1/*
2 * A sensor driver for the magnetometer AK8975.
3 *
4 * Magnetic compass sensor driver for monitoring magnetic flux information.
5 *
6 * Copyright (c) 2010, NVIDIA Corporation.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin Street, Fifth Floor, Boston, MA	02110-1301, USA.
21 */
22
23#include <linux/module.h>
24#include <linux/kernel.h>
25#include <linux/slab.h>
26#include <linux/i2c.h>
27#include <linux/interrupt.h>
28#include <linux/err.h>
29#include <linux/mutex.h>
30#include <linux/delay.h>
31#include <linux/bitops.h>
32#include <linux/gpio.h>
33#include <linux/of_gpio.h>
34#include <linux/acpi.h>
35
36#include <linux/iio/iio.h>
37#include <linux/iio/sysfs.h>
38/*
39 * Register definitions, as well as various shifts and masks to get at the
40 * individual fields of the registers.
41 */
42#define AK8975_REG_WIA			0x00
43#define AK8975_DEVICE_ID		0x48
44
45#define AK8975_REG_INFO			0x01
46
47#define AK8975_REG_ST1			0x02
48#define AK8975_REG_ST1_DRDY_SHIFT	0
49#define AK8975_REG_ST1_DRDY_MASK	(1 << AK8975_REG_ST1_DRDY_SHIFT)
50
51#define AK8975_REG_HXL			0x03
52#define AK8975_REG_HXH			0x04
53#define AK8975_REG_HYL			0x05
54#define AK8975_REG_HYH			0x06
55#define AK8975_REG_HZL			0x07
56#define AK8975_REG_HZH			0x08
57#define AK8975_REG_ST2			0x09
58#define AK8975_REG_ST2_DERR_SHIFT	2
59#define AK8975_REG_ST2_DERR_MASK	(1 << AK8975_REG_ST2_DERR_SHIFT)
60
61#define AK8975_REG_ST2_HOFL_SHIFT	3
62#define AK8975_REG_ST2_HOFL_MASK	(1 << AK8975_REG_ST2_HOFL_SHIFT)
63
64#define AK8975_REG_CNTL			0x0A
65#define AK8975_REG_CNTL_MODE_SHIFT	0
66#define AK8975_REG_CNTL_MODE_MASK	(0xF << AK8975_REG_CNTL_MODE_SHIFT)
67#define AK8975_REG_CNTL_MODE_POWER_DOWN	0x00
68#define AK8975_REG_CNTL_MODE_ONCE	0x01
69#define AK8975_REG_CNTL_MODE_SELF_TEST	0x08
70#define AK8975_REG_CNTL_MODE_FUSE_ROM	0x0F
71
72#define AK8975_REG_RSVC			0x0B
73#define AK8975_REG_ASTC			0x0C
74#define AK8975_REG_TS1			0x0D
75#define AK8975_REG_TS2			0x0E
76#define AK8975_REG_I2CDIS		0x0F
77#define AK8975_REG_ASAX			0x10
78#define AK8975_REG_ASAY			0x11
79#define AK8975_REG_ASAZ			0x12
80
81#define AK8975_MAX_REGS			AK8975_REG_ASAZ
82
83/*
84 * AK09912 Register definitions
85 */
86#define AK09912_REG_WIA1		0x00
87#define AK09912_REG_WIA2		0x01
88#define AK09912_DEVICE_ID		0x04
89#define AK09911_DEVICE_ID		0x05
90
91#define AK09911_REG_INFO1		0x02
92#define AK09911_REG_INFO2		0x03
93
94#define AK09912_REG_ST1			0x10
95
96#define AK09912_REG_ST1_DRDY_SHIFT	0
97#define AK09912_REG_ST1_DRDY_MASK	(1 << AK09912_REG_ST1_DRDY_SHIFT)
98
99#define AK09912_REG_HXL			0x11
100#define AK09912_REG_HXH			0x12
101#define AK09912_REG_HYL			0x13
102#define AK09912_REG_HYH			0x14
103#define AK09912_REG_HZL			0x15
104#define AK09912_REG_HZH			0x16
105#define AK09912_REG_TMPS		0x17
106
107#define AK09912_REG_ST2			0x18
108#define AK09912_REG_ST2_HOFL_SHIFT	3
109#define AK09912_REG_ST2_HOFL_MASK	(1 << AK09912_REG_ST2_HOFL_SHIFT)
110
111#define AK09912_REG_CNTL1		0x30
112
113#define AK09912_REG_CNTL2		0x31
