1/*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses.  You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 *     Redistribution and use in source and binary forms, with or
12 *     without modification, are permitted provided that the following
13 *     conditions are met:
14 *
15 *      - Redistributions of source code must retain the above
16 *        copyright notice, this list of conditions and the following
17 *        disclaimer.
18 *
19 *      - Redistributions in binary form must reproduce the above
20 *        copyright notice, this list of conditions and the following
21 *        disclaimer in the documentation and/or other materials
22 *        provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/err.h>
39#include <linux/ctype.h>
40#include <linux/kthread.h>
41#include <linux/string.h>
42#include <linux/delay.h>
43#include <linux/atomic.h>
44#include <scsi/scsi_proto.h>
45#include <scsi/scsi_tcq.h>
46#include <target/target_core_base.h>
47#include <target/target_core_fabric.h>
48#include "ib_srpt.h"
49
50/* Name of this kernel module. */
51#define DRV_NAME		"ib_srpt"
52#define DRV_VERSION		"2.0.0"
53#define DRV_RELDATE		"2011-02-14"
54
55#define SRPT_ID_STRING	"Linux SRP target"
56
57#undef pr_fmt
58#define pr_fmt(fmt) DRV_NAME " " fmt
59
60MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
62		   "v" DRV_VERSION " (" DRV_RELDATE ")");
63MODULE_LICENSE("Dual BSD/GPL");
64
65/*
66 * Global Variables
67 */
68
69static u64 srpt_service_guid;
70static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
71static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
72
73static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
74module_param(srp_max_req_size, int, 0444);
75MODULE_PARM_DESC(srp_max_req_size,
76		 "Maximum size of SRP request messages in bytes.");
77
78static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
79module_param(srpt_srq_size, int, 0444);
80MODULE_PARM_DESC(srpt_srq_size,
81		 "Shared receive queue (SRQ) size.");
82
83static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
84{
85	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
86}
87module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
88		  0444);
89MODULE_PARM_DESC(srpt_service_guid,
90		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
91		 " instead of using the node_guid of the first HCA.");
92
93static struct ib_client srpt_client;
94static void srpt_release_channel(struct srpt_rdma_ch *ch);
95static int srpt_queue_status(struct se_cmd *cmd);
96
97/**
98 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
99 */
100static inline
101enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
102{
103	switch (dir) {
104	case DMA_TO_DEVICE:	return DMA_FROM_DEVICE;
105	case DMA_FROM_DEVICE:	return DMA_TO_DEVICE;
106	default:		return dir;
107	}
108}
109
110/**
111 * srpt_sdev_name() - Return the name associated with the HCA.
112 *
113 * Examples are ib0, ib1, ...
114 */
115static inline const char *srpt_sdev_name(struct srpt_device *sdev)
116{
117	return sdev->device->name;
118}
119
120static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
121{
122	unsigned long flags;
123	enum rdma_ch_state state;
124
125	spin_lock_irqsave(&ch->spinlock, flags);
126	state = ch->state;
127	spin_unlock_irqrestore(&ch->spinlock, flags);
128	return state;
129}
130
131static enum rdma_ch_state
132srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
133{
134	unsigned long flags;
135	enum rdma_ch_state prev;
136
137	spin_lock_irqsave(&ch->spinlock, flags);
138	prev = ch->state;
139	ch->state = new_state;
140	spin_unlock_irqrestore(&ch->spinlock, flags);
141	return prev;
142}
143
144/**
145 * srpt_test_and_set_ch_state() - Test and set the channel state.
146 *
147 * Returns true if and only if the channel state has been set to the new state.
148 */
149static bool
150srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
151			   enum rdma_ch_state new)
152{
153	unsigned long flags;
154	enum rdma_ch_state prev;
155
156	spin_lock_irqsave(&ch->spinlock, flags);
157	prev = ch->state;
158	if (prev == old)
159		ch->state = new;
160	spin_unlock_irqrestore(&ch->spinlock, flags);
161	return prev == old;
162}
163
164/**
165 * srpt_event_handler() - Asynchronous IB event callback function.
166 *
167 * Callback function called by the InfiniBand core when an asynchronous IB
168 * event occurs. This callback may occur in interrupt context. See also
169 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
170 * Architecture Specification.
171 */
172static void srpt_event_handler(struct ib_event_handler *handler,
173			       struct ib_event *event)
174{
175	struct srpt_device *sdev;
176	struct srpt_port *sport;
177
178	sdev = ib_get_client_data(event->device, &srpt_client);
179	if (!sdev || sdev->device != event->device)
180		return;
181
182	pr_debug("ASYNC event= %d on device= %s\n", event->event,
183		 srpt_sdev_name(sdev));
184
185	switch (event->event) {
186	case IB_EVENT_PORT_ERR:
187		if (event->element.port_num <= sdev->device->phys_port_cnt) {
188			sport = &sdev->port[event->element.port_num - 1];
189			sport->lid = 0;
190			sport->sm_lid = 0;
191		}
192		break;
193	case IB_EVENT_PORT_ACTIVE:
194	case IB_EVENT_LID_CHANGE:
195	case IB_EVENT_PKEY_CHANGE:
196	case IB_EVENT_SM_CHANGE:
197	case IB_EVENT_CLIENT_REREGISTER:
198	case IB_EVENT_GID_CHANGE:
199		/* Refresh port data asynchronously. */
200		if (event->element.port_num <= sdev->device->phys_port_cnt) {
201			sport = &sdev->port[event->element.port_num - 1];
202			if (!sport->lid && !sport->sm_lid)
203				schedule_work(&sport->work);
204		}
205		break;
206	default:
207		pr_err("received unrecognized IB event %d\n",
208		       event->event);
209		break;
210	}
211}
212
213/**
214 * srpt_srq_event() - SRQ event callback function.
215 */
216static void srpt_srq_event(struct ib_event *event, void *ctx)
217{
218	pr_info("SRQ event %d\n", event->event);
219}
220
221/**
222 * srpt_qp_event() - QP event callback function.
223 */
224static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
225{
226	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
227		 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
228
229	switch (event->event) {
230	case IB_EVENT_COMM_EST:
231		ib_cm_notify(ch->cm_id, event->event);
232		break;
233	case IB_EVENT_QP_LAST_WQE_REACHED:
234		if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
235					       CH_RELEASING))
236			srpt_release_channel(ch);
237		else
238			pr_debug("%s: state %d - ignored LAST_WQE.\n",
239				 ch->sess_name, srpt_get_ch_state(ch));
240		break;
241	default:
242		pr_err("received unrecognized IB QP event %d\n", event->event);
243		break;
244	}
245}
246
247/**
248 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
249 *
250 * @slot: one-based slot number.
251 * @value: four-bit value.
252 *
253 * Copies the lowest four bits of value in element slot of the array of four
254 * bit elements called c_list (controller list). The index slot is one-based.
255 */
256static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
257{
258	u16 id;
259	u8 tmp;
260
261	id = (slot - 1) / 2;
262	if (slot & 0x1) {
263		tmp = c_list[id] & 0xf;
264		c_list[id] = (value << 4) | tmp;
265	} else {
266		tmp = c_list[id] & 0xf0;
267		c_list[id] = (value & 0xf) | tmp;
268	}
269}
270
271/**
272 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
273 *
274 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
275 * Specification.
276 */
277static void srpt_get_class_port_info(struct ib_dm_mad *mad)
278{
279	struct ib_class_port_info *cif;
280
281	cif = (struct ib_class_port_info *)mad->data;
282	memset(cif, 0, sizeof *cif);
283	cif->base_version = 1;
284	cif->class_version = 1;
285	cif->resp_time_value = 20;
286
287	mad->mad_hdr.status = 0;
288}
289
290/**
291 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
292 *
293 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
294 * Specification. See also section B.7, table B.6 in the SRP r16a document.
295 */
296static void srpt_get_iou(struct ib_dm_mad *mad)
297{
298	struct ib_dm_iou_info *ioui;
299	u8 slot;
300	int i;
301
302	ioui = (struct ib_dm_iou_info *)mad->data;
303	ioui->change_id = cpu_to_be16(1);
304	ioui->max_controllers = 16;
305
306	/* set present for slot 1 and empty for the rest */
307	srpt_set_ioc(ioui->controller_list, 1, 1);
308	for (i = 1, slot = 2; i < 16; i++, slot++)
309		srpt_set_ioc(ioui->controller_list, slot, 0);
310
311	mad->mad_hdr.status = 0;
312}
313
314/**
315 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
316 *
317 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
318 * Architecture Specification. See also section B.7, table B.7 in the SRP
319 * r16a document.
320 */
321static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
322			 struct ib_dm_mad *mad)
323{
324	struct srpt_device *sdev = sport->sdev;
325	struct ib_dm_ioc_profile *iocp;
326
327	iocp = (struct ib_dm_ioc_profile *)mad->data;
328
329	if (!slot || slot > 16) {
330		mad->mad_hdr.status
331			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
332		return;
333	}
334
335	if (slot > 2) {
336		mad->mad_hdr.status
337			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
338		return;
339	}
340
341	memset(iocp, 0, sizeof *iocp);
342	strcpy(iocp->id_string, SRPT_ID_STRING);
343	iocp->guid = cpu_to_be64(srpt_service_guid);
344	iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
345	iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
346	iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
347	iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348	iocp->subsys_device_id = 0x0;
349	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
350	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
351	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
352	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
353	iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
354	iocp->rdma_read_depth = 4;
355	iocp->send_size = cpu_to_be32(srp_max_req_size);
356	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
357					  1U << 24));
358	iocp->num_svc_entries = 1;
359	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
360		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
361
362	mad->mad_hdr.status = 0;
363}
364
365/**
366 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
367 *
368 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
369 * Specification. See also section B.7, table B.8 in the SRP r16a document.
370 */
371static void srpt_get_svc_entries(u64 ioc_guid,
372				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
373{
374	struct ib_dm_svc_entries *svc_entries;
375
376	WARN_ON(!ioc_guid);
377
378	if (!slot || slot > 16) {
379		mad->mad_hdr.status
380			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
381		return;
382	}
383
384	if (slot > 2 || lo > hi || hi > 1) {
385		mad->mad_hdr.status
386			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
387		return;
388	}
389
390	svc_entries = (struct ib_dm_svc_entries *)mad->data;
391	memset(svc_entries, 0, sizeof *svc_entries);
392	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
393	snprintf(svc_entries->service_entries[0].name,
394		 sizeof(svc_entries->service_entries[0].name),
395		 "%s%016llx",
396		 SRP_SERVICE_NAME_PREFIX,
397		 ioc_guid);
398
399	mad->mad_hdr.status = 0;
400}
401
402/**
403 * srpt_mgmt_method_get() - Process a received management datagram.
404 * @sp:      source port through which the MAD has been received.
405 * @rq_mad:  received MAD.
406 * @rsp_mad: response MAD.
407 */
408static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
409				 struct ib_dm_mad *rsp_mad)
410{
411	u16 attr_id;
412	u32 slot;
413	u8 hi, lo;
414
415	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
416	switch (attr_id) {
417	case DM_ATTR_CLASS_PORT_INFO:
418		srpt_get_class_port_info(rsp_mad);
419		break;
420	case DM_ATTR_IOU_INFO:
421		srpt_get_iou(rsp_mad);
422		break;
423	case DM_ATTR_IOC_PROFILE:
424		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
425		srpt_get_ioc(sp, slot, rsp_mad);
426		break;
427	case DM_ATTR_SVC_ENTRIES:
428		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
429		hi = (u8) ((slot >> 8) & 0xff);
430		lo = (u8) (slot & 0xff);
431		slot = (u16) ((slot >> 16) & 0xffff);
432		srpt_get_svc_entries(srpt_service_guid,
433				     slot, hi, lo, rsp_mad);
434		break;
435	default:
436		rsp_mad->mad_hdr.status =
437		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
438		break;
439	}
440}
441
442/**
443 * srpt_mad_send_handler() - Post MAD-send callback function.
444 */
445static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
446				  struct ib_mad_send_wc *mad_wc)
447{
448	ib_destroy_ah(mad_wc->send_buf->ah);
449	ib_free_send_mad(mad_wc->send_buf);
450}
451
452/**
453 * srpt_mad_recv_handler() - MAD reception callback function.
454 */
455static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
456				  struct ib_mad_recv_wc *mad_wc)
457{
458	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
459	struct ib_ah *ah;
460	struct ib_mad_send_buf *rsp;
461	struct ib_dm_mad *dm_mad;
462
463	if (!mad_wc || !mad_wc->recv_buf.mad)
464		return;
465
466	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
467				  mad_wc->recv_buf.grh, mad_agent->port_num);
468	if (IS_ERR(ah))
469		goto err;
470
471	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
472
473	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
474				 mad_wc->wc->pkey_index, 0,
475				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
476				 GFP_KERNEL,
477				 IB_MGMT_BASE_VERSION);
478	if (IS_ERR(rsp))
479		goto err_rsp;
480
481	rsp->ah = ah;
482
483	dm_mad = rsp->mad;
484	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
485	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
486	dm_mad->mad_hdr.status = 0;
487
488	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
489	case IB_MGMT_METHOD_GET:
490		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
491		break;
492	case IB_MGMT_METHOD_SET:
493		dm_mad->mad_hdr.status =
494		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
495		break;
496	default:
497		dm_mad->mad_hdr.status =
498		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
499		break;
500	}
501
502	if (!ib_post_send_mad(rsp, NULL)) {
503		ib_free_recv_mad(mad_wc);
504		/* will destroy_ah & free_send_mad in send completion */
505		return;
506	}
507
508	ib_free_send_mad(rsp);
509
510err_rsp:
511	ib_destroy_ah(ah);
512err:
513	ib_free_recv_mad(mad_wc);
514}
515
516/**
517 * srpt_refresh_port() - Configure a HCA port.
518 *
519 * Enable InfiniBand management datagram processing, update the cached sm_lid,
520 * lid and gid values, and register a callback function for processing MADs
521 * on the specified port.
522 *
523 * Note: It is safe to call this function more than once for the same port.
