1/*
2 * fschmd.c
3 *
4 * Copyright (C) 2007 - 2009 Hans de Goede <hdegoede@redhat.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 *  Merged Fujitsu Siemens hwmon driver, supporting the Poseidon, Hermes,
23 *  Scylla, Heracles, Heimdall, Hades and Syleus chips
24 *
25 *  Based on the original 2.4 fscscy, 2.6 fscpos, 2.6 fscher and 2.6
26 *  (candidate) fschmd drivers:
27 *  Copyright (C) 2006 Thilo Cestonaro
28 *			<thilo.cestonaro.external@fujitsu-siemens.com>
29 *  Copyright (C) 2004, 2005 Stefan Ott <stefan@desire.ch>
30 *  Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de>
31 *  Copyright (c) 2001 Martin Knoblauch <mkn@teraport.de, knobi@knobisoft.de>
32 *  Copyright (C) 2000 Hermann Jung <hej@odn.de>
33 */
34
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/jiffies.h>
39#include <linux/i2c.h>
40#include <linux/hwmon.h>
41#include <linux/hwmon-sysfs.h>
42#include <linux/err.h>
43#include <linux/mutex.h>
44#include <linux/sysfs.h>
45#include <linux/dmi.h>
46#include <linux/fs.h>
47#include <linux/watchdog.h>
48#include <linux/miscdevice.h>
49#include <linux/uaccess.h>
50#include <linux/kref.h>
51
52/* Addresses to scan */
53static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END };
54
55/* Insmod parameters */
56static bool nowayout = WATCHDOG_NOWAYOUT;
57module_param(nowayout, bool, 0);
58MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
59	__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
60
61enum chips { fscpos, fscher, fscscy, fschrc, fschmd, fschds, fscsyl };
62
63/*
64 * The FSCHMD registers and other defines
65 */
66
67/* chip identification */
68#define FSCHMD_REG_IDENT_0		0x00
69#define FSCHMD_REG_IDENT_1		0x01
70#define FSCHMD_REG_IDENT_2		0x02
71#define FSCHMD_REG_REVISION		0x03
72
73/* global control and status */
74#define FSCHMD_REG_EVENT_STATE		0x04
75#define FSCHMD_REG_CONTROL		0x05
76
77#define FSCHMD_CONTROL_ALERT_LED	0x01
78
79/* watchdog */
80static const u8 FSCHMD_REG_WDOG_CONTROL[7] = {
81	0x21, 0x21, 0x21, 0x21, 0x21, 0x28, 0x28 };
82static const u8 FSCHMD_REG_WDOG_STATE[7] = {
83	0x23, 0x23, 0x23, 0x23, 0x23, 0x29, 0x29 };
84static const u8 FSCHMD_REG_WDOG_PRESET[7] = {
85	0x28, 0x28, 0x28, 0x28, 0x28, 0x2a, 0x2a };
86
87#define FSCHMD_WDOG_CONTROL_TRIGGER	0x10
88#define FSCHMD_WDOG_CONTROL_STARTED	0x10 /* the same as trigger */
89#define FSCHMD_WDOG_CONTROL_STOP	0x20
90#define FSCHMD_WDOG_CONTROL_RESOLUTION	0x40
91
92#define FSCHMD_WDOG_STATE_CARDRESET	0x02
93
94/* voltages, weird order is to keep the same order as the old drivers */
95static const u8 FSCHMD_REG_VOLT[7][6] = {
96	{ 0x45, 0x42, 0x48 },				/* pos */
97	{ 0x45, 0x42, 0x48 },				/* her */
98	{ 0x45, 0x42, 0x48 },				/* scy */
99	{ 0x45, 0x42, 0x48 },				/* hrc */
100	{ 0x45, 0x42, 0x48 },				/* hmd */
101	{ 0x21, 0x20, 0x22 },				/* hds */
102	{ 0x21, 0x20, 0x22, 0x23, 0x24, 0x25 },		/* syl */
103};
104
105static const int FSCHMD_NO_VOLT_SENSORS[7] = { 3, 3, 3, 3, 3, 3, 6 };
106
107/*
108 * minimum pwm at which the fan is driven (pwm can by increased depending on
109 * the temp. Notice that for the scy some fans share there minimum speed.
110 * Also notice that with the scy the sensor order is different than with the
111 * other chips, this order was in the 2.4 driver and kept for consistency.
112 */
113static const u8 FSCHMD_REG_FAN_MIN[7][7] = {
114	{ 0x55, 0x65 },					/* pos */
115	{ 0x55, 0x65, 0xb5 },				/* her */
116	{ 0x65, 0x65, 0x55, 0xa5, 0x55, 0xa5 },		/* scy */
117	{ 0x55, 0x65, 0xa5, 0xb5 },			/* hrc */
118	{ 0x55, 0x65, 0xa5, 0xb5, 0xc5 },		/* hmd */
119	{ 0x55, 0x65, 0xa5, 0xb5, 0xc5 },		/* hds */
120	{ 0x54, 0x64, 0x74, 0x84, 0x94, 0xa4, 0xb4 },	/* syl */
121};
122
123/* actual fan speed */
124static const u8 FSCHMD_REG_FAN_ACT[7][7] = {
125	{ 0x0e, 0x6b, 0xab },				/* pos */
126	{ 0x0e, 0x6b, 0xbb },				/* her */
127	{ 0x6b, 0x6c, 0x0e, 0xab, 0x5c, 0xbb },		/* scy */
128	{ 0x0e, 0x6b, 0xab, 0xbb },			/* hrc */
129	{ 0x5b, 0x6b, 0xab, 0xbb, 0xcb },		/* hmd */
130	{ 0x5b, 0x6b, 0xab, 0xbb, 0xcb },		/* hds */
131	{ 0x57, 0x67, 0x77, 0x87, 0x97, 0xa7, 0xb7 },	/* syl */
132};
133
134/* fan status registers */
135static const u8 FSCHMD_REG_FAN_STATE[7][7] = {
136	{ 0x0d, 0x62, 0xa2 },				/* pos */
137	{ 0x0d, 0x62, 0xb2 },				/* her */
138	{ 0x62, 0x61, 0x0d, 0xa2, 0x52, 0xb2 },		/* scy */
139	{ 0x0d, 0x62, 0xa2, 0xb2 },			/* hrc */
140	{ 0x52, 0x62, 0xa2, 0xb2, 0xc2 },		/* hmd */
141	{ 0x52, 0x62, 0xa2, 0xb2, 0xc2 },		/* hds */
142	{ 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0 },	/* syl */
143};
144
145/* fan ripple / divider registers */
146static const u8 FSCHMD_REG_FAN_RIPPLE[7][7] = {
147	{ 0x0f, 0x6f, 0xaf },				/* pos */
148	{ 0x0f, 0x6f, 0xbf },				/* her */
149	{ 0x6f, 0x6f, 0x0f, 0xaf, 0x0f, 0xbf },		/* scy */
150	{ 0x0f, 0x6f, 0xaf, 0xbf },			/* hrc */
151	{ 0x5f, 0x6f, 0xaf, 0xbf, 0xcf },		/* hmd */
152	{ 0x5f, 0x6f, 0xaf, 0xbf, 0xcf },		/* hds */
153	{ 0x56, 0x66, 0x76, 0x86, 0x96, 0xa6, 0xb6 },	/* syl */
154};
155
156static const int FSCHMD_NO_FAN_SENSORS[7] = { 3, 3, 6, 4, 5, 5, 7 };
157
158/* Fan status register bitmasks */
159#define FSCHMD_FAN_ALARM	0x04 /* called fault by FSC! */
160#define FSCHMD_FAN_NOT_PRESENT	0x08
161#define FSCHMD_FAN_DISABLED	0x80
162