114#define AK09912_REG_CNTL_MODE_POWER_DOWN	0x00
115#define AK09912_REG_CNTL_MODE_ONCE	0x01
116#define AK09912_REG_CNTL_MODE_SELF_TEST	0x10
117#define AK09912_REG_CNTL_MODE_FUSE_ROM	0x1F
118#define AK09912_REG_CNTL2_MODE_SHIFT	0
119#define AK09912_REG_CNTL2_MODE_MASK	(0x1F << AK09912_REG_CNTL2_MODE_SHIFT)
120
121#define AK09912_REG_CNTL3		0x32
122
123#define AK09912_REG_TS1			0x33
124#define AK09912_REG_TS2			0x34
125#define AK09912_REG_TS3			0x35
126#define AK09912_REG_I2CDIS		0x36
127#define AK09912_REG_TS4			0x37
128
129#define AK09912_REG_ASAX		0x60
130#define AK09912_REG_ASAY		0x61
131#define AK09912_REG_ASAZ		0x62
132
133#define AK09912_MAX_REGS		AK09912_REG_ASAZ
134
135/*
136 * Miscellaneous values.
137 */
138#define AK8975_MAX_CONVERSION_TIMEOUT	500
139#define AK8975_CONVERSION_DONE_POLL_TIME 10
140#define AK8975_DATA_READY_TIMEOUT	((100*HZ)/1000)
141
142/*
143 * Precalculate scale factor (in Gauss units) for each axis and
144 * store in the device data.
145 *
146 * This scale factor is axis-dependent, and is derived from 3 calibration
147 * factors ASA(x), ASA(y), and ASA(z).
148 *
149 * These ASA values are read from the sensor device at start of day, and
150 * cached in the device context struct.
151 *
152 * Adjusting the flux value with the sensitivity adjustment value should be
153 * done via the following formula:
154 *
155 * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
156 * where H is the raw value, ASA is the sensitivity adjustment, and Hadj
157 * is the resultant adjusted value.
158 *
159 * We reduce the formula to:
160 *
161 * Hadj = H * (ASA + 128) / 256
162 *
163 * H is in the range of -4096 to 4095.  The magnetometer has a range of
164 * +-1229uT.  To go from the raw value to uT is:
165 *
166 * HuT = H * 1229/4096, or roughly, 3/10.
167 *
168 * Since 1uT = 0.01 gauss, our final scale factor becomes:
169 *
170 * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
171 * Hadj = H * ((ASA + 128) * 0.003) / 256
172 *
173 * Since ASA doesn't change, we cache the resultant scale factor into the
174 * device context in ak8975_setup().
175 *
176 * Given we use IIO_VAL_INT_PLUS_MICRO bit when displaying the scale, we
177 * multiply the stored scale value by 1e6.
178 */
179static long ak8975_raw_to_gauss(u16 data)
180{
181	return (((long)data + 128) * 3000) / 256;
182}
183
184/*
185 * For AK8963 and AK09911, same calculation, but the device is less sensitive:
186 *
187 * H is in the range of +-8190.  The magnetometer has a range of
188 * +-4912uT.  To go from the raw value to uT is:
189 *
190 * HuT = H * 4912/8190, or roughly, 6/10, instead of 3/10.
191 */
192
193static long ak8963_09911_raw_to_gauss(u16 data)
194{
195	return (((long)data + 128) * 6000) / 256;
196}
197
198/*
199 * For AK09912, same calculation, except the device is more sensitive:
200 *
201 * H is in the range of -32752 to 32752.  The magnetometer has a range of
202 * +-4912uT.  To go from the raw value to uT is:
203 *
204 * HuT = H * 4912/32752, or roughly, 3/20, instead of 3/10.
