1/*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2015 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include <linux/slab.h>
9#include <linux/module.h>
10
11#include "md.h"
12#include "raid1.h"
13#include "raid5.h"
14#include "raid10.h"
15#include "bitmap.h"
16
17#include <linux/device-mapper.h>
18
19#define DM_MSG_PREFIX "raid"
20#define	MAX_RAID_DEVICES	253 /* raid4/5/6 limit */
21
22static bool devices_handle_discard_safely = false;
23
24/*
25 * The following flags are used by dm-raid.c to set up the array state.
26 * They must be cleared before md_run is called.
27 */
28#define FirstUse 10             /* rdev flag */
29
30struct raid_dev {
31	/*
32	 * Two DM devices, one to hold metadata and one to hold the
33	 * actual data/parity.  The reason for this is to not confuse
34	 * ti->len and give more flexibility in altering size and
35	 * characteristics.
36	 *
37	 * While it is possible for this device to be associated
38	 * with a different physical device than the data_dev, it
39	 * is intended for it to be the same.
40	 *    |--------- Physical Device ---------|
41	 *    |- meta_dev -|------ data_dev ------|
42	 */
43	struct dm_dev *meta_dev;
44	struct dm_dev *data_dev;
45	struct md_rdev rdev;
46};
47
48/*
49 * Flags for rs->ctr_flags field.
50 */
51#define CTR_FLAG_SYNC              0x1
52#define CTR_FLAG_NOSYNC            0x2
53#define CTR_FLAG_REBUILD           0x4
54#define CTR_FLAG_DAEMON_SLEEP      0x8
55#define CTR_FLAG_MIN_RECOVERY_RATE 0x10
56#define CTR_FLAG_MAX_RECOVERY_RATE 0x20
57#define CTR_FLAG_MAX_WRITE_BEHIND  0x40
58#define CTR_FLAG_STRIPE_CACHE      0x80
59#define CTR_FLAG_REGION_SIZE       0x100
60#define CTR_FLAG_RAID10_COPIES     0x200
61#define CTR_FLAG_RAID10_FORMAT     0x400
62
63struct raid_set {
64	struct dm_target *ti;
65
66	uint32_t bitmap_loaded;
67	uint32_t ctr_flags;
68
69	struct mddev md;
70	struct raid_type *raid_type;
71	struct dm_target_callbacks callbacks;
72
73	struct raid_dev dev[0];
74};
75
76/* Supported raid types and properties. */
77static struct raid_type {
78	const char *name;		/* RAID algorithm. */
79	const char *descr;		/* Descriptor text for logging. */
80	const unsigned parity_devs;	/* # of parity devices. */
81	const unsigned minimal_devs;	/* minimal # of devices in set. */
82	const unsigned level;		/* RAID level. */
83	const unsigned algorithm;	/* RAID algorithm. */
84} raid_types[] = {
85	{"raid0",    "RAID0 (striping)",                0, 2, 0, 0 /* NONE */},
86	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
87	{"raid10",   "RAID10 (striped mirrors)",        0, 2, 10, UINT_MAX /* Varies */},
88	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
89	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
90	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
91	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
92	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
93	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
94	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
95	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
96};
97
98static char *raid10_md_layout_to_format(int layout)
99{
100	/*
101	 * Bit 16 and 17 stand for "offset" and "use_far_sets"
102	 * Refer to MD's raid10.c for details
103	 */
104	if ((layout & 0x10000) && (layout & 0x20000))
105		return "offset";
106
107	if ((layout & 0xFF) > 1)
108		return "near";
109
110	return "far";
111}
112
113static unsigned raid10_md_layout_to_copies(int layout)
114{
115	if ((layout & 0xFF) > 1)
116		return layout & 0xFF;
117	return (layout >> 8) & 0xFF;
118}
119
120static int raid10_format_to_md_layout(char *format, unsigned copies)
121{
122	unsigned n = 1, f = 1;
123
124	if (!strcasecmp("near", format))
125		n = copies;
126	else
127		f = copies;
128
129	if (!strcasecmp("offset", format))
130		return 0x30000 | (f << 8) | n;
131
132	if (!strcasecmp("far", format))
133		return 0x20000 | (f << 8) | n;
134
135	return (f << 8) | n;
136}
137
138static struct raid_type *get_raid_type(char *name)
139{
140	int i;
141
142	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
143		if (!strcmp(raid_types[i].name, name))
144			return &raid_types[i];
145
146	return NULL;
147}
148
149static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
150{
151	unsigned i;
152	struct raid_set *rs;
153
154	if (raid_devs <= raid_type->parity_devs) {
155		ti->error = "Insufficient number of devices";
156		return ERR_PTR(-EINVAL);
157	}
158
159	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
160	if (!rs) {
161		ti->error = "Cannot allocate raid context";
162		return ERR_PTR(-ENOMEM);
163	}
164
165	mddev_init(&rs->md);
166
167	rs->ti = ti;
168	rs->raid_type = raid_type;
169	rs->md.raid_disks = raid_devs;
170	rs->md.level = raid_type->level;
171	rs->md.new_level = rs->md.level;
172	rs->md.layout = raid_type->algorithm;
173	rs->md.new_layout = rs->md.layout;
174	rs->md.delta_disks = 0;
175	rs->md.recovery_cp = 0;
176
177	for (i = 0; i < raid_devs; i++)
178		md_rdev_init(&rs->dev[i].rdev);
179
180	/*
181	 * Remaining items to be initialized by further RAID params:
182	 *  rs->md.persistent
183	 *  rs->md.external
184	 *  rs->md.chunk_sectors
185	 *  rs->md.new_chunk_sectors
186	 *  rs->md.dev_sectors
187	 */
188
189	return rs;
190}
191
192static void context_free(struct raid_set *rs)
193{
194	int i;
195
196	for (i = 0; i < rs->md.raid_disks; i++) {
197		if (rs->dev[i].meta_dev)
198			dm_put_device(rs->ti, rs->dev[i].meta_dev);
199		md_rdev_clear(&rs->dev[i].rdev);
200		if (rs->dev[i].data_dev)
201			dm_put_device(rs->ti, rs->dev[i].data_dev);
202	}
203
204	kfree(rs);
205}
206
207/*
208 * For every device we have two words
209 *  <meta_dev>: meta device name or '-' if missing
210 *  <data_dev>: data device name or '-' if missing
211 *
212 * The following are permitted:
213 *    - -
214 *    - <data_dev>
215 *    <meta_dev> <data_dev>
216 *
217 * The following is not allowed:
218 *    <meta_dev> -
219 *
220 * This code parses those words.  If there is a failure,
221 * the caller must use context_free to unwind the operations.
222 */
223static int dev_parms(struct raid_set *rs, char **argv)
224{
225	int i;
226	int rebuild = 0;
227	int metadata_available = 0;
228	int ret = 0;
229
230	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
231		rs->dev[i].rdev.raid_disk = i;
232
233		rs->dev[i].meta_dev = NULL;
234		rs->dev[i].data_dev = NULL;
235
236		/*
237		 * There are no offsets, since there is a separate device
238		 * for data and metadata.
