1/* 2 * IPMMU VMSA 3 * 4 * Copyright (C) 2014 Renesas Electronics Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; version 2 of the License. 9 */ 10 11#include <linux/delay.h> 12#include <linux/dma-mapping.h> 13#include <linux/err.h> 14#include <linux/export.h> 15#include <linux/interrupt.h> 16#include <linux/io.h> 17#include <linux/iommu.h> 18#include <linux/module.h> 19#include <linux/of.h> 20#include <linux/platform_device.h> 21#include <linux/sizes.h> 22#include <linux/slab.h> 23 24#include <asm/dma-iommu.h> 25#include <asm/pgalloc.h> 26 27#include "io-pgtable.h" 28 29struct ipmmu_vmsa_device { 30 struct device *dev; 31 void __iomem *base; 32 struct list_head list; 33 34 unsigned int num_utlbs; 35 36 struct dma_iommu_mapping *mapping; 37}; 38 39struct ipmmu_vmsa_domain { 40 struct ipmmu_vmsa_device *mmu; 41 struct iommu_domain io_domain; 42 43 struct io_pgtable_cfg cfg; 44 struct io_pgtable_ops *iop; 45 46 unsigned int context_id; 47 spinlock_t lock; /* Protects mappings */ 48}; 49 50struct ipmmu_vmsa_archdata { 51 struct ipmmu_vmsa_device *mmu; 52 unsigned int *utlbs; 53 unsigned int num_utlbs; 54}; 55 56static DEFINE_SPINLOCK(ipmmu_devices_lock); 57static LIST_HEAD(ipmmu_devices); 58 59static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom) 60{ 61 return container_of(dom, struct ipmmu_vmsa_domain, io_domain); 62} 63 64#define TLB_LOOP_TIMEOUT 100 /* 100us */ 65 66/* ----------------------------------------------------------------------------- 67 * Registers Definition 68 */ 69 70#define IM_NS_ALIAS_OFFSET 0x800 71 72#define IM_CTX_SIZE 0x40 73 74#define IMCTR 0x0000 75#define IMCTR_TRE (1 << 17) 76#define IMCTR_AFE (1 << 16) 77#define IMCTR_RTSEL_MASK (3 << 4) 78#define IMCTR_RTSEL_SHIFT 4 79#define IMCTR_TREN (1 << 3) 80#define IMCTR_INTEN (1 << 2) 81#define IMCTR_FLUSH (1 << 1) 82#define IMCTR_MMUEN (1 << 0) 83 84#define IMCAAR 0x0004 85 86#define IMTTBCR 0x0008 87#define IMTTBCR_EAE (1 << 31) 88#define IMTTBCR_PMB (1 << 30) 89#define IMTTBCR_SH1_NON_SHAREABLE (0 << 28) 90#define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28) 91#define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28) 92#define IMTTBCR_SH1_MASK (3 << 28) 93#define IMTTBCR_ORGN1_NC (0 << 26) 94#define IMTTBCR_ORGN1_WB_WA (1 << 26) 95#define IMTTBCR_ORGN1_WT (2 << 26) 96#define IMTTBCR_ORGN1_WB (3 << 26) 97#define IMTTBCR_ORGN1_MASK (3 << 26) 98#define IMTTBCR_IRGN1_NC (0 << 24) 99#define IMTTBCR_IRGN1_WB_WA (1 << 24) 100#define IMTTBCR_IRGN1_WT (2 << 24) 101#define IMTTBCR_IRGN1_WB (3 << 24) 102#define IMTTBCR_IRGN1_MASK (3 << 24) 103#define IMTTBCR_TSZ1_MASK (7 << 16) 104#define IMTTBCR_TSZ1_SHIFT 16 105#define IMTTBCR_SH0_NON_SHAREABLE (0 << 12) 106#define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12) 107#define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) 108#define IMTTBCR_SH0_MASK (3 << 12) 109#define IMTTBCR_ORGN0_NC (0 << 10) 110#define IMTTBCR_ORGN0_WB_WA (1 << 10) 111#define IMTTBCR_ORGN0_WT (2 << 10) 112#define IMTTBCR_ORGN0_WB (3 << 10) 113#define IMTTBCR_ORGN0_MASK (3 << 10) 114#define IMTTBCR_IRGN0_NC (0 << 8) 115#define IMTTBCR_IRGN0_WB_WA (1 << 8) 116#define IMTTBCR_IRGN0_WT (2 << 8) 117#define IMTTBCR_IRGN0_WB (3 << 8) 118#define IMTTBCR_IRGN0_MASK (3 << 8) 119#define IMTTBCR_SL0_LVL_2 (0 << 4) 120#define IMTTBCR_SL0_LVL_1 (1 << 4) 121#define IMTTBCR_TSZ0_MASK (7 << 0) 122#define IMTTBCR_TSZ0_SHIFT O 123 124#define IMBUSCR 0x000c 125#define IMBUSCR_DVM (1 << 2) 