524 */
525static int srpt_refresh_port(struct srpt_port *sport)
526{
527	struct ib_mad_reg_req reg_req;
528	struct ib_port_modify port_modify;
529	struct ib_port_attr port_attr;
530	int ret;
531
532	memset(&port_modify, 0, sizeof port_modify);
533	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
534	port_modify.clr_port_cap_mask = 0;
535
536	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
537	if (ret)
538		goto err_mod_port;
539
540	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
541	if (ret)
542		goto err_query_port;
543
544	sport->sm_lid = port_attr.sm_lid;
545	sport->lid = port_attr.lid;
546
547	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
548			   NULL);
549	if (ret)
550		goto err_query_port;
551
552	if (!sport->mad_agent) {
553		memset(&reg_req, 0, sizeof reg_req);
554		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
555		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
556		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
557		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
558
559		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
560							 sport->port,
561							 IB_QPT_GSI,
562							 &reg_req, 0,
563							 srpt_mad_send_handler,
564							 srpt_mad_recv_handler,
565							 sport, 0);
566		if (IS_ERR(sport->mad_agent)) {
567			ret = PTR_ERR(sport->mad_agent);
568			sport->mad_agent = NULL;
569			goto err_query_port;
570		}
571	}
572
573	return 0;
574
575err_query_port:
576
577	port_modify.set_port_cap_mask = 0;
578	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
579	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
580
581err_mod_port:
582
583	return ret;
584}
585
586/**
587 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
588 *
589 * Note: It is safe to call this function more than once for the same device.
590 */
591static void srpt_unregister_mad_agent(struct srpt_device *sdev)
592{
593	struct ib_port_modify port_modify = {
594		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
595	};
596	struct srpt_port *sport;
597	int i;
598
599	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
600		sport = &sdev->port[i - 1];
601		WARN_ON(sport->port != i);
602		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
603			pr_err("disabling MAD processing failed.\n");
604		if (sport->mad_agent) {
605			ib_unregister_mad_agent(sport->mad_agent);
606			sport->mad_agent = NULL;
607		}
608	}
609}
610
611/**
612 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
613 */
614static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
615					   int ioctx_size, int dma_size,
616					   enum dma_data_direction dir)
617{
618	struct srpt_ioctx *ioctx;
619
620	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
621	if (!ioctx)
622		goto err;
623
624	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
625	if (!ioctx->buf)
626		goto err_free_ioctx;
627
628	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
629	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
630		goto err_free_buf;
631
632	return ioctx;
633
634err_free_buf:
635	kfree(ioctx->buf);
636err_free_ioctx:
637	kfree(ioctx);
638err:
639	return NULL;
640}
641
642/**
643 * srpt_free_ioctx() - Free an SRPT I/O context structure.
644 */
645static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
646			    int dma_size, enum dma_data_direction dir)
647{
648	if (!ioctx)
649		return;
650
651	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
652	kfree(ioctx->buf);
653	kfree(ioctx);
654}
655
656/**
657 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
658 * @sdev:       Device to allocate the I/O context ring for.
659 * @ring_size:  Number of elements in the I/O context ring.
660 * @ioctx_size: I/O context size.
661 * @dma_size:   DMA buffer size.
662 * @dir:        DMA data direction.
663 */
664static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
665				int ring_size, int ioctx_size,
666				int dma_size, enum dma_data_direction dir)
667{
668	struct srpt_ioctx **ring;
669	int i;
670
671	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
672		&& ioctx_size != sizeof(struct srpt_send_ioctx));
673
674	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
675	if (!ring)
676		goto out;
677	for (i = 0; i < ring_size; ++i) {
678		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
679		if (!ring[i])
680			goto err;
681		ring[i]->index = i;
682	}
683	goto out;
684
685err:
686	while (--i >= 0)
687		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
688	kfree(ring);
689	ring = NULL;
690out:
691	return ring;
692}
693
694/**
695 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
696 */
697static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
698				 struct srpt_device *sdev, int ring_size,
699				 int dma_size, enum dma_data_direction dir)
700{
701	int i;
702
703	for (i = 0; i < ring_size; ++i)
704		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
705	kfree(ioctx_ring);
706}
707
708/**
709 * srpt_get_cmd_state() - Get the state of a SCSI command.
710 */
711static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
712{
713	enum srpt_command_state state;
714	unsigned long flags;
715
716	BUG_ON(!ioctx);
717
718	spin_lock_irqsave(&ioctx->spinlock, flags);
719	state = ioctx->state;
720	spin_unlock_irqrestore(&ioctx->spinlock, flags);
721	return state;
722}
723
724/**
725 * srpt_set_cmd_state() - Set the state of a SCSI command.
726 *
727 * Does not modify the state of aborted commands. Returns the previous command
728 * state.
729 */
730static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
731						  enum srpt_command_state new)
732{
733	enum srpt_command_state previous;
734	unsigned long flags;
735
736	BUG_ON(!ioctx);
737
738	spin_lock_irqsave(&ioctx->spinlock, flags);
739	previous = ioctx->state;
740	if (previous != SRPT_STATE_DONE)
741		ioctx->state = new;
742	spin_unlock_irqrestore(&ioctx->spinlock, flags);
743
744	return previous;
745}
746
747/**
748 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
749 *
750 * Returns true if and only if the previous command state was equal to 'old'.
751 */
752static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
753					enum srpt_command_state old,
754					enum srpt_command_state new)
755{
756	enum srpt_command_state previous;
757	unsigned long flags;
758
759	WARN_ON(!ioctx);
760	WARN_ON(old == SRPT_STATE_DONE);
761	WARN_ON(new == SRPT_STATE_NEW);
762
763	spin_lock_irqsave(&ioctx->spinlock, flags);
764	previous = ioctx->state;
765	if (previous == old)
766		ioctx->state = new;
767	spin_unlock_irqrestore(&ioctx->spinlock, flags);
768	return previous == old;
769}
770
771/**
772 * srpt_post_recv() - Post an IB receive request.
773 */
774static int srpt_post_recv(struct srpt_device *sdev,
775			  struct srpt_recv_ioctx *ioctx)
776{
777	struct ib_sge list;
778	struct ib_recv_wr wr, *bad_wr;
779
780	BUG_ON(!sdev);
781	wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
782
783	list.addr = ioctx->ioctx.dma;
784	list.length = srp_max_req_size;
785	list.lkey = sdev->pd->local_dma_lkey;
786
787	wr.next = NULL;
788	wr.sg_list = &list;
789	wr.num_sge = 1;
790
791	return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
792}
793
794/**
795 * srpt_post_send() - Post an IB send request.
796 *
797 * Returns zero upon success and a non-zero value upon failure.
798 */
799static int srpt_post_send(struct srpt_rdma_ch *ch,
800			  struct srpt_send_ioctx *ioctx, int len)
801{
802	struct ib_sge list;
803	struct ib_send_wr wr, *bad_wr;
804	struct srpt_device *sdev = ch->sport->sdev;
805	int ret;
806
807	atomic_inc(&ch->req_lim);
808
809	ret = -ENOMEM;
810	if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
811		pr_warn("IB send queue full (needed 1)\n");
812		goto out;
813	}
814
815	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
816				      DMA_TO_DEVICE);
817
818	list.addr = ioctx->ioctx.dma;
819	list.length = len;
820	list.lkey = sdev->pd->local_dma_lkey;
821
822	wr.next = NULL;
823	wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
824	wr.sg_list = &list;
825	wr.num_sge = 1;
826	wr.opcode = IB_WR_SEND;
827	wr.send_flags = IB_SEND_SIGNALED;
828
829	ret = ib_post_send(ch->qp, &wr, &bad_wr);
830
831out:
832	if (ret < 0) {
833		atomic_inc(&ch->sq_wr_avail);
834		atomic_dec(&ch->req_lim);
835	}
836	return ret;
837}
838
839/**
840 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
841 * @ioctx: Pointer to the I/O context associated with the request.
842 * @srp_cmd: Pointer to the SRP_CMD request data.
843 * @dir: Pointer to the variable to which the transfer direction will be
844 *   written.
845 * @data_len: Pointer to the variable to which the total data length of all
846 *   descriptors in the SRP_CMD request will be written.
847 *
848 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
849 *
850 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
851 * -ENOMEM when memory allocation fails and zero upon success.
852 */
853static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
854			     struct srp_cmd *srp_cmd,
855			     enum dma_data_direction *dir, u64 *data_len)
856{
857	struct srp_indirect_buf *idb;
858	struct srp_direct_buf *db;
859	unsigned add_cdb_offset;
860	int ret;
861
862	/*
863	 * The pointer computations below will only be compiled correctly
864	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
865	 * whether srp_cmd::add_data has been declared as a byte pointer.
866	 */
867	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
868		     && !__same_type(srp_cmd->add_data[0], (u8)0));
869
870	BUG_ON(!dir);
871	BUG_ON(!data_len);
872
873	ret = 0;
874	*data_len = 0;
875
876	/*
877	 * The lower four bits of the buffer format field contain the DATA-IN
878	 * buffer descriptor format, and the highest four bits contain the
879	 * DATA-OUT buffer descriptor format.
880	 */
881	*dir = DMA_NONE;
882	if (srp_cmd->buf_fmt & 0xf)
883		/* DATA-IN: transfer data from target to initiator (read). */
884		*dir = DMA_FROM_DEVICE;
885	else if (srp_cmd->buf_fmt >> 4)
886		/* DATA-OUT: transfer data from initiator to target (write). */
887		*dir = DMA_TO_DEVICE;
888
889	/*
890	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
891	 * CDB LENGTH' field are reserved and the size in bytes of this field
892	 * is four times the value specified in bits 3..7. Hence the "& ~3".
893	 */
894	add_cdb_offset = srp_cmd->add_cdb_len & ~3;
895	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
896	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
897		ioctx->n_rbuf = 1;
898		ioctx->rbufs = &ioctx->single_rbuf;
899
900		db = (struct srp_direct_buf *)(srp_cmd->add_data
901					       + add_cdb_offset);
902		memcpy(ioctx->rbufs, db, sizeof *db);
903		*data_len = be32_to_cpu(db->len);
904	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
905		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
906		idb = (struct srp_indirect_buf *)(srp_cmd->add_data
907						  + add_cdb_offset);
908
909		ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
910
911		if (ioctx->n_rbuf >
912		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
913			pr_err("received unsupported SRP_CMD request"
914			       " type (%u out + %u in != %u / %zu)\n",
915			       srp_cmd->data_out_desc_cnt,
916			       srp_cmd->data_in_desc_cnt,
917			       be32_to_cpu(idb->table_desc.len),
918			       sizeof(*db));
919			ioctx->n_rbuf = 0;
920			ret = -EINVAL;
921			goto out;
922		}
923
924		if (ioctx->n_rbuf == 1)
925			ioctx->rbufs = &ioctx->single_rbuf;
926		else {
927			ioctx->rbufs =
928				kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
929			if (!ioctx->rbufs) {
930				ioctx->n_rbuf = 0;
931				ret = -ENOMEM;
932				goto out;
933			}
934		}
935
936		db = idb->desc_list;
937		memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
938		*data_len = be32_to_cpu(idb->len);
939	}
940out:
941	return ret;
942}
943
944/**
945 * srpt_init_ch_qp() - Initialize queue pair attributes.
946 *
947 * Initialized the attributes of queue pair 'qp' by allowing local write,
948 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
949 */
950static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
951{
952	struct ib_qp_attr *attr;
953	int ret;
954
955	attr = kzalloc(sizeof *attr, GFP_KERNEL);
956	if (!attr)
957		return -ENOMEM;
958
959	attr->qp_state = IB_QPS_INIT;
960	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
961	    IB_ACCESS_REMOTE_WRITE;
962	attr->port_num = ch->sport->port;
963	attr->pkey_index = 0;
964
965	ret = ib_modify_qp(qp, attr,
966			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
967			   IB_QP_PKEY_INDEX);
968
969	kfree(attr);
970	return ret;
971}
972
973/**
974 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
975 * @ch: channel of the queue pair.
976 * @qp: queue pair to change the state of.
977 *
978 * Returns zero upon success and a negative value upon failure.
979 *
980 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
981 * If this structure ever becomes larger, it might be necessary to allocate
982 * it dynamically instead of on the stack.
983 */
984static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
985{
986	struct ib_qp_attr qp_attr;
987	int attr_mask;
988	int ret;
989
990	qp_attr.qp_state = IB_QPS_RTR;
991	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
992	if (ret)
993		goto out;
994
995	qp_attr.max_dest_rd_atomic = 4;
996
997	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
998
999out:
1000	return ret;
1001}
1002
1003/**
1004 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1005 * @ch: channel of the queue pair.
1006 * @qp: queue pair to change the state of.
1007 *
1008 * Returns zero upon success and a negative value upon failure.
1009 *
1010 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1011 * If this structure ever becomes larger, it might be necessary to allocate
1012 * it dynamically instead of on the stack.