239		 */
240		rs->dev[i].rdev.data_offset = 0;
241		rs->dev[i].rdev.mddev = &rs->md;
242
243		if (strcmp(argv[0], "-")) {
244			ret = dm_get_device(rs->ti, argv[0],
245					    dm_table_get_mode(rs->ti->table),
246					    &rs->dev[i].meta_dev);
247			rs->ti->error = "RAID metadata device lookup failure";
248			if (ret)
249				return ret;
250
251			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
252			if (!rs->dev[i].rdev.sb_page)
253				return -ENOMEM;
254		}
255
256		if (!strcmp(argv[1], "-")) {
257			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
258			    (!rs->dev[i].rdev.recovery_offset)) {
259				rs->ti->error = "Drive designated for rebuild not specified";
260				return -EINVAL;
261			}
262
263			rs->ti->error = "No data device supplied with metadata device";
264			if (rs->dev[i].meta_dev)
265				return -EINVAL;
266
267			continue;
268		}
269
270		ret = dm_get_device(rs->ti, argv[1],
271				    dm_table_get_mode(rs->ti->table),
272				    &rs->dev[i].data_dev);
273		if (ret) {
274			rs->ti->error = "RAID device lookup failure";
275			return ret;
276		}
277
278		if (rs->dev[i].meta_dev) {
279			metadata_available = 1;
280			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
281		}
282		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
283		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
284		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
285			rebuild++;
286	}
287
288	if (metadata_available) {
289		rs->md.external = 0;
290		rs->md.persistent = 1;
291		rs->md.major_version = 2;
292	} else if (rebuild && !rs->md.recovery_cp) {
293		/*
294		 * Without metadata, we will not be able to tell if the array
295		 * is in-sync or not - we must assume it is not.  Therefore,
296		 * it is impossible to rebuild a drive.
297		 *
298		 * Even if there is metadata, the on-disk information may
299		 * indicate that the array is not in-sync and it will then
300		 * fail at that time.
301		 *
302		 * User could specify 'nosync' option if desperate.
303		 */
304		DMERR("Unable to rebuild drive while array is not in-sync");
305		rs->ti->error = "RAID device lookup failure";
306		return -EINVAL;
307	}
308
309	return 0;
310}
311
312/*
313 * validate_region_size
314 * @rs
315 * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
316 *
317 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
318 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
319 *
320 * Returns: 0 on success, -EINVAL on failure.
321 */
322static int validate_region_size(struct raid_set *rs, unsigned long region_size)
323{
324	unsigned long min_region_size = rs->ti->len / (1 << 21);
325
326	if (!region_size) {
327		/*
328		 * Choose a reasonable default.  All figures in sectors.
329		 */
330		if (min_region_size > (1 << 13)) {
331			/* If not a power of 2, make it the next power of 2 */
332			region_size = roundup_pow_of_two(min_region_size);
333			DMINFO("Choosing default region size of %lu sectors",
334			       region_size);
335		} else {
336			DMINFO("Choosing default region size of 4MiB");
337			region_size = 1 << 13; /* sectors */
338		}
339	} else {
340		/*
341		 * Validate user-supplied value.
342		 */
343		if (region_size > rs->ti->len) {
344			rs->ti->error = "Supplied region size is too large";
345			return -EINVAL;
346		}
347
348		if (region_size < min_region_size) {
349			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
350			      region_size, min_region_size);
351			rs->ti->error = "Supplied region size is too small";
352			return -EINVAL;
353		}
354
355		if (!is_power_of_2(region_size)) {
356			rs->ti->error = "Region size is not a power of 2";
357			return -EINVAL;
358		}
359
360		if (region_size < rs->md.chunk_sectors) {
361			rs->ti->error = "Region size is smaller than the chunk size";
362			return -EINVAL;
363		}
364	}
365
366	/*
367	 * Convert sectors to bytes.
368	 */
369	rs->md.bitmap_info.chunksize = (region_size << 9);
370
371	return 0;
372}
373
374/*
375 * validate_raid_redundancy
376 * @rs
377 *
378 * Determine if there are enough devices in the array that haven't
379 * failed (or are being rebuilt) to form a usable array.
380 *
381 * Returns: 0 on success, -EINVAL on failure.
382 */
383static int validate_raid_redundancy(struct raid_set *rs)
384{
385	unsigned i, rebuild_cnt = 0;
386	unsigned rebuilds_per_group = 0, copies, d;
387	unsigned group_size, last_group_start;
388
389	for (i = 0; i < rs->md.raid_disks; i++)
390		if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
391		    !rs->dev[i].rdev.sb_page)
392			rebuild_cnt++;
393
394	switch (rs->raid_type->level) {
395	case 1:
396		if (rebuild_cnt >= rs->md.raid_disks)
397			goto too_many;
398		break;
399	case 4:
400	case 5:
401	case 6:
402		if (rebuild_cnt > rs->raid_type->parity_devs)
403			goto too_many;
404		break;
405	case 10:
406		copies = raid10_md_layout_to_copies(rs->md.layout);
407		if (rebuild_cnt < copies)
408			break;
409
410		/*
411		 * It is possible to have a higher rebuild count for RAID10,
412		 * as long as the failed devices occur in different mirror
413		 * groups (i.e. different stripes).
414		 *
415		 * When checking "near" format, make sure no adjacent devices
416		 * have failed beyond what can be handled.  In addition to the
417		 * simple case where the number of devices is a multiple of the
418		 * number of copies, we must also handle cases where the number
419		 * of devices is not a multiple of the number of copies.
420		 * E.g.    dev1 dev2 dev3 dev4 dev5
421		 *          A    A    B    B    C
422		 *          C    D    D    E    E
423		 */
424		if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) {
425			for (i = 0; i < rs->md.raid_disks * copies; i++) {
426				if (!(i % copies))
427					rebuilds_per_group = 0;
428				d = i % rs->md.raid_disks;
429				if ((!rs->dev[d].rdev.sb_page ||
430				     !test_bit(In_sync, &rs->dev[d].rdev.flags)) &&
431				    (++rebuilds_per_group >= copies))
432					goto too_many;
433			}
434			break;
435		}
436
437		/*
438		 * When checking "far" and "offset" formats, we need to ensure
439		 * that the device that holds its copy is not also dead or
440		 * being rebuilt.  (Note that "far" and "offset" formats only
441		 * support two copies right now.  These formats also only ever
442		 * use the 'use_far_sets' variant.)
443		 *
444		 * This check is somewhat complicated by the need to account
445		 * for arrays that are not a multiple of (far) copies.  This
446		 * results in the need to treat the last (potentially larger)
447		 * set differently.
448		 */
449		group_size = (rs->md.raid_disks / copies);
450		last_group_start = (rs->md.raid_disks / group_size) - 1;
451		last_group_start *= group_size;
452		for (i = 0; i < rs->md.raid_disks; i++) {
453			if (!(i % copies) && !(i > last_group_start))
454				rebuilds_per_group = 0;
455			if ((!rs->dev[i].rdev.sb_page ||
456			     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
457			    (++rebuilds_per_group >= copies))
458					goto too_many;
459		}
460		break;
461	default:
462		if (rebuild_cnt)
463			return -EINVAL;
464	}
465
466	return 0;
467
468too_many:
469	return -EINVAL;
470}
471
472/*
473 * Possible arguments are...