205 */
206static long ak09912_raw_to_gauss(u16 data)
207{
208	return (((long)data + 128) * 1500) / 256;
209}
210
211/* Compatible Asahi Kasei Compass parts */
212enum asahi_compass_chipset {
213	AK8975,
214	AK8963,
215	AK09911,
216	AK09912,
217	AK_MAX_TYPE
218};
219
220enum ak_ctrl_reg_addr {
221	ST1,
222	ST2,
223	CNTL,
224	ASA_BASE,
225	MAX_REGS,
226	REGS_END,
227};
228
229enum ak_ctrl_reg_mask {
230	ST1_DRDY,
231	ST2_HOFL,
232	ST2_DERR,
233	CNTL_MODE,
234	MASK_END,
235};
236
237enum ak_ctrl_mode {
238	POWER_DOWN,
239	MODE_ONCE,
240	SELF_TEST,
241	FUSE_ROM,
242	MODE_END,
243};
244
245struct ak_def {
246	enum asahi_compass_chipset type;
247	long (*raw_to_gauss)(u16 data);
248	u16 range;
249	u8 ctrl_regs[REGS_END];
250	u8 ctrl_masks[MASK_END];
251	u8 ctrl_modes[MODE_END];
252	u8 data_regs[3];
253};
254
255static struct ak_def ak_def_array[AK_MAX_TYPE] = {
256	{
257		.type = AK8975,
258		.raw_to_gauss = ak8975_raw_to_gauss,
259		.range = 4096,
260		.ctrl_regs = {
261			AK8975_REG_ST1,
262			AK8975_REG_ST2,
263			AK8975_REG_CNTL,
264			AK8975_REG_ASAX,
265			AK8975_MAX_REGS},
266		.ctrl_masks = {
267			AK8975_REG_ST1_DRDY_MASK,
268			AK8975_REG_ST2_HOFL_MASK,
269			AK8975_REG_ST2_DERR_MASK,
270			AK8975_REG_CNTL_MODE_MASK},
271		.ctrl_modes = {
272			AK8975_REG_CNTL_MODE_POWER_DOWN,
273			AK8975_REG_CNTL_MODE_ONCE,
274			AK8975_REG_CNTL_MODE_SELF_TEST,
275			AK8975_REG_CNTL_MODE_FUSE_ROM},
276		.data_regs = {
277			AK8975_REG_HXL,
278			AK8975_REG_HYL,
279			AK8975_REG_HZL},
280	},
281	{
282		.type = AK8963,
283		.raw_to_gauss = ak8963_09911_raw_to_gauss,
284		.range = 8190,
285		.ctrl_regs = {
286			AK8975_REG_ST1,
287			AK8975_REG_ST2,
288			AK8975_REG_CNTL,
289			AK8975_REG_ASAX,
290			AK8975_MAX_REGS},
291		.ctrl_masks = {
292			AK8975_REG_ST1_DRDY_MASK,
293			AK8975_REG_ST2_HOFL_MASK,
294			0,
295			AK8975_REG_CNTL_MODE_MASK},
296		.ctrl_modes = {
297			AK8975_REG_CNTL_MODE_POWER_DOWN,
298			AK8975_REG_CNTL_MODE_ONCE,
299			AK8975_REG_CNTL_MODE_SELF_TEST,
300			AK8975_REG_CNTL_MODE_FUSE_ROM},
301		.data_regs = {
302			AK8975_REG_HXL,
303			AK8975_REG_HYL,
304			AK8975_REG_HZL},
305	},
306	{
307		.type = AK09911,
308		.raw_to_gauss = ak8963_09911_raw_to_gauss,
309		.range = 8192,
310		.ctrl_regs = {
311			AK09912_REG_ST1,
312			AK09912_REG_ST2,
313			AK09912_REG_CNTL2,
314			AK09912_REG_ASAX,
315			AK09912_MAX_REGS},
316		.ctrl_masks = {
317			AK09912_REG_ST1_DRDY_MASK,
318			AK09912_REG_ST2_HOFL_MASK,
319			0,
320			AK09912_REG_CNTL2_MODE_MASK},
321		.ctrl_modes = {
322			AK09912_REG_CNTL_MODE_POWER_DOWN,
323			AK09912_REG_CNTL_MODE_ONCE,
324			AK09912_REG_CNTL_MODE_SELF_TEST,
325			AK09912_REG_CNTL_MODE_FUSE_ROM},
326		.data_regs = {
327			AK09912_REG_HXL,
328			AK09912_REG_HYL,
329			AK09912_REG_HZL},
330	},
331	{
332		.type = AK09912,
333		.raw_to_gauss = ak09912_raw_to_gauss,
334		.range = 32752,
335		.ctrl_regs = {
336			AK09912_REG_ST1,
337			AK09912_REG_ST2,
338			AK09912_REG_CNTL2,
339			AK09912_REG_ASAX,
340			AK09912_MAX_REGS},
341		.ctrl_masks = {
342			AK09912_REG_ST1_DRDY_MASK,
343			AK09912_REG_ST2_HOFL_MASK,
344			0,
345			AK09912_REG_CNTL2_MODE_MASK},
346		.ctrl_modes = {
347			AK09912_REG_CNTL_MODE_POWER_DOWN,
348			AK09912_REG_CNTL_MODE_ONCE,
349			AK09912_REG_CNTL_MODE_SELF_TEST,
350			AK09912_REG_CNTL_MODE_FUSE_ROM},
351		.data_regs = {
352			AK09912_REG_HXL,
353			AK09912_REG_HYL,
354			AK09912_REG_HZL},
355	}
356};
357
358/*
359 * Per-instance context data for the device.
