1/*
2 * Copyright (C) 2015 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-cache-policy.h"
8#include "dm-cache-policy-internal.h"
9#include "dm.h"
10
11#include <linux/hash.h>
12#include <linux/jiffies.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/vmalloc.h>
16#include <linux/math64.h>
17
18#define DM_MSG_PREFIX "cache-policy-smq"
19
20/*----------------------------------------------------------------*/
21
22/*
23 * Safe division functions that return zero on divide by zero.
24 */
25static unsigned safe_div(unsigned n, unsigned d)
26{
27	return d ? n / d : 0u;
28}
29
30static unsigned safe_mod(unsigned n, unsigned d)
31{
32	return d ? n % d : 0u;
33}
34
35/*----------------------------------------------------------------*/
36
37struct entry {
38	unsigned hash_next:28;
39	unsigned prev:28;
40	unsigned next:28;
41	unsigned level:7;
42	bool dirty:1;
43	bool allocated:1;
44	bool sentinel:1;
45
46	dm_oblock_t oblock;
47};
48
49/*----------------------------------------------------------------*/
50
51#define INDEXER_NULL ((1u << 28u) - 1u)
52
53/*
54 * An entry_space manages a set of entries that we use for the queues.
55 * The clean and dirty queues share entries, so this object is separate
56 * from the queue itself.
57 */
58struct entry_space {
59	struct entry *begin;
60	struct entry *end;
61};
62
63static int space_init(struct entry_space *es, unsigned nr_entries)
64{
65	if (!nr_entries) {
66		es->begin = es->end = NULL;
67		return 0;
68	}
69
70	es->begin = vzalloc(sizeof(struct entry) * nr_entries);
71	if (!es->begin)
72		return -ENOMEM;
73
74	es->end = es->begin + nr_entries;
75	return 0;
76}
77
78static void space_exit(struct entry_space *es)
79{
80	vfree(es->begin);
81}
82
83static struct entry *__get_entry(struct entry_space *es, unsigned block)
84{
85	struct entry *e;
86
87	e = es->begin + block;
88	BUG_ON(e >= es->end);
89
90	return e;
91}
92
93static unsigned to_index(struct entry_space *es, struct entry *e)
94{
95	BUG_ON(e < es->begin || e >= es->end);
96	return e - es->begin;
97}
98
99static struct entry *to_entry(struct entry_space *es, unsigned block)
100{
101	if (block == INDEXER_NULL)
102		return NULL;
103
104	return __get_entry(es, block);
105}
106
107/*----------------------------------------------------------------*/
108
109struct ilist {
110	unsigned nr_elts;	/* excluding sentinel entries */
111	unsigned head, tail;
112};
113
114static void l_init(struct ilist *l)
115{
116	l->nr_elts = 0;
117	l->head = l->tail = INDEXER_NULL;
118}
119
120static struct entry *l_head(struct entry_space *es, struct ilist *l)
121{
122	return to_entry(es, l->head);
123}
124
125static struct entry *l_tail(struct entry_space *es, struct ilist *l)
126{
127	return to_entry(es, l->tail);
128}
129
130static struct entry *l_next(struct entry_space *es, struct entry *e)
131{
132	return to_entry(es, e->next);
133}
134
135static struct entry *l_prev(struct entry_space *es, struct entry *e)
136{
137	return to_entry(es, e->prev);
138}
139
140static bool l_empty(struct ilist *l)
141{
142	return l->head == INDEXER_NULL;
143}
144
145static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
146{
147	struct entry *head = l_head(es, l);
148
149	e->next = l->head;
150	e->prev = INDEXER_NULL;
151
152	if (head)
153		head->prev = l->head = to_index(es, e);
154	else
155		l->head = l->tail = to_index(es, e);
156
157	if (!e->sentinel)
158		l->nr_elts++;
159}
160
161static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
162{
163	struct entry *tail = l_tail(es, l);
164
165	e->next = INDEXER_NULL;
166	e->prev = l->tail;
167
168	if (tail)
169		tail->next = l->tail = to_index(es, e);
170	else
171		l->head = l->tail = to_index(es, e);
172
173	if (!e->sentinel)
174		l->nr_elts++;
175}
176
177static void l_add_before(struct entry_space *es, struct ilist *l,
178			 struct entry *old, struct entry *e)
179{
180	struct entry *prev = l_prev(es, old);
181
182	if (!prev)
183		l_add_head(es, l, e);
184
185	else {
186		e->prev = old->prev;
187		e->next = to_index(es, old);
188		prev->next = old->prev = to_index(es, e);
189
190		if (!e->sentinel)
191			l->nr_elts++;
192	}
193}
194
195static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
196{
197	struct entry *prev = l_prev(es, e);
198	struct entry *next = l_next(es, e);
199
200	if (prev)
201		prev->next = e->next;
202	else
203		l->head = e->next;
204
205	if (next)
206		next->prev = e->prev;
207	else
208		l->tail = e->prev;
209
210	if (!e->sentinel)
211		l->nr_elts--;
212}
213
214static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
215{
216	struct entry *e;
217
218	for (e = l_tail(es, l); e; e = l_prev(es, e))
219		if (!e->sentinel) {
220			l_del(es, l, e);
221			return e;
222		}
223
224	return NULL;
225}
226
227/*----------------------------------------------------------------*/
228
229/*
230 * The stochastic-multi-queue is a set of lru lists stacked into levels.
231 * Entries are moved up levels when they are used, which loosely orders the
232 * most accessed entries in the top levels and least in the bottom.  This
233 * structure is *much* better than a single lru list.
234 */
235#define MAX_LEVELS 64u
236
237struct queue {
238	struct entry_space *es;
239
240	unsigned nr_elts;
241	unsigned nr_levels;
242	struct ilist qs[MAX_LEVELS];
243
244	/*
245	 * We maintain a count of the number of entries we would like in each
246	 * level.