126#define IMBUSCR_BUSSEL_SYS (0 << 0) 127#define IMBUSCR_BUSSEL_CCI (1 << 0) 128#define IMBUSCR_BUSSEL_IMCAAR (2 << 0) 129#define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0) 130#define IMBUSCR_BUSSEL_MASK (3 << 0) 131 132#define IMTTLBR0 0x0010 133#define IMTTUBR0 0x0014 134#define IMTTLBR1 0x0018 135#define IMTTUBR1 0x001c 136 137#define IMSTR 0x0020 138#define IMSTR_ERRLVL_MASK (3 << 12) 139#define IMSTR_ERRLVL_SHIFT 12 140#define IMSTR_ERRCODE_TLB_FORMAT (1 << 8) 141#define IMSTR_ERRCODE_ACCESS_PERM (4 << 8) 142#define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8) 143#define IMSTR_ERRCODE_MASK (7 << 8) 144#define IMSTR_MHIT (1 << 4) 145#define IMSTR_ABORT (1 << 2) 146#define IMSTR_PF (1 << 1) 147#define IMSTR_TF (1 << 0) 148 149#define IMMAIR0 0x0028 150#define IMMAIR1 0x002c 151#define IMMAIR_ATTR_MASK 0xff 152#define IMMAIR_ATTR_DEVICE 0x04 153#define IMMAIR_ATTR_NC 0x44 154#define IMMAIR_ATTR_WBRWA 0xff 155#define IMMAIR_ATTR_SHIFT(n) ((n) << 3) 156#define IMMAIR_ATTR_IDX_NC 0 157#define IMMAIR_ATTR_IDX_WBRWA 1 158#define IMMAIR_ATTR_IDX_DEV 2 159 160#define IMEAR 0x0030 161 162#define IMPCTR 0x0200 163#define IMPSTR 0x0208 164#define IMPEAR 0x020c 165#define IMPMBA(n) (0x0280 + ((n) * 4)) 166#define IMPMBD(n) (0x02c0 + ((n) * 4)) 167 168#define IMUCTR(n) (0x0300 + ((n) * 16)) 169#define IMUCTR_FIXADDEN (1 << 31) 170#define IMUCTR_FIXADD_MASK (0xff << 16) 171#define IMUCTR_FIXADD_SHIFT 16 172#define IMUCTR_TTSEL_MMU(n) ((n) << 4) 173#define IMUCTR_TTSEL_PMB (8 << 4) 174#define IMUCTR_TTSEL_MASK (15 << 4) 175#define IMUCTR_FLUSH (1 << 1) 176#define IMUCTR_MMUEN (1 << 0) 177 178#define IMUASID(n) (0x0308 + ((n) * 16)) 179#define IMUASID_ASID8_MASK (0xff << 8) 180#define IMUASID_ASID8_SHIFT 8 181#define IMUASID_ASID0_MASK (0xff << 0) 182#define IMUASID_ASID0_SHIFT 0 183 184/* ----------------------------------------------------------------------------- 185 * Read/Write Access 186 */ 187 188static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset) 189{ 190 return ioread32(mmu->base + offset); 191} 192 193static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset, 194 u32 data) 195{ 196 iowrite32(data, mmu->base + offset); 197} 198 199static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg) 200{ 201 return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg); 202} 203 204static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg, 205 u32 data) 206{ 207 ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data); 208} 209 210/* ----------------------------------------------------------------------------- 211 * TLB and microTLB Management 212 */ 213 214/* Wait for any pending TLB invalidations to complete */ 215static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain) 216{ 217 unsigned int count = 0; 218 219 while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) { 220 cpu_relax(); 221 if (++count == TLB_LOOP_TIMEOUT) { 222 dev_err_ratelimited(domain->mmu->dev, 223 "TLB sync timed out -- MMU may be deadlocked\n"); 224 return; 225 } 226 udelay(1); 227 } 228} 229 230static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain) 231{ 232 u32 reg; 233 234 reg = ipmmu_ctx_read(domain, IMCTR); 235 reg |= IMCTR_FLUSH; 236 ipmmu_ctx_write(domain, IMCTR, reg); 237 238 ipmmu_tlb_sync(domain); 239} 240 241/* 242 * Enable MMU translation for the microTLB. 