360 */
361struct ak8975_data {
362	struct i2c_client	*client;
363	struct ak_def		*def;
364	struct attribute_group	attrs;
365	struct mutex		lock;
366	u8			asa[3];
367	long			raw_to_gauss[3];
368	int			eoc_gpio;
369	int			eoc_irq;
370	wait_queue_head_t	data_ready_queue;
371	unsigned long		flags;
372	u8			cntl_cache;
373};
374
375/*
376 * Return 0 if the i2c device is the one we expect.
377 * return a negative error number otherwise
378 */
379static int ak8975_who_i_am(struct i2c_client *client,
380			   enum asahi_compass_chipset type)
381{
382	u8 wia_val[2];
383	int ret;
384
385	/*
386	 * Signature for each device:
387	 * Device   |  WIA1      |  WIA2
388	 * AK09912  |  DEVICE_ID |  AK09912_DEVICE_ID
389	 * AK09911  |  DEVICE_ID |  AK09911_DEVICE_ID
390	 * AK8975   |  DEVICE_ID |  NA
391	 * AK8963   |  DEVICE_ID |  NA
392	 */
393	ret = i2c_smbus_read_i2c_block_data(client, AK09912_REG_WIA1,
394					    2, wia_val);
395	if (ret < 0) {
396		dev_err(&client->dev, "Error reading WIA\n");
397		return ret;
398	}
399
400	if (wia_val[0] != AK8975_DEVICE_ID)
401		return -ENODEV;
402
403	switch (type) {
404	case AK8975:
405	case AK8963:
406		return 0;
407	case AK09911:
408		if (wia_val[1] == AK09911_DEVICE_ID)
409			return 0;
410		break;
411	case AK09912:
412		if (wia_val[1] == AK09912_DEVICE_ID)
413			return 0;
414		break;
415	default:
416		dev_err(&client->dev, "Type %d unknown\n", type);
417	}
418	return -ENODEV;
419}
420
421/*
422 * Helper function to write to CNTL register.
423 */
424static int ak8975_set_mode(struct ak8975_data *data, enum ak_ctrl_mode mode)
425{
426	u8 regval;
427	int ret;
428
429	regval = (data->cntl_cache & ~data->def->ctrl_masks[CNTL_MODE]) |
430		 data->def->ctrl_modes[mode];
431	ret = i2c_smbus_write_byte_data(data->client,
432					data->def->ctrl_regs[CNTL], regval);
433	if (ret < 0) {
434		return ret;
435	}
436	data->cntl_cache = regval;
437	/* After mode change wait atleast 100us */
438	usleep_range(100, 500);
439
440	return 0;
441}
442
443/*
444 * Handle data ready irq
445 */
446static irqreturn_t ak8975_irq_handler(int irq, void *data)
447{
448	struct ak8975_data *ak8975 = data;
449
450	set_bit(0, &ak8975->flags);
451	wake_up(&ak8975->data_ready_queue);
452
453	return IRQ_HANDLED;
454}
455
456/*
457 * Install data ready interrupt handler
458 */
459static int ak8975_setup_irq(struct ak8975_data *data)
460{
461	struct i2c_client *client = data->client;
462	int rc;
463	int irq;
464
465	init_waitqueue_head(&data->data_ready_queue);
466	clear_bit(0, &data->flags);
467	if (client->irq)
468		irq = client->irq;
469	else
470		irq = gpio_to_irq(data->eoc_gpio);
471
472	rc = devm_request_irq(&client->dev, irq, ak8975_irq_handler,
473			      IRQF_TRIGGER_RISING | IRQF_ONESHOT,
474			      dev_name(&client->dev), data);
475	if (rc < 0) {
476		dev_err(&client->dev,
477			"irq %d request failed, (gpio %d): %d\n",
478			irq, data->eoc_gpio, rc);
479		return rc;
480	}
481
482	data->eoc_irq = irq;
483
484	return rc;
485}
486
487
488/*
489 * Perform some start-of-day setup, including reading the asa calibration
490 * values and caching them.
