1/*
2 *  Promise TX2/TX4/TX2000/133 IDE driver
3 *
4 *  This program is free software; you can redistribute it and/or
5 *  modify it under the terms of the GNU General Public License
6 *  as published by the Free Software Foundation; either version
7 *  2 of the License, or (at your option) any later version.
8 *
9 *  Split from:
10 *  linux/drivers/ide/pdc202xx.c	Version 0.35	Mar. 30, 2002
11 *  Copyright (C) 1998-2002		Andre Hedrick <andre@linux-ide.org>
12 *  Copyright (C) 2005-2007		MontaVista Software, Inc.
13 *  Portions Copyright (C) 1999 Promise Technology, Inc.
14 *  Author: Frank Tiernan (frankt@promise.com)
15 *  Released under terms of General Public License
16 */
17
18#include <linux/module.h>
19#include <linux/types.h>
20#include <linux/kernel.h>
21#include <linux/delay.h>
22#include <linux/pci.h>
23#include <linux/init.h>
24#include <linux/ide.h>
25#include <linux/ktime.h>
26
27#include <asm/io.h>
28
29#ifdef CONFIG_PPC_PMAC
30#include <asm/prom.h>
31#include <asm/pci-bridge.h>
32#endif
33
34#define DRV_NAME "pdc202xx_new"
35
36#undef DEBUG
37
38#ifdef DEBUG
39#define DBG(fmt, args...) printk("%s: " fmt, __func__, ## args)
40#else
41#define DBG(fmt, args...)
42#endif
43
44static u8 max_dma_rate(struct pci_dev *pdev)
45{
46	u8 mode;
47
48	switch(pdev->device) {
49		case PCI_DEVICE_ID_PROMISE_20277:
50		case PCI_DEVICE_ID_PROMISE_20276:
51		case PCI_DEVICE_ID_PROMISE_20275:
52		case PCI_DEVICE_ID_PROMISE_20271:
53		case PCI_DEVICE_ID_PROMISE_20269:
54			mode = 4;
55			break;
56		case PCI_DEVICE_ID_PROMISE_20270:
57		case PCI_DEVICE_ID_PROMISE_20268:
58			mode = 3;
59			break;
60		default:
61			return 0;
62	}
63
64	return mode;
65}
66
67/**
68 * get_indexed_reg - Get indexed register
69 * @hwif: for the port address
70 * @index: index of the indexed register
71 */
72static u8 get_indexed_reg(ide_hwif_t *hwif, u8 index)
73{
74	u8 value;
75
76	outb(index, hwif->dma_base + 1);
77	value = inb(hwif->dma_base + 3);
78
79	DBG("index[%02X] value[%02X]\n", index, value);
80	return value;
81}
82
83/**
84 * set_indexed_reg - Set indexed register
85 * @hwif: for the port address
86 * @index: index of the indexed register
87 */
88static void set_indexed_reg(ide_hwif_t *hwif, u8 index, u8 value)
89{
90	outb(index, hwif->dma_base + 1);
91	outb(value, hwif->dma_base + 3);
92	DBG("index[%02X] value[%02X]\n", index, value);
93}
94
95/*
96 * ATA Timing Tables based on 133 MHz PLL output clock.
97 *
98 * If the PLL outputs 100 MHz clock, the ASIC hardware will set
99 * the timing registers automatically when "set features" command is
100 * issued to the device. However, if the PLL output clock is 133 MHz,
101 * the following tables must be used.