243 */ 244static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain, 245 unsigned int utlb) 246{ 247 struct ipmmu_vmsa_device *mmu = domain->mmu; 248 249 /* 250 * TODO: Reference-count the microTLB as several bus masters can be 251 * connected to the same microTLB. 252 */ 253 254 /* TODO: What should we set the ASID to ? */ 255 ipmmu_write(mmu, IMUASID(utlb), 0); 256 /* TODO: Do we need to flush the microTLB ? */ 257 ipmmu_write(mmu, IMUCTR(utlb), 258 IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH | 259 IMUCTR_MMUEN); 260} 261 262/* 263 * Disable MMU translation for the microTLB. 264 */ 265static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain, 266 unsigned int utlb) 267{ 268 struct ipmmu_vmsa_device *mmu = domain->mmu; 269 270 ipmmu_write(mmu, IMUCTR(utlb), 0); 271} 272 273static void ipmmu_tlb_flush_all(void *cookie) 274{ 275 struct ipmmu_vmsa_domain *domain = cookie; 276 277 ipmmu_tlb_invalidate(domain); 278} 279 280static void ipmmu_tlb_add_flush(unsigned long iova, size_t size, bool leaf, 281 void *cookie) 282{ 283 /* The hardware doesn't support selective TLB flush. */ 284} 285 286static struct iommu_gather_ops ipmmu_gather_ops = { 287 .tlb_flush_all = ipmmu_tlb_flush_all, 288 .tlb_add_flush = ipmmu_tlb_add_flush, 289 .tlb_sync = ipmmu_tlb_flush_all, 290}; 291 292/* ----------------------------------------------------------------------------- 293 * Domain/Context Management 294 */ 295 296static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain) 297{ 298 u64 ttbr; 299 300 /* 301 * Allocate the page table operations. 302 * 303 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory 304 * access, Long-descriptor format" that the NStable bit being set in a 305 * table descriptor will result in the NStable and NS bits of all child 306 * entries being ignored and considered as being set. The IPMMU seems 307 * not to comply with this, as it generates a secure access page fault 308 * if any of the NStable and NS bits isn't set when running in 309 * non-secure mode. 310 */ 311 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS; 312 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K, 313 domain->cfg.ias = 32; 314 domain->cfg.oas = 40; 315 domain->cfg.tlb = &ipmmu_gather_ops; 316 /* 317 * TODO: Add support for coherent walk through CCI with DVM and remove 318 * cache handling. For now, delegate it to the io-pgtable code. 319 */ 320 domain->cfg.iommu_dev = domain->mmu->dev; 321 322 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg, 323 domain); 324 if (!domain->iop) 325 return -EINVAL; 326 327 /* 328 * TODO: When adding support for multiple contexts, find an unused 329 * context. 330 */ 331 domain->context_id = 0; 332 333 /* TTBR0 */ 334 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0]; 335 ipmmu_ctx_write(domain, IMTTLBR0, ttbr); 336 ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32); 337 338 /* 339 * TTBCR 340 * We use long descriptors with inner-shareable WBWA tables and allocate 341 * the whole 32-bit VA space to TTBR0. 342 */ 343 ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE | 344 IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA | 345 IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1); 346 347 /* MAIR0 */ 348 ipmmu_ctx_write(domain, IMMAIR0, domain->cfg.arm_lpae_s1_cfg.mair[0]); 349 350 /* IMBUSCR */ 351 ipmmu_ctx_write(domain, IMBUSCR, 352 ipmmu_ctx_read(domain, IMBUSCR) & 353 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK)); 354 355 /* 356 * IMSTR 357 * Clear all interrupt flags. 