247	 */
248	unsigned last_target_nr_elts;
249	unsigned nr_top_levels;
250	unsigned nr_in_top_levels;
251	unsigned target_count[MAX_LEVELS];
252};
253
254static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels)
255{
256	unsigned i;
257
258	q->es = es;
259	q->nr_elts = 0;
260	q->nr_levels = nr_levels;
261
262	for (i = 0; i < q->nr_levels; i++) {
263		l_init(q->qs + i);
264		q->target_count[i] = 0u;
265	}
266
267	q->last_target_nr_elts = 0u;
268	q->nr_top_levels = 0u;
269	q->nr_in_top_levels = 0u;
270}
271
272static unsigned q_size(struct queue *q)
273{
274	return q->nr_elts;
275}
276
277/*
278 * Insert an entry to the back of the given level.
279 */
280static void q_push(struct queue *q, struct entry *e)
281{
282	if (!e->sentinel)
283		q->nr_elts++;
284
285	l_add_tail(q->es, q->qs + e->level, e);
286}
287
288static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
289{
290	if (!e->sentinel)
291		q->nr_elts++;
292
293	l_add_before(q->es, q->qs + e->level, old, e);
294}
295
296static void q_del(struct queue *q, struct entry *e)
297{
298	l_del(q->es, q->qs + e->level, e);
299	if (!e->sentinel)
300		q->nr_elts--;
301}
302
303/*
304 * Return the oldest entry of the lowest populated level.
305 */
306static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel)
307{
308	unsigned level;
309	struct entry *e;
310
311	max_level = min(max_level, q->nr_levels);
312
313	for (level = 0; level < max_level; level++)
314		for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
315			if (e->sentinel) {
316				if (can_cross_sentinel)
317					continue;
318				else
319					break;
320			}
321
322			return e;
323		}
324
325	return NULL;
326}
327
328static struct entry *q_pop(struct queue *q)
329{
330	struct entry *e = q_peek(q, q->nr_levels, true);
331
332	if (e)
333		q_del(q, e);
334
335	return e;
336}
337
338/*
339 * Pops an entry from a level that is not past a sentinel.
340 */
341static struct entry *q_pop_old(struct queue *q, unsigned max_level)
342{
343	struct entry *e = q_peek(q, max_level, false);
344
345	if (e)
346		q_del(q, e);
347
348	return e;
349}
350
351/*
352 * This function assumes there is a non-sentinel entry to pop.  It's only
353 * used by redistribute, so we know this is true.  It also doesn't adjust
354 * the q->nr_elts count.
355 */
356static struct entry *__redist_pop_from(struct queue *q, unsigned level)
357{
358	struct entry *e;
359
360	for (; level < q->nr_levels; level++)
361		for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
362			if (!e->sentinel) {
363				l_del(q->es, q->qs + e->level, e);
364				return e;
365			}
366
367	return NULL;
368}
369
370static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend)
371{
372	unsigned level, nr_levels, entries_per_level, remainder;
373
374	BUG_ON(lbegin > lend);
375	BUG_ON(lend > q->nr_levels);
376	nr_levels = lend - lbegin;
377	entries_per_level = safe_div(nr_elts, nr_levels);
378	remainder = safe_mod(nr_elts, nr_levels);
379
380	for (level = lbegin; level < lend; level++)
381		q->target_count[level] =
382			(level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
383}
384
385/*
386 * Typically we have fewer elements in the top few levels which allows us
387 * to adjust the promote threshold nicely.
388 */
389static void q_set_targets(struct queue *q)
390{
391	if (q->last_target_nr_elts == q->nr_elts)
392		return;
393
394	q->last_target_nr_elts = q->nr_elts;
395
396	if (q->nr_top_levels > q->nr_levels)
397		q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
398
399	else {
400		q_set_targets_subrange_(q, q->nr_in_top_levels,
401					q->nr_levels - q->nr_top_levels, q->nr_levels);
402
403		if (q->nr_in_top_levels < q->nr_elts)
404			q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
405						0, q->nr_levels - q->nr_top_levels);
406		else
407			q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
408	}
409}
410
411static void q_redistribute(struct queue *q)
412{
413	unsigned target, level;
414	struct ilist *l, *l_above;
415	struct entry *e;
416
417	q_set_targets(q);
418
419	for (level = 0u; level < q->nr_levels - 1u; level++) {
420		l = q->qs + level;
421		target = q->target_count[level];
422
423		/*
424		 * Pull down some entries from the level above.
425		 */
426		while (l->nr_elts < target) {
427			e = __redist_pop_from(q, level + 1u);
428			if (!e) {
429				/* bug in nr_elts */
430				break;
431			}
432
433			e->level = level;
434			l_add_tail(q->es, l, e);
435		}
436
437		/*
438		 * Push some entries up.
439		 */
440		l_above = q->qs + level + 1u;
441		while (l->nr_elts > target) {
442			e = l_pop_tail(q->es, l);
443
444			if (!e)
445				/* bug in nr_elts */
446				break;
447
448			e->level = level + 1u;
449			l_add_head(q->es, l_above, e);
450		}
451	}
452}
453
454static void q_requeue_before(struct queue *q, struct entry *dest, struct entry *e, unsigned extra_levels)
455{
456	struct entry *de;
457	unsigned new_level;
458
459	q_del(q, e);
460
461	if (extra_levels && (e->level < q->nr_levels - 1u)) {
462		new_level = min(q->nr_levels - 1u, e->level + extra_levels);
463		for (de = l_head(q->es, q->qs + new_level); de; de = l_next(q->es, de)) {
464			if (de->sentinel)
465				continue;
466
467			q_del(q, de);
468			de->level = e->level;
469
470			if (dest)
471				q_push_before(q, dest, de);
472			else
473				q_push(q, de);
474			break;
475		}
476
477		e->level = new_level;
478	}
479
480	q_push(q, e);
481}
482
483static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels)
484{
485	q_requeue_before(q, NULL, e, extra_levels);
486}
487
488/*----------------------------------------------------------------*/
489
490#define FP_SHIFT 8
491#define SIXTEENTH (1u << (FP_SHIFT - 4u))
492#define EIGHTH (1u << (FP_SHIFT - 3u))
493
494struct stats {
495	unsigned hit_threshold;
496	unsigned hits;
497	unsigned misses;
498};
499
500enum performance {
501	Q_POOR,
502	Q_FAIR,
503	Q_WELL
504};
505
506static void stats_init(struct stats *s, unsigned nr_levels)
507{
508	s->hit_threshold = (nr_levels * 3u) / 4u;
509	s->hits = 0u;
510	s->misses = 0u;
511}
512
513static void stats_reset(struct stats *s)
514{
515	s->hits = s->misses = 0u;
516}
517
518static void stats_level_accessed(struct stats *s, unsigned level)
519{
520	if (level >= s->hit_threshold)
521		s->hits++;
522	else
523		s->misses++;
524}
525
526static void stats_miss(struct stats *s)
527{
528	s->misses++;
529}
530
531/*
532 * There are times when we don't have any confidence in the hotspot queue.
