < 0) {
571				if (is_badblock(rdev, this_sector, sectors,
572						&first_bad, &bad_sectors)) {
573					if (first_bad < this_sector)
574						/* Cannot use this */
575						continue;
576					best_good_sectors = first_bad - this_sector;
577				} else
578					best_good_sectors = sectors;
579				best_dist_disk = disk;
580				best_pending_disk = disk;
581			}
582			continue;
583		}
584		/* This is a reasonable device to use.  It might
585		 * even be best.
586		 */
587		if (is_badblock(rdev, this_sector, sectors,
588				&first_bad, &bad_sectors)) {
589			if (best_dist < MaxSector)
590				/* already have a better device */
591				continue;
592			if (first_bad <= this_sector) {
593				/* cannot read here. If this is the 'primary'
594				 * device, then we must not read beyond
595				 * bad_sectors from another device..
596				 */
597				bad_sectors -= (this_sector - first_bad);
598				if (choose_first && sectors > bad_sectors)
599					sectors = bad_sectors;
600				if (best_good_sectors > sectors)
601					best_good_sectors = sectors;
602
603			} else {
604				sector_t good_sectors = first_bad - this_sector;
605				if (good_sectors > best_good_sectors) {
606					best_good_sectors = good_sectors;
607					best_disk = disk;
608				}
609				if (choose_first)
610					break;
611			}
612			continue;
613		} else
614			best_good_sectors = sectors;
615
616		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
617		has_nonrot_disk |= nonrot;
618		pending = atomic_read(&rdev->nr_pending);
619		dist = abs(this_sector - conf->mirrors[disk].head_position);
620		if (choose_first) {
621			best_disk = disk;
622			break;
623		}
624		/* Don't change to another disk for sequential reads */
625		if (conf->mirrors[disk].next_seq_sect == this_sector
626		    || dist == 0) {
627			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
628			struct raid1_info *mirror = &conf->mirrors[disk];
629
630			best_disk = disk;
631			/*
632			 * If buffered sequential IO size exceeds optimal
633			 * iosize, check if there is idle disk. If yes, choose
634			 * the idle disk. read_balance could already choose an
635			 * idle disk before noticing it's a sequential IO in
636			 * this disk. This doesn't matter because this disk
637			 * will idle, next time it will be utilized after the
638			 * first disk has IO size exceeds optimal iosize. In
639			 * this way, iosize of the first disk will be optimal
640			 * iosize at least. iosize of the second disk might be
641			 * small, but not a big deal since when the second disk
642			 * starts IO, the first disk is likely still busy.
643			 */
644			if (nonrot && opt_iosize > 0 &&
645			    mirror->seq_start != MaxSector &&
646			    mirror->next_seq_sect > opt_iosize &&
647			    mirror->next_seq_sect - opt_iosize >=
648			    mirror->seq_start) {
649				choose_next_idle = 1;
650				continue;
651			}
652			break;
653		}
654		/* If device is idle, use it */
655		if (pending == 0) {
656			best_disk = disk;
657			break;
658		}
659
660		if (choose_next_idle)
661			continue;
662
663		if (min_pending > pending) {
664			min_pending = pending;
665			best_pending_disk = disk;
666		}
667
668		if (dist < best_dist) {
669			best_dist = dist;
670			best_dist_disk = disk;
671		}
672	}
673
674	/*
675	 * If all disks are rotational, choose the closest disk. If any disk is
676	 * non-rotational, choose the disk with less pending request even the
677	 * disk is rotational, which might/might not be optimal for raids with
678	 * mixed ratation/non-rotational disks depending on workload.
679	 */
680	if (best_disk == -1) {
681		if (has_nonrot_disk)
682			best_disk = best_pending_disk;
683		else
684			best_disk = best_dist_disk;
685	}
686
687	if (best_disk >= 0) {
688		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
689		if (!rdev)
690			goto retry;
691		atomic_inc(&rdev->nr_pending);
692		if (test_bit(Faulty, &rdev->flags)) {
693			/* cannot risk returning a device that failed
694			 * before we inc'ed nr_pending
695			 */
696			rdev_dec_pending(rdev, conf->mddev);
697			goto retry;
698		}
699		sectors = best_good_sectors;
700
701		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
702			conf->mirrors[best_disk].seq_start = this_sector;
703
704		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
705	}
706	rcu_read_unlock();
707	*max_sectors = sectors;
708
709	return best_disk;
710}
711
712static int raid1_congested(struct mddev *mddev, int bits)
713{
714	struct r1conf *conf = mddev->private;
715	int i, ret = 0;
716
717	if ((bits & (1 << WB_async_congested)) &&
718	    conf->pending_count >= max_queued_requests)
719		return 1;
720
721	rcu_read_lock();
722	for (i = 0; i < conf->raid_disks * 2; i++) {
723		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
724		if (rdev && !test_bit(Faulty, &rdev->flags)) {
725			struct request_queue *q = bdev_get_queue(rdev->bdev);
726
727			BUG_ON(!q);
728
729			/* Note the '|| 1' - when read_balance prefers
730			 * non-congested targets, it can be removed
731			 */
732			if ((bits & (1 << WB_async_congested)) || 1)
733				ret |= bdi_congested(&q->backing_dev_info, bits);
734			else
735				ret &= bdi_congested(&q->backing_dev_info, bits);
736		}
737	}
738	rcu_read_unlock();
739	return ret;
740}
741
742static void flush_pending_writes(struct r1conf *conf)
743{
744	/* Any writes that have been queued but are awaiting
745	 * bitmap updates get flushed here.
746	 */
747	spin_lock_irq(&conf->device_lock);
748
749	if (conf->pending_bio_list.head) {
750		struct bio *bio;
751		bio = bio_list_get(&conf->pending_bio_list);
752		conf->pending_count = 0;
753		spin_unlock_irq(&conf->device_lock);
754		/* flush any pending bitmap writes to
755		 * disk before proceeding w/ I/O */
756		bitmap_unplug(conf->mddev->bitmap);
757		wake_up(&conf->wait_barrier);
758
759		while (bio) { /* submit pending writes */
760			struct bio *next = bio->bi_next;
761			bio->bi_next = NULL;
762			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
763			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
764				/* Just ignore it */
765				bio_endio(bio);
766			else
767				generic_make_request(bio);
768			bio = next;
769		}
770	} else
771		spin_unlock_irq(&conf->device_lock);
772}
773
774/* Barriers....
775 * Sometimes we need to suspend IO while we do something else,
776 * either some resync/recovery, or reconfigure the array.
777 * To do this we raise a 'barrier'.
778 * The 'barrier' is a counter that can be raised multiple times
779 * to count how many activities are happening which preclude
780 * normal IO.
781 * We can only raise the barrier if there is no pending IO.
782 * i.e. if nr_pending == 0.
783 * We choose only to raise the barrier if no-one is waiting for the
784 * barrier to go down.  This means that as soon as an IO request
785 * is ready, no other operations which require a barrier will start
786 * until the IO request has had a chance.
787 *
788 * So: regular IO calls 'wait_barrier'.  When that returns there
789 *    is no backgroup IO happening,  It must arrange to call
790 *    allow_barrier when it has finished its IO.
791 * backgroup IO calls must call raise_barrier.  Once that returns
792 *    there is no normal IO happeing.  It must arrange to call
793 *    lower_barrier when the particular background IO completes.
794 */
795static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
796{
797	spin_lock_irq(&conf->resync_lock);
798
799	/* Wait until no block IO is waiting */
800	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
801			    conf->resync_lock);
802
803	/* block any new IO from starting */
804	conf->barrier++;
805	conf->next_resync = sector_nr;
806
807	/* For these conditions we must wait:
808	 * A: while the array is in frozen state
809	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
810	 *    the max count which allowed.
811	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
812	 *    next resync will reach to the window which normal bios are
813	 *    handling.
814	 * D: while there are any active requests in the current window.
815	 */
816	wait_event_lock_irq(conf->wait_barrier,
817			    !conf->array_frozen &&
818			    conf->barrier < RESYNC_DEPTH &&
819			    conf->current_window_requests == 0 &&
820			    (conf->start_next_window >=
821			     conf->next_resync + RESYNC_SECTORS),
822			    conf->resync_lock);
823
824	conf->nr_pending++;
825	spin_unlock_irq(&conf->resync_lock);
826}
827
828static void lower_barrier(struct r1conf *conf)
829{
830	unsigned long flags;
831	BUG_ON(conf->barrier <= 0);
832	spin_lock_irqsave(&conf->resync_lock, flags);
833	conf->barrier--;
834	conf->nr_pending--;
835	spin_unlock_irqrestore(&conf->resync_lock, flags);
836	wake_up(&conf->wait_barrier);
837}
838
839static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
840{
841	bool wait = false;
842
843	if (conf->array_frozen || !bio)
844		wait = true;
845	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
846		if ((conf->mddev->curr_resync_completed
847		     >= bio_end_sector(bio)) ||
848		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
849		     <= bio->bi_iter.bi_sector))
850			wait = false;
851		else
852			wait = true;
853	}
854
855	return wait;
856}
857
858static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
859{
860	sector_t sector = 0;
861
862	spin_lock_irq(&conf->resync_lock);
863	if (need_to_wait_for_sync(conf, bio)) {
864		conf->nr_waiting++;
865		/* Wait for the barrier to drop.
866		 * However if there are already pending
867		 * requests (preventing the barrier from
868		 * rising completely), and the
869		 * per-process bio queue isn't empty,
870		 * then don't wait, as we need to empty
871		 * that queue to allow conf->start_next_window
872		 * to increase.
873		 */
874		wait_event_lock_irq(conf->wait_barrier,
875				    !conf->array_frozen &&
876				    (!conf->barrier ||
877				     ((conf->start_next_window <
878				       conf->next_resync + RESYNC_SECTORS) &&
879				      current->bio_list &&
880				      !bio_list_empty(current->bio_list))),
881				    conf->resync_lock);
882		conf->nr_waiting--;
883	}
884
885	if (bio && bio_data_dir(bio) == WRITE) {
886		if (bio->bi_iter.bi_sector >= conf->next_resync) {
887			if (conf->start_next_window == MaxSector)
888				conf->start_next_window =
889					conf->next_resync +
890					NEXT_NORMALIO_DISTANCE;
891
892			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
893			    <= bio->bi_iter.bi_sector)
894				conf->next_window_requests++;
895			else
896				conf->current_window_requests++;
897			sector = conf->start_next_window;
898		}
899	}
900
901	conf->nr_pending++;
902	spin_unlock_irq(&conf->resync_lock);
903	return sector;
904}
905
906static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
907			  sector_t bi_sector)
908{
909	unsigned long flags;
910
911	spin_lock_irqsave(&conf->resync_lock, flags);
912	conf->nr_pending--;
913	if (start_next_window) {
914		if (start_next_window == conf->start_next_window) {
915			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
916			    <= bi_sector)
917				conf->next_window_requests--;
918			else
919				conf->current_window_requests--;
920		} else
921			conf->current_window_requests--;
922
923		if (!conf->current_window_requests) {
924			if (conf->next_window_requests) {
925				conf->current_window_requests =
926					conf->next_window_requests;
927				conf->next_window_requests = 0;
928				conf->start_next_window +=
929					NEXT_NORMALIO_DISTANCE;
930			} else
931				conf->start_next_window = MaxSector;
932		}
933	}
934	spin_unlock_irqrestore(&conf->resync_lock, flags);
935	wake_up(&conf->wait_barrier);
936}
937
938static void freeze_array(struct r1conf *conf, int extra)
939{
940	/* stop syncio and normal IO and wait for everything to
941	 * go quite.