474 *	<chunk_size> [optional_args]
475 *
476 * Argument definitions
477 *    <chunk_size>			The number of sectors per disk that
478 *                                      will form the "stripe"
479 *    [[no]sync]			Force or prevent recovery of the
480 *                                      entire array
481 *    [rebuild <idx>]			Rebuild the drive indicated by the index
482 *    [daemon_sleep <ms>]		Time between bitmap daemon work to
483 *                                      clear bits
484 *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
485 *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
486 *    [write_mostly <idx>]		Indicate a write mostly drive via index
487 *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
488 *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
489 *    [region_size <sectors>]           Defines granularity of bitmap
490 *
491 * RAID10-only options:
492 *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
493 *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
494 */
495static int parse_raid_params(struct raid_set *rs, char **argv,
496			     unsigned num_raid_params)
497{
498	char *raid10_format = "near";
499	unsigned raid10_copies = 2;
500	unsigned i;
501	unsigned long value, region_size = 0;
502	sector_t sectors_per_dev = rs->ti->len;
503	sector_t max_io_len;
504	char *key;
505
506	/*
507	 * First, parse the in-order required arguments
508	 * "chunk_size" is the only argument of this type.
509	 */
510	if ((kstrtoul(argv[0], 10, &value) < 0)) {
511		rs->ti->error = "Bad chunk size";
512		return -EINVAL;
513	} else if (rs->raid_type->level == 1) {
514		if (value)
515			DMERR("Ignoring chunk size parameter for RAID 1");
516		value = 0;
517	} else if (!is_power_of_2(value)) {
518		rs->ti->error = "Chunk size must be a power of 2";
519		return -EINVAL;
520	} else if (value < 8) {
521		rs->ti->error = "Chunk size value is too small";
522		return -EINVAL;
523	}
524
525	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
526	argv++;
527	num_raid_params--;
528
529	/*
530	 * We set each individual device as In_sync with a completed
531	 * 'recovery_offset'.  If there has been a device failure or
532	 * replacement then one of the following cases applies:
533	 *
534	 *   1) User specifies 'rebuild'.
535	 *      - Device is reset when param is read.
536	 *   2) A new device is supplied.
537	 *      - No matching superblock found, resets device.
538	 *   3) Device failure was transient and returns on reload.
539	 *      - Failure noticed, resets device for bitmap replay.
540	 *   4) Device hadn't completed recovery after previous failure.
541	 *      - Superblock is read and overrides recovery_offset.
542	 *
543	 * What is found in the superblocks of the devices is always
544	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
545	 */
546	for (i = 0; i < rs->md.raid_disks; i++) {
547		set_bit(In_sync, &rs->dev[i].rdev.flags);
548		rs->dev[i].rdev.recovery_offset = MaxSector;
549	}
550
551	/*
552	 * Second, parse the unordered optional arguments
553	 */
554	for (i = 0; i < num_raid_params; i++) {
555		if (!strcasecmp(argv[i], "nosync")) {
556			rs->md.recovery_cp = MaxSector;
557			rs->ctr_flags |= CTR_FLAG_NOSYNC;
558			continue;
559		}
560		if (!strcasecmp(argv[i], "sync")) {
561			rs->md.recovery_cp = 0;
562			rs->ctr_flags |= CTR_FLAG_SYNC;
563			continue;
564		}
565
566		/* The rest of the optional arguments come in key/value pairs */
567		if ((i + 1) >= num_raid_params) {
568			rs->ti->error = "Wrong number of raid parameters given";
569			return -EINVAL;
570		}
571
572		key = argv[i++];
573
574		/* Parameters that take a string value are checked here. */
575		if (!strcasecmp(key, "raid10_format")) {
576			if (rs->raid_type->level != 10) {
577				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
578				return -EINVAL;
579			}
580			if (strcmp("near", argv[i]) &&
581			    strcmp("far", argv[i]) &&
582			    strcmp("offset", argv[i])) {
583				rs->ti->error = "Invalid 'raid10_format' value given";
584				return -EINVAL;
585			}
586			raid10_format = argv[i];
587			rs->ctr_flags |= CTR_FLAG_RAID10_FORMAT;
588			continue;
589		}
590
591		if (kstrtoul(argv[i], 10, &value) < 0) {
592			rs->ti->error = "Bad numerical argument given in raid params";
593			return -EINVAL;
594		}
595
596		/* Parameters that take a numeric value are checked here */
597		if (!strcasecmp(key, "rebuild")) {
598			if (value >= rs->md.raid_disks) {
599				rs->ti->error = "Invalid rebuild index given";
600				return -EINVAL;
601			}
602			clear_bit(In_sync, &rs->dev[value].rdev.flags);
603			rs->dev[value].rdev.recovery_offset = 0;
604			rs->ctr_flags |= CTR_FLAG_REBUILD;
605		} else if (!strcasecmp(key, "write_mostly")) {
606			if (rs->raid_type->level != 1) {
607				rs->ti->error = "write_mostly option is only valid for RAID1";
608				return -EINVAL;
609			}
610			if (value >= rs->md.raid_disks) {
611				rs->ti->error = "Invalid write_mostly drive index given";
612				return -EINVAL;
613			}
614			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
615		} else if (!strcasecmp(key, "max_write_behind")) {
616			if (rs->raid_type->level != 1) {
617				rs->ti->error = "max_write_behind option is only valid for RAID1";
618				return -EINVAL;
619			}
620			rs->ctr_flags |= CTR_FLAG_MAX_WRITE_BEHIND;
621
622			/*
623			 * In device-mapper, we specify things in sectors, but
624			 * MD records this value in kB
625			 */
626			value /= 2;
627			if (value > COUNTER_MAX) {
628				rs->ti->error = "Max write-behind limit out of range";
629				return -EINVAL;
630			}
631			rs->md.bitmap_info.max_write_behind = value;
632		} else if (!strcasecmp(key, "daemon_sleep")) {
633			rs->ctr_flags |= CTR_FLAG_DAEMON_SLEEP;
634			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
635				rs->ti->error = "daemon sleep period out of range";
636				return -EINVAL;
637			}
638			rs->md.bitmap_info.daemon_sleep = value;
639		} else if (!strcasecmp(key, "stripe_cache")) {
640			rs->ctr_flags |= CTR_FLAG_STRIPE_CACHE;
641
642			/*
643			 * In device-mapper, we specify things in sectors, but
644			 * MD records this value in kB
645			 */
646			value /= 2;
647
648			if ((rs->raid_type->level != 5) &&
649			    (rs->raid_type->level != 6)) {
650				rs->ti->error = "Inappropriate argument: stripe_cache";
651				return -EINVAL;
652			}
653			if (raid5_set_cache_size(&rs->md, (int)value)) {
654				rs->ti->error = "Bad stripe_cache size";
655				return -EINVAL;
656			}
657		} else if (!strcasecmp(key, "min_recovery_rate")) {
658			rs->ctr_flags |= CTR_FLAG_MIN_RECOVERY_RATE;
659			if (value > INT_MAX) {
660				rs->ti->error = "min_recovery_rate out of range";
661				return -EINVAL;
662			}
663			rs->md.sync_speed_min = (int)value;
664		} else if (!strcasecmp(key, "max_recovery_rate")) {
665			rs->ctr_flags |= CTR_FLAG_MAX_RECOVERY_RATE;
666			if (value > INT_MAX) {
667				rs->ti->error = "max_recovery_rate out of range";
668				return -EINVAL;
669			}
670			rs->md.sync_speed_max = (int)value;
671		} else if (!strcasecmp(key, "region_size")) {
672			rs->ctr_flags |= CTR_FLAG_REGION_SIZE;
673			region_size = value;
674		} else if (!strcasecmp(key, "raid10_copies") &&
675			   (rs->raid_type->level == 10)) {
676			if ((value < 2) || (value > 0xFF)) {
677				rs->ti->error = "Bad value for 'raid10_copies'";
678				return -EINVAL;
679			}
680			rs->ctr_flags |= CTR_FLAG_RAID10_COPIES;
681			raid10_copies = value;
682		} else {
683			DMERR("Unable to parse RAID parameter: %s", key);
684			rs->ti->error = "Unable to parse RAID parameters";
685			return -EINVAL;
686		}
687	}
688
689	if (validate_region_size(rs, region_size))
690		return -EINVAL;
691
692	if (rs->md.chunk_sectors)
693		max_io_len = rs->md.chunk_sectors;
694	else
695		max_io_len = region_size;
696
697	if (dm_set_target_max_io_len(rs->ti, max_io_len))
698		return -EINVAL;
699
700	if (rs->raid_type->level == 10) {
701		if (raid10_copies > rs->md.raid_disks) {
702			rs->ti->error = "Not enough devices to satisfy specification";
703			return -EINVAL;
704		}
705
706		/*
707		 * If the format is not "near", we only support
708		 * two copies at the moment.