533 * Such as when a fresh cache is created and the blocks have been spread
534 * out across the levels, or if an io load changes.  We detect this by
535 * seeing how often a lookup is in the top levels of the hotspot queue.
536 */
537static enum performance stats_assess(struct stats *s)
538{
539	unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
540
541	if (confidence < SIXTEENTH)
542		return Q_POOR;
543
544	else if (confidence < EIGHTH)
545		return Q_FAIR;
546
547	else
548		return Q_WELL;
549}
550
551/*----------------------------------------------------------------*/
552
553struct hash_table {
554	struct entry_space *es;
555	unsigned long long hash_bits;
556	unsigned *buckets;
557};
558
559/*
560 * All cache entries are stored in a chained hash table.  To save space we
561 * use indexing again, and only store indexes to the next entry.
562 */
563static int h_init(struct hash_table *ht, struct entry_space *es, unsigned nr_entries)
564{
565	unsigned i, nr_buckets;
566
567	ht->es = es;
568	nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
569	ht->hash_bits = __ffs(nr_buckets);
570
571	ht->buckets = vmalloc(sizeof(*ht->buckets) * nr_buckets);
572	if (!ht->buckets)
573		return -ENOMEM;
574
575	for (i = 0; i < nr_buckets; i++)
576		ht->buckets[i] = INDEXER_NULL;
577
578	return 0;
579}
580
581static void h_exit(struct hash_table *ht)
582{
583	vfree(ht->buckets);
584}
585
586static struct entry *h_head(struct hash_table *ht, unsigned bucket)
587{
588	return to_entry(ht->es, ht->buckets[bucket]);
589}
590
591static struct entry *h_next(struct hash_table *ht, struct entry *e)
592{
593	return to_entry(ht->es, e->hash_next);
594}
595
596static void __h_insert(struct hash_table *ht, unsigned bucket, struct entry *e)
597{
598	e->hash_next = ht->buckets[bucket];
599	ht->buckets[bucket] = to_index(ht->es, e);
600}
601
602static void h_insert(struct hash_table *ht, struct entry *e)
603{
604	unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
605	__h_insert(ht, h, e);
606}
607
608static struct entry *__h_lookup(struct hash_table *ht, unsigned h, dm_oblock_t oblock,
609				struct entry **prev)
610{
611	struct entry *e;
612
613	*prev = NULL;
614	for (e = h_head(ht, h); e; e = h_next(ht, e)) {
615		if (e->oblock == oblock)
616			return e;
617
618		*prev = e;
619	}
620
621	return NULL;
622}
623
624static void __h_unlink(struct hash_table *ht, unsigned h,
625		       struct entry *e, struct entry *prev)
626{
627	if (prev)
628		prev->hash_next = e->hash_next;
629	else
630		ht->buckets[h] = e->hash_next;
631}
632
633/*
634 * Also moves each entry to the front of the bucket.
635 */
636static struct entry *h_lookup(struct hash_table *ht, dm_oblock_t oblock)
637{
638	struct entry *e, *prev;
639	unsigned h = hash_64(from_oblock(oblock), ht->hash_bits);
640
641	e = __h_lookup(ht, h, oblock, &prev);
642	if (e && prev) {
643		/*
644		 * Move to the front because this entry is likely
645		 * to be hit again.
646		 */
647		__h_unlink(ht, h, e, prev);
648		__h_insert(ht, h, e);
649	}
650
651	return e;
652}
653
654static void h_remove(struct hash_table *ht, struct entry *e)
655{
656	unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
657	struct entry *prev;
658
659	/*
660	 * The down side of using a singly linked list is we have to
661	 * iterate the bucket to remove an item.
662	 */
663	e = __h_lookup(ht, h, e->oblock, &prev);
664	if (e)
665		__h_unlink(ht, h, e, prev);
666}
667
668/*----------------------------------------------------------------*/
669
670struct entry_alloc {
671	struct entry_space *es;
672	unsigned begin;
673
674	unsigned nr_allocated;
675	struct ilist free;
676};
677
678static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
679			   unsigned begin, unsigned end)
680{
681	unsigned i;
682
683	ea->es = es;
684	ea->nr_allocated = 0u;
685	ea->begin = begin;
686
687	l_init(&ea->free);
688	for (i = begin; i != end; i++)
689		l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
690}
691
692static void init_entry(struct entry *e)
693{
694	/*
695	 * We can't memset because that would clear the hotspot and
696	 * sentinel bits which remain constant.
697	 */
698	e->hash_next = INDEXER_NULL;
699	e->next = INDEXER_NULL;
700	e->prev = INDEXER_NULL;
701	e->level = 0u;
702	e->allocated = true;
703}
704
705static struct entry *alloc_entry(struct entry_alloc *ea)
706{
707	struct entry *e;
708
709	if (l_empty(&ea->free))
710		return NULL;
711
712	e = l_pop_tail(ea->es, &ea->free);
713	init_entry(e);
714	ea->nr_allocated++;
715
716	return e;
717}
718
719/*
720 * This assumes the cblock hasn't already been allocated.