163
164/* actual temperature registers */
165static const u8 FSCHMD_REG_TEMP_ACT[7][11] = {
166	{ 0x64, 0x32, 0x35 },				/* pos */
167	{ 0x64, 0x32, 0x35 },				/* her */
168	{ 0x64, 0xD0, 0x32, 0x35 },			/* scy */
169	{ 0x64, 0x32, 0x35 },				/* hrc */
170	{ 0x70, 0x80, 0x90, 0xd0, 0xe0 },		/* hmd */
171	{ 0x70, 0x80, 0x90, 0xd0, 0xe0 },		/* hds */
172	{ 0x58, 0x68, 0x78, 0x88, 0x98, 0xa8,		/* syl */
173	  0xb8, 0xc8, 0xd8, 0xe8, 0xf8 },
174};
175
176/* temperature state registers */
177static const u8 FSCHMD_REG_TEMP_STATE[7][11] = {
178	{ 0x71, 0x81, 0x91 },				/* pos */
179	{ 0x71, 0x81, 0x91 },				/* her */
180	{ 0x71, 0xd1, 0x81, 0x91 },			/* scy */
181	{ 0x71, 0x81, 0x91 },				/* hrc */
182	{ 0x71, 0x81, 0x91, 0xd1, 0xe1 },		/* hmd */
183	{ 0x71, 0x81, 0x91, 0xd1, 0xe1 },		/* hds */
184	{ 0x59, 0x69, 0x79, 0x89, 0x99, 0xa9,		/* syl */
185	  0xb9, 0xc9, 0xd9, 0xe9, 0xf9 },
186};
187
188/*
189 * temperature high limit registers, FSC does not document these. Proven to be
190 * there with field testing on the fscher and fschrc, already supported / used
191 * in the fscscy 2.4 driver. FSC has confirmed that the fschmd has registers
192 * at these addresses, but doesn't want to confirm they are the same as with
193 * the fscher??
194 */
195static const u8 FSCHMD_REG_TEMP_LIMIT[7][11] = {
196	{ 0, 0, 0 },					/* pos */
197	{ 0x76, 0x86, 0x96 },				/* her */
198	{ 0x76, 0xd6, 0x86, 0x96 },			/* scy */
199	{ 0x76, 0x86, 0x96 },				/* hrc */
200	{ 0x76, 0x86, 0x96, 0xd6, 0xe6 },		/* hmd */
201	{ 0x76, 0x86, 0x96, 0xd6, 0xe6 },		/* hds */
202	{ 0x5a, 0x6a, 0x7a, 0x8a, 0x9a, 0xaa,		/* syl */
203	  0xba, 0xca, 0xda, 0xea, 0xfa },
204};
205
206/*
207 * These were found through experimenting with an fscher, currently they are
208 * not used, but we keep them around for future reference.
209 * On the fscsyl AUTOP1 lives at 0x#c (so 0x5c for fan1, 0x6c for fan2, etc),
210 * AUTOP2 lives at 0x#e, and 0x#1 is a bitmask defining which temps influence
211 * the fan speed.
212 * static const u8 FSCHER_REG_TEMP_AUTOP1[] =	{ 0x73, 0x83, 0x93 };
213 * static const u8 FSCHER_REG_TEMP_AUTOP2[] =	{ 0x75, 0x85, 0x95 };
214 */
215
216static const int FSCHMD_NO_TEMP_SENSORS[7] = { 3, 3, 4, 3, 5, 5, 11 };
217
218/* temp status register bitmasks */
219#define FSCHMD_TEMP_WORKING	0x01
220#define FSCHMD_TEMP_ALERT	0x02
221#define FSCHMD_TEMP_DISABLED	0x80
222/* there only really is an alarm if the sensor is working and alert == 1 */
223#define FSCHMD_TEMP_ALARM_MASK \
224	(FSCHMD_TEMP_WORKING | FSCHMD_TEMP_ALERT)
225
226/*
227 * Functions declarations
228 */
229
230static int fschmd_probe(struct i2c_client *client,
231			const struct i2c_device_id *id);
232static int fschmd_detect(struct i2c_client *client,
233			 struct i2c_board_info *info);
234static int fschmd_remove(struct i2c_client *client);
235static struct fschmd_data *fschmd_update_device(struct device *dev);
236
237/*
238 * Driver data (common to all clients)
239 */
240
241static const struct i2c_device_id fschmd_id[] = {
242	{ "fscpos", fscpos },
243	{ "fscher", fscher },
244	{ "fscscy", fscscy },
245	{ "fschrc", fschrc },
246	{ "fschmd", fschmd },
247	{ "fschds", fschds },
248	{ "fscsyl", fscsyl },
249	{ }
250};
251MODULE_DEVICE_TABLE(i2c, fschmd_id);
252
253static struct i2c_driver fschmd_driver = {
254	.class		= I2C_CLASS_HWMON,
255	.driver = {
256		.name	= "fschmd",
257	},
258	.probe		= fschmd_probe,
259	.remove		= fschmd_remove,
260	.id_table	= fschmd_id,
261	.detect		= fschmd_detect,
262	.address_list	= normal_i2c,
263};
264
265/*
266 * Client data (each client gets its own)
267 */
268
269struct fschmd_data {
270	struct i2c_client *client;
271	struct device *hwmon_dev;
272	struct mutex update_lock;
273	struct mutex watchdog_lock;
274	struct list_head list; /* member of the watchdog_data_list */
275	struct kref kref;
276	struct miscdevice watchdog_miscdev;
277	enum chips kind;
278	unsigned long watchdog_is_open;
279	char watchdog_expect_close;
280	char watchdog_name[10]; /* must be unique to avoid sysfs conflict */
281	char valid; /* zero until following fields are valid */
282	unsigned long last_updated; /* in jiffies */
283
284	/* register values */
285	u8 revision;            /* chip revision */
286	u8 global_control;	/* global control register */
287	u8 watchdog_control;    /* watchdog control register */
288	u8 watchdog_state;      /* watchdog status register */
289	u8 watchdog_preset;     /* watchdog counter preset on trigger val */
290	u8 volt[6];		/* voltage */
291	u8 temp_act[11];	/* temperature */
292	u8 temp_status[11];	/* status of sensor */
293	u8 temp_max[11];	/* high temp limit, notice: undocumented! */
294	u8 fan_act[7];		/* fans revolutions per second */
295	u8 fan_status[7];	/* fan status */
296	u8 fan_min[7];		/* fan min value for rps */
297	u8 fan_ripple[7];	/* divider for rps */
298};
299
300/*
301 * Global variables to hold information read from special DMI tables, which are
302 * available on FSC machines with an fscher or later chip. There is no need to
303 * protect these with a lock as they are only modified from our attach function
304 * which always gets called with the i2c-core lock held and never accessed
305 * before the attach function is done with them.