358 */ 359 ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR)); 360 361 /* 362 * IMCTR 363 * Enable the MMU and interrupt generation. The long-descriptor 364 * translation table format doesn't use TEX remapping. Don't enable AF 365 * software management as we have no use for it. Flush the TLB as 366 * required when modifying the context registers. 367 */ 368 ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN); 369 370 return 0; 371} 372 373static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain) 374{ 375 /* 376 * Disable the context. Flush the TLB as required when modifying the 377 * context registers. 378 * 379 * TODO: Is TLB flush really needed ? 380 */ 381 ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH); 382 ipmmu_tlb_sync(domain); 383} 384 385/* ----------------------------------------------------------------------------- 386 * Fault Handling 387 */ 388 389static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain) 390{ 391 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF; 392 struct ipmmu_vmsa_device *mmu = domain->mmu; 393 u32 status; 394 u32 iova; 395 396 status = ipmmu_ctx_read(domain, IMSTR); 397 if (!(status & err_mask)) 398 return IRQ_NONE; 399 400 iova = ipmmu_ctx_read(domain, IMEAR); 401 402 /* 403 * Clear the error status flags. Unlike traditional interrupt flag 404 * registers that must be cleared by writing 1, this status register 405 * seems to require 0. The error address register must be read before, 406 * otherwise its value will be 0. 407 */ 408 ipmmu_ctx_write(domain, IMSTR, 0); 409 410 /* Log fatal errors. */ 411 if (status & IMSTR_MHIT) 412 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n", 413 iova); 414 if (status & IMSTR_ABORT) 415 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n", 416 iova); 417 418 if (!(status & (IMSTR_PF | IMSTR_TF))) 419 return IRQ_NONE; 420 421 /* 422 * Try to handle page faults and translation faults. 423 * 424 * TODO: We need to look up the faulty device based on the I/O VA. Use 425 * the IOMMU device for now. 426 */ 427 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0)) 428 return IRQ_HANDLED; 429 430 dev_err_ratelimited(mmu->dev, 431 "Unhandled fault: status 0x%08x iova 0x%08x\n", 432 status, iova); 433 434 return IRQ_HANDLED; 435} 436 437static irqreturn_t ipmmu_irq(int irq, void *dev) 438{ 439 struct ipmmu_vmsa_device *mmu = dev; 440 struct iommu_domain *io_domain; 441 struct ipmmu_vmsa_domain *domain; 442 443 if (!mmu->mapping) 444 return IRQ_NONE; 445 446 io_domain = mmu->mapping->domain; 447 domain = to_vmsa_domain(io_domain); 448 449 return ipmmu_domain_irq(domain); 450} 451 452/* ----------------------------------------------------------------------------- 453 * IOMMU Operations 454 */ 455 456static struct iommu_domain *ipmmu_domain_alloc(unsigned type) 457{ 458 struct ipmmu_vmsa_domain *domain; 459 460 if (type != IOMMU_DOMAIN_UNMANAGED) 461 return NULL; 462 463 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 464 if (!domain) 465 return NULL; 466 467 spin_lock_init(&domain->lock); 468 469 return &domain->io_domain; 470} 471 472static void ipmmu_domain_free(struct iommu_domain *io_domain) 473{ 474 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 475 476 /* 477 * Free the domain resources. We assume that all devices have already 478 * been detached. 