709		 */
710		if (strcmp("near", raid10_format) && (raid10_copies > 2)) {
711			rs->ti->error = "Too many copies for given RAID10 format.";
712			return -EINVAL;
713		}
714
715		/* (Len * #mirrors) / #devices */
716		sectors_per_dev = rs->ti->len * raid10_copies;
717		sector_div(sectors_per_dev, rs->md.raid_disks);
718
719		rs->md.layout = raid10_format_to_md_layout(raid10_format,
720							   raid10_copies);
721		rs->md.new_layout = rs->md.layout;
722	} else if ((!rs->raid_type->level || rs->raid_type->level > 1) &&
723		   sector_div(sectors_per_dev,
724			      (rs->md.raid_disks - rs->raid_type->parity_devs))) {
725		rs->ti->error = "Target length not divisible by number of data devices";
726		return -EINVAL;
727	}
728	rs->md.dev_sectors = sectors_per_dev;
729
730	/* Assume there are no metadata devices until the drives are parsed */
731	rs->md.persistent = 0;
732	rs->md.external = 1;
733
734	return 0;
735}
736
737static void do_table_event(struct work_struct *ws)
738{
739	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
740
741	dm_table_event(rs->ti->table);
742}
743
744static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
745{
746	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
747
748	return mddev_congested(&rs->md, bits);
749}
750
751/*
752 * This structure is never routinely used by userspace, unlike md superblocks.
753 * Devices with this superblock should only ever be accessed via device-mapper.
754 */
755#define DM_RAID_MAGIC 0x64526D44
756struct dm_raid_superblock {
757	__le32 magic;		/* "DmRd" */
758	__le32 features;	/* Used to indicate possible future changes */
759
760	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
761	__le32 array_position;	/* The position of this drive in the array */
762
763	__le64 events;		/* Incremented by md when superblock updated */
764	__le64 failed_devices;	/* Bit field of devices to indicate failures */
765
766	/*
767	 * This offset tracks the progress of the repair or replacement of
768	 * an individual drive.
769	 */
770	__le64 disk_recovery_offset;
771
772	/*
773	 * This offset tracks the progress of the initial array
774	 * synchronisation/parity calculation.
775	 */
776	__le64 array_resync_offset;
777
778	/*
779	 * RAID characteristics
780	 */
781	__le32 level;
782	__le32 layout;
783	__le32 stripe_sectors;
784
785	/* Remainder of a logical block is zero-filled when writing (see super_sync()). */
786} __packed;
787
788static int read_disk_sb(struct md_rdev *rdev, int size)
789{
790	BUG_ON(!rdev->sb_page);
791
792	if (rdev->sb_loaded)
793		return 0;
794
795	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
796		DMERR("Failed to read superblock of device at position %d",
797		      rdev->raid_disk);
798		md_error(rdev->mddev, rdev);
799		return -EINVAL;
800	}
801
802	rdev->sb_loaded = 1;
803
804	return 0;
805}
806
807static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
808{
809	int i;
810	uint64_t failed_devices;
811	struct dm_raid_superblock *sb;
812	struct raid_set *rs = container_of(mddev, struct raid_set, md);
813
814	sb = page_address(rdev->sb_page);
815	failed_devices = le64_to_cpu(sb->failed_devices);
816
817	for (i = 0; i < mddev->raid_disks; i++)
818		if (!rs->dev[i].data_dev ||
819		    test_bit(Faulty, &(rs->dev[i].rdev.flags)))
820			failed_devices |= (1ULL << i);
821
822	memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
823
824	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
825	sb->features = cpu_to_le32(0);	/* No features yet */
826
827	sb->num_devices = cpu_to_le32(mddev->raid_disks);
828	sb->array_position = cpu_to_le32(rdev->raid_disk);
829
830	sb->events = cpu_to_le64(mddev->events);
831	sb->failed_devices = cpu_to_le64(failed_devices);
832
833	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
834	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
835
836	sb->level = cpu_to_le32(mddev->level);
837	sb->layout = cpu_to_le32(mddev->layout);
838	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
839}
840
841/*
842 * super_load
843 *
844 * This function creates a superblock if one is not found on the device
845 * and will decide which superblock to use if there's a choice.
846 *
847 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
848 */
849static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
850{
851	int ret;
852	struct dm_raid_superblock *sb;
853	struct dm_raid_superblock *refsb;
854	uint64_t events_sb, events_refsb;
855
856	rdev->sb_start = 0;
857	rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
858	if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
859		DMERR("superblock size of a logical block is no longer valid");
860		return -EINVAL;
861	}
862
863	ret = read_disk_sb(rdev, rdev->sb_size);
864	if (ret)
865		return ret;
866
867	sb = page_address(rdev->sb_page);
868
869	/*
870	 * Two cases that we want to write new superblocks and rebuild:
871	 * 1) New device (no matching magic number)
872	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
873	 */
874	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
875	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
876		super_sync(rdev->mddev, rdev);
877
878		set_bit(FirstUse, &rdev->flags);
879
880		/* Force writing of superblocks to disk */
881		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
882
883		/* Any superblock is better than none, choose that if given */
884		return refdev ? 0 : 1;
885	}
886
887	if (!refdev)
888		return 1;
889
890	events_sb = le64_to_cpu(sb->events);
891
892	refsb = page_address(refdev->sb_page);
893	events_refsb = le64_to_cpu(refsb->events);
894
895	return (events_sb > events_refsb) ? 1 : 0;
896}
897
898static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
899{
900	int role;
901	struct raid_set *rs = container_of(mddev, struct raid_set, md);
902	uint64_t events_sb;
903	uint64_t failed_devices;
904	struct dm_raid_superblock *sb;
905	uint32_t new_devs = 0;
906	uint32_t rebuilds = 0;
907	struct md_rdev *r;
908	struct dm_raid_superblock *sb2;
909
910	sb = page_address(rdev->sb_page);
911	events_sb = le64_to_cpu(sb->events);
912	failed_devices = le64_to_cpu(sb->failed_devices);
913
914	/*
915	 * Initialise to 1 if this is a new superblock.