306 */
307static int dmi_mult[6] = { 490, 200, 100, 100, 200, 100 };
308static int dmi_offset[6] = { 0, 0, 0, 0, 0, 0 };
309static int dmi_vref = -1;
310
311/*
312 * Somewhat ugly :( global data pointer list with all fschmd devices, so that
313 * we can find our device data as when using misc_register there is no other
314 * method to get to ones device data from the open fop.
315 */
316static LIST_HEAD(watchdog_data_list);
317/* Note this lock not only protect list access, but also data.kref access */
318static DEFINE_MUTEX(watchdog_data_mutex);
319
320/*
321 * Release our data struct when we're detached from the i2c client *and* all
322 * references to our watchdog device are released
323 */
324static void fschmd_release_resources(struct kref *ref)
325{
326	struct fschmd_data *data = container_of(ref, struct fschmd_data, kref);
327	kfree(data);
328}
329
330/*
331 * Sysfs attr show / store functions
332 */
333
334static ssize_t show_in_value(struct device *dev,
335	struct device_attribute *devattr, char *buf)
336{
337	const int max_reading[3] = { 14200, 6600, 3300 };
338	int index = to_sensor_dev_attr(devattr)->index;
339	struct fschmd_data *data = fschmd_update_device(dev);
340
341	if (data->kind == fscher || data->kind >= fschrc)
342		return sprintf(buf, "%d\n", (data->volt[index] * dmi_vref *
343			dmi_mult[index]) / 255 + dmi_offset[index]);
344	else
345		return sprintf(buf, "%d\n", (data->volt[index] *
346			max_reading[index] + 128) / 255);
347}
348
349
350#define TEMP_FROM_REG(val)	(((val) - 128) * 1000)
351
352static ssize_t show_temp_value(struct device *dev,
353	struct device_attribute *devattr, char *buf)
354{
355	int index = to_sensor_dev_attr(devattr)->index;
356	struct fschmd_data *data = fschmd_update_device(dev);
357
358	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[index]));
359}
360
361static ssize_t show_temp_max(struct device *dev,
362	struct device_attribute *devattr, char *buf)
363{
364	int index = to_sensor_dev_attr(devattr)->index;
365	struct fschmd_data *data = fschmd_update_device(dev);
366
367	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
368}
369
370static ssize_t store_temp_max(struct device *dev, struct device_attribute
371	*devattr, const char *buf, size_t count)
372{
373	int index = to_sensor_dev_attr(devattr)->index;
374	struct fschmd_data *data = dev_get_drvdata(dev);
375	long v;
376	int err;
377
378	err = kstrtol(buf, 10, &v);
379	if (err)
380		return err;
381
382	v = clamp_val(v / 1000, -128, 127) + 128;
383
384	mutex_lock(&data->update_lock);
385	i2c_smbus_write_byte_data(to_i2c_client(dev),
386		FSCHMD_REG_TEMP_LIMIT[data->kind][index], v);
387	data->temp_max[index] = v;
388	mutex_unlock(&data->update_lock);
389
390	return count;
391}
392
393static ssize_t show_temp_fault(struct device *dev,
394	struct device_attribute *devattr, char *buf)
395{
396	int index = to_sensor_dev_attr(devattr)->index;
397	struct fschmd_data *data = fschmd_update_device(dev);
398
399	/* bit 0 set means sensor working ok, so no fault! */
400	if (data->temp_status[index] & FSCHMD_TEMP_WORKING)
401		return sprintf(buf, "0\n");
402	else
403		return sprintf(buf, "1\n");
404}
405
406static ssize_t show_temp_alarm(struct device *dev,
407	struct device_attribute *devattr, char *buf)
408{
409	int index = to_sensor_dev_attr(devattr)->index;
410	struct fschmd_data *data = fschmd_update_device(dev);
411
412	if ((data->temp_status[index] & FSCHMD_TEMP_ALARM_MASK) ==
413			FSCHMD_TEMP_ALARM_MASK)
414		return sprintf(buf, "1\n");
415	else
416		return sprintf(buf, "0\n");
417}
418
419
420#define RPM_FROM_REG(val)	((val) * 60)
421
422static ssize_t show_fan_value(struct device *dev,
423	struct device_attribute *devattr, char *buf)
424{
425	int index = to_sensor_dev_attr(devattr)->index;
426	struct fschmd_data *data = fschmd_update_device(dev);
427
428	return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[index]));
429}
430
431static ssize_t show_fan_div(struct device *dev,
432	struct device_attribute *devattr, char *buf)
433{
434	int index = to_sensor_dev_attr(devattr)->index;
435	struct fschmd_data *data = fschmd_update_device(dev);
436
437	/* bits 2..7 reserved => mask with 3 */
438	return sprintf(buf, "%d\n", 1 << (data->fan_ripple[index] & 3));
439}
440
441static ssize_t store_fan_div(struct device *dev, struct device_attribute
442	*devattr, const char *buf, size_t count)
443{
444	u8 reg;
445	int index = to_sensor_dev_attr(devattr)->index;
446	struct fschmd_data *data = dev_get_drvdata(dev);
447	/* supported values: 2, 4, 8 */
448	unsigned long v;
449	int err;
450
451	err = kstrtoul(buf, 10, &v);
452	if (err)
453		return err;
454
455	switch (v) {
456	case 2:
457		v = 1;
458		break;
459	case 4:
460		v = 2;
461		break;
462	case 8:
463		v = 3;
464		break;
465	default:
466		dev_err(dev,
467			"fan_div value %lu not supported. Choose one of 2, 4 or 8!\n",
468			v);
469		return -EINVAL;
470	}
471
472	mutex_lock(&data->update_lock);
473
474	reg = i2c_smbus_read_byte_data(to_i2c_client(dev),
475		FSCHMD_REG_FAN_RIPPLE[data->kind][index]);
476
477	/* bits 2..7 reserved => mask with 0x03 */
478	reg &= ~0x03;
479	reg |= v;
480
481	i2c_smbus_write_byte_data(to_i2c_client(dev),
482		FSCHMD_REG_FAN_RIPPLE[data->kind][index], reg);
483
484	data->fan_ripple[index] = reg;
485
486	mutex_unlock(&data->update_lock);
487
488	return count;
489}
490
491static ssize_t show_fan_alarm(struct device *dev,
492	struct device_attribute *devattr, char *buf)
493{
494	int index = to_sensor_dev_attr(devattr)->index;
495	struct fschmd_data *data = fschmd_update_device(dev);
496
497	if (data->fan_status[index] & FSCHMD_FAN_ALARM)
498		return sprintf(buf, "1\n");
499	else
500		return sprintf(buf, "0\n");
501}
502
503static ssize_t show_fan_fault(struct device *dev,
504	struct device_attribute *devattr, char *buf)
505{
506	int index = to_sensor_dev_attr(devattr)->index;