102 */
103static struct pio_timing {
104	u8 reg0c, reg0d, reg13;
105} pio_timings [] = {
106	{ 0xfb, 0x2b, 0xac },	/* PIO mode 0, IORDY off, Prefetch off */
107	{ 0x46, 0x29, 0xa4 },	/* PIO mode 1, IORDY off, Prefetch off */
108	{ 0x23, 0x26, 0x64 },	/* PIO mode 2, IORDY off, Prefetch off */
109	{ 0x27, 0x0d, 0x35 },	/* PIO mode 3, IORDY on,  Prefetch off */
110	{ 0x23, 0x09, 0x25 },	/* PIO mode 4, IORDY on,  Prefetch off */
111};
112
113static struct mwdma_timing {
114	u8 reg0e, reg0f;
115} mwdma_timings [] = {
116	{ 0xdf, 0x5f }, 	/* MWDMA mode 0 */
117	{ 0x6b, 0x27 }, 	/* MWDMA mode 1 */
118	{ 0x69, 0x25 }, 	/* MWDMA mode 2 */
119};
120
121static struct udma_timing {
122	u8 reg10, reg11, reg12;
123} udma_timings [] = {
124	{ 0x4a, 0x0f, 0xd5 },	/* UDMA mode 0 */
125	{ 0x3a, 0x0a, 0xd0 },	/* UDMA mode 1 */
126	{ 0x2a, 0x07, 0xcd },	/* UDMA mode 2 */
127	{ 0x1a, 0x05, 0xcd },	/* UDMA mode 3 */
128	{ 0x1a, 0x03, 0xcd },	/* UDMA mode 4 */
129	{ 0x1a, 0x02, 0xcb },	/* UDMA mode 5 */
130	{ 0x1a, 0x01, 0xcb },	/* UDMA mode 6 */
131};
132
133static void pdcnew_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
134{
135	struct pci_dev *dev	= to_pci_dev(hwif->dev);
136	u8 adj			= (drive->dn & 1) ? 0x08 : 0x00;
137	const u8 speed		= drive->dma_mode;
138
139	/*
140	 * IDE core issues SETFEATURES_XFER to the drive first (thanks to
141	 * IDE_HFLAG_POST_SET_MODE in ->host_flags).  PDC202xx hardware will
142	 * automatically set the timing registers based on 100 MHz PLL output.
143	 *
144	 * As we set up the PLL to output 133 MHz for UltraDMA/133 capable
145	 * chips, we must override the default register settings...
146	 */
147	if (max_dma_rate(dev) == 4) {
148		u8 mode = speed & 0x07;
149
150		if (speed >= XFER_UDMA_0) {
151			set_indexed_reg(hwif, 0x10 + adj,
152					udma_timings[mode].reg10);
153			set_indexed_reg(hwif, 0x11 + adj,
154					udma_timings[mode].reg11);
155			set_indexed_reg(hwif, 0x12 + adj,
156					udma_timings[mode].reg12);
157		} else {
158			set_indexed_reg(hwif, 0x0e + adj,
159					mwdma_timings[mode].reg0e);
160			set_indexed_reg(hwif, 0x0f + adj,
161					mwdma_timings[mode].reg0f);
162		}
163	} else if (speed == XFER_UDMA_2) {
164		/* Set tHOLD bit to 0 if using UDMA mode 2 */
165		u8 tmp = get_indexed_reg(hwif, 0x10 + adj);
166
167		set_indexed_reg(hwif, 0x10 + adj, tmp & 0x7f);
168 	}
169}
170
171static void pdcnew_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
172{
173	struct pci_dev *dev = to_pci_dev(hwif->dev);
174	u8 adj = (drive->dn & 1) ? 0x08 : 0x00;
175	const u8 pio = drive->pio_mode - XFER_PIO_0;
176
177	if (max_dma_rate(dev) == 4) {
178		set_indexed_reg(hwif, 0x0c + adj, pio_timings[pio].reg0c);
179		set_indexed_reg(hwif, 0x0d + adj, pio_timings[pio].reg0d);
180		set_indexed_reg(hwif, 0x13 + adj, pio_timings[pio].reg13);
181	}
182}
183
184static u8 pdcnew_cable_detect(ide_hwif_t *hwif)
185{
186	if (get_indexed_reg(hwif, 0x0b) & 0x04)
187		return ATA_CBL_PATA40;
188	else
189		return ATA_CBL_PATA80;
190}
191
192static void pdcnew_reset(ide_drive_t *drive)
193{
194	/*
195	 * Deleted this because it is redundant from the caller.
196	 */
197	printk(KERN_WARNING "pdc202xx_new: %s channel reset.\n",
198		drive->hwif->channel ? "Secondary" : "Primary");
199}
200
201/**
202 * read_counter - Read the byte count registers
203 * @dma_base: for the port address
204 */
205static long read_counter(u32 dma_base)
206{
207	u32  pri_dma_base = dma_base, sec_dma_base = dma_base + 0x08;
208	u8   cnt0, cnt1, cnt2, cnt3;
209	long count = 0, last;
210	int  retry = 3;
211
212	do {
213		last = count;
214
215		/* Read the current count */
216		outb(0x20, pri_dma_base + 0x01);
217		cnt0 = inb(pri_dma_base + 0x03);
218		outb(0x21, pri_dma_base + 0x01);
219		cnt1 = inb(pri_dma_base + 0x03);
220		outb(0x20, sec_dma_base + 0x01);
221		cnt2 = inb(sec_dma_base + 0x03);
222		outb(0x21, sec_dma_base + 0x01);
223		cnt3 = inb(sec_dma_base + 0x03);
224
225		count = (cnt3 << 23) | (cnt2 << 15) | (cnt1 << 8) | cnt0;
226
227		/*
228		 * The 30-bit decrementing counter is read in 4 pieces.