479 */ 480 ipmmu_domain_destroy_context(domain); 481 free_io_pgtable_ops(domain->iop); 482 kfree(domain); 483} 484 485static int ipmmu_attach_device(struct iommu_domain *io_domain, 486 struct device *dev) 487{ 488 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu; 489 struct ipmmu_vmsa_device *mmu = archdata->mmu; 490 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 491 unsigned long flags; 492 unsigned int i; 493 int ret = 0; 494 495 if (!mmu) { 496 dev_err(dev, "Cannot attach to IPMMU\n"); 497 return -ENXIO; 498 } 499 500 spin_lock_irqsave(&domain->lock, flags); 501 502 if (!domain->mmu) { 503 /* The domain hasn't been used yet, initialize it. */ 504 domain->mmu = mmu; 505 ret = ipmmu_domain_init_context(domain); 506 } else if (domain->mmu != mmu) { 507 /* 508 * Something is wrong, we can't attach two devices using 509 * different IOMMUs to the same domain. 510 */ 511 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n", 512 dev_name(mmu->dev), dev_name(domain->mmu->dev)); 513 ret = -EINVAL; 514 } 515 516 spin_unlock_irqrestore(&domain->lock, flags); 517 518 if (ret < 0) 519 return ret; 520 521 for (i = 0; i < archdata->num_utlbs; ++i) 522 ipmmu_utlb_enable(domain, archdata->utlbs[i]); 523 524 return 0; 525} 526 527static void ipmmu_detach_device(struct iommu_domain *io_domain, 528 struct device *dev) 529{ 530 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu; 531 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 532 unsigned int i; 533 534 for (i = 0; i < archdata->num_utlbs; ++i) 535 ipmmu_utlb_disable(domain, archdata->utlbs[i]); 536 537 /* 538 * TODO: Optimize by disabling the context when no device is attached. 539 */ 540} 541 542static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova, 543 phys_addr_t paddr, size_t size, int prot) 544{ 545 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 546 547 if (!domain) 548 return -ENODEV; 549 550 return domain->iop->map(domain->iop, iova, paddr, size, prot); 551} 552 553static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova, 554 size_t size) 555{ 556 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 557 558 return domain->iop->unmap(domain->iop, iova, size); 559} 560 561static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain, 562 dma_addr_t iova) 563{ 564 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 565 566 /* TODO: Is locking needed ? */ 567 568 return domain->iop->iova_to_phys(domain->iop, iova); 569} 570 571static int ipmmu_find_utlbs(struct ipmmu_vmsa_device *mmu, struct device *dev, 572 unsigned int *utlbs, unsigned int num_utlbs) 573{ 574 unsigned int i; 575 576 for (i = 0; i < num_utlbs; ++i) { 577 struct of_phandle_args args; 578 int ret; 579 580 ret = of_parse_phandle_with_args(dev->of_node, "iommus", 581 "#iommu-cells", i, &args); 582 if (ret < 0) 583 return ret; 584 585 of_node_put(args.np); 586 587 if (args.np != mmu->dev->of_node || args.args_count != 1) 588 return -EINVAL; 589 590 utlbs[i] = args.args[0]; 591 } 592 593 return 0; 594} 595 596static int ipmmu_add_device(struct device *dev) 597{ 598 struct ipmmu_vmsa_archdata *archdata; 599 struct ipmmu_vmsa_device *mmu; 600 struct iommu_group *group = NULL; 601 unsigned int *utlbs; 602 unsigned int i; 603 int num_utlbs; 604 int ret = -ENODEV; 605 606 if (dev->archdata.iommu) { 607 dev_warn(dev, "IOMMU driver already assigned to device %s\n", 608 dev_name(dev)); 609 return -EINVAL; 610 } 611 612 /* Find the master corresponding to the device. */ 613 614 num_utlbs = of_count_phandle_with_args(dev->of_node, "iommus", 615 "#iommu-cells"); 616 if (num_utlbs < 0) 617 return -ENODEV; 618 619 utlbs = kcalloc(num_utlbs, sizeof(*utlbs), GFP_KERNEL); 620 if (!utlbs) 621 return -ENOMEM; 622 623 spin_lock(&ipmmu_devices_lock); 624 625 list_for_each_entry(mmu, &ipmmu_devices, list) { 626 ret = ipmmu_find_utlbs(mmu, dev, utlbs, num_utlbs); 627 if (!ret) { 628 /* 629 * TODO Take a reference to the MMU to protect 630 * against device removal. 