507	struct fschmd_data *data = fschmd_update_device(dev);
508
509	if (data->fan_status[index] & FSCHMD_FAN_NOT_PRESENT)
510		return sprintf(buf, "1\n");
511	else
512		return sprintf(buf, "0\n");
513}
514
515
516static ssize_t show_pwm_auto_point1_pwm(struct device *dev,
517	struct device_attribute *devattr, char *buf)
518{
519	int index = to_sensor_dev_attr(devattr)->index;
520	struct fschmd_data *data = fschmd_update_device(dev);
521	int val = data->fan_min[index];
522
523	/* 0 = allow turning off (except on the syl), 1-255 = 50-100% */
524	if (val || data->kind == fscsyl)
525		val = val / 2 + 128;
526
527	return sprintf(buf, "%d\n", val);
528}
529
530static ssize_t store_pwm_auto_point1_pwm(struct device *dev,
531	struct device_attribute *devattr, const char *buf, size_t count)
532{
533	int index = to_sensor_dev_attr(devattr)->index;
534	struct fschmd_data *data = dev_get_drvdata(dev);
535	unsigned long v;
536	int err;
537
538	err = kstrtoul(buf, 10, &v);
539	if (err)
540		return err;
541
542	/* reg: 0 = allow turning off (except on the syl), 1-255 = 50-100% */
543	if (v || data->kind == fscsyl) {
544		v = clamp_val(v, 128, 255);
545		v = (v - 128) * 2 + 1;
546	}
547
548	mutex_lock(&data->update_lock);
549
550	i2c_smbus_write_byte_data(to_i2c_client(dev),
551		FSCHMD_REG_FAN_MIN[data->kind][index], v);
552	data->fan_min[index] = v;
553
554	mutex_unlock(&data->update_lock);
555
556	return count;
557}
558
559
560/*
561 * The FSC hwmon family has the ability to force an attached alert led to flash
562 * from software, we export this as an alert_led sysfs attr
563 */
564static ssize_t show_alert_led(struct device *dev,
565	struct device_attribute *devattr, char *buf)
566{
567	struct fschmd_data *data = fschmd_update_device(dev);
568
569	if (data->global_control & FSCHMD_CONTROL_ALERT_LED)
570		return sprintf(buf, "1\n");
571	else
572		return sprintf(buf, "0\n");
573}
574
575static ssize_t store_alert_led(struct device *dev,
576	struct device_attribute *devattr, const char *buf, size_t count)
577{
578	u8 reg;
579	struct fschmd_data *data = dev_get_drvdata(dev);
580	unsigned long v;
581	int err;
582
583	err = kstrtoul(buf, 10, &v);
584	if (err)
585		return err;
586
587	mutex_lock(&data->update_lock);
588
589	reg = i2c_smbus_read_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL);
590
591	if (v)
592		reg |= FSCHMD_CONTROL_ALERT_LED;
593	else
594		reg &= ~FSCHMD_CONTROL_ALERT_LED;
595
596	i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL, reg);
597
598	data->global_control = reg;
599
600	mutex_unlock(&data->update_lock);
601
602	return count;
603}
604
605static DEVICE_ATTR(alert_led, 0644, show_alert_led, store_alert_led);
606
607static struct sensor_device_attribute fschmd_attr[] = {
608	SENSOR_ATTR(in0_input, 0444, show_in_value, NULL, 0),
609	SENSOR_ATTR(in1_input, 0444, show_in_value, NULL, 1),
610	SENSOR_ATTR(in2_input, 0444, show_in_value, NULL, 2),
611	SENSOR_ATTR(in3_input, 0444, show_in_value, NULL, 3),
612	SENSOR_ATTR(in4_input, 0444, show_in_value, NULL, 4),
613	SENSOR_ATTR(in5_input, 0444, show_in_value, NULL, 5),
614};
615
616static struct sensor_device_attribute fschmd_temp_attr[] = {
617	SENSOR_ATTR(temp1_input, 0444, show_temp_value, NULL, 0),
618	SENSOR_ATTR(temp1_max,   0644, show_temp_max, store_temp_max, 0),
619	SENSOR_ATTR(temp1_fault, 0444, show_temp_fault, NULL, 0),
620	SENSOR_ATTR(temp1_alarm, 0444, show_temp_alarm, NULL, 0),
621	SENSOR_ATTR(temp2_input, 0444, show_temp_value, NULL, 1),
622	SENSOR_ATTR(temp2_max,   0644, show_temp_max, store_temp_max, 1),
623	SENSOR_ATTR(temp2_fault, 0444, show_temp_fault, NULL, 1),
624	SENSOR_ATTR(temp2_alarm, 0444, show_temp_alarm, NULL, 1),
625	SENSOR_ATTR(temp3_input, 0444, show_temp_value, NULL, 2),
626	SENSOR_ATTR(temp3_max,   0644, show_temp_max, store_temp_max, 2),
627	SENSOR_ATTR(temp3_fault, 0444, show_temp_fault, NULL, 2),
628	SENSOR_ATTR(temp3_alarm, 0444, show_temp_alarm, NULL, 2),
629	SENSOR_ATTR(temp4_input, 0444, show_temp_value, NULL, 3),
630	SENSOR_ATTR(temp4_max,   0644, show_temp_max, store_temp_max, 3),
631	SENSOR_ATTR(temp4_fault, 0444, show_temp_fault, NULL, 3),
632	SENSOR_ATTR(temp4_alarm, 0444, show_temp_alarm, NULL, 3),
633	SENSOR_ATTR(temp5_input, 0444, show_temp_value, NULL, 4),
634	SENSOR_ATTR(temp5_max,   0644, show_temp_max, store_temp_max, 4),
635	SENSOR_ATTR(temp5_fault, 0444, show_temp_fault, NULL, 4),
636	SENSOR_ATTR(temp5_alarm, 0444, show_temp_alarm, NULL, 4),
637	SENSOR_ATTR(temp6_input, 0444, show_temp_value, NULL, 5),
638	SENSOR_ATTR(temp6_max,   0644, show_temp_max, store_temp_max, 5),
639	SENSOR_ATTR(temp6_fault, 0444, show_temp_fault, NULL, 5),
640	SENSOR_ATTR(temp6_alarm, 0444, show_temp_alarm, NULL, 5),
641	SENSOR_ATTR(temp7_input, 0444, show_temp_value, NULL, 6),
642	SENSOR_ATTR(temp7_max,   0644, show_temp_max, store_temp_max, 6),
643	SENSOR_ATTR(temp7_fault, 0444, show_temp_fault, NULL, 6),
644	SENSOR_ATTR(temp7_alarm, 0444, show_temp_alarm, NULL, 6),
645	SENSOR_ATTR(temp8_input, 0444, show_temp_value, NULL, 7),
646	SENSOR_ATTR(temp8_max,   0644, show_temp_max, store_temp_max, 7),
647	SENSOR_ATTR(temp8_fault, 0444, show_temp_fault, NULL, 7),
648	SENSOR_ATTR(temp8_alarm, 0444, show_temp_alarm, NULL, 7),
649	SENSOR_ATTR(temp9_input, 0444, show_temp_value, NULL, 8),
650	SENSOR_ATTR(temp9_max,   0644, show_temp_max, store_temp_max, 8),
651	SENSOR_ATTR(temp9_fault, 0444, show_temp_fault, NULL, 8),
652	SENSOR_ATTR(temp9_alarm, 0444, show_temp_alarm, NULL, 8),
653	SENSOR_ATTR(temp10_input, 0444, show_temp_value, NULL, 9),
654	SENSOR_ATTR(temp10_max,   0644, show_temp_max, store_temp_max, 9),
655	SENSOR_ATTR(temp10_fault, 0444, show_temp_fault, NULL, 9),
656	SENSOR_ATTR(temp10_alarm, 0444, show_temp_alarm, NULL, 9),
657	SENSOR_ATTR(temp11_input, 0444, show_temp_value, NULL, 10),
658	SENSOR_ATTR(temp11_max,   0644, show_temp_max, store_temp_max, 10),
