1/*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8#include "dm-bio-prison.h"
9#include "dm.h"
10
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/jiffies.h>
15#include <linux/log2.h>
16#include <linux/list.h>
17#include <linux/rculist.h>
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/sort.h>
23#include <linux/rbtree.h>
24
25#define	DM_MSG_PREFIX	"thin"
26
27/*
28 * Tunable constants
29 */
30#define ENDIO_HOOK_POOL_SIZE 1024
31#define MAPPING_POOL_SIZE 1024
32#define COMMIT_PERIOD HZ
33#define NO_SPACE_TIMEOUT_SECS 60
34
35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38		"A percentage of time allocated for copy on write");
39
40/*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47/*
48 * Device id is restricted to 24 bits.
49 */
50#define MAX_DEV_ID ((1 << 24) - 1)
51
52/*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data).  When you take an internal snapshot you clone the root node
59 * of the origin btree.  After this there is no concept of an origin or a
60 * snapshot.  They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic.  If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin.  The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block.  Obviously
72 * including all devices that share this block.  (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block.  This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping).  This act of inserting breaks some
79 * sharing of btree nodes between the two devices.  Breaking sharing only
80 * effects the btree of that specific device.  Btrees for the other
81 * devices that share the block never change.  The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues.  We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one).  This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block.  As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing.  I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block.  At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110/*----------------------------------------------------------------*/
111
112/*
113 * Key building.
114 */
115enum lock_space {
116	VIRTUAL,
117	PHYSICAL
118};
119
120static void build_key(struct dm_thin_device *td, enum lock_space ls,
121		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122{
123	key->virtual = (ls == VIRTUAL);
124	key->dev = dm_thin_dev_id(td);
125	key->block_begin = b;
126	key->block_end = e;
127}
128
129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130			   struct dm_cell_key *key)
131{
132	build_key(td, PHYSICAL, b, b + 1llu, key);
133}
134
135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136			      struct dm_cell_key *key)
137{
138	build_key(td, VIRTUAL, b, b + 1llu, key);
139}
140
141/*----------------------------------------------------------------*/
142
143#define THROTTLE_THRESHOLD (1 * HZ)
144
145struct throttle {
146	struct rw_semaphore lock;
147	unsigned long threshold;
148	bool throttle_applied;
149};
150
151static void throttle_init(struct throttle *t)
152{
153	init_rwsem(&t->lock);
154	t->throttle_applied = false;
155}
156
157static void throttle_work_start(struct throttle *t)
158{
159	t->threshold = jiffies + THROTTLE_THRESHOLD;
160}
161
162static void throttle_work_update(struct throttle *t)
163{
164	if (!t->throttle_applied && jiffies > t->threshold) {
165		down_write(&t->lock);
166		t->throttle_applied = true;
167	}
168}
169
170static void throttle_work_complete(struct throttle *t)
171{
172	if (t->throttle_applied) {
173		t->throttle_applied = false;
174		up_write(&t->lock);
175	}
176}
177
178static void throttle_lock(struct throttle *t)
179{
180	down_read(&t->lock);
181}
182
183static void throttle_unlock(struct throttle *t)
184{
185	up_read(&t->lock);
186}
187
188/*----------------------------------------------------------------*/
189
190/*
191 * A pool device ties together a metadata device and a data device.  It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195struct dm_thin_new_mapping;
196
197/*
198 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199 */
200enum pool_mode {
201	PM_WRITE,		/* metadata may be changed */
202	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203	PM_READ_ONLY,		/* metadata may not be changed */
204	PM_FAIL,		/* all I/O fails */
205};
206
207struct pool_features {
208	enum pool_mode mode;
209
210	bool zero_new_blocks:1;
211	bool discard_enabled:1;
212	bool discard_passdown:1;
213	bool error_if_no_space:1;
214};
215
216struct thin_c;
217typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221#define CELL_SORT_ARRAY_SIZE 8192
222
223struct pool {
224	struct list_head list;
225	struct dm_target *ti;	/* Only set if a pool target is bound */
226
227	struct mapped_device *pool_md;
228	struct block_device *md_dev;
229	struct dm_pool_metadata *pmd;
230
231	dm_block_t low_water_blocks;
232	uint32_t sectors_per_block;
233	int sectors_per_block_shift;
234
235	struct pool_features pf;
236	bool low_water_triggered:1;	/* A dm event has been sent */
237	bool suspended:1;
238
239	struct dm_bio_prison *prison;
240	struct dm_kcopyd_client *copier;
241
242	struct workqueue_struct *wq;
243	struct throttle throttle;
244	struct work_struct worker;
245	struct delayed_work waker;
246	struct delayed_work no_space_timeout;
247
248	unsigned long last_commit_jiffies;
249	unsigned ref_count;
250
251	spinlock_t lock;
252	struct bio_list deferred_flush_bios;
253	struct list_head prepared_mappings;
254	struct list_head prepared_discards;
255	struct list_head active_thins;
256
257	struct dm_deferred_set *shared_read_ds;
258	struct dm_deferred_set *all_io_ds;
259
260	struct dm_thin_new_mapping *next_mapping;
261	mempool_t *mapping_pool;
262
263	process_bio_fn process_bio;
264	process_bio_fn process_discard;
265
266	process_cell_fn process_cell;
267	process_cell_fn process_discard_cell;
268
269	process_mapping_fn process_prepared_mapping;
270	process_mapping_fn process_prepared_discard;
271
272	struct dm_bio_prison_cell **cell_sort_array;
273};
274
275static enum pool_mode get_pool_mode(struct pool *pool);
276static void metadata_operation_failed(struct pool *pool, const char *op, int r);
277
278/*
279 * Target context for a pool.
280 */
281struct pool_c {
282	struct dm_target *ti;
283	struct pool *pool;
284	struct dm_dev *data_dev;
285	struct dm_dev *metadata_dev;
286	struct dm_target_callbacks callbacks;
287
288	dm_block_t low_water_blocks;
289	struct pool_features requested_pf; /* Features requested during table load */
290	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
291};
292
293/*
294 * Target context for a thin.
295 */
296struct thin_c {
297	struct list_head list;
298	struct dm_dev *pool_dev;
299	struct dm_dev *origin_dev;
300	sector_t origin_size;
301	dm_thin_id dev_id;
302
303	struct pool *pool;
304	struct dm_thin_device *td;
305	struct mapped_device *thin_md;
306
307	bool requeue_mode:1;
308	spinlock_t lock;
309	struct list_head deferred_cells;
310	struct bio_list deferred_bio_list;
311	struct bio_list retry_on_resume_list;
312	struct rb_root sort_bio_list; /* sorted list of deferred bios */
313
314	/*
315	 * Ensures the thin is not destroyed until the worker has finished
316	 * iterating the active_thins list.
317	 */
318	atomic_t refcount;
319	struct completion can_destroy;
320};
321
322/*----------------------------------------------------------------*/
323
324/**
325 * __blkdev_issue_discard_async - queue a discard with async completion
326 * @bdev:	blockdev to issue discard for
327 * @sector:	start sector
328 * @nr_sects:	number of sectors to discard
329 * @gfp_mask:	memory allocation flags (for bio_alloc)
330 * @flags:	BLKDEV_IFL_* flags to control behaviour
331 * @parent_bio: parent discard bio that all sub discards get chained to
332 *
333 * Description:
334 *    Asynchronously issue a discard request for the sectors in question.
335 */
336static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
337					sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
338					struct bio *parent_bio)
339{
340	struct request_queue *q = bdev_get_queue(bdev);
341	int type = REQ_WRITE | REQ_DISCARD;
342	struct bio *bio;
343
344	if (!q || !nr_sects)
345		return -ENXIO;
346
347	if (!blk_queue_discard(q))
348		return -EOPNOTSUPP;
349
350	if (flags & BLKDEV_DISCARD_SECURE) {
351		if (!blk_queue_secdiscard(q))
352			return -EOPNOTSUPP;
353		type |= REQ_SECURE;
354	}
355
356	/*
357	 * Required bio_put occurs in bio_endio thanks to bio_chain below
358	 */
359	bio = bio_alloc(gfp_mask, 1);
360	if (!bio)
361		return -ENOMEM;
362
363	bio_chain(bio, parent_bio);
364
365	bio->bi_iter.bi_sector = sector;
366	bio->bi_bdev = bdev;
367	bio->bi_iter.bi_size = nr_sects << 9;
368
369	submit_bio(type, bio);
370
371	return 0;
372}
373
374static bool block_size_is_power_of_two(struct pool *pool)
375{
376	return pool->sectors_per_block_shift >= 0;
377}
378
379static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
380{
381	return block_size_is_power_of_two(pool) ?
382		(b << pool->sectors_per_block_shift) :
383		(b * pool->sectors_per_block);
384}
385
386static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
387			 struct bio *parent_bio)
388{
389	sector_t s = block_to_sectors(tc->pool, data_b);
390	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
391
392	return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
393					    GFP_NOWAIT, 0, parent_bio);
394}
395
396/*----------------------------------------------------------------*/
397
398/*
399 * wake_worker() is used when new work is queued and when pool_resume is
400 * ready to continue deferred IO processing.
401 */
402static void wake_worker(struct pool *pool)
403{
404	queue_work(pool->wq, &pool->worker);
405}
406
407/*----------------------------------------------------------------*/
408
409static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
410		      struct dm_bio_prison_cell **cell_result)
411{
412	int r;
413	struct dm_bio_prison_cell *cell_prealloc;
414
415	/*
416	 * Allocate a cell from the prison's mempool.
417	 * This might block but it can't fail.
418	 */
419	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
420
421	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
422	if (r)
423		/*
424		 * We reused an old cell; we can get rid of
425		 * the new one.
426		 */
427		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
428
429	return r;
430}
431
432static void cell_release(struct pool *pool,
433			 struct dm_bio_prison_cell *cell,
434			 struct bio_list *bios)
435{
436	dm_cell_release(pool->prison, cell, bios);
437	dm_bio_prison_free_cell(pool->prison, cell);
438}
439
440static void cell_visit_release(struct pool *pool,
441			       void (*fn)(void *, struct dm_bio_prison_cell *),
442			       void *context,
443			       struct dm_bio_prison_cell *cell)
444{
445	dm_cell_visit_release(pool->prison, fn, context, cell);
446	dm_bio_prison_free_cell(pool->prison, cell);
447}
448
449static void cell_release_no_holder(struct pool *pool,
450				   struct dm_bio_prison_cell *cell,
451				   struct bio_list *bios)
452{
453	dm_cell_release_no_holder(pool->prison, cell, bios);
454	dm_bio_prison_free_cell(pool->prison, cell);
455}
456
457static void cell_error_with_code(struct pool *pool,
458				 struct dm_bio_prison_cell *cell, int error_code)
459{
460	dm_cell_error(pool->prison, cell, error_code);
461	dm_bio_prison_free_cell(pool->prison, cell);
462}
463
464static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
465{
466	cell_error_with_code(pool, cell, -EIO);
467}
468
469static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
470{
471	cell_error_with_code(pool, cell, 0);
472}
473
474static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
475{
476	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
477}
478
479/*----------------------------------------------------------------*/
480
481/*
482 * A global list of pools that uses a struct mapped_device as a key.
483 */
484static struct dm_thin_pool_table {
485	struct mutex mutex;
486	struct list_head pools;
487} dm_thin_pool_table;
488
489static void pool_table_init(void)
490{
491	mutex_init(&dm_thin_pool_table.mutex);
492	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
493}
494
495static void __pool_table_insert(struct pool *pool)
496{
497	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
498	list_add(&pool->list, &dm_thin_pool_table.pools);
499}
500
501static void __pool_table_remove(struct pool *pool)
502{
503	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
504	list_del(&pool->list);
505}
506
507static struct pool *__pool_table_lookup(struct mapped_device *md)
508{
509	struct pool *pool = NULL, *tmp;
510
511	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
512
513	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
514		if (tmp->pool_md == md) {
515			pool = tmp;
516			break;
517		}
518	}
519
520	return pool;
521}
522
523static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
524{
525	struct pool *pool = NULL, *tmp;
526
527	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
528
529	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
530		if (tmp->md_dev == md_dev) {
531			pool = tmp;
532			break;
533		}
534	}
535
536	return pool;
537}
538
539/*----------------------------------------------------------------*/
540
541struct dm_thin_endio_hook {
542	struct thin_c *tc;
543	struct dm_deferred_entry *shared_read_entry;
544	struct dm_deferred_entry *all_io_entry;
545	struct dm_thin_new_mapping *overwrite_mapping;
546	struct rb_node rb_node;
547	struct dm_bio_prison_cell *cell;
548};
549
550static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
551{
552	bio_list_merge(bios, master);
553	bio_list_init(master);
554}
555
556static void error_bio_list(struct bio_list *bios, int error)
557{
558	struct bio *bio;
559
560	while ((bio = bio_list_pop(bios))) {
561		bio->bi_error = error;
562		bio_endio(bio);
563	}
564}
565
566static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
567{
568	struct bio_list bios;
569	unsigned long flags;
570
571	bio_list_init(&bios);
572
573	spin_lock_irqsave(&tc->lock, flags);
574	__merge_bio_list(&bios, master);
575	spin_unlock_irqrestore(&tc->lock, flags);
576
577	error_bio_list(&bios, error);
578}
579
580static void requeue_deferred_cells(struct thin_c *tc)
581{
582	struct pool *pool = tc->pool;
583	unsigned long flags;
584	struct list_head cells;
585	struct dm_bio_prison_cell *cell, *tmp;
586
587	INIT_LIST_HEAD(&cells);
588
589	spin_lock_irqsave(&tc->lock, flags);
590	list_splice_init(&tc->deferred_cells, &cells);
591	spin_unlock_irqrestore(&tc->lock, flags);
592
593	list_for_each_entry_safe(cell, tmp, &cells, user_list)
594		cell_requeue(pool, cell);
595}
596
597static void requeue_io(struct thin_c *tc)
598{
599	struct bio_list bios;
600	unsigned long flags;
601
602	bio_list_init(&bios);
603
604	spin_lock_irqsave(&tc->lock, flags);
605	__merge_bio_list(&bios, &tc->deferred_bio_list);
606	__merge_bio_list(&bios, &tc->retry_on_resume_list);
607	spin_unlock_irqrestore(&tc->lock, flags);
608
609	error_bio_list(&bios, DM_ENDIO_REQUEUE);
610	requeue_deferred_cells(tc);
611}
612
613static void error_retry_list_with_code(struct pool *pool, int error)
614{
615	struct thin_c *tc;
616
617	rcu_read_lock();
618	list_for_each_entry_rcu(tc, &pool->active_thins, list)
619		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
620	rcu_read_unlock();
621}
622
623static void error_retry_list(struct pool *pool)
624{
625	return error_retry_list_with_code(pool, -EIO);
626}
627
628/*
629 * This section of code contains the logic for processing a thin device's IO.
630 * Much of the code depends on pool object resources (lists, workqueues, etc)
631 * but most is exclusively called from the thin target rather than the thin-pool
632 * target.