1013 */
1014static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1015{
1016	struct ib_qp_attr qp_attr;
1017	int attr_mask;
1018	int ret;
1019
1020	qp_attr.qp_state = IB_QPS_RTS;
1021	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1022	if (ret)
1023		goto out;
1024
1025	qp_attr.max_rd_atomic = 4;
1026
1027	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1028
1029out:
1030	return ret;
1031}
1032
1033/**
1034 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1035 */
1036static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1037{
1038	struct ib_qp_attr qp_attr;
1039
1040	qp_attr.qp_state = IB_QPS_ERR;
1041	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1042}
1043
1044/**
1045 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1046 */
1047static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1048				    struct srpt_send_ioctx *ioctx)
1049{
1050	struct scatterlist *sg;
1051	enum dma_data_direction dir;
1052
1053	BUG_ON(!ch);
1054	BUG_ON(!ioctx);
1055	BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1056
1057	while (ioctx->n_rdma)
1058		kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1059
1060	kfree(ioctx->rdma_ius);
1061	ioctx->rdma_ius = NULL;
1062
1063	if (ioctx->mapped_sg_count) {
1064		sg = ioctx->sg;
1065		WARN_ON(!sg);
1066		dir = ioctx->cmd.data_direction;
1067		BUG_ON(dir == DMA_NONE);
1068		ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1069				opposite_dma_dir(dir));
1070		ioctx->mapped_sg_count = 0;
1071	}
1072}
1073
1074/**
1075 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1076 */
1077static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1078				 struct srpt_send_ioctx *ioctx)
1079{
1080	struct ib_device *dev = ch->sport->sdev->device;
1081	struct se_cmd *cmd;
1082	struct scatterlist *sg, *sg_orig;
1083	int sg_cnt;
1084	enum dma_data_direction dir;
1085	struct rdma_iu *riu;
1086	struct srp_direct_buf *db;
1087	dma_addr_t dma_addr;
1088	struct ib_sge *sge;
1089	u64 raddr;
1090	u32 rsize;
1091	u32 tsize;
1092	u32 dma_len;
1093	int count, nrdma;
1094	int i, j, k;
1095
1096	BUG_ON(!ch);
1097	BUG_ON(!ioctx);
1098	cmd = &ioctx->cmd;
1099	dir = cmd->data_direction;
1100	BUG_ON(dir == DMA_NONE);
1101
1102	ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1103	ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1104
1105	count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1106			      opposite_dma_dir(dir));
1107	if (unlikely(!count))
1108		return -EAGAIN;
1109
1110	ioctx->mapped_sg_count = count;
1111
1112	if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1113		nrdma = ioctx->n_rdma_ius;
1114	else {
1115		nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1116			+ ioctx->n_rbuf;
1117
1118		ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1119		if (!ioctx->rdma_ius)
1120			goto free_mem;
1121
1122		ioctx->n_rdma_ius = nrdma;
1123	}
1124
1125	db = ioctx->rbufs;
1126	tsize = cmd->data_length;
1127	dma_len = ib_sg_dma_len(dev, &sg[0]);
1128	riu = ioctx->rdma_ius;
1129
1130	/*
1131	 * For each remote desc - calculate the #ib_sge.
1132	 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133	 *      each remote desc rdma_iu is required a rdma wr;
1134	 * else
1135	 *      we need to allocate extra rdma_iu to carry extra #ib_sge in
1136	 *      another rdma wr
1137	 */
1138	for (i = 0, j = 0;
1139	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1140		rsize = be32_to_cpu(db->len);
1141		raddr = be64_to_cpu(db->va);
1142		riu->raddr = raddr;
1143		riu->rkey = be32_to_cpu(db->key);
1144		riu->sge_cnt = 0;
1145
1146		/* calculate how many sge required for this remote_buf */
1147		while (rsize > 0 && tsize > 0) {
1148
1149			if (rsize >= dma_len) {
1150				tsize -= dma_len;
1151				rsize -= dma_len;
1152				raddr += dma_len;
1153
1154				if (tsize > 0) {
1155					++j;
1156					if (j < count) {
1157						sg = sg_next(sg);
1158						dma_len = ib_sg_dma_len(
1159								dev, sg);
1160					}
1161				}
1162			} else {
1163				tsize -= rsize;
1164				dma_len -= rsize;
1165				rsize = 0;
1166			}
1167
1168			++riu->sge_cnt;
1169
1170			if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1171				++ioctx->n_rdma;
1172				riu->sge =
1173				    kmalloc(riu->sge_cnt * sizeof *riu->sge,
1174					    GFP_KERNEL);
1175				if (!riu->sge)
1176					goto free_mem;
1177
1178				++riu;
1179				riu->sge_cnt = 0;
1180				riu->raddr = raddr;
1181				riu->rkey = be32_to_cpu(db->key);
1182			}
1183		}
1184
1185		++ioctx->n_rdma;
1186		riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1187				   GFP_KERNEL);
1188		if (!riu->sge)
1189			goto free_mem;
1190	}
1191
1192	db = ioctx->rbufs;
1193	tsize = cmd->data_length;
1194	riu = ioctx->rdma_ius;
1195	sg = sg_orig;
1196	dma_len = ib_sg_dma_len(dev, &sg[0]);
1197	dma_addr = ib_sg_dma_address(dev, &sg[0]);
1198
1199	/* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1200	for (i = 0, j = 0;
1201	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1202		rsize = be32_to_cpu(db->len);
1203		sge = riu->sge;
1204		k = 0;
1205
1206		while (rsize > 0 && tsize > 0) {
1207			sge->addr = dma_addr;
1208			sge->lkey = ch->sport->sdev->pd->local_dma_lkey;
1209
1210			if (rsize >= dma_len) {
1211				sge->length =
1212					(tsize < dma_len) ? tsize : dma_len;
1213				tsize -= dma_len;
1214				rsize -= dma_len;
1215
1216				if (tsize > 0) {
1217					++j;
1218					if (j < count) {
1219						sg = sg_next(sg);
1220						dma_len = ib_sg_dma_len(
1221								dev, sg);
1222						dma_addr = ib_sg_dma_address(
1223								dev, sg);
1224					}
1225				}
1226			} else {
1227				sge->length = (tsize < rsize) ? tsize : rsize;
1228				tsize -= rsize;
1229				dma_len -= rsize;
1230				dma_addr += rsize;
1231				rsize = 0;
1232			}
1233
1234			++k;
1235			if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1236				++riu;
1237				sge = riu->sge;
1238				k = 0;
1239			} else if (rsize > 0 && tsize > 0)
1240				++sge;
1241		}
1242	}
1243
1244	return 0;
1245
1246free_mem:
1247	srpt_unmap_sg_to_ib_sge(ch, ioctx);
1248
1249	return -ENOMEM;
1250}
1251
1252/**
1253 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1254 */
1255static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1256{
1257	struct srpt_send_ioctx *ioctx;
1258	unsigned long flags;
1259
1260	BUG_ON(!ch);
1261
1262	ioctx = NULL;
1263	spin_lock_irqsave(&ch->spinlock, flags);
1264	if (!list_empty(&ch->free_list)) {
1265		ioctx = list_first_entry(&ch->free_list,
1266					 struct srpt_send_ioctx, free_list);
1267		list_del(&ioctx->free_list);
1268	}
1269	spin_unlock_irqrestore(&ch->spinlock, flags);
1270
1271	if (!ioctx)
1272		return ioctx;
1273
1274	BUG_ON(ioctx->ch != ch);
1275	spin_lock_init(&ioctx->spinlock);
1276	ioctx->state = SRPT_STATE_NEW;
1277	ioctx->n_rbuf = 0;
1278	ioctx->rbufs = NULL;
1279	ioctx->n_rdma = 0;
1280	ioctx->n_rdma_ius = 0;
1281	ioctx->rdma_ius = NULL;
1282	ioctx->mapped_sg_count = 0;
1283	init_completion(&ioctx->tx_done);
1284	ioctx->queue_status_only = false;
1285	/*
1286	 * transport_init_se_cmd() does not initialize all fields, so do it
1287	 * here.
1288	 */
1289	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1290	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1291
1292	return ioctx;
1293}
1294
1295/**
1296 * srpt_abort_cmd() - Abort a SCSI command.
1297 * @ioctx:   I/O context associated with the SCSI command.
1298 * @context: Preferred execution context.
1299 */
1300static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1301{
1302	enum srpt_command_state state;
1303	unsigned long flags;
1304
1305	BUG_ON(!ioctx);
1306
1307	/*
1308	 * If the command is in a state where the target core is waiting for
1309	 * the ib_srpt driver, change the state to the next state. Changing
1310	 * the state of the command from SRPT_STATE_NEED_DATA to
1311	 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1312	 * function a second time.
1313	 */
1314
1315	spin_lock_irqsave(&ioctx->spinlock, flags);
1316	state = ioctx->state;
1317	switch (state) {
1318	case SRPT_STATE_NEED_DATA:
1319		ioctx->state = SRPT_STATE_DATA_IN;
1320		break;
1321	case SRPT_STATE_DATA_IN:
1322	case SRPT_STATE_CMD_RSP_SENT:
1323	case SRPT_STATE_MGMT_RSP_SENT:
1324		ioctx->state = SRPT_STATE_DONE;
1325		break;
1326	default:
1327		break;
1328	}
1329	spin_unlock_irqrestore(&ioctx->spinlock, flags);
1330
1331	if (state == SRPT_STATE_DONE) {
1332		struct srpt_rdma_ch *ch = ioctx->ch;
1333
1334		BUG_ON(ch->sess == NULL);
1335
1336		target_put_sess_cmd(&ioctx->cmd);
1337		goto out;
1338	}
1339
1340	pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1341		 ioctx->cmd.tag);
1342
1343	switch (state) {
1344	case SRPT_STATE_NEW:
1345	case SRPT_STATE_DATA_IN:
1346	case SRPT_STATE_MGMT:
1347		/*
1348		 * Do nothing - defer abort processing until
1349		 * srpt_queue_response() is invoked.
1350		 */
1351		WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1352		break;
1353	case SRPT_STATE_NEED_DATA:
1354		/* DMA_TO_DEVICE (write) - RDMA read error. */
1355
1356		/* XXX(hch): this is a horrible layering violation.. */
1357		spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1358		ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1359		spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1360		break;
1361	case SRPT_STATE_CMD_RSP_SENT:
1362		/*
1363		 * SRP_RSP sending failed or the SRP_RSP send completion has
1364		 * not been received in time.
1365		 */
1366		srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1367		target_put_sess_cmd(&ioctx->cmd);
1368		break;
1369	case SRPT_STATE_MGMT_RSP_SENT:
1370		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1371		target_put_sess_cmd(&ioctx->cmd);
1372		break;
1373	default:
1374		WARN(1, "Unexpected command state (%d)", state);
1375		break;
1376	}
1377
1378out:
1379	return state;
1380}
1381
1382/**
1383 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1384 */
1385static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1386{
1387	struct srpt_send_ioctx *ioctx;
1388	enum srpt_command_state state;
1389	u32 index;
1390
1391	atomic_inc(&ch->sq_wr_avail);
1392
1393	index = idx_from_wr_id(wr_id);
1394	ioctx = ch->ioctx_ring[index];
1395	state = srpt_get_cmd_state(ioctx);
1396
1397	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1398		&& state != SRPT_STATE_MGMT_RSP_SENT
1399		&& state != SRPT_STATE_NEED_DATA
1400		&& state != SRPT_STATE_DONE);
1401
1402	/* If SRP_RSP sending failed, undo the ch->req_lim change. */
1403	if (state == SRPT_STATE_CMD_RSP_SENT
1404	    || state == SRPT_STATE_MGMT_RSP_SENT)
1405		atomic_dec(&ch->req_lim);
1406
1407	srpt_abort_cmd(ioctx);
1408}
1409
1410/**
1411 * srpt_handle_send_comp() - Process an IB send completion notification.
1412 */
1413static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1414				  struct srpt_send_ioctx *ioctx)
1415{
1416	enum srpt_command_state state;
1417
1418	atomic_inc(&ch->sq_wr_avail);
1419
1420	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1421
1422	if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1423		    && state != SRPT_STATE_MGMT_RSP_SENT
1424		    && state != SRPT_STATE_DONE))
1425		pr_debug("state = %d\n", state);
1426
1427	if (state != SRPT_STATE_DONE) {
1428		srpt_unmap_sg_to_ib_sge(ch, ioctx);
1429		transport_generic_free_cmd(&ioctx->cmd, 0);
1430	} else {
1431		pr_err("IB completion has been received too late for"
1432		       " wr_id = %u.\n", ioctx->ioctx.index);
1433	}
1434}
1435
1436/**
1437 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1438 *
1439 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1440 * the data that has been transferred via IB RDMA had to be postponed until the
1441 * check_stop_free() callback.  None of this is necessary anymore and needs to
1442 * be cleaned up.
1443 */
1444static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1445				  struct srpt_send_ioctx *ioctx,
1446				  enum srpt_opcode opcode)
1447{
1448	WARN_ON(ioctx->n_rdma <= 0);
1449	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1450
1451	if (opcode == SRPT_RDMA_READ_LAST) {
1452		if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1453						SRPT_STATE_DATA_IN))
1454			target_execute_cmd(&ioctx->cmd);
1455		else
1456			pr_err("%s[%d]: wrong state = %d\n", __func__,
1457			       __LINE__, srpt_get_cmd_state(ioctx));
1458	} else if (opcode == SRPT_RDMA_ABORT) {
1459		ioctx->rdma_aborted = true;
1460	} else {
1461		WARN(true, "unexpected opcode %d\n", opcode);
1462	}
1463}
1464
1465/**
1466 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1467 */
1468static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1469				      struct srpt_send_ioctx *ioctx,
1470				      enum srpt_opcode opcode)
1471{
1472	enum srpt_command_state state;
1473
1474	state = srpt_get_cmd_state(ioctx);
1475	switch (opcode) {
1476	case SRPT_RDMA_READ_LAST:
1477		if (ioctx->n_rdma <= 0) {
1478			pr_err("Received invalid RDMA read"
1479			       " error completion with idx %d\n",
1480			       ioctx->ioctx.index);
1481			break;
1482		}
1483		atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1484		if (state == SRPT_STATE_NEED_DATA)
1485			srpt_abort_cmd(ioctx);
1486		else
1487			pr_err("%s[%d]: wrong state = %d\n",
1488			       __func__, __LINE__, state);
1489		break;
1490	case SRPT_RDMA_WRITE_LAST:
1491		break;
1492	default:
1493		pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode);
1494		break;
1495	}
1496}
1497
1498/**
1499 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1500 * @ch: RDMA channel through which the request has been received.
1501 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1502 *   be built in the buffer ioctx->buf points at and hence this function will
1503 *   overwrite the request data.
1504 * @tag: tag of the request for which this response is being generated.
1505 * @status: value for the STATUS field of the SRP_RSP information unit.
1506 *
1507 * Returns the size in bytes of the SRP_RSP response.
1508 *
1509 * An SRP_RSP response contains a SCSI status or service response. See also
1510 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1511 * response. See also SPC-2 for more information about sense data.
1512 */
1513static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1514			      struct srpt_send_ioctx *ioctx, u64 tag,
1515			      int status)
1516{
1517	struct srp_rsp *srp_rsp;
1518	const u8 *sense_data;
1519	int sense_data_len, max_sense_len;
1520
1521	/*
1522	 * The lowest bit of all SAM-3 status codes is zero (see also
1523	 * paragraph 5.3 in SAM-3).