659	SENSOR_ATTR(temp11_fault, 0444, show_temp_fault, NULL, 10),
660	SENSOR_ATTR(temp11_alarm, 0444, show_temp_alarm, NULL, 10),
661};
662
663static struct sensor_device_attribute fschmd_fan_attr[] = {
664	SENSOR_ATTR(fan1_input, 0444, show_fan_value, NULL, 0),
665	SENSOR_ATTR(fan1_div,   0644, show_fan_div, store_fan_div, 0),
666	SENSOR_ATTR(fan1_alarm, 0444, show_fan_alarm, NULL, 0),
667	SENSOR_ATTR(fan1_fault, 0444, show_fan_fault, NULL, 0),
668	SENSOR_ATTR(pwm1_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
669		store_pwm_auto_point1_pwm, 0),
670	SENSOR_ATTR(fan2_input, 0444, show_fan_value, NULL, 1),
671	SENSOR_ATTR(fan2_div,   0644, show_fan_div, store_fan_div, 1),
672	SENSOR_ATTR(fan2_alarm, 0444, show_fan_alarm, NULL, 1),
673	SENSOR_ATTR(fan2_fault, 0444, show_fan_fault, NULL, 1),
674	SENSOR_ATTR(pwm2_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
675		store_pwm_auto_point1_pwm, 1),
676	SENSOR_ATTR(fan3_input, 0444, show_fan_value, NULL, 2),
677	SENSOR_ATTR(fan3_div,   0644, show_fan_div, store_fan_div, 2),
678	SENSOR_ATTR(fan3_alarm, 0444, show_fan_alarm, NULL, 2),
679	SENSOR_ATTR(fan3_fault, 0444, show_fan_fault, NULL, 2),
680	SENSOR_ATTR(pwm3_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
681		store_pwm_auto_point1_pwm, 2),
682	SENSOR_ATTR(fan4_input, 0444, show_fan_value, NULL, 3),
683	SENSOR_ATTR(fan4_div,   0644, show_fan_div, store_fan_div, 3),
684	SENSOR_ATTR(fan4_alarm, 0444, show_fan_alarm, NULL, 3),
685	SENSOR_ATTR(fan4_fault, 0444, show_fan_fault, NULL, 3),
686	SENSOR_ATTR(pwm4_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
687		store_pwm_auto_point1_pwm, 3),
688	SENSOR_ATTR(fan5_input, 0444, show_fan_value, NULL, 4),
689	SENSOR_ATTR(fan5_div,   0644, show_fan_div, store_fan_div, 4),
690	SENSOR_ATTR(fan5_alarm, 0444, show_fan_alarm, NULL, 4),
691	SENSOR_ATTR(fan5_fault, 0444, show_fan_fault, NULL, 4),
692	SENSOR_ATTR(pwm5_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
693		store_pwm_auto_point1_pwm, 4),
694	SENSOR_ATTR(fan6_input, 0444, show_fan_value, NULL, 5),
695	SENSOR_ATTR(fan6_div,   0644, show_fan_div, store_fan_div, 5),
696	SENSOR_ATTR(fan6_alarm, 0444, show_fan_alarm, NULL, 5),
697	SENSOR_ATTR(fan6_fault, 0444, show_fan_fault, NULL, 5),
698	SENSOR_ATTR(pwm6_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
699		store_pwm_auto_point1_pwm, 5),
700	SENSOR_ATTR(fan7_input, 0444, show_fan_value, NULL, 6),
701	SENSOR_ATTR(fan7_div,   0644, show_fan_div, store_fan_div, 6),
702	SENSOR_ATTR(fan7_alarm, 0444, show_fan_alarm, NULL, 6),
703	SENSOR_ATTR(fan7_fault, 0444, show_fan_fault, NULL, 6),
704	SENSOR_ATTR(pwm7_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
705		store_pwm_auto_point1_pwm, 6),
706};
707
708
709/*
710 * Watchdog routines
711 */
712
713static int watchdog_set_timeout(struct fschmd_data *data, int timeout)
714{
715	int ret, resolution;
716	int kind = data->kind + 1; /* 0-x array index -> 1-x module param */
717
718	/* 2 second or 60 second resolution? */
719	if (timeout <= 510 || kind == fscpos || kind == fscscy)
720		resolution = 2;
721	else
722		resolution = 60;
723
724	if (timeout < resolution || timeout > (resolution * 255))
725		return -EINVAL;
726
727	mutex_lock(&data->watchdog_lock);
728	if (!data->client) {
729		ret = -ENODEV;
730		goto leave;
731	}
732
733	if (resolution == 2)
734		data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_RESOLUTION;
735	else
736		data->watchdog_control |= FSCHMD_WDOG_CONTROL_RESOLUTION;
737
738	data->watchdog_preset = DIV_ROUND_UP(timeout, resolution);
739
740	/* Write new timeout value */
741	i2c_smbus_write_byte_data(data->client,
742		FSCHMD_REG_WDOG_PRESET[data->kind], data->watchdog_preset);
743	/* Write new control register, do not trigger! */
744	i2c_smbus_write_byte_data(data->client,
745		FSCHMD_REG_WDOG_CONTROL[data->kind],
746		data->watchdog_control & ~FSCHMD_WDOG_CONTROL_TRIGGER);
747
748	ret = data->watchdog_preset * resolution;
749
750leave:
751	mutex_unlock(&data->watchdog_lock);
752	return ret;
753}
754
755static int watchdog_get_timeout(struct fschmd_data *data)
756{
757	int timeout;
758
759	mutex_lock(&data->watchdog_lock);
760	if (data->watchdog_control & FSCHMD_WDOG_CONTROL_RESOLUTION)
761		timeout = data->watchdog_preset * 60;
762	else
763		timeout = data->watchdog_preset * 2;
764	mutex_unlock(&data->watchdog_lock);
765
766	return timeout;
767}
768
769static int watchdog_trigger(struct fschmd_data *data)
770{
771	int ret = 0;
772
773	mutex_lock(&data->watchdog_lock);
774	if (!data->client) {
775		ret = -ENODEV;
776		goto leave;
777	}
778
779	data->watchdog_control |= FSCHMD_WDOG_CONTROL_TRIGGER;
780	i2c_smbus_write_byte_data(data->client,
781				  FSCHMD_REG_WDOG_CONTROL[data->kind],
782				  data->watchdog_control);
783leave:
784	mutex_unlock(&data->watchdog_lock);
785	return ret;
786}
787
788static int watchdog_stop(struct fschmd_data *data)
789{
790	int ret = 0;
791
792	mutex_lock(&data->watchdog_lock);
793	if (!data->client) {
794		ret = -ENODEV;
795		goto leave;
796	}
797
798	data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_STARTED;
799	/*
800	 * Don't store the stop flag in our watchdog control register copy, as
801	 * its a write only bit (read always returns 0)
802	 */
803	i2c_smbus_write_byte_data(data->client,
804		FSCHMD_REG_WDOG_CONTROL[data->kind],
805		data->watchdog_control | FSCHMD_WDOG_CONTROL_STOP);
806leave:
807	mutex_unlock(&data->watchdog_lock);
808	return ret;
809}
810
811static int watchdog_open(struct inode *inode, struct file *filp)
812{
813	struct fschmd_data *pos, *data = NULL;
814	int watchdog_is_open;
815
816	/*
817	 * We get called from drivers/char/misc.c with misc_mtx hold, and we
818	 * call misc_register() from fschmd_probe() with watchdog_data_mutex
819	 * hold, as misc_register() takes the misc_mtx lock, this is a possible
820	 * deadlock, so we use mutex_trylock here.