633 */
634
635static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
636{
637	struct pool *pool = tc->pool;
638	sector_t block_nr = bio->bi_iter.bi_sector;
639
640	if (block_size_is_power_of_two(pool))
641		block_nr >>= pool->sectors_per_block_shift;
642	else
643		(void) sector_div(block_nr, pool->sectors_per_block);
644
645	return block_nr;
646}
647
648/*
649 * Returns the _complete_ blocks that this bio covers.
650 */
651static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
652				dm_block_t *begin, dm_block_t *end)
653{
654	struct pool *pool = tc->pool;
655	sector_t b = bio->bi_iter.bi_sector;
656	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
657
658	b += pool->sectors_per_block - 1ull; /* so we round up */
659
660	if (block_size_is_power_of_two(pool)) {
661		b >>= pool->sectors_per_block_shift;
662		e >>= pool->sectors_per_block_shift;
663	} else {
664		(void) sector_div(b, pool->sectors_per_block);
665		(void) sector_div(e, pool->sectors_per_block);
666	}
667
668	if (e < b)
669		/* Can happen if the bio is within a single block. */
670		e = b;
671
672	*begin = b;
673	*end = e;
674}
675
676static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
677{
678	struct pool *pool = tc->pool;
679	sector_t bi_sector = bio->bi_iter.bi_sector;
680
681	bio->bi_bdev = tc->pool_dev->bdev;
682	if (block_size_is_power_of_two(pool))
683		bio->bi_iter.bi_sector =
684			(block << pool->sectors_per_block_shift) |
685			(bi_sector & (pool->sectors_per_block - 1));
686	else
687		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
688				 sector_div(bi_sector, pool->sectors_per_block);
689}
690
691static void remap_to_origin(struct thin_c *tc, struct bio *bio)
692{
693	bio->bi_bdev = tc->origin_dev->bdev;
694}
695
696static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
697{
698	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
699		dm_thin_changed_this_transaction(tc->td);
700}
701
702static void inc_all_io_entry(struct pool *pool, struct bio *bio)
703{
704	struct dm_thin_endio_hook *h;
705
706	if (bio->bi_rw & REQ_DISCARD)
707		return;
708
709	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
710	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
711}
712
713static void issue(struct thin_c *tc, struct bio *bio)
714{
715	struct pool *pool = tc->pool;
716	unsigned long flags;
717
718	if (!bio_triggers_commit(tc, bio)) {
719		generic_make_request(bio);
720		return;
721	}
722
723	/*
724	 * Complete bio with an error if earlier I/O caused changes to
725	 * the metadata that can't be committed e.g, due to I/O errors
726	 * on the metadata device.
727	 */
728	if (dm_thin_aborted_changes(tc->td)) {
729		bio_io_error(bio);
730		return;
731	}
732
733	/*
734	 * Batch together any bios that trigger commits and then issue a
735	 * single commit for them in process_deferred_bios().
736	 */
737	spin_lock_irqsave(&pool->lock, flags);
738	bio_list_add(&pool->deferred_flush_bios, bio);
739	spin_unlock_irqrestore(&pool->lock, flags);
740}
741
742static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
743{
744	remap_to_origin(tc, bio);
745	issue(tc, bio);
746}
747
748static void remap_and_issue(struct thin_c *tc, struct bio *bio,
749			    dm_block_t block)
750{
751	remap(tc, bio, block);
752	issue(tc, bio);
753}
754
755/*----------------------------------------------------------------*/
756
757/*
758 * Bio endio functions.
759 */
760struct dm_thin_new_mapping {
761	struct list_head list;
762
763	bool pass_discard:1;
764	bool maybe_shared:1;
765
766	/*
767	 * Track quiescing, copying and zeroing preparation actions.  When this
768	 * counter hits zero the block is prepared and can be inserted into the
769	 * btree.
770	 */
771	atomic_t prepare_actions;
772
773	int err;
774	struct thin_c *tc;
775	dm_block_t virt_begin, virt_end;
776	dm_block_t data_block;
777	struct dm_bio_prison_cell *cell;
778
779	/*
780	 * If the bio covers the whole area of a block then we can avoid
781	 * zeroing or copying.  Instead this bio is hooked.  The bio will
782	 * still be in the cell, so care has to be taken to avoid issuing
783	 * the bio twice.
784	 */
785	struct bio *bio;
786	bio_end_io_t *saved_bi_end_io;
787};
788
789static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
790{
791	struct pool *pool = m->tc->pool;
792
793	if (atomic_dec_and_test(&m->prepare_actions)) {
794		list_add_tail(&m->list, &pool->prepared_mappings);
795		wake_worker(pool);
796	}
797}
798
799static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
800{
801	unsigned long flags;
802	struct pool *pool = m->tc->pool;
803
804	spin_lock_irqsave(&pool->lock, flags);
805	__complete_mapping_preparation(m);
806	spin_unlock_irqrestore(&pool->lock, flags);
807}
808
809static void copy_complete(int read_err, unsigned long write_err, void *context)
810{
811	struct dm_thin_new_mapping *m = context;
812
813	m->err = read_err || write_err ? -EIO : 0;
814	complete_mapping_preparation(m);
815}
816
817static void overwrite_endio(struct bio *bio)
818{
819	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
820	struct dm_thin_new_mapping *m = h->overwrite_mapping;
821
822	bio->bi_end_io = m->saved_bi_end_io;
823
824	m->err = bio->bi_error;
825	complete_mapping_preparation(m);
826}
827
828/*----------------------------------------------------------------*/
829
830/*
831 * Workqueue.
832 */
833
834/*
835 * Prepared mapping jobs.
836 */
837
838/*
839 * This sends the bios in the cell, except the original holder, back
840 * to the deferred_bios list.
841 */
842static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
843{
844	struct pool *pool = tc->pool;
845	unsigned long flags;
846
847	spin_lock_irqsave(&tc->lock, flags);
848	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
849	spin_unlock_irqrestore(&tc->lock, flags);
850
851	wake_worker(pool);
852}
853
854static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
855
856struct remap_info {
857	struct thin_c *tc;
858	struct bio_list defer_bios;
859	struct bio_list issue_bios;
860};
861
862static void __inc_remap_and_issue_cell(void *context,
863				       struct dm_bio_prison_cell *cell)
864{
865	struct remap_info *info = context;
866	struct bio *bio;
867
868	while ((bio = bio_list_pop(&cell->bios))) {
869		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
870			bio_list_add(&info->defer_bios, bio);
871		else {
872			inc_all_io_entry(info->tc->pool, bio);
873
874			/*
875			 * We can't issue the bios with the bio prison lock
876			 * held, so we add them to a list to issue on
877			 * return from this function.
878			 */
879			bio_list_add(&info->issue_bios, bio);
880		}
881	}
882}
883
884static void inc_remap_and_issue_cell(struct thin_c *tc,
885				     struct dm_bio_prison_cell *cell,
886				     dm_block_t block)
887{
888	struct bio *bio;
889	struct remap_info info;
890
891	info.tc = tc;
892	bio_list_init(&info.defer_bios);
893	bio_list_init(&info.issue_bios);
894
895	/*
896	 * We have to be careful to inc any bios we're about to issue
897	 * before the cell is released, and avoid a race with new bios
898	 * being added to the cell.
899	 */
900	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
901			   &info, cell);
902
903	while ((bio = bio_list_pop(&info.defer_bios)))
904		thin_defer_bio(tc, bio);
905
906	while ((bio = bio_list_pop(&info.issue_bios)))
907		remap_and_issue(info.tc, bio, block);
908}
909
910static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
911{
912	cell_error(m->tc->pool, m->cell);
913	list_del(&m->list);
914	mempool_free(m, m->tc->pool->mapping_pool);
915}
916
917static void process_prepared_mapping(struct dm_thin_new_mapping *m)
918{
919	struct thin_c *tc = m->tc;
920	struct pool *pool = tc->pool;
921	struct bio *bio = m->bio;
922	int r;
923
924	if (m->err) {
925		cell_error(pool, m->cell);
926		goto out;
927	}
928
929	/*
930	 * Commit the prepared block into the mapping btree.
931	 * Any I/O for this block arriving after this point will get
932	 * remapped to it directly.
933	 */
934	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
935	if (r) {
936		metadata_operation_failed(pool, "dm_thin_insert_block", r);
937		cell_error(pool, m->cell);
938		goto out;
939	}
940
941	/*
942	 * Release any bios held while the block was being provisioned.
943	 * If we are processing a write bio that completely covers the block,
944	 * we already processed it so can ignore it now when processing
945	 * the bios in the cell.
946	 */
947	if (bio) {
948		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
949		bio_endio(bio);
950	} else {
951		inc_all_io_entry(tc->pool, m->cell->holder);
952		remap_and_issue(tc, m->cell->holder, m->data_block);
953		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
954	}
955
956out:
957	list_del(&m->list);
958	mempool_free(m, pool->mapping_pool);
959}
960
961/*----------------------------------------------------------------*/
962
963static void free_discard_mapping(struct dm_thin_new_mapping *m)
964{
965	struct thin_c *tc = m->tc;
966	if (m->cell)
967		cell_defer_no_holder(tc, m->cell);
968	mempool_free(m, tc->pool->mapping_pool);
969}
970
971static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
972{
973	bio_io_error(m->bio);
974	free_discard_mapping(m);
975}
976
977static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
978{
979	bio_endio(m->bio);
980	free_discard_mapping(m);
981}
982
983static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
984{
985	int r;
986	struct thin_c *tc = m->tc;
987
988	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
989	if (r) {
990		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
991		bio_io_error(m->bio);
992	} else
993		bio_endio(m->bio);
994
995	cell_defer_no_holder(tc, m->cell);
996	mempool_free(m, tc->pool->mapping_pool);
997}
998
999static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1000{
1001	/*
1002	 * We've already unmapped this range of blocks, but before we
1003	 * passdown we have to check that these blocks are now unused.
1004	 */
1005	int r;
1006	bool used = true;
1007	struct thin_c *tc = m->tc;
1008	struct pool *pool = tc->pool;
1009	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1010
1011	while (b != end) {
1012		/* find start of unmapped run */
1013		for (; b < end; b++) {
1014			r = dm_pool_block_is_used(pool->pmd, b, &used);
1015			if (r)
1016				return r;
1017
1018			if (!used)
1019				break;
1020		}
1021
1022		if (b == end)
1023			break;
1024
1025		/* find end of run */
1026		for (e = b + 1; e != end; e++) {
1027			r = dm_pool_block_is_used(pool->pmd, e, &used);
1028			if (r)
1029				return r;
1030
1031			if (used)
1032				break;
1033		}
1034
1035		r = issue_discard(tc, b, e, m->bio);
1036		if (r)
1037			return r;
1038
1039		b = e;
1040	}
1041
1042	return 0;
1043}
1044
1045static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1046{
1047	int r;
1048	struct thin_c *tc = m->tc;
1049	struct pool *pool = tc->pool;
1050
1051	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1052	if (r)
1053		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1054
1055	else if (m->maybe_shared)
1056		r = passdown_double_checking_shared_status(m);
1057	else
1058		r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1059
1060	/*
1061	 * Even if r is set, there could be sub discards in flight that we
1062	 * need to wait for.
1063	 */
1064	m->bio->bi_error = r;
1065	bio_endio(m->bio);
1066	cell_defer_no_holder(tc, m->cell);
1067	mempool_free(m, pool->mapping_pool);
1068}
1069
1070static void process_prepared(struct pool *pool, struct list_head *head,
1071			     process_mapping_fn *fn)
1072{
1073	unsigned long flags;
1074	struct list_head maps;
1075	struct dm_thin_new_mapping *m, *tmp;
1076
1077	INIT_LIST_HEAD(&maps);
1078	spin_lock_irqsave(&pool->lock, flags);
1079	list_splice_init(head, &maps);
1080	spin_unlock_irqrestore(&pool->lock, flags);
1081
1082	list_for_each_entry_safe(m, tmp, &maps, list)
1083		(*fn)(m);
1084}
1085
1086/*
1087 * Deferred bio jobs.
1088 */
1089static int io_overlaps_block(struct pool *pool, struct bio *bio)
1090{
1091	return bio->bi_iter.bi_size ==
1092		(pool->sectors_per_block << SECTOR_SHIFT);
1093}
1094
1095static int io_overwrites_block(struct pool *pool, struct bio *bio)
1096{
1097	return (bio_data_dir(bio) == WRITE) &&
1098		io_overlaps_block(pool, bio);
1099}
1100
1101static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1102			       bio_end_io_t *fn)
1103{
1104	*save = bio->bi_end_io;
1105	bio->bi_end_io = fn;
1106}
1107
1108static int ensure_next_mapping(struct pool *pool)
1109{
1110	if (pool->next_mapping)
1111		return 0;
1112
1113	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1114
1115	return pool->next_mapping ? 0 : -ENOMEM;
1116}
1117
1118static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1119{
1120	struct dm_thin_new_mapping *m = pool->next_mapping;
1121
1122	BUG_ON(!pool->next_mapping);
1123
1124	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1125	INIT_LIST_HEAD(&m->list);
1126	m->bio = NULL;
1127
1128	pool->next_mapping = NULL;
1129
1130	return m;
1131}
1132
1133static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1134		    sector_t begin, sector_t end)
1135{
1136	int r;
1137	struct dm_io_region to;
1138
1139	to.bdev = tc->pool_dev->bdev;
1140	to.sector = begin;
1141	to.count = end - begin;
1142
1143	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1144	if (r < 0) {
1145		DMERR_LIMIT("dm_kcopyd_zero() failed");
1146		copy_complete(1, 1, m);
1147	}
1148}
1149
1150static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1151				      dm_block_t data_begin,
1152				      struct dm_thin_new_mapping *m)
1153{
1154	struct pool *pool = tc->pool;
1155	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1156
1157	h->overwrite_mapping = m;
1158	m->bio = bio;
1159	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1160	inc_all_io_entry(pool, bio);
1161	remap_and_issue(tc, bio, data_begin);
1162}
1163
1164/*
1165 * A partial copy also needs to zero the uncopied region.
1166 */
1167static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1168			  struct dm_dev *origin, dm_block_t data_origin,
1169			  dm_block_t data_dest,
1170			  struct dm_bio_prison_cell *cell, struct bio *bio,
1171			  sector_t len)
1172{
1173	int r;
1174	struct pool *pool = tc->pool;
1175	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1176
1177	m->tc = tc;
1178	m->virt_begin = virt_block;
1179	m->virt_end = virt_block + 1u;
1180	m->data_block = data_dest;
1181	m->cell = cell;
1182
1183	/*
1184	 * quiesce action + copy action + an extra reference held for the
1185	 * duration of this function (we may need to inc later for a
1186	 * partial zero).
1187	 */
1188	atomic_set(&m->prepare_actions, 3);
1189
1190	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1191		complete_mapping_preparation(m); /* already quiesced */
1192
1193	/*
1194	 * IO to pool_dev remaps to the pool target's data_dev.