942	 * We wait until nr_pending match nr_queued+extra
943	 * This is called in the context of one normal IO request
944	 * that has failed. Thus any sync request that might be pending
945	 * will be blocked by nr_pending, and we need to wait for
946	 * pending IO requests to complete or be queued for re-try.
947	 * Thus the number queued (nr_queued) plus this request (extra)
948	 * must match the number of pending IOs (nr_pending) before
949	 * we continue.
950	 */
951	spin_lock_irq(&conf->resync_lock);
952	conf->array_frozen = 1;
953	wait_event_lock_irq_cmd(conf->wait_barrier,
954				conf->nr_pending == conf->nr_queued+extra,
955				conf->resync_lock,
956				flush_pending_writes(conf));
957	spin_unlock_irq(&conf->resync_lock);
958}
959static void unfreeze_array(struct r1conf *conf)
960{
961	/* reverse the effect of the freeze */
962	spin_lock_irq(&conf->resync_lock);
963	conf->array_frozen = 0;
964	wake_up(&conf->wait_barrier);
965	spin_unlock_irq(&conf->resync_lock);
966}
967
968/* duplicate the data pages for behind I/O
969 */
970static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
971{
972	int i;
973	struct bio_vec *bvec;
974	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
975					GFP_NOIO);
976	if (unlikely(!bvecs))
977		return;
978
979	bio_for_each_segment_all(bvec, bio, i) {
980		bvecs[i] = *bvec;
981		bvecs[i].bv_page = alloc_page(GFP_NOIO);
982		if (unlikely(!bvecs[i].bv_page))
983			goto do_sync_io;
984		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
985		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
986		kunmap(bvecs[i].bv_page);
987		kunmap(bvec->bv_page);
988	}
989	r1_bio->behind_bvecs = bvecs;
990	r1_bio->behind_page_count = bio->bi_vcnt;
991	set_bit(R1BIO_BehindIO, &r1_bio->state);
992	return;
993
994do_sync_io:
995	for (i = 0; i < bio->bi_vcnt; i++)
996		if (bvecs[i].bv_page)
997			put_page(bvecs[i].bv_page);
998	kfree(bvecs);
999	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1000		 bio->bi_iter.bi_size);
1001}
1002
1003struct raid1_plug_cb {
1004	struct blk_plug_cb	cb;
1005	struct bio_list		pending;
1006	int			pending_cnt;
1007};
1008
1009static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1010{
1011	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1012						  cb);
1013	struct mddev *mddev = plug->cb.data;
1014	struct r1conf *conf = mddev->private;
1015	struct bio *bio;
1016
1017	if (from_schedule || current->bio_list) {
1018		spin_lock_irq(&conf->device_lock);
1019		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1020		conf->pending_count += plug->pending_cnt;
1021		spin_unlock_irq(&conf->device_lock);
1022		wake_up(&conf->wait_barrier);
1023		md_wakeup_thread(mddev->thread);
1024		kfree(plug);
1025		return;
1026	}
1027
1028	/* we aren't scheduling, so we can do the write-out directly. */
1029	bio = bio_list_get(&plug->pending);
1030	bitmap_unplug(mddev->bitmap);
1031	wake_up(&conf->wait_barrier);
1032
1033	while (bio) { /* submit pending writes */
1034		struct bio *next = bio->bi_next;
1035		bio->bi_next = NULL;
1036		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1037		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1038			/* Just ignore it */
1039			bio_endio(bio);
1040		else
1041			generic_make_request(bio);
1042		bio = next;
1043	}
1044	kfree(plug);
1045}
1046
1047static void make_request(struct mddev *mddev, struct bio * bio)
1048{
1049	struct r1conf *conf = mddev->private;
1050	struct raid1_info *mirror;
1051	struct r1bio *r1_bio;
1052	struct bio *read_bio;
1053	int i, disks;
1054	struct bitmap *bitmap;
1055	unsigned long flags;
1056	const int rw = bio_data_dir(bio);
1057	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1058	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1059	const unsigned long do_discard = (bio->bi_rw
1060					  & (REQ_DISCARD | REQ_SECURE));
1061	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1062	struct md_rdev *blocked_rdev;
1063	struct blk_plug_cb *cb;
1064	struct raid1_plug_cb *plug = NULL;
1065	int first_clone;
1066	int sectors_handled;
1067	int max_sectors;
1068	sector_t start_next_window;
1069
1070	/*
1071	 * Register the new request and wait if the reconstruction
1072	 * thread has put up a bar for new requests.
1073	 * Continue immediately if no resync is active currently.
1074	 */
1075
1076	md_write_start(mddev, bio); /* wait on superblock update early */
1077
1078	if (bio_data_dir(bio) == WRITE &&
1079	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1080	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1081	    (mddev_is_clustered(mddev) &&
1082	     md_cluster_ops->area_resyncing(mddev, WRITE,
1083		     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1084		/* As the suspend_* range is controlled by
1085		 * userspace, we want an interruptible
1086		 * wait.
1087		 */
1088		DEFINE_WAIT(w);
1089		for (;;) {
1090			flush_signals(current);
1091			prepare_to_wait(&conf->wait_barrier,
1092					&w, TASK_INTERRUPTIBLE);
1093			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1094			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1095			    (mddev_is_clustered(mddev) &&
1096			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1097				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1098				break;
1099			schedule();
1100		}
1101		finish_wait(&conf->wait_barrier, &w);
1102	}
1103
1104	start_next_window = wait_barrier(conf, bio);
1105
1106	bitmap = mddev->bitmap;
1107
1108	/*
1109	 * make_request() can abort the operation when READA is being
1110	 * used and no empty request is available.
1111	 *
1112	 */
1113	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1114
1115	r1_bio->master_bio = bio;
1116	r1_bio->sectors = bio_sectors(bio);
1117	r1_bio->state = 0;
1118	r1_bio->mddev = mddev;
1119	r1_bio->sector = bio->bi_iter.bi_sector;
1120
1121	/* We might need to issue multiple reads to different
1122	 * devices if there are bad blocks around, so we keep
1123	 * track of the number of reads in bio->bi_phys_segments.
1124	 * If this is 0, there is only one r1_bio and no locking
1125	 * will be needed when requests complete.  If it is
1126	 * non-zero, then it is the number of not-completed requests.
1127	 */
1128	bio->bi_phys_segments = 0;
1129	bio_clear_flag(bio, BIO_SEG_VALID);
1130
1131	if (rw == READ) {
1132		/*
1133		 * read balancing logic:
1134		 */
1135		int rdisk;
1136
1137read_again:
1138		rdisk = read_balance(conf, r1_bio, &max_sectors);
1139
1140		if (rdisk < 0) {
1141			/* couldn't find anywhere to read from */
1142			raid_end_bio_io(r1_bio);
1143			return;
1144		}
1145		mirror = conf->mirrors + rdisk;
1146
1147		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1148		    bitmap) {
1149			/* Reading from a write-mostly device must
1150			 * take care not to over-take any writes
1151			 * that are 'behind'
1152			 */
1153			wait_event(bitmap->behind_wait,
1154				   atomic_read(&bitmap->behind_writes) == 0);
1155		}
1156		r1_bio->read_disk = rdisk;
1157		r1_bio->start_next_window = 0;
1158
1159		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1160		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1161			 max_sectors);
1162
1163		r1_bio->bios[rdisk] = read_bio;
1164
1165		read_bio->bi_iter.bi_sector = r1_bio->sector +
1166			mirror->rdev->data_offset;
1167		read_bio->bi_bdev = mirror->rdev->bdev;
1168		read_bio->bi_end_io = raid1_end_read_request;
1169		read_bio->bi_rw = READ | do_sync;
1170		read_bio->bi_private = r1_bio;
1171
1172		if (max_sectors < r1_bio->sectors) {
1173			/* could not read all from this device, so we will
1174			 * need another r1_bio.
1175			 */
1176
1177			sectors_handled = (r1_bio->sector + max_sectors
1178					   - bio->bi_iter.bi_sector);
1179			r1_bio->sectors = max_sectors;
1180			spin_lock_irq(&conf->device_lock);
1181			if (bio->bi_phys_segments == 0)
1182				bio->bi_phys_segments = 2;
1183			else
1184				bio->bi_phys_segments++;
1185			spin_unlock_irq(&conf->device_lock);
1186			/* Cannot call generic_make_request directly
1187			 * as that will be queued in __make_request
1188			 * and subsequent mempool_alloc might block waiting
1189			 * for it.  So hand bio over to raid1d.
1190			 */
1191			reschedule_retry(r1_bio);
1192
1193			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1194
1195			r1_bio->master_bio = bio;
1196			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1197			r1_bio->state = 0;
1198			r1_bio->mddev = mddev;
1199			r1_bio->sector = bio->bi_iter.bi_sector +
1200				sectors_handled;
1201			goto read_again;
1202		} else
1203			generic_make_request(read_bio);
1204		return;
1205	}
1206
1207	/*
1208	 * WRITE:
1209	 */
1210	if (conf->pending_count >= max_queued_requests) {
1211		md_wakeup_thread(mddev->thread);
1212		wait_event(conf->wait_barrier,
1213			   conf->pending_count < max_queued_requests);
1214	}
1215	/* first select target devices under rcu_lock and
1216	 * inc refcount on their rdev.  Record them by setting
1217	 * bios[x] to bio
1218	 * If there are known/acknowledged bad blocks on any device on
1219	 * which we have seen a write error, we want to avoid writing those
1220	 * blocks.
1221	 * This potentially requires several writes to write around
1222	 * the bad blocks.  Each set of writes gets it's own r1bio
1223	 * with a set of bios attached.