916	 */
917	mddev->events = events_sb ? : 1;
918
919	/*
920	 * Reshaping is not currently allowed
921	 */
922	if (le32_to_cpu(sb->level) != mddev->level) {
923		DMERR("Reshaping arrays not yet supported. (RAID level change)");
924		return -EINVAL;
925	}
926	if (le32_to_cpu(sb->layout) != mddev->layout) {
927		DMERR("Reshaping arrays not yet supported. (RAID layout change)");
928		DMERR("  0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
929		DMERR("  Old layout: %s w/ %d copies",
930		      raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
931		      raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
932		DMERR("  New layout: %s w/ %d copies",
933		      raid10_md_layout_to_format(mddev->layout),
934		      raid10_md_layout_to_copies(mddev->layout));
935		return -EINVAL;
936	}
937	if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
938		DMERR("Reshaping arrays not yet supported. (stripe sectors change)");
939		return -EINVAL;
940	}
941
942	/* We can only change the number of devices in RAID1 right now */
943	if ((rs->raid_type->level != 1) &&
944	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
945		DMERR("Reshaping arrays not yet supported. (device count change)");
946		return -EINVAL;
947	}
948
949	if (!(rs->ctr_flags & (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)))
950		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
951
952	/*
953	 * During load, we set FirstUse if a new superblock was written.
954	 * There are two reasons we might not have a superblock:
955	 * 1) The array is brand new - in which case, all of the
956	 *    devices must have their In_sync bit set.  Also,
957	 *    recovery_cp must be 0, unless forced.
958	 * 2) This is a new device being added to an old array
959	 *    and the new device needs to be rebuilt - in which
960	 *    case the In_sync bit will /not/ be set and
961	 *    recovery_cp must be MaxSector.
962	 */
963	rdev_for_each(r, mddev) {
964		if (!test_bit(In_sync, &r->flags)) {
965			DMINFO("Device %d specified for rebuild: "
966			       "Clearing superblock", r->raid_disk);
967			rebuilds++;
968		} else if (test_bit(FirstUse, &r->flags))
969			new_devs++;
970	}
971
972	if (!rebuilds) {
973		if (new_devs == mddev->raid_disks) {
974			DMINFO("Superblocks created for new array");
975			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
976		} else if (new_devs) {
977			DMERR("New device injected "
978			      "into existing array without 'rebuild' "
979			      "parameter specified");
980			return -EINVAL;
981		}
982	} else if (new_devs) {
983		DMERR("'rebuild' devices cannot be "
984		      "injected into an array with other first-time devices");
985		return -EINVAL;
986	} else if (mddev->recovery_cp != MaxSector) {
987		DMERR("'rebuild' specified while array is not in-sync");
988		return -EINVAL;
989	}
990
991	/*
992	 * Now we set the Faulty bit for those devices that are
993	 * recorded in the superblock as failed.
994	 */
995	rdev_for_each(r, mddev) {
996		if (!r->sb_page)
997			continue;
998		sb2 = page_address(r->sb_page);
999		sb2->failed_devices = 0;
1000
1001		/*
1002		 * Check for any device re-ordering.
1003		 */
1004		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
1005			role = le32_to_cpu(sb2->array_position);
1006			if (role != r->raid_disk) {
1007				if (rs->raid_type->level != 1) {
1008					rs->ti->error = "Cannot change device "
1009						"positions in RAID array";
1010					return -EINVAL;
1011				}
1012				DMINFO("RAID1 device #%d now at position #%d",
1013				       role, r->raid_disk);
1014			}
1015
1016			/*
1017			 * Partial recovery is performed on
1018			 * returning failed devices.
1019			 */
1020			if (failed_devices & (1 << role))
1021				set_bit(Faulty, &r->flags);
1022		}
1023	}
1024
1025	return 0;
1026}
1027
1028static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
1029{
1030	struct mddev *mddev = &rs->md;
1031	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
1032
1033	/*
1034	 * If mddev->events is not set, we know we have not yet initialized
1035	 * the array.
1036	 */
1037	if (!mddev->events && super_init_validation(mddev, rdev))
1038		return -EINVAL;
1039
1040	/* Enable bitmap creation for RAID levels != 0 */
1041	mddev->bitmap_info.offset = (rs->raid_type->level) ? to_sector(4096) : 0;
1042	rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
1043
1044	if (!test_bit(FirstUse, &rdev->flags)) {
1045		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
1046		if (rdev->recovery_offset != MaxSector)
1047			clear_bit(In_sync, &rdev->flags);
1048	}
1049
1050	/*
1051	 * If a device comes back, set it as not In_sync and no longer faulty.
1052	 */
1053	if (test_bit(Faulty, &rdev->flags)) {
1054		clear_bit(Faulty, &rdev->flags);
1055		clear_bit(In_sync, &rdev->flags);
1056		rdev->saved_raid_disk = rdev->raid_disk;
1057		rdev->recovery_offset = 0;
1058	}
1059
1060	clear_bit(FirstUse, &rdev->flags);
1061
1062	return 0;
1063}
1064
1065/*
1066 * Analyse superblocks and select the freshest.
1067 */
1068static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
1069{
1070	int ret;
1071	struct raid_dev *dev;
1072	struct md_rdev *rdev, *tmp, *freshest;
1073	struct mddev *mddev = &rs->md;
1074
1075	freshest = NULL;
1076	rdev_for_each_safe(rdev, tmp, mddev) {
1077		/*
1078		 * Skipping super_load due to CTR_FLAG_SYNC will cause
1079		 * the array to undergo initialization again as
1080		 * though it were new.  This is the intended effect
1081		 * of the "sync" directive.
1082		 *
1083		 * When reshaping capability is added, we must ensure
1084		 * that the "sync" directive is disallowed during the
1085		 * reshape.