1524	 */
1525	WARN_ON(status & 1);
1526
1527	srp_rsp = ioctx->ioctx.buf;
1528	BUG_ON(!srp_rsp);
1529
1530	sense_data = ioctx->sense_data;
1531	sense_data_len = ioctx->cmd.scsi_sense_length;
1532	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1533
1534	memset(srp_rsp, 0, sizeof *srp_rsp);
1535	srp_rsp->opcode = SRP_RSP;
1536	srp_rsp->req_lim_delta =
1537		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1538	srp_rsp->tag = tag;
1539	srp_rsp->status = status;
1540
1541	if (sense_data_len) {
1542		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1543		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1544		if (sense_data_len > max_sense_len) {
1545			pr_warn("truncated sense data from %d to %d"
1546				" bytes\n", sense_data_len, max_sense_len);
1547			sense_data_len = max_sense_len;
1548		}
1549
1550		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1551		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1552		memcpy(srp_rsp + 1, sense_data, sense_data_len);
1553	}
1554
1555	return sizeof(*srp_rsp) + sense_data_len;
1556}
1557
1558/**
1559 * srpt_build_tskmgmt_rsp() - Build a task management response.
1560 * @ch:       RDMA channel through which the request has been received.
1561 * @ioctx:    I/O context in which the SRP_RSP response will be built.
1562 * @rsp_code: RSP_CODE that will be stored in the response.
1563 * @tag:      Tag of the request for which this response is being generated.
1564 *
1565 * Returns the size in bytes of the SRP_RSP response.
1566 *
1567 * An SRP_RSP response contains a SCSI status or service response. See also
1568 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1569 * response.
1570 */
1571static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1572				  struct srpt_send_ioctx *ioctx,
1573				  u8 rsp_code, u64 tag)
1574{
1575	struct srp_rsp *srp_rsp;
1576	int resp_data_len;
1577	int resp_len;
1578
1579	resp_data_len = 4;
1580	resp_len = sizeof(*srp_rsp) + resp_data_len;
1581
1582	srp_rsp = ioctx->ioctx.buf;
1583	BUG_ON(!srp_rsp);
1584	memset(srp_rsp, 0, sizeof *srp_rsp);
1585
1586	srp_rsp->opcode = SRP_RSP;
1587	srp_rsp->req_lim_delta =
1588		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1589	srp_rsp->tag = tag;
1590
1591	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1592	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1593	srp_rsp->data[3] = rsp_code;
1594
1595	return resp_len;
1596}
1597
1598#define NO_SUCH_LUN ((uint64_t)-1LL)
1599
1600/*
1601 * SCSI LUN addressing method. See also SAM-2 and the section about
1602 * eight byte LUNs.
1603 */
1604enum scsi_lun_addr_method {
1605	SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
1606	SCSI_LUN_ADDR_METHOD_FLAT         = 1,
1607	SCSI_LUN_ADDR_METHOD_LUN          = 2,
1608	SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1609};
1610
1611/*
1612 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1613 *
1614 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1615 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1616 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1617 */
1618static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1619{
1620	uint64_t res = NO_SUCH_LUN;
1621	int addressing_method;
1622
1623	if (unlikely(len < 2)) {
1624		pr_err("Illegal LUN length %d, expected 2 bytes or more\n",
1625		       len);
1626		goto out;
1627	}
1628
1629	switch (len) {
1630	case 8:
1631		if ((*((__be64 *)lun) &
1632		     cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1633			goto out_err;
1634		break;
1635	case 4:
1636		if (*((__be16 *)&lun[2]) != 0)
1637			goto out_err;
1638		break;
1639	case 6:
1640		if (*((__be32 *)&lun[2]) != 0)
1641			goto out_err;
1642		break;
1643	case 2:
1644		break;
1645	default:
1646		goto out_err;
1647	}
1648
1649	addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1650	switch (addressing_method) {
1651	case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1652	case SCSI_LUN_ADDR_METHOD_FLAT:
1653	case SCSI_LUN_ADDR_METHOD_LUN:
1654		res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1655		break;
1656
1657	case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1658	default:
1659		pr_err("Unimplemented LUN addressing method %u\n",
1660		       addressing_method);
1661		break;
1662	}
1663
1664out:
1665	return res;
1666
1667out_err:
1668	pr_err("Support for multi-level LUNs has not yet been implemented\n");
1669	goto out;
1670}
1671
1672static int srpt_check_stop_free(struct se_cmd *cmd)
1673{
1674	struct srpt_send_ioctx *ioctx = container_of(cmd,
1675				struct srpt_send_ioctx, cmd);
1676
1677	return target_put_sess_cmd(&ioctx->cmd);
1678}
1679
1680/**
1681 * srpt_handle_cmd() - Process SRP_CMD.
1682 */
1683static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1684			   struct srpt_recv_ioctx *recv_ioctx,
1685			   struct srpt_send_ioctx *send_ioctx)
1686{
1687	struct se_cmd *cmd;
1688	struct srp_cmd *srp_cmd;
1689	uint64_t unpacked_lun;
1690	u64 data_len;
1691	enum dma_data_direction dir;
1692	sense_reason_t ret;
1693	int rc;
1694
1695	BUG_ON(!send_ioctx);
1696
1697	srp_cmd = recv_ioctx->ioctx.buf;
1698	cmd = &send_ioctx->cmd;
1699	cmd->tag = srp_cmd->tag;
1700
1701	switch (srp_cmd->task_attr) {
1702	case SRP_CMD_SIMPLE_Q:
1703		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1704		break;
1705	case SRP_CMD_ORDERED_Q:
1706	default:
1707		cmd->sam_task_attr = TCM_ORDERED_TAG;
1708		break;
1709	case SRP_CMD_HEAD_OF_Q:
1710		cmd->sam_task_attr = TCM_HEAD_TAG;
1711		break;
1712	case SRP_CMD_ACA:
1713		cmd->sam_task_attr = TCM_ACA_TAG;
1714		break;
1715	}
1716
1717	if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1718		pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1719		       srp_cmd->tag);
1720		ret = TCM_INVALID_CDB_FIELD;
1721		goto send_sense;
1722	}
1723
1724	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1725				       sizeof(srp_cmd->lun));
1726	rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1727			&send_ioctx->sense_data[0], unpacked_lun, data_len,
1728			TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1729	if (rc != 0) {
1730		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1731		goto send_sense;
1732	}
1733	return 0;
1734
1735send_sense:
1736	transport_send_check_condition_and_sense(cmd, ret, 0);
1737	return -1;
1738}
1739
1740static int srp_tmr_to_tcm(int fn)
1741{
1742	switch (fn) {
1743	case SRP_TSK_ABORT_TASK:
1744		return TMR_ABORT_TASK;
1745	case SRP_TSK_ABORT_TASK_SET:
1746		return TMR_ABORT_TASK_SET;
1747	case SRP_TSK_CLEAR_TASK_SET:
1748		return TMR_CLEAR_TASK_SET;
1749	case SRP_TSK_LUN_RESET:
1750		return TMR_LUN_RESET;
1751	case SRP_TSK_CLEAR_ACA:
1752		return TMR_CLEAR_ACA;
1753	default:
1754		return -1;
1755	}
1756}
1757
1758/**
1759 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1760 *
1761 * Returns 0 if and only if the request will be processed by the target core.
1762 *
1763 * For more information about SRP_TSK_MGMT information units, see also section
1764 * 6.7 in the SRP r16a document.
1765 */
1766static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1767				 struct srpt_recv_ioctx *recv_ioctx,
1768				 struct srpt_send_ioctx *send_ioctx)
1769{
1770	struct srp_tsk_mgmt *srp_tsk;
1771	struct se_cmd *cmd;
1772	struct se_session *sess = ch->sess;
1773	uint64_t unpacked_lun;
1774	int tcm_tmr;
1775	int rc;
1776
1777	BUG_ON(!send_ioctx);
1778
1779	srp_tsk = recv_ioctx->ioctx.buf;
1780	cmd = &send_ioctx->cmd;
1781
1782	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1783		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1784		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1785
1786	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1787	send_ioctx->cmd.tag = srp_tsk->tag;
1788	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1789	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1790				       sizeof(srp_tsk->lun));
1791	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1792				srp_tsk, tcm_tmr, GFP_KERNEL, srp_tsk->task_tag,
1793				TARGET_SCF_ACK_KREF);
1794	if (rc != 0) {
1795		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1796		goto fail;
1797	}
1798	return;
1799fail:
1800	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1801}
1802
1803/**
1804 * srpt_handle_new_iu() - Process a newly received information unit.
1805 * @ch:    RDMA channel through which the information unit has been received.
1806 * @ioctx: SRPT I/O context associated with the information unit.
1807 */
1808static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1809			       struct srpt_recv_ioctx *recv_ioctx,
1810			       struct srpt_send_ioctx *send_ioctx)
1811{
1812	struct srp_cmd *srp_cmd;
1813	enum rdma_ch_state ch_state;
1814
1815	BUG_ON(!ch);
1816	BUG_ON(!recv_ioctx);
1817
1818	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1819				   recv_ioctx->ioctx.dma, srp_max_req_size,
1820				   DMA_FROM_DEVICE);
1821
1822	ch_state = srpt_get_ch_state(ch);
1823	if (unlikely(ch_state == CH_CONNECTING)) {
1824		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1825		goto out;
1826	}
1827
1828	if (unlikely(ch_state != CH_LIVE))
1829		goto out;
1830
1831	srp_cmd = recv_ioctx->ioctx.buf;
1832	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1833		if (!send_ioctx)
1834			send_ioctx = srpt_get_send_ioctx(ch);
1835		if (unlikely(!send_ioctx)) {
1836			list_add_tail(&recv_ioctx->wait_list,
1837				      &ch->cmd_wait_list);
1838			goto out;
1839		}
1840	}
1841
1842	switch (srp_cmd->opcode) {
1843	case SRP_CMD:
1844		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1845		break;
1846	case SRP_TSK_MGMT:
1847		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1848		break;
1849	case SRP_I_LOGOUT:
1850		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1851		break;
1852	case SRP_CRED_RSP:
1853		pr_debug("received SRP_CRED_RSP\n");
1854		break;
1855	case SRP_AER_RSP:
1856		pr_debug("received SRP_AER_RSP\n");
1857		break;
1858	case SRP_RSP:
1859		pr_err("Received SRP_RSP\n");
1860		break;
1861	default:
1862		pr_err("received IU with unknown opcode 0x%x\n",
1863		       srp_cmd->opcode);
1864		break;
1865	}
1866
1867	srpt_post_recv(ch->sport->sdev, recv_ioctx);
1868out:
1869	return;
1870}
1871
1872static void srpt_process_rcv_completion(struct ib_cq *cq,
1873					struct srpt_rdma_ch *ch,
1874					struct ib_wc *wc)
1875{
1876	struct srpt_device *sdev = ch->sport->sdev;
1877	struct srpt_recv_ioctx *ioctx;
1878	u32 index;
1879
1880	index = idx_from_wr_id(wc->wr_id);
1881	if (wc->status == IB_WC_SUCCESS) {
1882		int req_lim;
1883
1884		req_lim = atomic_dec_return(&ch->req_lim);
1885		if (unlikely(req_lim < 0))
1886			pr_err("req_lim = %d < 0\n", req_lim);
1887		ioctx = sdev->ioctx_ring[index];
1888		srpt_handle_new_iu(ch, ioctx, NULL);
1889	} else {
1890		pr_info("receiving failed for idx %u with status %d\n",
1891			index, wc->status);
1892	}
1893}
1894
1895/**
1896 * srpt_process_send_completion() - Process an IB send completion.
1897 *
1898 * Note: Although this has not yet been observed during tests, at least in
1899 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1900 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1901 * value in each response is set to one, and it is possible that this response
1902 * makes the initiator send a new request before the send completion for that
1903 * response has been processed. This could e.g. happen if the call to
1904 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1905 * if IB retransmission causes generation of the send completion to be
1906 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1907 * are queued on cmd_wait_list. The code below processes these delayed
1908 * requests one at a time.
1909 */
1910static void srpt_process_send_completion(struct ib_cq *cq,
1911					 struct srpt_rdma_ch *ch,
1912					 struct ib_wc *wc)
1913{
1914	struct srpt_send_ioctx *send_ioctx;
1915	uint32_t index;
1916	enum srpt_opcode opcode;
1917
1918	index = idx_from_wr_id(wc->wr_id);
1919	opcode = opcode_from_wr_id(wc->wr_id);
1920	send_ioctx = ch->ioctx_ring[index];
1921	if (wc->status == IB_WC_SUCCESS) {
1922		if (opcode == SRPT_SEND)
1923			srpt_handle_send_comp(ch, send_ioctx);
1924		else {
1925			WARN_ON(opcode != SRPT_RDMA_ABORT &&
1926				wc->opcode != IB_WC_RDMA_READ);
1927			srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1928		}
1929	} else {
1930		if (opcode == SRPT_SEND) {
1931			pr_info("sending response for idx %u failed"
1932				" with status %d\n", index, wc->status);
1933			srpt_handle_send_err_comp(ch, wc->wr_id);
1934		} else if (opcode != SRPT_RDMA_MID) {
1935			pr_info("RDMA t %d for idx %u failed with"
1936				" status %d\n", opcode, index, wc->status);
1937			srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
1938		}
1939	}
1940
1941	while (unlikely(opcode == SRPT_SEND
1942			&& !list_empty(&ch->cmd_wait_list)
1943			&& srpt_get_ch_state(ch) == CH_LIVE
1944			&& (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
1945		struct srpt_recv_ioctx *recv_ioctx;
1946
1947		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
1948					      struct srpt_recv_ioctx,
1949					      wait_list);
1950		list_del(&recv_ioctx->wait_list);
1951		srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
1952	}
1953}
1954
1955static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
1956{
1957	struct ib_wc *const wc = ch->wc;
1958	int i, n;
1959
1960	WARN_ON(cq != ch->cq);
1961
1962	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1963	while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
1964		for (i = 0; i < n; i++) {
1965			if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
1966				srpt_process_rcv_completion(cq, ch, &wc[i]);
1967			else
1968				srpt_process_send_completion(cq, ch, &wc[i]);
1969		}
1970	}
1971}
1972
1973/**
1974 * srpt_completion() - IB completion queue callback function.