1224	 */
1225
1226	disks = conf->raid_disks * 2;
1227 retry_write:
1228	r1_bio->start_next_window = start_next_window;
1229	blocked_rdev = NULL;
1230	rcu_read_lock();
1231	max_sectors = r1_bio->sectors;
1232	for (i = 0;  i < disks; i++) {
1233		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1234		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1235			atomic_inc(&rdev->nr_pending);
1236			blocked_rdev = rdev;
1237			break;
1238		}
1239		r1_bio->bios[i] = NULL;
1240		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1241			if (i < conf->raid_disks)
1242				set_bit(R1BIO_Degraded, &r1_bio->state);
1243			continue;
1244		}
1245
1246		atomic_inc(&rdev->nr_pending);
1247		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1248			sector_t first_bad;
1249			int bad_sectors;
1250			int is_bad;
1251
1252			is_bad = is_badblock(rdev, r1_bio->sector,
1253					     max_sectors,
1254					     &first_bad, &bad_sectors);
1255			if (is_bad < 0) {
1256				/* mustn't write here until the bad block is
1257				 * acknowledged*/
1258				set_bit(BlockedBadBlocks, &rdev->flags);
1259				blocked_rdev = rdev;
1260				break;
1261			}
1262			if (is_bad && first_bad <= r1_bio->sector) {
1263				/* Cannot write here at all */
1264				bad_sectors -= (r1_bio->sector - first_bad);
1265				if (bad_sectors < max_sectors)
1266					/* mustn't write more than bad_sectors
1267					 * to other devices yet
1268					 */
1269					max_sectors = bad_sectors;
1270				rdev_dec_pending(rdev, mddev);
1271				/* We don't set R1BIO_Degraded as that
1272				 * only applies if the disk is
1273				 * missing, so it might be re-added,
1274				 * and we want to know to recover this
1275				 * chunk.
1276				 * In this case the device is here,
1277				 * and the fact that this chunk is not
1278				 * in-sync is recorded in the bad
1279				 * block log
1280				 */
1281				continue;
1282			}
1283			if (is_bad) {
1284				int good_sectors = first_bad - r1_bio->sector;
1285				if (good_sectors < max_sectors)
1286					max_sectors = good_sectors;
1287			}
1288		}
1289		r1_bio->bios[i] = bio;
1290	}
1291	rcu_read_unlock();
1292
1293	if (unlikely(blocked_rdev)) {
1294		/* Wait for this device to become unblocked */
1295		int j;
1296		sector_t old = start_next_window;
1297
1298		for (j = 0; j < i; j++)
1299			if (r1_bio->bios[j])
1300				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1301		r1_bio->state = 0;
1302		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1303		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1304		start_next_window = wait_barrier(conf, bio);
1305		/*
1306		 * We must make sure the multi r1bios of bio have
1307		 * the same value of bi_phys_segments
1308		 */
1309		if (bio->bi_phys_segments && old &&
1310		    old != start_next_window)
1311			/* Wait for the former r1bio(s) to complete */
1312			wait_event(conf->wait_barrier,
1313				   bio->bi_phys_segments == 1);
1314		goto retry_write;
1315	}
1316
1317	if (max_sectors < r1_bio->sectors) {
1318		/* We are splitting this write into multiple parts, so
1319		 * we need to prepare for allocating another r1_bio.
1320		 */
1321		r1_bio->sectors = max_sectors;
1322		spin_lock_irq(&conf->device_lock);
1323		if (bio->bi_phys_segments == 0)
1324			bio->bi_phys_segments = 2;
1325		else
1326			bio->bi_phys_segments++;
1327		spin_unlock_irq(&conf->device_lock);
1328	}
1329	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1330
1331	atomic_set(&r1_bio->remaining, 1);
1332	atomic_set(&r1_bio->behind_remaining, 0);
1333
1334	first_clone = 1;
1335	for (i = 0; i < disks; i++) {
1336		struct bio *mbio;
1337		if (!r1_bio->bios[i])
1338			continue;
1339
1340		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1341		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1342
1343		if (first_clone) {
1344			/* do behind I/O ?
1345			 * Not if there are too many, or cannot
1346			 * allocate memory, or a reader on WriteMostly
1347			 * is waiting for behind writes to flush */
1348			if (bitmap &&
1349			    (atomic_read(&bitmap->behind_writes)
1350			     < mddev->bitmap_info.max_write_behind) &&
1351			    !waitqueue_active(&bitmap->behind_wait))
1352				alloc_behind_pages(mbio, r1_bio);
1353
1354			bitmap_startwrite(bitmap, r1_bio->sector,
1355					  r1_bio->sectors,
1356					  test_bit(R1BIO_BehindIO,
1357						   &r1_bio->state));
1358			first_clone = 0;
1359		}
1360		if (r1_bio->behind_bvecs) {
1361			struct bio_vec *bvec;
1362			int j;
1363
1364			/*
1365			 * We trimmed the bio, so _all is legit
1366			 */
1367			bio_for_each_segment_all(bvec, mbio, j)
1368				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1369			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1370				atomic_inc(&r1_bio->behind_remaining);
1371		}
1372
1373		r1_bio->bios[i] = mbio;
1374
1375		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1376				   conf->mirrors[i].rdev->data_offset);
1377		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1378		mbio->bi_end_io	= raid1_end_write_request;
1379		mbio->bi_rw =
1380			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1381		mbio->bi_private = r1_bio;
1382
1383		atomic_inc(&r1_bio->remaining);
1384
1385		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1386		if (cb)
1387			plug = container_of(cb, struct raid1_plug_cb, cb);
1388		else
1389			plug = NULL;
1390		spin_lock_irqsave(&conf->device_lock, flags);
1391		if (plug) {
1392			bio_list_add(&plug->pending, mbio);
1393			plug->pending_cnt++;
1394		} else {
1395			bio_list_add(&conf->pending_bio_list, mbio);
1396			conf->pending_count++;
1397		}
1398		spin_unlock_irqrestore(&conf->device_lock, flags);
1399		if (!plug)
1400			md_wakeup_thread(mddev->thread);
1401	}
1402	/* Mustn't call r1_bio_write_done before this next test,
1403	 * as it could result in the bio being freed.
1404	 */
1405	if (sectors_handled < bio_sectors(bio)) {
1406		r1_bio_write_done(r1_bio);
1407		/* We need another r1_bio.  It has already been counted
1408		 * in bio->bi_phys_segments
1409		 */
1410		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1411		r1_bio->master_bio = bio;
1412		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1413		r1_bio->state = 0;
1414		r1_bio->mddev = mddev;
1415		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1416		goto retry_write;
1417	}
1418
1419	r1_bio_write_done(r1_bio);
1420
1421	/* In case raid1d snuck in to freeze_array */
1422	wake_up(&conf->wait_barrier);
1423}
1424
1425static void status(struct seq_file *seq, struct mddev *mddev)
1426{
1427	struct r1conf *conf = mddev->private;
1428	int i;
1429
1430	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1431		   conf->raid_disks - mddev->degraded);
1432	rcu_read_lock();
1433	for (i = 0; i < conf->raid_disks; i++) {
1434		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1435		seq_printf(seq, "%s",
1436			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1437	}
1438	rcu_read_unlock();
1439	seq_printf(seq, "]");
1440}
1441
1442static void error(struct mddev *mddev, struct md_rdev *rdev)
1443{
1444	char b[BDEVNAME_SIZE];
1445	struct r1conf *conf = mddev->private;
1446	unsigned long flags;
1447
1448	/*
1449	 * If it is not operational, then we have already marked it as dead
1450	 * else if it is the last working disks, ignore the error, let the
1451	 * next level up know.
1452	 * else mark the drive as failed
1453	 */
1454	if (test_bit(In_sync, &rdev->flags)
1455	    && (conf->raid_disks - mddev->degraded) == 1) {
1456		/*
1457		 * Don't fail the drive, act as though we were just a
1458		 * normal single drive.
1459		 * However don't try a recovery from this drive as
1460		 * it is very likely to fail.
1461		 */
1462		conf->recovery_disabled = mddev->recovery_disabled;
1463		return;
1464	}
1465	set_bit(Blocked, &rdev->flags);
1466	spin_lock_irqsave(&conf->device_lock, flags);
1467	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1468		mddev->degraded++;
1469		set_bit(Faulty, &rdev->flags);
1470	} else
1471		set_bit(Faulty, &rdev->flags);
1472	spin_unlock_irqrestore(&conf->device_lock, flags);
1473	/*
1474	 * if recovery is running, make sure it aborts.
1475	 */
1476	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1477	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1478	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1479	printk(KERN_ALERT
1480	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1481	       "md/raid1:%s: Operation continuing on %d devices.\n",
1482	       mdname(mddev), bdevname(rdev->bdev, b),
1483	       mdname(mddev), conf->raid_disks - mddev->degraded);
1484}
1485
1486static void print_conf(struct r1conf *conf)
1487{
1488	int i;
1489
1490	printk(KERN_DEBUG "RAID1 conf printout:\n");
1491	if (!conf) {
1492		printk(KERN_DEBUG "(!conf)\n");
1493		return;
1494	}
1495	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1496		conf->raid_disks);
1497
1498	rcu_read_lock();
1499	for (i = 0; i < conf->raid_disks; i++) {
1500		char b[BDEVNAME_SIZE];
1501		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1502		if (rdev)
1503			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1504			       i, !test_bit(In_sync, &rdev->flags),
1505			       !test_bit(Faulty, &rdev->flags),
1506			       bdevname(rdev->bdev,b));
1507	}
1508	rcu_read_unlock();
1509}
1510
1511static void close_sync(struct r1conf *conf)
1512{
1513	wait_barrier(conf, NULL);
1514	allow_barrier(conf, 0, 0);
1515
1516	mempool_destroy(conf->r1buf_pool);
1517	conf->r1buf_pool = NULL;
1518
1519	spin_lock_irq(&conf->resync_lock);
1520	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1521	conf->start_next_window = MaxSector;
1522	conf->current_window_requests +=
1523		conf->next_window_requests;
1524	conf->next_window_requests = 0;
1525	spin_unlock_irq(&conf->resync_lock);
1526}
1527
1528static int raid1_spare_active(struct mddev *mddev)
1529{
1530	int i;
1531	struct r1conf *conf = mddev->private;
1532	int count = 0;
1533	unsigned long flags;
1534
1535	/*
1536	 * Find all failed disks within the RAID1 configuration
1537	 * and mark them readable.
1538	 * Called under mddev lock, so rcu protection not needed.
1539	 * device_lock used to avoid races with raid1_end_read_request
1540	 * which expects 'In_sync' flags and ->degraded to be consistent.
1541	 */
1542	spin_lock_irqsave(&conf->device_lock, flags);
1543	for (i = 0; i < conf->raid_disks; i++) {
1544		struct md_rdev *rdev = conf->mirrors[i].rdev;
1545		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1546		if (repl
1547		    && !test_bit(Candidate, &repl->flags)
1548		    && repl->recovery_offset == MaxSector
1549		    && !test_bit(Faulty, &repl->flags)
1550		    && !test_and_set_bit(In_sync, &repl->flags)) {
1551			/* replacement has just become active */
1552			if (!rdev ||
1553			    !test_and_clear_bit(In_sync, &rdev->flags))
1554				count++;
1555			if (rdev) {
1556				/* Replaced device not technically
1557				 * faulty, but we need to be sure
1558				 * it gets removed and never re-added
1559				 */
1560				set_bit(Faulty, &rdev->flags);
1561				sysfs_notify_dirent_safe(
1562					rdev->sysfs_state);
1563			}
1564		}
1565		if (rdev
1566		    && rdev->recovery_offset == MaxSector
1567		    && !test_bit(Faulty, &rdev->flags)
1568		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1569			count++;
1570			sysfs_notify_dirent_safe(rdev->sysfs_state);
1571		}
1572	}
1573	mddev->degraded -= count;
1574	spin_unlock_irqrestore(&conf->device_lock, flags);
1575
1576	print_conf(conf);
1577	return count;
1578}
1579
1580static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1581{
1582	struct r1conf *conf = mddev->private;
1583	int err = -EEXIST;
1584	int mirror = 0;
1585	struct raid1_info *p;
1586	int first = 0;
1587	int last = conf->raid_disks - 1;
1588
1589	if (mddev->recovery_disabled == conf->recovery_disabled)
1590		return -EBUSY;
1591
1592	if (md_integrity_add_rdev(rdev, mddev))
1593		return -ENXIO;
1594
1595	if (rdev->raid_disk >= 0)
1596		first = last = rdev->raid_disk;
1597
1598	/*
1599	 * find the disk ... but prefer rdev->saved_raid_disk
1600	 * if possible.