1086		 */
1087		rdev->sectors = to_sector(i_size_read(rdev->bdev->bd_inode));
1088
1089		if (rs->ctr_flags & CTR_FLAG_SYNC)
1090			continue;
1091
1092		if (!rdev->meta_bdev)
1093			continue;
1094
1095		ret = super_load(rdev, freshest);
1096
1097		switch (ret) {
1098		case 1:
1099			freshest = rdev;
1100			break;
1101		case 0:
1102			break;
1103		default:
1104			dev = container_of(rdev, struct raid_dev, rdev);
1105			if (dev->meta_dev)
1106				dm_put_device(ti, dev->meta_dev);
1107
1108			dev->meta_dev = NULL;
1109			rdev->meta_bdev = NULL;
1110
1111			if (rdev->sb_page)
1112				put_page(rdev->sb_page);
1113
1114			rdev->sb_page = NULL;
1115
1116			rdev->sb_loaded = 0;
1117
1118			/*
1119			 * We might be able to salvage the data device
1120			 * even though the meta device has failed.  For
1121			 * now, we behave as though '- -' had been
1122			 * set for this device in the table.
1123			 */
1124			if (dev->data_dev)
1125				dm_put_device(ti, dev->data_dev);
1126
1127			dev->data_dev = NULL;
1128			rdev->bdev = NULL;
1129
1130			list_del(&rdev->same_set);
1131		}
1132	}
1133
1134	if (!freshest)
1135		return 0;
1136
1137	if (validate_raid_redundancy(rs)) {
1138		rs->ti->error = "Insufficient redundancy to activate array";
1139		return -EINVAL;
1140	}
1141
1142	/*
1143	 * Validation of the freshest device provides the source of
1144	 * validation for the remaining devices.
1145	 */
1146	ti->error = "Unable to assemble array: Invalid superblocks";
1147	if (super_validate(rs, freshest))
1148		return -EINVAL;
1149
1150	rdev_for_each(rdev, mddev)
1151		if ((rdev != freshest) && super_validate(rs, rdev))
1152			return -EINVAL;
1153
1154	return 0;
1155}
1156
1157/*
1158 * Enable/disable discard support on RAID set depending on
1159 * RAID level and discard properties of underlying RAID members.
1160 */
1161static void configure_discard_support(struct dm_target *ti, struct raid_set *rs)
1162{
1163	int i;
1164	bool raid456;
1165
1166	/* Assume discards not supported until after checks below. */
1167	ti->discards_supported = false;
1168
1169	/* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
1170	raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
1171
1172	for (i = 0; i < rs->md.raid_disks; i++) {
1173		struct request_queue *q;
1174
1175		if (!rs->dev[i].rdev.bdev)
1176			continue;
1177
1178		q = bdev_get_queue(rs->dev[i].rdev.bdev);
1179		if (!q || !blk_queue_discard(q))
1180			return;
1181
1182		if (raid456) {
1183			if (!q->limits.discard_zeroes_data)
1184				return;
1185			if (!devices_handle_discard_safely) {
1186				DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
1187				DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
1188				return;
1189			}
1190		}
1191	}
1192
1193	/* All RAID members properly support discards */
1194	ti->discards_supported = true;
1195
1196	/*
1197	 * RAID1 and RAID10 personalities require bio splitting,
1198	 * RAID0/4/5/6 don't and process large discard bios properly.
1199	 */
1200	ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
1201	ti->num_discard_bios = 1;
1202}
1203
1204/*
1205 * Construct a RAID4/5/6 mapping:
1206 * Args:
1207 *	<raid_type> <#raid_params> <raid_params>		\
1208 *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
1209 *
1210 * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
1211 * details on possible <raid_params>.
1212 */
1213static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
1214{
1215	int ret;
1216	struct raid_type *rt;
1217	unsigned long num_raid_params, num_raid_devs;
1218	struct raid_set *rs = NULL;
1219
1220	/* Must have at least <raid_type> <#raid_params> */
1221	if (argc < 2) {
1222		ti->error = "Too few arguments";
1223		return -EINVAL;
1224	}
1225
1226	/* raid type */
1227	rt = get_raid_type(argv[0]);
1228	if (!rt) {
1229		ti->error = "Unrecognised raid_type";
1230		return -EINVAL;
1231	}
1232	argc--;
1233	argv++;
1234
1235	/* number of RAID parameters */
1236	if (kstrtoul(argv[0], 10, &num_raid_params) < 0) {
1237		ti->error = "Cannot understand number of RAID parameters";
1238		return -EINVAL;
1239	}
1240	argc--;
1241	argv++;
1242
1243	/* Skip over RAID params for now and find out # of devices */
1244	if (num_raid_params >= argc) {
1245		ti->error = "Arguments do not agree with counts given";
1246		return -EINVAL;
1247	}
1248
1249	if ((kstrtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
1250	    (num_raid_devs > MAX_RAID_DEVICES)) {
1251		ti->error = "Cannot understand number of raid devices";
1252		return -EINVAL;
1253	}
1254
1255	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1256	if (argc != (num_raid_devs * 2)) {
1257		ti->error = "Supplied RAID devices does not match the count given";
1258		return -EINVAL;
1259	}
1260
1261	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
1262	if (IS_ERR(rs))
1263		return PTR_ERR(rs);
1264
1265	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1266	if (ret)
1267		goto bad;
1268
1269	argv += num_raid_params + 1;
1270
1271	ret = dev_parms(rs, argv);
1272	if (ret)
1273		goto bad;
1274
1275	rs->md.sync_super = super_sync;
1276	ret = analyse_superblocks(ti, rs);
1277	if (ret)
1278		goto bad;
1279
1280	INIT_WORK(&rs->md.event_work, do_table_event);
1281	ti->private = rs;
1282	ti->num_flush_bios = 1;
1283
1284	/*
1285	 * Disable/enable discard support on RAID set.
1286	 */
1287	configure_discard_support(ti, rs);
1288
1289	/* Has to be held on running the array */
1290	mddev_lock_nointr(&rs->md);
1291	ret = md_run(&rs->md);
1292	rs->md.in_sync = 0; /* Assume already marked dirty */
1293	mddev_unlock(&rs->md);
1294
1295	if (ret) {
1296		ti->error = "Fail to run raid array";
1297		goto bad;
1298	}
1299
1300	if (ti->len != rs->md.array_sectors) {
1301		ti->error = "Array size does not match requested target length";
1302		ret = -EINVAL;
1303		goto size_mismatch;
1304	}
1305	rs->callbacks.congested_fn = raid_is_congested;
1306	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1307
1308	mddev_suspend(&rs->md);
1309	return 0;
1310
1311size_mismatch:
1312	md_stop(&rs->md);
1313bad:
1314	context_free(rs);
1315
1316	return ret;
1317}
1318
1319static void raid_dtr(struct dm_target *ti)
1320{
1321	struct raid_set *rs = ti->private;
1322
1323	list_del_init(&rs->callbacks.list);
1324	md_stop(&rs->md);
1325	context_free(rs);
1326}
1327
1328static int raid_map(struct dm_target *ti, struct bio *bio)
1329{
1330	struct raid_set *rs = ti->private;
1331	struct mddev *mddev = &rs->md;
1332
1333	mddev->pers->make_request(mddev, bio);
1334
1335	return DM_MAPIO_SUBMITTED;
1336}
1337
1338static const char *decipher_sync_action(struct mddev *mddev)
1339{
1340	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
1341		return "frozen";
1342
1343	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1344	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
1345		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1346			return "reshape";
1347
1348		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1349			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1350				return "resync";
1351			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1352				return "check";
1353			return "repair";
1354		}
1355
1356		if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
1357			return "recover";
1358	}
1359
1360	return "idle";
1361}
1362
1363static void raid_status(struct dm_target *ti, status_type_t type,
1364			unsigned status_flags, char *result, unsigned maxlen)
1365{
1366	struct raid_set *rs = ti->private;
1367	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1368	unsigned sz = 0;
1369	int i, array_in_sync = 0;
1370	sector_t sync;
1371
1372	switch (type) {
1373	case STATUSTYPE_INFO:
1374		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1375
1376		if (rs->raid_type->level) {
1377			if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1378				sync = rs->md.curr_resync_completed;
1379			else
1380				sync = rs->md.recovery_cp;
1381
1382			if (sync >= rs->md.resync_max_sectors) {
1383				/*
1384				 * Sync complete.