721 */
722static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i)
723{
724	struct entry *e = __get_entry(ea->es, ea->begin + i);
725
726	BUG_ON(e->allocated);
727
728	l_del(ea->es, &ea->free, e);
729	init_entry(e);
730	ea->nr_allocated++;
731
732	return e;
733}
734
735static void free_entry(struct entry_alloc *ea, struct entry *e)
736{
737	BUG_ON(!ea->nr_allocated);
738	BUG_ON(!e->allocated);
739
740	ea->nr_allocated--;
741	e->allocated = false;
742	l_add_tail(ea->es, &ea->free, e);
743}
744
745static bool allocator_empty(struct entry_alloc *ea)
746{
747	return l_empty(&ea->free);
748}
749
750static unsigned get_index(struct entry_alloc *ea, struct entry *e)
751{
752	return to_index(ea->es, e) - ea->begin;
753}
754
755static struct entry *get_entry(struct entry_alloc *ea, unsigned index)
756{
757	return __get_entry(ea->es, ea->begin + index);
758}
759
760/*----------------------------------------------------------------*/
761
762#define NR_HOTSPOT_LEVELS 64u
763#define NR_CACHE_LEVELS 64u
764
765#define WRITEBACK_PERIOD (10 * HZ)
766#define DEMOTE_PERIOD (60 * HZ)
767
768#define HOTSPOT_UPDATE_PERIOD (HZ)
769#define CACHE_UPDATE_PERIOD (10u * HZ)
770
771struct smq_policy {
772	struct dm_cache_policy policy;
773
774	/* protects everything */
775	spinlock_t lock;
776	dm_cblock_t cache_size;
777	sector_t cache_block_size;
778
779	sector_t hotspot_block_size;
780	unsigned nr_hotspot_blocks;
781	unsigned cache_blocks_per_hotspot_block;
782	unsigned hotspot_level_jump;
783
784	struct entry_space es;
785	struct entry_alloc writeback_sentinel_alloc;
786	struct entry_alloc demote_sentinel_alloc;
787	struct entry_alloc hotspot_alloc;
788	struct entry_alloc cache_alloc;
789
790	unsigned long *hotspot_hit_bits;
791	unsigned long *cache_hit_bits;
792
793	/*
794	 * We maintain three queues of entries.  The cache proper,
795	 * consisting of a clean and dirty queue, containing the currently
796	 * active mappings.  The hotspot queue uses a larger block size to
797	 * track blocks that are being hit frequently and potential
798	 * candidates for promotion to the cache.
799	 */
800	struct queue hotspot;
801	struct queue clean;
802	struct queue dirty;
803
804	struct stats hotspot_stats;
805	struct stats cache_stats;
806
807	/*
808	 * Keeps track of time, incremented by the core.  We use this to
809	 * avoid attributing multiple hits within the same tick.
810	 */
811	unsigned tick;
812
813	/*
814	 * The hash tables allows us to quickly find an entry by origin
815	 * block.
816	 */
817	struct hash_table table;
818	struct hash_table hotspot_table;
819
820	bool current_writeback_sentinels;
821	unsigned long next_writeback_period;
822
823	bool current_demote_sentinels;
824	unsigned long next_demote_period;
825
826	unsigned write_promote_level;
827	unsigned read_promote_level;
828
829	unsigned long next_hotspot_period;
830	unsigned long next_cache_period;
831};
832
833/*----------------------------------------------------------------*/
834
835static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which)
836{
837	return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
838}
839
840static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level)
841{
842	return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
843}
844
845static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level)
846{
847	return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
848}
849
850static void __update_writeback_sentinels(struct smq_policy *mq)
851{
852	unsigned level;
853	struct queue *q = &mq->dirty;
854	struct entry *sentinel;
855
856	for (level = 0; level < q->nr_levels; level++) {
857		sentinel = writeback_sentinel(mq, level);
858		q_del(q, sentinel);
859		q_push(q, sentinel);
860	}
861}
862
863static void __update_demote_sentinels(struct smq_policy *mq)
864{
865	unsigned level;
866	struct queue *q = &mq->clean;
867	struct entry *sentinel;
868
869	for (level = 0; level < q->nr_levels; level++) {
870		sentinel = demote_sentinel(mq, level);
871		q_del(q, sentinel);
872		q_push(q, sentinel);
873	}
874}
875
876static void update_sentinels(struct smq_policy *mq)
877{
878	if (time_after(jiffies, mq->next_writeback_period)) {
879		__update_writeback_sentinels(mq);
880		mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
881		mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
882	}
883
884	if (time_after(jiffies, mq->next_demote_period)) {
885		__update_demote_sentinels(mq);
886		mq->next_demote_period = jiffies + DEMOTE_PERIOD;
887		mq->current_demote_sentinels = !mq->current_demote_sentinels;
888	}
889}
890
891static void __sentinels_init(struct smq_policy *mq)
892{
893	unsigned level;
894	struct entry *sentinel;
895
896	for (level = 0; level < NR_CACHE_LEVELS; level++) {
897		sentinel = writeback_sentinel(mq, level);
898		sentinel->level = level;
899		q_push(&mq->dirty, sentinel);
900
901		sentinel = demote_sentinel(mq, level);
902		sentinel->level = level;
903		q_push(&mq->clean, sentinel);
904	}
905}
906
907static void sentinels_init(struct smq_policy *mq)
908{
909	mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
910	mq->next_demote_period = jiffies + DEMOTE_PERIOD;
911
912	mq->current_writeback_sentinels = false;
913	mq->current_demote_sentinels = false;
914	__sentinels_init(mq);
915
916	mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
917	mq->current_demote_sentinels = !mq->current_demote_sentinels;
918	__sentinels_init(mq);
919}
920
921/*----------------------------------------------------------------*/
922
923/*
924 * These methods tie together the dirty queue, clean queue and hash table.
925 */
926static void push_new(struct smq_policy *mq, struct entry *e)
927{
928	struct queue *q = e->dirty ? &mq->dirty : &mq->clean;
929	h_insert(&mq->table, e);
930	q_push(q, e);
931}
932
933static void push(struct smq_policy *mq, struct entry *e)
934{
935	struct entry *sentinel;
936
937	h_insert(&mq->table, e);
938
939	/*
940	 * Punch this into the queue just in front of the sentinel, to
941	 * ensure it's cleaned straight away.
942	 */
943	if (e->dirty) {
944		sentinel = writeback_sentinel(mq, e->level);
945		q_push_before(&mq->dirty, sentinel, e);
946	} else {
947		sentinel = demote_sentinel(mq, e->level);
948		q_push_before(&mq->clean, sentinel, e);
949	}
950}
951
952/*
953 * Removes an entry from cache.  Removes from the hash table.