821	 */
822	if (!mutex_trylock(&watchdog_data_mutex))
823		return -ERESTARTSYS;
824	list_for_each_entry(pos, &watchdog_data_list, list) {
825		if (pos->watchdog_miscdev.minor == iminor(inode)) {
826			data = pos;
827			break;
828		}
829	}
830	/* Note we can never not have found data, so we don't check for this */
831	watchdog_is_open = test_and_set_bit(0, &data->watchdog_is_open);
832	if (!watchdog_is_open)
833		kref_get(&data->kref);
834	mutex_unlock(&watchdog_data_mutex);
835
836	if (watchdog_is_open)
837		return -EBUSY;
838
839	/* Start the watchdog */
840	watchdog_trigger(data);
841	filp->private_data = data;
842
843	return nonseekable_open(inode, filp);
844}
845
846static int watchdog_release(struct inode *inode, struct file *filp)
847{
848	struct fschmd_data *data = filp->private_data;
849
850	if (data->watchdog_expect_close) {
851		watchdog_stop(data);
852		data->watchdog_expect_close = 0;
853	} else {
854		watchdog_trigger(data);
855		dev_crit(&data->client->dev,
856			"unexpected close, not stopping watchdog!\n");
857	}
858
859	clear_bit(0, &data->watchdog_is_open);
860
861	mutex_lock(&watchdog_data_mutex);
862	kref_put(&data->kref, fschmd_release_resources);
863	mutex_unlock(&watchdog_data_mutex);
864
865	return 0;
866}
867
868static ssize_t watchdog_write(struct file *filp, const char __user *buf,
869	size_t count, loff_t *offset)
870{
871	int ret;
872	struct fschmd_data *data = filp->private_data;
873
874	if (count) {
875		if (!nowayout) {
876			size_t i;
877
878			/* Clear it in case it was set with a previous write */
879			data->watchdog_expect_close = 0;
880
881			for (i = 0; i != count; i++) {
882				char c;
883				if (get_user(c, buf + i))
884					return -EFAULT;
885				if (c == 'V')
886					data->watchdog_expect_close = 1;
887			}
888		}
889		ret = watchdog_trigger(data);
890		if (ret < 0)
891			return ret;
892	}
893	return count;
894}
895
896static long watchdog_ioctl(struct file *filp, unsigned int cmd,
897			   unsigned long arg)
898{
899	struct watchdog_info ident = {
900		.options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
901				WDIOF_CARDRESET,
902		.identity = "FSC watchdog"
903	};
904	int i, ret = 0;
905	struct fschmd_data *data = filp->private_data;
906
907	switch (cmd) {
908	case WDIOC_GETSUPPORT:
909		ident.firmware_version = data->revision;
910		if (!nowayout)
911			ident.options |= WDIOF_MAGICCLOSE;
912		if (copy_to_user((void __user *)arg, &ident, sizeof(ident)))
913			ret = -EFAULT;
914		break;
915
916	case WDIOC_GETSTATUS:
917		ret = put_user(0, (int __user *)arg);
918		break;
919
920	case WDIOC_GETBOOTSTATUS:
921		if (data->watchdog_state & FSCHMD_WDOG_STATE_CARDRESET)
922			ret = put_user(WDIOF_CARDRESET, (int __user *)arg);
923		else
924			ret = put_user(0, (int __user *)arg);
925		break;
926
927	case WDIOC_KEEPALIVE:
928		ret = watchdog_trigger(data);
929		break;
930
931	case WDIOC_GETTIMEOUT:
932		i = watchdog_get_timeout(data);
933		ret = put_user(i, (int __user *)arg);
934		break;
935
936	case WDIOC_SETTIMEOUT:
937		if (get_user(i, (int __user *)arg)) {
938			ret = -EFAULT;
939			break;
940		}
941		ret = watchdog_set_timeout(data, i);
942		if (ret > 0)
943			ret = put_user(ret, (int __user *)arg);
944		break;
945
946	case WDIOC_SETOPTIONS:
947		if (get_user(i, (int __user *)arg)) {
948			ret = -EFAULT;
949			break;
950		}
951
952		if (i & WDIOS_DISABLECARD)
953			ret = watchdog_stop(data);
954		else if (i & WDIOS_ENABLECARD)
955			ret = watchdog_trigger(data);
956		else
957			ret = -EINVAL;
958
959		break;
960	default:
961		ret = -ENOTTY;
962	}
963	return ret;
964}
965
966static const struct file_operations watchdog_fops = {
967	.owner = THIS_MODULE,
968	.llseek = no_llseek,
969	.open = watchdog_open,
970	.release = watchdog_release,
971	.write = watchdog_write,
972	.unlocked_ioctl = watchdog_ioctl,
973};
974
975
976/*
977 * Detect, register, unregister and update device functions
978 */
979
980/*
981 * DMI decode routine to read voltage scaling factors from special DMI tables,
982 * which are available on FSC machines with an fscher or later chip.