1385				 */
1386				array_in_sync = 1;
1387				sync = rs->md.resync_max_sectors;
1388			} else if (test_bit(MD_RECOVERY_REQUESTED, &rs->md.recovery)) {
1389				/*
1390				 * If "check" or "repair" is occurring, the array has
1391				 * undergone and initial sync and the health characters
1392				 * should not be 'a' anymore.
1393				 */
1394				array_in_sync = 1;
1395			} else {
1396				/*
1397				 * The array may be doing an initial sync, or it may
1398				 * be rebuilding individual components.  If all the
1399				 * devices are In_sync, then it is the array that is
1400				 * being initialized.
1401				 */
1402				for (i = 0; i < rs->md.raid_disks; i++)
1403					if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1404						array_in_sync = 1;
1405			}
1406		} else {
1407			/* RAID0 */
1408			array_in_sync = 1;
1409			sync = rs->md.resync_max_sectors;
1410		}
1411
1412		/*
1413		 * Status characters:
1414		 *  'D' = Dead/Failed device
1415		 *  'a' = Alive but not in-sync
1416		 *  'A' = Alive and in-sync
1417		 */
1418		for (i = 0; i < rs->md.raid_disks; i++) {
1419			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1420				DMEMIT("D");
1421			else if (!array_in_sync ||
1422				 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1423				DMEMIT("a");
1424			else
1425				DMEMIT("A");
1426		}
1427
1428		/*
1429		 * In-sync ratio:
1430		 *  The in-sync ratio shows the progress of:
1431		 *   - Initializing the array
1432		 *   - Rebuilding a subset of devices of the array
1433		 *  The user can distinguish between the two by referring
1434		 *  to the status characters.
1435		 */
1436		DMEMIT(" %llu/%llu",
1437		       (unsigned long long) sync,
1438		       (unsigned long long) rs->md.resync_max_sectors);
1439
1440		/*
1441		 * Sync action:
1442		 *   See Documentation/device-mapper/dm-raid.c for
1443		 *   information on each of these states.
1444		 */
1445		DMEMIT(" %s", decipher_sync_action(&rs->md));
1446
1447		/*
1448		 * resync_mismatches/mismatch_cnt
1449		 *   This field shows the number of discrepancies found when
1450		 *   performing a "check" of the array.
1451		 */
1452		DMEMIT(" %llu",
1453		       (strcmp(rs->md.last_sync_action, "check")) ? 0 :
1454		       (unsigned long long)
1455		       atomic64_read(&rs->md.resync_mismatches));
1456		break;
1457	case STATUSTYPE_TABLE:
1458		/* The string you would use to construct this array */
1459		for (i = 0; i < rs->md.raid_disks; i++) {
1460			if ((rs->ctr_flags & CTR_FLAG_REBUILD) &&
1461			    rs->dev[i].data_dev &&
1462			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1463				raid_param_cnt += 2; /* for rebuilds */
1464			if (rs->dev[i].data_dev &&
1465			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1466				raid_param_cnt += 2;
1467		}
1468
1469		raid_param_cnt += (hweight32(rs->ctr_flags & ~CTR_FLAG_REBUILD) * 2);
1470		if (rs->ctr_flags & (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC))
1471			raid_param_cnt--;
1472
1473		DMEMIT("%s %u %u", rs->raid_type->name,
1474		       raid_param_cnt, rs->md.chunk_sectors);
1475
1476		if ((rs->ctr_flags & CTR_FLAG_SYNC) &&
1477		    (rs->md.recovery_cp == MaxSector))
1478			DMEMIT(" sync");
1479		if (rs->ctr_flags & CTR_FLAG_NOSYNC)
1480			DMEMIT(" nosync");
1481
1482		for (i = 0; i < rs->md.raid_disks; i++)
1483			if ((rs->ctr_flags & CTR_FLAG_REBUILD) &&
1484			    rs->dev[i].data_dev &&
1485			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1486				DMEMIT(" rebuild %u", i);
1487
1488		if (rs->ctr_flags & CTR_FLAG_DAEMON_SLEEP)
1489			DMEMIT(" daemon_sleep %lu",
1490			       rs->md.bitmap_info.daemon_sleep);
1491
1492		if (rs->ctr_flags & CTR_FLAG_MIN_RECOVERY_RATE)
1493			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1494
1495		if (rs->ctr_flags & CTR_FLAG_MAX_RECOVERY_RATE)
1496			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1497
1498		for (i = 0; i < rs->md.raid_disks; i++)
1499			if (rs->dev[i].data_dev &&
1500			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1501				DMEMIT(" write_mostly %u", i);
1502
1503		if (rs->ctr_flags & CTR_FLAG_MAX_WRITE_BEHIND)
1504			DMEMIT(" max_write_behind %lu",
1505			       rs->md.bitmap_info.max_write_behind);
1506
1507		if (rs->ctr_flags & CTR_FLAG_STRIPE_CACHE) {
1508			struct r5conf *conf = rs->md.private;
1509
1510			/* convert from kiB to sectors */
1511			DMEMIT(" stripe_cache %d",
1512			       conf ? conf->max_nr_stripes * 2 : 0);
1513		}
1514
1515		if (rs->ctr_flags & CTR_FLAG_REGION_SIZE)
1516			DMEMIT(" region_size %lu",
1517			       rs->md.bitmap_info.chunksize >> 9);
1518
1519		if (rs->ctr_flags & CTR_FLAG_RAID10_COPIES)
1520			DMEMIT(" raid10_copies %u",
1521			       raid10_md_layout_to_copies(rs->md.layout));
1522
1523		if (rs->ctr_flags & CTR_FLAG_RAID10_FORMAT)
1524			DMEMIT(" raid10_format %s",
1525			       raid10_md_layout_to_format(rs->md.layout));
1526
1527		DMEMIT(" %d", rs->md.raid_disks);
1528		for (i = 0; i < rs->md.raid_disks; i++) {
1529			if (rs->dev[i].meta_dev)
1530				DMEMIT(" %s", rs->dev[i].meta_dev->name);
1531			else
1532				DMEMIT(" -");
1533
1534			if (rs->dev[i].data_dev)
1535				DMEMIT(" %s", rs->dev[i].data_dev->name);
1536			else
1537				DMEMIT(" -");
1538		}
1539	}
1540}
1541
1542static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
1543{
1544	struct raid_set *rs = ti->private;
1545	struct mddev *mddev = &rs->md;
1546
1547	if (!strcasecmp(argv[0], "reshape")) {
1548		DMERR("Reshape not supported.");
1549		return -EINVAL;
1550	}
1551
1552	if (!mddev->pers || !mddev->pers->sync_request)
1553		return -EINVAL;
1554
1555	if (!strcasecmp(argv[0], "frozen"))
1556		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
1557	else
1558		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
1559
1560	if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
1561		if (mddev->sync_thread) {
1562			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1563			md_reap_sync_thread(mddev);
1564		}
1565	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1566		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1567		return -EBUSY;