1975 *
1976 * Notes:
1977 * - It is guaranteed that a completion handler will never be invoked
1978 *   concurrently on two different CPUs for the same completion queue. See also
1979 *   Documentation/infiniband/core_locking.txt and the implementation of
1980 *   handle_edge_irq() in kernel/irq/chip.c.
1981 * - When threaded IRQs are enabled, completion handlers are invoked in thread
1982 *   context instead of interrupt context.
1983 */
1984static void srpt_completion(struct ib_cq *cq, void *ctx)
1985{
1986	struct srpt_rdma_ch *ch = ctx;
1987
1988	wake_up_interruptible(&ch->wait_queue);
1989}
1990
1991static int srpt_compl_thread(void *arg)
1992{
1993	struct srpt_rdma_ch *ch;
1994
1995	/* Hibernation / freezing of the SRPT kernel thread is not supported. */
1996	current->flags |= PF_NOFREEZE;
1997
1998	ch = arg;
1999	BUG_ON(!ch);
2000	pr_info("Session %s: kernel thread %s (PID %d) started\n",
2001		ch->sess_name, ch->thread->comm, current->pid);
2002	while (!kthread_should_stop()) {
2003		wait_event_interruptible(ch->wait_queue,
2004			(srpt_process_completion(ch->cq, ch),
2005			 kthread_should_stop()));
2006	}
2007	pr_info("Session %s: kernel thread %s (PID %d) stopped\n",
2008		ch->sess_name, ch->thread->comm, current->pid);
2009	return 0;
2010}
2011
2012/**
2013 * srpt_create_ch_ib() - Create receive and send completion queues.
2014 */
2015static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2016{
2017	struct ib_qp_init_attr *qp_init;
2018	struct srpt_port *sport = ch->sport;
2019	struct srpt_device *sdev = sport->sdev;
2020	u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2021	struct ib_cq_init_attr cq_attr = {};
2022	int ret;
2023
2024	WARN_ON(ch->rq_size < 1);
2025
2026	ret = -ENOMEM;
2027	qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2028	if (!qp_init)
2029		goto out;
2030
2031retry:
2032	cq_attr.cqe = ch->rq_size + srp_sq_size;
2033	ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2034			      &cq_attr);
2035	if (IS_ERR(ch->cq)) {
2036		ret = PTR_ERR(ch->cq);
2037		pr_err("failed to create CQ cqe= %d ret= %d\n",
2038		       ch->rq_size + srp_sq_size, ret);
2039		goto out;
2040	}
2041
2042	qp_init->qp_context = (void *)ch;
2043	qp_init->event_handler
2044		= (void(*)(struct ib_event *, void*))srpt_qp_event;
2045	qp_init->send_cq = ch->cq;
2046	qp_init->recv_cq = ch->cq;
2047	qp_init->srq = sdev->srq;
2048	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2049	qp_init->qp_type = IB_QPT_RC;
2050	qp_init->cap.max_send_wr = srp_sq_size;
2051	qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2052
2053	ch->qp = ib_create_qp(sdev->pd, qp_init);
2054	if (IS_ERR(ch->qp)) {
2055		ret = PTR_ERR(ch->qp);
2056		if (ret == -ENOMEM) {
2057			srp_sq_size /= 2;
2058			if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
2059				ib_destroy_cq(ch->cq);
2060				goto retry;
2061			}
2062		}
2063		pr_err("failed to create_qp ret= %d\n", ret);
2064		goto err_destroy_cq;
2065	}
2066
2067	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2068
2069	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2070		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2071		 qp_init->cap.max_send_wr, ch->cm_id);
2072
2073	ret = srpt_init_ch_qp(ch, ch->qp);
2074	if (ret)
2075		goto err_destroy_qp;
2076
2077	init_waitqueue_head(&ch->wait_queue);
2078
2079	pr_debug("creating thread for session %s\n", ch->sess_name);
2080
2081	ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2082	if (IS_ERR(ch->thread)) {
2083		pr_err("failed to create kernel thread %ld\n",
2084		       PTR_ERR(ch->thread));
2085		ch->thread = NULL;
2086		goto err_destroy_qp;
2087	}
2088
2089out:
2090	kfree(qp_init);
2091	return ret;
2092
2093err_destroy_qp:
2094	ib_destroy_qp(ch->qp);
2095err_destroy_cq:
2096	ib_destroy_cq(ch->cq);
2097	goto out;
2098}
2099
2100static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2101{
2102	if (ch->thread)
2103		kthread_stop(ch->thread);
2104
2105	ib_destroy_qp(ch->qp);
2106	ib_destroy_cq(ch->cq);
2107}
2108
2109/**
2110 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2111 *
2112 * Reset the QP and make sure all resources associated with the channel will
2113 * be deallocated at an appropriate time.
2114 *
2115 * Note: The caller must hold ch->sport->sdev->spinlock.
2116 */
2117static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2118{
2119	enum rdma_ch_state prev_state;
2120	unsigned long flags;
2121
2122	spin_lock_irqsave(&ch->spinlock, flags);
2123	prev_state = ch->state;
2124	switch (prev_state) {
2125	case CH_CONNECTING:
2126	case CH_LIVE:
2127		ch->state = CH_DISCONNECTING;
2128		break;
2129	default:
2130		break;
2131	}
2132	spin_unlock_irqrestore(&ch->spinlock, flags);
2133
2134	switch (prev_state) {
2135	case CH_CONNECTING:
2136		ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2137			       NULL, 0);
2138		/* fall through */
2139	case CH_LIVE:
2140		if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2141			pr_err("sending CM DREQ failed.\n");
2142		break;
2143	case CH_DISCONNECTING:
2144		break;
2145	case CH_DRAINING:
2146	case CH_RELEASING:
2147		break;
2148	}
2149}
2150
2151/**
2152 * srpt_close_ch() - Close an RDMA channel.
2153 */
2154static void srpt_close_ch(struct srpt_rdma_ch *ch)
2155{
2156	struct srpt_device *sdev;
2157
2158	sdev = ch->sport->sdev;
2159	spin_lock_irq(&sdev->spinlock);
2160	__srpt_close_ch(ch);
2161	spin_unlock_irq(&sdev->spinlock);
2162}
2163
2164/**
2165 * srpt_shutdown_session() - Whether or not a session may be shut down.
2166 */
2167static int srpt_shutdown_session(struct se_session *se_sess)
2168{
2169	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2170	unsigned long flags;
2171
2172	spin_lock_irqsave(&ch->spinlock, flags);
2173	if (ch->in_shutdown) {
2174		spin_unlock_irqrestore(&ch->spinlock, flags);
2175		return true;
2176	}
2177
2178	ch->in_shutdown = true;
2179	target_sess_cmd_list_set_waiting(se_sess);
2180	spin_unlock_irqrestore(&ch->spinlock, flags);
2181
2182	return true;
2183}
2184
2185/**
2186 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2187 * @cm_id: Pointer to the CM ID of the channel to be drained.
2188 *
2189 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2190 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2191 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2192 * waits until all target sessions for the associated IB device have been
2193 * unregistered and target session registration involves a call to
2194 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2195 * this function has finished).
2196 */
2197static void srpt_drain_channel(struct ib_cm_id *cm_id)
2198{
2199	struct srpt_device *sdev;
2200	struct srpt_rdma_ch *ch;
2201	int ret;
2202	bool do_reset = false;
2203
2204	WARN_ON_ONCE(irqs_disabled());
2205
2206	sdev = cm_id->context;
2207	BUG_ON(!sdev);
2208	spin_lock_irq(&sdev->spinlock);
2209	list_for_each_entry(ch, &sdev->rch_list, list) {
2210		if (ch->cm_id == cm_id) {
2211			do_reset = srpt_test_and_set_ch_state(ch,
2212					CH_CONNECTING, CH_DRAINING) ||
2213				   srpt_test_and_set_ch_state(ch,
2214					CH_LIVE, CH_DRAINING) ||
2215				   srpt_test_and_set_ch_state(ch,
2216					CH_DISCONNECTING, CH_DRAINING);
2217			break;
2218		}
2219	}
2220	spin_unlock_irq(&sdev->spinlock);
2221
2222	if (do_reset) {
2223		if (ch->sess)
2224			srpt_shutdown_session(ch->sess);
2225
2226		ret = srpt_ch_qp_err(ch);
2227		if (ret < 0)
2228			pr_err("Setting queue pair in error state"
2229			       " failed: %d\n", ret);
2230	}
2231}
2232
2233/**
2234 * srpt_find_channel() - Look up an RDMA channel.
2235 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2236 *
2237 * Return NULL if no matching RDMA channel has been found.
2238 */
2239static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2240					      struct ib_cm_id *cm_id)
2241{
2242	struct srpt_rdma_ch *ch;
2243	bool found;
2244
2245	WARN_ON_ONCE(irqs_disabled());
2246	BUG_ON(!sdev);
2247
2248	found = false;
2249	spin_lock_irq(&sdev->spinlock);
2250	list_for_each_entry(ch, &sdev->rch_list, list) {
2251		if (ch->cm_id == cm_id) {
2252			found = true;
2253			break;
2254		}
2255	}
2256	spin_unlock_irq(&sdev->spinlock);
2257
2258	return found ? ch : NULL;
2259}
2260
2261/**
2262 * srpt_release_channel() - Release channel resources.
2263 *
2264 * Schedules the actual release because:
2265 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2266 *   trigger a deadlock.
2267 * - It is not safe to call TCM transport_* functions from interrupt context.
2268 */
2269static void srpt_release_channel(struct srpt_rdma_ch *ch)
2270{
2271	schedule_work(&ch->release_work);
2272}
2273
2274static void srpt_release_channel_work(struct work_struct *w)
2275{
2276	struct srpt_rdma_ch *ch;
2277	struct srpt_device *sdev;
2278	struct se_session *se_sess;
2279
2280	ch = container_of(w, struct srpt_rdma_ch, release_work);
2281	pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2282		 ch->release_done);
2283
2284	sdev = ch->sport->sdev;
2285	BUG_ON(!sdev);
2286
2287	se_sess = ch->sess;
2288	BUG_ON(!se_sess);
2289
2290	target_wait_for_sess_cmds(se_sess);
2291
2292	transport_deregister_session_configfs(se_sess);
2293	transport_deregister_session(se_sess);
2294	ch->sess = NULL;
2295
2296	ib_destroy_cm_id(ch->cm_id);
2297
2298	srpt_destroy_ch_ib(ch);
2299
2300	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2301			     ch->sport->sdev, ch->rq_size,
2302			     ch->rsp_size, DMA_TO_DEVICE);
2303
2304	spin_lock_irq(&sdev->spinlock);
2305	list_del(&ch->list);
2306	spin_unlock_irq(&sdev->spinlock);
2307
2308	if (ch->release_done)
2309		complete(ch->release_done);
2310
2311	wake_up(&sdev->ch_releaseQ);
2312
2313	kfree(ch);
2314}
2315
2316static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2317					       u8 i_port_id[16])
2318{
2319	struct srpt_node_acl *nacl;
2320
2321	list_for_each_entry(nacl, &sport->port_acl_list, list)
2322		if (memcmp(nacl->i_port_id, i_port_id,
2323			   sizeof(nacl->i_port_id)) == 0)
2324			return nacl;
2325
2326	return NULL;
2327}
2328
2329static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2330					     u8 i_port_id[16])
2331{
2332	struct srpt_node_acl *nacl;
2333
2334	spin_lock_irq(&sport->port_acl_lock);
2335	nacl = __srpt_lookup_acl(sport, i_port_id);
2336	spin_unlock_irq(&sport->port_acl_lock);
2337
2338	return nacl;
2339}
2340
2341/**
2342 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2343 *
2344 * Ownership of the cm_id is transferred to the target session if this
2345 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2346 */
2347static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2348			    struct ib_cm_req_event_param *param,
2349			    void *private_data)
2350{
2351	struct srpt_device *sdev = cm_id->context;
2352	struct srpt_port *sport = &sdev->port[param->port - 1];
2353	struct srp_login_req *req;
2354	struct srp_login_rsp *rsp;
2355	struct srp_login_rej *rej;
2356	struct ib_cm_rep_param *rep_param;
2357	struct srpt_rdma_ch *ch, *tmp_ch;
2358	struct srpt_node_acl *nacl;
2359	u32 it_iu_len;
2360	int i;
2361	int ret = 0;
2362
2363	WARN_ON_ONCE(irqs_disabled());
2364
2365	if (WARN_ON(!sdev || !private_data))
2366		return -EINVAL;
2367
2368	req = (struct srp_login_req *)private_data;
2369
2370	it_iu_len = be32_to_cpu(req->req_it_iu_len);
2371
2372	pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2373		" t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2374		" (guid=0x%llx:0x%llx)\n",
2375		be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2376		be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2377		be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2378		be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2379		it_iu_len,
2380		param->port,
2381		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2382		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2383
2384	rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2385	rej = kzalloc(sizeof *rej, GFP_KERNEL);
2386	rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2387
2388	if (!rsp || !rej || !rep_param) {
2389		ret = -ENOMEM;
2390		goto out;
2391	}
2392
2393	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2394		rej->reason = cpu_to_be32(
2395			      SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2396		ret = -EINVAL;
2397		pr_err("rejected SRP_LOGIN_REQ because its"
2398		       " length (%d bytes) is out of range (%d .. %d)\n",
2399		       it_iu_len, 64, srp_max_req_size);
2400		goto reject;
2401	}
2402
2403	if (!sport->enabled) {
2404		rej->reason = cpu_to_be32(
2405			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2406		ret = -EINVAL;
2407		pr_err("rejected SRP_LOGIN_REQ because the target port"
2408		       " has not yet been enabled\n");
2409		goto reject;
2410	}
2411
2412	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2413		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2414
2415		spin_lock_irq(&sdev->spinlock);
2416
2417		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2418			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2419			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
2420			    && param->port == ch->sport->port
2421			    && param->listen_id == ch->sport->sdev->cm_id
2422			    && ch->cm_id) {
2423				enum rdma_ch_state ch_state;
2424
2425				ch_state = srpt_get_ch_state(ch);
2426				if (ch_state != CH_CONNECTING
2427				    && ch_state != CH_LIVE)
2428					continue;
2429
2430				/* found an existing channel */
2431				pr_debug("Found existing channel %s"
2432					 " cm_id= %p state= %d\n",
2433					 ch->sess_name, ch->cm_id, ch_state);
2434
2435				__srpt_close_ch(ch);
2436
2437				rsp->rsp_flags =
2438					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2439			}
2440		}
2441
2442		spin_unlock_irq(&sdev->spinlock);
2443
2444	} else
2445		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2446
2447	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2448	    || *(__be64 *)(req->target_port_id + 8) !=
2449	       cpu_to_be64(srpt_service_guid)) {
2450		rej->reason = cpu_to_be32(
2451			      SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2452		ret = -ENOMEM;
2453		pr_err("rejected SRP_LOGIN_REQ because it"
2454		       " has an invalid target port identifier.\n");
2455		goto reject;
2456	}
2457
2458	ch = kzalloc(sizeof *ch, GFP_KERNEL);
2459	if (!ch) {
2460		rej->reason = cpu_to_be32(
2461			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2462		pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2463		ret = -ENOMEM;
2464		goto reject;
2465	}
2466
2467	INIT_WORK(&ch->release_work, srpt_release_channel_work);
2468	memcpy(ch->i_port_id, req->initiator_port_id, 16);
2469	memcpy(ch->t_port_id, req->target_port_id, 16);
2470	ch->sport = &sdev->port[param->port - 1];
2471	ch->cm_id = cm_id;
2472	/*
2473	 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2474	 * for the SRP protocol to the command queue size.