1601	 */
1602	if (rdev->saved_raid_disk >= 0 &&
1603	    rdev->saved_raid_disk >= first &&
1604	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1605		first = last = rdev->saved_raid_disk;
1606
1607	for (mirror = first; mirror <= last; mirror++) {
1608		p = conf->mirrors+mirror;
1609		if (!p->rdev) {
1610
1611			if (mddev->gendisk)
1612				disk_stack_limits(mddev->gendisk, rdev->bdev,
1613						  rdev->data_offset << 9);
1614
1615			p->head_position = 0;
1616			rdev->raid_disk = mirror;
1617			err = 0;
1618			/* As all devices are equivalent, we don't need a full recovery
1619			 * if this was recently any drive of the array
1620			 */
1621			if (rdev->saved_raid_disk < 0)
1622				conf->fullsync = 1;
1623			rcu_assign_pointer(p->rdev, rdev);
1624			break;
1625		}
1626		if (test_bit(WantReplacement, &p->rdev->flags) &&
1627		    p[conf->raid_disks].rdev == NULL) {
1628			/* Add this device as a replacement */
1629			clear_bit(In_sync, &rdev->flags);
1630			set_bit(Replacement, &rdev->flags);
1631			rdev->raid_disk = mirror;
1632			err = 0;
1633			conf->fullsync = 1;
1634			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1635			break;
1636		}
1637	}
1638	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1639		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1640	print_conf(conf);
1641	return err;
1642}
1643
1644static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1645{
1646	struct r1conf *conf = mddev->private;
1647	int err = 0;
1648	int number = rdev->raid_disk;
1649	struct raid1_info *p = conf->mirrors + number;
1650
1651	if (rdev != p->rdev)
1652		p = conf->mirrors + conf->raid_disks + number;
1653
1654	print_conf(conf);
1655	if (rdev == p->rdev) {
1656		if (test_bit(In_sync, &rdev->flags) ||
1657		    atomic_read(&rdev->nr_pending)) {
1658			err = -EBUSY;
1659			goto abort;
1660		}
1661		/* Only remove non-faulty devices if recovery
1662		 * is not possible.
1663		 */
1664		if (!test_bit(Faulty, &rdev->flags) &&
1665		    mddev->recovery_disabled != conf->recovery_disabled &&
1666		    mddev->degraded < conf->raid_disks) {
1667			err = -EBUSY;
1668			goto abort;
1669		}
1670		p->rdev = NULL;
1671		synchronize_rcu();
1672		if (atomic_read(&rdev->nr_pending)) {
1673			/* lost the race, try later */
1674			err = -EBUSY;
1675			p->rdev = rdev;
1676			goto abort;
1677		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1678			/* We just removed a device that is being replaced.
1679			 * Move down the replacement.  We drain all IO before
1680			 * doing this to avoid confusion.
1681			 */
1682			struct md_rdev *repl =
1683				conf->mirrors[conf->raid_disks + number].rdev;
1684			freeze_array(conf, 0);
1685			clear_bit(Replacement, &repl->flags);
1686			p->rdev = repl;
1687			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1688			unfreeze_array(conf);
1689			clear_bit(WantReplacement, &rdev->flags);
1690		} else
1691			clear_bit(WantReplacement, &rdev->flags);
1692		err = md_integrity_register(mddev);
1693	}
1694abort:
1695
1696	print_conf(conf);
1697	return err;
1698}
1699
1700static void end_sync_read(struct bio *bio)
1701{
1702	struct r1bio *r1_bio = bio->bi_private;
1703
1704	update_head_pos(r1_bio->read_disk, r1_bio);
1705
1706	/*
1707	 * we have read a block, now it needs to be re-written,
1708	 * or re-read if the read failed.
1709	 * We don't do much here, just schedule handling by raid1d
1710	 */
1711	if (!bio->bi_error)
1712		set_bit(R1BIO_Uptodate, &r1_bio->state);
1713
1714	if (atomic_dec_and_test(&r1_bio->remaining))
1715		reschedule_retry(r1_bio);
1716}
1717
1718static void end_sync_write(struct bio *bio)
1719{
1720	int uptodate = !bio->bi_error;
1721	struct r1bio *r1_bio = bio->bi_private;
1722	struct mddev *mddev = r1_bio->mddev;
1723	struct r1conf *conf = mddev->private;
1724	int mirror=0;
1725	sector_t first_bad;
1726	int bad_sectors;
1727
1728	mirror = find_bio_disk(r1_bio, bio);
1729
1730	if (!uptodate) {
1731		sector_t sync_blocks = 0;
1732		sector_t s = r1_bio->sector;
1733		long sectors_to_go = r1_bio->sectors;
1734		/* make sure these bits doesn't get cleared. */
1735		do {
1736			bitmap_end_sync(mddev->bitmap, s,
1737					&sync_blocks, 1);
1738			s += sync_blocks;
1739			sectors_to_go -= sync_blocks;
1740		} while (sectors_to_go > 0);
1741		set_bit(WriteErrorSeen,
1742			&conf->mirrors[mirror].rdev->flags);
1743		if (!test_and_set_bit(WantReplacement,
1744				      &conf->mirrors[mirror].rdev->flags))
1745			set_bit(MD_RECOVERY_NEEDED, &
1746				mddev->recovery);
1747		set_bit(R1BIO_WriteError, &r1_bio->state);
1748	} else if (is_badblock(conf->mirrors[mirror].rdev,
1749			       r1_bio->sector,
1750			       r1_bio->sectors,
1751			       &first_bad, &bad_sectors) &&
1752		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1753				r1_bio->sector,
1754				r1_bio->sectors,
1755				&first_bad, &bad_sectors)
1756		)
1757		set_bit(R1BIO_MadeGood, &r1_bio->state);
1758
1759	if (atomic_dec_and_test(&r1_bio->remaining)) {
1760		int s = r1_bio->sectors;
1761		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1762		    test_bit(R1BIO_WriteError, &r1_bio->state))
1763			reschedule_retry(r1_bio);
1764		else {
1765			put_buf(r1_bio);
1766			md_done_sync(mddev, s, uptodate);
1767		}
1768	}
1769}
1770
1771static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1772			    int sectors, struct page *page, int rw)
1773{
1774	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1775		/* success */
1776		return 1;
1777	if (rw == WRITE) {
1778		set_bit(WriteErrorSeen, &rdev->flags);
1779		if (!test_and_set_bit(WantReplacement,
1780				      &rdev->flags))
1781			set_bit(MD_RECOVERY_NEEDED, &
1782				rdev->mddev->recovery);
1783	}
1784	/* need to record an error - either for the block or the device */
1785	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1786		md_error(rdev->mddev, rdev);
1787	return 0;
1788}
1789
1790static int fix_sync_read_error(struct r1bio *r1_bio)
1791{
1792	/* Try some synchronous reads of other devices to get
1793	 * good data, much like with normal read errors.  Only
1794	 * read into the pages we already have so we don't
1795	 * need to re-issue the read request.
1796	 * We don't need to freeze the array, because being in an
1797	 * active sync request, there is no normal IO, and
1798	 * no overlapping syncs.
1799	 * We don't need to check is_badblock() again as we
1800	 * made sure that anything with a bad block in range
1801	 * will have bi_end_io clear.
1802	 */
1803	struct mddev *mddev = r1_bio->mddev;
1804	struct r1conf *conf = mddev->private;
1805	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1806	sector_t sect = r1_bio->sector;
1807	int sectors = r1_bio->sectors;
1808	int idx = 0;
1809
1810	while(sectors) {
1811		int s = sectors;
1812		int d = r1_bio->read_disk;
1813		int success = 0;
1814		struct md_rdev *rdev;
1815		int start;
1816
1817		if (s > (PAGE_SIZE>>9))
1818			s = PAGE_SIZE >> 9;
1819		do {
1820			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1821				/* No rcu protection needed here devices
1822				 * can only be removed when no resync is
1823				 * active, and resync is currently active
1824				 */
1825				rdev = conf->mirrors[d].rdev;
1826				if (sync_page_io(rdev, sect, s<<9,
1827						 bio->bi_io_vec[idx].bv_page,
1828						 READ, false)) {
1829					success = 1;
1830					break;
1831				}
1832			}
1833			d++;
1834			if (d == conf->raid_disks * 2)
1835				d = 0;
1836		} while (!success && d != r1_bio->read_disk);
1837
1838		if (!success) {
1839			char b[BDEVNAME_SIZE];
1840			int abort = 0;
1841			/* Cannot read from anywhere, this block is lost.
1842			 * Record a bad block on each device.  If that doesn't
1843			 * work just disable and interrupt the recovery.
1844			 * Don't fail devices as that won't really help.
1845			 */
1846			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1847			       " for block %llu\n",
1848			       mdname(mddev),
1849			       bdevname(bio->bi_bdev, b),
1850			       (unsigned long long)r1_bio->sector);
1851			for (d = 0; d < conf->raid_disks * 2; d++) {
1852				rdev = conf->mirrors[d].rdev;
1853				if (!rdev || test_bit(Faulty, &rdev->flags))
1854					continue;
1855				if (!rdev_set_badblocks(rdev, sect, s, 0))
1856					abort = 1;
1857			}
1858			if (abort) {
1859				conf->recovery_disabled =
1860					mddev->recovery_disabled;
1861				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1862				md_done_sync(mddev, r1_bio->sectors, 0);
1863				put_buf(r1_bio);
1864				return 0;
1865			}
1866			/* Try next page */
1867			sectors -= s;
1868			sect += s;
1869			idx++;
1870			continue;
1871		}
1872
1873		start = d;
1874		/* write it back and re-read */
1875		while (d != r1_bio->read_disk) {
1876			if (d == 0)
1877				d = conf->raid_disks * 2;
1878			d--;
1879			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1880				continue;
1881			rdev = conf->mirrors[d].rdev;
1882			if (r1_sync_page_io(rdev, sect, s,
1883					    bio->bi_io_vec[idx].bv_page,
1884					    WRITE) == 0) {
1885				r1_bio->bios[d]->bi_end_io = NULL;
1886				rdev_dec_pending(rdev, mddev);
1887			}
1888		}
1889		d = start;
1890		while (d != r1_bio->read_disk) {
1891			if (d == 0)
1892				d = conf->raid_disks * 2;
1893			d--;
1894			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1895				continue;
1896			rdev = conf->mirrors[d].rdev;
1897			if (r1_sync_page_io(rdev, sect, s,
1898					    bio->bi_io_vec[idx].bv_page,
1899					    READ) != 0)
1900				atomic_add(s, &rdev->corrected_errors);
1901		}
1902		sectors -= s;
1903		sect += s;
1904		idx ++;
1905	}
1906	set_bit(R1BIO_Uptodate, &r1_bio->state);
1907	bio->bi_error = 0;
1908	return 1;
1909}
1910
1911static void process_checks(struct r1bio *r1_bio)
1912{
1913	/* We have read all readable devices.  If we haven't
1914	 * got the block, then there is no hope left.