491 */
492static int ak8975_setup(struct i2c_client *client)
493{
494	struct iio_dev *indio_dev = i2c_get_clientdata(client);
495	struct ak8975_data *data = iio_priv(indio_dev);
496	int ret;
497
498	/* Write the fused rom access mode. */
499	ret = ak8975_set_mode(data, FUSE_ROM);
500	if (ret < 0) {
501		dev_err(&client->dev, "Error in setting fuse access mode\n");
502		return ret;
503	}
504
505	/* Get asa data and store in the device data. */
506	ret = i2c_smbus_read_i2c_block_data(client,
507					    data->def->ctrl_regs[ASA_BASE],
508					    3, data->asa);
509	if (ret < 0) {
510		dev_err(&client->dev, "Not able to read asa data\n");
511		return ret;
512	}
513
514	/* After reading fuse ROM data set power-down mode */
515	ret = ak8975_set_mode(data, POWER_DOWN);
516	if (ret < 0) {
517		dev_err(&client->dev, "Error in setting power-down mode\n");
518		return ret;
519	}
520
521	if (data->eoc_gpio > 0 || client->irq > 0) {
522		ret = ak8975_setup_irq(data);
523		if (ret < 0) {
524			dev_err(&client->dev,
525				"Error setting data ready interrupt\n");
526			return ret;
527		}
528	}
529
530	data->raw_to_gauss[0] = data->def->raw_to_gauss(data->asa[0]);
531	data->raw_to_gauss[1] = data->def->raw_to_gauss(data->asa[1]);
532	data->raw_to_gauss[2] = data->def->raw_to_gauss(data->asa[2]);
533
534	return 0;
535}
536
537static int wait_conversion_complete_gpio(struct ak8975_data *data)
538{
539	struct i2c_client *client = data->client;
540	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
541	int ret;
542
543	/* Wait for the conversion to complete. */
544	while (timeout_ms) {
545		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
546		if (gpio_get_value(data->eoc_gpio))
547			break;
548		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
549	}
550	if (!timeout_ms) {
551		dev_err(&client->dev, "Conversion timeout happened\n");
552		return -EINVAL;
553	}
554
555	ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST1]);
556	if (ret < 0)
557		dev_err(&client->dev, "Error in reading ST1\n");
558
559	return ret;
560}
561
562static int wait_conversion_complete_polled(struct ak8975_data *data)
563{
564	struct i2c_client *client = data->client;
565	u8 read_status;
566	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
567	int ret;
568
569	/* Wait for the conversion to complete. */
570	while (timeout_ms) {
571		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
572		ret = i2c_smbus_read_byte_data(client,
573					       data->def->ctrl_regs[ST1]);
574		if (ret < 0) {
575			dev_err(&client->dev, "Error in reading ST1\n");
576			return ret;
577		}
578		read_status = ret;
579		if (read_status)
580			break;
581		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
582	}
583	if (!timeout_ms) {
584		dev_err(&client->dev, "Conversion timeout happened\n");
585		return -EINVAL;
586	}
587
588	return read_status;
589}
590
591/* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
592static int wait_conversion_complete_interrupt(struct ak8975_data *data)
593{
594	int ret;
595
596	ret = wait_event_timeout(data->data_ready_queue,
597				 test_bit(0, &data->flags),
598				 AK8975_DATA_READY_TIMEOUT);
599	clear_bit(0, &data->flags);
600
601	return ret > 0 ? 0 : -ETIME;
602}
603
604/*
605 * Emits the raw flux value for the x, y, or z axis.