1568	else if (!strcasecmp(argv[0], "resync"))
1569		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1570	else if (!strcasecmp(argv[0], "recover")) {
1571		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1572		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1573	} else {
1574		if (!strcasecmp(argv[0], "check"))
1575			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1576		else if (!!strcasecmp(argv[0], "repair"))
1577			return -EINVAL;
1578		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1579		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1580	}
1581	if (mddev->ro == 2) {
1582		/* A write to sync_action is enough to justify
1583		 * canceling read-auto mode
1584		 */
1585		mddev->ro = 0;
1586		if (!mddev->suspended)
1587			md_wakeup_thread(mddev->sync_thread);
1588	}
1589	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1590	if (!mddev->suspended)
1591		md_wakeup_thread(mddev->thread);
1592
1593	return 0;
1594}
1595
1596static int raid_iterate_devices(struct dm_target *ti,
1597				iterate_devices_callout_fn fn, void *data)
1598{
1599	struct raid_set *rs = ti->private;
1600	unsigned i;
1601	int ret = 0;
1602
1603	for (i = 0; !ret && i < rs->md.raid_disks; i++)
1604		if (rs->dev[i].data_dev)
1605			ret = fn(ti,
1606				 rs->dev[i].data_dev,
1607				 0, /* No offset on data devs */
1608				 rs->md.dev_sectors,
1609				 data);
1610
1611	return ret;
1612}
1613
1614static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1615{
1616	struct raid_set *rs = ti->private;
1617	unsigned chunk_size = rs->md.chunk_sectors << 9;
1618	struct r5conf *conf = rs->md.private;
1619
1620	blk_limits_io_min(limits, chunk_size);
1621	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1622}
1623
1624static void raid_presuspend(struct dm_target *ti)
1625{
1626	struct raid_set *rs = ti->private;
1627
1628	md_stop_writes(&rs->md);
1629}
1630
1631static void raid_postsuspend(struct dm_target *ti)
1632{
1633	struct raid_set *rs = ti->private;
1634
1635	mddev_suspend(&rs->md);
1636}
1637
1638static void attempt_restore_of_faulty_devices(struct raid_set *rs)
1639{
1640	int i;
1641	uint64_t failed_devices, cleared_failed_devices = 0;
1642	unsigned long flags;
1643	struct dm_raid_superblock *sb;
1644	struct md_rdev *r;
1645
1646	for (i = 0; i < rs->md.raid_disks; i++) {
1647		r = &rs->dev[i].rdev;
1648		if (test_bit(Faulty, &r->flags) && r->sb_page &&
1649		    sync_page_io(r, 0, r->sb_size, r->sb_page, READ, 1)) {
1650			DMINFO("Faulty %s device #%d has readable super block."
1651			       "  Attempting to revive it.",
1652			       rs->raid_type->name, i);
1653
1654			/*
1655			 * Faulty bit may be set, but sometimes the array can
1656			 * be suspended before the personalities can respond
1657			 * by removing the device from the array (i.e. calling
1658			 * 'hot_remove_disk').  If they haven't yet removed
1659			 * the failed device, its 'raid_disk' number will be
1660			 * '>= 0' - meaning we must call this function
1661			 * ourselves.
1662			 */
1663			if ((r->raid_disk >= 0) &&
1664			    (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
1665				/* Failed to revive this device, try next */
1666				continue;
1667
1668			r->raid_disk = i;
1669			r->saved_raid_disk = i;
1670			flags = r->flags;
1671			clear_bit(Faulty, &r->flags);
1672			clear_bit(WriteErrorSeen, &r->flags);
1673			clear_bit(In_sync, &r->flags);
1674			if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
1675				r->raid_disk = -1;
1676				r->saved_raid_disk = -1;
1677				r->flags = flags;
1678			} else {
1679				r->recovery_offset = 0;
1680				cleared_failed_devices |= 1 << i;
1681			}
1682		}
1683	}
1684	if (cleared_failed_devices) {
1685		rdev_for_each(r, &rs->md) {
1686			sb = page_address(r->sb_page);
1687			failed_devices = le64_to_cpu(sb->failed_devices);
1688			failed_devices &= ~cleared_failed_devices;
1689			sb->failed_devices = cpu_to_le64(failed_devices);
1690		}
1691	}
1692}
1693
1694static void raid_resume(struct dm_target *ti)
1695{
1696	struct raid_set *rs = ti->private;
1697
1698	if (rs->raid_type->level) {
1699		set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1700
1701		if (!rs->bitmap_loaded) {
1702			bitmap_load(&rs->md);
1703			rs->bitmap_loaded = 1;
1704		} else {
1705			/*
1706			 * A secondary resume while the device is active.
1707			 * Take this opportunity to check whether any failed
1708			 * devices are reachable again.
1709			 */
1710			attempt_restore_of_faulty_devices(rs);
1711		}
1712
1713		clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1714	}
1715
1716	mddev_resume(&rs->md);
1717}
1718
1719static struct target_type raid_target = {
1720	.name = "raid",
1721	.version = {1, 7, 0},
1722	.module = THIS_MODULE,
1723	.ctr = raid_ctr,
1724	.dtr = raid_dtr,
1725	.map = raid_map,
1726	.status = raid_status,
1727	.message = raid_message,
1728	.iterate_devices = raid_iterate_devices,
1729	.io_hints = raid_io_hints,
1730	.presuspend = raid_presuspend,
1731	.postsuspend = raid_postsuspend,
1732	.resume = raid_resume,
1733};
1734
1735static int __init dm_raid_init(void)
1736{
1737	DMINFO("Loading target version %u.%u.%u",
1738	       raid_target.version[0],
1739	       raid_target.version[1],
1740	       raid_target.version[2]);
1741	return dm_register_target(&raid_target);
1742}
1743
1744static void __exit dm_raid_exit(void)
1745{
1746	dm_unregister_target(&raid_target);
1747}
1748
1749module_init(dm_raid_init);
1750module_exit(dm_raid_exit);
1751
1752module_param(devices_handle_discard_safely, bool, 0644);
1753MODULE_PARM_DESC(devices_handle_discard_safely,
1754		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
1755
1756MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1757MODULE_ALIAS("dm-raid1");
1758MODULE_ALIAS("dm-raid10");
1759MODULE_ALIAS("dm-raid4");
1760MODULE_ALIAS("dm-raid5");
1761MODULE_ALIAS("dm-raid6");
1762MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1763MODULE_LICENSE("GPL");
1764