2475	 */
2476	ch->rq_size = SRPT_RQ_SIZE;
2477	spin_lock_init(&ch->spinlock);
2478	ch->state = CH_CONNECTING;
2479	INIT_LIST_HEAD(&ch->cmd_wait_list);
2480	ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2481
2482	ch->ioctx_ring = (struct srpt_send_ioctx **)
2483		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2484				      sizeof(*ch->ioctx_ring[0]),
2485				      ch->rsp_size, DMA_TO_DEVICE);
2486	if (!ch->ioctx_ring)
2487		goto free_ch;
2488
2489	INIT_LIST_HEAD(&ch->free_list);
2490	for (i = 0; i < ch->rq_size; i++) {
2491		ch->ioctx_ring[i]->ch = ch;
2492		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2493	}
2494
2495	ret = srpt_create_ch_ib(ch);
2496	if (ret) {
2497		rej->reason = cpu_to_be32(
2498			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2499		pr_err("rejected SRP_LOGIN_REQ because creating"
2500		       " a new RDMA channel failed.\n");
2501		goto free_ring;
2502	}
2503
2504	ret = srpt_ch_qp_rtr(ch, ch->qp);
2505	if (ret) {
2506		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2507		pr_err("rejected SRP_LOGIN_REQ because enabling"
2508		       " RTR failed (error code = %d)\n", ret);
2509		goto destroy_ib;
2510	}
2511	/*
2512	 * Use the initator port identifier as the session name.
2513	 */
2514	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2515			be64_to_cpu(*(__be64 *)ch->i_port_id),
2516			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2517
2518	pr_debug("registering session %s\n", ch->sess_name);
2519
2520	nacl = srpt_lookup_acl(sport, ch->i_port_id);
2521	if (!nacl) {
2522		pr_info("Rejected login because no ACL has been"
2523			" configured yet for initiator %s.\n", ch->sess_name);
2524		rej->reason = cpu_to_be32(
2525			      SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2526		goto destroy_ib;
2527	}
2528
2529	ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2530	if (IS_ERR(ch->sess)) {
2531		rej->reason = cpu_to_be32(
2532			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2533		pr_debug("Failed to create session\n");
2534		goto deregister_session;
2535	}
2536	ch->sess->se_node_acl = &nacl->nacl;
2537	transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2538
2539	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2540		 ch->sess_name, ch->cm_id);
2541
2542	/* create srp_login_response */
2543	rsp->opcode = SRP_LOGIN_RSP;
2544	rsp->tag = req->tag;
2545	rsp->max_it_iu_len = req->req_it_iu_len;
2546	rsp->max_ti_iu_len = req->req_it_iu_len;
2547	ch->max_ti_iu_len = it_iu_len;
2548	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2549				   | SRP_BUF_FORMAT_INDIRECT);
2550	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2551	atomic_set(&ch->req_lim, ch->rq_size);
2552	atomic_set(&ch->req_lim_delta, 0);
2553
2554	/* create cm reply */
2555	rep_param->qp_num = ch->qp->qp_num;
2556	rep_param->private_data = (void *)rsp;
2557	rep_param->private_data_len = sizeof *rsp;
2558	rep_param->rnr_retry_count = 7;
2559	rep_param->flow_control = 1;
2560	rep_param->failover_accepted = 0;
2561	rep_param->srq = 1;
2562	rep_param->responder_resources = 4;
2563	rep_param->initiator_depth = 4;
2564
2565	ret = ib_send_cm_rep(cm_id, rep_param);
2566	if (ret) {
2567		pr_err("sending SRP_LOGIN_REQ response failed"
2568		       " (error code = %d)\n", ret);
2569		goto release_channel;
2570	}
2571
2572	spin_lock_irq(&sdev->spinlock);
2573	list_add_tail(&ch->list, &sdev->rch_list);
2574	spin_unlock_irq(&sdev->spinlock);
2575
2576	goto out;
2577
2578release_channel:
2579	srpt_set_ch_state(ch, CH_RELEASING);
2580	transport_deregister_session_configfs(ch->sess);
2581
2582deregister_session:
2583	transport_deregister_session(ch->sess);
2584	ch->sess = NULL;
2585
2586destroy_ib:
2587	srpt_destroy_ch_ib(ch);
2588
2589free_ring:
2590	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2591			     ch->sport->sdev, ch->rq_size,
2592			     ch->rsp_size, DMA_TO_DEVICE);
2593free_ch:
2594	kfree(ch);
2595
2596reject:
2597	rej->opcode = SRP_LOGIN_REJ;
2598	rej->tag = req->tag;
2599	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2600				   | SRP_BUF_FORMAT_INDIRECT);
2601
2602	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2603			     (void *)rej, sizeof *rej);
2604
2605out:
2606	kfree(rep_param);
2607	kfree(rsp);
2608	kfree(rej);
2609
2610	return ret;
2611}
2612
2613static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2614{
2615	pr_info("Received IB REJ for cm_id %p.\n", cm_id);
2616	srpt_drain_channel(cm_id);
2617}
2618
2619/**
2620 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2621 *
2622 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2623 * and that the recipient may begin transmitting (RTU = ready to use).
2624 */
2625static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2626{
2627	struct srpt_rdma_ch *ch;
2628	int ret;
2629
2630	ch = srpt_find_channel(cm_id->context, cm_id);
2631	BUG_ON(!ch);
2632
2633	if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2634		struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2635
2636		ret = srpt_ch_qp_rts(ch, ch->qp);
2637
2638		list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2639					 wait_list) {
2640			list_del(&ioctx->wait_list);
2641			srpt_handle_new_iu(ch, ioctx, NULL);
2642		}
2643		if (ret)
2644			srpt_close_ch(ch);
2645	}
2646}
2647
2648static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2649{
2650	pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id);
2651	srpt_drain_channel(cm_id);
2652}
2653
2654static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2655{
2656	pr_info("Received IB REP error for cm_id %p.\n", cm_id);
2657	srpt_drain_channel(cm_id);
2658}
2659
2660/**
2661 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2662 */
2663static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2664{
2665	struct srpt_rdma_ch *ch;
2666	unsigned long flags;
2667	bool send_drep = false;
2668
2669	ch = srpt_find_channel(cm_id->context, cm_id);
2670	BUG_ON(!ch);
2671
2672	pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2673
2674	spin_lock_irqsave(&ch->spinlock, flags);
2675	switch (ch->state) {
2676	case CH_CONNECTING:
2677	case CH_LIVE:
2678		send_drep = true;
2679		ch->state = CH_DISCONNECTING;
2680		break;
2681	case CH_DISCONNECTING:
2682	case CH_DRAINING:
2683	case CH_RELEASING:
2684		WARN(true, "unexpected channel state %d\n", ch->state);
2685		break;
2686	}
2687	spin_unlock_irqrestore(&ch->spinlock, flags);
2688
2689	if (send_drep) {
2690		if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2691			pr_err("Sending IB DREP failed.\n");
2692		pr_info("Received DREQ and sent DREP for session %s.\n",
2693			ch->sess_name);
2694	}
2695}
2696
2697/**
2698 * srpt_cm_drep_recv() - Process reception of a DREP message.
2699 */
2700static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2701{
2702	pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id);
2703	srpt_drain_channel(cm_id);
2704}
2705
2706/**
2707 * srpt_cm_handler() - IB connection manager callback function.
2708 *
2709 * A non-zero return value will cause the caller destroy the CM ID.
2710 *
2711 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2712 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2713 * a non-zero value in any other case will trigger a race with the
2714 * ib_destroy_cm_id() call in srpt_release_channel().
2715 */
2716static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2717{
2718	int ret;
2719
2720	ret = 0;
2721	switch (event->event) {
2722	case IB_CM_REQ_RECEIVED:
2723		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2724				       event->private_data);
2725		break;
2726	case IB_CM_REJ_RECEIVED:
2727		srpt_cm_rej_recv(cm_id);
2728		break;
2729	case IB_CM_RTU_RECEIVED:
2730	case IB_CM_USER_ESTABLISHED:
2731		srpt_cm_rtu_recv(cm_id);
2732		break;
2733	case IB_CM_DREQ_RECEIVED:
2734		srpt_cm_dreq_recv(cm_id);
2735		break;
2736	case IB_CM_DREP_RECEIVED:
2737		srpt_cm_drep_recv(cm_id);
2738		break;
2739	case IB_CM_TIMEWAIT_EXIT:
2740		srpt_cm_timewait_exit(cm_id);
2741		break;
2742	case IB_CM_REP_ERROR:
2743		srpt_cm_rep_error(cm_id);
2744		break;
2745	case IB_CM_DREQ_ERROR:
2746		pr_info("Received IB DREQ ERROR event.\n");
2747		break;
2748	case IB_CM_MRA_RECEIVED:
2749		pr_info("Received IB MRA event\n");
2750		break;
2751	default:
2752		pr_err("received unrecognized IB CM event %d\n", event->event);
2753		break;
2754	}
2755
2756	return ret;
2757}
2758
2759/**
2760 * srpt_perform_rdmas() - Perform IB RDMA.
2761 *
2762 * Returns zero upon success or a negative number upon failure.
2763 */
2764static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2765			      struct srpt_send_ioctx *ioctx)
2766{
2767	struct ib_rdma_wr wr;
2768	struct ib_send_wr *bad_wr;
2769	struct rdma_iu *riu;
2770	int i;
2771	int ret;
2772	int sq_wr_avail;
2773	enum dma_data_direction dir;
2774	const int n_rdma = ioctx->n_rdma;
2775
2776	dir = ioctx->cmd.data_direction;
2777	if (dir == DMA_TO_DEVICE) {
2778		/* write */
2779		ret = -ENOMEM;
2780		sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2781		if (sq_wr_avail < 0) {
2782			pr_warn("IB send queue full (needed %d)\n",
2783				n_rdma);
2784			goto out;
2785		}
2786	}
2787
2788	ioctx->rdma_aborted = false;
2789	ret = 0;
2790	riu = ioctx->rdma_ius;
2791	memset(&wr, 0, sizeof wr);
2792
2793	for (i = 0; i < n_rdma; ++i, ++riu) {
2794		if (dir == DMA_FROM_DEVICE) {
2795			wr.wr.opcode = IB_WR_RDMA_WRITE;
2796			wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2797						SRPT_RDMA_WRITE_LAST :
2798						SRPT_RDMA_MID,
2799						ioctx->ioctx.index);
2800		} else {
2801			wr.wr.opcode = IB_WR_RDMA_READ;
2802			wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2803						SRPT_RDMA_READ_LAST :
2804						SRPT_RDMA_MID,
2805						ioctx->ioctx.index);
2806		}
2807		wr.wr.next = NULL;
2808		wr.remote_addr = riu->raddr;
2809		wr.rkey = riu->rkey;
2810		wr.wr.num_sge = riu->sge_cnt;
2811		wr.wr.sg_list = riu->sge;
2812
2813		/* only get completion event for the last rdma write */
2814		if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2815			wr.wr.send_flags = IB_SEND_SIGNALED;
2816
2817		ret = ib_post_send(ch->qp, &wr.wr, &bad_wr);
2818		if (ret)
2819			break;
2820	}
2821
2822	if (ret)
2823		pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2824				 __func__, __LINE__, ret, i, n_rdma);
2825	if (ret && i > 0) {
2826		wr.wr.num_sge = 0;
2827		wr.wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2828		wr.wr.send_flags = IB_SEND_SIGNALED;
2829		while (ch->state == CH_LIVE &&
2830			ib_post_send(ch->qp, &wr.wr, &bad_wr) != 0) {
2831			pr_info("Trying to abort failed RDMA transfer [%d]\n",
2832				ioctx->ioctx.index);
2833			msleep(1000);
2834		}
2835		while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2836			pr_info("Waiting until RDMA abort finished [%d]\n",
2837				ioctx->ioctx.index);
2838			msleep(1000);
2839		}
2840	}
2841out:
2842	if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2843		atomic_add(n_rdma, &ch->sq_wr_avail);
2844	return ret;
2845}
2846
2847/**
2848 * srpt_xfer_data() - Start data transfer from initiator to target.