954 */
955static void __del(struct smq_policy *mq, struct queue *q, struct entry *e)
956{
957	q_del(q, e);
958	h_remove(&mq->table, e);
959}
960
961static void del(struct smq_policy *mq, struct entry *e)
962{
963	__del(mq, e->dirty ? &mq->dirty : &mq->clean, e);
964}
965
966static struct entry *pop_old(struct smq_policy *mq, struct queue *q, unsigned max_level)
967{
968	struct entry *e = q_pop_old(q, max_level);
969	if (e)
970		h_remove(&mq->table, e);
971	return e;
972}
973
974static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
975{
976	return to_cblock(get_index(&mq->cache_alloc, e));
977}
978
979static void requeue(struct smq_policy *mq, struct entry *e)
980{
981	struct entry *sentinel;
982
983	if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
984		if (e->dirty) {
985			sentinel = writeback_sentinel(mq, e->level);
986			q_requeue_before(&mq->dirty, sentinel, e, 1u);
987		} else {
988			sentinel = demote_sentinel(mq, e->level);
989			q_requeue_before(&mq->clean, sentinel, e, 1u);
990		}
991	}
992}
993
994static unsigned default_promote_level(struct smq_policy *mq)
995{
996	/*
997	 * The promote level depends on the current performance of the
998	 * cache.
999	 *
1000	 * If the cache is performing badly, then we can't afford
1001	 * to promote much without causing performance to drop below that
1002	 * of the origin device.
1003	 *
1004	 * If the cache is performing well, then we don't need to promote
1005	 * much.  If it isn't broken, don't fix it.
1006	 *
1007	 * If the cache is middling then we promote more.
1008	 *
1009	 * This scheme reminds me of a graph of entropy vs probability of a
1010	 * binary variable.
1011	 */
1012	static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1};
1013
1014	unsigned hits = mq->cache_stats.hits;
1015	unsigned misses = mq->cache_stats.misses;
1016	unsigned index = safe_div(hits << 4u, hits + misses);
1017	return table[index];
1018}
1019
1020static void update_promote_levels(struct smq_policy *mq)
1021{
1022	/*
1023	 * If there are unused cache entries then we want to be really
1024	 * eager to promote.
1025	 */
1026	unsigned threshold_level = allocator_empty(&mq->cache_alloc) ?
1027		default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
1028
1029	/*
1030	 * If the hotspot queue is performing badly then we have little
1031	 * confidence that we know which blocks to promote.  So we cut down
1032	 * the amount of promotions.
1033	 */
1034	switch (stats_assess(&mq->hotspot_stats)) {
1035	case Q_POOR:
1036		threshold_level /= 4u;
1037		break;
1038
1039	case Q_FAIR:
1040		threshold_level /= 2u;
1041		break;
1042
1043	case Q_WELL:
1044		break;
1045	}
1046
1047	mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
1048	mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level) + 2u;
1049}
1050
1051/*
1052 * If the hotspot queue is performing badly, then we try and move entries
1053 * around more quickly.
1054 */
1055static void update_level_jump(struct smq_policy *mq)
1056{
1057	switch (stats_assess(&mq->hotspot_stats)) {
1058	case Q_POOR:
1059		mq->hotspot_level_jump = 4u;
1060		break;
1061
1062	case Q_FAIR:
1063		mq->hotspot_level_jump = 2u;
1064		break;
1065
1066	case Q_WELL:
1067		mq->hotspot_level_jump = 1u;
1068		break;
1069	}
1070}
1071
1072static void end_hotspot_period(struct smq_policy *mq)
1073{
1074	clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1075	update_promote_levels(mq);
1076
1077	if (time_after(jiffies, mq->next_hotspot_period)) {
1078		update_level_jump(mq);
1079		q_redistribute(&mq->hotspot);
1080		stats_reset(&mq->hotspot_stats);
1081		mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
1082	}
1083}
1084
1085static void end_cache_period(struct smq_policy *mq)
1086{
1087	if (time_after(jiffies, mq->next_cache_period)) {
1088		clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1089
1090		q_redistribute(&mq->dirty);
1091		q_redistribute(&mq->clean);
1092		stats_reset(&mq->cache_stats);
1093
1094		mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
1095	}
1096}
1097
1098static int demote_cblock(struct smq_policy *mq,
1099			 struct policy_locker *locker,
1100			 dm_oblock_t *oblock)
1101{
1102	struct entry *demoted = q_peek(&mq->clean, mq->clean.nr_levels, false);
1103	if (!demoted)
1104		/*
1105		 * We could get a block from mq->dirty, but that
1106		 * would add extra latency to the triggering bio as it
1107		 * waits for the writeback.  Better to not promote this
1108		 * time and hope there's a clean block next time this block
1109		 * is hit.
1110		 */
1111		return -ENOSPC;
1112
1113	if (locker->fn(locker, demoted->oblock))
1114		/*
1115		 * We couldn't lock this block.
1116		 */
1117		return -EBUSY;
1118
1119	del(mq, demoted);
1120	*oblock = demoted->oblock;
1121	free_entry(&mq->cache_alloc, demoted);
1122
1123	return 0;
1124}
1125
1126enum promote_result {
1127	PROMOTE_NOT,
1128	PROMOTE_TEMPORARY,
1129	PROMOTE_PERMANENT
1130};
1131
1132/*
1133 * Converts a boolean into a promote result.