983 */
984static void fschmd_dmi_decode(const struct dmi_header *header, void *dummy)
985{
986	int i, mult[3] = { 0 }, offset[3] = { 0 }, vref = 0, found = 0;
987
988	/*
989	 * dmi code ugliness, we get passed the address of the contents of
990	 * a complete DMI record, but in the form of a dmi_header pointer, in
991	 * reality this address holds header->length bytes of which the header
992	 * are the first 4 bytes
993	 */
994	u8 *dmi_data = (u8 *)header;
995
996	/* We are looking for OEM-specific type 185 */
997	if (header->type != 185)
998		return;
999
1000	/*
1001	 * we are looking for what Siemens calls "subtype" 19, the subtype
1002	 * is stored in byte 5 of the dmi block
1003	 */
1004	if (header->length < 5 || dmi_data[4] != 19)
1005		return;
1006
1007	/*
1008	 * After the subtype comes 1 unknown byte and then blocks of 5 bytes,
1009	 * consisting of what Siemens calls an "Entity" number, followed by
1010	 * 2 16-bit words in LSB first order
1011	 */
1012	for (i = 6; (i + 4) < header->length; i += 5) {
1013		/* entity 1 - 3: voltage multiplier and offset */
1014		if (dmi_data[i] >= 1 && dmi_data[i] <= 3) {
1015			/* Our in sensors order and the DMI order differ */
1016			const int shuffle[3] = { 1, 0, 2 };
1017			int in = shuffle[dmi_data[i] - 1];
1018
1019			/* Check for twice the same entity */
1020			if (found & (1 << in))
1021				return;
1022
1023			mult[in] = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
1024			offset[in] = dmi_data[i + 3] | (dmi_data[i + 4] << 8);
1025
1026			found |= 1 << in;
1027		}
1028
1029		/* entity 7: reference voltage */
1030		if (dmi_data[i] == 7) {
1031			/* Check for twice the same entity */
1032			if (found & 0x08)
1033				return;
1034
1035			vref = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
1036
1037			found |= 0x08;
1038		}
1039	}
1040
1041	if (found == 0x0F) {
1042		for (i = 0; i < 3; i++) {
1043			dmi_mult[i] = mult[i] * 10;
1044			dmi_offset[i] = offset[i] * 10;
1045		}
1046		/*
1047		 * According to the docs there should be separate dmi entries
1048		 * for the mult's and offsets of in3-5 of the syl, but on
1049		 * my test machine these are not present
1050		 */
1051		dmi_mult[3] = dmi_mult[2];
1052		dmi_mult[4] = dmi_mult[1];
1053		dmi_mult[5] = dmi_mult[2];
1054		dmi_offset[3] = dmi_offset[2];
1055		dmi_offset[4] = dmi_offset[1];
1056		dmi_offset[5] = dmi_offset[2];
1057		dmi_vref = vref;
1058	}
1059}
1060
1061static int fschmd_detect(struct i2c_client *client,
1062			 struct i2c_board_info *info)
1063{
1064	enum chips kind;
1065	struct i2c_adapter *adapter = client->adapter;
1066	char id[4];
1067
1068	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1069		return -ENODEV;
1070
1071	/* Detect & Identify the chip */
1072	id[0] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_0);
1073	id[1] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_1);
1074	id[2] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_2);
1075	id[3] = '\0';
1076
1077	if (!strcmp(id, "PEG"))
1078		kind = fscpos;
1079	else if (!strcmp(id, "HER"))
1080		kind = fscher;
1081	else if (!strcmp(id, "SCY"))
1082		kind = fscscy;
1083	else if (!strcmp(id, "HRC"))
1084		kind = fschrc;
1085	else if (!strcmp(id, "HMD"))
1086		kind = fschmd;
1087	else if (!strcmp(id, "HDS"))
1088		kind = fschds;
1089	else if (!strcmp(id, "SYL"))
1090		kind = fscsyl;
1091	else
1092		return -ENODEV;
1093
1094	strlcpy(info->type, fschmd_id[kind].name, I2C_NAME_SIZE);
1095
1096	return 0;
1097}
1098
1099static int fschmd_probe(struct i2c_client *client,
1100			const struct i2c_device_id *id)
1101{
1102	struct fschmd_data *data;
1103	const char * const names[7] = { "Poseidon", "Hermes", "Scylla",
1104				"Heracles", "Heimdall", "Hades", "Syleus" };
1105	const int watchdog_minors[] = { WATCHDOG_MINOR, 212, 213, 214, 215 };
1106	int i, err;
1107	enum chips kind = id->driver_data;
1108
1109	data = kzalloc(sizeof(struct fschmd_data), GFP_KERNEL);
1110	if (!data)
1111		return -ENOMEM;
1112
1113	i2c_set_clientdata(client, data);
1114	mutex_init(&data->update_lock);
1115	mutex_init(&data->watchdog_lock);
1116	INIT_LIST_HEAD(&data->list);
1117	kref_init(&data->kref);
1118	/*
1119	 * Store client pointer in our data struct for watchdog usage
1120	 * (where the client is found through a data ptr instead of the
1121	 * otherway around)
1122	 */
1123	data->client = client;
1124	data->kind = kind;
1125
1126	if (kind == fscpos) {
1127		/*
1128		 * The Poseidon has hardwired temp limits, fill these
1129		 * in for the alarm resetting code
1130		 */
1131		data->temp_max[0] = 70 + 128;
1132		data->temp_max[1] = 50 + 128;
1133		data->temp_max[2] = 50 + 128;
1134	}
1135
1136	/* Read the special DMI table for fscher and newer chips */
1137	if ((kind == fscher || kind >= fschrc) && dmi_vref == -1) {
1138		dmi_walk(fschmd_dmi_decode, NULL);
1139		if (dmi_vref == -1) {
1140			dev_warn(&client->dev,
1141				"Couldn't get voltage scaling factors from "
1142				"BIOS DMI table, using builtin defaults\n");
1143			dmi_vref = 33;
1144		}
1145	}
1146
1147	/* Read in some never changing registers */
1148	data->revision = i2c_smbus_read_byte_data(client, FSCHMD_REG_REVISION);
1149	data->global_control = i2c_smbus_read_byte_data(client,
1150					FSCHMD_REG_CONTROL);
1151	data->watchdog_control = i2c_smbus_read_byte_data(client,
1152					FSCHMD_REG_WDOG_CONTROL[data->kind]);
1153	data->watchdog_state = i2c_smbus_read_byte_data(client,
1154					FSCHMD_REG_WDOG_STATE[data->kind]);
1155	data->watchdog_preset = i2c_smbus_read_byte_data(client,
1156					FSCHMD_REG_WDOG_PRESET[data->kind]);
1157
1158	err = device_create_file(&client->dev, &dev_attr_alert_led);
1159	if (err)
1160		goto exit_detach;
1161
1162	for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) {
1163		err = device_create_file(&client->dev,
1164					&fschmd_attr[i].dev_attr);
1165		if (err)
1166			goto exit_detach;
1167	}
1168
1169	for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) {
1170		/* Poseidon doesn't have TEMP_LIMIT registers */
1171		if (kind == fscpos && fschmd_temp_attr[i].dev_attr.show ==
1172				show_temp_max)
1173			continue;
1174
1175		if (kind == fscsyl) {
1176			if (i % 4 == 0)
1177				data->temp_status[i / 4] =
1178					i2c_smbus_read_byte_data(client,
1179						FSCHMD_REG_TEMP_STATE
1180						[data->kind][i / 4]);
1181			if (data->temp_status[i / 4] & FSCHMD_TEMP_DISABLED)
1182				continue;
1183		}
1184
1185		err = device_create_file(&client->dev,
1186					&fschmd_temp_attr[i].dev_attr);
1187		if (err)
1188			goto exit_detach;
1189	}
1190
1191	for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) {
1192		/* Poseidon doesn't have a FAN_MIN register for its 3rd fan */