2849 */
2850static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2851			  struct srpt_send_ioctx *ioctx)
2852{
2853	int ret;
2854
2855	ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2856	if (ret) {
2857		pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret);
2858		goto out;
2859	}
2860
2861	ret = srpt_perform_rdmas(ch, ioctx);
2862	if (ret) {
2863		if (ret == -EAGAIN || ret == -ENOMEM)
2864			pr_info("%s[%d] queue full -- ret=%d\n",
2865				__func__, __LINE__, ret);
2866		else
2867			pr_err("%s[%d] fatal error -- ret=%d\n",
2868			       __func__, __LINE__, ret);
2869		goto out_unmap;
2870	}
2871
2872out:
2873	return ret;
2874out_unmap:
2875	srpt_unmap_sg_to_ib_sge(ch, ioctx);
2876	goto out;
2877}
2878
2879static int srpt_write_pending_status(struct se_cmd *se_cmd)
2880{
2881	struct srpt_send_ioctx *ioctx;
2882
2883	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2884	return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2885}
2886
2887/*
2888 * srpt_write_pending() - Start data transfer from initiator to target (write).
2889 */
2890static int srpt_write_pending(struct se_cmd *se_cmd)
2891{
2892	struct srpt_rdma_ch *ch;
2893	struct srpt_send_ioctx *ioctx;
2894	enum srpt_command_state new_state;
2895	enum rdma_ch_state ch_state;
2896	int ret;
2897
2898	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2899
2900	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2901	WARN_ON(new_state == SRPT_STATE_DONE);
2902
2903	ch = ioctx->ch;
2904	BUG_ON(!ch);
2905
2906	ch_state = srpt_get_ch_state(ch);
2907	switch (ch_state) {
2908	case CH_CONNECTING:
2909		WARN(true, "unexpected channel state %d\n", ch_state);
2910		ret = -EINVAL;
2911		goto out;
2912	case CH_LIVE:
2913		break;
2914	case CH_DISCONNECTING:
2915	case CH_DRAINING:
2916	case CH_RELEASING:
2917		pr_debug("cmd with tag %lld: channel disconnecting\n",
2918			 ioctx->cmd.tag);
2919		srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2920		ret = -EINVAL;
2921		goto out;
2922	}
2923	ret = srpt_xfer_data(ch, ioctx);
2924
2925out:
2926	return ret;
2927}
2928
2929static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2930{
2931	switch (tcm_mgmt_status) {
2932	case TMR_FUNCTION_COMPLETE:
2933		return SRP_TSK_MGMT_SUCCESS;
2934	case TMR_FUNCTION_REJECTED:
2935		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2936	}
2937	return SRP_TSK_MGMT_FAILED;
2938}
2939
2940/**
2941 * srpt_queue_response() - Transmits the response to a SCSI command.
2942 *
2943 * Callback function called by the TCM core. Must not block since it can be
2944 * invoked on the context of the IB completion handler.
2945 */
2946static void srpt_queue_response(struct se_cmd *cmd)
2947{
2948	struct srpt_rdma_ch *ch;
2949	struct srpt_send_ioctx *ioctx;
2950	enum srpt_command_state state;
2951	unsigned long flags;
2952	int ret;
2953	enum dma_data_direction dir;
2954	int resp_len;
2955	u8 srp_tm_status;
2956
2957	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2958	ch = ioctx->ch;
2959	BUG_ON(!ch);
2960
2961	spin_lock_irqsave(&ioctx->spinlock, flags);
2962	state = ioctx->state;
2963	switch (state) {
2964	case SRPT_STATE_NEW:
2965	case SRPT_STATE_DATA_IN:
2966		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2967		break;
2968	case SRPT_STATE_MGMT:
2969		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2970		break;
2971	default:
2972		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2973			ch, ioctx->ioctx.index, ioctx->state);
2974		break;
2975	}
2976	spin_unlock_irqrestore(&ioctx->spinlock, flags);
2977
2978	if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
2979		     || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
2980		atomic_inc(&ch->req_lim_delta);
2981		srpt_abort_cmd(ioctx);
2982		return;
2983	}
2984
2985	dir = ioctx->cmd.data_direction;
2986
2987	/* For read commands, transfer the data to the initiator. */
2988	if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
2989	    !ioctx->queue_status_only) {
2990		ret = srpt_xfer_data(ch, ioctx);
2991		if (ret) {
2992			pr_err("xfer_data failed for tag %llu\n",
2993			       ioctx->cmd.tag);
2994			return;
2995		}
2996	}
2997
2998	if (state != SRPT_STATE_MGMT)
2999		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
3000					      cmd->scsi_status);
3001	else {
3002		srp_tm_status
3003			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3004		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3005						 ioctx->cmd.tag);
3006	}
3007	ret = srpt_post_send(ch, ioctx, resp_len);
3008	if (ret) {
3009		pr_err("sending cmd response failed for tag %llu\n",
3010		       ioctx->cmd.tag);
3011		srpt_unmap_sg_to_ib_sge(ch, ioctx);
3012		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3013		target_put_sess_cmd(&ioctx->cmd);
3014	}
3015}
3016
3017static int srpt_queue_data_in(struct se_cmd *cmd)
3018{
3019	srpt_queue_response(cmd);
3020	return 0;
3021}
3022
3023static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3024{
3025	srpt_queue_response(cmd);
3026}
3027
3028static void srpt_aborted_task(struct se_cmd *cmd)
3029{
3030	struct srpt_send_ioctx *ioctx = container_of(cmd,
3031				struct srpt_send_ioctx, cmd);
3032
3033	srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3034}
3035
3036static int srpt_queue_status(struct se_cmd *cmd)
3037{
3038	struct srpt_send_ioctx *ioctx;
3039
3040	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3041	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3042	if (cmd->se_cmd_flags &
3043	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3044		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3045	ioctx->queue_status_only = true;
3046	srpt_queue_response(cmd);
3047	return 0;
3048}
3049
3050static void srpt_refresh_port_work(struct work_struct *work)
3051{
3052	struct srpt_port *sport = container_of(work, struct srpt_port, work);
3053
3054	srpt_refresh_port(sport);
3055}
3056
3057static int srpt_ch_list_empty(struct srpt_device *sdev)
3058{
3059	int res;
3060
3061	spin_lock_irq(&sdev->spinlock);
3062	res = list_empty(&sdev->rch_list);
3063	spin_unlock_irq(&sdev->spinlock);
3064
3065	return res;
3066}
3067
3068/**
3069 * srpt_release_sdev() - Free the channel resources associated with a target.
3070 */
3071static int srpt_release_sdev(struct srpt_device *sdev)
3072{
3073	struct srpt_rdma_ch *ch, *tmp_ch;
3074	int res;
3075
3076	WARN_ON_ONCE(irqs_disabled());
3077
3078	BUG_ON(!sdev);
3079
3080	spin_lock_irq(&sdev->spinlock);
3081	list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3082		__srpt_close_ch(ch);
3083	spin_unlock_irq(&sdev->spinlock);
3084
3085	res = wait_event_interruptible(sdev->ch_releaseQ,
3086				       srpt_ch_list_empty(sdev));
3087	if (res)
3088		pr_err("%s: interrupted.\n", __func__);
3089
3090	return 0;
3091}
3092
3093static struct srpt_port *__srpt_lookup_port(const char *name)
3094{
3095	struct ib_device *dev;
3096	struct srpt_device *sdev;
3097	struct srpt_port *sport;
3098	int i;
3099
3100	list_for_each_entry(sdev, &srpt_dev_list, list) {
3101		dev = sdev->device;
3102		if (!dev)
3103			continue;
3104
3105		for (i = 0; i < dev->phys_port_cnt; i++) {
3106			sport = &sdev->port[i];
3107
3108			if (!strcmp(sport->port_guid, name))
3109				return sport;
3110		}
3111	}
3112
3113	return NULL;
3114}
3115
3116static struct srpt_port *srpt_lookup_port(const char *name)
3117{
3118	struct srpt_port *sport;
3119
3120	spin_lock(&srpt_dev_lock);
3121	sport = __srpt_lookup_port(name);
3122	spin_unlock(&srpt_dev_lock);
3123
3124	return sport;
3125}
3126
3127/**
3128 * srpt_add_one() - Infiniband device addition callback function.
3129 */
3130static void srpt_add_one(struct ib_device *device)
3131{
3132	struct srpt_device *sdev;
3133	struct srpt_port *sport;
3134	struct ib_srq_init_attr srq_attr;
3135	int i;
3136
3137	pr_debug("device = %p, device->dma_ops = %p\n", device,
3138		 device->dma_ops);
3139
3140	sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3141	if (!sdev)
3142		goto err;
3143
3144	sdev->device = device;
3145	INIT_LIST_HEAD(&sdev->rch_list);
3146	init_waitqueue_head(&sdev->ch_releaseQ);
3147	spin_lock_init(&sdev->spinlock);
3148
3149	if (ib_query_device(device, &sdev->dev_attr))
3150		goto free_dev;
3151
3152	sdev->pd = ib_alloc_pd(device);
3153	if (IS_ERR(sdev->pd))
3154		goto free_dev;
3155
3156	sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3157
3158	srq_attr.event_handler = srpt_srq_event;
3159	srq_attr.srq_context = (void *)sdev;
3160	srq_attr.attr.max_wr = sdev->srq_size;
3161	srq_attr.attr.max_sge = 1;
3162	srq_attr.attr.srq_limit = 0;
3163	srq_attr.srq_type = IB_SRQT_BASIC;
3164
3165	sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3166	if (IS_ERR(sdev->srq))
3167		goto err_pd;
3168
3169	pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3170		 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3171		 device->name);
3172
3173	if (!srpt_service_guid)
3174		srpt_service_guid = be64_to_cpu(device->node_guid);
3175
3176	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3177	if (IS_ERR(sdev->cm_id))
3178		goto err_srq;
3179
3180	/* print out target login information */
3181	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3182		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3183		 srpt_service_guid, srpt_service_guid);
3184
3185	/*
3186	 * We do not have a consistent service_id (ie. also id_ext of target_id)
3187	 * to identify this target. We currently use the guid of the first HCA
3188	 * in the system as service_id; therefore, the target_id will change
3189	 * if this HCA is gone bad and replaced by different HCA
3190	 */
3191	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
3192		goto err_cm;
3193
3194	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3195			      srpt_event_handler);
3196	if (ib_register_event_handler(&sdev->event_handler))
3197		goto err_cm;
3198
3199	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3200		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3201				      sizeof(*sdev->ioctx_ring[0]),
3202				      srp_max_req_size, DMA_FROM_DEVICE);
3203	if (!sdev->ioctx_ring)
3204		goto err_event;
3205
3206	for (i = 0; i < sdev->srq_size; ++i)
3207		srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3208
3209	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3210
3211	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3212		sport = &sdev->port[i - 1];
3213		sport->sdev = sdev;
3214		sport->port = i;
3215		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3216		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3217		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3218		INIT_WORK(&sport->work, srpt_refresh_port_work);
3219		INIT_LIST_HEAD(&sport->port_acl_list);
3220		spin_lock_init(&sport->port_acl_lock);
3221
3222		if (srpt_refresh_port(sport)) {
3223			pr_err("MAD registration failed for %s-%d.\n",
3224			       srpt_sdev_name(sdev), i);
3225			goto err_ring;
3226		}
3227		snprintf(sport->port_guid, sizeof(sport->port_guid),
3228			"0x%016llx%016llx",
3229			be64_to_cpu(sport->gid.global.subnet_prefix),
3230			be64_to_cpu(sport->gid.global.interface_id));
3231	}
3232
3233	spin_lock(&srpt_dev_lock);
3234	list_add_tail(&sdev->list, &srpt_dev_list);
3235	spin_unlock(&srpt_dev_lock);
3236
3237out:
3238	ib_set_client_data(device, &srpt_client, sdev);
3239	pr_debug("added %s.\n", device->name);
3240	return;
3241
3242err_ring:
3243	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3244			     sdev->srq_size, srp_max_req_size,
3245			     DMA_FROM_DEVICE);
3246err_event:
3247	ib_unregister_event_handler(&sdev->event_handler);
3248err_cm:
3249	ib_destroy_cm_id(sdev->cm_id);
3250err_srq:
3251	ib_destroy_srq(sdev->srq);
3252err_pd:
3253	ib_dealloc_pd(sdev->pd);
3254free_dev:
3255	kfree(sdev);
3256err:
3257	sdev = NULL;
3258	pr_info("%s(%s) failed.\n", __func__, device->name);
3259	goto out;
3260}
3261
3262/**
3263 * srpt_remove_one() - InfiniBand device removal callback function.
3264 */
3265static void srpt_remove_one(struct ib_device *device, void *client_data)
3266{
3267	struct srpt_device *sdev = client_data;
3268	int i;
3269
3270	if (!sdev) {
3271		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3272		return;
3273	}
3274
3275	srpt_unregister_mad_agent(sdev);
3276
3277	ib_unregister_event_handler(&sdev->event_handler);
3278
3279	/* Cancel any work queued by the just unregistered IB event handler. */
3280	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3281		cancel_work_sync(&sdev->port[i].work);
3282
3283	ib_destroy_cm_id(sdev->cm_id);
3284
3285	/*
3286	 * Unregistering a target must happen after destroying sdev->cm_id
3287	 * such that no new SRP_LOGIN_REQ information units can arrive while
3288	 * destroying the target.
3289	 */
3290	spin_lock(&srpt_dev_lock);
3291	list_del(&sdev->list);
3292	spin_unlock(&srpt_dev_lock);
3293	srpt_release_sdev(sdev);
3294
3295	ib_destroy_srq(sdev->srq);
3296	ib_dealloc_pd(sdev->pd);
3297
3298	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3299			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3300	sdev->ioctx_ring = NULL;
3301	kfree(sdev);
3302}
3303
3304static struct ib_client srpt_client = {
3305	.name = DRV_NAME,
3306	.add = srpt_add_one,
3307	.remove = srpt_remove_one
3308};
3309
3310static int srpt_check_true(struct se_portal_group *se_tpg)
3311{
3312	return 1;
3313}
3314
3315static int srpt_check_false(struct se_portal_group *se_tpg)
3316{
3317	return 0;
3318}
3319
3320static char *srpt_get_fabric_name(void)
3321{
3322	return "srpt";
3323}
3324
3325static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3326{
3327	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3328
3329	return sport->port_guid;
3330}
3331
3332static u16 srpt_get_tag(struct se_portal_group *tpg)
3333{
3334	return 1;
3335}
3336
3337static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3338{
3339	return 1;
3340}
3341
3342static void srpt_release_cmd(struct se_cmd *se_cmd)
3343{
3344	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3345				struct srpt_send_ioctx, cmd);
3346	struct srpt_rdma_ch *ch = ioctx->ch;
3347	unsigned long flags;
3348
3349	WARN_ON(ioctx->state != SRPT_STATE_DONE);
3350	WARN_ON(ioctx->mapped_sg_count != 0);
3351
3352	if (ioctx->n_rbuf > 1) {
3353		kfree(ioctx->rbufs);
3354		ioctx->rbufs = NULL;
3355		ioctx->n_rbuf = 0;
3356	}
3357
3358	spin_lock_irqsave(&ch->spinlock, flags);
3359	list_add(&ioctx->free_list, &ch->free_list);
3360	spin_unlock_irqrestore(&ch->spinlock, flags);
3361}
3362
3363/**
3364 * srpt_close_session() - Forcibly close a session.