229		 * Incorrect value may be read when the most significant bytes
230		 * are changing...
231		 */
232	} while (retry-- && (((last ^ count) & 0x3fff8000) || last < count));
233
234	DBG("cnt0[%02X] cnt1[%02X] cnt2[%02X] cnt3[%02X]\n",
235		  cnt0, cnt1, cnt2, cnt3);
236
237	return count;
238}
239
240/**
241 * detect_pll_input_clock - Detect the PLL input clock in Hz.
242 * @dma_base: for the port address
243 * E.g. 16949000 on 33 MHz PCI bus, i.e. half of the PCI clock.
244 */
245static long detect_pll_input_clock(unsigned long dma_base)
246{
247	ktime_t start_time, end_time;
248	long start_count, end_count;
249	long pll_input, usec_elapsed;
250	u8 scr1;
251
252	start_count = read_counter(dma_base);
253	start_time = ktime_get();
254
255	/* Start the test mode */
256	outb(0x01, dma_base + 0x01);
257	scr1 = inb(dma_base + 0x03);
258	DBG("scr1[%02X]\n", scr1);
259	outb(scr1 | 0x40, dma_base + 0x03);
260
261	/* Let the counter run for 10 ms. */
262	mdelay(10);
263
264	end_count = read_counter(dma_base);
265	end_time = ktime_get();
266
267	/* Stop the test mode */
268	outb(0x01, dma_base + 0x01);
269	scr1 = inb(dma_base + 0x03);
270	DBG("scr1[%02X]\n", scr1);
271	outb(scr1 & ~0x40, dma_base + 0x03);
272
273	/*
274	 * Calculate the input clock in Hz
275	 * (the clock counter is 30 bit wide and counts down)
276	 */
277	usec_elapsed = ktime_us_delta(end_time, start_time);
278	pll_input = ((start_count - end_count) & 0x3fffffff) / 10 *
279		(10000000 / usec_elapsed);
280
281	DBG("start[%ld] end[%ld]\n", start_count, end_count);
282
283	return pll_input;
284}
285
286#ifdef CONFIG_PPC_PMAC
287static void apple_kiwi_init(struct pci_dev *pdev)
288{
289	struct device_node *np = pci_device_to_OF_node(pdev);
290	u8 conf;
291
292	if (np == NULL || !of_device_is_compatible(np, "kiwi-root"))
293		return;
294
295	if (pdev->revision >= 0x03) {
296		/* Setup chip magic config stuff (from darwin) */
297		pci_read_config_byte (pdev, 0x40, &conf);
298		pci_write_config_byte(pdev, 0x40, (conf | 0x01));
299	}
300}
301#endif /* CONFIG_PPC_PMAC */
302
303static int init_chipset_pdcnew(struct pci_dev *dev)
304{
305	const char *name = DRV_NAME;
306	unsigned long dma_base = pci_resource_start(dev, 4);
307	unsigned long sec_dma_base = dma_base + 0x08;
308	long pll_input, pll_output, ratio;
309	int f, r;
310	u8 pll_ctl0, pll_ctl1;
311
312	if (dma_base == 0)
313		return -EFAULT;
314
315#ifdef CONFIG_PPC_PMAC
316	apple_kiwi_init(dev);
317#endif
318
319	/* Calculate the required PLL output frequency */
320	switch(max_dma_rate(dev)) {
321		case 4: /* it's 133 MHz for Ultra133 chips */
322			pll_output = 133333333;
323			break;
324		case 3: /* and  100 MHz for Ultra100 chips */
325		default:
326			pll_output = 100000000;
327			break;
328	}
329
330	/*
331	 * Detect PLL input clock.
332	 * On some systems, where PCI bus is running at non-standard clock rate
333	 * (e.g. 25 or 40 MHz), we have to adjust the cycle time.