1134 */
1135static enum promote_result maybe_promote(bool promote)
1136{
1137	return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
1138}
1139
1140static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e, struct bio *bio,
1141					  bool fast_promote)
1142{
1143	if (bio_data_dir(bio) == WRITE) {
1144		if (!allocator_empty(&mq->cache_alloc) && fast_promote)
1145			return PROMOTE_TEMPORARY;
1146
1147		else
1148			return maybe_promote(hs_e->level >= mq->write_promote_level);
1149	} else
1150		return maybe_promote(hs_e->level >= mq->read_promote_level);
1151}
1152
1153static void insert_in_cache(struct smq_policy *mq, dm_oblock_t oblock,
1154			    struct policy_locker *locker,
1155			    struct policy_result *result, enum promote_result pr)
1156{
1157	int r;
1158	struct entry *e;
1159
1160	if (allocator_empty(&mq->cache_alloc)) {
1161		result->op = POLICY_REPLACE;
1162		r = demote_cblock(mq, locker, &result->old_oblock);
1163		if (r) {
1164			result->op = POLICY_MISS;
1165			return;
1166		}
1167
1168	} else
1169		result->op = POLICY_NEW;
1170
1171	e = alloc_entry(&mq->cache_alloc);
1172	BUG_ON(!e);
1173	e->oblock = oblock;
1174
1175	if (pr == PROMOTE_TEMPORARY)
1176		push(mq, e);
1177	else
1178		push_new(mq, e);
1179
1180	result->cblock = infer_cblock(mq, e);
1181}
1182
1183static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
1184{
1185	sector_t r = from_oblock(b);
1186	(void) sector_div(r, mq->cache_blocks_per_hotspot_block);
1187	return to_oblock(r);
1188}
1189
1190static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b, struct bio *bio)
1191{
1192	unsigned hi;
1193	dm_oblock_t hb = to_hblock(mq, b);
1194	struct entry *e = h_lookup(&mq->hotspot_table, hb);
1195
1196	if (e) {
1197		stats_level_accessed(&mq->hotspot_stats, e->level);
1198
1199		hi = get_index(&mq->hotspot_alloc, e);
1200		q_requeue(&mq->hotspot, e,
1201			  test_and_set_bit(hi, mq->hotspot_hit_bits) ?
1202			  0u : mq->hotspot_level_jump);
1203
1204	} else {
1205		stats_miss(&mq->hotspot_stats);
1206
1207		e = alloc_entry(&mq->hotspot_alloc);
1208		if (!e) {
1209			e = q_pop(&mq->hotspot);
1210			if (e) {
1211				h_remove(&mq->hotspot_table, e);
1212				hi = get_index(&mq->hotspot_alloc, e);
1213				clear_bit(hi, mq->hotspot_hit_bits);
1214			}
1215
1216		}
1217
1218		if (e) {
1219			e->oblock = hb;
1220			q_push(&mq->hotspot, e);
1221			h_insert(&mq->hotspot_table, e);
1222		}
1223	}
1224
1225	return e;
1226}
1227
1228/*
1229 * Looks the oblock up in the hash table, then decides whether to put in
1230 * pre_cache, or cache etc.
1231 */
1232static int map(struct smq_policy *mq, struct bio *bio, dm_oblock_t oblock,
1233	       bool can_migrate, bool fast_promote,
1234	       struct policy_locker *locker, struct policy_result *result)
1235{
1236	struct entry *e, *hs_e;
1237	enum promote_result pr;
1238
1239	hs_e = update_hotspot_queue(mq, oblock, bio);
1240
1241	e = h_lookup(&mq->table, oblock);
1242	if (e) {
1243		stats_level_accessed(&mq->cache_stats, e->level);
1244
1245		requeue(mq, e);
1246		result->op = POLICY_HIT;
1247		result->cblock = infer_cblock(mq, e);
1248
1249	} else {
1250		stats_miss(&mq->cache_stats);
1251
1252		pr = should_promote(mq, hs_e, bio, fast_promote);
1253		if (pr == PROMOTE_NOT)
1254			result->op = POLICY_MISS;
1255
1256		else {
1257			if (!can_migrate) {
1258				result->op = POLICY_MISS;
1259				return -EWOULDBLOCK;
1260			}
1261
1262			insert_in_cache(mq, oblock, locker, result, pr);
1263		}
1264	}
1265
1266	return 0;
1267}
1268
1269/*----------------------------------------------------------------*/
1270
1271/*
1272 * Public interface, via the policy struct.  See dm-cache-policy.h for a
1273 * description of these.
1274 */
1275
1276static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
1277{
1278	return container_of(p, struct smq_policy, policy);
1279}
1280
1281static void smq_destroy(struct dm_cache_policy *p)
1282{
1283	struct smq_policy *mq = to_smq_policy(p);
1284
1285	h_exit(&mq->hotspot_table);
1286	h_exit(&mq->table);
1287	free_bitset(mq->hotspot_hit_bits);
1288	free_bitset(mq->cache_hit_bits);
1289	space_exit(&mq->es);
1290	kfree(mq);
1291}
1292
1293static int smq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
1294		   bool can_block, bool can_migrate, bool fast_promote,
1295		   struct bio *bio, struct policy_locker *locker,
1296		   struct policy_result *result)
1297{
1298	int r;
1299	unsigned long flags;
1300	struct smq_policy *mq = to_smq_policy(p);
1301
1302	result->op = POLICY_MISS;
1303
1304	spin_lock_irqsave(&mq->lock, flags);
1305	r = map(mq, bio, oblock, can_migrate, fast_promote, locker, result);
1306	spin_unlock_irqrestore(&mq->lock, flags);
1307
1308	return r;
1309}
1310
1311static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
1312{
1313	int r;
1314	unsigned long flags;
1315	struct smq_policy *mq = to_smq_policy(p);
1316	struct entry *e;
1317
1318	spin_lock_irqsave(&mq->lock, flags);
1319	e = h_lookup(&mq->table, oblock);
1320	if (e) {
1321		*cblock = infer_cblock(mq, e);
1322		r = 0;
1323	} else
1324		r = -ENOENT;
1325	spin_unlock_irqrestore(&mq->lock, flags);
1326
1327	return r;
1328}
1329
1330static void __smq_set_clear_dirty(struct smq_policy *mq, dm_oblock_t oblock, bool set)
1331{
1332	struct entry *e;
1333
1334	e = h_lookup(&mq->table, oblock);
1335	BUG_ON(!e);
1336
1337	del(mq, e);
1338	e->dirty = set;
1339	push(mq, e);
1340}
1341
1342static void smq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1343{
1344	unsigned long flags;
1345	struct smq_policy *mq = to_smq_policy(p);
1346
1347	spin_lock_irqsave(&mq->lock, flags);
1348	__smq_set_clear_dirty(mq, oblock, true);
1349	spin_unlock_irqrestore(&mq->lock, flags);
1350}
1351
1352static void smq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1353{
1354	struct smq_policy *mq = to_smq_policy(p);
1355	unsigned long flags;
1356
1357	spin_lock_irqsave(&mq->lock, flags);
1358	__smq_set_clear_dirty(mq, oblock, false);
1359	spin_unlock_irqrestore(&mq->lock, flags);
1360}
1361
1362static int smq_load_mapping(struct dm_cache_policy *p,
1363			    dm_oblock_t oblock, dm_cblock_t cblock,
1364			    uint32_t hint, bool hint_valid)
1365{
1366	struct smq_policy *mq = to_smq_policy(p);
1367	struct entry *e;
1368
1369	e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
1370	e->oblock = oblock;
1371	e->dirty = false;	/* this gets corrected in a minute */
1372	e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : 1;
1373	push(mq, e);
1374
1375	return 0;
1376}
1377
1378static int smq_save_hints(struct smq_policy *mq, struct queue *q,
1379			  policy_walk_fn fn, void *context)
1380{
1381	int r;
1382	unsigned level;
1383	struct entry *e;
1384
1385	for (level = 0; level < q->nr_levels; level++)
1386		for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
1387			if (!e->sentinel) {
1388				r = fn(context, infer_cblock(mq, e),
1389				       e->oblock, e->level);
1390				if (r)
1391					return r;
1392			}
1393		}
1394
1395	return 0;
1396}
1397
1398static int smq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
1399			     void *context)
1400{
1401	struct smq_policy *mq = to_smq_policy(p);
1402	int r = 0;
1403
1404	/*
1405	 * We don't need to lock here since this method is only called once
1406	 * the IO has stopped.