1195	 *
1196	 * If the whole block of data is being overwritten, we can issue the
1197	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1198	 */
1199	if (io_overwrites_block(pool, bio))
1200		remap_and_issue_overwrite(tc, bio, data_dest, m);
1201	else {
1202		struct dm_io_region from, to;
1203
1204		from.bdev = origin->bdev;
1205		from.sector = data_origin * pool->sectors_per_block;
1206		from.count = len;
1207
1208		to.bdev = tc->pool_dev->bdev;
1209		to.sector = data_dest * pool->sectors_per_block;
1210		to.count = len;
1211
1212		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1213				   0, copy_complete, m);
1214		if (r < 0) {
1215			DMERR_LIMIT("dm_kcopyd_copy() failed");
1216			copy_complete(1, 1, m);
1217
1218			/*
1219			 * We allow the zero to be issued, to simplify the
1220			 * error path.  Otherwise we'd need to start
1221			 * worrying about decrementing the prepare_actions
1222			 * counter.
1223			 */
1224		}
1225
1226		/*
1227		 * Do we need to zero a tail region?
1228		 */
1229		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1230			atomic_inc(&m->prepare_actions);
1231			ll_zero(tc, m,
1232				data_dest * pool->sectors_per_block + len,
1233				(data_dest + 1) * pool->sectors_per_block);
1234		}
1235	}
1236
1237	complete_mapping_preparation(m); /* drop our ref */
1238}
1239
1240static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1241				   dm_block_t data_origin, dm_block_t data_dest,
1242				   struct dm_bio_prison_cell *cell, struct bio *bio)
1243{
1244	schedule_copy(tc, virt_block, tc->pool_dev,
1245		      data_origin, data_dest, cell, bio,
1246		      tc->pool->sectors_per_block);
1247}
1248
1249static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1250			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1251			  struct bio *bio)
1252{
1253	struct pool *pool = tc->pool;
1254	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1255
1256	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1257	m->tc = tc;
1258	m->virt_begin = virt_block;
1259	m->virt_end = virt_block + 1u;
1260	m->data_block = data_block;
1261	m->cell = cell;
1262
1263	/*
1264	 * If the whole block of data is being overwritten or we are not
1265	 * zeroing pre-existing data, we can issue the bio immediately.
1266	 * Otherwise we use kcopyd to zero the data first.
1267	 */
1268	if (pool->pf.zero_new_blocks) {
1269		if (io_overwrites_block(pool, bio))
1270			remap_and_issue_overwrite(tc, bio, data_block, m);
1271		else
1272			ll_zero(tc, m, data_block * pool->sectors_per_block,
1273				(data_block + 1) * pool->sectors_per_block);
1274	} else
1275		process_prepared_mapping(m);
1276}
1277
1278static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1279				   dm_block_t data_dest,
1280				   struct dm_bio_prison_cell *cell, struct bio *bio)
1281{
1282	struct pool *pool = tc->pool;
1283	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1284	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1285
1286	if (virt_block_end <= tc->origin_size)
1287		schedule_copy(tc, virt_block, tc->origin_dev,
1288			      virt_block, data_dest, cell, bio,
1289			      pool->sectors_per_block);
1290
1291	else if (virt_block_begin < tc->origin_size)
1292		schedule_copy(tc, virt_block, tc->origin_dev,
1293			      virt_block, data_dest, cell, bio,
1294			      tc->origin_size - virt_block_begin);
1295
1296	else
1297		schedule_zero(tc, virt_block, data_dest, cell, bio);
1298}
1299
1300static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1301
1302static void check_for_space(struct pool *pool)
1303{
1304	int r;
1305	dm_block_t nr_free;
1306
1307	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1308		return;
1309
1310	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1311	if (r)
1312		return;
1313
1314	if (nr_free)
1315		set_pool_mode(pool, PM_WRITE);
1316}
1317
1318/*
1319 * A non-zero return indicates read_only or fail_io mode.
1320 * Many callers don't care about the return value.
1321 */
1322static int commit(struct pool *pool)
1323{
1324	int r;
1325
1326	if (get_pool_mode(pool) >= PM_READ_ONLY)
1327		return -EINVAL;
1328
1329	r = dm_pool_commit_metadata(pool->pmd);
1330	if (r)
1331		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1332	else
1333		check_for_space(pool);
1334
1335	return r;
1336}
1337
1338static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1339{
1340	unsigned long flags;
1341
1342	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1343		DMWARN("%s: reached low water mark for data device: sending event.",
1344		       dm_device_name(pool->pool_md));
1345		spin_lock_irqsave(&pool->lock, flags);
1346		pool->low_water_triggered = true;
1347		spin_unlock_irqrestore(&pool->lock, flags);
1348		dm_table_event(pool->ti->table);
1349	}
1350}
1351
1352static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1353{
1354	int r;
1355	dm_block_t free_blocks;
1356	struct pool *pool = tc->pool;
1357
1358	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1359		return -EINVAL;
1360
1361	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1362	if (r) {
1363		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1364		return r;
1365	}
1366
1367	check_low_water_mark(pool, free_blocks);
1368
1369	if (!free_blocks) {
1370		/*
1371		 * Try to commit to see if that will free up some
1372		 * more space.
1373		 */
1374		r = commit(pool);
1375		if (r)
1376			return r;
1377
1378		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1379		if (r) {
1380			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1381			return r;
1382		}
1383
1384		if (!free_blocks) {
1385			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1386			return -ENOSPC;
1387		}
1388	}
1389
1390	r = dm_pool_alloc_data_block(pool->pmd, result);
1391	if (r) {
1392		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1393		return r;
1394	}
1395
1396	return 0;
1397}
1398
1399/*
1400 * If we have run out of space, queue bios until the device is
1401 * resumed, presumably after having been reloaded with more space.
1402 */
1403static void retry_on_resume(struct bio *bio)
1404{
1405	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1406	struct thin_c *tc = h->tc;
1407	unsigned long flags;
1408
1409	spin_lock_irqsave(&tc->lock, flags);
1410	bio_list_add(&tc->retry_on_resume_list, bio);
1411	spin_unlock_irqrestore(&tc->lock, flags);
1412}
1413
1414static int should_error_unserviceable_bio(struct pool *pool)
1415{
1416	enum pool_mode m = get_pool_mode(pool);
1417
1418	switch (m) {
1419	case PM_WRITE:
1420		/* Shouldn't get here */
1421		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1422		return -EIO;
1423
1424	case PM_OUT_OF_DATA_SPACE:
1425		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1426
1427	case PM_READ_ONLY:
1428	case PM_FAIL:
1429		return -EIO;
1430	default:
1431		/* Shouldn't get here */
1432		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1433		return -EIO;
1434	}
1435}
1436
1437static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1438{
1439	int error = should_error_unserviceable_bio(pool);
1440
1441	if (error) {
1442		bio->bi_error = error;
1443		bio_endio(bio);
1444	} else
1445		retry_on_resume(bio);
1446}
1447
1448static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1449{
1450	struct bio *bio;
1451	struct bio_list bios;
1452	int error;
1453
1454	error = should_error_unserviceable_bio(pool);
1455	if (error) {
1456		cell_error_with_code(pool, cell, error);
1457		return;
1458	}
1459
1460	bio_list_init(&bios);
1461	cell_release(pool, cell, &bios);
1462
1463	while ((bio = bio_list_pop(&bios)))
1464		retry_on_resume(bio);
1465}
1466
1467static void process_discard_cell_no_passdown(struct thin_c *tc,
1468					     struct dm_bio_prison_cell *virt_cell)
1469{
1470	struct pool *pool = tc->pool;
1471	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1472
1473	/*
1474	 * We don't need to lock the data blocks, since there's no
1475	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1476	 */
1477	m->tc = tc;
1478	m->virt_begin = virt_cell->key.block_begin;
1479	m->virt_end = virt_cell->key.block_end;
1480	m->cell = virt_cell;
1481	m->bio = virt_cell->holder;
1482
1483	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1484		pool->process_prepared_discard(m);
1485}
1486
1487/*
1488 * __bio_inc_remaining() is used to defer parent bios's end_io until
1489 * we _know_ all chained sub range discard bios have completed.
1490 */
1491static inline void __bio_inc_remaining(struct bio *bio)
1492{
1493	bio->bi_flags |= (1 << BIO_CHAIN);
1494	smp_mb__before_atomic();
1495	atomic_inc(&bio->__bi_remaining);
1496}
1497
1498static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1499				 struct bio *bio)
1500{
1501	struct pool *pool = tc->pool;
1502
1503	int r;
1504	bool maybe_shared;
1505	struct dm_cell_key data_key;
1506	struct dm_bio_prison_cell *data_cell;
1507	struct dm_thin_new_mapping *m;
1508	dm_block_t virt_begin, virt_end, data_begin;
1509
1510	while (begin != end) {
1511		r = ensure_next_mapping(pool);
1512		if (r)
1513			/* we did our best */
1514			return;
1515
1516		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1517					      &data_begin, &maybe_shared);
1518		if (r)
1519			/*
1520			 * Silently fail, letting any mappings we've
1521			 * created complete.
1522			 */
1523			break;
1524
1525		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1526		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1527			/* contention, we'll give up with this range */
1528			begin = virt_end;
1529			continue;
1530		}
1531
1532		/*
1533		 * IO may still be going to the destination block.  We must
1534		 * quiesce before we can do the removal.
1535		 */
1536		m = get_next_mapping(pool);
1537		m->tc = tc;
1538		m->maybe_shared = maybe_shared;
1539		m->virt_begin = virt_begin;
1540		m->virt_end = virt_end;
1541		m->data_block = data_begin;
1542		m->cell = data_cell;
1543		m->bio = bio;
1544
1545		/*
1546		 * The parent bio must not complete before sub discard bios are
1547		 * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1548		 *
1549		 * This per-mapping bi_remaining increment is paired with
1550		 * the implicit decrement that occurs via bio_endio() in
1551		 * process_prepared_discard_{passdown,no_passdown}.
1552		 */
1553		__bio_inc_remaining(bio);
1554		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1555			pool->process_prepared_discard(m);
1556
1557		begin = virt_end;
1558	}
1559}
1560
1561static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1562{
1563	struct bio *bio = virt_cell->holder;
1564	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1565
1566	/*
1567	 * The virt_cell will only get freed once the origin bio completes.
1568	 * This means it will remain locked while all the individual
1569	 * passdown bios are in flight.
1570	 */
1571	h->cell = virt_cell;
1572	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1573
1574	/*
1575	 * We complete the bio now, knowing that the bi_remaining field
1576	 * will prevent completion until the sub range discards have
1577	 * completed.
1578	 */
1579	bio_endio(bio);
1580}
1581
1582static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1583{
1584	dm_block_t begin, end;
1585	struct dm_cell_key virt_key;
1586	struct dm_bio_prison_cell *virt_cell;
1587
1588	get_bio_block_range(tc, bio, &begin, &end);
1589	if (begin == end) {
1590		/*
1591		 * The discard covers less than a block.
1592		 */
1593		bio_endio(bio);
1594		return;
1595	}
1596
1597	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1598	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1599		/*
1600		 * Potential starvation issue: We're relying on the
1601		 * fs/application being well behaved, and not trying to
1602		 * send IO to a region at the same time as discarding it.
1603		 * If they do this persistently then it's possible this
1604		 * cell will never be granted.
1605		 */
1606		return;
1607
1608	tc->pool->process_discard_cell(tc, virt_cell);
1609}
1610
1611static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1612			  struct dm_cell_key *key,
1613			  struct dm_thin_lookup_result *lookup_result,
1614			  struct dm_bio_prison_cell *cell)
1615{
1616	int r;
1617	dm_block_t data_block;
1618	struct pool *pool = tc->pool;
1619
1620	r = alloc_data_block(tc, &data_block);
1621	switch (r) {
1622	case 0:
1623		schedule_internal_copy(tc, block, lookup_result->block,
1624				       data_block, cell, bio);
1625		break;
1626
1627	case -ENOSPC:
1628		retry_bios_on_resume(pool, cell);
1629		break;
1630
1631	default:
1632		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1633			    __func__, r);
1634		cell_error(pool, cell);
1635		break;
1636	}
1637}
1638
1639static void __remap_and_issue_shared_cell(void *context,
1640					  struct dm_bio_prison_cell *cell)
1641{
1642	struct remap_info *info = context;
1643	struct bio *bio;
1644
1645	while ((bio = bio_list_pop(&cell->bios))) {
1646		if ((bio_data_dir(bio) == WRITE) ||
1647		    (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1648			bio_list_add(&info->defer_bios, bio);
1649		else {
1650			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1651
1652			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1653			inc_all_io_entry(info->tc->pool, bio);
1654			bio_list_add(&info->issue_bios, bio);
1655		}
1656	}
1657}
1658
1659static void remap_and_issue_shared_cell(struct thin_c *tc,
1660					struct dm_bio_prison_cell *cell,
1661					dm_block_t block)
1662{
1663	struct bio *bio;
1664	struct remap_info info;
1665
1666	info.tc = tc;
1667	bio_list_init(&info.defer_bios);
1668	bio_list_init(&info.issue_bios);
1669
1670	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1671			   &info, cell);
1672
1673	while ((bio = bio_list_pop(&info.defer_bios)))
1674		thin_defer_bio(tc, bio);
1675
1676	while ((bio = bio_list_pop(&info.issue_bios)))
1677		remap_and_issue(tc, bio, block);
1678}
1679
1680static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1681			       dm_block_t block,
1682			       struct dm_thin_lookup_result *lookup_result,
1683			       struct dm_bio_prison_cell *virt_cell)
1684{
1685	struct dm_bio_prison_cell *data_cell;
1686	struct pool *pool = tc->pool;
1687	struct dm_cell_key key;
1688
1689	/*
1690	 * If cell is already occupied, then sharing is already in the process
1691	 * of being broken so we have nothing further to do here.
1692	 */
1693	build_data_key(tc->td, lookup_result->block, &key);
1694	if (bio_detain(pool, &key, bio, &data_cell)) {
1695		cell_defer_no_holder(tc, virt_cell);
1696		return;
1697	}
1698
1699	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1700		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1701		cell_defer_no_holder(tc, virt_cell);
1702	} else {
1703		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1704
1705		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1706		inc_all_io_entry(pool, bio);
1707		remap_and_issue(tc, bio, lookup_result->block);
1708
1709		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1710		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1711	}
1712}
1713
1714static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1715			    struct dm_bio_prison_cell *cell)
1716{
1717	int r;
1718	dm_block_t data_block;
1719	struct pool *pool = tc->pool;
1720
1721	/*
1722	 * Remap empty bios (flushes) immediately, without provisioning.
1723	 */
1724	if (!bio->bi_iter.bi_size) {
1725		inc_all_io_entry(pool, bio);
1726		cell_defer_no_holder(tc, cell);
1727
1728		remap_and_issue(tc, bio, 0);
1729		return;
1730	}
1731
1732	/*
1733	 * Fill read bios with zeroes and complete them immediately.