631 */ 632 break; 633 } 634 } 635 636 spin_unlock(&ipmmu_devices_lock); 637 638 if (ret < 0) 639 return -ENODEV; 640 641 for (i = 0; i < num_utlbs; ++i) { 642 if (utlbs[i] >= mmu->num_utlbs) { 643 ret = -EINVAL; 644 goto error; 645 } 646 } 647 648 /* Create a device group and add the device to it. */ 649 group = iommu_group_alloc(); 650 if (IS_ERR(group)) { 651 dev_err(dev, "Failed to allocate IOMMU group\n"); 652 ret = PTR_ERR(group); 653 goto error; 654 } 655 656 ret = iommu_group_add_device(group, dev); 657 iommu_group_put(group); 658 659 if (ret < 0) { 660 dev_err(dev, "Failed to add device to IPMMU group\n"); 661 group = NULL; 662 goto error; 663 } 664 665 archdata = kzalloc(sizeof(*archdata), GFP_KERNEL); 666 if (!archdata) { 667 ret = -ENOMEM; 668 goto error; 669 } 670 671 archdata->mmu = mmu; 672 archdata->utlbs = utlbs; 673 archdata->num_utlbs = num_utlbs; 674 dev->archdata.iommu = archdata; 675 676 /* 677 * Create the ARM mapping, used by the ARM DMA mapping core to allocate 678 * VAs. This will allocate a corresponding IOMMU domain. 679 * 680 * TODO: 681 * - Create one mapping per context (TLB). 682 * - Make the mapping size configurable ? We currently use a 2GB mapping 683 * at a 1GB offset to ensure that NULL VAs will fault. 684 */ 685 if (!mmu->mapping) { 686 struct dma_iommu_mapping *mapping; 687 688 mapping = arm_iommu_create_mapping(&platform_bus_type, 689 SZ_1G, SZ_2G); 690 if (IS_ERR(mapping)) { 691 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n"); 692 ret = PTR_ERR(mapping); 693 goto error; 694 } 695 696 mmu->mapping = mapping; 697 } 698 699 /* Attach the ARM VA mapping to the device. */ 700 ret = arm_iommu_attach_device(dev, mmu->mapping); 701 if (ret < 0) { 702 dev_err(dev, "Failed to attach device to VA mapping\n"); 703 goto error; 704 } 705 706 return 0; 707 708error: 709 arm_iommu_release_mapping(mmu->mapping); 710 711 kfree(dev->archdata.iommu); 712 kfree(utlbs); 713 714 dev->archdata.iommu = NULL; 715 716 if (!IS_ERR_OR_NULL(group)) 717 iommu_group_remove_device(dev); 718 719 return ret; 720} 721 722static void ipmmu_remove_device(struct device *dev) 723{ 724 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu; 725 726 arm_iommu_detach_device(dev); 727 iommu_group_remove_device(dev); 728 729 kfree(archdata->utlbs); 730 kfree(archdata); 731 732 dev->archdata.iommu = NULL; 733} 734 735static const struct iommu_ops ipmmu_ops = { 736 .domain_alloc = ipmmu_domain_alloc, 737 .domain_free = ipmmu_domain_free, 738 .attach_dev = ipmmu_attach_device, 739 .detach_dev = ipmmu_detach_device, 740 .map = ipmmu_map, 741 .unmap = ipmmu_unmap, 742 .map_sg = default_iommu_map_sg, 743 .iova_to_phys = ipmmu_iova_to_phys, 744 .add_device = ipmmu_add_device, 745 .remove_device = ipmmu_remove_device, 746 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K, 747}; 748 749/* ----------------------------------------------------------------------------- 750 * Probe/remove and init 751 */ 752 753static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu) 754{ 755 unsigned int i; 756 757 /* Disable all contexts. */ 758 for (i = 0; i < 4; ++i) 759 