334	 * PDC20268 and newer chips employ PLL circuit to help correct timing
335	 * registers setting.
336	 */
337	pll_input = detect_pll_input_clock(dma_base);
338	printk(KERN_INFO "%s %s: PLL input clock is %ld kHz\n",
339		name, pci_name(dev), pll_input / 1000);
340
341	/* Sanity check */
342	if (unlikely(pll_input < 5000000L || pll_input > 70000000L)) {
343		printk(KERN_ERR "%s %s: Bad PLL input clock %ld Hz, giving up!"
344			"\n", name, pci_name(dev), pll_input);
345		goto out;
346	}
347
348#ifdef DEBUG
349	DBG("pll_output is %ld Hz\n", pll_output);
350
351	/* Show the current clock value of PLL control register
352	 * (maybe already configured by the BIOS)
353	 */
354	outb(0x02, sec_dma_base + 0x01);
355	pll_ctl0 = inb(sec_dma_base + 0x03);
356	outb(0x03, sec_dma_base + 0x01);
357	pll_ctl1 = inb(sec_dma_base + 0x03);
358
359	DBG("pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
360#endif
361
362	/*
363	 * Calculate the ratio of F, R and NO
364	 * POUT = (F + 2) / (( R + 2) * NO)
365	 */
366	ratio = pll_output / (pll_input / 1000);
367	if (ratio < 8600L) { /* 8.6x */
368		/* Using NO = 0x01, R = 0x0d */
369		r = 0x0d;
370	} else if (ratio < 12900L) { /* 12.9x */
371		/* Using NO = 0x01, R = 0x08 */
372		r = 0x08;
373	} else if (ratio < 16100L) { /* 16.1x */
374		/* Using NO = 0x01, R = 0x06 */
375		r = 0x06;
376	} else if (ratio < 64000L) { /* 64x */
377		r = 0x00;
378	} else {
379		/* Invalid ratio */
380		printk(KERN_ERR "%s %s: Bad ratio %ld, giving up!\n",
381			name, pci_name(dev), ratio);
382		goto out;
383	}
384
385	f = (ratio * (r + 2)) / 1000 - 2;
386
387	DBG("F[%d] R[%d] ratio*1000[%ld]\n", f, r, ratio);
388
389	if (unlikely(f < 0 || f > 127)) {
390		/* Invalid F */
391		printk(KERN_ERR "%s %s: F[%d] invalid!\n",
392			name, pci_name(dev), f);
393		goto out;
394	}
395
396	pll_ctl0 = (u8) f;
397	pll_ctl1 = (u8) r;
398
399	DBG("Writing pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
400
401	outb(0x02,     sec_dma_base + 0x01);
402	outb(pll_ctl0, sec_dma_base + 0x03);
403	outb(0x03,     sec_dma_base + 0x01);
404	outb(pll_ctl1, sec_dma_base + 0x03);
405
406	/* Wait the PLL circuit to be stable */
407	mdelay(30);
408
409#ifdef DEBUG
410	/*
411	 *  Show the current clock value of PLL control register
412	 */
413	outb(0x02, sec_dma_base + 0x01);
414	pll_ctl0 = inb(sec_dma_base + 0x03);
415	outb(0x03, sec_dma_base + 0x01);
416	pll_ctl1 = inb(sec_dma_base + 0x03);
417
418	DBG("pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
419#endif
420
421 out:
422	return 0;
423}
424
425static struct pci_dev *pdc20270_get_dev2(struct pci_dev *dev)
426{
427	struct pci_dev *dev2;
428
429	dev2 = pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn) + 1,
430						PCI_FUNC(dev->devfn)));
431
432	if (dev2 &&
433	    dev2->vendor == dev->vendor &&
434	    dev2->device == dev->device) {
435
436		if (dev2->irq != dev->irq) {
437			dev2->irq = dev->irq;
438			printk(KERN_INFO DRV_NAME " %s: PCI config space "
439				"interrupt fixed\n", pci_name(dev));
440		}
441
442		return dev2;
443	}
444
445	return NULL;
446}
447
448static const struct ide_port_ops pdcnew_port_ops = {
449	.set_pio_mode		= pdcnew_set_pio_mode,
450	.set_dma_mode		= pdcnew_set_dma_mode,
451	.resetproc		= pdcnew_reset,
452	.cable_detect		= pdcnew_cable_detect,
453};
454
455#define DECLARE_PDCNEW_DEV(udma) \
456	{ \
457		.name		= DRV_NAME, \
458		.init_chipset	= init_chipset_pdcnew, \
459		.port_ops	= &pdcnew_port_ops, \
460		.host_flags	= IDE_HFLAG_POST_SET_MODE | \
461				  IDE_HFLAG_ERROR_STOPS_FIFO | \
462				  IDE_HFLAG_OFF_BOARD, \
463		.pio_mask	= ATA_PIO4, \
464		.mwdma_mask	= ATA_MWDMA2, \
465		.udma_mask	= udma, \
466	}
467
468static const struct ide_port_info pdcnew_chipsets[] = {
469	/* 0: PDC202{68,70} */		DECLARE_PDCNEW_DEV(ATA_UDMA5),
470	/* 1: PDC202{69,71,75,76,77} */	DECLARE_PDCNEW_DEV(ATA_UDMA6),
471};
472
473/**
474 *	pdc202new_init_one	-	called when a pdc202xx is found
475 *	@dev: the pdc202new device
476 *	@id: the matching pci id
477 *
478 *	Called when the PCI registration layer (or the IDE initialization)
479 *	finds a device matching our IDE device tables.