1734	 */
1735	if (bio_data_dir(bio) == READ) {
1736		zero_fill_bio(bio);
1737		cell_defer_no_holder(tc, cell);
1738		bio_endio(bio);
1739		return;
1740	}
1741
1742	r = alloc_data_block(tc, &data_block);
1743	switch (r) {
1744	case 0:
1745		if (tc->origin_dev)
1746			schedule_external_copy(tc, block, data_block, cell, bio);
1747		else
1748			schedule_zero(tc, block, data_block, cell, bio);
1749		break;
1750
1751	case -ENOSPC:
1752		retry_bios_on_resume(pool, cell);
1753		break;
1754
1755	default:
1756		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1757			    __func__, r);
1758		cell_error(pool, cell);
1759		break;
1760	}
1761}
1762
1763static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1764{
1765	int r;
1766	struct pool *pool = tc->pool;
1767	struct bio *bio = cell->holder;
1768	dm_block_t block = get_bio_block(tc, bio);
1769	struct dm_thin_lookup_result lookup_result;
1770
1771	if (tc->requeue_mode) {
1772		cell_requeue(pool, cell);
1773		return;
1774	}
1775
1776	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1777	switch (r) {
1778	case 0:
1779		if (lookup_result.shared)
1780			process_shared_bio(tc, bio, block, &lookup_result, cell);
1781		else {
1782			inc_all_io_entry(pool, bio);
1783			remap_and_issue(tc, bio, lookup_result.block);
1784			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1785		}
1786		break;
1787
1788	case -ENODATA:
1789		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1790			inc_all_io_entry(pool, bio);
1791			cell_defer_no_holder(tc, cell);
1792
1793			if (bio_end_sector(bio) <= tc->origin_size)
1794				remap_to_origin_and_issue(tc, bio);
1795
1796			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1797				zero_fill_bio(bio);
1798				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1799				remap_to_origin_and_issue(tc, bio);
1800
1801			} else {
1802				zero_fill_bio(bio);
1803				bio_endio(bio);
1804			}
1805		} else
1806			provision_block(tc, bio, block, cell);
1807		break;
1808
1809	default:
1810		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1811			    __func__, r);
1812		cell_defer_no_holder(tc, cell);
1813		bio_io_error(bio);
1814		break;
1815	}
1816}
1817
1818static void process_bio(struct thin_c *tc, struct bio *bio)
1819{
1820	struct pool *pool = tc->pool;
1821	dm_block_t block = get_bio_block(tc, bio);
1822	struct dm_bio_prison_cell *cell;
1823	struct dm_cell_key key;
1824
1825	/*
1826	 * If cell is already occupied, then the block is already
1827	 * being provisioned so we have nothing further to do here.
1828	 */
1829	build_virtual_key(tc->td, block, &key);
1830	if (bio_detain(pool, &key, bio, &cell))
1831		return;
1832
1833	process_cell(tc, cell);
1834}
1835
1836static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1837				    struct dm_bio_prison_cell *cell)
1838{
1839	int r;
1840	int rw = bio_data_dir(bio);
1841	dm_block_t block = get_bio_block(tc, bio);
1842	struct dm_thin_lookup_result lookup_result;
1843
1844	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1845	switch (r) {
1846	case 0:
1847		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1848			handle_unserviceable_bio(tc->pool, bio);
1849			if (cell)
1850				cell_defer_no_holder(tc, cell);
1851		} else {
1852			inc_all_io_entry(tc->pool, bio);
1853			remap_and_issue(tc, bio, lookup_result.block);
1854			if (cell)
1855				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1856		}
1857		break;
1858
1859	case -ENODATA:
1860		if (cell)
1861			cell_defer_no_holder(tc, cell);
1862		if (rw != READ) {
1863			handle_unserviceable_bio(tc->pool, bio);
1864			break;
1865		}
1866
1867		if (tc->origin_dev) {
1868			inc_all_io_entry(tc->pool, bio);
1869			remap_to_origin_and_issue(tc, bio);
1870			break;
1871		}
1872
1873		zero_fill_bio(bio);
1874		bio_endio(bio);
1875		break;
1876
1877	default:
1878		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1879			    __func__, r);
1880		if (cell)
1881			cell_defer_no_holder(tc, cell);
1882		bio_io_error(bio);
1883		break;
1884	}
1885}
1886
1887static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1888{
1889	__process_bio_read_only(tc, bio, NULL);
1890}
1891
1892static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1893{
1894	__process_bio_read_only(tc, cell->holder, cell);
1895}
1896
1897static void process_bio_success(struct thin_c *tc, struct bio *bio)
1898{
1899	bio_endio(bio);
1900}
1901
1902static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1903{
1904	bio_io_error(bio);
1905}
1906
1907static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1908{
1909	cell_success(tc->pool, cell);
1910}
1911
1912static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1913{
1914	cell_error(tc->pool, cell);
1915}
1916
1917/*
1918 * FIXME: should we also commit due to size of transaction, measured in
1919 * metadata blocks?
1920 */
1921static int need_commit_due_to_time(struct pool *pool)
1922{
1923	return !time_in_range(jiffies, pool->last_commit_jiffies,
1924			      pool->last_commit_jiffies + COMMIT_PERIOD);
1925}
1926
1927#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1928#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1929
1930static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1931{
1932	struct rb_node **rbp, *parent;
1933	struct dm_thin_endio_hook *pbd;
1934	sector_t bi_sector = bio->bi_iter.bi_sector;
1935
1936	rbp = &tc->sort_bio_list.rb_node;
1937	parent = NULL;
1938	while (*rbp) {
1939		parent = *rbp;
1940		pbd = thin_pbd(parent);
1941
1942		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1943			rbp = &(*rbp)->rb_left;
1944		else
1945			rbp = &(*rbp)->rb_right;
1946	}
1947
1948	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1949	rb_link_node(&pbd->rb_node, parent, rbp);
1950	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1951}
1952
1953static void __extract_sorted_bios(struct thin_c *tc)
1954{
1955	struct rb_node *node;
1956	struct dm_thin_endio_hook *pbd;
1957	struct bio *bio;
1958
1959	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1960		pbd = thin_pbd(node);
1961		bio = thin_bio(pbd);
1962
1963		bio_list_add(&tc->deferred_bio_list, bio);
1964		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1965	}
1966
1967	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1968}
1969
1970static void __sort_thin_deferred_bios(struct thin_c *tc)
1971{
1972	struct bio *bio;
1973	struct bio_list bios;
1974
1975	bio_list_init(&bios);
1976	bio_list_merge(&bios, &tc->deferred_bio_list);
1977	bio_list_init(&tc->deferred_bio_list);
1978
1979	/* Sort deferred_bio_list using rb-tree */
1980	while ((bio = bio_list_pop(&bios)))
1981		__thin_bio_rb_add(tc, bio);
1982
1983	/*
1984	 * Transfer the sorted bios in sort_bio_list back to
1985	 * deferred_bio_list to allow lockless submission of
1986	 * all bios.
1987	 */
1988	__extract_sorted_bios(tc);
1989}
1990
1991static void process_thin_deferred_bios(struct thin_c *tc)
1992{
1993	struct pool *pool = tc->pool;
1994	unsigned long flags;
1995	struct bio *bio;
1996	struct bio_list bios;
1997	struct blk_plug plug;
1998	unsigned count = 0;
1999
2000	if (tc->requeue_mode) {
2001		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2002		return;
2003	}
2004
2005	bio_list_init(&bios);
2006
2007	spin_lock_irqsave(&tc->lock, flags);
2008
2009	if (bio_list_empty(&tc->deferred_bio_list)) {
2010		spin_unlock_irqrestore(&tc->lock, flags);
2011		return;
2012	}
2013
2014	__sort_thin_deferred_bios(tc);
2015
2016	bio_list_merge(&bios, &tc->deferred_bio_list);
2017	bio_list_init(&tc->deferred_bio_list);
2018
2019	spin_unlock_irqrestore(&tc->lock, flags);
2020
2021	blk_start_plug(&plug);
2022	while ((bio = bio_list_pop(&bios))) {
2023		/*
2024		 * If we've got no free new_mapping structs, and processing
2025		 * this bio might require one, we pause until there are some
2026		 * prepared mappings to process.
2027		 */
2028		if (ensure_next_mapping(pool)) {
2029			spin_lock_irqsave(&tc->lock, flags);
2030			bio_list_add(&tc->deferred_bio_list, bio);
2031			bio_list_merge(&tc->deferred_bio_list, &bios);
2032			spin_unlock_irqrestore(&tc->lock, flags);
2033			break;
2034		}
2035
2036		if (bio->bi_rw & REQ_DISCARD)
2037			pool->process_discard(tc, bio);
2038		else
2039			pool->process_bio(tc, bio);
2040
2041		if ((count++ & 127) == 0) {
2042			throttle_work_update(&pool->throttle);
2043			dm_pool_issue_prefetches(pool->pmd);
2044		}
2045	}
2046	blk_finish_plug(&plug);
2047}
2048
2049static int cmp_cells(const void *lhs, const void *rhs)
2050{
2051	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2052	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2053
2054	BUG_ON(!lhs_cell->holder);
2055	BUG_ON(!rhs_cell->holder);
2056
2057	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2058		return -1;
2059
2060	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2061		return 1;
2062
2063	return 0;
2064}
2065
2066static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2067{
2068	unsigned count = 0;
2069	struct dm_bio_prison_cell *cell, *tmp;
2070
2071	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2072		if (count >= CELL_SORT_ARRAY_SIZE)
2073			break;
2074
2075		pool->cell_sort_array[count++] = cell;
2076		list_del(&cell->user_list);
2077	}
2078
2079	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2080
2081	return count;
2082}
2083
2084static void process_thin_deferred_cells(struct thin_c *tc)
2085{
2086	struct pool *pool = tc->pool;
2087	unsigned long flags;
2088	struct list_head cells;
2089	struct dm_bio_prison_cell *cell;
2090	unsigned i, j, count;
2091
2092	INIT_LIST_HEAD(&cells);
2093
2094	spin_lock_irqsave(&tc->lock, flags);
2095	list_splice_init(&tc->deferred_cells, &cells);
2096	spin_unlock_irqrestore(&tc->lock, flags);
2097
2098	if (list_empty(&cells))
2099		return;
2100
2101	do {
2102		count = sort_cells(tc->pool, &cells);
2103
2104		for (i = 0; i < count; i++) {
2105			cell = pool->cell_sort_array[i];
2106			BUG_ON(!cell->holder);
2107
2108			/*
2109			 * If we've got no free new_mapping structs, and processing
2110			 * this bio might require one, we pause until there are some
2111			 * prepared mappings to process.
2112			 */
2113			if (ensure_next_mapping(pool)) {
2114				for (j = i; j < count; j++)
2115					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2116
2117				spin_lock_irqsave(&tc->lock, flags);
2118				list_splice(&cells, &tc->deferred_cells);
2119				spin_unlock_irqrestore(&tc->lock, flags);
2120				return;
2121			}
2122
2123			if (cell->holder->bi_rw & REQ_DISCARD)
2124				pool->process_discard_cell(tc, cell);
2125			else
2126				pool->process_cell(tc, cell);
2127		}
2128	} while (!list_empty(&cells));
2129}
2130
2131static void thin_get(struct thin_c *tc);
2132static void thin_put(struct thin_c *tc);
2133
2134/*
2135 * We can't hold rcu_read_lock() around code that can block.  So we
2136 * find a thin with the rcu lock held; bump a refcount; then drop
2137 * the lock.
2138 */
2139static struct thin_c *get_first_thin(struct pool *pool)
2140{
2141	struct thin_c *tc = NULL;
2142
2143	rcu_read_lock();
2144	if (!list_empty(&pool->active_thins)) {
2145		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2146		thin_get(tc);
2147	}
2148	rcu_read_unlock();
2149
2150	return tc;
2151}
2152
2153static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2154{
2155	struct thin_c *old_tc = tc;
2156
2157	rcu_read_lock();
2158	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2159		thin_get(tc);
2160		thin_put(old_tc);
2161		rcu_read_unlock();
2162		return tc;
2163	}
2164	thin_put(old_tc);
2165	rcu_read_unlock();
2166
2167	return NULL;
2168}
2169
2170static void process_deferred_bios(struct pool *pool)
2171{
2172	unsigned long flags;
2173	struct bio *bio;
2174	struct bio_list bios;
2175	struct thin_c *tc;
2176
2177	tc = get_first_thin(pool);
2178	while (tc) {
2179		process_thin_deferred_cells(tc);
2180		process_thin_deferred_bios(tc);
2181		tc = get_next_thin(pool, tc);
2182	}
2183
2184	/*
2185	 * If there are any deferred flush bios, we must commit
2186	 * the metadata before issuing them.
2187	 */
2188	bio_list_init(&bios);
2189	spin_lock_irqsave(&pool->lock, flags);
2190	bio_list_merge(&bios, &pool->deferred_flush_bios);
2191	bio_list_init(&pool->deferred_flush_bios);
2192	spin_unlock_irqrestore(&pool->lock, flags);
2193
2194	if (bio_list_empty(&bios) &&
2195	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2196		return;
2197
2198	if (commit(pool)) {
2199		while ((bio = bio_list_pop(&bios)))
2200			bio_io_error(bio);
2201		return;
2202	}
2203	pool->last_commit_jiffies = jiffies;
2204
2205	while ((bio = bio_list_pop(&bios)))
2206		generic_make_request(bio);
2207}
2208
2209static void do_worker(struct work_struct *ws)
2210{
2211	struct pool *pool = container_of(ws, struct pool, worker);
2212
2213	throttle_work_start(&pool->throttle);
2214	dm_pool_issue_prefetches(pool->pmd);
2215	throttle_work_update(&pool->throttle);
2216	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2217	throttle_work_update(&pool->throttle);
2218	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2219	throttle_work_update(&pool->throttle);
2220	process_deferred_bios(pool);
2221	throttle_work_complete(&pool->throttle);
2222}
2223
2224/*
2225 * We want to commit periodically so that not too much
2226 * unwritten data builds up.