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0); 760} 761 762static int ipmmu_probe(struct platform_device *pdev) 763{ 764 struct ipmmu_vmsa_device *mmu; 765 struct resource *res; 766 int irq; 767 int ret; 768 769 if (!IS_ENABLED(CONFIG_OF) && !pdev->dev.platform_data) { 770 dev_err(&pdev->dev, "missing platform data\n"); 771 return -EINVAL; 772 } 773 774 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL); 775 if (!mmu) { 776 dev_err(&pdev->dev, "cannot allocate device data\n"); 777 return -ENOMEM; 778 } 779 780 mmu->dev = &pdev->dev; 781 mmu->num_utlbs = 32; 782 783 /* Map I/O memory and request IRQ. */ 784 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 785 mmu->base = devm_ioremap_resource(&pdev->dev, res); 786 if (IS_ERR(mmu->base)) 787 return PTR_ERR(mmu->base); 788 789 /* 790 * The IPMMU has two register banks, for secure and non-secure modes. 791 * The bank mapped at the beginning of the IPMMU address space 792 * corresponds to the running mode of the CPU. When running in secure 793 * mode the non-secure register bank is also available at an offset. 794 * 795 * Secure mode operation isn't clearly documented and is thus currently 796 * not implemented in the driver. Furthermore, preliminary tests of 797 * non-secure operation with the main register bank were not successful. 798 * Offset the registers base unconditionally to point to the non-secure 799 * alias space for now. 800 */ 801 mmu->base += IM_NS_ALIAS_OFFSET; 802 803 irq = platform_get_irq(pdev, 0); 804 if (irq < 0) { 805 dev_err(&pdev->dev, "no IRQ found\n"); 806 return irq; 807 } 808 809 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0, 810 dev_name(&pdev->dev), mmu); 811 if (ret < 0) { 812 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq); 813 return ret; 814 } 815 816 ipmmu_device_reset(mmu); 817 818 /* 819 * We can't create the ARM mapping here as it requires the bus to have 820 * an IOMMU, which only happens when bus_set_iommu() is called in 821 * ipmmu_init() after the probe function returns. 822 */ 823 824 spin_lock(&ipmmu_devices_lock); 825 list_add(&mmu->list, &ipmmu_devices); 826 spin_unlock(&ipmmu_devices_lock); 827 828 platform_set_drvdata(pdev, mmu); 829 830 return 0; 831} 832 833static int ipmmu_remove(struct platform_device *pdev) 834{ 835 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev); 836 837 spin_lock(&ipmmu_devices_lock); 838 list_del(&mmu->list); 839 spin_unlock(&ipmmu_devices_lock); 840 841 arm_iommu_release_mapping(mmu->mapping); 842 843 ipmmu_device_reset(mmu); 844 845 return 0; 846} 847 848static const struct of_device_id ipmmu_of_ids[] = { 849 { .compatible = "renesas,ipmmu-vmsa", }, 850 { } 851}; 852 853static struct platform_driver ipmmu_driver = { 854 .driver = { 855 .name = "ipmmu-vmsa", 856 .of_match_table = of_match_ptr(ipmmu_of_ids), 857 }, 858 .probe = ipmmu_probe, 859 .remove = ipmmu_remove, 860}; 861 862static int __init ipmmu_init(void) 863{ 864 int ret; 865 866 ret = platform_driver_register(&ipmmu_driver); 867 if (ret < 0) 868 return ret; 869 870 if (!iommu_present(&platform_bus_type)) 871 bus_set_iommu(&platform_bus_type, &ipmmu_ops); 872 873 return 0; 874} 875 876static void __exit ipmmu_exit(void) 877{ 878 return platform_driver_unregister(&ipmmu_driver); 879} 880 881subsys_initcall(ipmmu_init); 882module_exit(ipmmu_exit); 883 884MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU"); 885MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>"); 886MODULE_LICENSE("GPL v2"); 887