1407	 */
1408	r = smq_save_hints(mq, &mq->clean, fn, context);
1409	if (!r)
1410		r = smq_save_hints(mq, &mq->dirty, fn, context);
1411
1412	return r;
1413}
1414
1415static void __remove_mapping(struct smq_policy *mq, dm_oblock_t oblock)
1416{
1417	struct entry *e;
1418
1419	e = h_lookup(&mq->table, oblock);
1420	BUG_ON(!e);
1421
1422	del(mq, e);
1423	free_entry(&mq->cache_alloc, e);
1424}
1425
1426static void smq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
1427{
1428	struct smq_policy *mq = to_smq_policy(p);
1429	unsigned long flags;
1430
1431	spin_lock_irqsave(&mq->lock, flags);
1432	__remove_mapping(mq, oblock);
1433	spin_unlock_irqrestore(&mq->lock, flags);
1434}
1435
1436static int __remove_cblock(struct smq_policy *mq, dm_cblock_t cblock)
1437{
1438	struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1439
1440	if (!e || !e->allocated)
1441		return -ENODATA;
1442
1443	del(mq, e);
1444	free_entry(&mq->cache_alloc, e);
1445
1446	return 0;
1447}
1448
1449static int smq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock)
1450{
1451	int r;
1452	unsigned long flags;
1453	struct smq_policy *mq = to_smq_policy(p);
1454
1455	spin_lock_irqsave(&mq->lock, flags);
1456	r = __remove_cblock(mq, cblock);
1457	spin_unlock_irqrestore(&mq->lock, flags);
1458
1459	return r;
1460}
1461
1462
1463#define CLEAN_TARGET_CRITICAL 5u /* percent */
1464
1465static bool clean_target_met(struct smq_policy *mq, bool critical)
1466{
1467	if (critical) {
1468		/*
1469		 * Cache entries may not be populated.  So we're cannot rely on the
1470		 * size of the clean queue.
1471		 */
1472		unsigned nr_clean = from_cblock(mq->cache_size) - q_size(&mq->dirty);
1473		unsigned target = from_cblock(mq->cache_size) * CLEAN_TARGET_CRITICAL / 100u;
1474
1475		return nr_clean >= target;
1476	} else
1477		return !q_size(&mq->dirty);
1478}
1479
1480static int __smq_writeback_work(struct smq_policy *mq, dm_oblock_t *oblock,
1481				dm_cblock_t *cblock, bool critical_only)
1482{
1483	struct entry *e = NULL;
1484	bool target_met = clean_target_met(mq, critical_only);
1485
1486	if (critical_only)
1487		/*
1488		 * Always try and keep the bottom level clean.
1489		 */
1490		e = pop_old(mq, &mq->dirty, target_met ? 1u : mq->dirty.nr_levels);
1491
1492	else
1493		e = pop_old(mq, &mq->dirty, mq->dirty.nr_levels);
1494
1495	if (!e)
1496		return -ENODATA;
1497
1498	*oblock = e->oblock;
1499	*cblock = infer_cblock(mq, e);
1500	e->dirty = false;
1501	push_new(mq, e);
1502
1503	return 0;
1504}
1505
1506static int smq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
1507			      dm_cblock_t *cblock, bool critical_only)
1508{
1509	int r;
1510	unsigned long flags;
1511	struct smq_policy *mq = to_smq_policy(p);
1512
1513	spin_lock_irqsave(&mq->lock, flags);
1514	r = __smq_writeback_work(mq, oblock, cblock, critical_only);
1515	spin_unlock_irqrestore(&mq->lock, flags);
1516
1517	return r;
1518}
1519
1520static void __force_mapping(struct smq_policy *mq,
1521			    dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1522{
1523	struct entry *e = h_lookup(&mq->table, current_oblock);
1524
1525	if (e) {
1526		del(mq, e);
1527		e->oblock = new_oblock;
1528		e->dirty = true;
1529		push(mq, e);
1530	}
1531}
1532
1533static void smq_force_mapping(struct dm_cache_policy *p,
1534			      dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1535{
1536	unsigned long flags;
1537	struct smq_policy *mq = to_smq_policy(p);
1538
1539	spin_lock_irqsave(&mq->lock, flags);
1540	__force_mapping(mq, current_oblock, new_oblock);
1541	spin_unlock_irqrestore(&mq->lock, flags);
1542}
1543
1544static dm_cblock_t smq_residency(struct dm_cache_policy *p)
1545{
1546	dm_cblock_t r;
1547	unsigned long flags;
1548	struct smq_policy *mq = to_smq_policy(p);
1549
1550	spin_lock_irqsave(&mq->lock, flags);
1551	r = to_cblock(mq->cache_alloc.nr_allocated);
1552	spin_unlock_irqrestore(&mq->lock, flags);
1553
1554	return r;
1555}
1556
1557static void smq_tick(struct dm_cache_policy *p, bool can_block)
1558{
1559	struct smq_policy *mq = to_smq_policy(p);
1560	unsigned long flags;
1561
1562	spin_lock_irqsave(&mq->lock, flags);
1563	mq->tick++;
1564	update_sentinels(mq);
1565	end_hotspot_period(mq);
1566	end_cache_period(mq);
1567	spin_unlock_irqrestore(&mq->lock, flags);
1568}
1569
1570/* Init the policy plugin interface function pointers. */
1571static void init_policy_functions(struct smq_policy *mq)
1572{
1573	mq->policy.destroy = smq_destroy;
1574	mq->policy.map = smq_map;
1575	mq->policy.lookup = smq_lookup;
1576	mq->policy.set_dirty = smq_set_dirty;
1577	mq->policy.clear_dirty = smq_clear_dirty;
1578	mq->policy.load_mapping = smq_load_mapping;
1579	mq->policy.walk_mappings = smq_walk_mappings;
1580	mq->policy.remove_mapping = smq_remove_mapping;
1581	mq->policy.remove_cblock = smq_remove_cblock;
1582	mq->policy.writeback_work = smq_writeback_work;
1583	mq->policy.force_mapping = smq_force_mapping;
1584	mq->policy.residency = smq_residency;
1585	mq->policy.tick = smq_tick;
1586}
1587
1588static bool too_many_hotspot_blocks(sector_t origin_size,
1589				    sector_t hotspot_block_size,
1590				    unsigned nr_hotspot_blocks)
1591{
1592	return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