2227 */
2228static void do_waker(struct work_struct *ws)
2229{
2230	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2231	wake_worker(pool);
2232	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2233}
2234
2235static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2236
2237/*
2238 * We're holding onto IO to allow userland time to react.  After the
2239 * timeout either the pool will have been resized (and thus back in
2240 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2241 */
2242static void do_no_space_timeout(struct work_struct *ws)
2243{
2244	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2245					 no_space_timeout);
2246
2247	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2248		pool->pf.error_if_no_space = true;
2249		notify_of_pool_mode_change_to_oods(pool);
2250		error_retry_list_with_code(pool, -ENOSPC);
2251	}
2252}
2253
2254/*----------------------------------------------------------------*/
2255
2256struct pool_work {
2257	struct work_struct worker;
2258	struct completion complete;
2259};
2260
2261static struct pool_work *to_pool_work(struct work_struct *ws)
2262{
2263	return container_of(ws, struct pool_work, worker);
2264}
2265
2266static void pool_work_complete(struct pool_work *pw)
2267{
2268	complete(&pw->complete);
2269}
2270
2271static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2272			   void (*fn)(struct work_struct *))
2273{
2274	INIT_WORK_ONSTACK(&pw->worker, fn);
2275	init_completion(&pw->complete);
2276	queue_work(pool->wq, &pw->worker);
2277	wait_for_completion(&pw->complete);
2278}
2279
2280/*----------------------------------------------------------------*/
2281
2282struct noflush_work {
2283	struct pool_work pw;
2284	struct thin_c *tc;
2285};
2286
2287static struct noflush_work *to_noflush(struct work_struct *ws)
2288{
2289	return container_of(to_pool_work(ws), struct noflush_work, pw);
2290}
2291
2292static void do_noflush_start(struct work_struct *ws)
2293{
2294	struct noflush_work *w = to_noflush(ws);
2295	w->tc->requeue_mode = true;
2296	requeue_io(w->tc);
2297	pool_work_complete(&w->pw);
2298}
2299
2300static void do_noflush_stop(struct work_struct *ws)
2301{
2302	struct noflush_work *w = to_noflush(ws);
2303	w->tc->requeue_mode = false;
2304	pool_work_complete(&w->pw);
2305}
2306
2307static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2308{
2309	struct noflush_work w;
2310
2311	w.tc = tc;
2312	pool_work_wait(&w.pw, tc->pool, fn);
2313}
2314
2315/*----------------------------------------------------------------*/
2316
2317static enum pool_mode get_pool_mode(struct pool *pool)
2318{
2319	return pool->pf.mode;
2320}
2321
2322static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2323{
2324	dm_table_event(pool->ti->table);
2325	DMINFO("%s: switching pool to %s mode",
2326	       dm_device_name(pool->pool_md), new_mode);
2327}
2328
2329static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2330{
2331	if (!pool->pf.error_if_no_space)
2332		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2333	else
2334		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2335}
2336
2337static bool passdown_enabled(struct pool_c *pt)
2338{
2339	return pt->adjusted_pf.discard_passdown;
2340}
2341
2342static void set_discard_callbacks(struct pool *pool)
2343{
2344	struct pool_c *pt = pool->ti->private;
2345
2346	if (passdown_enabled(pt)) {
2347		pool->process_discard_cell = process_discard_cell_passdown;
2348		pool->process_prepared_discard = process_prepared_discard_passdown;
2349	} else {
2350		pool->process_discard_cell = process_discard_cell_no_passdown;
2351		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2352	}
2353}
2354
2355static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2356{
2357	struct pool_c *pt = pool->ti->private;
2358	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2359	enum pool_mode old_mode = get_pool_mode(pool);
2360	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2361
2362	/*
2363	 * Never allow the pool to transition to PM_WRITE mode if user
2364	 * intervention is required to verify metadata and data consistency.
2365	 */
2366	if (new_mode == PM_WRITE && needs_check) {
2367		DMERR("%s: unable to switch pool to write mode until repaired.",
2368		      dm_device_name(pool->pool_md));
2369		if (old_mode != new_mode)
2370			new_mode = old_mode;
2371		else
2372			new_mode = PM_READ_ONLY;
2373	}
2374	/*
2375	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2376	 * not going to recover without a thin_repair.	So we never let the
2377	 * pool move out of the old mode.
2378	 */
2379	if (old_mode == PM_FAIL)
2380		new_mode = old_mode;
2381
2382	switch (new_mode) {
2383	case PM_FAIL:
2384		if (old_mode != new_mode)
2385			notify_of_pool_mode_change(pool, "failure");
2386		dm_pool_metadata_read_only(pool->pmd);
2387		pool->process_bio = process_bio_fail;
2388		pool->process_discard = process_bio_fail;
2389		pool->process_cell = process_cell_fail;
2390		pool->process_discard_cell = process_cell_fail;
2391		pool->process_prepared_mapping = process_prepared_mapping_fail;
2392		pool->process_prepared_discard = process_prepared_discard_fail;
2393
2394		error_retry_list(pool);
2395		break;
2396
2397	case PM_READ_ONLY:
2398		if (old_mode != new_mode)
2399			notify_of_pool_mode_change(pool, "read-only");
2400		dm_pool_metadata_read_only(pool->pmd);
2401		pool->process_bio = process_bio_read_only;
2402		pool->process_discard = process_bio_success;
2403		pool->process_cell = process_cell_read_only;
2404		pool->process_discard_cell = process_cell_success;
2405		pool->process_prepared_mapping = process_prepared_mapping_fail;
2406		pool->process_prepared_discard = process_prepared_discard_success;
2407
2408		error_retry_list(pool);
2409		break;
2410
2411	case PM_OUT_OF_DATA_SPACE:
2412		/*
2413		 * Ideally we'd never hit this state; the low water mark
2414		 * would trigger userland to extend the pool before we
2415		 * completely run out of data space.  However, many small
2416		 * IOs to unprovisioned space can consume data space at an
2417		 * alarming rate.  Adjust your low water mark if you're
2418		 * frequently seeing this mode.
2419		 */
2420		if (old_mode != new_mode)
2421			notify_of_pool_mode_change_to_oods(pool);
2422		pool->process_bio = process_bio_read_only;
2423		pool->process_discard = process_discard_bio;
2424		pool->process_cell = process_cell_read_only;
2425		pool->process_prepared_mapping = process_prepared_mapping;
2426		set_discard_callbacks(pool);
2427
2428		if (!pool->pf.error_if_no_space && no_space_timeout)
2429			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2430		break;
2431
2432	case PM_WRITE:
2433		if (old_mode != new_mode)
2434			notify_of_pool_mode_change(pool, "write");
2435		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2436		dm_pool_metadata_read_write(pool->pmd);
2437		pool->process_bio = process_bio;
2438		pool->process_discard = process_discard_bio;
2439		pool->process_cell = process_cell;
2440		pool->process_prepared_mapping = process_prepared_mapping;
2441		set_discard_callbacks(pool);
2442		break;
2443	}
2444
2445	pool->pf.mode = new_mode;
2446	/*
2447	 * The pool mode may have changed, sync it so bind_control_target()
2448	 * doesn't cause an unexpected mode transition on resume.
2449	 */
2450	pt->adjusted_pf.mode = new_mode;
2451}
2452
2453static void abort_transaction(struct pool *pool)
2454{
2455	const char *dev_name = dm_device_name(pool->pool_md);
2456
2457	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2458	if (dm_pool_abort_metadata(pool->pmd)) {
2459		DMERR("%s: failed to abort metadata transaction", dev_name);
2460		set_pool_mode(pool, PM_FAIL);
2461	}
2462
2463	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2464		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2465		set_pool_mode(pool, PM_FAIL);
2466	}
2467}
2468
2469static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2470{
2471	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2472		    dm_device_name(pool->pool_md), op, r);
2473
2474	abort_transaction(pool);
2475	set_pool_mode(pool, PM_READ_ONLY);
2476}
2477
2478/*----------------------------------------------------------------*/
2479
2480/*
2481 * Mapping functions.
2482 */
2483
2484/*
2485 * Called only while mapping a thin bio to hand it over to the workqueue.
2486 */
2487static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2488{
2489	unsigned long flags;
2490	struct pool *pool = tc->pool;
2491
2492	spin_lock_irqsave(&tc->lock, flags);
2493	bio_list_add(&tc->deferred_bio_list, bio);
2494	spin_unlock_irqrestore(&tc->lock, flags);
2495
2496	wake_worker(pool);
2497}
2498
2499static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2500{
2501	struct pool *pool = tc->pool;
2502
2503	throttle_lock(&pool->throttle);
2504	thin_defer_bio(tc, bio);
2505	throttle_unlock(&pool->throttle);
2506}
2507
2508static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2509{
2510	unsigned long flags;
2511	struct pool *pool = tc->pool;
2512
2513	throttle_lock(&pool->throttle);
2514	spin_lock_irqsave(&tc->lock, flags);
2515	list_add_tail(&cell->user_list, &tc->deferred_cells);
2516	spin_unlock_irqrestore(&tc->lock, flags);
2517	throttle_unlock(&pool->throttle);
2518
2519	wake_worker(pool);
2520}
2521
2522static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2523{
2524	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2525
2526	h->tc = tc;
2527	h->shared_read_entry = NULL;
2528	h->all_io_entry = NULL;
2529	h->overwrite_mapping = NULL;
2530	h->cell = NULL;
2531}
2532
2533/*
2534 * Non-blocking function called from the thin target's map function.
2535 */
2536static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2537{
2538	int r;
2539	struct thin_c *tc = ti->private;
2540	dm_block_t block = get_bio_block(tc, bio);
2541	struct dm_thin_device *td = tc->td;
2542	struct dm_thin_lookup_result result;
2543	struct dm_bio_prison_cell *virt_cell, *data_cell;
2544	struct dm_cell_key key;
2545
2546	thin_hook_bio(tc, bio);
2547
2548	if (tc->requeue_mode) {
2549		bio->bi_error = DM_ENDIO_REQUEUE;
2550		bio_endio(bio);
2551		return DM_MAPIO_SUBMITTED;
2552	}
2553
2554	if (get_pool_mode(tc->pool) == PM_FAIL) {
2555		bio_io_error(bio);
2556		return DM_MAPIO_SUBMITTED;
2557	}
2558
2559	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2560		thin_defer_bio_with_throttle(tc, bio);
2561		return DM_MAPIO_SUBMITTED;
2562	}
2563
2564	/*
2565	 * We must hold the virtual cell before doing the lookup, otherwise
2566	 * there's a race with discard.
2567	 */
2568	build_virtual_key(tc->td, block, &key);
2569	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2570		return DM_MAPIO_SUBMITTED;
2571
2572	r = dm_thin_find_block(td, block, 0, &result);
2573
2574	/*
2575	 * Note that we defer readahead too.
2576	 */
2577	switch (r) {
2578	case 0:
2579		if (unlikely(result.shared)) {
2580			/*
2581			 * We have a race condition here between the
2582			 * result.shared value returned by the lookup and
2583			 * snapshot creation, which may cause new
2584			 * sharing.
2585			 *
2586			 * To avoid this always quiesce the origin before
2587			 * taking the snap.  You want to do this anyway to
2588			 * ensure a consistent application view
2589			 * (i.e. lockfs).
2590			 *
2591			 * More distant ancestors are irrelevant. The
2592			 * shared flag will be set in their case.
2593			 */
2594			thin_defer_cell(tc, virt_cell);
2595			return DM_MAPIO_SUBMITTED;
2596		}
2597
2598		build_data_key(tc->td, result.block, &key);
2599		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2600			cell_defer_no_holder(tc, virt_cell);
2601			return DM_MAPIO_SUBMITTED;
2602		}
2603
2604		inc_all_io_entry(tc->pool, bio);
2605		cell_defer_no_holder(tc, data_cell);
2606		cell_defer_no_holder(tc, virt_cell);
2607
2608		remap(tc, bio, result.block);
2609		return DM_MAPIO_REMAPPED;
2610
2611	case -ENODATA:
2612	case -EWOULDBLOCK:
2613		thin_defer_cell(tc, virt_cell);
2614		return DM_MAPIO_SUBMITTED;
2615
2616	default:
2617		/*
2618		 * Must always call bio_io_error on failure.
2619		 * dm_thin_find_block can fail with -EINVAL if the
2620		 * pool is switched to fail-io mode.
2621		 */
2622		bio_io_error(bio);
2623		cell_defer_no_holder(tc, virt_cell);
2624		return DM_MAPIO_SUBMITTED;
2625	}
2626}
2627
2628static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2629{
2630	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2631	struct request_queue *q;
2632
2633	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2634		return 1;
2635
2636	q = bdev_get_queue(pt->data_dev->bdev);
2637	return bdi_congested(&q->backing_dev_info, bdi_bits);
2638}
2639
2640static void requeue_bios(struct pool *pool)
2641{
2642	unsigned long flags;
2643	struct thin_c *tc;
2644
2645	rcu_read_lock();
2646	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2647		spin_lock_irqsave(&tc->lock, flags);
2648		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2649		bio_list_init(&tc->retry_on_resume_list);
2650		spin_unlock_irqrestore(&tc->lock, flags);
2651	}
2652	rcu_read_unlock();
2653}
2654
2655/*----------------------------------------------------------------
2656 * Binding of control targets to a pool object
2657 *--------------------------------------------------------------*/
2658static bool data_dev_supports_discard(struct pool_c *pt)
2659{
2660	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2661
2662	return q && blk_queue_discard(q);
2663}
2664
2665static bool is_factor(sector_t block_size, uint32_t n)
2666{
2667	return !sector_div(block_size, n);
2668}
2669
2670/*
2671 * If discard_passdown was enabled verify that the data device
2672 * supports discards.  Disable discard_passdown if not.
2673 */
2674static void disable_passdown_if_not_supported(struct pool_c *pt)
2675{
2676	struct pool *pool = pt->pool;
2677	struct block_device *data_bdev = pt->data_dev->bdev;
2678	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2679	const char *reason = NULL;
2680	char buf[BDEVNAME_SIZE];
2681
2682	if (!pt->adjusted_pf.discard_passdown)
2683		return;
2684
2685	if (!data_dev_supports_discard(pt))
2686		reason = "discard unsupported";
2687
2688	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2689		reason = "max discard sectors smaller than a block";
2690
2691	if (reason) {
2692		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2693		pt->adjusted_pf.discard_passdown = false;
2694	}
2695}
2696
2697static int bind_control_target(struct pool *pool, struct dm_target *ti)
2698{
2699	struct pool_c *pt = ti->private;
2700
2701	/*
2702	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2703	 */
2704	enum pool_mode old_mode = get_pool_mode(pool);
2705	enum pool_mode new_mode = pt->adjusted_pf.mode;
2706
2707	/*
2708	 * Don't change the pool's mode until set_pool_mode() below.
2709	 * Otherwise the pool's process_* function pointers may
2710	 * not match the desired pool mode.