3365 *
3366 * Callback function invoked by the TCM core to clean up sessions associated
3367 * with a node ACL when the user invokes
3368 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3369 */
3370static void srpt_close_session(struct se_session *se_sess)
3371{
3372	DECLARE_COMPLETION_ONSTACK(release_done);
3373	struct srpt_rdma_ch *ch;
3374	struct srpt_device *sdev;
3375	unsigned long res;
3376
3377	ch = se_sess->fabric_sess_ptr;
3378	WARN_ON(ch->sess != se_sess);
3379
3380	pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3381
3382	sdev = ch->sport->sdev;
3383	spin_lock_irq(&sdev->spinlock);
3384	BUG_ON(ch->release_done);
3385	ch->release_done = &release_done;
3386	__srpt_close_ch(ch);
3387	spin_unlock_irq(&sdev->spinlock);
3388
3389	res = wait_for_completion_timeout(&release_done, 60 * HZ);
3390	WARN_ON(res == 0);
3391}
3392
3393/**
3394 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3395 *
3396 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3397 * This object represents an arbitrary integer used to uniquely identify a
3398 * particular attached remote initiator port to a particular SCSI target port
3399 * within a particular SCSI target device within a particular SCSI instance.
3400 */
3401static u32 srpt_sess_get_index(struct se_session *se_sess)
3402{
3403	return 0;
3404}
3405
3406static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3407{
3408}
3409
3410/* Note: only used from inside debug printk's by the TCM core. */
3411static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3412{
3413	struct srpt_send_ioctx *ioctx;
3414
3415	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3416	return srpt_get_cmd_state(ioctx);
3417}
3418
3419/**
3420 * srpt_parse_i_port_id() - Parse an initiator port ID.
3421 * @name: ASCII representation of a 128-bit initiator port ID.
3422 * @i_port_id: Binary 128-bit port ID.
3423 */
3424static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3425{
3426	const char *p;
3427	unsigned len, count, leading_zero_bytes;
3428	int ret, rc;
3429
3430	p = name;
3431	if (strncasecmp(p, "0x", 2) == 0)
3432		p += 2;
3433	ret = -EINVAL;
3434	len = strlen(p);
3435	if (len % 2)
3436		goto out;
3437	count = min(len / 2, 16U);
3438	leading_zero_bytes = 16 - count;
3439	memset(i_port_id, 0, leading_zero_bytes);
3440	rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3441	if (rc < 0)
3442		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3443	ret = 0;
3444out:
3445	return ret;
3446}
3447
3448/*
3449 * configfs callback function invoked for
3450 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3451 */
3452static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3453{
3454	struct srpt_port *sport =
3455		container_of(se_nacl->se_tpg, struct srpt_port, port_tpg_1);
3456	struct srpt_node_acl *nacl =
3457		container_of(se_nacl, struct srpt_node_acl, nacl);
3458	u8 i_port_id[16];
3459
3460	if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3461		pr_err("invalid initiator port ID %s\n", name);
3462		return -EINVAL;
3463	}
3464
3465	memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3466	nacl->sport = sport;
3467
3468	spin_lock_irq(&sport->port_acl_lock);
3469	list_add_tail(&nacl->list, &sport->port_acl_list);
3470	spin_unlock_irq(&sport->port_acl_lock);
3471
3472	return 0;
3473}
3474
3475/*
3476 * configfs callback function invoked for
3477 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3478 */
3479static void srpt_cleanup_nodeacl(struct se_node_acl *se_nacl)
3480{
3481	struct srpt_node_acl *nacl =
3482		container_of(se_nacl, struct srpt_node_acl, nacl);
3483	struct srpt_port *sport = nacl->sport;
3484
3485	spin_lock_irq(&sport->port_acl_lock);
3486	list_del(&nacl->list);
3487	spin_unlock_irq(&sport->port_acl_lock);
3488}
3489
3490static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3491		char *page)
3492{
3493	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3494	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3495
3496	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3497}
3498
3499static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3500		const char *page, size_t count)
3501{
3502	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3503	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3504	unsigned long val;
3505	int ret;
3506
3507	ret = kstrtoul(page, 0, &val);
3508	if (ret < 0) {
3509		pr_err("kstrtoul() failed with ret: %d\n", ret);
3510		return -EINVAL;
3511	}
3512	if (val > MAX_SRPT_RDMA_SIZE) {
3513		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3514			MAX_SRPT_RDMA_SIZE);
3515		return -EINVAL;
3516	}
3517	if (val < DEFAULT_MAX_RDMA_SIZE) {
3518		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3519			val, DEFAULT_MAX_RDMA_SIZE);
3520		return -EINVAL;
3521	}
3522	sport->port_attrib.srp_max_rdma_size = val;
3523
3524	return count;
3525}
3526
3527static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3528		char *page)
3529{
3530	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3531	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3532
3533	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3534}
3535
3536static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3537		const char *page, size_t count)
3538{
3539	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3540	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3541	unsigned long val;
3542	int ret;
3543
3544	ret = kstrtoul(page, 0, &val);
3545	if (ret < 0) {
3546		pr_err("kstrtoul() failed with ret: %d\n", ret);
3547		return -EINVAL;
3548	}
3549	if (val > MAX_SRPT_RSP_SIZE) {
3550		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3551			MAX_SRPT_RSP_SIZE);
3552		return -EINVAL;
3553	}
3554	if (val < MIN_MAX_RSP_SIZE) {
3555		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3556			MIN_MAX_RSP_SIZE);
3557		return -EINVAL;
3558	}
3559	sport->port_attrib.srp_max_rsp_size = val;
3560
3561	return count;
3562}
3563
3564static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3565		char *page)
3566{
3567	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3568	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3569
3570	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3571}
3572
3573static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3574		const char *page, size_t count)
3575{
3576	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3577	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3578	unsigned long val;
3579	int ret;
3580
3581	ret = kstrtoul(page, 0, &val);
3582	if (ret < 0) {
3583		pr_err("kstrtoul() failed with ret: %d\n", ret);
3584		return -EINVAL;
3585	}
3586	if (val > MAX_SRPT_SRQ_SIZE) {
3587		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3588			MAX_SRPT_SRQ_SIZE);
3589		return -EINVAL;
3590	}
3591	if (val < MIN_SRPT_SRQ_SIZE) {
3592		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3593			MIN_SRPT_SRQ_SIZE);
3594		return -EINVAL;
3595	}
3596	sport->port_attrib.srp_sq_size = val;
3597
3598	return count;
3599}
3600
3601CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
3602CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
3603CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3604
3605static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3606	&srpt_tpg_attrib_attr_srp_max_rdma_size,
3607	&srpt_tpg_attrib_attr_srp_max_rsp_size,
3608	&srpt_tpg_attrib_attr_srp_sq_size,
3609	NULL,
3610};
3611
3612static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3613{
3614	struct se_portal_group *se_tpg = to_tpg(item);
3615	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3616
3617	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3618}
3619
3620static ssize_t srpt_tpg_enable_store(struct config_item *item,
3621		const char *page, size_t count)
3622{
3623	struct se_portal_group *se_tpg = to_tpg(item);
3624	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3625	unsigned long tmp;
3626        int ret;
3627
3628	ret = kstrtoul(page, 0, &tmp);
3629	if (ret < 0) {
3630		pr_err("Unable to extract srpt_tpg_store_enable\n");
3631		return -EINVAL;
3632	}
3633
3634	if ((tmp != 0) && (tmp != 1)) {
3635		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3636		return -EINVAL;
3637	}
3638	if (tmp == 1)
3639		sport->enabled = true;
3640	else
3641		sport->enabled = false;
3642
3643	return count;
3644}
3645
3646CONFIGFS_ATTR(srpt_tpg_, enable);
3647
3648static struct configfs_attribute *srpt_tpg_attrs[] = {
3649	&srpt_tpg_attr_enable,
3650	NULL,
3651};
3652
3653/**
3654 * configfs callback invoked for
3655 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3656 */
3657static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3658					     struct config_group *group,
3659					     const char *name)
3660{
3661	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3662	int res;
3663
3664	/* Initialize sport->port_wwn and sport->port_tpg_1 */
3665	res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
3666	if (res)
3667		return ERR_PTR(res);
3668
3669	return &sport->port_tpg_1;
3670}
3671
3672/**
3673 * configfs callback invoked for
3674 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3675 */
3676static void srpt_drop_tpg(struct se_portal_group *tpg)
3677{
3678	struct srpt_port *sport = container_of(tpg,
3679				struct srpt_port, port_tpg_1);
3680
3681	sport->enabled = false;
3682	core_tpg_deregister(&sport->port_tpg_1);
3683}
3684
3685/**
3686 * configfs callback invoked for
3687 * mkdir /sys/kernel/config/target/$driver/$port
3688 */
3689static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3690				      struct config_group *group,
3691				      const char *name)
3692{
3693	struct srpt_port *sport;
3694	int ret;
3695
3696	sport = srpt_lookup_port(name);
3697	pr_debug("make_tport(%s)\n", name);
3698	ret = -EINVAL;
3699	if (!sport)
3700		goto err;
3701
3702	return &sport->port_wwn;
3703
3704err:
3705	return ERR_PTR(ret);
3706}
3707
3708/**
3709 * configfs callback invoked for
3710 * rmdir /sys/kernel/config/target/$driver/$port
3711 */
3712static void srpt_drop_tport(struct se_wwn *wwn)
3713{
3714	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3715
3716	pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3717}
3718
3719static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3720{
3721	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3722}
3723
3724CONFIGFS_ATTR_RO(srpt_wwn_, version);
3725
3726static struct configfs_attribute *srpt_wwn_attrs[] = {
3727	&srpt_wwn_attr_version,
3728	NULL,
3729};
3730
3731static const struct target_core_fabric_ops srpt_template = {
3732	.module				= THIS_MODULE,
3733	.name				= "srpt",
3734	.node_acl_size			= sizeof(struct srpt_node_acl),
3735	.get_fabric_name		= srpt_get_fabric_name,
3736	.tpg_get_wwn			= srpt_get_fabric_wwn,
3737	.tpg_get_tag			= srpt_get_tag,
3738	.tpg_check_demo_mode		= srpt_check_false,
3739	.tpg_check_demo_mode_cache	= srpt_check_true,
3740	.tpg_check_demo_mode_write_protect = srpt_check_true,
3741	.tpg_check_prod_mode_write_protect = srpt_check_false,
3742	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
3743	.release_cmd			= srpt_release_cmd,
3744	.check_stop_free		= srpt_check_stop_free,
3745	.shutdown_session		= srpt_shutdown_session,
3746	.close_session			= srpt_close_session,
3747	.sess_get_index			= srpt_sess_get_index,
3748	.sess_get_initiator_sid		= NULL,
3749	.write_pending			= srpt_write_pending,
3750	.write_pending_status		= srpt_write_pending_status,
3751	.set_default_node_attributes	= srpt_set_default_node_attrs,
3752	.get_cmd_state			= srpt_get_tcm_cmd_state,
3753	.queue_data_in			= srpt_queue_data_in,
3754	.queue_status			= srpt_queue_status,
3755	.queue_tm_rsp			= srpt_queue_tm_rsp,
3756	.aborted_task			= srpt_aborted_task,
3757	/*
3758	 * Setup function pointers for generic logic in
3759	 * target_core_fabric_configfs.c
3760	 */
3761	.fabric_make_wwn		= srpt_make_tport,
3762	.fabric_drop_wwn		= srpt_drop_tport,
3763	.fabric_make_tpg		= srpt_make_tpg,
3764	.fabric_drop_tpg		= srpt_drop_tpg,
3765	.fabric_init_nodeacl		= srpt_init_nodeacl,
3766	.fabric_cleanup_nodeacl		= srpt_cleanup_nodeacl,
3767
3768	.tfc_wwn_attrs			= srpt_wwn_attrs,
3769	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
3770	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3771};
3772
3773/**
3774 * srpt_init_module() - Kernel module initialization.
3775 *
3776 * Note: Since ib_register_client() registers callback functions, and since at
3777 * least one of these callback functions (srpt_add_one()) calls target core
3778 * functions, this driver must be registered with the target core before
3779 * ib_register_client() is called.
3780 */
3781static int __init srpt_init_module(void)
3782{
3783	int ret;
3784
3785	ret = -EINVAL;
3786	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3787		pr_err("invalid value %d for kernel module parameter"
3788		       " srp_max_req_size -- must be at least %d.\n",
3789		       srp_max_req_size, MIN_MAX_REQ_SIZE);
3790		goto out;
3791	}
3792
3793	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3794	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3795		pr_err("invalid value %d for kernel module parameter"
3796		       " srpt_srq_size -- must be in the range [%d..%d].\n",
3797		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3798		goto out;
3799	}
3800
3801	ret = target_register_template(&srpt_template);
3802	if (ret)
3803		goto out;
3804
3805	ret = ib_register_client(&srpt_client);
3806	if (ret) {
3807		pr_err("couldn't register IB client\n");
3808		goto out_unregister_target;
3809	}
3810
3811	return 0;
3812
3813out_unregister_target:
3814	target_unregister_template(&srpt_template);
3815out:
3816	return ret;
3817}
3818
3819static void __exit srpt_cleanup_module(void)
3820{
3821	ib_unregister_client(&srpt_client);
3822	target_unregister_template(&srpt_template);
3823}
3824
3825module_init(srpt_init_module);
3826module_exit(srpt_cleanup_module);
3827