1193		if (kind == fscpos &&
1194				!strcmp(fschmd_fan_attr[i].dev_attr.attr.name,
1195					"pwm3_auto_point1_pwm"))
1196			continue;
1197
1198		if (kind == fscsyl) {
1199			if (i % 5 == 0)
1200				data->fan_status[i / 5] =
1201					i2c_smbus_read_byte_data(client,
1202						FSCHMD_REG_FAN_STATE
1203						[data->kind][i / 5]);
1204			if (data->fan_status[i / 5] & FSCHMD_FAN_DISABLED)
1205				continue;
1206		}
1207
1208		err = device_create_file(&client->dev,
1209					&fschmd_fan_attr[i].dev_attr);
1210		if (err)
1211			goto exit_detach;
1212	}
1213
1214	data->hwmon_dev = hwmon_device_register(&client->dev);
1215	if (IS_ERR(data->hwmon_dev)) {
1216		err = PTR_ERR(data->hwmon_dev);
1217		data->hwmon_dev = NULL;
1218		goto exit_detach;
1219	}
1220
1221	/*
1222	 * We take the data_mutex lock early so that watchdog_open() cannot
1223	 * run when misc_register() has completed, but we've not yet added
1224	 * our data to the watchdog_data_list (and set the default timeout)
1225	 */
1226	mutex_lock(&watchdog_data_mutex);
1227	for (i = 0; i < ARRAY_SIZE(watchdog_minors); i++) {
1228		/* Register our watchdog part */
1229		snprintf(data->watchdog_name, sizeof(data->watchdog_name),
1230			"watchdog%c", (i == 0) ? '\0' : ('0' + i));
1231		data->watchdog_miscdev.name = data->watchdog_name;
1232		data->watchdog_miscdev.fops = &watchdog_fops;
1233		data->watchdog_miscdev.minor = watchdog_minors[i];
1234		err = misc_register(&data->watchdog_miscdev);
1235		if (err == -EBUSY)
1236			continue;
1237		if (err) {
1238			data->watchdog_miscdev.minor = 0;
1239			dev_err(&client->dev,
1240				"Registering watchdog chardev: %d\n", err);
1241			break;
1242		}
1243
1244		list_add(&data->list, &watchdog_data_list);
1245		watchdog_set_timeout(data, 60);
1246		dev_info(&client->dev,
1247			"Registered watchdog chardev major 10, minor: %d\n",
1248			watchdog_minors[i]);
1249		break;
1250	}
1251	if (i == ARRAY_SIZE(watchdog_minors)) {
1252		data->watchdog_miscdev.minor = 0;
1253		dev_warn(&client->dev,
1254			 "Couldn't register watchdog chardev (due to no free minor)\n");
1255	}
1256	mutex_unlock(&watchdog_data_mutex);
1257
1258	dev_info(&client->dev, "Detected FSC %s chip, revision: %d\n",
1259		names[data->kind], (int) data->revision);
1260
1261	return 0;
1262
1263exit_detach:
1264	fschmd_remove(client); /* will also free data for us */
1265	return err;
1266}
1267
1268static int fschmd_remove(struct i2c_client *client)
1269{
1270	struct fschmd_data *data = i2c_get_clientdata(client);
1271	int i;
1272
1273	/* Unregister the watchdog (if registered) */
1274	if (data->watchdog_miscdev.minor) {
1275		misc_deregister(&data->watchdog_miscdev);
1276		if (data->watchdog_is_open) {
1277			dev_warn(&client->dev,
1278				"i2c client detached with watchdog open! "
1279				"Stopping watchdog.\n");
1280			watchdog_stop(data);
1281		}
1282		mutex_lock(&watchdog_data_mutex);
1283		list_del(&data->list);
1284		mutex_unlock(&watchdog_data_mutex);
1285		/* Tell the watchdog code the client is gone */
1286		mutex_lock(&data->watchdog_lock);
1287		data->client = NULL;
1288		mutex_unlock(&data->watchdog_lock);
1289	}
1290
1291	/*
1292	 * Check if registered in case we're called from fschmd_detect
1293	 * to cleanup after an error
1294	 */
1295	if (data->hwmon_dev)
1296		hwmon_device_unregister(data->hwmon_dev);
1297
1298	device_remove_file(&client->dev, &dev_attr_alert_led);
1299	for (i = 0; i < (FSCHMD_NO_VOLT_SENSORS[data->kind]); i++)
1300		device_remove_file(&client->dev, &fschmd_attr[i].dev_attr);
1301	for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++)
1302		device_remove_file(&client->dev,
1303					&fschmd_temp_attr[i].dev_attr);
1304	for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++)
1305		device_remove_file(&client->dev,
1306					&fschmd_fan_attr[i].dev_attr);
1307
1308	mutex_lock(&watchdog_data_mutex);
1309	kref_put(&data->kref, fschmd_release_resources);
1310	mutex_unlock(&watchdog_data_mutex);
1311
1312	return 0;
1313}
1314
1315static struct fschmd_data *fschmd_update_device(struct device *dev)
1316{
1317	struct i2c_client *client = to_i2c_client(dev);
1318	struct fschmd_data *data = i2c_get_clientdata(client);
1319	int i;
1320
1321	mutex_lock(&data->update_lock);
1322
1323	if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
1324
1325		for (i = 0; i < FSCHMD_NO_TEMP_SENSORS[data->kind]; i++) {
1326			data->temp_act[i] = i2c_smbus_read_byte_data(client,
1327					FSCHMD_REG_TEMP_ACT[data->kind][i]);
1328			data->temp_status[i] = i2c_smbus_read_byte_data(client,
1329					FSCHMD_REG_TEMP_STATE[data->kind][i]);
1330
1331			/* The fscpos doesn't have TEMP_LIMIT registers */
1332			if (FSCHMD_REG_TEMP_LIMIT[data->kind][i])
1333				data->temp_max[i] = i2c_smbus_read_byte_data(
1334					client,
1335					FSCHMD_REG_TEMP_LIMIT[data->kind][i]);
1336
1337			/*
1338			 * reset alarm if the alarm condition is gone,
1339			 * the chip doesn't do this itself
1340			 */
1341			if ((data->temp_status[i] & FSCHMD_TEMP_ALARM_MASK) ==
1342					FSCHMD_TEMP_ALARM_MASK &&
1343					data->temp_act[i] < data->temp_max[i])
1344				i2c_smbus_write_byte_data(client,
1345					FSCHMD_REG_TEMP_STATE[data->kind][i],
1346					data->temp_status[i]);
1347		}
1348
1349		for (i = 0; i < FSCHMD_NO_FAN_SENSORS[data->kind]; i++) {
1350			data->fan_act[i] = i2c_smbus_read_byte_data(client,
1351					FSCHMD_REG_FAN_ACT[data->kind][i]);
1352			data->fan_status[i] = i2c_smbus_read_byte_data(client,
1353					FSCHMD_REG_FAN_STATE[data->kind][i]);
1354			data->fan_ripple[i] = i2c_smbus_read_byte_data(client,
1355					FSCHMD_REG_FAN_RIPPLE[data->kind][i]);
1356
1357			/* The fscpos third fan doesn't have a fan_min */
1358			if (FSCHMD_REG_FAN_MIN[data->kind][i])
1359				data->fan_min[i] = i2c_smbus_read_byte_data(
1360					client,
1361					FSCHMD_REG_FAN_MIN[data->kind][i]);
1362
1363			/* reset fan status if speed is back to > 0 */
1364			if ((data->fan_status[i] & FSCHMD_FAN_ALARM) &&
1365					data->fan_act[i])
1366				i2c_smbus_write_byte_data(client,
1367					FSCHMD_REG_FAN_STATE[data->kind][i],
1368					data->fan_status[i]);
1369		}
1370
1371		for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++)
1372			data->volt[i] = i2c_smbus_read_byte_data(client,
1373					       FSCHMD_REG_VOLT[data->kind][i]);
1374
1375		data->last_updated = jiffies;
1376		data->valid = 1;
1377	}
1378
1379	mutex_unlock(&data->update_lock);
1380
1381	return data;
1382}
1383
1384module_i2c_driver(fschmd_driver);
1385
1386MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1387MODULE_DESCRIPTION("FSC Poseidon, Hermes, Scylla, Heracles, Heimdall, Hades "
1388			"and Syleus driver");
1389MODULE_LICENSE("GPL");
1390