1915	 * If we have, then we want to do a comparison
1916	 * and skip the write if everything is the same.
1917	 * If any blocks failed to read, then we need to
1918	 * attempt an over-write
1919	 */
1920	struct mddev *mddev = r1_bio->mddev;
1921	struct r1conf *conf = mddev->private;
1922	int primary;
1923	int i;
1924	int vcnt;
1925
1926	/* Fix variable parts of all bios */
1927	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1928	for (i = 0; i < conf->raid_disks * 2; i++) {
1929		int j;
1930		int size;
1931		int error;
1932		struct bio *b = r1_bio->bios[i];
1933		if (b->bi_end_io != end_sync_read)
1934			continue;
1935		/* fixup the bio for reuse, but preserve errno */
1936		error = b->bi_error;
1937		bio_reset(b);
1938		b->bi_error = error;
1939		b->bi_vcnt = vcnt;
1940		b->bi_iter.bi_size = r1_bio->sectors << 9;
1941		b->bi_iter.bi_sector = r1_bio->sector +
1942			conf->mirrors[i].rdev->data_offset;
1943		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1944		b->bi_end_io = end_sync_read;
1945		b->bi_private = r1_bio;
1946
1947		size = b->bi_iter.bi_size;
1948		for (j = 0; j < vcnt ; j++) {
1949			struct bio_vec *bi;
1950			bi = &b->bi_io_vec[j];
1951			bi->bv_offset = 0;
1952			if (size > PAGE_SIZE)
1953				bi->bv_len = PAGE_SIZE;
1954			else
1955				bi->bv_len = size;
1956			size -= PAGE_SIZE;
1957		}
1958	}
1959	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1960		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1961		    !r1_bio->bios[primary]->bi_error) {
1962			r1_bio->bios[primary]->bi_end_io = NULL;
1963			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1964			break;
1965		}
1966	r1_bio->read_disk = primary;
1967	for (i = 0; i < conf->raid_disks * 2; i++) {
1968		int j;
1969		struct bio *pbio = r1_bio->bios[primary];
1970		struct bio *sbio = r1_bio->bios[i];
1971		int error = sbio->bi_error;
1972
1973		if (sbio->bi_end_io != end_sync_read)
1974			continue;
1975		/* Now we can 'fixup' the error value */
1976		sbio->bi_error = 0;
1977
1978		if (!error) {
1979			for (j = vcnt; j-- ; ) {
1980				struct page *p, *s;
1981				p = pbio->bi_io_vec[j].bv_page;
1982				s = sbio->bi_io_vec[j].bv_page;
1983				if (memcmp(page_address(p),
1984					   page_address(s),
1985					   sbio->bi_io_vec[j].bv_len))
1986					break;
1987			}
1988		} else
1989			j = 0;
1990		if (j >= 0)
1991			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1992		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1993			      && !error)) {
1994			/* No need to write to this device. */
1995			sbio->bi_end_io = NULL;
1996			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1997			continue;
1998		}
1999
2000		bio_copy_data(sbio, pbio);
2001	}
2002}
2003
2004static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2005{
2006	struct r1conf *conf = mddev->private;
2007	int i;
2008	int disks = conf->raid_disks * 2;
2009	struct bio *bio, *wbio;
2010
2011	bio = r1_bio->bios[r1_bio->read_disk];
2012
2013	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2014		/* ouch - failed to read all of that. */
2015		if (!fix_sync_read_error(r1_bio))
2016			return;
2017
2018	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2019		process_checks(r1_bio);
2020
2021	/*
2022	 * schedule writes
2023	 */
2024	atomic_set(&r1_bio->remaining, 1);
2025	for (i = 0; i < disks ; i++) {
2026		wbio = r1_bio->bios[i];
2027		if (wbio->bi_end_io == NULL ||
2028		    (wbio->bi_end_io == end_sync_read &&
2029		     (i == r1_bio->read_disk ||
2030		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2031			continue;
2032
2033		wbio->bi_rw = WRITE;
2034		wbio->bi_end_io = end_sync_write;
2035		atomic_inc(&r1_bio->remaining);
2036		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2037
2038		generic_make_request(wbio);
2039	}
2040
2041	if (atomic_dec_and_test(&r1_bio->remaining)) {
2042		/* if we're here, all write(s) have completed, so clean up */
2043		int s = r1_bio->sectors;
2044		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045		    test_bit(R1BIO_WriteError, &r1_bio->state))
2046			reschedule_retry(r1_bio);
2047		else {
2048			put_buf(r1_bio);
2049			md_done_sync(mddev, s, 1);
2050		}
2051	}
2052}
2053
2054/*
2055 * This is a kernel thread which:
2056 *
2057 *	1.	Retries failed read operations on working mirrors.
2058 *	2.	Updates the raid superblock when problems encounter.
2059 *	3.	Performs writes following reads for array synchronising.
2060 */
2061
2062static void fix_read_error(struct r1conf *conf, int read_disk,
2063			   sector_t sect, int sectors)
2064{
2065	struct mddev *mddev = conf->mddev;
2066	while(sectors) {
2067		int s = sectors;
2068		int d = read_disk;
2069		int success = 0;
2070		int start;
2071		struct md_rdev *rdev;
2072
2073		if (s > (PAGE_SIZE>>9))
2074			s = PAGE_SIZE >> 9;
2075
2076		do {
2077			/* Note: no rcu protection needed here
2078			 * as this is synchronous in the raid1d thread
2079			 * which is the thread that might remove
2080			 * a device.  If raid1d ever becomes multi-threaded....
2081			 */
2082			sector_t first_bad;
2083			int bad_sectors;
2084
2085			rdev = conf->mirrors[d].rdev;
2086			if (rdev &&
2087			    (test_bit(In_sync, &rdev->flags) ||
2088			     (!test_bit(Faulty, &rdev->flags) &&
2089			      rdev->recovery_offset >= sect + s)) &&
2090			    is_badblock(rdev, sect, s,
2091					&first_bad, &bad_sectors) == 0 &&
2092			    sync_page_io(rdev, sect, s<<9,
2093					 conf->tmppage, READ, false))
2094				success = 1;
2095			else {
2096				d++;
2097				if (d == conf->raid_disks * 2)
2098					d = 0;
2099			}
2100		} while (!success && d != read_disk);
2101
2102		if (!success) {
2103			/* Cannot read from anywhere - mark it bad */
2104			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2105			if (!rdev_set_badblocks(rdev, sect, s, 0))
2106				md_error(mddev, rdev);
2107			break;
2108		}
2109		/* write it back and re-read */
2110		start = d;
2111		while (d != read_disk) {
2112			if (d==0)
2113				d = conf->raid_disks * 2;
2114			d--;
2115			rdev = conf->mirrors[d].rdev;
2116			if (rdev &&
2117			    !test_bit(Faulty, &rdev->flags))
2118				r1_sync_page_io(rdev, sect, s,
2119						conf->tmppage, WRITE);
2120		}
2121		d = start;
2122		while (d != read_disk) {
2123			char b[BDEVNAME_SIZE];
2124			if (d==0)
2125				d = conf->raid_disks * 2;
2126			d--;
2127			rdev = conf->mirrors[d].rdev;
2128			if (rdev &&
2129			    !test_bit(Faulty, &rdev->flags)) {
2130				if (r1_sync_page_io(rdev, sect, s,
2131						    conf->tmppage, READ)) {
2132					atomic_add(s, &rdev->corrected_errors);
2133					printk(KERN_INFO
2134					       "md/raid1:%s: read error corrected "
2135					       "(%d sectors at %llu on %s)\n",
2136					       mdname(mddev), s,
2137					       (unsigned long long)(sect +
2138					           rdev->data_offset),
2139					       bdevname(rdev->bdev, b));
2140				}
2141			}
2142		}
2143		sectors -= s;
2144		sect += s;
2145	}
2146}
2147
2148static int narrow_write_error(struct r1bio *r1_bio, int i)
2149{
2150	struct mddev *mddev = r1_bio->mddev;
2151	struct r1conf *conf = mddev->private;
2152	struct md_rdev *rdev = conf->mirrors[i].rdev;
2153
2154	/* bio has the data to be written to device 'i' where
2155	 * we just recently had a write error.
2156	 * We repeatedly clone the bio and trim down to one block,
2157	 * then try the write.  Where the write fails we record
2158	 * a bad block.
2159	 * It is conceivable that the bio doesn't exactly align with
2160	 * blocks.  We must handle this somehow.
2161	 *
2162	 * We currently own a reference on the rdev.
2163	 */
2164
2165	int block_sectors;
2166	sector_t sector;
2167	int sectors;
2168	int sect_to_write = r1_bio->sectors;
2169	int ok = 1;
2170
2171	if (rdev->badblocks.shift < 0)
2172		return 0;
2173
2174	block_sectors = roundup(1 << rdev->badblocks.shift,
2175				bdev_logical_block_size(rdev->bdev) >> 9);
2176	sector = r1_bio->sector;
2177	sectors = ((sector + block_sectors)
2178		   & ~(sector_t)(block_sectors - 1))
2179		- sector;
2180
2181	while (sect_to_write) {
2182		struct bio *wbio;
2183		if (sectors > sect_to_write)
2184			sectors = sect_to_write;
2185		/* Write at 'sector' for 'sectors'*/
2186
2187		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2188			unsigned vcnt = r1_bio->behind_page_count;
2189			struct bio_vec *vec = r1_bio->behind_bvecs;
2190
2191			while (!vec->bv_page) {
2192				vec++;
2193				vcnt--;
2194			}
2195
2196			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2197			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2198
2199			wbio->bi_vcnt = vcnt;
2200		} else {
2201			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2202		}
2203
2204		wbio->bi_rw = WRITE;
2205		wbio->bi_iter.bi_sector = r1_bio->sector;
2206		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2207
2208		bio_trim(wbio, sector - r1_bio->sector, sectors);
2209		wbio->bi_iter.bi_sector += rdev->data_offset;
2210		wbio->bi_bdev = rdev->bdev;
2211		if (submit_bio_wait(WRITE, wbio) < 0)
2212			/* failure! */
2213			ok = rdev_set_badblocks(rdev, sector,
2214						sectors, 0)
2215				&& ok;
2216
2217		bio_put(wbio);
2218		sect_to_write -= sectors;
2219		sector += sectors;
2220		sectors = block_sectors;
2221	}
2222	return ok;
2223}
2224
2225static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2226{
2227	int m;
2228	int s = r1_bio->sectors;
2229	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2230		struct md_rdev *rdev = conf->mirrors[m].rdev;
2231		struct bio *bio = r1_bio->bios[m];
2232		if (bio->bi_end_io == NULL)
2233			continue;
2234		if (!bio->bi_error &&
2235		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2236			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2237		}
2238		if (bio->bi_error &&
2239		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2240			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2241				md_error(conf->mddev, rdev);
2242		}
2243	}
2244	put_buf(r1_bio);
2245	md_done_sync(conf->mddev, s, 1);
2246}
2247
2248static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2249{
2250	int m;
2251	bool fail = false;
2252	for (m = 0; m < conf->raid_disks * 2 ; m++)
2253		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2254			struct md_rdev *rdev = conf->mirrors[m].rdev;
2255			rdev_clear_badblocks(rdev,
2256					     r1_bio->sector,
2257					     r1_bio->sectors, 0);
2258			rdev_dec_pending(rdev, conf->mddev);
2259		} else if (r1_bio->bios[m] != NULL) {
2260			/* This drive got a write error.  We need to
2261			 * narrow down and record precise write
2262			 * errors.