480 */
481
482static int pdc202new_init_one(struct pci_dev *dev, const struct pci_device_id *id)
483{
484	const struct ide_port_info *d = &pdcnew_chipsets[id->driver_data];
485	struct pci_dev *bridge = dev->bus->self;
486
487	if (dev->device == PCI_DEVICE_ID_PROMISE_20270 && bridge &&
488	    bridge->vendor == PCI_VENDOR_ID_DEC &&
489	    bridge->device == PCI_DEVICE_ID_DEC_21150) {
490		struct pci_dev *dev2;
491
492		if (PCI_SLOT(dev->devfn) & 2)
493			return -ENODEV;
494
495		dev2 = pdc20270_get_dev2(dev);
496
497		if (dev2) {
498			int ret = ide_pci_init_two(dev, dev2, d, NULL);
499			if (ret < 0)
500				pci_dev_put(dev2);
501			return ret;
502		}
503	}
504
505	if (dev->device == PCI_DEVICE_ID_PROMISE_20276 && bridge &&
506	    bridge->vendor == PCI_VENDOR_ID_INTEL &&
507	    (bridge->device == PCI_DEVICE_ID_INTEL_I960 ||
508	     bridge->device == PCI_DEVICE_ID_INTEL_I960RM)) {
509		printk(KERN_INFO DRV_NAME " %s: attached to I2O RAID controller,"
510			" skipping\n", pci_name(dev));
511		return -ENODEV;
512	}
513
514	return ide_pci_init_one(dev, d, NULL);
515}
516
517static void pdc202new_remove(struct pci_dev *dev)
518{
519	struct ide_host *host = pci_get_drvdata(dev);
520	struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
521
522	ide_pci_remove(dev);
523	pci_dev_put(dev2);
524}
525
526static const struct pci_device_id pdc202new_pci_tbl[] = {
527	{ PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20268), 0 },
528	{ PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20269), 1 },
529	{ PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20270), 0 },
530	{ PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20271), 1 },
531	{ PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20275), 1 },
532	{ PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20276), 1 },
533	{ PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20277), 1 },
534	{ 0, },
535};
536MODULE_DEVICE_TABLE(pci, pdc202new_pci_tbl);
537
538static struct pci_driver pdc202new_pci_driver = {
539	.name		= "Promise_IDE",
540	.id_table	= pdc202new_pci_tbl,
541	.probe		= pdc202new_init_one,
542	.remove		= pdc202new_remove,
543	.suspend	= ide_pci_suspend,
544	.resume		= ide_pci_resume,
545};
546
547static int __init pdc202new_ide_init(void)
548{
549	return ide_pci_register_driver(&pdc202new_pci_driver);
550}
551
552static void __exit pdc202new_ide_exit(void)
553{
554	pci_unregister_driver(&pdc202new_pci_driver);
555}
556
557module_init(pdc202new_ide_init);
558module_exit(pdc202new_ide_exit);
559
560MODULE_AUTHOR("Andre Hedrick, Frank Tiernan");
561MODULE_DESCRIPTION("PCI driver module for Promise PDC20268 and higher");
562MODULE_LICENSE("GPL");
563