606 */
607static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
608{
609	struct ak8975_data *data = iio_priv(indio_dev);
610	struct i2c_client *client = data->client;
611	int ret;
612
613	mutex_lock(&data->lock);
614
615	/* Set up the device for taking a sample. */
616	ret = ak8975_set_mode(data, MODE_ONCE);
617	if (ret < 0) {
618		dev_err(&client->dev, "Error in setting operating mode\n");
619		goto exit;
620	}
621
622	/* Wait for the conversion to complete. */
623	if (data->eoc_irq)
624		ret = wait_conversion_complete_interrupt(data);
625	else if (gpio_is_valid(data->eoc_gpio))
626		ret = wait_conversion_complete_gpio(data);
627	else
628		ret = wait_conversion_complete_polled(data);
629	if (ret < 0)
630		goto exit;
631
632	/* This will be executed only for non-interrupt based waiting case */
633	if (ret & data->def->ctrl_masks[ST1_DRDY]) {
634		ret = i2c_smbus_read_byte_data(client,
635					       data->def->ctrl_regs[ST2]);
636		if (ret < 0) {
637			dev_err(&client->dev, "Error in reading ST2\n");
638			goto exit;
639		}
640		if (ret & (data->def->ctrl_masks[ST2_DERR] |
641			   data->def->ctrl_masks[ST2_HOFL])) {
642			dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
643			ret = -EINVAL;
644			goto exit;
645		}
646	}
647
648	/* Read the flux value from the appropriate register
649	   (the register is specified in the iio device attributes). */
650	ret = i2c_smbus_read_word_data(client, data->def->data_regs[index]);
651	if (ret < 0) {
652		dev_err(&client->dev, "Read axis data fails\n");
653		goto exit;
654	}
655
656	mutex_unlock(&data->lock);
657
658	/* Clamp to valid range. */
659	*val = clamp_t(s16, ret, -data->def->range, data->def->range);
660	return IIO_VAL_INT;
661
662exit:
663	mutex_unlock(&data->lock);
664	return ret;
665}
666
667static int ak8975_read_raw(struct iio_dev *indio_dev,
668			   struct iio_chan_spec const *chan,
669			   int *val, int *val2,
670			   long mask)
671{
672	struct ak8975_data *data = iio_priv(indio_dev);
673
674	switch (mask) {
675	case IIO_CHAN_INFO_RAW:
676		return ak8975_read_axis(indio_dev, chan->address, val);
677	case IIO_CHAN_INFO_SCALE:
678		*val = 0;
679		*val2 = data->raw_to_gauss[chan->address];
680		return IIO_VAL_INT_PLUS_MICRO;
681	}
682	return -EINVAL;
683}
684
685#define AK8975_CHANNEL(axis, index)					\
686	{								\
687		.type = IIO_MAGN,					\
688		.modified = 1,						\
689		.channel2 = IIO_MOD_##axis,				\
690		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
691			     BIT(IIO_CHAN_INFO_SCALE),			\
692		.address = index,					\
693	}
694
695static const struct iio_chan_spec ak8975_channels[] = {
696	AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
697};
698
699static const struct iio_info ak8975_info = {
700	.read_raw = &ak8975_read_raw,
701	.driver_module = THIS_MODULE,
702};
703
704static const struct acpi_device_id ak_acpi_match[] = {
705	{"AK8975", AK8975},
706	{"AK8963", AK8963},
707	{"INVN6500", AK8963},
708	{"AK09911", AK09911},
709	{"AK09912", AK09912},
710	{ },
711};
712MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
713
714static const char *ak8975_match_acpi_device(struct device *dev,
715					    enum asahi_compass_chipset *chipset)
716{
717	const struct acpi_device_id *id;
718
719	id = acpi_match_device(dev->driver->acpi_match_table, dev);
720	if (!id)
721		return NULL;
722	*chipset = (int)id->driver_data;
723
724	return dev_name(dev);
725}
726
727static int ak8975_probe(struct i2c_client *client,
728			const struct i2c_device_id *id)
729{