2711	 */
2712	pt->adjusted_pf.mode = old_mode;
2713
2714	pool->ti = ti;
2715	pool->pf = pt->adjusted_pf;
2716	pool->low_water_blocks = pt->low_water_blocks;
2717
2718	set_pool_mode(pool, new_mode);
2719
2720	return 0;
2721}
2722
2723static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2724{
2725	if (pool->ti == ti)
2726		pool->ti = NULL;
2727}
2728
2729/*----------------------------------------------------------------
2730 * Pool creation
2731 *--------------------------------------------------------------*/
2732/* Initialize pool features. */
2733static void pool_features_init(struct pool_features *pf)
2734{
2735	pf->mode = PM_WRITE;
2736	pf->zero_new_blocks = true;
2737	pf->discard_enabled = true;
2738	pf->discard_passdown = true;
2739	pf->error_if_no_space = false;
2740}
2741
2742static void __pool_destroy(struct pool *pool)
2743{
2744	__pool_table_remove(pool);
2745
2746	vfree(pool->cell_sort_array);
2747	if (dm_pool_metadata_close(pool->pmd) < 0)
2748		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2749
2750	dm_bio_prison_destroy(pool->prison);
2751	dm_kcopyd_client_destroy(pool->copier);
2752
2753	if (pool->wq)
2754		destroy_workqueue(pool->wq);
2755
2756	if (pool->next_mapping)
2757		mempool_free(pool->next_mapping, pool->mapping_pool);
2758	mempool_destroy(pool->mapping_pool);
2759	dm_deferred_set_destroy(pool->shared_read_ds);
2760	dm_deferred_set_destroy(pool->all_io_ds);
2761	kfree(pool);
2762}
2763
2764static struct kmem_cache *_new_mapping_cache;
2765
2766static struct pool *pool_create(struct mapped_device *pool_md,
2767				struct block_device *metadata_dev,
2768				unsigned long block_size,
2769				int read_only, char **error)
2770{
2771	int r;
2772	void *err_p;
2773	struct pool *pool;
2774	struct dm_pool_metadata *pmd;
2775	bool format_device = read_only ? false : true;
2776
2777	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2778	if (IS_ERR(pmd)) {
2779		*error = "Error creating metadata object";
2780		return (struct pool *)pmd;
2781	}
2782
2783	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2784	if (!pool) {
2785		*error = "Error allocating memory for pool";
2786		err_p = ERR_PTR(-ENOMEM);
2787		goto bad_pool;
2788	}
2789
2790	pool->pmd = pmd;
2791	pool->sectors_per_block = block_size;
2792	if (block_size & (block_size - 1))
2793		pool->sectors_per_block_shift = -1;
2794	else
2795		pool->sectors_per_block_shift = __ffs(block_size);
2796	pool->low_water_blocks = 0;
2797	pool_features_init(&pool->pf);
2798	pool->prison = dm_bio_prison_create();
2799	if (!pool->prison) {
2800		*error = "Error creating pool's bio prison";
2801		err_p = ERR_PTR(-ENOMEM);
2802		goto bad_prison;
2803	}
2804
2805	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2806	if (IS_ERR(pool->copier)) {
2807		r = PTR_ERR(pool->copier);
2808		*error = "Error creating pool's kcopyd client";
2809		err_p = ERR_PTR(r);
2810		goto bad_kcopyd_client;
2811	}
2812
2813	/*
2814	 * Create singlethreaded workqueue that will service all devices
2815	 * that use this metadata.
2816	 */
2817	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2818	if (!pool->wq) {
2819		*error = "Error creating pool's workqueue";
2820		err_p = ERR_PTR(-ENOMEM);
2821		goto bad_wq;
2822	}
2823
2824	throttle_init(&pool->throttle);
2825	INIT_WORK(&pool->worker, do_worker);
2826	INIT_DELAYED_WORK(&pool->waker, do_waker);
2827	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2828	spin_lock_init(&pool->lock);
2829	bio_list_init(&pool->deferred_flush_bios);
2830	INIT_LIST_HEAD(&pool->prepared_mappings);
2831	INIT_LIST_HEAD(&pool->prepared_discards);
2832	INIT_LIST_HEAD(&pool->active_thins);
2833	pool->low_water_triggered = false;
2834	pool->suspended = true;
2835
2836	pool->shared_read_ds = dm_deferred_set_create();
2837	if (!pool->shared_read_ds) {
2838		*error = "Error creating pool's shared read deferred set";
2839		err_p = ERR_PTR(-ENOMEM);
2840		goto bad_shared_read_ds;
2841	}
2842
2843	pool->all_io_ds = dm_deferred_set_create();
2844	if (!pool->all_io_ds) {
2845		*error = "Error creating pool's all io deferred set";
2846		err_p = ERR_PTR(-ENOMEM);
2847		goto bad_all_io_ds;
2848	}
2849
2850	pool->next_mapping = NULL;
2851	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2852						      _new_mapping_cache);
2853	if (!pool->mapping_pool) {
2854		*error = "Error creating pool's mapping mempool";
2855		err_p = ERR_PTR(-ENOMEM);
2856		goto bad_mapping_pool;
2857	}
2858
2859	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2860	if (!pool->cell_sort_array) {
2861		*error = "Error allocating cell sort array";
2862		err_p = ERR_PTR(-ENOMEM);
2863		goto bad_sort_array;
2864	}
2865
2866	pool->ref_count = 1;
2867	pool->last_commit_jiffies = jiffies;
2868	pool->pool_md = pool_md;
2869	pool->md_dev = metadata_dev;
2870	__pool_table_insert(pool);
2871
2872	return pool;
2873
2874bad_sort_array:
2875	mempool_destroy(pool->mapping_pool);
2876bad_mapping_pool:
2877	dm_deferred_set_destroy(pool->all_io_ds);
2878bad_all_io_ds:
2879	dm_deferred_set_destroy(pool->shared_read_ds);
2880bad_shared_read_ds:
2881	destroy_workqueue(pool->wq);
2882bad_wq:
2883	dm_kcopyd_client_destroy(pool->copier);
2884bad_kcopyd_client:
2885	dm_bio_prison_destroy(pool->prison);
2886bad_prison:
2887	kfree(pool);
2888bad_pool:
2889	if (dm_pool_metadata_close(pmd))
2890		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2891
2892	return err_p;
2893}
2894
2895static void __pool_inc(struct pool *pool)
2896{
2897	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2898	pool->ref_count++;
2899}
2900
2901static void __pool_dec(struct pool *pool)
2902{
2903	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2904	BUG_ON(!pool->ref_count);
2905	if (!--pool->ref_count)
2906		__pool_destroy(pool);
2907}
2908
2909static struct pool *__pool_find(struct mapped_device *pool_md,
2910				struct block_device *metadata_dev,
2911				unsigned long block_size, int read_only,
2912				char **error, int *created)
2913{
2914	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2915
2916	if (pool) {
2917		if (pool->pool_md != pool_md) {
2918			*error = "metadata device already in use by a pool";
2919			return ERR_PTR(-EBUSY);
2920		}
2921		__pool_inc(pool);
2922
2923	} else {
2924		pool = __pool_table_lookup(pool_md);
2925		if (pool) {
2926			if (pool->md_dev != metadata_dev) {
2927				*error = "different pool cannot replace a pool";
2928				return ERR_PTR(-EINVAL);
2929			}
2930			__pool_inc(pool);
2931
2932		} else {
2933			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2934			*created = 1;
2935		}
2936	}
2937
2938	return pool;
2939}
2940
2941/*----------------------------------------------------------------
2942 * Pool target methods
2943 *--------------------------------------------------------------*/
2944static void pool_dtr(struct dm_target *ti)
2945{
2946	struct pool_c *pt = ti->private;
2947
2948	mutex_lock(&dm_thin_pool_table.mutex);
2949
2950	unbind_control_target(pt->pool, ti);
2951	__pool_dec(pt->pool);
2952	dm_put_device(ti, pt->metadata_dev);
2953	dm_put_device(ti, pt->data_dev);
2954	kfree(pt);
2955
2956	mutex_unlock(&dm_thin_pool_table.mutex);
2957}
2958
2959static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2960			       struct dm_target *ti)
2961{
2962	int r;
2963	unsigned argc;
2964	const char *arg_name;
2965
2966	static struct dm_arg _args[] = {
2967		{0, 4, "Invalid number of pool feature arguments"},
2968	};
2969
2970	/*
2971	 * No feature arguments supplied.
2972	 */
2973	if (!as->argc)
2974		return 0;
2975
2976	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2977	if (r)
2978		return -EINVAL;
2979
2980	while (argc && !r) {
2981		arg_name = dm_shift_arg(as);
2982		argc--;
2983
2984		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2985			pf->zero_new_blocks = false;
2986
2987		else if (!strcasecmp(arg_name, "ignore_discard"))
2988			pf->discard_enabled = false;
2989
2990		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2991			pf->discard_passdown = false;
2992
2993		else if (!strcasecmp(arg_name, "read_only"))
2994			pf->mode = PM_READ_ONLY;
2995
2996		else if (!strcasecmp(arg_name, "error_if_no_space"))
2997			pf->error_if_no_space = true;
2998
2999		else {
3000			ti->error = "Unrecognised pool feature requested";
3001			r = -EINVAL;
3002			break;
3003		}
3004	}
3005
3006	return r;
3007}
3008
3009static void metadata_low_callback(void *context)
3010{
3011	struct pool *pool = context;
3012
3013	DMWARN("%s: reached low water mark for metadata device: sending event.",
3014	       dm_device_name(pool->pool_md));
3015
3016	dm_table_event(pool->ti->table);
3017}
3018
3019static sector_t get_dev_size(struct block_device *bdev)
3020{
3021	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3022}
3023
3024static void warn_if_metadata_device_too_big(struct block_device *bdev)
3025{
3026	sector_t metadata_dev_size = get_dev_size(bdev);
3027	char buffer[BDEVNAME_SIZE];
3028
3029	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3030		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3031		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3032}
3033
3034static sector_t get_metadata_dev_size(struct block_device *bdev)
3035{
3036	sector_t metadata_dev_size = get_dev_size(bdev);
3037
3038	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3039		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3040
3041	return metadata_dev_size;
3042}
3043
3044static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3045{
3046	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3047
3048	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3049
3050	return metadata_dev_size;
3051}
3052
3053/*
3054 * When a metadata threshold is crossed a dm event is triggered, and
3055 * userland should respond by growing the metadata device.  We could let
3056 * userland set the threshold, like we do with the data threshold, but I'm
3057 * not sure they know enough to do this well.
3058 */
3059static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3060{
3061	/*
3062	 * 4M is ample for all ops with the possible exception of thin
3063	 * device deletion which is harmless if it fails (just retry the
3064	 * delete after you've grown the device).
3065	 */
3066	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3067	return min((dm_block_t)1024ULL /* 4M */, quarter);
3068}
3069
3070/*
3071 * thin-pool <metadata dev> <data dev>
3072 *	     <data block size (sectors)>
3073 *	     <low water mark (blocks)>
3074 *	     [<#feature args> [<arg>]*]
3075 *
3076 * Optional feature arguments are:
3077 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3078 *	     ignore_discard: disable discard
3079 *	     no_discard_passdown: don't pass discards down to the data device
3080 *	     read_only: Don't allow any changes to be made to the pool metadata.
3081 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3082 */
3083static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3084{
3085	int r, pool_created = 0;
3086	struct pool_c *pt;
3087	struct pool *pool;
3088	struct pool_features pf;
3089	struct dm_arg_set as;
3090	struct dm_dev *data_dev;
3091	unsigned long block_size;
3092	dm_block_t low_water_blocks;
3093	struct dm_dev *metadata_dev;
3094	fmode_t metadata_mode;
3095
3096	/*
3097	 * FIXME Remove validation from scope of lock.
3098	 */
3099	mutex_lock(&dm_thin_pool_table.mutex);
3100
3101	if (argc < 4) {
3102		ti->error = "Invalid argument count";
3103		r = -EINVAL;
3104		goto out_unlock;
3105	}
3106
3107	as.argc = argc;
3108	as.argv = argv;
3109
3110	/*
3111	 * Set default pool features.
3112	 */
3113	pool_features_init(&pf);
3114
3115	dm_consume_args(&as, 4);
3116	r = parse_pool_features(&as, &pf, ti);
3117	if (r)
3118		goto out_unlock;
3119
3120	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3121	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3122	if (r) {
3123		ti->error = "Error opening metadata block device";
3124		goto out_unlock;
3125	}
3126	warn_if_metadata_device_too_big(metadata_dev->bdev);
3127
3128	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3129	if (r) {
3130		ti->error = "Error getting data device";
3131		goto out_metadata;
3132	}
3133
3134	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3135	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3136	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3137	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3138		ti->error = "Invalid block size";
3139		r = -EINVAL;
3140		goto out;
3141	}
3142
3143	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3144		ti->error = "Invalid low water mark";
3145		r = -EINVAL;
3146		goto out;
3147	}
3148
3149	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3150	if (!pt) {
3151		r = -ENOMEM;
3152		goto out;
3153	}
3154
3155	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3156			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3157	if (IS_ERR(pool)) {
3158		r = PTR_ERR(pool);
3159		goto out_free_pt;
3160	}
3161
3162	/*
3163	 * 'pool_created' reflects whether this is the first table load.
3164	 * Top level discard support is not allowed to be changed after
3165	 * initial load.  This would require a pool reload to trigger thin
3166	 * device changes.
3167	 */
3168	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3169		ti->error = "Discard support cannot be disabled once enabled";
3170		r = -EINVAL;
3171		goto out_flags_changed;
3172	}
3173
3174	pt->pool = pool;
3175	pt->ti = ti;
3176	pt->metadata_dev = metadata_dev;
3177	pt->data_dev = data_dev;
3178	pt->low_water_blocks = low_water_blocks;
3179	pt->adjusted_pf = pt->requested_pf = pf;
3180	ti->num_flush_bios = 1;
3181
3182	/*
3183	 * Only need to enable discards if the pool should pass
3184	 * them down to the data device.  The thin device's discard
3185	 * processing will cause mappings to be removed from the btree.
3186	 */
3187	ti->discard_zeroes_data_unsupported = true;
3188	if (pf.discard_enabled && pf.discard_passdown) {
3189		ti->num_discard_bios = 1;
3190
3191		/*
3192		 * Setting 'discards_supported' circumvents the normal
3193		 * stacking of discard limits (this keeps the pool and
3194		 * thin devices' discard limits consistent).
3195		 */
3196		ti->discards_supported = true;
3197	}
3198	ti->private = pt;
3199
3200	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3201						calc_metadata_threshold(pt),
3202						metadata_low_callback,
3203						pool);
3204	if (r)
3205		goto out_flags_changed;
3206
3207	pt->callbacks.congested_fn = pool_is_congested;
3208	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3209
3210	mutex_unlock(&dm_thin_pool_table.mutex);
3211
3212	return 0;
3213
3214out_flags_changed:
3215	__pool_dec(pool);
3216out_free_pt:
3217	kfree(pt);
3218out:
3219	dm_put_device(ti, data_dev);
3220out_metadata:
3221	dm_put_device(ti, metadata_dev);
3222out_unlock:
3223	mutex_unlock(&dm_thin_pool_table.mutex);
3224
3225	return r;
3226}
3227
3228static int pool_map(struct dm_target *ti, struct bio *bio)
3229{
3230	int r;
3231	struct pool_c *pt = ti->private;
3232	struct pool *pool = pt->pool;
3233	unsigned long flags;
3234
3235	/*
3236	 * As this is a singleton target, ti->begin is always zero.