2263			 */
2264			fail = true;
2265			if (!narrow_write_error(r1_bio, m)) {
2266				md_error(conf->mddev,
2267					 conf->mirrors[m].rdev);
2268				/* an I/O failed, we can't clear the bitmap */
2269				set_bit(R1BIO_Degraded, &r1_bio->state);
2270			}
2271			rdev_dec_pending(conf->mirrors[m].rdev,
2272					 conf->mddev);
2273		}
2274	if (fail) {
2275		spin_lock_irq(&conf->device_lock);
2276		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2277		conf->nr_queued++;
2278		spin_unlock_irq(&conf->device_lock);
2279		md_wakeup_thread(conf->mddev->thread);
2280	} else {
2281		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2282			close_write(r1_bio);
2283		raid_end_bio_io(r1_bio);
2284	}
2285}
2286
2287static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2288{
2289	int disk;
2290	int max_sectors;
2291	struct mddev *mddev = conf->mddev;
2292	struct bio *bio;
2293	char b[BDEVNAME_SIZE];
2294	struct md_rdev *rdev;
2295
2296	clear_bit(R1BIO_ReadError, &r1_bio->state);
2297	/* we got a read error. Maybe the drive is bad.  Maybe just
2298	 * the block and we can fix it.
2299	 * We freeze all other IO, and try reading the block from
2300	 * other devices.  When we find one, we re-write
2301	 * and check it that fixes the read error.
2302	 * This is all done synchronously while the array is
2303	 * frozen
2304	 */
2305	if (mddev->ro == 0) {
2306		freeze_array(conf, 1);
2307		fix_read_error(conf, r1_bio->read_disk,
2308			       r1_bio->sector, r1_bio->sectors);
2309		unfreeze_array(conf);
2310	} else
2311		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2312	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2313
2314	bio = r1_bio->bios[r1_bio->read_disk];
2315	bdevname(bio->bi_bdev, b);
2316read_more:
2317	disk = read_balance(conf, r1_bio, &max_sectors);
2318	if (disk == -1) {
2319		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2320		       " read error for block %llu\n",
2321		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2322		raid_end_bio_io(r1_bio);
2323	} else {
2324		const unsigned long do_sync
2325			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2326		if (bio) {
2327			r1_bio->bios[r1_bio->read_disk] =
2328				mddev->ro ? IO_BLOCKED : NULL;
2329			bio_put(bio);
2330		}
2331		r1_bio->read_disk = disk;
2332		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2333		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2334			 max_sectors);
2335		r1_bio->bios[r1_bio->read_disk] = bio;
2336		rdev = conf->mirrors[disk].rdev;
2337		printk_ratelimited(KERN_ERR
2338				   "md/raid1:%s: redirecting sector %llu"
2339				   " to other mirror: %s\n",
2340				   mdname(mddev),
2341				   (unsigned long long)r1_bio->sector,
2342				   bdevname(rdev->bdev, b));
2343		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2344		bio->bi_bdev = rdev->bdev;
2345		bio->bi_end_io = raid1_end_read_request;
2346		bio->bi_rw = READ | do_sync;
2347		bio->bi_private = r1_bio;
2348		if (max_sectors < r1_bio->sectors) {
2349			/* Drat - have to split this up more */
2350			struct bio *mbio = r1_bio->master_bio;
2351			int sectors_handled = (r1_bio->sector + max_sectors
2352					       - mbio->bi_iter.bi_sector);
2353			r1_bio->sectors = max_sectors;
2354			spin_lock_irq(&conf->device_lock);
2355			if (mbio->bi_phys_segments == 0)
2356				mbio->bi_phys_segments = 2;
2357			else
2358				mbio->bi_phys_segments++;
2359			spin_unlock_irq(&conf->device_lock);
2360			generic_make_request(bio);
2361			bio = NULL;
2362
2363			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2364
2365			r1_bio->master_bio = mbio;
2366			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2367			r1_bio->state = 0;
2368			set_bit(R1BIO_ReadError, &r1_bio->state);
2369			r1_bio->mddev = mddev;
2370			r1_bio->sector = mbio->bi_iter.bi_sector +
2371				sectors_handled;
2372
2373			goto read_more;
2374		} else
2375			generic_make_request(bio);
2376	}
2377}
2378
2379static void raid1d(struct md_thread *thread)
2380{
2381	struct mddev *mddev = thread->mddev;
2382	struct r1bio *r1_bio;
2383	unsigned long flags;
2384	struct r1conf *conf = mddev->private;
2385	struct list_head *head = &conf->retry_list;
2386	struct blk_plug plug;
2387
2388	md_check_recovery(mddev);
2389
2390	if (!list_empty_careful(&conf->bio_end_io_list) &&
2391	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2392		LIST_HEAD(tmp);
2393		spin_lock_irqsave(&conf->device_lock, flags);
2394		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2395			while (!list_empty(&conf->bio_end_io_list)) {
2396				list_move(conf->bio_end_io_list.prev, &tmp);
2397				conf->nr_queued--;
2398			}
2399		}
2400		spin_unlock_irqrestore(&conf->device_lock, flags);
2401		while (!list_empty(&tmp)) {
2402			r1_bio = list_first_entry(&tmp, struct r1bio,
2403						  retry_list);
2404			list_del(&r1_bio->retry_list);
2405			if (mddev->degraded)
2406				set_bit(R1BIO_Degraded, &r1_bio->state);
2407			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2408				close_write(r1_bio);
2409			raid_end_bio_io(r1_bio);
2410		}
2411	}
2412
2413	blk_start_plug(&plug);
2414	for (;;) {
2415
2416		flush_pending_writes(conf);
2417
2418		spin_lock_irqsave(&conf->device_lock, flags);
2419		if (list_empty(head)) {
2420			spin_unlock_irqrestore(&conf->device_lock, flags);
2421			break;
2422		}
2423		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2424		list_del(head->prev);
2425		conf->nr_queued--;
2426		spin_unlock_irqrestore(&conf->device_lock, flags);
2427
2428		mddev = r1_bio->mddev;
2429		conf = mddev->private;
2430		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2431			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2432			    test_bit(R1BIO_WriteError, &r1_bio->state))
2433				handle_sync_write_finished(conf, r1_bio);
2434			else
2435				sync_request_write(mddev, r1_bio);
2436		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2437			   test_bit(R1BIO_WriteError, &r1_bio->state))
2438			handle_write_finished(conf, r1_bio);
2439		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2440			handle_read_error(conf, r1_bio);
2441		else
2442			/* just a partial read to be scheduled from separate
2443			 * context
2444			 */
2445			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2446
2447		cond_resched();
2448		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2449			md_check_recovery(mddev);
2450	}
2451	blk_finish_plug(&plug);
2452}
2453
2454static int init_resync(struct r1conf *conf)
2455{
2456	int buffs;
2457
2458	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2459	BUG_ON(conf->r1buf_pool);
2460	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2461					  conf->poolinfo);
2462	if (!conf->r1buf_pool)
2463		return -ENOMEM;
2464	conf->next_resync = 0;
2465	return 0;
2466}
2467
2468/*
2469 * perform a "sync" on one "block"
2470 *
2471 * We need to make sure that no normal I/O request - particularly write
2472 * requests - conflict with active sync requests.
2473 *
2474 * This is achieved by tracking pending requests and a 'barrier' concept
2475 * that can be installed to exclude normal IO requests.
2476 */
2477
2478static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
2479{
2480	struct r1conf *conf = mddev->private;
2481	struct r1bio *r1_bio;
2482	struct bio *bio;
2483	sector_t max_sector, nr_sectors;
2484	int disk = -1;
2485	int i;
2486	int wonly = -1;
2487	int write_targets = 0, read_targets = 0;
2488	sector_t sync_blocks;
2489	int still_degraded = 0;
2490	int good_sectors = RESYNC_SECTORS;
2491	int min_bad = 0; /* number of sectors that are bad in all devices */
2492
2493	if (!conf->r1buf_pool)
2494		if (init_resync(conf))
2495			return 0;
2496
2497	max_sector = mddev->dev_sectors;
2498	if (sector_nr >= max_sector) {
2499		/* If we aborted, we need to abort the
2500		 * sync on the 'current' bitmap chunk (there will
2501		 * only be one in raid1 resync.
2502		 * We can find the current addess in mddev->curr_resync
2503		 */
2504		if (mddev->curr_resync < max_sector) /* aborted */
2505			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2506						&sync_blocks, 1);
2507		else /* completed sync */
2508			conf->fullsync = 0;
2509
2510		bitmap_close_sync(mddev->bitmap);
2511		close_sync(conf);
2512
2513		if (mddev_is_clustered(mddev)) {
2514			conf->cluster_sync_low = 0;
2515			conf->cluster_sync_high = 0;
2516		}
2517		return 0;
2518	}
2519
2520	if (mddev->bitmap == NULL &&
2521	    mddev->recovery_cp == MaxSector &&
2522	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2523	    conf->fullsync == 0) {
2524		*skipped = 1;
2525		return max_sector - sector_nr;
2526	}
2527	/* before building a request, check if we can skip these blocks..
2528	 * This call the bitmap_start_sync doesn't actually record anything
2529	 */
2530	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2531	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2532		/* We can skip this block, and probably several more */
2533		*skipped = 1;
2534		return sync_blocks;
2535	}
2536
2537	/* we are incrementing sector_nr below. To be safe, we check against
2538	 * sector_nr + two times RESYNC_SECTORS
2539	 */
2540
2541	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2542		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2543	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2544
2545	raise_barrier(conf, sector_nr);
2546
2547	rcu_read_lock();
2548	/*
2549	 * If we get a correctably read error during resync or recovery,
2550	 * we might want to read from a different device.  So we
2551	 * flag all drives that could conceivably be read from for READ,
2552	 * and any others (which will be non-In_sync devices) for WRITE.