730	struct ak8975_data *data;
731	struct iio_dev *indio_dev;
732	int eoc_gpio;
733	int err;
734	const char *name = NULL;
735	enum asahi_compass_chipset chipset = AK_MAX_TYPE;
736
737	/* Grab and set up the supplied GPIO. */
738	if (client->dev.platform_data)
739		eoc_gpio = *(int *)(client->dev.platform_data);
740	else if (client->dev.of_node)
741		eoc_gpio = of_get_gpio(client->dev.of_node, 0);
742	else
743		eoc_gpio = -1;
744
745	if (eoc_gpio == -EPROBE_DEFER)
746		return -EPROBE_DEFER;
747
748	/* We may not have a GPIO based IRQ to scan, that is fine, we will
749	   poll if so */
750	if (gpio_is_valid(eoc_gpio)) {
751		err = devm_gpio_request_one(&client->dev, eoc_gpio,
752							GPIOF_IN, "ak_8975");
753		if (err < 0) {
754			dev_err(&client->dev,
755				"failed to request GPIO %d, error %d\n",
756							eoc_gpio, err);
757			return err;
758		}
759	}
760
761	/* Register with IIO */
762	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
763	if (indio_dev == NULL)
764		return -ENOMEM;
765
766	data = iio_priv(indio_dev);
767	i2c_set_clientdata(client, indio_dev);
768
769	data->client = client;
770	data->eoc_gpio = eoc_gpio;
771	data->eoc_irq = 0;
772
773	/* id will be NULL when enumerated via ACPI */
774	if (id) {
775		chipset = (enum asahi_compass_chipset)(id->driver_data);
776		name = id->name;
777	} else if (ACPI_HANDLE(&client->dev))
778		name = ak8975_match_acpi_device(&client->dev, &chipset);
779	else
780		return -ENOSYS;
781
782	if (chipset >= AK_MAX_TYPE) {
783		dev_err(&client->dev, "AKM device type unsupported: %d\n",
784			chipset);
785		return -ENODEV;
786	}
787
788	data->def = &ak_def_array[chipset];
789	err = ak8975_who_i_am(client, data->def->type);
790	if (err < 0) {
791		dev_err(&client->dev, "Unexpected device\n");
792		return err;
793	}
794	dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
795
796	/* Perform some basic start-of-day setup of the device. */
797	err = ak8975_setup(client);
798	if (err < 0) {
799		dev_err(&client->dev, "%s initialization fails\n", name);
800		return err;
801	}
802
803	mutex_init(&data->lock);
804	indio_dev->dev.parent = &client->dev;
805	indio_dev->channels = ak8975_channels;
806	indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
807	indio_dev->info = &ak8975_info;
808	indio_dev->modes = INDIO_DIRECT_MODE;
809	indio_dev->name = name;
810	return devm_iio_device_register(&client->dev, indio_dev);
811}
812
813static const struct i2c_device_id ak8975_id[] = {
814	{"ak8975", AK8975},
815	{"ak8963", AK8963},
816	{"AK8963", AK8963},
817	{"ak09911", AK09911},
818	{"ak09912", AK09912},
819	{}
820};
821
822MODULE_DEVICE_TABLE(i2c, ak8975_id);
823
824static const struct of_device_id ak8975_of_match[] = {
825	{ .compatible = "asahi-kasei,ak8975", },
826	{ .compatible = "ak8975", },
827	{ .compatible = "asahi-kasei,ak8963", },
828	{ .compatible = "ak8963", },
829	{ .compatible = "asahi-kasei,ak09911", },
830	{ .compatible = "ak09911", },
831	{ .compatible = "asahi-kasei,ak09912", },
832	{ .compatible = "ak09912", },
833	{}
834};
835MODULE_DEVICE_TABLE(of, ak8975_of_match);
836
837static struct i2c_driver ak8975_driver = {
838	.driver = {
839		.name	= "ak8975",
840		.of_match_table = of_match_ptr(ak8975_of_match),
841		.acpi_match_table = ACPI_PTR(ak_acpi_match),
842	},
843	.probe		= ak8975_probe,
844	.id_table	= ak8975_id,
845};
846module_i2c_driver(ak8975_driver);
847
848MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
849MODULE_DESCRIPTION("AK8975 magnetometer driver");
850MODULE_LICENSE("GPL");
851