3237	 */
3238	spin_lock_irqsave(&pool->lock, flags);
3239	bio->bi_bdev = pt->data_dev->bdev;
3240	r = DM_MAPIO_REMAPPED;
3241	spin_unlock_irqrestore(&pool->lock, flags);
3242
3243	return r;
3244}
3245
3246static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3247{
3248	int r;
3249	struct pool_c *pt = ti->private;
3250	struct pool *pool = pt->pool;
3251	sector_t data_size = ti->len;
3252	dm_block_t sb_data_size;
3253
3254	*need_commit = false;
3255
3256	(void) sector_div(data_size, pool->sectors_per_block);
3257
3258	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3259	if (r) {
3260		DMERR("%s: failed to retrieve data device size",
3261		      dm_device_name(pool->pool_md));
3262		return r;
3263	}
3264
3265	if (data_size < sb_data_size) {
3266		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3267		      dm_device_name(pool->pool_md),
3268		      (unsigned long long)data_size, sb_data_size);
3269		return -EINVAL;
3270
3271	} else if (data_size > sb_data_size) {
3272		if (dm_pool_metadata_needs_check(pool->pmd)) {
3273			DMERR("%s: unable to grow the data device until repaired.",
3274			      dm_device_name(pool->pool_md));
3275			return 0;
3276		}
3277
3278		if (sb_data_size)
3279			DMINFO("%s: growing the data device from %llu to %llu blocks",
3280			       dm_device_name(pool->pool_md),
3281			       sb_data_size, (unsigned long long)data_size);
3282		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3283		if (r) {
3284			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3285			return r;
3286		}
3287
3288		*need_commit = true;
3289	}
3290
3291	return 0;
3292}
3293
3294static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3295{
3296	int r;
3297	struct pool_c *pt = ti->private;
3298	struct pool *pool = pt->pool;
3299	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3300
3301	*need_commit = false;
3302
3303	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3304
3305	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3306	if (r) {
3307		DMERR("%s: failed to retrieve metadata device size",
3308		      dm_device_name(pool->pool_md));
3309		return r;
3310	}
3311
3312	if (metadata_dev_size < sb_metadata_dev_size) {
3313		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3314		      dm_device_name(pool->pool_md),
3315		      metadata_dev_size, sb_metadata_dev_size);
3316		return -EINVAL;
3317
3318	} else if (metadata_dev_size > sb_metadata_dev_size) {
3319		if (dm_pool_metadata_needs_check(pool->pmd)) {
3320			DMERR("%s: unable to grow the metadata device until repaired.",
3321			      dm_device_name(pool->pool_md));
3322			return 0;
3323		}
3324
3325		warn_if_metadata_device_too_big(pool->md_dev);
3326		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3327		       dm_device_name(pool->pool_md),
3328		       sb_metadata_dev_size, metadata_dev_size);
3329		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3330		if (r) {
3331			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3332			return r;
3333		}
3334
3335		*need_commit = true;
3336	}
3337
3338	return 0;
3339}
3340
3341/*
3342 * Retrieves the number of blocks of the data device from
3343 * the superblock and compares it to the actual device size,
3344 * thus resizing the data device in case it has grown.
3345 *
3346 * This both copes with opening preallocated data devices in the ctr
3347 * being followed by a resume
3348 * -and-
3349 * calling the resume method individually after userspace has
3350 * grown the data device in reaction to a table event.
3351 */
3352static int pool_preresume(struct dm_target *ti)
3353{
3354	int r;
3355	bool need_commit1, need_commit2;
3356	struct pool_c *pt = ti->private;
3357	struct pool *pool = pt->pool;
3358
3359	/*
3360	 * Take control of the pool object.
3361	 */
3362	r = bind_control_target(pool, ti);
3363	if (r)
3364		return r;
3365
3366	r = maybe_resize_data_dev(ti, &need_commit1);
3367	if (r)
3368		return r;
3369
3370	r = maybe_resize_metadata_dev(ti, &need_commit2);
3371	if (r)
3372		return r;
3373
3374	if (need_commit1 || need_commit2)
3375		(void) commit(pool);
3376
3377	return 0;
3378}
3379
3380static void pool_suspend_active_thins(struct pool *pool)
3381{
3382	struct thin_c *tc;
3383
3384	/* Suspend all active thin devices */
3385	tc = get_first_thin(pool);
3386	while (tc) {
3387		dm_internal_suspend_noflush(tc->thin_md);
3388		tc = get_next_thin(pool, tc);
3389	}
3390}
3391
3392static void pool_resume_active_thins(struct pool *pool)
3393{
3394	struct thin_c *tc;
3395
3396	/* Resume all active thin devices */
3397	tc = get_first_thin(pool);
3398	while (tc) {
3399		dm_internal_resume(tc->thin_md);
3400		tc = get_next_thin(pool, tc);
3401	}
3402}
3403
3404static void pool_resume(struct dm_target *ti)
3405{
3406	struct pool_c *pt = ti->private;
3407	struct pool *pool = pt->pool;
3408	unsigned long flags;
3409
3410	/*
3411	 * Must requeue active_thins' bios and then resume
3412	 * active_thins _before_ clearing 'suspend' flag.
3413	 */
3414	requeue_bios(pool);
3415	pool_resume_active_thins(pool);
3416
3417	spin_lock_irqsave(&pool->lock, flags);
3418	pool->low_water_triggered = false;
3419	pool->suspended = false;
3420	spin_unlock_irqrestore(&pool->lock, flags);
3421
3422	do_waker(&pool->waker.work);
3423}
3424
3425static void pool_presuspend(struct dm_target *ti)
3426{
3427	struct pool_c *pt = ti->private;
3428	struct pool *pool = pt->pool;
3429	unsigned long flags;
3430
3431	spin_lock_irqsave(&pool->lock, flags);
3432	pool->suspended = true;
3433	spin_unlock_irqrestore(&pool->lock, flags);
3434
3435	pool_suspend_active_thins(pool);
3436}
3437
3438static void pool_presuspend_undo(struct dm_target *ti)
3439{
3440	struct pool_c *pt = ti->private;
3441	struct pool *pool = pt->pool;
3442	unsigned long flags;
3443
3444	pool_resume_active_thins(pool);
3445
3446	spin_lock_irqsave(&pool->lock, flags);
3447	pool->suspended = false;
3448	spin_unlock_irqrestore(&pool->lock, flags);
3449}
3450
3451static void pool_postsuspend(struct dm_target *ti)
3452{
3453	struct pool_c *pt = ti->private;
3454	struct pool *pool = pt->pool;
3455
3456	cancel_delayed_work_sync(&pool->waker);
3457	cancel_delayed_work_sync(&pool->no_space_timeout);
3458	flush_workqueue(pool->wq);
3459	(void) commit(pool);
3460}
3461
3462static int check_arg_count(unsigned argc, unsigned args_required)
3463{
3464	if (argc != args_required) {
3465		DMWARN("Message received with %u arguments instead of %u.",
3466		       argc, args_required);
3467		return -EINVAL;
3468	}
3469
3470	return 0;
3471}
3472
3473static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3474{
3475	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3476	    *dev_id <= MAX_DEV_ID)
3477		return 0;
3478
3479	if (warning)
3480		DMWARN("Message received with invalid device id: %s", arg);
3481
3482	return -EINVAL;
3483}
3484
3485static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3486{
3487	dm_thin_id dev_id;
3488	int r;
3489
3490	r = check_arg_count(argc, 2);
3491	if (r)
3492		return r;
3493
3494	r = read_dev_id(argv[1], &dev_id, 1);
3495	if (r)
3496		return r;
3497
3498	r = dm_pool_create_thin(pool->pmd, dev_id);
3499	if (r) {
3500		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3501		       argv[1]);
3502		return r;
3503	}
3504
3505	return 0;
3506}
3507
3508static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3509{
3510	dm_thin_id dev_id;
3511	dm_thin_id origin_dev_id;
3512	int r;
3513
3514	r = check_arg_count(argc, 3);
3515	if (r)
3516		return r;
3517
3518	r = read_dev_id(argv[1], &dev_id, 1);
3519	if (r)
3520		return r;
3521
3522	r = read_dev_id(argv[2], &origin_dev_id, 1);
3523	if (r)
3524		return r;
3525
3526	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3527	if (r) {
3528		DMWARN("Creation of new snapshot %s of device %s failed.",
3529		       argv[1], argv[2]);
3530		return r;
3531	}
3532
3533	return 0;
3534}
3535
3536static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3537{
3538	dm_thin_id dev_id;
3539	int r;
3540
3541	r = check_arg_count(argc, 2);
3542	if (r)
3543		return r;
3544
3545	r = read_dev_id(argv[1], &dev_id, 1);
3546	if (r)
3547		return r;
3548
3549	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3550	if (r)
3551		DMWARN("Deletion of thin device %s failed.", argv[1]);
3552
3553	return r;
3554}
3555
3556static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3557{
3558	dm_thin_id old_id, new_id;
3559	int r;
3560
3561	r = check_arg_count(argc, 3);
3562	if (r)
3563		return r;
3564
3565	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3566		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3567		return -EINVAL;
3568	}
3569
3570	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3571		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3572		return -EINVAL;
3573	}
3574
3575	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3576	if (r) {
3577		DMWARN("Failed to change transaction id from %s to %s.",
3578		       argv[1], argv[2]);
3579		return r;
3580	}
3581
3582	return 0;
3583}
3584
3585static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3586{
3587	int r;
3588
3589	r = check_arg_count(argc, 1);
3590	if (r)
3591		return r;
3592
3593	(void) commit(pool);
3594
3595	r = dm_pool_reserve_metadata_snap(pool->pmd);
3596	if (r)
3597		DMWARN("reserve_metadata_snap message failed.");
3598
3599	return r;
3600}
3601
3602static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3603{
3604	int r;
3605
3606	r = check_arg_count(argc, 1);
3607	if (r)
3608		return r;
3609
3610	r = dm_pool_release_metadata_snap(pool->pmd);
3611	if (r)
3612		DMWARN("release_metadata_snap message failed.");
3613
3614	return r;
3615}
3616
3617/*
3618 * Messages supported:
3619 *   create_thin	<dev_id>
3620 *   create_snap	<dev_id> <origin_id>
3621 *   delete		<dev_id>
3622 *   set_transaction_id <current_trans_id> <new_trans_id>
3623 *   reserve_metadata_snap
3624 *   release_metadata_snap
3625 */
3626static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3627{
3628	int r = -EINVAL;
3629	struct pool_c *pt = ti->private;
3630	struct pool *pool = pt->pool;
3631
3632	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3633		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3634		      dm_device_name(pool->pool_md));
3635		return -EOPNOTSUPP;
3636	}
3637
3638	if (!strcasecmp(argv[0], "create_thin"))
3639		r = process_create_thin_mesg(argc, argv, pool);
3640
3641	else if (!strcasecmp(argv[0], "create_snap"))
3642		r = process_create_snap_mesg(argc, argv, pool);
3643
3644	else if (!strcasecmp(argv[0], "delete"))
3645		r = process_delete_mesg(argc, argv, pool);
3646
3647	else if (!strcasecmp(argv[0], "set_transaction_id"))
3648		r = process_set_transaction_id_mesg(argc, argv, pool);
3649
3650	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3651		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3652
3653	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3654		r = process_release_metadata_snap_mesg(argc, argv, pool);
3655
3656	else
3657		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3658
3659	if (!r)
3660		(void) commit(pool);
3661
3662	return r;
3663}
3664
3665static void emit_flags(struct pool_features *pf, char *result,
3666		       unsigned sz, unsigned maxlen)
3667{
3668	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3669		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3670		pf->error_if_no_space;
3671	DMEMIT("%u ", count);
3672
3673	if (!pf->zero_new_blocks)
3674		DMEMIT("skip_block_zeroing ");
3675
3676	if (!pf->discard_enabled)
3677		DMEMIT("ignore_discard ");
3678
3679	if (!pf->discard_passdown)
3680		DMEMIT("no_discard_passdown ");
3681
3682	if (pf->mode == PM_READ_ONLY)
3683		DMEMIT("read_only ");
3684
3685	if (pf->error_if_no_space)
3686		DMEMIT("error_if_no_space ");
3687}
3688
3689/*
3690 * Status line is:
3691 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3692 *    <used data sectors>/<total data sectors> <held metadata root>
3693 *    <pool mode> <discard config> <no space config> <needs_check>
3694 */
3695static void pool_status(struct dm_target *ti, status_type_t type,
3696			unsigned status_flags, char *result, unsigned maxlen)
3697{
3698	int r;
3699	unsigned sz = 0;
3700	uint64_t transaction_id;
3701	dm_block_t nr_free_blocks_data;
3702	dm_block_t nr_free_blocks_metadata;
3703	dm_block_t nr_blocks_data;
3704	dm_block_t nr_blocks_metadata;
3705	dm_block_t held_root;
3706	char buf[BDEVNAME_SIZE];
3707	char buf2[BDEVNAME_SIZE];
3708	struct pool_c *pt = ti->private;
3709	struct pool *pool = pt->pool;
3710
3711	switch (type) {
3712	case STATUSTYPE_INFO:
3713		if (get_pool_mode(pool) == PM_FAIL) {
3714			DMEMIT("Fail");
3715			break;
3716		}
3717
3718		/* Commit to ensure statistics aren't out-of-date */
3719		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3720			(void) commit(pool);
3721
3722		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3723		if (r) {
3724			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3725			      dm_device_name(pool->pool_md), r);
3726			goto err;
3727		}
3728
3729		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3730		if (r) {
3731			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3732			      dm_device_name(pool->pool_md), r);
3733			goto err;
3734		}
3735
3736		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3737		if (r) {
3738			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3739			      dm_device_name(pool->pool_md), r);
3740			goto err;
3741		}
3742
3743		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3744		if (r) {
3745			DMERR("%s: dm_pool_get_free_block_count returned %d",
3746			      dm_device_name(pool->pool_md), r);
3747			goto err;
3748		}
3749
3750		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3751		if (r) {
3752			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3753			      dm_device_name(pool->pool_md), r);
3754			goto err;
3755		}
3756
3757		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3758		if (r) {
3759			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3760			      dm_device_name(pool->pool_md), r);
3761			goto err;
3762		}
3763
3764		DMEMIT("%llu %llu/%llu %llu/%llu ",
3765		       (unsigned long long)transaction_id,
3766		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3767		       (unsigned long long)nr_blocks_metadata,
3768		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3769		       (unsigned long long)nr_blocks_data);
3770
3771		if (held_root)
3772			DMEMIT("%llu ", held_root);
3773		else
3774			DMEMIT("- ");
3775
3776		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3777			DMEMIT("out_of_data_space ");
3778		else if (pool->pf.mode == PM_READ_ONLY)
3779			DMEMIT("ro ");
3780		else
3781			DMEMIT("rw ");
3782
3783		if (!pool->pf.discard_enabled)
3784			DMEMIT("ignore_discard ");
3785		else if (pool->pf.discard_passdown)
3786			DMEMIT("discard_passdown ");
3787		else
3788			DMEMIT("no_discard_passdown ");
3789
3790		if (pool->pf.error_if_no_space)
3791			DMEMIT("error_if_no_space ");
3792		else
3793			DMEMIT("queue_if_no_space ");
3794
3795		if (dm_pool_metadata_needs_check(pool->pmd))
3796			DMEMIT("needs_check ");
3797		else
3798			DMEMIT("- ");
3799
3800		break;
3801
3802	case STATUSTYPE_TABLE:
3803		DMEMIT("%s %s %lu %llu ",
3804		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3805		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3806		       (unsigned long)pool->sectors_per_block,
3807		       (unsigned long long)pt->low_water_blocks);
3808		emit_flags(&pt->requested_pf, result, sz, maxlen);
3809		break;
3810	}
3811	return;
3812
3813err:
3814	DMEMIT("Error");
3815}
3816
3817static int pool_iterate_devices(struct dm_target *ti,
3818				iterate_devices_callout_fn fn, void *data)
3819{
3820	struct pool_c *pt = ti->private;
3821
3822	return fn(ti, pt->data_dev, 0, ti->len, data);
3823}
3824
3825static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3826{
3827	struct pool_c *pt = ti->private;
3828	struct pool *pool = pt->pool;
3829	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3830
3831	/*
3832	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3833	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3834	 * This is especially beneficial when the pool's data device is a RAID
3835	 * device that has a full stripe width that matches pool->sectors_per_block
3836	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3837	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3838	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3839	 */
3840	if (limits->max_sectors < pool->sectors_per_block) {
3841		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3842			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3843				limits->max_sectors--;
3844			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3845		}
3846	}
3847
3848	/*
3849	 * If the system-determined stacked limits are compatible with the
3850	 * pool's blocksize (io_opt is a factor) do not override them.