2553	 * If a read fails, we try reading from something else for which READ
2554	 * is OK.
2555	 */
2556
2557	r1_bio->mddev = mddev;
2558	r1_bio->sector = sector_nr;
2559	r1_bio->state = 0;
2560	set_bit(R1BIO_IsSync, &r1_bio->state);
2561
2562	for (i = 0; i < conf->raid_disks * 2; i++) {
2563		struct md_rdev *rdev;
2564		bio = r1_bio->bios[i];
2565		bio_reset(bio);
2566
2567		rdev = rcu_dereference(conf->mirrors[i].rdev);
2568		if (rdev == NULL ||
2569		    test_bit(Faulty, &rdev->flags)) {
2570			if (i < conf->raid_disks)
2571				still_degraded = 1;
2572		} else if (!test_bit(In_sync, &rdev->flags)) {
2573			bio->bi_rw = WRITE;
2574			bio->bi_end_io = end_sync_write;
2575			write_targets ++;
2576		} else {
2577			/* may need to read from here */
2578			sector_t first_bad = MaxSector;
2579			int bad_sectors;
2580
2581			if (is_badblock(rdev, sector_nr, good_sectors,
2582					&first_bad, &bad_sectors)) {
2583				if (first_bad > sector_nr)
2584					good_sectors = first_bad - sector_nr;
2585				else {
2586					bad_sectors -= (sector_nr - first_bad);
2587					if (min_bad == 0 ||
2588					    min_bad > bad_sectors)
2589						min_bad = bad_sectors;
2590				}
2591			}
2592			if (sector_nr < first_bad) {
2593				if (test_bit(WriteMostly, &rdev->flags)) {
2594					if (wonly < 0)
2595						wonly = i;
2596				} else {
2597					if (disk < 0)
2598						disk = i;
2599				}
2600				bio->bi_rw = READ;
2601				bio->bi_end_io = end_sync_read;
2602				read_targets++;
2603			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2604				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2605				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2606				/*
2607				 * The device is suitable for reading (InSync),
2608				 * but has bad block(s) here. Let's try to correct them,
2609				 * if we are doing resync or repair. Otherwise, leave
2610				 * this device alone for this sync request.
2611				 */
2612				bio->bi_rw = WRITE;
2613				bio->bi_end_io = end_sync_write;
2614				write_targets++;
2615			}
2616		}
2617		if (bio->bi_end_io) {
2618			atomic_inc(&rdev->nr_pending);
2619			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2620			bio->bi_bdev = rdev->bdev;
2621			bio->bi_private = r1_bio;
2622		}
2623	}
2624	rcu_read_unlock();
2625	if (disk < 0)
2626		disk = wonly;
2627	r1_bio->read_disk = disk;
2628
2629	if (read_targets == 0 && min_bad > 0) {
2630		/* These sectors are bad on all InSync devices, so we
2631		 * need to mark them bad on all write targets
2632		 */
2633		int ok = 1;
2634		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2635			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2636				struct md_rdev *rdev = conf->mirrors[i].rdev;
2637				ok = rdev_set_badblocks(rdev, sector_nr,
2638							min_bad, 0
2639					) && ok;
2640			}
2641		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2642		*skipped = 1;
2643		put_buf(r1_bio);
2644
2645		if (!ok) {
2646			/* Cannot record the badblocks, so need to
2647			 * abort the resync.
2648			 * If there are multiple read targets, could just
2649			 * fail the really bad ones ???
2650			 */
2651			conf->recovery_disabled = mddev->recovery_disabled;
2652			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2653			return 0;
2654		} else
2655			return min_bad;
2656
2657	}
2658	if (min_bad > 0 && min_bad < good_sectors) {
2659		/* only resync enough to reach the next bad->good
2660		 * transition */
2661		good_sectors = min_bad;
2662	}
2663
2664	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2665		/* extra read targets are also write targets */
2666		write_targets += read_targets-1;
2667
2668	if (write_targets == 0 || read_targets == 0) {
2669		/* There is nowhere to write, so all non-sync
2670		 * drives must be failed - so we are finished
2671		 */
2672		sector_t rv;
2673		if (min_bad > 0)
2674			max_sector = sector_nr + min_bad;
2675		rv = max_sector - sector_nr;
2676		*skipped = 1;
2677		put_buf(r1_bio);
2678		return rv;
2679	}
2680
2681	if (max_sector > mddev->resync_max)
2682		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2683	if (max_sector > sector_nr + good_sectors)
2684		max_sector = sector_nr + good_sectors;
2685	nr_sectors = 0;
2686	sync_blocks = 0;
2687	do {
2688		struct page *page;
2689		int len = PAGE_SIZE;
2690		if (sector_nr + (len>>9) > max_sector)
2691			len = (max_sector - sector_nr) << 9;
2692		if (len == 0)
2693			break;
2694		if (sync_blocks == 0) {
2695			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2696					       &sync_blocks, still_degraded) &&
2697			    !conf->fullsync &&
2698			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2699				break;
2700			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2701			if ((len >> 9) > sync_blocks)
2702				len = sync_blocks<<9;
2703		}
2704
2705		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2706			bio = r1_bio->bios[i];
2707			if (bio->bi_end_io) {
2708				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2709				if (bio_add_page(bio, page, len, 0) == 0) {
2710					/* stop here */
2711					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2712					while (i > 0) {
2713						i--;
2714						bio = r1_bio->bios[i];
2715						if (bio->bi_end_io==NULL)
2716							continue;
2717						/* remove last page from this bio */
2718						bio->bi_vcnt--;
2719						bio->bi_iter.bi_size -= len;
2720						bio_clear_flag(bio, BIO_SEG_VALID);
2721					}
2722					goto bio_full;
2723				}
2724			}
2725		}
2726		nr_sectors += len>>9;
2727		sector_nr += len>>9;
2728		sync_blocks -= (len>>9);
2729	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2730 bio_full:
2731	r1_bio->sectors = nr_sectors;
2732
2733	if (mddev_is_clustered(mddev) &&
2734			conf->cluster_sync_high < sector_nr + nr_sectors) {
2735		conf->cluster_sync_low = mddev->curr_resync_completed;
2736		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2737		/* Send resync message */
2738		md_cluster_ops->resync_info_update(mddev,
2739				conf->cluster_sync_low,
2740				conf->cluster_sync_high);
2741	}
2742
2743	/* For a user-requested sync, we read all readable devices and do a
2744	 * compare
2745	 */
2746	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2747		atomic_set(&r1_bio->remaining, read_targets);
2748		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2749			bio = r1_bio->bios[i];
2750			if (bio->bi_end_io == end_sync_read) {
2751				read_targets--;
2752				md_sync_acct(bio->bi_bdev, nr_sectors);
2753				generic_make_request(bio);
2754			}
2755		}
2756	} else {
2757		atomic_set(&r1_bio->remaining, 1);
2758		bio = r1_bio->bios[r1_bio->read_disk];
2759		md_sync_acct(bio->bi_bdev, nr_sectors);
2760		generic_make_request(bio);
2761
2762	}
2763	return nr_sectors;
2764}
2765
2766static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2767{
2768	if (sectors)
2769		return sectors;
2770
2771	return mddev->dev_sectors;
2772}
2773
2774static struct r1conf *setup_conf(struct mddev *mddev)
2775{
2776	struct r1conf *conf;
2777	int i;
2778	struct raid1_info *disk;
2779	struct md_rdev *rdev;
2780	int err = -ENOMEM;
2781
2782	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2783	if (!conf)
2784		goto abort;
2785
2786	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2787				* mddev->raid_disks * 2,
2788				 GFP_KERNEL);
2789	if (!conf->mirrors)
2790		goto abort;
2791
2792	conf->tmppage = alloc_page(GFP_KERNEL);
2793	if (!conf->tmppage)
2794		goto abort;
2795
2796	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2797	if (!conf->poolinfo)
2798		goto abort;
2799	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2800	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2801					  r1bio_pool_free,
2802					  conf->poolinfo);
2803	if (!conf->r1bio_pool)
2804		goto abort;
2805
2806	conf->poolinfo->mddev = mddev;
2807
2808	err = -EINVAL;
2809	spin_lock_init(&conf->device_lock);
2810	rdev_for_each(rdev, mddev) {
2811		struct request_queue *q;
2812		int disk_idx = rdev->raid_disk;
2813		if (disk_idx >= mddev->raid_disks
2814		    || disk_idx < 0)
2815			continue;
2816		if (test_bit(Replacement, &rdev->flags))
2817			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2818		else
2819			disk = conf->mirrors + disk_idx;
2820
2821		if (disk->rdev)
2822			goto abort;
2823		disk->rdev = rdev;
2824		q = bdev_get_queue(rdev->bdev);
2825
2826		disk->head_position = 0;
2827		disk->seq_start = MaxSector;
2828	}
2829	conf->raid_disks = mddev->raid_disks;
2830	conf->mddev = mddev;
2831	INIT_LIST_HEAD(&conf->retry_list);
2832	INIT_LIST_HEAD(&conf->bio_end_io_list);
2833
2834	spin_lock_init(&conf->resync_lock);
2835	init_waitqueue_head(&conf->wait_barrier);
2836
2837	bio_list_init(&conf->pending_bio_list);
2838	conf->pending_count = 0;
2839	conf->recovery_disabled = mddev->recovery_disabled - 1;
2840
2841	conf->start_next_window = MaxSector;
2842	conf->current_window_requests = conf->next_window_requests = 0;
2843
2844	err = -EIO;
2845	for (i = 0; i < conf->raid_disks * 2; i++) {
2846
2847		disk = conf->mirrors + i;
2848
2849		if (i < conf->raid_disks &&
2850		    disk[conf->raid_disks].rdev) {
2851			/* This slot has a replacement. */
2852			if (!disk->rdev) {
2853				/* No original, just make the replacement
2854				 * a recovering spare
2855				 */
2856				disk->rdev =
2857					disk[conf->raid_disks].rdev;
2858				disk[conf->raid_disks].rdev = NULL;
2859			} else if (!test_bit(In_sync, &disk->rdev->flags))
2860				/* Original is not in_sync - bad */
2861				goto abort;
2862		}
2863
2864		if (!disk->rdev ||
2865		    !test_bit(In_sync, &disk->rdev->flags)) {
2866			disk->head_position = 0;
2867			if (disk->rdev &&
2868			    (disk->rdev->saved_raid_disk < 0))
2869				conf->fullsync = 1;
2870		}
2871	}
2872
2873	err = -ENOMEM;