1593}
1594
1595static void calc_hotspot_params(sector_t origin_size,
1596				sector_t cache_block_size,
1597				unsigned nr_cache_blocks,
1598				sector_t *hotspot_block_size,
1599				unsigned *nr_hotspot_blocks)
1600{
1601	*hotspot_block_size = cache_block_size * 16u;
1602	*nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
1603
1604	while ((*hotspot_block_size > cache_block_size) &&
1605	       too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
1606		*hotspot_block_size /= 2u;
1607}
1608
1609static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
1610					  sector_t origin_size,
1611					  sector_t cache_block_size)
1612{
1613	unsigned i;
1614	unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
1615	unsigned total_sentinels = 2u * nr_sentinels_per_queue;
1616	struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1617
1618	if (!mq)
1619		return NULL;
1620
1621	init_policy_functions(mq);
1622	mq->cache_size = cache_size;
1623	mq->cache_block_size = cache_block_size;
1624
1625	calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
1626			    &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
1627
1628	mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
1629	mq->hotspot_level_jump = 1u;
1630	if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
1631		DMERR("couldn't initialize entry space");
1632		goto bad_pool_init;
1633	}
1634
1635	init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
1636        for (i = 0; i < nr_sentinels_per_queue; i++)
1637		get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
1638
1639	init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
1640        for (i = 0; i < nr_sentinels_per_queue; i++)
1641		get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
1642
1643	init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
1644		       total_sentinels + mq->nr_hotspot_blocks);
1645
1646	init_allocator(&mq->cache_alloc, &mq->es,
1647		       total_sentinels + mq->nr_hotspot_blocks,
1648		       total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
1649
1650	mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
1651	if (!mq->hotspot_hit_bits) {
1652		DMERR("couldn't allocate hotspot hit bitset");
1653		goto bad_hotspot_hit_bits;
1654	}
1655	clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1656
1657	if (from_cblock(cache_size)) {
1658		mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
1659		if (!mq->cache_hit_bits) {
1660			DMERR("couldn't allocate cache hit bitset");
1661			goto bad_cache_hit_bits;
1662		}
1663		clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1664	} else
1665		mq->cache_hit_bits = NULL;
1666
1667	mq->tick = 0;
1668	spin_lock_init(&mq->lock);
1669
1670	q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
1671	mq->hotspot.nr_top_levels = 8;
1672	mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
1673					   from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
1674
1675	q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
1676	q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
1677
1678	stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
1679	stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
1680
1681	if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
1682		goto bad_alloc_table;
1683
1684	if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
1685		goto bad_alloc_hotspot_table;
1686
1687	sentinels_init(mq);
1688	mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
1689
1690	mq->next_hotspot_period = jiffies;
1691	mq->next_cache_period = jiffies;
1692
1693	return &mq->policy;
1694
1695bad_alloc_hotspot_table:
1696	h_exit(&mq->table);
1697bad_alloc_table:
1698	free_bitset(mq->cache_hit_bits);
1699bad_cache_hit_bits:
1700	free_bitset(mq->hotspot_hit_bits);
1701bad_hotspot_hit_bits:
1702	space_exit(&mq->es);
1703bad_pool_init:
1704	kfree(mq);
1705
1706	return NULL;
1707}
1708
1709/*----------------------------------------------------------------*/
1710
1711static struct dm_cache_policy_type smq_policy_type = {
1712	.name = "smq",
1713	.version = {1, 0, 0},
1714	.hint_size = 4,
1715	.owner = THIS_MODULE,
1716	.create = smq_create
1717};
1718
1719static struct dm_cache_policy_type default_policy_type = {
1720	.name = "default",
1721	.version = {1, 4, 0},
1722	.hint_size = 4,
1723	.owner = THIS_MODULE,
1724	.create = smq_create,
1725	.real = &smq_policy_type
1726};
1727
1728static int __init smq_init(void)
1729{
1730	int r;
1731
1732	r = dm_cache_policy_register(&smq_policy_type);
1733	if (r) {
1734		DMERR("register failed %d", r);
1735		return -ENOMEM;
1736	}
1737
1738	r = dm_cache_policy_register(&default_policy_type);
1739	if (r) {
1740		DMERR("register failed (as default) %d", r);
1741		dm_cache_policy_unregister(&smq_policy_type);
1742		return -ENOMEM;
1743	}
1744
1745	return 0;
1746}
1747
1748static void __exit smq_exit(void)
1749{
1750	dm_cache_policy_unregister(&smq_policy_type);
1751	dm_cache_policy_unregister(&default_policy_type);
1752}
1753
1754module_init(smq_init);
1755module_exit(smq_exit);
1756
1757MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1758MODULE_LICENSE("GPL");
1759MODULE_DESCRIPTION("smq cache policy");
1760
1761MODULE_ALIAS("dm-cache-default");
1762