3851	 */
3852	if (io_opt_sectors < pool->sectors_per_block ||
3853	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3854		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3855			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3856		else
3857			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3858		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3859	}
3860
3861	/*
3862	 * pt->adjusted_pf is a staging area for the actual features to use.
3863	 * They get transferred to the live pool in bind_control_target()
3864	 * called from pool_preresume().
3865	 */
3866	if (!pt->adjusted_pf.discard_enabled) {
3867		/*
3868		 * Must explicitly disallow stacking discard limits otherwise the
3869		 * block layer will stack them if pool's data device has support.
3870		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3871		 * user to see that, so make sure to set all discard limits to 0.
3872		 */
3873		limits->discard_granularity = 0;
3874		return;
3875	}
3876
3877	disable_passdown_if_not_supported(pt);
3878
3879	/*
3880	 * The pool uses the same discard limits as the underlying data
3881	 * device.  DM core has already set this up.
3882	 */
3883}
3884
3885static struct target_type pool_target = {
3886	.name = "thin-pool",
3887	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3888		    DM_TARGET_IMMUTABLE,
3889	.version = {1, 16, 0},
3890	.module = THIS_MODULE,
3891	.ctr = pool_ctr,
3892	.dtr = pool_dtr,
3893	.map = pool_map,
3894	.presuspend = pool_presuspend,
3895	.presuspend_undo = pool_presuspend_undo,
3896	.postsuspend = pool_postsuspend,
3897	.preresume = pool_preresume,
3898	.resume = pool_resume,
3899	.message = pool_message,
3900	.status = pool_status,
3901	.iterate_devices = pool_iterate_devices,
3902	.io_hints = pool_io_hints,
3903};
3904
3905/*----------------------------------------------------------------
3906 * Thin target methods
3907 *--------------------------------------------------------------*/
3908static void thin_get(struct thin_c *tc)
3909{
3910	atomic_inc(&tc->refcount);
3911}
3912
3913static void thin_put(struct thin_c *tc)
3914{
3915	if (atomic_dec_and_test(&tc->refcount))
3916		complete(&tc->can_destroy);
3917}
3918
3919static void thin_dtr(struct dm_target *ti)
3920{
3921	struct thin_c *tc = ti->private;
3922	unsigned long flags;
3923
3924	spin_lock_irqsave(&tc->pool->lock, flags);
3925	list_del_rcu(&tc->list);
3926	spin_unlock_irqrestore(&tc->pool->lock, flags);
3927	synchronize_rcu();
3928
3929	thin_put(tc);
3930	wait_for_completion(&tc->can_destroy);
3931
3932	mutex_lock(&dm_thin_pool_table.mutex);
3933
3934	__pool_dec(tc->pool);
3935	dm_pool_close_thin_device(tc->td);
3936	dm_put_device(ti, tc->pool_dev);
3937	if (tc->origin_dev)
3938		dm_put_device(ti, tc->origin_dev);
3939	kfree(tc);
3940
3941	mutex_unlock(&dm_thin_pool_table.mutex);
3942}
3943
3944/*
3945 * Thin target parameters:
3946 *
3947 * <pool_dev> <dev_id> [origin_dev]
3948 *
3949 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3950 * dev_id: the internal device identifier
3951 * origin_dev: a device external to the pool that should act as the origin
3952 *
3953 * If the pool device has discards disabled, they get disabled for the thin
3954 * device as well.
3955 */
3956static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3957{
3958	int r;
3959	struct thin_c *tc;
3960	struct dm_dev *pool_dev, *origin_dev;
3961	struct mapped_device *pool_md;
3962	unsigned long flags;
3963
3964	mutex_lock(&dm_thin_pool_table.mutex);
3965
3966	if (argc != 2 && argc != 3) {
3967		ti->error = "Invalid argument count";
3968		r = -EINVAL;
3969		goto out_unlock;
3970	}
3971
3972	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3973	if (!tc) {
3974		ti->error = "Out of memory";
3975		r = -ENOMEM;
3976		goto out_unlock;
3977	}
3978	tc->thin_md = dm_table_get_md(ti->table);
3979	spin_lock_init(&tc->lock);
3980	INIT_LIST_HEAD(&tc->deferred_cells);
3981	bio_list_init(&tc->deferred_bio_list);
3982	bio_list_init(&tc->retry_on_resume_list);
3983	tc->sort_bio_list = RB_ROOT;
3984
3985	if (argc == 3) {
3986		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3987		if (r) {
3988			ti->error = "Error opening origin device";
3989			goto bad_origin_dev;
3990		}
3991		tc->origin_dev = origin_dev;
3992	}
3993
3994	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3995	if (r) {
3996		ti->error = "Error opening pool device";
3997		goto bad_pool_dev;
3998	}
3999	tc->pool_dev = pool_dev;
4000
4001	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4002		ti->error = "Invalid device id";
4003		r = -EINVAL;
4004		goto bad_common;
4005	}
4006
4007	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4008	if (!pool_md) {
4009		ti->error = "Couldn't get pool mapped device";
4010		r = -EINVAL;
4011		goto bad_common;
4012	}
4013
4014	tc->pool = __pool_table_lookup(pool_md);
4015	if (!tc->pool) {
4016		ti->error = "Couldn't find pool object";
4017		r = -EINVAL;
4018		goto bad_pool_lookup;
4019	}
4020	__pool_inc(tc->pool);
4021
4022	if (get_pool_mode(tc->pool) == PM_FAIL) {
4023		ti->error = "Couldn't open thin device, Pool is in fail mode";
4024		r = -EINVAL;
4025		goto bad_pool;
4026	}
4027
4028	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4029	if (r) {
4030		ti->error = "Couldn't open thin internal device";
4031		goto bad_pool;
4032	}
4033
4034	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4035	if (r)
4036		goto bad;
4037
4038	ti->num_flush_bios = 1;
4039	ti->flush_supported = true;
4040	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
4041
4042	/* In case the pool supports discards, pass them on. */
4043	ti->discard_zeroes_data_unsupported = true;
4044	if (tc->pool->pf.discard_enabled) {
4045		ti->discards_supported = true;
4046		ti->num_discard_bios = 1;
4047		ti->split_discard_bios = false;
4048	}
4049
4050	mutex_unlock(&dm_thin_pool_table.mutex);
4051
4052	spin_lock_irqsave(&tc->pool->lock, flags);
4053	if (tc->pool->suspended) {
4054		spin_unlock_irqrestore(&tc->pool->lock, flags);
4055		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4056		ti->error = "Unable to activate thin device while pool is suspended";
4057		r = -EINVAL;
4058		goto bad;
4059	}
4060	atomic_set(&tc->refcount, 1);
4061	init_completion(&tc->can_destroy);
4062	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4063	spin_unlock_irqrestore(&tc->pool->lock, flags);
4064	/*
4065	 * This synchronize_rcu() call is needed here otherwise we risk a
4066	 * wake_worker() call finding no bios to process (because the newly
4067	 * added tc isn't yet visible).  So this reduces latency since we
4068	 * aren't then dependent on the periodic commit to wake_worker().
4069	 */
4070	synchronize_rcu();
4071
4072	dm_put(pool_md);
4073
4074	return 0;
4075
4076bad:
4077	dm_pool_close_thin_device(tc->td);
4078bad_pool:
4079	__pool_dec(tc->pool);
4080bad_pool_lookup:
4081	dm_put(pool_md);
4082bad_common:
4083	dm_put_device(ti, tc->pool_dev);
4084bad_pool_dev:
4085	if (tc->origin_dev)
4086		dm_put_device(ti, tc->origin_dev);
4087bad_origin_dev:
4088	kfree(tc);
4089out_unlock:
4090	mutex_unlock(&dm_thin_pool_table.mutex);
4091
4092	return r;
4093}
4094
4095static int thin_map(struct dm_target *ti, struct bio *bio)
4096{
4097	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4098
4099	return thin_bio_map(ti, bio);
4100}
4101
4102static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4103{
4104	unsigned long flags;
4105	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4106	struct list_head work;
4107	struct dm_thin_new_mapping *m, *tmp;
4108	struct pool *pool = h->tc->pool;
4109
4110	if (h->shared_read_entry) {
4111		INIT_LIST_HEAD(&work);
4112		dm_deferred_entry_dec(h->shared_read_entry, &work);
4113
4114		spin_lock_irqsave(&pool->lock, flags);
4115		list_for_each_entry_safe(m, tmp, &work, list) {
4116			list_del(&m->list);
4117			__complete_mapping_preparation(m);
4118		}
4119		spin_unlock_irqrestore(&pool->lock, flags);
4120	}
4121
4122	if (h->all_io_entry) {
4123		INIT_LIST_HEAD(&work);
4124		dm_deferred_entry_dec(h->all_io_entry, &work);
4125		if (!list_empty(&work)) {
4126			spin_lock_irqsave(&pool->lock, flags);
4127			list_for_each_entry_safe(m, tmp, &work, list)
4128				list_add_tail(&m->list, &pool->prepared_discards);
4129			spin_unlock_irqrestore(&pool->lock, flags);
4130			wake_worker(pool);
4131		}
4132	}
4133
4134	if (h->cell)
4135		cell_defer_no_holder(h->tc, h->cell);
4136
4137	return 0;
4138}
4139
4140static void thin_presuspend(struct dm_target *ti)
4141{
4142	struct thin_c *tc = ti->private;
4143
4144	if (dm_noflush_suspending(ti))
4145		noflush_work(tc, do_noflush_start);
4146}
4147
4148static void thin_postsuspend(struct dm_target *ti)
4149{
4150	struct thin_c *tc = ti->private;
4151
4152	/*
4153	 * The dm_noflush_suspending flag has been cleared by now, so
4154	 * unfortunately we must always run this.
4155	 */
4156	noflush_work(tc, do_noflush_stop);
4157}
4158
4159static int thin_preresume(struct dm_target *ti)
4160{
4161	struct thin_c *tc = ti->private;
4162
4163	if (tc->origin_dev)
4164		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4165
4166	return 0;
4167}
4168
4169/*
4170 * <nr mapped sectors> <highest mapped sector>
4171 */
4172static void thin_status(struct dm_target *ti, status_type_t type,
4173			unsigned status_flags, char *result, unsigned maxlen)
4174{
4175	int r;
4176	ssize_t sz = 0;
4177	dm_block_t mapped, highest;
4178	char buf[BDEVNAME_SIZE];
4179	struct thin_c *tc = ti->private;
4180
4181	if (get_pool_mode(tc->pool) == PM_FAIL) {
4182		DMEMIT("Fail");
4183		return;
4184	}
4185
4186	if (!tc->td)
4187		DMEMIT("-");
4188	else {
4189		switch (type) {
4190		case STATUSTYPE_INFO:
4191			r = dm_thin_get_mapped_count(tc->td, &mapped);
4192			if (r) {
4193				DMERR("dm_thin_get_mapped_count returned %d", r);
4194				goto err;
4195			}
4196
4197			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4198			if (r < 0) {
4199				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4200				goto err;
4201			}
4202
4203			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4204			if (r)
4205				DMEMIT("%llu", ((highest + 1) *
4206						tc->pool->sectors_per_block) - 1);
4207			else
4208				DMEMIT("-");
4209			break;
4210
4211		case STATUSTYPE_TABLE:
4212			DMEMIT("%s %lu",
4213			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4214			       (unsigned long) tc->dev_id);
4215			if (tc->origin_dev)
4216				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4217			break;
4218		}
4219	}
4220
4221	return;
4222
4223err:
4224	DMEMIT("Error");
4225}
4226
4227static int thin_iterate_devices(struct dm_target *ti,
4228				iterate_devices_callout_fn fn, void *data)
4229{
4230	sector_t blocks;
4231	struct thin_c *tc = ti->private;
4232	struct pool *pool = tc->pool;
4233
4234	/*
4235	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4236	 * we follow a more convoluted path through to the pool's target.
4237	 */
4238	if (!pool->ti)
4239		return 0;	/* nothing is bound */
4240
4241	blocks = pool->ti->len;
4242	(void) sector_div(blocks, pool->sectors_per_block);
4243	if (blocks)
4244		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4245
4246	return 0;
4247}
4248
4249static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4250{
4251	struct thin_c *tc = ti->private;
4252	struct pool *pool = tc->pool;
4253
4254	if (!pool->pf.discard_enabled)
4255		return;
4256
4257	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4258	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4259}
4260
4261static struct target_type thin_target = {
4262	.name = "thin",
4263	.version = {1, 16, 0},
4264	.module	= THIS_MODULE,
4265	.ctr = thin_ctr,
4266	.dtr = thin_dtr,
4267	.map = thin_map,
4268	.end_io = thin_endio,
4269	.preresume = thin_preresume,
4270	.presuspend = thin_presuspend,
4271	.postsuspend = thin_postsuspend,
4272	.status = thin_status,
4273	.iterate_devices = thin_iterate_devices,
4274	.io_hints = thin_io_hints,
4275};
4276
4277/*----------------------------------------------------------------*/
4278
4279static int __init dm_thin_init(void)
4280{
4281	int r;
4282
4283	pool_table_init();
4284
4285	r = dm_register_target(&thin_target);
4286	if (r)
4287		return r;
4288
4289	r = dm_register_target(&pool_target);
4290	if (r)
4291		goto bad_pool_target;
4292
4293	r = -ENOMEM;
4294
4295	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4296	if (!_new_mapping_cache)
4297		goto bad_new_mapping_cache;
4298
4299	return 0;
4300
4301bad_new_mapping_cache:
4302	dm_unregister_target(&pool_target);
4303bad_pool_target:
4304	dm_unregister_target(&thin_target);
4305
4306	return r;
4307}
4308
4309static void dm_thin_exit(void)
4310{
4311	dm_unregister_target(&thin_target);
4312	dm_unregister_target(&pool_target);
4313
4314	kmem_cache_destroy(_new_mapping_cache);
4315}
4316
4317module_init(dm_thin_init);
4318module_exit(dm_thin_exit);
4319
4320module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4321MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4322
4323MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4324MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4325MODULE_LICENSE("GPL");
4326