2874	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2875	if (!conf->thread) {
2876		printk(KERN_ERR
2877		       "md/raid1:%s: couldn't allocate thread\n",
2878		       mdname(mddev));
2879		goto abort;
2880	}
2881
2882	return conf;
2883
2884 abort:
2885	if (conf) {
2886		mempool_destroy(conf->r1bio_pool);
2887		kfree(conf->mirrors);
2888		safe_put_page(conf->tmppage);
2889		kfree(conf->poolinfo);
2890		kfree(conf);
2891	}
2892	return ERR_PTR(err);
2893}
2894
2895static void raid1_free(struct mddev *mddev, void *priv);
2896static int run(struct mddev *mddev)
2897{
2898	struct r1conf *conf;
2899	int i;
2900	struct md_rdev *rdev;
2901	int ret;
2902	bool discard_supported = false;
2903
2904	if (mddev->level != 1) {
2905		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2906		       mdname(mddev), mddev->level);
2907		return -EIO;
2908	}
2909	if (mddev->reshape_position != MaxSector) {
2910		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2911		       mdname(mddev));
2912		return -EIO;
2913	}
2914	/*
2915	 * copy the already verified devices into our private RAID1
2916	 * bookkeeping area. [whatever we allocate in run(),
2917	 * should be freed in raid1_free()]
2918	 */
2919	if (mddev->private == NULL)
2920		conf = setup_conf(mddev);
2921	else
2922		conf = mddev->private;
2923
2924	if (IS_ERR(conf))
2925		return PTR_ERR(conf);
2926
2927	if (mddev->queue)
2928		blk_queue_max_write_same_sectors(mddev->queue, 0);
2929
2930	rdev_for_each(rdev, mddev) {
2931		if (!mddev->gendisk)
2932			continue;
2933		disk_stack_limits(mddev->gendisk, rdev->bdev,
2934				  rdev->data_offset << 9);
2935		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2936			discard_supported = true;
2937	}
2938
2939	mddev->degraded = 0;
2940	for (i=0; i < conf->raid_disks; i++)
2941		if (conf->mirrors[i].rdev == NULL ||
2942		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2943		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2944			mddev->degraded++;
2945
2946	if (conf->raid_disks - mddev->degraded == 1)
2947		mddev->recovery_cp = MaxSector;
2948
2949	if (mddev->recovery_cp != MaxSector)
2950		printk(KERN_NOTICE "md/raid1:%s: not clean"
2951		       " -- starting background reconstruction\n",
2952		       mdname(mddev));
2953	printk(KERN_INFO
2954		"md/raid1:%s: active with %d out of %d mirrors\n",
2955		mdname(mddev), mddev->raid_disks - mddev->degraded,
2956		mddev->raid_disks);
2957
2958	/*
2959	 * Ok, everything is just fine now
2960	 */
2961	mddev->thread = conf->thread;
2962	conf->thread = NULL;
2963	mddev->private = conf;
2964
2965	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2966
2967	if (mddev->queue) {
2968		if (discard_supported)
2969			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2970						mddev->queue);
2971		else
2972			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2973						  mddev->queue);
2974	}
2975
2976	ret =  md_integrity_register(mddev);
2977	if (ret) {
2978		md_unregister_thread(&mddev->thread);
2979		raid1_free(mddev, conf);
2980	}
2981	return ret;
2982}
2983
2984static void raid1_free(struct mddev *mddev, void *priv)
2985{
2986	struct r1conf *conf = priv;
2987
2988	mempool_destroy(conf->r1bio_pool);
2989	kfree(conf->mirrors);
2990	safe_put_page(conf->tmppage);
2991	kfree(conf->poolinfo);
2992	kfree(conf);
2993}
2994
2995static int raid1_resize(struct mddev *mddev, sector_t sectors)
2996{
2997	/* no resync is happening, and there is enough space
2998	 * on all devices, so we can resize.
2999	 * We need to make sure resync covers any new space.
3000	 * If the array is shrinking we should possibly wait until
3001	 * any io in the removed space completes, but it hardly seems
3002	 * worth it.
3003	 */
3004	sector_t newsize = raid1_size(mddev, sectors, 0);
3005	if (mddev->external_size &&
3006	    mddev->array_sectors > newsize)
3007		return -EINVAL;
3008	if (mddev->bitmap) {
3009		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3010		if (ret)
3011			return ret;
3012	}
3013	md_set_array_sectors(mddev, newsize);
3014	set_capacity(mddev->gendisk, mddev->array_sectors);
3015	revalidate_disk(mddev->gendisk);
3016	if (sectors > mddev->dev_sectors &&
3017	    mddev->recovery_cp > mddev->dev_sectors) {
3018		mddev->recovery_cp = mddev->dev_sectors;
3019		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3020	}
3021	mddev->dev_sectors = sectors;
3022	mddev->resync_max_sectors = sectors;
3023	return 0;
3024}
3025
3026static int raid1_reshape(struct mddev *mddev)
3027{
3028	/* We need to:
3029	 * 1/ resize the r1bio_pool
3030	 * 2/ resize conf->mirrors
3031	 *
3032	 * We allocate a new r1bio_pool if we can.
3033	 * Then raise a device barrier and wait until all IO stops.
3034	 * Then resize conf->mirrors and swap in the new r1bio pool.
3035	 *
3036	 * At the same time, we "pack" the devices so that all the missing
3037	 * devices have the higher raid_disk numbers.
3038	 */
3039	mempool_t *newpool, *oldpool;
3040	struct pool_info *newpoolinfo;
3041	struct raid1_info *newmirrors;
3042	struct r1conf *conf = mddev->private;
3043	int cnt, raid_disks;
3044	unsigned long flags;
3045	int d, d2, err;
3046
3047	/* Cannot change chunk_size, layout, or level */
3048	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3049	    mddev->layout != mddev->new_layout ||
3050	    mddev->level != mddev->new_level) {
3051		mddev->new_chunk_sectors = mddev->chunk_sectors;
3052		mddev->new_layout = mddev->layout;
3053		mddev->new_level = mddev->level;
3054		return -EINVAL;
3055	}
3056
3057	if (!mddev_is_clustered(mddev)) {
3058		err = md_allow_write(mddev);
3059		if (err)
3060			return err;
3061	}
3062
3063	raid_disks = mddev->raid_disks + mddev->delta_disks;
3064
3065	if (raid_disks < conf->raid_disks) {
3066		cnt=0;
3067		for (d= 0; d < conf->raid_disks; d++)
3068			if (conf->mirrors[d].rdev)
3069				cnt++;
3070		if (cnt > raid_disks)
3071			return -EBUSY;
3072	}
3073
3074	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3075	if (!newpoolinfo)
3076		return -ENOMEM;
3077	newpoolinfo->mddev = mddev;
3078	newpoolinfo->raid_disks = raid_disks * 2;
3079
3080	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3081				 r1bio_pool_free, newpoolinfo);
3082	if (!newpool) {
3083		kfree(newpoolinfo);
3084		return -ENOMEM;
3085	}
3086	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3087			     GFP_KERNEL);
3088	if (!newmirrors) {
3089		kfree(newpoolinfo);
3090		mempool_destroy(newpool);
3091		return -ENOMEM;
3092	}
3093
3094	freeze_array(conf, 0);
3095
3096	/* ok, everything is stopped */
3097	oldpool = conf->r1bio_pool;
3098	conf->r1bio_pool = newpool;
3099
3100	for (d = d2 = 0; d < conf->raid_disks; d++) {
3101		struct md_rdev *rdev = conf->mirrors[d].rdev;
3102		if (rdev && rdev->raid_disk != d2) {
3103			sysfs_unlink_rdev(mddev, rdev);
3104			rdev->raid_disk = d2;
3105			sysfs_unlink_rdev(mddev, rdev);
3106			if (sysfs_link_rdev(mddev, rdev))
3107				printk(KERN_WARNING
3108				       "md/raid1:%s: cannot register rd%d\n",
3109				       mdname(mddev), rdev->raid_disk);
3110		}
3111		if (rdev)
3112			newmirrors[d2++].rdev = rdev;
3113	}
3114	kfree(conf->mirrors);
3115	conf->mirrors = newmirrors;
3116	kfree(conf->poolinfo);
3117	conf->poolinfo = newpoolinfo;
3118
3119	spin_lock_irqsave(&conf->device_lock, flags);
3120	mddev->degraded += (raid_disks - conf->raid_disks);
3121	spin_unlock_irqrestore(&conf->device_lock, flags);
3122	conf->raid_disks = mddev->raid_disks = raid_disks;
3123	mddev->delta_disks = 0;
3124
3125	unfreeze_array(conf);
3126
3127	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3128	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3129	md_wakeup_thread(mddev->thread);
3130
3131	mempool_destroy(oldpool);
3132	return 0;
3133}
3134
3135static void raid1_quiesce(struct mddev *mddev, int state)
3136{
3137	struct r1conf *conf = mddev->private;
3138
3139	switch(state) {
3140	case 2: /* wake for suspend */
3141		wake_up(&conf->wait_barrier);
3142		break;
3143	case 1:
3144		freeze_array(conf, 0);
3145		break;
3146	case 0:
3147		unfreeze_array(conf);
3148		break;
3149	}
3150}
3151
3152static void *raid1_takeover(struct mddev *mddev)
3153{
3154	/* raid1 can take over:
3155	 *  raid5 with 2 devices, any layout or chunk size
3156	 */
3157	if (mddev->level == 5 && mddev->raid_disks == 2) {
3158		struct r1conf *conf;
3159		mddev->new_level = 1;
3160		mddev->new_layout = 0;
3161		mddev->new_chunk_sectors = 0;
3162		conf = setup_conf(mddev);
3163		if (!IS_ERR(conf))
3164			/* Array must appear to be quiesced */
3165			conf->array_frozen = 1;
3166		return conf;
3167	}
3168	return ERR_PTR(-EINVAL);
3169}
3170
3171static struct md_personality raid1_personality =
3172{
3173	.name		= "raid1",
3174	.level		= 1,
3175	.owner		= THIS_MODULE,
3176	.make_request	= make_request,
3177	.run		= run,
3178	.free		= raid1_free,
3179	.status		= status,
3180	.error_handler	= error,
3181	.hot_add_disk	= raid1_add_disk,
3182	.hot_remove_disk= raid1_remove_disk,
3183	.spare_active	= raid1_spare_active,
3184	.sync_request	= sync_request,
3185	.resize		= raid1_resize,
3186	.size		= raid1_size,
3187	.check_reshape	= raid1_reshape,
3188	.quiesce	= raid1_quiesce,
3189	.takeover	= raid1_takeover,
3190	.congested	= raid1_congested,
3191};
3192
3193static int __init raid_init(void)
3194{
3195	return register_md_personality(&raid1_personality);
3196}
3197
3198static void raid_exit(void)
3199{
3200	unregister_md_personality(&raid1_personality);
3201}
3202
3203module_init(raid_init);
3204module_exit(raid_exit);
3205MODULE_LICENSE("GPL");
3206MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3207MODULE_ALIAS("md-personality-3"); /* RAID1 */
3208MODULE_ALIAS("md-raid1");
3209MODULE_ALIAS("md-level-1");
3210
3211module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3212